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NICOLAS DAVID† AND THOMAS ESPITAU⋇ AND AKINORI HOSOYAMADA⋇

ABSTRACT. Quadratic form reduction enjoys broad uses both in classical and quantum algorithms

such as LLL algorithm in lattice reduction. In this paper, we propose the first quantum circuit for

definite quadratic form reduction that acheives O(n logn) depth, O
(
n2

)
width and O

(
n2 logn

)
quantum gates. The proposed work is based on a binary variant of the reduction algorithm of

the definite quadratic form. As side results, we show a quantum circuit performing bit rotation

with O(logn) depth, O(n) width, and O(n logn) gates, in addition to a circuit performing integer

logarithm computation with O(logn) depth, O(n) width, and O(n) gates.

1. INTRODUCTION

Quantum computing began in the early 1980s when physicist Paul Benioff proposed a quan-

tum mechanical model of the Turing machine. Rejected back then for classical computer, Richard

Feynman and Yuri Manin later suggested that a quantum computer had the potential to simu-

late class of programs that a classical computer could not [1]. Since then, the community started

to design algorithms built from this new type of computing relying on the use of so called

quantum circuit. Quantum computing appears to be very promising due to its applications to

different paradigms among several domains of computer science such as number theory, en-

cryption, search, information theory and more [2] [3] [4], proposing exponential speedup on

some specific search tasks. Among these breakthroughs in terms of complexity, the design of

efficient reversible shallow circuits for more low level tasks, such as basic integer operations

(e.g. addition [5], multiplication [6] and division [7]) is nonetheless a current active domain of

research. Based on these base circuits, more complex designs have been made such as quantum

circuit for GCD [8]. The goal of this work is to design an effective quantum circuit for reduc-

ing quadratic forms. Since computing a GCD can be done by reducing a specific degenerated
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quadratic form, we seek for a circuit generalizing the one from [8] by reducing general qua-

dratic forms. Because reducing quadratic forms is important as a basic and used computational

tool in algorithmic number theory, application to cryptanalysis is also of the utmost important

since it gives the first step to the design of a quantum version of the celebrated lattice reduction

algorithm LLL. This latter algorithm is crucially used in cryptanalysis and in particular in the

security assessment of lattice-based cryptography.

A famous Gauss’ reduction algorithm reduces an integer coefficient definite quadratic form

with O(n) basic arithmetic operations such as addition, subtraction, and multiplication when

coefficients are represented with O(n) bits. Thus, if there are shallow quantum circuits of depth

O(log n) for basic arithmetic operations, by a straightforward combination of such circuits with

Gauss’ reduction we achieve a quantum circuit for reduction of depth O(n log n). Indeed, some

quantum circuits for addition achieve depth O(log n) [9, 5, 10]. Moreover, it may be possible

to implement asymptotically fast classical algorithms for multiplication such as the ones by

Schönhage-Strassen [11] and Harvey-van der Hoeven [12] on a qunatum circuit of O(log n).

However, usually the constant factors hidden in the order notations for such sophisticated al-

gorithm become quite large.

Our aim is to build a quantum circuit of which depth is small from the view point of not only

asymptotic complexity but also exact complexity, so that it can be used for concrete security

estimation in a future. To achieve this goal, we seek for a reduction algorithm that does not

perform integer multiplications.

Contributions. In this work, the first description of quantum circuits tackling the following

problems are proposed:

Computing logarithm’s floor of integer in base 2: (i.e. computing the size of the repre-

sentation of an integer) To the best of our knowledge, this problem does not seem to

have been properly tackled in the literature. We give here an optimized shallow cir-

cuit to perform this computation, using labeling of a binary tree. Roughly speaking,

the leaves will correspond to the values of the bit representation of the input integer

and each level of the tree will transmit the information of the size of its children, using

a quantum subcircuit for node computation. All in all this gives a O(log n)-deep, O(n)-

wide circuit, where the naive approach (seeking for the left-most 0 in the representation)

would give a O(n)-deep circuit.

Computing scalar multiplication by a power 2: We propose an optimized shallow circuit

for bit rotation (multiplication by a variable power of 2) of depth O(log n) and width
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Algorithm Reference Toffoli depth ♯ Ancilae ♯ Toffoli gates

Modular Addition [5, 10] O(log n) O
(

n
logn

)
O(n)

Multiplication [14] O
(
n1.143

)
O
(
n1.404

)
O
(
nlog6 16

)
GCD [8] O(n log n) O(n) O

(
n2

)
Bit rotation subsection 4.2 12 log n n log n 12n log n

Logarithm subsection 4.3 4 log n 4n 4n

Quadratic form Reduction Theorem 5.1 568n log n+ 896n 7n2 + 26n 144n2 log n+ 2834n2

TABLE 1. Summary of reversible shallow circuits.

O(n log n) and size O(n log n). Our technique relies on the shallow circuit of a rotation

by one bit (á la Moore and Nilsson [8]) and combining them with parallel control and

fine-grained management of the ancilae.

Reducing definite quadratic forms: Our main circuit is built on a novel generalization of

Gauss’s reduction, loosely using the binary design of Stein’s Binary GCD Algorithm [13].

Roughly speaking, Stein’s algorithm is a classical algorithm to compute GCD which is

carefully designed so that it does not perform multiplications and divisions except for

those by 2. Since multiplications (and divisions) by 2 can be realized as a simple bit rota-

tion, Stein’s algorithm is preferable when we aim to build a GCD circuit of which depth

is small not only asymptotically but also from the view point of exact complexity. In-

deed, a previous work by Saeedi and Markov [8] builds an efficient quantum circuit for

GCD based on this approach. Our strategy is to extend the approach to quadratic form

reductions. That is, we first develop a classical algorithm that replaces multiplications

by various integers in Gauss’ algorithm with computing logarithm and multiplications

by a power of 2, and then show how to implement it on a shallow quantum circuit.

Using this new (classical) design with the subcircuits introduced above, we achieve a

O(n log n)-deep, O
(
n2

)
-wide, and O

(
n2 log n

)
-size circuit. In fact we analyze the exact

complexity of the circuit and a summary can be found in Table 1.

Organisation. First, we will introduce the quadratic form reduction problem together with

mathematical tools and elementary quantum gates. Then we will design a global process that



4 NICOLAS DAVID† AND THOMAS ESPITAU⋇ AND AKINORI HOSOYAMADA⋇

solves quadratic reduction and translate each step of this process into quantum circuits. Finally,

we will describe the relation between lattice reduction and the LLL algorithm.

2. PRELIMINARIES

In this preliminary section, we introduce the mathematical objects used in this work, namely

lattices and quadratic forms, as well as the the elementary quantum gates required to construct

the reduction circuit.

2.1. General notations. The bold capitals Z, Q, R , C refer as usual to the ring of integers and

respectively the field of rational and real. Given a real number x, its integral rounding (by

excess) denoted by ⌊x⌉ returns the integer such that ⌊x⌉ − 1/2 < x ⩽ ⌊x⌉ + 1/2. The complex

conjugation of z ∈ C is denoted by the usual bar z̄. The logarithm functions are used as log

for the binary logarithm and ln for the natural one. These operators are extended to operate on

vectors and matrices by point-wise composition.

In this paper, n denote a positive integer satisfying n ⩾ 2. For a bit b, by b̄ we denote its

negation. We say an integer x is an n-bit signed (resp., unsigned) integer if −2n−1 ⩽ x <

2n−1 and x is represented as an n-bit string by two’s complement (resp., 0 ⩽ x < 2n and

x is represented as an n-bit string). For x ∈ {0, 1}n and 0 ⩽ i < n, let x ≪ i denote the

left i-bit rotation on x. For an integer m, let m % n ∈ {0, . . . ,n − 1} denote the remainder of

the Euclidean division of m by n (or so-called modulo). For a sequence of integers i1, . . . , im

such that 0 ⩽ ij ⩽ n − 1 for all j and ij ̸= ik for j ̸= k, by (i1, . . . , im) we denote the cyclic

permutation σ on {0, . . . ,n − 1} such that σ(ij) = i(j+1) % n and σ(x) = x for x ∈ {0, . . . ,n −
1} \ {i1, . . . , im}. In particular, (i1, i2) denotes the transposition that swaps i1 and i2 and let the

other index unaltered.

2.2. Quantum circuit. Our quantum circuits are composed of the following quantum gates.

Note that Swap and Fredkin gates can be implemented with 3 applications of CNOT and Toffoli

gates, respectively.

• NOT.

|x⟩ |x̄⟩

• Bitwise addition (CNOT).

|x⟩ |x⟩

|y⟩ |x⊕ y⟩

• Toffoli (CCNOT).

|b⟩ |b⟩

|x⟩ |x⟩

|0⟩ |b · x⟩

• Swap.
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|x⟩ |y⟩

|y⟩ |x⟩

• Fredkin (CSWAP).

|b⟩ |b⟩

|x⟩ |b · y ⊕ b̄ · x⟩

|y⟩ |b · x⊕ b̄ · y⟩

In our analysis, we will consider three measures for quantum complexity: Circuit depth,

circuit width, and circuit size. Circuit depth corresponds to the execution speed of the quantum

circuit. Circuit width corresponds to the number of qubits required. Circuit size is the number

of gates in the circuit. We only count Toffoli gates when analyzing depth and size without any

order notations, following previous works [9, 5, 10]. For the ease of reading, we will not precise

the dimension of the ancilae qubits |0⟩. We ambiguously denote the top and bottom wires of a

quantum circuit with n wires by wire 0 and wire (n− 1), respectively.

For later use, we show the following lemma.

