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Abstract—Side channel attacks are powerful attacks for re-
trieving secret data by exploiting physical measurements such as
power consumption or electromagnetic emissions. Masking is a
popular countermeasure as it can be proven secure against an
attacker model. In practice, software masked implementations
suffer from a security reduction due to a mismatch between
the considered leakage sources in the security proof and the
real ones, which depend on the micro-architecture. We present
the model of a system comprising an Arm Cortex-M3 obtained
from its RTL description and test-vectors, as well as a model
of the memory of a STM32F1 board, built exclusively using
test-vectors. Based on these models, we propose ARMISTICE,
a framework for formally verifying the absence of leakage
in first-order masked implementations taking into account the
modelled micro-architectural sources of leakage. We show that
ARMISTICE enables to pinpoint vulnerable instructions in real
world masked implementations and helps design masked software
implementations which are practically secure.

Index Terms—Side Channel Attacks, Masking, Verification,
Micro-architectural Leakage

I. INTRODUCTION

Side Channel Attacks (SCA) exploit physical measure-
ments, like power consumption or electro-magnetic (EM)
emissions, during the execution of an application to recover
secret data. They constitute a powerful class of attacks,
allowing to break software and hardware implementations
of cryptographic algorithms otherwise proven secure at the
algorithmic level.

Introduced in the early 2000s [1], masking countermeasures
at order d aim at encoding a secret data into d+ 1 parts called
shares, such that any combination of less than d 4 1 shares
is statistically independent from the secret. This theoretically
prevents SCA, as the power consumption and EM emissions
are directly linked to the values manipulated by the program.
A masking countermeasure can be proven secure against an
attacker model, e.g. an attacker able to probe ¢t measurements
per execution, which leads to the notion of ¢-probing security
(or probing security at order t) [1], [2]. Proofs are conducted
at a given abstraction level (i.e. algorithmic, source code or
assembly code) and are based on a given leakage model. The
latter is typically either the value-based leakage model, in
which the leakages are the values of intermediate compu-
tations; or the transition-based leakage model, in which the
leakages are combinations between two consecutive values

A. de Grandmaison was with ARM, Paris, France
K. Heydemann and Quentin L. Meunier were with Sorbonne University,
CNRS, LIP6, FR-75005 France

in some elements, such as variables at algorithmic level or
registers at assembly level.

Masked software implementations come with challenges
of their own before they eventually translate into leakage-
free executions. First, implementing a masking scheme at
software level that avoids unmasking secrets is a complex
task and detecting such unmasking by hand is not trivial. As
a consequence, some verification techniques and tools have
been recently proposed to help designers detect flaws in their
implementations [2]-[4]. Proofs are most often conducted at
source or algorithmic level, but we argue that they should also
be carried out on the compiled code for two main reasons.
To start with, compilers perform code transformations, from
simplifications of the expressions to the reordering or removal
of some instructions, possibly harming or deconstructing the
carefully added masking scheme along the way. Then, proofs
require the knowledge of the sources of leakage, and are then
limited to what is visible at the chosen abstraction level. The
lowering of the source code into assembly code introduces
data transfers between memory and CPU registers manipulated
by instructions, and the leakage relative to successive writes
into the same architectural register and consecutive memory
accesses are most often not related to the same source-
level variable. Some recent work propose some compilation
approaches for removing such issues [5], [6]. There also exist
some tools for verifying masked assembly code [7], [8]. How-
ever, analysis at the ISA level is still not sufficient: masked
software implementations suffer from a security reduction due
to the mismatch between the considered sources of leakage and
the real ones, which depend on the target micro-architecture
and may not be visible at the ISA level [9], [10]. For example,
some remnant effects may appear, or some internal resources,
like pipeline registers or buses, can lead to unmasking.

One solution to circumvent these issues is to apply yet
higher-order masking which dramatically impacts performance
and code size with no security guarantee: Moos et al. show
that a first order attack may still be mounted in this case [11].
Most often, the solution relies on manual and iterative code
patching until the patched code seems free of leakage, which
is a very long process. The ROSITA tool offers an automated
solution but it only identifies leaking patterns and patches
them [12], without explaining the leakage sources and leaking
data. A similar approach is to build secure gadgets and to
compose them, potentially automatically [13]. This also re-
quires cleaning gadgets for cleaning the micro-architecture, in
order to avoid any interaction between computational gadgets.
This is only a work-around though and it results in a costly



implementation in terms of performance and size. Precisely
pinpointing leaking data as well as the reasons why they leak
is invaluable information for a designer. A better understand-
ing of the micro-architectural leakages is a pre-requisite for
building verification tools pinpointing vulnerable instructions,
and consequently for designing secure and efficient masked
software implementations.