Lemma 2.1. Let b ∈ {0, 1} and x, y ∈ {0, 1}n. The operation |b⟩ |x⟩ |y⟩ 7→ |b⟩ |x⟩ |y ⊕ b · x⟩ can be

implemented with Toffoli depth 1 and n ancillary qubits1. The number of Toffoli gates required

is n in total.

Proof. This is possible by copying the bit b into n ancilla qubuits, and then applying n Toffoli

gates in parallel. □

2.3. On binary quadratic forms and Gauss’ reduction. We now formally introduce quadratic

form and reduced quadratic form.

Definition 2.2. An (integral) quadratic form Q = [A,B,C] is a polynomial (AX2 + BXY +

C Y 2) ∈ Z[X,Y ]. The integer ∆ = B2 − 4AC is called the discriminant of Q. The form is said to

be:

• Primitive: when gcd(A,B,C) = 1

• Degenerate: when ∆ = 0

• Indefinite: when ∆ > 0

• Positive (resp. Negative) Definite:

when ∆ < 0 and Q(x, y) ⩾ 0 (resp.

Q(x, y) ⩽ 0) for any (x, y) ∈ R2.

Note that in this work, we will work mostly work with definite quadratic forms. A form

Q = [A,B,C] can be represented by the 2× 2 matrix Q =

 A B/2

B/2 C

, so that the evaluation

1The depth can be in O(log2 n) even if we count not only Toffoli gates but also all other gates by copying b along

with a binary tree. See also Proposition 4.2.
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ofQ at x, y is given by (x, y)Q(x, y)T . The modular group Sl(2,Z)2 have a natural (left) action on

the set of quadratic forms given by matrix conjugation, that is defining S · [A,B,C] as ST QS.

The orbit of a formQ is called its class and the discriminant is an invariant of the class of a form.

Two forms lying in the same class are said to be equivalent.

Gauss proved that any class contains a reduced form in the following sense. Note that [A,B,C]

is negative definite if and only if [−A,−B,−C] is positive definite.

Definition 2.3 (Reduced form). A binary quadratic form [A,B,C] is reduced if

∣∣∣√∆− 2|A|
∣∣∣ < B <

√
∆ when [A,B,C] is indefinite, |B| ⩽ A ⩽ C

B ⩾ 0 if |B| = A or C

 when [A,B,C] is positive definite, and

[−A,−B,−C] is reduced when [A,B,C] is negative definite.

Gauss’ original reduction operates as a sequence of elementary actions of the shape:

S =

0 1

1 t(Q)

, where t(Q) = −sgn(C) ·


⌊

B
2|C|

⌉
if |C| ⩽

√
|∆|⌊√

∆+B
2|C|

⌋
if |C| >

√
|∆|

,

until a reduced form is reached.

3. A BINARY REDUCTION ALGORITHM FOR POSITIVE DEFINITE FORMS

In this section, we present a reduction algorithm for positive definite forms. The algorithm

is designed in such a way that most of its mathematical operations are additions, subtractions,

logarithm, or multiplications by a power of 2, so that we can build a shallow quantum circuit

based on it. We follow some of the ideas of [8] and consider Stein’s algorithm [13] as a starting

point. Then we will derive an algorithm for quadratic form reduction more quantizable than the

generic algorithm. Note that the algorithm can also be used to reduce negative definite forms:

If [A,B,C] is a negative definite form, run the algorithm on [−A,−B,−C] and let [A′,B′,C ′]

be the output. Then [−A′,−B′,−C ′] is the reduced negative definite form in the same class as

[A,B,C].

2i.e. the group of invertible integer matrices of size 2x2
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3.1. Interlude: Stein’s algorithm for gcd. The greatest common divisor (GCD) of two posi-

tive integers A and B can be found by the Euclidean algorithm which performs successive di-

vision with remainder, given that for A = Bq + r with all positive numbers, gcd(A,B) =

gcd(B, r = A%B). This algorithm can be realized as the reduction of the degenerate quadratic

form [A2, 2AC,C2]. The Binary GCD Algorithm [13], also called Stein’s algorithm, computes the

GCD of two nonnegative integers a and b using subtractions and divisions by two, which are

easy to implement in hardware. The algorithm maintains two numbers, starting with a and

b, but replaces them at every step with a pair that has the same GCD. The following steps are

repeated until either A = B or A = 0.

• If 0 ≡ A ≡ B %2, then gcd(A,B) = 2 gcd(A/2,B/2)

• If 0 ≡ A ≡ 1−B %2, then gcd(A,B) = gcd(A/2,B)

• If 1 ≡ A ≡ 1−B %2, then gcd(A,B) = gcd(A,B/2)

• If 1 ≡ A ≡ B %2, then we ensure that A ⩾ B, and use gcd(A,B) = gcd
(

A−B
2 ,B

)
Compare to the classical Euclidean algorithm it avoids to perform divisions of integers and only

deals with addition and shifts. For n-bit integers, each step takes linear time, Thus, the binary

GCD algorithm needs O
(
n2

)
time so that it does not improve asymptotic performance compared

to Euclidean algorithm or its variants by Lehmer [15, Chapter 4.5.3 Theorem E]. However, on

average, it uses 60% fewer bit operations than the Euclidean algorithm as reported by [16].

Remark that we can factorize some divisions by 2 by directly dividing by the greatest power of

2 dividing both A and B. It now makes appearing that we are in substance reconstructing the

binary decomposition of the greatest common divisor.

3.2. Towards a binary reduction. We now turn to the devise of a Stein’ like binary reduction

for quadratic forms. Likewise, it aims at avoiding the divisions appearing in Gauss’ reduction.

This core construction is quite similar to the usual reduction algorithm, but instead of acting on

the form with transvections matrices of the form Sm =

0 1

1 m

 for arbitrary m ∈ Z, we only

restrict ourselves to transvections with coefficients power-of-two. Recall that given a matrix

G =

 A B/2

B/2 C

 ∈M(2,R), then we have the congruence:

(1) St
m ·G · Sm =

 C B/2 +mC

B/2 +mC A+mB +m2C


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For m being a power-of-two m · a can be computed by shifting the bits of a. Hence, St
m ·Q · Sm

can be computed using only shifts and additions. Therefore, we can now use the same princi-

ple as for Stein’s algorithm: in order to circumvent the transvections requiring multiplications

and divisions, we are instead implicitly following the corresponding binary decomposition and

apply sequences of bits operations.

Algorithm 1 — Positive Definite Reduction

Input : Q positive definite quadratic form represented by [A,B,C ]

Output : A reduced form in [Q]

1 m← 0, ε← sgn(B)

2 if C < A then (C ,A)← (A,C )

3 if ¬(|B| ⩽ 2A) then m← 2⌊log2 |B|⌋−⌊log2 A⌋−1

4 else m←
⌊
|B|
2A

⌉
5 if m = 0 then return [A, (−1)δ(A=−B)

B,C ]

6 else Reduce(C − εmB +m2A,B − ε2mA,A)

Theorem 3.1. Given Q = [A,B,C] a quadratic binary form where |A|, |B|, |C| < 2n, then the

algorithm returns a reduced form by making at most n recursive calls.

Proof. First of all, note that positive definite forms always satisfy A,C > 0.

Correctness: First, we will assume termination to prove correctness, then we will study

termination and complexity. Remark that each operation of the algorithm on the qua-

dratic form can be represented as in (1) and thus preserves the class of the form:

• the swap of A and C on line 2 is realized by the action of S0.

• the operation [A,B,C] 7→ [A, (−1)δ(A=−B)B,C] on line 5 can be realized by the

action of (S0 · S1).

• the transformation [A,B,C] 7→ [C,−εmB + A2,B − ε2mA,A] of line 6 can be real-

ized by the action of (S0 · S−εm · S0).

By a direct induction, we never leave the orbit of the form and in particular the output

is in the orbit of the input. Assuming termination, we can claim that condition on line 5

is true and that the algorithm crosses line 2. Hence both of the following conditions

(2) m = 0 (3) C ⩾ A
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hold. Since the function x 7→ 2x is a strictly positive function, (2) leads to line 3

condition being false. Therefore we have m =
⌊
|B|
2A

⌉
= 0, which implies that |B| ⩽ A.

Using (3), we can state |B| ⩽ A ⩽ C In addition, if |B| = A, then the output always

satisfies B = A due to the coefficient δ(A = −B) on line 5. Hence, the quadratic form is

reduced.

Termination: Denote by Ai, Bi, Ci the values taken respectively by the variables A,B,C

at the i-th recursive call. We will show that the sequence of non-negative integers

|B1|, |B2|, . . . satisfies that |Bi+1| < |Bi| for all i. Without loss of generality, we can

assume Ai < Ci (due to line 2 of the algorithm).

• If m is set on line 3, then m = 2⌊log2 |B|⌋−⌊log2 A⌋−1. By remarking 0 ⩽ x − ⌊x⌋ ⩽ 1,

we can state :

|Bi+1| = |Bi − 2εmAi|

=
∣∣∣ε|Bi| − ε2⌊log2 |Bi|⌋+log2 Ai−⌊log2 Ai⌋

∣∣∣
= |Bi|

(
1− 2(log2 Ai−⌊log2 Ai⌋)−(log2 |Bi|−⌊log2 |Bi|⌋)

)
⩽ |Bi|(1− 1/2) = |Bi|/2

• If m is set on line 4, then m =
⌊
|Bi|
2Ai

⌉
and condition line 3 is false. Therefore |Bi| ⩽

2Ai holds, which implies that m is 0 or 1. If m = 0, then the algorithm terminates.