Power trace simulators, based on a power model built from
experimental measurements, speed-up the leakage analysis but
remove the ability to explain the precise source of the leakages.
ROSITA [12] is able to detect leaking patterns using such a
trace simulator for the Cortex-MO, but cannot output any link
to the secret manipulated by the application. MAPS [14] only
takes into account internal registers at the ALU entrance and
architectural registers, which has been shown to be incomplete
[15]. MIRACLE [16] is a set of test vectors to reverse-
engineer sources of leakage, but there is no way to infer a
clear description of the micro-architecture and the sources of
leakage from the results alone. There is thus a gap to fill
between formal verification tools, which do take into account
a realistic leakage model, and power simulators, which do no
not provide strong guarantees nor information on the observed
leakages. This paper makes the following contributions to the
state of the art:

e We present a model of the Cortex-M3 obtained by studying
the RTL available through the Arm Academic Access!
(AAA) program. We also give meaningful and additional
details to some recent papers (e.g. [15], [16]) that studied
the same processor. We believe it will help in the current
trend to detect and model leakages considering micro-
architectural effects.

e We present an analysis of the leakage sources with the help
of dedicated test vectors. We present an in-depth study of
the leakage sources for memory accesses, shedding some
light in an area that has so far not been studied much.

e Last, but not least, we present ARMISTICE, a tool for for-
mally verifying first order masked implementations at binary
level and pinpointing the leakages due to micro-architectural
effects. ARMISTICE computes symbolic masked expressions
manipulated by the application during its execution consid-
ering an ISA architectural view of the target. Enhanced with
a detailed model of the target processor micro-architecture
and its sources of leakage, it enables to find where in the
micro-architecture some unmasking effects arise and which
secret data leak. More precisely, it can recover where and
what leaks on two different masked AES implementations
as well as on 5 other benchmarks. We also show experimen-
tally on two of these masked implementations the accuracy
of the found leaking transitions on a real hardware target
and that ARMISTICE can help designers remove them.

The paper is organized as follows: Section II experimentally
motivates this paper; Section III presents the closest related
work; the modelling of the Arm Cortex-M3 and memory using
the RTL description of the processor core and test-vectors is
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given in Section IV; Section V and Section VI present re-
spectively the ARMISTICE framework and experimental results
before concluding in Section VII.

II. MOTIVATING EXAMPLE

In this section, we first give a very brief overview of leakage
assessment methodologies, then investigate how a first-order
boolean masked algorithm example fares.

While real attacks can be attempted on a device, this
is not so practical when assessing the device’s immunity
to side channel leakages. Practitioners have thus proposed
several leakage assessment methods: some based on statistical
analysis [17], some based on formal methods [2], [3], [7].
In this section, we focus on the former and see what can
be found with them. Test Value Leakage Assessment [17]
(TVLA) is probably the most popular one, which has two
variants: specific and non-specific. For both variants, two sets
of traces are compared. In the non-specific case, one set is
generated with a fixed (secret) data, and the other with random
(secret) data. A t-test analysis on these sets allows to detect
any possible leakage without any assumption on the leakage
model, i.e. which part of the computation is leaking in which
part of the implementation. The non-specific t-test requires
to use a specific randomly-interleaved procedure in order to
avoid false-positive results [18]. In the specific t-test, the traces
are split into two sets according to the leakage model (e.g.
hamming weight) of a known intermediate value. The t-test is
not the only statistical tool available to practitioners though:
the Pearson correlation [19] is another popular tool.

Let us consider the first-order probing secure masking
scheme from Ishai, Sahai and Wagner (ISW) [1] and apply
it to a software boolean AND computation. This isw_and,
shown in C language in Listing 1, takes as inputs two secret
values a and b, each split across two shares a0 and al (resp.
b0 and bl) and produces as result a secret value c, which
corresponds to a & b, split across 2 shares cO and c1, without
ever exposing any secret value. One can notice that the secret
values a, b and ¢ do not appear in the listing, and that we
have had to resort to tricks like the enforce macro to force
the compiler not to optimize (and unmask) the secret values.