Thus we will study the case m = 1. Note that m =
⌊
|Bi|
2Ai

⌉
= 1 implies Ai < |Bi| ⩽

2Ai. Hence |Bi+1| =
∣∣Bi − 2εmAi

∣∣ = ∣∣|Bi| − 2Ai

∣∣ = 2Ai − |Bi| ⩽ |Ai| < |Bi| holds.

Complexity: We first show that, if m is set to be 1 at line 4 of the ith recursive call, the

algorithm will terminate at the (i+ 1)st recursive call. Again, without loss of generality

we assume Ai ⩽ Ci.

• Step i. In the arguments to prove correctness and termination, we showed the fol-

lowings hold when m is set to be 1 at line 4:

Ai < |Bi| ⩽ 2Ai, |Bi+1| = 2Ai − |Bi|,Ci+1 = Ai,Ai+1 = Ci − |Bi|+Ai.

In particular, we can deduce that

(4) Ci −Ai ⩽ 2(Ci +Ai − |Bi|)

holds.
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• Step i+1. First, we can easily confirm that |Bi+1| ⩽ Ai+1, 2Ci+1 holds. In particular,

m is set to be 0 or 1 at line 4. If Ai+1 ⩾ Ci+1 = Ai, line 2 swaps Ai+1 and Ci+1. Hence

(5) m =

⌊
|Bi+1|
2Ai

⌉
=

⌊
1− |Bi|

2Ai

⌉
= 0

holds, where we used the condition Ai < |Bi| for the last equality. If Ai+1 ⩽ Ci+1 =

Ai, then

m =

⌊
|Bi+1|
2Ai+1

⌉
=

⌊
2Ai − |Bi|

2(Ci +Ai − |Bi|)

⌉
=

⌊
1

2
− Ci −Ai

2(Ci +Ai − |Bi|)

⌉
= 0,

follows from (4). Therefore the algorithm stops at the (i+ 1)st recursive call.

Note that every time m is set at line 3, the quantity |Bi| gets reduced in half. Since

|Bi| < 2n, the operation of line 3 is not executed more than (n− 1) times. Moreover, line

4 cannot happen more than 2 times in a row, allowing to conclude that the algorithm

does at most n recursive calls.

□

4. QUANTUM CIRCUITS FOR ELEMENTARY OPERATIONS

Before diving in the precise complexity analysis of the circuit corresponding to the reduction

algorithm presented in Section 3, we introduce and analyse the main gadgets used in the de-

sign: shallow quantum circuits for addition (in addition to subtraction and absolute value), bit

rotation, and logarithm.

4.1. Quantum circuit for addition, subtraction, and absolute value.

4.1.1. Addition. To build a shallow quantum circuits for reductions of quadratic forms, we need

a quantum circuit for addition of which depth, width, and size are in O(log n), O(n), and O(n),

respectively (see also Figure 1). Such a shallow quantum circuit is first shown by Draper et

al. [9] and later improved by Takahashi and Kunihiro [5], and Takahashi et al. [10]. Each of

them meets our demands and is composed of only NOT, CNOT, and Toffoli gates 3 and thus

could also be implemented on a classical computer. For instance, the adder for n-bit integers in

[5] can be implemented with Toffoli depth 30 log n, (3n/ log n) ancillary qubits, and 29n Toffoli

gates in total.

3In fact we need a circuit for modular addition rather than usual addition and some of the previous works implement

the latter. Still, we can easily convert a quantum circuit for addition into one for modular addition without changing

complexity.
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|A⟩

SUM

|A⟩

|B⟩ |A+B⟩

|0⟩ |0⟩

FIGURE 1. Quantum circuit for addition.

Quantum circuits to compute subtraction and absolute value can be realized with the same

asymptotic complexity, which we elaborate below.

4.1.2. Subtraction. Subtractions can be computed by uncomputing additions. Hence the circuit

of subtraction for n-bit integers can be implemented with Toffoli depth 30 log n, (n + 3n/ log n)

ancillary qubits, and 29n Toffoli gates in total. In what follows, we assume−x is computed from

x by subtracting x from 0.

4.1.3. Absolute value. Here we explain how we implement the operation |x⟩ |y⟩ 7→ |x⟩ |y ⊕ |x|⟩
for n-bit integers x and y on a quantum circuit. Note that we can tell whether a number x is

negative by checking if bmsb = 1, where bmsb is the most significant bit of x. We compute the

absolute value |x| as follows.

(i) Compute −x and copy bmsb to ancillary qubits to obtain |x⟩ |−x⟩ |bmsb⟩ |y⟩.
(ii) Copy and write−x to the output register iff bmsb = 1 to obtain |x⟩ |−x⟩ |bmsb⟩ |bmsb · (−x)⊕ y⟩.

(iii) Copy and write x to the output register iff bmsb = 0 by flipping bmsb and sequentially ap-

plying n CNOT gates on b̄msb and each bit of x to obtain |x⟩ |−x⟩ |b̄msb⟩ |bmsb · (−x)⊕ b̄msb · x⊕ y⟩.
(iv) Uncompute (i) to obtain |x⟩ |0⟩ |bmsb · (−x)⊕ b̄msb · x⊕ y⟩ = |x⟩ |0⟩ ||x| ⊕ y⟩.

(i) requires depth 30 log n, (n + (3n/ log n) + 1) ancillary qubits, and 29n Toffoli gates in total.

By Lemma 2.1, (ii) and (iii) can be done by additional Toffoli depth 2 and 2n Toffoli gates in

total. (Note that the output register is the rightmost one.) (iv) requires additional Toffoli depth

of 30 log n and 29n Toffoli gates in total. In summary, the circuit to compute absolute values for

n-bit integers can be implemented with depth (60 log n+2), (n+(3n/ log n)+1) ancillary qubits,

and 60n Toffoli gates in total.

4.2. Quantum circuit for bit rotation. We now turn to the design of an efficient circuit for

(qu)bit rotation. More formally, given a parameter i ∈ Z and a set of n qubits, the (left) rotation

of amount i is the application of the unitary operator encoding the permutation on {0, . . . ,n−1}
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that maps j to (j − i) % n:  0 · · · i i+ 1 · · · n− 1

n− i · · · 0 1 · · · n− i− 1


We insist on the fact that the shift amount is not fixed and is encoded in the input of the circuit.

Hence the circuit specifies as in Figure 2. In what follows, we build a circuit for rotation of which

depth, width, and size are O(log n), O(n log n), and O(n log n), respectively.

|A⟩

Rotation

|A⟩

|i⟩ |i⟩
|0⟩ |0⟩

|0⟩ |A ≪ i⟩

FIGURE 2. The quantum circuit for bit rotation.

We first study the simplified case where i = 2m or 0 for a fixed m ∈ {0, . . . , log2 n − 1}.
We denote the quantum circuit for this simplified case by Sm (see Figure 3). We will realize a

quantum circuit for bit rotation by combining Sm for m = 0, . . . , log2 n− 1.

|A⟩
Sm

|A ≪ (2m · b)⟩

|b⟩ |b⟩

FIGURE 3. The quantum circuit Sm (A ∈ {0, 1}n and b ∈ {0, 1}).

4.2.1. How to realize S0 as a shallow circuit. The naive approach for 1-bit rotation consists by

swapping iteratively each bits by one position starting from the last one, resulting in a circuit of

depth O(n), as depicted in the left circuit below. However, apparently this approach does not

lead to our goal of an O(log n) depth circuit. Therefore we follow the idea from the previous

work on GCD computation by Saeedi and Markov [8], which use the following two results

from [17] to implement S0 on a circuit of depth O(log n).

Proposition 4.1 (Proposition 1 in [17]). The cyclic permutation on n qubits that moves the qubit

at wire i to wire (i − 1) (i = 0, . . . ,n − 1) can be implemented on a quantum circuit of which

depth and size are in O(1) and O(n) without any ancillae by first swapping wire (i+1) % n and
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x0

x1

x2

x3

x4

x5

x6

x7

FIGURE 4. Example of constant time 1-bit rotation for 8 qubits. The left four

gates and the right three gates can be applied at once in parallel. (This figure is

based on Figure 5 of [8].)

wire (n − i) % n for i = 0, . . . ,n/2 − 1 at once in parallel, and then swapping wire (i + 1) % n

and wire (n− 1− i) % n at once in parallel for i = 0, . . . ,n/2− 2.

Proposition 4.2 (Proposition 2 in [17]). Let U1, . . . ,Un be quantum gates (or, unitary operators

that can be implemented with O(1) gates), and CUi be the controlled-Ui gate. Then, the series

of n controlled gates CU1, . . . ,CUn such that the controll qubits of CUi and CUj are the same

but the target qubits are disjoint for all i ̸= j can be parallelized to O(log n) depth by using O(n)

ancillae and O(n) gates are used.

Proposition 4.1 holds because the permutation on the set {0, . . . ,n − 1} that maps i to (i −
1) % n can be decomposed into the product of transpositions

(
(1, 0)

∏n/2−1
i=1 (i+ 1,n− i)

)
·(∏n/2−2

i=0 (i+ 1,n− i− 1)
)

. An example on 8 qubits is given in Figure 4. See [17] for details.

The parallelization of Proposition 4.2 can be realized by first copying the control qubit to n

ancillary qubits (which can be done in depth O(log n) with O(n) CNOT gates), second applying

CU1, . . . ,CUn at once in parallel (the i-th ancillary qubit is used as the control qubit of CUi),

and finally uncomputing the copies of the control qubit. See also Figure 5.