Listing 1. ISW AND

1 // Inputs: - Secrets a = a0 ~ al, b = b0 ~ bl
L4 - Mask m

3 // Output: - Secret c = c0 ~ cl

4

5 aux0 = m "~ enforce(ad & bl);

6 auxl = aux0 -~ enforce(al & b0);

7¢O (a0 & b0) ~ m;

8

cil (al & bl) ~ auxi;

Listing 2. ISW AND (gcc assembly output)
; r0:a0, r1:b0, r2:al, r3:b1l, r6:c[] r7:m

1

2 and.w r4, r0, r3 ; a0 & b1l

3 eors rd, r7 ; aux0 = (a0 & b1) "~ m
4 and.w r5, r2, ri ; al & bo

5 ands r0, ril ; a0 & bo

6 ands r3, r2 ; bl & al

7 eors r4d, rb ; auxl = aux0 -~ (al & bO)
8§ eors r0, r7 ; (a0 & BO) "~ m

9 eors r4, r3 ; auxl ~(al & b1l)

10 str r0, [r6, #0]

11 str rd, [r6, #4]
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Fig. 1. Pearson correlation results for Listing 1.

Listing 1 can be compiled, with size optimizations for
example, for Arm’s Cortex-M3 processor, a common processor
in embedded devices. As our implementation is masked using
the ISW scheme, one could expect that the secret values a,
b and ¢ do not appear, which can be verified with a quick
glance at the assembly code in Listing 2.

With power traces captured on a STM32F1 target board
using the experimental setup from Section IV-B1, a Pearson
correlation using a (a.k.a a0~al), b (a.k.a b0~"bl) and c (a.k.a
a&b) as intermediate values reveals, as shown in Figure 1, that
all secret values are leaked during the execution of the ISW
AND function. Some of the peaks can be explained, e.g. the
two consecutive str instructions (lines 10-11) are likely to
leak the transition of the data written to memory [12], [16],
explaining partly the peak on the blue curve at samples 120 -
128 in Figure 1. One can note that leakages are increasing
again after sample 132, although the ISW AND sequence
is over: this illustrates the fact that despite being no longer
explicitly used by the source code, the secrets a, b and c
continue to leak due to some remnant effect. The Pearson
correlation metric is used in this example because it makes
the leakage on c¢ more visible than with a t-test, which is
affected by the low probability of having more than 16 bits
set in ¢ due to the underlying boolean AND operation.

Despite the apparent simplicity of Listing 1, most other
peaks do not have a clear explanation from the literature,
motivating the work described in this article: understanding
the Cortex-M3 micro-architecture in enough details so that
it can be modelled and used with a formal analysis tool to
provide clear explanations for these leakages.

III. RELATED WORK

Power trace simulators using a model inferred from exper-
imental measurements intrinsically take into account micro-
architectural leakage. ELMO [20] pioneered such trace simu-
lators with a power model of the Arm Cortex-MO for a subset
of the ISA composed of the most frequent instructions in
cryptographic implementations. As for MAPS [14], it targets
the Arm Cortex-M3 and focuses on the potential leakage due
to internal registers at the entrance of the ALU. Recently,
ELMO has been extended into ELMO* in order to better
model register or memory reuse as well as interaction between
non consecutive instructions [12].

MIRACLE [16] is an infrastructure proposing several test
vectors for highlighting micro-architectural leakages due to
interactions between operands of instructions or memory ac-
cesses, or to speculative execution. While this work shows that
the leakage varies between architectures and even implementa-
tions of the same processor core, it does not explain how to use
test vectors to understand or model the leakage sources. Gao
et al. [15] go one step further by reverse-engineering some
micro-architectural leakage features of an Arm Cortex-M3
processor running 16-bit instructions only. Using test vectors
and their recently proposed collapsed F-test [21], they deduce
a model of the different components of the Arm Cortex-M3.
Barenghi et al. explore how to infer the likely structure of
different Arm’s Cortex-A and Cortex-M pipelines, using a
framework of microbenchmarks and the CPI metric (Clock
cycles Per Instruction) [22], [23]. They highlight the potential
side channel leakages resulting from the pipeline structures
and some architectural choices. In this paper, as we have
access to the RTL of the Cortex-M3 processor, we don’t have
to use a blackbox approach; we can go much deeper in the
modelling of the leakage sources, like considering both the
16-bit and 32-bit variants of the instruction set and give clear
explanations of the leakages found on the Cortex-M3 and
reported by those related work.

In order to remove the micro-architectural leakage, the
ROSITA tool [12] automates leaking pattern replacement de-
tected by using ELMO* and non specific t-tests. The iterative
process is able to remove most leakages from three implemen-
tations but fails for one implementation. The modelling may be
incomplete, or, as ELMO* cannot help pinpointing the source
of leakage, the replacement patterns are not fully secure. In
addition, these patterns may not be as small as they could be
with a better leakage source understanding. FENL is an ISA
extension enabling the cleaning of in-core resources that may
be the source of leakage [24]. This requires dedicated HW
support and does not help for existing processors. However, it
is an appealing solution as it offers developers means to avoid
in-core leakage at a lower cost than using tediously designed
cleaning gadgets.

Finally, two recent work target the verification of masked
software on a low-level processor description.

Barthe et al. propose a Domain Specific Language for mod-
elling assembly implementations and specifying fine-grained
leakage models [25]. The semantics of assembly instructions
can then be enriched with the leakage effects of the instruction.
In particular, different leakage effects due to some internal reg-
isters or some buffers in memory can be made explicit. They
propose the scVerif tool as a front end of MaskVerif [2], [3] for
formally verifying masked assembly gadgets and implemen-
tations. scVerif enables to build micro-architectural leakage
aware gadgets, be they masking gadgets or cleaning gadgets.
Such gadgets can then be used in an automatic composition
in order to reduce the time required to implement secure
solutions [13]. The proposed approach enables to take into
account the interactions inside the pipeline or due to memory
access during the formal verification. However, it relies on
the knowledge of the micro-architectural source of leakage
and requires the explicit modelling of leaking components



(e.g. internal registers or memory buffers). The papers do not
present how the modelling of the Arm Cortex-MO0+ targeted
in the experiments was carried out. As shown in our paper,
the decoding stage of the Arm Cortex-M3 processor induces
different leakage effects depending on the binary encoding of
the instruction, thus requiring as many instruction specifica-
tions as the number of encodings per instruction. Moreover,
the user would have to explicit the instruction encoding in his
implementation expressed in the scVerif’s input language. A
verification using the binary code as we propose seems more
appropriate for avoiding putting the burden on the user. Finally,
as scVerif executes the instructions atomically, it cannot model
the effects of the forwarding mechanism.

COCO [26] is an approach for formally verifying if a
masked software would securely be executed on a CPU.
Leakages are searched for at gate-level and authors show
several weaknesses in the IBEX core related to the register file,
ALU and LSU units that can be removed with small changes.
COCO requires the analysed masked implementation to satisfy
two constraints: 1) shares related to a same secret must not be
processed by consecutive instructions 2) registers and memory
locations which contain a share must not be overwritten with
the second share. If these constraints may be sufficient for the
IBEX core simple micro-architecture, they are not sufficient
for the Cortex-M3 in which non consecutive instructions may
write into a same micro-architectural register. Finding such
cases is possible with our approach which searches at software
level for weaknesses due to micro-architectural sources of
leakage. COCO is likely to be able to also pinpoint such a
case but it is not shown in the paper.

IV. CORTEX-M3 MODELLING

Building an accurate model of a processor core for leakage
evaluation requires to know its design in details. In this section,
we present the modelling of the Arm Cortex-M3 data path,
along with an experimental investigation based on small test
vectors aiming at highlighting the components which may be
a source of leakage. We also discuss leakage profile from off-
core components, i.e. memory related components.

A. Abstract Model

As we have access to the Cortex-M3 RTL description
through AAA, we go for a white-box approach to model the
processor micro-architecture, which involved Verilog source
files eye-ball analysis and Verilog simulations.

1) Under the Processor’s Hood: The Cortex-M3 is a 3-
stage pipeline processor comprising a Fetch, a Decode and
one or two Execute stages depending on the instruction. As
the Fetch stage does not manipulate data, we do not consider
it further in the context of this paper.

The main components found in the Cortex-M3 core, de-
picted in Figure 2, are:

o A register file (RF), containing twelve general purpose
registers (GPR) as well as a stack pointer register (SP), a
link register (LR) and the program counter (PC). It has two
read ports, named port A and port B, and one write port,
named portD.
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Fig. 2. Data path of the Cortex-M3 processor core

e An arithmetic logic unit (ALU), to perform actual compu-
tations on data stored in micro-architectural registers RegA,
RegB and RegImm. As most ALU instructions allow shifting
the second operand, a barrel shifter (BS) can optionally be
used on RegB’s output to the ALU.

e An address generation unit (AGU), with a dedicated adder
(named Addr Adder in Figure 2), to compute the address
used for accessing memory, from two micro-architectural
registers RegAddr1l and RegAddr2, containing respectively
the base address and the offset.

e A load / store unit (LSU), to deal with data sent to or
received from memory, like extracting the relevant part of
the received data. One should note that the memory is
accessed over the AHB-Lite bus, which is pipelined with
an address-phase followed by a data-phase one cycle later.