Saeedi and Markov observed that Proposition 4.2 enables us to replace the swap gates in

Proposition 4.1 with Fredkin gates that swap wires if and only if b = 1 while keeping the depth
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𝑈1

𝑈2

𝑈3

𝑈4

𝑈1

𝑈2

𝑈3

𝑈4

FIGURE 5. Parallelization of 4 controlled unitary gates. The gates in the dotted

rectangle are applied at once in parallel. (This figure is based on Figure 5 of [8].)

𝑏

𝑥0

𝑥1
𝑥2

𝑥3

𝑥4

𝑥5

𝑥6

𝑥7

0

0

0

0

0

0

FIGURE 6. Implementation of S0 for n = 8. Fredkin gates surrounded by a

dotted rectangle are applied at once in parallel.

of the circuit in O(log n), which implies that we can implement the controlled 1-bit rotation (i.e.,

S0) on a quantum circuit of width O(n), depth O(log n), and size O(n). See also Figure 6 for the

example when n = 8.

4.2.2. How to realize Sm as a shallow circuit for m > 0. Proposition 4.1 implies that any fixed

permutation on n wires can be implemented on a quantum circuit of depth O(1) since arbitrary
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permutation can be uniquely decomposed into a product of cyclic permutations on disjoint

subsets4. In particular, we can decompose the permutation σm on the set {0, . . . ,n − 1} such

that σm(i) = (i − 2m) % n into the product of 2m cyclic permutations as σm =
∏2m−1

i=0 σ
(i)
m ,

where σ
(i)
i := (i, (i− 2m) % n, . . . , (i− (n/2m − 1) · 2m)% n). We implement Sm for m > 0 on a

quantum circuit of depth O(log n), width O(n), and size O(n) in the same way as we do for S0:

We first implement σm on a circuit of depth O(1) and width O(n) with swap gates by applying

Proposition 4.1 to all σ(i)
m , and then replace the swap gates with Fredkin gates that swap wires if

and only if b = 1 while keeping the depth in O(log n), by using Proposition 4.2.

4.2.3. How to implement the circuit for bit rotation: First attempt. To perform i-bit rotation for any

parameter i, we consider its decomposition in base 2 say i =
∑log2 n−1

m=0 im2m. The i-bit rotation

can be realized by applying 2m-bit rotation if and only if im = 1 for m = 0, . . . , log2 n − 1 in a

sequential order. Given an input |i⟩ = |i0 · · · ilog2 n−1⟩ and |A⟩ (i ∈ {0, 1}log2 n and A ∈ {0, 1}n),

our circuit runs as follows: First, apply Sm to |A⟩ |im⟩ in a sequential order for m = 0, . . . , log2 n−
1 to obtain the state |A ≪ i⟩ |i⟩. Second, copy the value (A ≪ i) to ancillary qubits to obtain

the state |A ≪ i⟩ |i⟩ |A ≪ i⟩. Finally, apply uncompute Sm for m = log2 n, . . . , 0 to obtain the

final state |A⟩ |i⟩ |A ≪ i⟩. See also Figure 7.

|A ≪ i⟩|A⟩

S0 · · · Slog2 n−1 S−1
log2 n−1 · · · S−1

0

|A⟩

|i⟩ |i⟩

|0⟩ |A ≪ i⟩

FIGURE 7. Implementation of rotation for any i with O((log n)2) depth. Sm

involves the qubit |ij⟩ if and only if j = m.

4.2.4. Reducing the depth from O
(
(log n)2

)
to O(log n). Here we show how to further reduce the

depth of the quantum circuit in Figure 7. The reason that each Sm requires depth O(log n) (but

not O(1)) is that we have to copy the control qubit im into n ancillary qubits. The depth of the

entire circuit of Figure 7 becomes O
(
(log n)2

)
because this copy operation is performed for each

m ∈ {0, . . . , log2 n− 1}. However, we observe that the control qubits for Sm and Sm′ are distinct

for m ̸= m′. Therefore we can reduce the depth of the circuit from O
(
(log n)2

)
to O(log n) by

4In fact the original version of Proposition 4.1 in [17] states that any permutation can be implemented on a quantum

circuit of depth O(1). We stated the proposition like above for convenience of explanation.
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performing the copy operations on the control qubits i0, . . . , ilog2 n−1 at once in parallel for all m

at the beginning of the circuit (and at the end of the circuit for uncomputations) with O(n log n)

ancillae. Eventually, we obtain a quantum circuit for bit rotation of which depth, width, and

size are O(log n), O(n log n), and O(n log n), respectively.

4.2.5. Exact complexity without order symbols. So far we have provided only asymptotic complex-

ity, but it is straightforward to check that the exact (Toffoli) depth, ancillary qubits, and (Toffoli)

size of the above circuit (when the A is an n-bit unsigned integer and i ∈ {0, 1}⌈log2 n⌉) are at

most 12⌈log n⌉, n⌈log n⌉, and 12n⌈log n⌉. (Note that the Fredkin gate can be implemented by

applying the Toffoli gate three times.)

4.3. Quantum circuit for logarithm. This section shows a quantum circuit to compute ⌊log2 B⌋
for an unsigned n-bit integer B ⩾ 0 of which depth, width, and size are O(log n), O(n), and

O(n), respectively (See also Figure 8). In what follows, we first show a quantum circuit for

B ⩾ 0 and B is an n-bit unsigned integer. If B = 0, we define log2 B := 0 for convenience.

|B⟩

LOG

|B⟩

|0⟩ |0⟩

|0⟩ |⌊log2 B⌋⟩

FIGURE 8. Quantum circuit for logarithm.

Our idea to realize is to utilize labeling of a binary tree. Let us denote bit i of B ∈ {0, 1}n by bi

(B = b0b1 · · · bn−1). Let BL and BR be the most and least significant n/2 bits of B, respectively.

First, we observe that ⌊log2 B⌋ can be computed from ⌊log2 BL⌋ and ⌊log2 BR⌋ as follows

when B > 0.

(6) If BL ̸= 0, ⌊log2 B⌋ = ⌊log2 BL⌋+ n/2. If BL = 0, ⌊log2 B⌋ = ⌊log2 BR⌋.

From this observation, we notice that ⌊log2 B⌋ can be computed by labeling the nodes of the

complete binary tree of depth log2 n, where the label of a node v is determined as follows:

(a) If v is the i-th leaf, v is labeled with (bi, ε) (the leftmost and rightmost leaves are labeled

with (b0, ε) and (bn−1, ε), respectively). Here, ε denotes the empty string.

(b) If v is not a leaf, let (bi, ε), (bi+1, ε), . . . , (bi+j , ε) denote the labels of the leaves that are

descendants of v, and define B(v) := bi · · · bi+j . If B(v) ̸= 0, label v with (1, ⌊log2 B(v)⌋).
If B(v) = 0, label v with (0, 0).
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Note that, if we denote the left and right children of a node v by vL and vR, then B(v) =

B(vL)||B(vR) holds. In particular, we have B(root) = B. See also Figure 9.

(0,ε) (1,ε) (0,ε) (0,ε) (1,ε) (1,ε) (1,ε) (0,ε)

(1,0) (0,0) (1,1) (1,1)

(1,2) (1,3)

(1,6)

𝑏0 = 0 𝑏1 = 1 𝑏2 = 0 𝑏3 = 0 𝑏4 = 1 𝑏5 = 1 𝑏6 = 1 𝑏7 = 0

root

Level 3

Level 2

Level 1

Level 0

FIGURE 9. Labels of the nodes when n = 8 and B = 01001110 (⌊log2 B⌋ = 6).

Since the equation (6) holds, we can compute the label of a node v once the labels of their

children vL and vR are computed. More precisely, suppose v is a node at level j. Let label1(v) ∈
{0, 1} and label2(v) ∈ {0, 1}j denote the first and second entries of the label of v, respectively.

Then

(7) label1(v) = label1(vL) ∨ label1(vR)

holds. In addition, label2(v) is computed as label2(v) = label2(vL) + 2j−1 = 1||label2(vL) if

label1(vL) = 1 and label2(v) = 0||label2(vR) if label1(vL) = 0. In particular, the followings hold.

msb(label2(v)) = label1(vL),(8)

i-msb(label2(v)) =

(i− 1)-msb(label2(vL)) if label1(v) = 1,

(i− 1)-msb(label2(vR)) if label1(v) = 0.
(9)

Here, msb denotes the most significant bit, and i-msb denotes the i-th most significant bit.

So far we assumed B > 0 but the arguments extend to the case B = 0, by setting all the labels

as (0, 0) except for leaves and (0, ε) for all the leaves. By using (7) - (9), we can compute all the
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FIGURE 10. The quantum circuit to compute label1(v) and msb(label2(v)).

FIGURE 11. The quantum circuit to compute 2-msb(label2(v)).

labels on a quantum circuit as follows.

1. Compute label1(v) and msb(label2(v)) for all the nodes v at level j parallelly and si-

multaneously by using (7) and (8) from the values {label1(v′)}v′:level j−1, for each j =

1, 2, . . . , log2 n in a sequential order. The quantum circuit for this procedure is shown in

Fig. 10. At this moment, computations for all the labels of node v of level 0 and level 1

are completed, but the labels of level j for j ⩾ 2 are incomplete.

2. For all the nodes v at level j ⩾ 2, compute 2-msb(label2(v)) parallelly and simultane-

ously, by using (9). This can be done by just copying the bit msb(label2(vL)) if label1(v) =

1, or msb(label2(vR)) if label1(v) = 0, into a new register (See also Fig. 11). At this mo-

ment, computations for the labels of level 2 is completed.