2) How Instructions Use the Micro-architecture: We only
consider in this description simple instructions typically used
in cryptographic implementations: simple ALU instructions
and memory accesses. We also assume that there is a single
execution path regardless of the secret input values. This
requirement is usually met to avoid timing side channel
attacks and is recommended by all secure coding rules. As a
consequence, no jump nor branch can depend on secret data.

After being fetched, an instruction first goes through the
decode stage, whose role is to prepare the data needed by the
execute stage. It retrieves operands in the register file or the
instruction itself and updates RegA, RegB, RegImm, RegAddr1l
and RegAddr2. Depending on the instruction encoding (16-bit
or 32-bit), on the instruction itself and on RTL-implementation
choices, read ports and internal registers that are not used by
the current instruction can either keep their previous values,
be reset to some default value, or get a value related to a
bit field of the instruction which is not semantically relevant.
For example, the decoding of the instruction mov.w Rd,#imm,
which has only an immediate as source operand, selects PC on
port A and Ripy[s.0] On port B. RegA is written, while RegB is
not. The choice of updating or not an unused register or read
port, and in which way, takes into account 1) the requirement
of maintaining an understandable code by the RTL developers



and 2) some performance, cost or area trade-offs. In the next

section, we illustrate the consequences of these choices for

leakage.

Simple ALU instructions (e.g. add, eor, mov, sign extension
or bit selection) are executed in one cycle during the execute
stage. For most ALU operations, port A and RegA receive
the first register operand, and port B and RegB the second
one. This is not the case for pure shift operations for which
port B/RegB receives the operand to shift (first operand) while
port A/RegA receives the shift amount (second operand) — a
necessary twist because the BS is located on RegB’s output
to support the optional shift of the second operand on ALU
instructions. At the end of the execution cycle, the destination
register is written into the RF through portD.

A single load or store instruction requires two execution
cycles: during the first cycle (EXEI) the address is computed,
while in the second cycle (EXE2), the data to write (resp.
read) is sent to (resp. received from) memory. Two addressing
modes are available for memory accesses: an immediate-offset
addressing mode and a register-based one. In both cases, the
offset is added to a base register (a GPR). The base register is
read through port A and written both in RegA and RegAddr1.
In case of a register offset, it is read through portB and
written both in RegB and RegAddr2. The addressing mode
for write memory access is of high importance with respect
to potential in-core leakages, as there are two distinct paths
taken by the data sent to memory:

e In case of an immediate-offset addressing mode, the data is
read in the RF during the decode stage and is written into the
RegB register. During the first execution cycle (EXE1), this
data is written into an internal register of the LSU, named
DataReg. This optimisation avoids stalling the pipeline.

e In case of a register-offset addressing mode, an extra access
to the RF is required to retrieve the data: this access takes
place during the address computation cycle (EXE1) and the
data is written into RegA. During the EXEI1 stage of stores
with register offset, no instruction can pass the decode stage.
In case of data dependencies, forwarding mechanisms exist

in order to avoid pipeline stalls:

e The ALU result or the data read from memory can be
forwarded to RegA, RegB, RegAddrl and RegAddr2 reg-
isters via multiplexers (MuxRegA, MuxRegB, MuxRegAddrl,
MuxRegAddr2 in Figure 2).

e In case of a value dependency between a load and
a pipelined store with immediate offset (for instance
ldrRx, [Ry, Rz], strRx, [Ry’, #imm]), the read value is
forwarded to DataReg (through MuxDataReg in Figure 2).

B. Sources of Leakage

Any component (bus, register, ...) can lead to the reveal
of secret data. In this section, we present the leakage test
vectors designed in order to 1) pinpoint micro-architectural
components of the data path involved in the execution of
an instruction and 2) confirm or disprove with experimental
measurements our findings from the RTL analysis. Finaly, we
present our conclusion regarding the potential data interaction
due to the micro-architecture and the implementation of the
ARM Cortex-M3 core we targeted.
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Fig. 3. Specific t-test results using the test vector of Listing 3 using 20,000
traces.

1) Experimental Setup: All measurements are performed
on NewAE’s ChipWhisperer Pro (CW1200) with a STM32F1
target board [27] embedding a Cortex-M3 configured to run
at 7.37MHz. The CW1200 acquires four samples per CPU
cycle. Depending on the test vector, we acquire from 10,000
up to 500,000 power consumption traces, each with different
random inputs generated with a Mersenne Twister RNG.

2) Anatomy of a Test Vector: A test vector has several
random inputs, named Opi and starts (resp. ends) with a
preamble (resp. postamble). The actual payload of a test
vector consists in a small assembly instructions sequence that
manipulates some random input values. The preamble achieves
three goals: the loading of random input values into GPRs,
their optional preparation (e.g. extracting a specific byte or
masking some parts), and the reset to a specific state, zero or
random, of all elements along a data path. The postamble’s
role is to ensure some form of quietness for a few cycles, in
order to ease the experimental measurements.

To measure the leakage induced by a micro-architectural
component, we leverage our knowledge of the path taken
by each operand of an instruction, of the buses and the A
and B read ports default values. For each test vector, several
specific t-tests are performed using the Hamming Weight of
expressions composed of logical or arithmetical operations
on the test vector’s random input values (32-bit or less).
A concluding specific t-test (i.e. with a t-value higher than
4.5) on the exclusive-or between expressions or input values
shows that there is a transition leakage induced by a micro-
architectural component between these expressions.

An example is given in Listing 3: it is composed of two
exclusive-OR instructions (eor), each with different source
GPR operands holding different random input values. The
destination GPR operands are also distinct.

Listing 3. Test vector example

1 @ preamble

2 eor rDstl, rOpO, rOpil
3 eor rDst2, r0Op2, r0p3
4 @ postamble

We perform a specific t-test on the traces resulting from
the execution of the code given in Listing 3 to measure the
interaction between the consecutive values of the first (resp.
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Fig. 4. Specific t-test results when replacing the second eor of the test vector
of Listing 3 by mov.wROp2, #7 with ROp2 and R7 respectively containing
Op2 and 0p3 before the mov.w operation. 50,000 traces were used.

second) operand of both instructions using the expression
HW(OpO~0p2) (resp. HW(Op1~0p3)), where HW denotes the
Hamming Weight of the expression. The value of this ex-
pression is directly linked to the power consumption of the
port A and RegA (resp. port B and RegB). Thus, a high t-test
value for this specific expression indicates a leakage in at least
one of these two components. Similarly, we also measured the
interaction between two consecutive values at the ALU output
(or BusD) using the expression HW ( (0p0~0p1) ~ (0p2~0p3)).

The result of the specific t-test for the previous example is
plotted in Figure 3. In this figure, we clearly see the interaction
between operands on the paths from the RF to RegA/RegB
(curves named OpO~0p2 and Op1~0p3, samples 5-9) and once
latched in RegA/RegB (curves named OpO~0p2 and Op1~0p3,
samples 10-13). We can also see the interaction between the
results of both instructions (curve named OpO~0p1~0p2~0p3,
samples 10-13). As the preceding and following instructions
manipulate constant values, the results of both instruction leak
(curve 0p0O~0p1, samples 5-9 and curve named Op2~0p3 at
samples 14-18).

3) Invisible Source of Leakage at ISA Level: One major
outcome of the RTL analysis is the discovery of some potential
sources of leakage without any explicit link with data manip-
ulated by instructions. In this section, we give some examples
of such invisible leakage at ISA level.

We first illustrate the consequence of the choices of the de-
coding stage regarding read ports. Figure 4 shows the specific
t-test results when replacing the second eor in Listing 3 with
mov.wROp2, #imm. Before the mov, register Rypys.q) contains
Op3. We can see the interaction between Opl and Op3 due
to the reading of Op3 in the RF during the decode stage of
the mov.w instruction at samples 9-11 (max t-value of 9.1).
Clearly, this behaviour could lead to unmasking secret data in
case of first order boolean masking. Specifically, this would
happen when the register Rypys.0) contains one share while the
one it interacts with contains the second share.