4. Copy label2(root) = ⌊log2 B⌋ into the output register.

5. Uncompute Steps 1-3.

4.3.1. Complexity analysis.

• Depth. In Step 1, the Toffoli depth of the computation for level j is 1 for each j =

1, . . . , log2 n. Thus the Toffoli depth of Step 1 is requires log2 n. Similarly, in Steps 2 and 3,

the computation of j-msb(label2(v)) is done with Toffoli depth 2 for each j = 2, . . . , log2 n.

Hence Steps 2 and 3 require 2(log2 n− 1) depth. Depth for Step 4 is does not use Toffoli
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gates. Thus the overall depth is at most 2×(log2 n+2×(log2 n−1) ⩽ 4 log2 n. Hence the

overall Toffoli depth is 4 log2 n. (Even if we count not only Toffoli gates but also other

gates, a similar analysis shows that the depth is in O(log2 n))

• Width. Let h := log2 n. We need (j + 1) ancillary qubits to compute and store the label

for each node of level j, and there are 2h−j nodes exist at level j. Hence the width of the

whole circuit is at most
∑h

j=0(j + 1) · 2h−j . We have

h∑
j=0

(j + 1) · 2h−j = 2h
h∑

j=1

j · 2−(j−1) = 2h
h∑

j=1

j · x(j−1)

∣∣∣∣∣∣
(x=2−1)

and
h∑

j=1

j · x(j−1) =

(
xh+1 − 1

x− 1

)′

=
(h+ 1)xh(x− 1)− (xh+1 − 1)

(x− 1)2
.

Hence the total number of ancillary qubits required is at most

2h
(h+ 1)(−2−(h+1))− (2−(h+1) − 1)

(−1/2)2
⩽ 2h+2 = 4n.

• Size. In Step 1, the number of Toffoli gates required for the computation for level j is

2log2 n−j for each j = 1, . . . , log2 n. Thus the total number of Toffoli gates required for

Step 1 is
∑log2 n

j=1 2log2 n−j =
∑log2 n−1

j=0 2j ⩽ 2log2 n = n. Similarly, in Steps 2 and 3, the

computation of j-msb(label2(v)) uses 2 · 2log2 n−j Toffoli gates for each j = 2, . . . , log2 n.

Hence Steps 2 and 3 require
∑log2 n

j=2 2 · 2log2 n−j = 2
∑j=log2 n−2

j=0 2j ⩽ n Toffoli gates.

Depth for Step 4 is does not use Toffoli gates. Thus the overall size of the circuit is at

most 2(n + n) = 4n. (Even if we count not only Toffoli gates but also other gates, a

similar analysis shows that the size is in O(n))

So far we have assumed n is a power of two. Even if n is not a power of 2, the above

arguments work by considering a tree of height ⌈log2 n⌉. In particular, ⌊log2 B⌋ can be com-

puted with Toffoli depth 8 log2 n, 8n ancillary qubits, and 8n Toffoli gates in total (note that

2⌈log2 n⌉ ⩽ 2n).

5. QUANTUM CIRCUIT FOR REDUCTION ON BINARY QUADRATIC FORMS

This section shows how to implement Algorithm 1 on a shallow quantum circuit by using the

circuits introduced in Section 4 and analyze its complexity. The depth, width, and size of the

resulting quantum circuit is O(n log n), O(n2), and O(n2 log n), respectively. In the following,

we suppose that we are given a positive definite quadratic form [A,B,C] represented by three

n-bit signed integers. Without loss of generality (up to padding by the appropriate amount of
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zeros) we shall suppose that n is a power of two (the asymptotic depth of the circuit remains

unchanged by such padding, but the analysis is slightly simpler in this case).

5.1. An Alternative Description of Algorithm 1. The description of Algorithm 1 is simple but

not favorable as a base for a quantum circuit because it is a recursive algorithm of which run-

ning time depends on inputs, whereas the running time of quantum circuits is independent of

inputs. Thus, first we rewrite Algorithm 1 as in Algorithm 2 so that the running time will not

depend on inputs. The behavior of Algorithm 2 is essentially the same as that of Algorithm 1

and Algorithm 2 certainly outputs the reduced form because the followings properties hold on

Algorithm 1, as we showed in the proof of Theorem 3.1.

• Every time m is set on line 3, |B| is reduced at least half. Hence m is set on line 3 at most

n times.

• If m is set on line 5, m is 0 or 1. If m = 0, then the algorithm immediately stops, out-

putting the result. If m = 1, then in the next recursive call m is set to be 0 on line 5 and

the algorithm terminates.

Roughly speaking, line 3-13, line 14-18, and line 19-21 of Algorithm 2 corresponds to the cases

in Algorithm 1 when m is set on line 3, m is set to be 1 on line 4, and m is set to be 0 on line 4,

respectively.
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Algorithm 2 — Positive Definite Reduction (an alternative description)

Input : Q a positive definite quadratic form [A,B,C]

Output : The reduced form [Afin,Bfin,Cfin] in [Q]

1 (A0,B0,C0)← (A,B,C)

2 if C0 < A0 then (C0,A0)← (A0,C0)

3 for j = 1, . . . ,n do

4 if ¬(|Bj−1| ⩽ 2Aj−1) then

5 ij ← ⌊log2 |Bj−1|⌋ − ⌊log2 Aj−1⌋ − 1

6 m← 2ij

7 Aj ← Cj−1 − (sgn(Bj−1))mBj−1 +m2Aj−1,

Bj ← Bj−1 − (sgn(Bj−1))2mAj−1, Cj ← Aj−1

8 end if

9 else

10 (Aj ,Bj ,Cj)← (Aj−1,Bj−1,Cj−1)

11 end if

12 if Cj < Aj then (Cj ,Aj)← (Aj ,Cj)

13 end for

14 if An < |Bn| then
15 An+1 ← Cn − (sgn(Bn))Bn +An, Bn+1 ← Bn − 2(sgn(Bn))An, Cn+1 ← An

16 end if

17 else (An+1,Bn+1,Cn+1)← (An,Bn,Cn)

18 if Cn+1 < An+1 then (Cn+1,An+1)← (An+1,Cn+1)

19 if An+1 = −Bn+1 then (Afin,Bfin,Cfin)← (An+1,−Bn+1,Cn+1)

20 else (Afin,Bfin,Cfin)← (An+1,Bn+1,Cn+1)

21 return (An+1,Bn+1,Cn+1)

5.2. Quantum Algorithm for Binary Reduction on Quadratic Forms. Our quantum algorithm

for binary reductions on quadratic forms is shown in Algorithm 3, which is based on Algo-

rithm 2. Algorithm 3 uses Algorithm 4 as subroutines. For a predicate P (e.g., P (A,B) :=

¬(|B| ⩽ 2A)), by [P ]bool we denote the bit that is 1 if the predicate P holds and 0 if P does not

hold.
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Algorithm 3 is obtained from Algorithm 2 by not only converting every operation into a

reversible one but also modifying how to compute (Aj ,Bj ,Cj) from (Aj−1,Bj−1,Cj−1), which

we explain below.

Let (A′
j ,B

′
j ,C

′
j) := (Cj−1− (sgn(Bj−1))mBj−1+m2Aj−1,Bj−1− (sgn(Bj−1))2mAj−1,Aj−1).

Algorithm 2 computes (A′
j ,B

′
j ,C

′
j) only if ¬(|Bj−1| ⩽ 2Aj−1) holds and sets (Aj ,Bj ,Cj) :=

(A′
j ,B

′
j ,C

′
j) if ¬(|Bj−1| ⩽ 2Aj−1) holds. If ¬(|Bj−1| ⩽ 2Aj−1) does not hold, then Algo-

rithm 2 just sets (Aj ,Bj ,Cj) := (Aj−1,Bj−1,Cj−1). On the other hand, Algorithm 3 com-

putes (A′
j ,B

′
j ,C

′
j) regardless of whether ¬(|Bj−1| ⩽ 2Aj−1) holds, and then sets (Aj ,Bj ,Cj)

as (A′
j ,B

′
j ,C

′
j) or (Aj−1,Bj−1,Cj−1) depending on whether ¬(|Bj−1| ⩽ 2Aj−1) holds. (In fact

the new procedure to compute (A′
j ,B

′
j ,C

′
j) is mainly performed in Algorithm 4.)

We modified how to compute (Aj ,Bj ,Cj) to avoid the conditional branch on the relatively

heavy procedures (i.e., line 5-7 of Algorithm 2), which reduces the depth of the quantum circuit

to some extent. If we do not modify the computation of (Aj ,Bj ,Cj), then we would obtain

the complexity of depth O(n2(log n)2), width O(n log n), and size O(n2 log n), instead of our

complexity of depth O(n2 log n), width O(n2), and size O(n2 log n).
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Algorithm 3 — Quantum algorithm for binary reduction on quadratic forms

Input : A positive definite quadratic form [A,B,C].

Output : The reduced form [Afin,Bfin,Cfin] in [Q]

// We show how the state changes in comments.

1 Let (A0,B0,C0) := (A,B,C). // The initial state is |A0,B0,C0⟩.

2 Compute and store b0 := [C < A]bool. // The current state is |A0,B0,C0⟩ ⊗ |b0⟩

3 if b0 = 1 then Swap A0 and C0.

4 for j = 1, . . . ,n do

5 Compute and store bj,1 := [¬(|Bj−1| ⩽ 2Aj−1)]bool, bj,2 := [Bj−1 < 0]bool, and

|ij⟩ := ⌊log2 |Bj−1|⌋ − ⌊log2 Aj−1⌋ − 1. // The current state is |A0,B0,C0⟩ |b0⟩ ⊗(⊗
1⩽k⩽j−1 |A′

k,B
′
k,C

′
k⟩ |Ak,Bk,Ck⟩ |bk,1, bk,2, bk,3⟩ |ik⟩

)
⊗ |bj,1, bj,2⟩ |ij⟩.