The encoding used for an instruction is also of critical
importance, as the RegA and RegB write enable signals may
depend on the instruction encoding. For example, the decoding
of the instruction 1dr ROp2, [Raddr, #imm] writes ROp2 into
RegB if and only if the instruction uses a 32-bit encoding.
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0po " Op2 —
0p0 " 0p3
op1~0p2
Op1~0p3
0p270p3 —o—
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Fig. 5. Specific t-test results when placing a 1dr ROp2, [Raddr, #imm]
between two eor Rdst, ROp0O, ROp1l. On the left, 1dr is 16-bit encoded; on
the right it is 32-bit encoded. 200,000 traces were used.

Figure 5 shows specific t-test results when running a 16-
bit or a 32-bit encoded load instruction. We can see that a
32-bit encoding leads to a write of the destination register
content into RegB as there is an interaction between Opl
and Op2 visible at samples 13-18 and 25-31. Considering
that RegB is always written with the destination register of
a load instruction with immediate offset may lead to missing
potential interactions between the values written into RegB
before and after the load if the load is actually 16-bit encoded;
alternatively, considering it is never written may lead to miss
potential interactions between Op2 and the values written into
RegB before and after the 1dr when it is 32-bit encoded.

Another important knowledge gained from the RTL is
related to the forwarding mechanisms and internal registers.
As an example, DataReg contains the value to be sent to
the memory in case of a store with an immediate offset. If
there is a dependence on this value with the preceding load
instruction, the loaded value is forwarded to the DataReg. The
RegB register is however still written with the content of the
register supposed to contain the value to be sent, but which
is in this case the old value held in this register. This may be
a source of leakage which cannot be determined without the
precise knowledge of the scheduling of the instructions and
the forwarding mechanisms in the processor pipeline.

4) Leakage Test Vector Suite: We have carefully designed
77 test vectors: 31 devoted to the analysis of the data path
components involved in each class of instructions, 5 devoted
to forwarding mechanisms, 7 devoted to write back into the
register file and 34 devoted to the analysis of the LSU and
memory. Test vectors allow to assess and confirm the potential
leakage on the different buses and internal registers as well as
leakage due to memory transfers in the Cortex-M3 core of
our STM32F1 target. Contrary to the ARM processor core
whose RTL must not be modified (apart from selecting some
configurable options), the memory subsystem implementation
varies with the target chip implementer: the (off-core) memory
subsystem on our STM32F1 target is thus a blackbox. Test
vectors dedicated to the memory and LSU analysis enable us
to detect some leakage patterns between memory accesses,
consecutive or not, and have been iteratively designed for
modelling the memory subsystem.

Unsurprisingly, a small subset of our test vectors are similar
to those from MIRACLE [16]. The RTL availability allows
to have an exact knowledge of the data manipulated by
instructions. As a consequence, it enables us to design more
specific test vectors in order to pinpoint the micro-architectural



leaking components and to explain where in-core leakage
stems from. We cannot describe all the test vectors here but
a public web page with all tests will be added as a reference
after acceptance, along with their results. We summarize the
main results in the next section.

5) Leaking Components: Our analysis reveals that the RTL
version of the Cortex-M3 we have access to is more recent than
the one used for the implementation of the Cortex-M3 core in
the STM32F1. For example, shifted operands are sent to RegA
and not RegB. Each time a 32-bit instruction does not have a
source register operand, RO is read in the register file on the
corresponding read port (note that it is the default behavior
for the 16-bit instructions decoding). The abstract processor
model used for the ARMISTICE tool, presented in the next
section, reflects our findings. This section presents our main
leakage analysis results per micro-architectural component
starting with the most leaking ones.

e RegA, RegB, RegAddrl, RegAddr2, Address Bus and
ALUout are all potential sources of transition leakage
visible with only 10,000 traces. Figures 3 and 5 illustrate
these important sources of leakage for different consecutive
instructions. Some crossed leakages between RegA and
RegB also appear in case of consecutives ALU instructions
with different operations.

e There is a visible transition leakage between the consecutive
reads through port A (resp. port B) in the register file even
when the read value is not written into RegA (resp. RegB).
This happens in case of forwarding into RegA (resp. RegB)
as well as the read of a default register in the register
file when the instruction has less than two source register
operands. This leakage is only visible when using enough
traces, at least 50,000 for 32-bit input data and even more
for smaller ones.

e The DataReg register is only used by store instructions
with an immediate offset. When two such store instructions
are separated by a store instruction with a register offset,
transitions in DataReg become visible when using more
than 40,000 traces and the max t-value with 200,000 traces
is around 11. In case of byte stores, at least 300,000 traces
are needed.

e The transition leakage due to consecutive writes of 32-bit
values to the same GPR becomes visible when using enough
traces. With 200,000 traces, the max t-value is around 11.
When 8-bit values are manipulated, even more traces are
needed: using 500,000 traces, the max t-value is around 6.

e A transition leakage between a memory-read value and the
next output of the ALU is only visible on Bus D when using
around 200,000 traces, the max t-value is then 6.5.