6 Run Algorithm 4 on |Aj−1,Bj−1,Cj−1⟩ |bj,1, bj,2⟩ |ij⟩ to obtain

|Aj−1,Bj−1,Cj−1⟩ |A′
j ,B

′
j ,C

′
j⟩ |Aj ,Bj ,Cj⟩ |bj,1, bj,2⟩ |ij⟩. // The current state is

|A0,B0,C0⟩ |b0⟩ ⊗
(⊗

1⩽k⩽j−1 |A′
k,B

′
k,C

′
k⟩ |Ak,Bk,Ck⟩ |bk,1, bk,2, bk,3⟩ |ik⟩

)
⊗

|A′
j ,B

′
j ,C

′
j⟩ |Aj ,Bj ,Cj⟩ |bj,1, bj,2⟩ |ij⟩.

7 Compute and store bj,3 := [Cj < Aj ]bool.

8 if bj,3 = 1 then Swap Aj and Cj .

// The current state is

|A0,B0,C0⟩ |b0⟩ ⊗
(⊗

1⩽k⩽j |A′
k,B

′
k,C

′
k⟩ |Ak,Bk,Ck⟩ |bk,1, bk,2, bk,3⟩ |ik⟩

)
.

9 end for

10 Compute and store bn+1,1 := [An < |Bn|]bool and bn+1,2 := [Bn < 0]bool. Set

in+1 := 0.

11 Run Algorithm 4 on |An,Bn,Cn⟩ |bn+1,1, bn+1,2⟩ |in+1⟩ to obtain

|An,Bn,Cn⟩ |A′
n+1,B

′
n+1,C

′
n+1⟩ |An+1,Bn+1,Cn+1⟩ |bn+1,1, bn+1,2⟩ |in+1⟩.

12 Compute and store bn+1,3 := [Cn+1 < An+1]bool.

13 if bn+1,3 = 1 then Swap An+1 and Cn+1.

// The current state is

|A0,B0,C0⟩ |b0⟩ ⊗
(⊗

1⩽k⩽n+1 |A′
k,B

′
k,C

′
k⟩ |Ak,Bk,Ck⟩ |bk,1, bk,2, bk,3⟩ |ik⟩

)
.

14 Compute and store (Afin,Bfin,Cfin) = (An+1, (−1)δ(An+1+Bn+1=0)Bn+1,Cn+1) into

a new register.

15 Uncompute line 2 - line 13 to obtain |A0,B0,C0⟩ ⊗ |Afin,Bfin,Cfin⟩.
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Algorithm 4 — Subroutine for core reduction steps

Input : A state |Aj−1,Bj−1,Cj−1⟩ |bj,1, bj,2⟩ |ij⟩, where Aj−1,Bj−1,Cj−1 are

integers, bj,2 ∈ {0, 1}, and ij ∈ {0, 1}log2 n.a

Output : The state |Aj−1,Bj−1,Cj−1⟩ |A′
j ,B

′
j ,C

′
j⟩ |Aj ,Bj ,Cj⟩ |bj,1, bj,2⟩ |ij⟩.

Here, (A′
j ,B

′
j ,C

′
j) := (Cj−1 + (−1)bj,2+12ijBj−1 + 22ijAj−1,Bj−1 +

(−1)bj,2+12ij+1Aj−1,Aj−1). In addition, (Aj ,Bj ,Cj) = (A′
j ,B

′
j ,C

′
j) if

bj,1 = 1 and (Aj ,Bj ,Cj) = (Aj−1,Bj−1,Cj−1) if bj,1 = 0.

// We denote the output registers to write A′
j , B′

j , and C′
j by outA, outB , and outC , respectively.

In addition, we denote the register to write (Aj ,Bj ,Cj) by out(A,B,C).

1 Write a single copy of Bj−1 and two copies of Aj−1 into auxilally registers.

// The current state is |Aj−1,Bj−1,Cj−1⟩ |bj,1, bj,2⟩ |ij⟩ ⊗ |Bj−1⟩ |Aj−1⟩ |Aj−1⟩.

2 Multiply 2ij , 22ij , and 2ij+1 in Bj−1, Aj−1, and Aj−1 in the auxilally registers.

// The current state is |Aj−1,Bj−1,Cj−1⟩ |bj,1, bj,2⟩ |ij⟩ ⊗ |2ijBj−1⟩ |2ijAj−1⟩ |2ij+1Aj−1⟩.

3 Compute and write 2ijBj−1 + 2ijAj−1 and −2ijBj−1 + 2ijAj−1 into new

auxilially registers together with Bj−1 + 2ij+1Aj−1 and Bj−1 − 2ij+1Aj−1

// The current state is |Aj−1,Bj−1,Cj−1⟩ |bj,1, bj,2⟩ |ij⟩ ⊗

|2ijBj−1⟩ |2ijAj−1⟩ |2ij+1Aj−1⟩ |−2ijBj−1 + 2ijAj−1⟩a1 |2
ijBj−1 + 2ijAj−1⟩a2

|Bj−1 + 2ij+1Aj−1⟩a3 |Bj−1 − 2ij+1Aj−1⟩a4.

4 Copy the value in the register a1 or a2 (resp., a3 or a4) to the register outA′ (resp.,

outB′ ) depending on whether bj,2 = 1.

// The current state is

|Aj−1,Bj−1,Cj−1⟩ |(−1)bj,2+12ijBj−1 + 2ijAj−1⟩outA′
|Bj−1(−1)bj,2+12ij+1Aj−1⟩outB′

|bj,1, bj,2⟩ |ij⟩ ⊗ |2ijBj−1⟩ |2ijAj−1⟩ |2ij+1Aj−1⟩

|−2ijBj−1 + 2ijAj−1⟩a1 |2
ijBj−1 + 2ijAj−1⟩a2 |Bj−1 + 2ij+1Aj−1⟩a3 |Bj−1 − 2ij+1Aj−1⟩a4.

5 Add Cj−1 to the outA′ register and copy Aj−1 to the outC′ register.

// The current state is |Aj−1,Bj−1,Cj−1⟩ |A′
j⟩outA′

|B′
j⟩outB′

|C′
j⟩outB′

|bj,1, bj,2⟩ |ij⟩ ⊗

|2ijBj−1⟩ |2ijAj−1⟩ |2ij+1Aj−1⟩ |−2ijBj−1 + 2ijAj−1⟩a1 |2
ijBj−1 + 2ijAj−1⟩a2

|Bj−1 + 2ij+1Aj−1⟩a3 |Bj−1 − 2ij+1Aj−1⟩a4.

6 Copy (Aj−1,Bj−1,Cj−1) or (A′
j ,B

′
j ,C

′
j) into the out(A,B,C) register depending on

whether bj,1 = 0 or not.

// The current state is

|Aj−1,Bj−1,Cj−1⟩ |A′
j⟩outA′

|B′
j⟩outB′

|C′
j⟩outB′

|Aj ,Bj ,Cj⟩out(A,B,C)
|bj,1, bj,2⟩ |ij⟩ ⊗

|2ijBj−1⟩ |2ijAj−1⟩ |2ij+1Aj−1⟩ |−2ijBj−1 + 2ijAj−1⟩a1 |2
ijBj−1 + 2ijAj−1⟩a2

|Bj−1 + 2ij+1Aj−1⟩a3 |Bj−1 − 2ij+1Aj−1⟩a4.

7 Uncompute lines 1-3.

// The current state is

|Aj−1,Bj−1,Cj−1⟩ |A′
j⟩outA′

|B′
j⟩outB′

|C′
j⟩outB′

|Aj ,Bj ,Cj⟩out(A,B,C)
|bj,1, bj,2⟩ |ij⟩.

aIn fact ij may be negative if bj,1 = 0, but we regard ij as an unsigned log2 n-bit integer.
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5.3. Complexity Analysis for Algorithm 3. This section provides complexity analysis for Al-

gorithm 3. To be precise, we show the following theorem.

Theorem 5.1. Algorithm 3 can be implemented on a quantum circuit of depth O(n log n), width

O(n2), and size O(n2 log n). More precisely, the required Toffoli depth, ancillary qubits, and

Toffoli gates in total are at most (568n log n+ 896n), (7n2 + 26n), and (144n2 log n+ 2834n2).

The theorem shows that our algorithm is asymtptically faster than its classical counterpart,

which would be of depth O
(
n2

)
. Another interesting comparison is with the GCD circuit design

in [8]. Indeed quadratic form reduction generalize GCD problem and yet we managed to obtain

the same depth complexity. First, we analyze complexity of Algorithm 4.

Lemma 5.2. Algorithm 4 can be implemented on a quantum circuit of depth O(log n), width

O(n), and size O(n log n). More precisely, the required Toffoli depth, ancillary qubits, and Toffoli

gates in total are at most (342 log n+ 53), (8n+ n log n+ 6), and (72n log n+ 343n), respectively.

Proof. We assume operations in each line are done in a sequential manner.

First, we analyze the depth. Lines 1 do not require any Toffoli gates. Line 2 can be done

by applying the rotation algorithm in Section 4.2 three times, which requires 3 × 12⌈log n⌉ =

36⌈log n⌉ Toffoli depth. Line 3 performs 2 additions and 2 subtractions, which can be done by

4 × 30 log n = 120 log n Toffoli depth. By Lemma 2.1, line 4 can be performed by Toffoli depth

4. Line 5 performs a single addition, which requires 30 log n Toffoli depth. By Lemma 2.1 Line 6

can be performed by Toffoli depth 2. In total, Toffoli depth required is at most 2 × (36⌈log n⌉ +
120 log n) + 4 + 30 log n+ 2 ⩽ 342 log n+ 78.

Next, we analyze the total number of Toffoli gates. Line 1 does not require any Toffoli gates.

Line 2 uses 3×12n⌈log n⌉ = 36n⌈log n⌉ Toffoli gates. Line 3 requires 4×29n = 116n Toffoli gates

in total. Line 4 uses 4n Toffoli gates. Line 5 requires 29n Toffoli gates. Line 6 uses 6n Toffoli

gates. In total, the number of Toffoli gates is at most 2× (36n⌈log n⌉+ 116n) + 4n+ 29n+ 6n =

72n⌈log n⌉+ 271n ⩽ 72n log n+ 343n.

Finally, we study how many ancilla quibts are required. The number of ancillary qubits

explicitly mentioned in the description of Algorithm 4 is 7n in total. To perform additions

and subtractions (resp., multiplications (rotations), and copy of data), the additional number of

ancillary qubits required is at most (n+3n/ log n) (resp., n⌈log n⌉ and n). Thus the total number

of ancillary qubits required is at most 7n+max{n+3n/ log n,n⌈log n⌉,n} = 7n+(n⌈log n⌉+6) ⩽

8n+ n log n+ 6.
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Even if we count all the gates (but not only Toffoli gates), by similar arguments we can deduce

that the depth is in O(log n), width is in O(n log n), and the size is in O(n log n). □

Proof of Theorem 5.1.

Depth. Here we analyze Toffoli depth, explaining how the computations of each line are per-

formed in detail.

In line 2, we assume b0 = [C < A]bool is computed as follows. (i) Compute C − A. Then,

the most significant bit of C − A matches [C < A]bool. (ii) copy this bit into the output register.

(iii) uncompute the subtraction. These operations can be done with Toffoli depth 2× 30 log n =

60 log n, 3n/ log n ancillary qubits, and 2× 29 = 58n Toffoli gates in total.

Line 2 of Algorithm 3 can be done with Toffoli depth 60 log n.

Recall that bit swap |b1⟩ |b2⟩ 7→ |b2⟩ |b1⟩ (b1, b2 ∈ {0, 1}) can be performed by sequentially

applying CNOT gates three times. We assume Line 3 is performed by sequentially applying the

operation |b⟩ |x⟩ |y⟩ 7→ |b⟩ |x⟩ |y ⊕ b · x⟩ three times in the same way. Then Line 3 requires at most

Toffoli depth 3 by Lemma 2.1.

In line 5, we assume the computations are performed as follows:

(i) Compute bj,2 by just copying the most significant bit of Bj−1.

(ii) Compute |Bj−1| into a new auxiliary register and multiply Aj−1 with 2 (in parallel).

(iii) Subtract 2Aj−1 from |Bj−1|.
(iv) Compute bj,1 by copying the most significant bit of |Bj−1| − 2Aj−1 and then flipping it.

(v) Uncompute (iii).

(vi) Compute and write ⌊log |Bj−1|⌋ and ⌊log 2Aj−1⌋ into new auxiliary registers in parallel.

(vii) Compute ij = ⌊log |Bj−1|⌋ − ⌊log 2Aj−1⌋.
(ix) Uncompute (vi) and (ii).

Then, (i) does not use any Toffoli gates. (ii) can be done with Toffoli depth (60 log n + 2). (iii)

can be performed with 30 log n Toffoli depths. (iv) does not use any Toffoli gates. 8⌈log2 n⌉
Toffoli depths is sufficient for (vi). (vii) can be performed with at most 30 log n Toffoli depths.

In summary, the computations of line 5 can be performed with Toffoli depth 2× (60 log n+2)+

2× 30 log n+ 2× 8⌈log2 n⌉+ 30 log n ⩽ 226 log n+ 20.

Line 6 requires at most (342 log n+ 53) Toffoli depth by Lemma 5.2.

Line 7 and line 8 are computed in the same way as line 2 and line3, which can be performed

with Toffoli depth 60 log n and 3, respectively.
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We assume line 10 is computed as follows: (i) Compute bn+1,2 (by just copying the most

significant bit of Bn.) (ii) Compute |Bn| and write it into an auxiliary register, then subtract

it from An. (iii) Compute bn+1,1 (by just copying the most significant bit of |Bn| − An). (iv)

Uncompute (ii). These computations require Toffoli depths at most 2× (60 log n+2+30 log n) =

180 log n+ 4.

Line 11 requires at most (342 log n + 53) Toffoli depth by Lemma 5.2. Line 12 and line 13

are computed in the same way as line 2 and line3, which can be performed with Toffoli depth

60 log n and 3, respectively.

We assume line 14 is computed as follows. (i) compute An+1 + Bn+1 and write it to an

auxiliary register. (ii) Take OR of all the bits of An+1 + Bn+1 to compute δ(An+1 + Bn+1 = 0)

by using n auxiliary qubits and n OR gates. Here, the OR gate is a three-bit gate computing

|x⟩ |y⟩ |z⟩ 7→ |x⟩ |y⟩ |z ⊕ (x ∨ y)⟩, which can be implemented with a single Toffli gate and 6 NOT

gates5. (iii) Compute −Bn+1 and write it into an auxiliary register. (iv) Copy An+1, Bn+1 or

−Bn+1 depending whether δ(An+1 + Bn+1 = 0) = 0, and Cn+1, into the auxiliary register.

Uncompute (i)-(iii). These computetions can be performed with Toffoli depth 2× (30 log n+n+

30 log n) + 2 = 120 log n+ 2n+ 2.

In summary, Algorithm 3 requires Toffoli depth at most 2 × (60 log n + 3 + n × ((226 log n +

20) + (342 log n + 53) + 60 log n + 3) + (180 log n + 4) + 60 log n + 3) + (120 log n + 2n + 2) ⩽

568n log n+ 154n+ 720 log n+ 22 ⩽ 568n log n+ 896n.

Size. Next, we count the number of all the Toffoli gates required in total. Line 2 uses at most

2× 29 = 58n Toffoli gates in total. Line 3 uses at most 3n Toffoli gates.

In executing line 5, (i) does not use any Toffoli gates. (ii) uses at most 60n Toffoli gates.

(iii) uses at most 29n Toffoli gates. (iv) does not use any Toffoli gates. (vi) uses 2 × 8n =

16n Toffoli gates in total. (vii) uses at most 29n Toffoli gates. In summary, line 5 uses at most

2× 60n+ 2× 29n+ 2× 16n+ 29n = 239n Toffoli gates in total.

Line 6 can be performed with at most (72n log n + 343n) Toffoli gates. Line 7 and Line 8 use

at most 58n and 3n Toffoli gates, respectively.

In executing Line 10, (i) does not require any Toffoli gates. (ii) uses at most 60n+ 29n = 89n

Toffoli gates. (iii) does not use any Toffoli gates. In summary, line 10 uses at most 2×89n = 178n

Toffoli gates.

5By applying Toffoli on |x̄⟩ |ȳ⟩ |z̄⟩ we obtain |x̄⟩ |ȳ⟩ |z ⊕ (x⊕ y)⟩.
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Line 11, line 12, and line 13 use at most 58n, 3n, and (72n log n + 343n) Toffoli gates, respec-

tively.

In executing line 14, (i) uses at most 29n Toffoli gates. (ii) uses at most n Toffoli gates. (iii)

uses at most 29n Toffoli gates. (iv) can be performed with at most 2n Toffoli gates. In summary,

line 10 uses at most 2× (29n+ n+ 29n) + 2n = 120n Toffoli gates in total.

As a result, the number of Toffoli gates required is at most 2 × (58n + 3n + n × (239n +

(72n log n+ 343n) + 58n+ 3n) + 178n+ 58n+ 3n+ (72n log n+ 343n)) + 120n = 144n2 log n+

1286n2 + 142n log n+ 1406n ⩽ 144n2 log n+ 2834n2.

ancillary qubits. The number of ancillary qubits explicitly mentioned in (the comments of) Al-

gorithm 3 is at most (n+1)× (7n+3). In addition, it is straightforward to check that additional

(n log n+20n) ancilla quibts are sufficient to compute all the intermediate computations. Hence

the total number of ancilla quibts required is at most (n + 1) × (7n + 3) + (n log n + 20n) =

7n2 + 23n+ 3 ⩽ 7n2 + 26n.

It is easy to check that the asymptotic complexity does not change even if we count not only

Toffoli gates but also all other gates. □

6. APPLICATION TO DIMENSION 2 LATTICE REDUCTION

FIGURE 12. Example of a two dimen-

sional lattice (the hexagonal lattice)

6.1. Two dimensional lattices.

6.1.1. Lattices. Given two linearly independent vectors

(u, v) of a Euclidean space (V , ∥ · ∥), the two dimen-

sional lattice spanned by u and v is the subgroup L
of V spanned by these two elements, that is to say

L = uZ ⊕ vZ. Topologically, this group is discrete in

V for the norm ∥ · ∥, implying that there exists a fi-

nite number of vectors with minimal norm in L. Such

vectors are called the shortest vectors of the lattice L.

Given an arbitrary basis of L, a classical problem con-

sists in retrieving the shortest vectors.

6.2. Reduction process. This task, called lattice reduc-

tion, can be performed efficiently by an iterative process called Gauss-Lagrange reduction.
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Algorithm 5 — Gauss reduction

Input : (u, v) a basis of a

two-dimensional lattice L
Output : A reduced basis (u, v) of L

1 if ∥v∥ < ∥u∥ then return Gauss(v,u)

2 while Progress is done do

3 v′ ← v −
⌊
⟨u,v⟩
∥u∥2

⌉
u

4 u, v ← v′,u

5 end while

6 return (u, v)

Without loss of generality, we

can suppose that ∥u∥ ⩽ ∥v∥, by re-

arranging the order of these vectors.

Now that the first vector of the basis

is the smallest among the two, we

try to reduce the norm of the second

one. Explicitly we want to find the

shortest vector v′ such that (u, v′) is

a basis of L. The problem is now re-

duced to finding the shortest vector

in the coset v + uZ. A straightfor-

ward computation ensures that this

element is v−
⌊
⟨u,v⟩
∥u∥2

⌉
u. We can then

restart this procedure until no reduction of the size of the vectors can be done. The correspond-

ing pseudo-code is given in Algorithm 5. Remark that the step operation of this reduction

consists in applying the linear transformation

S =

0 1

1 t(Q)

, where t(Q) = −
⌊
⟨u, v⟩
∥u∥2

⌉
,

to the current basis.

Let (u, v) be a basis of a latticeL output by the Gauss algorithm. By construction, these vectors

satisfy

∥u∥ ⩽ ∥v∥

and: ⌊
⟨u, v⟩
∥u∥2

⌉
= 0, i.e |⟨u, v⟩| ⩽ ∥u∥

2

2
.

From these observations, we can give an axiomatic definition of a reduced basis:

Definition 6.1 (Gauss-reduced basis). Let L be a two dimensional real lattice. A basis (u, v) of

L is said to be Gauss-reduced if it fulfills the two conditions:

(1) ∥u∥ ⩽ ∥v∥
(2) |⟨u, v⟩| ⩽ ∥u∥2

2 .

Proposition 6.2. Let (u, v) be a reduced basis of a lattice L, then u is a shortest vector of L.
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Theorem 6.3. The number of steps of the Gauss-reduction is O(M), where M is a bound on the

number of bits required to represents the basis given as input.

The proof of these theorems is given in appendix for completeness.

6.3. Relation between lattices and quadratic forms. The close resemblance between the op-

erations used to reduced quadratic forms and plane lattices is not a coincidence: lattices and

(positive definite) forms are avatar of the same objects. More precisely, let (u, v) be a basis of a

plane lattice L, and Q the form encoded by the Gram matrix of (u, v):

Q =

⟨u,u⟩ ⟨u, v⟩
⟨u,u⟩ ⟨v, v⟩

.

Then we have the following correspondence:

Lattice formalism L Quadratic form formalism

Object Basis M = (u, v) Gram matrix G = M tM

Step operation M ←MSλ G← St
λGSλ

Reduceness condition ||v||2 ⩾ ||u||2 ⩾ 2| ⟨u, v⟩ | C ⩾ A ⩾ |B|

A quick look at the reduceness condition reveals that M is reduce in the lattice sense is equiv-

alent for Q = M t·M to be reduced as a Quadratic form. The Cauchy-Schwarz inequality ensures

that M t ·M is a positive definite form. Reciproqually, given a positive definite form represented

by a matrix Q, the so-called Cholesky decomposition of Q ensures an upper triangular matrix

R such that Q = RTR. Th columns of R are a basis of the lattice QZ2, which corresponding

Gram-matrix is Q itself. Henceforth, reducing plane lattices or positive definite quadratic forms

is equivalent.

Due to the natural correspondence between two-dimensional lattices and quadratic forms

with ∆ ⩽ 0, the algorithms for quadratic forms in the previous section can easily be converted

into those for two-dimensional lattices. Recall that a basis (u, v) of a lattice corresponds to the

quadratic form [∥u∥2, 2 ⟨u, v⟩ , ∥v∥2]. Algorithm 6 shows a lattice version of Algorithm 2. As in-

ternal states, Algorithm 6 maintains the information of vectors uj , vj , together with their norms

∥uj∥2, ∥vj∥2 and the inner product ⟨uj , vj⟩ (which correspond to Aj , Cj , and Bj in Algorithm 2,

respectively). Note that Algorithm 6 does not perform division but require several multiplica-

tions to compute the norms and the inner product of the vectors (in line 1).
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Algorithm 6 — Binary reduction for two-dimensional lattices

Input : A basis (u, v) of a two-dimensional lattice L ⊆ Z2

Output : A reduced basis (ũ, ṽ) of L

1 u0, v0,A0,B0,C0 ← u, v, ∥u∥2, 2 ⟨u, v⟩ , ∥v∥2

2 if C0 < A0 then (v0,u0,C0,A0)← (u0, v0,A0,C0)

3 for j = 1, . . . ,n do

4 if ¬(|Bj−1| ⩽ 2Aj−1) then

5 ij ← ⌊log2 |Bj−1|⌋ − ⌊log2 Aj−1⌋ − 1 m← 2ij

6 Aj ← Cj−1 − (sgn(Bj−1))mBj−1 +m2Aj−1,

Bj ← Bj−1 − (sgn(Bj−1))2mAj−1, Cj ← Aj−1

7 (uj , vj)← (vj−1 − sgn(Bj−1)muj−1,uj−1)

8 end if

9 else

10 (Aj ,Bj ,Cj)← (Aj−1,Bj−1,Cj−1), (uj , vj)← (uj−1, vj−1)

11 end if

12 if Cj < Aj then (Cj ,Aj)← (Aj ,Cj), (uj , vj)← (uj−1, vj−1)

13 end for

14 if An < |Bn| then
15 An+1 ← Cn − (sgn(Bn))Bn +An, Bn+1 ← Bn − 2(sgn(Bn))An, Cn+1 ← An,

16 (un+1, vn+1)← (vn − sgn(Bn)un,un)

17 end if

18 else (An+1,Bn+1,Cn+1)← (An,Bn,Cn), (un+1, vn+1)← (un, vn)

19 if Cn+1 < An+1 then (Cn+1,An+1)← (An+1,Cn+1), (vn+1,un+1)← (un+1, vn+1)

20 if An+1 = −Bn+1 then (ũ, ṽ)← (un+1,un+1 + vn+1)

21 else (ũ, ṽ)← (un+1, vn+1)

22 return (ũ, ṽ)

Algorithm 6 can be converted into a quantum circuit the same way as Algorithm 2 is con-

verted into Algorithm 3. In fact, there is a difference between Algorithm 6 and Algorithm 2

in that we have to perform some multiplications at the beginning of Algorithm 6 to compute

∥u∥2, ⟨u, v⟩ , ∥v∥2 from u and v. Still, the multiplications can be performed on a quantum circuit
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of depth O(n log n), width O(n), and size O(n2), by implementing the ordinary long multipli-

cation of binary numbers with the circuit for addition of depth O(log n), width O(n), and size

O(n). Thus we obtain the following theorem.

Theorem 6.4. Algorithm 6 can be implemented on a quantum circuit of depth O(n log n), width

O(n2), and size O(n2 log n).

7. CONCLUSION

In the end, we design the first efficient quantum circuit solving definite quadratic form re-

duction in almost linear width and depth and almost quadratic volume. Due to its application

to quantum LLL, together with works form [18], this work will help setting security margin for

the postquantum primitives in the lattice based cryptography.

Future Work. Our work only focus on the reduction of definite quadratic form so it is natural

to wonder about the indefinite case. Our research seems to indicate that reducing indefinite

quadratic forms is harder than definite one. Therefore we are left with the following question :

Can we find a reversible shallow circuit that reduces indefinite quadratic forms on a circuit of

depth O(n log n), width O(n2), and size O(n2 log n) ?
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APPENDIX A. OMITTED PROOFS

Proof of Theorem 6.2. Let (u, v) be a reduced basis of a lattice L. Remark that by definition of

the reduction, we have that ∥v∥ ⩽ ∥v ± u∥ and by the analysis of ??, we have more generally

∥v∥ ⩽ ∥v + λu∥ for any integer λ ̸= 0.
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Let now x = αu + βv be a generic point of L. Clearly if β = 0 we have ∥x∥ ⩾ ∥u∥. We can

now suppose without of generality that β > 0 and set α = κβ + ρ with 0 ⩽ ρ < β to be the

Euclidean division of α by β. Then we have by reverse triangular inequality:

∥αu+ βv∥ ⩾ β∥v + κu∥ − ρ∥u∥

= (β − ρ)∥v + κu∥+ ρ(∥v + κu∥ − ∥u∥)

⩾ ∥v + κu∥ ⩾ ∥v∥ ⩾ ∥u∥,

as ∥v + κu∥ − ∥u∥ ⩾ 0 and β − ρ is an integer greater than 0. This ends the proof. □

Proof of Theorem 6.3. Remark first that except for the last iteration of the algorithm, the norm of

the first vector of the basis shrinks by a factor of at least
√
3
−1

. Indeed let (u, v) be the current

state of the basis at any step except the final one and (u, v′) the basis one step after. Remark that:

|⟨u′, v′⟩| = |⟨v,u′⟩| =
∣∣∣∣⌊ ⟨u, v⟩∥u∥2

⌉
− ⟨u, v⟩
∥u∥2

∣∣∣∣∥u∥2 ⩽
1

2
∥u∥2.

Suppose that ∥u′∥2 ⩾ ∥u∥/3, then we would have:

|⟨u′, v′⟩| ⩽ 3

2
∥u′∥2.

In this case, during the next iteration of the algorithm, line 6 of Algorithm 5 makes appear u′±v′.
If this vector appears to be smaller than u′ then we would have already computed it differently

in the current iteration. Hence, the next step is the final iteration. We can conclude since the

norm of the first vector is initially bounded by 2B . □
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