While off-core components, such as RAM or Flash memory,
are sources of variations between targets with an identical
core [16], the RTL of the Cortex-M3 core reveals informa-
tion independent from the memory implementation choices.
Memory is byte-addressed and the width of the data bus is 32
bits. A word is always loaded from the memory: when reading
a byte (resp. half-word), the containing 32-bit word is sent to
the CPU and then the LSU extracts the requested byte (resp.
half-word). Regarding data writes into memory, a data whose
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Fig. 6. Model of the memory subsystem of our STM32F]1 target

width is less than a word is duplicated to form a 32-bit value
to be sent to the memory. There is no register or element in the
CPU holding data sent to or read from the memory. Our test
vectors reveal several interactions between data from which
we build a model of the memory subsystem (see Figure 6):

e Read Side: As a consequence of the width and alignment of

the memory transfer, there is a transition leakage between
bytes at the same index in words loaded consecutively, be
they separated or not by other non-memory instructions.
When bytes or half-words are requested, some leakage is
also visible between them with enough traces, even when
they are not at the same word index.
The data extraction in the LSU also induces intra-word
leakage. Our test vectors enable us to detect such intra-
word leakage when two load instructions are pipelined in
the LSU. This can be explained by the fact that the data
arrival is at the end of the cycle while the data extraction
is performed as soon as the extraction pattern is known. As
a consequence, the extraction is performed during a small
amount of time on the previous read data. This provokes
some intra-word leakage in the first loaded data.

e Write Side: As a consequence of the duplication of data
in case of byte (resp. half-word) write in the memory, a
stored byte can interact with all other bytes (resp. aligned
half-word) of the previous data. Our experiments showed
that this happens only with the data of a store instruction
issued in the previous cycle. When two store instructions
are not issued in consecutive cycles, the stored bytes only
interact with the ones at the same index in the previously
read or written data. On our STM32F1 target, the DataOut
bus seems to be reset between writes and there is, seemingly
in the off-core memory, a one-word buffer which contains
the last piece of data read or written, as explained next.

e Read Write Interaction: Consecutive memory instructions
(load-store, store-load), even separated by non-memory in-
structions, do interact. As there are two data buses (Dataln
and DataOut), the interaction takes place in the memory
subsystem. Our test vectors enable us to confirm that there
is a one-word buffer containing either the last read word
or the result of the last written word. When storing a byte
or half word, the targeted aligned word is retrieved in the
memory and the word resulting from the write (i.e. with
one or two changed bytes) is written in this buffer. This
behavior is consistent with all the interactions we described
before between two consecutive load or store instructions



separated by non-memory instructions. Figure 6 illustrates
the inferred memory model and the one-word buffer.

This section has shown that each micro-architectural ele-
ment can leak, some more obviously than others, i.e. requiring
more or less traces. This is by no means specific to the Cortex-
M3 though, and all processors are plagued with similar leakage
sources. Despite the Cortex-M3 being a simple processor,
manually checking all possibilities for securing a piece of code
against side channels quickly becomes a daunting task for a
developer, thus motivating the need for tooling to automate
the task and manage the complexity.

V. FORMAL VERIFICATION WITH MICRO-ARCHITECTURAL
MODEL
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Model Execution Trace Expressions
Processor add r4, r5, ré

Model ldr r4, [r4, #4]

eor r5, r5, r4
sl r7, r7, #1

Input
File
.exe

Entry >
Point

Execution
Trace
Generator

Memory

3ymbo%%c Arm Cortex-M3
ariables
(Secrot Arm_ISA ]
Mask,
Public) Symbolic Expression
Execution Leakage
Engine Analyzer

Fig. 7. ARMISTICE Verification Framework

This section introduces ARMISTICE, a framework designed
for formally proving the absence of leakage in a masked
program when executing it on a specific processor core.

Overview: ARMISTICE implements different symbolic
ARMVvV7-M instruction set simulators, denoted processor mod-
els in the remainder, targeting different abstraction levels
such as ISA level or micro-architectural level. Such a sym-
bolic simulator builds symbolic expressions representing the
effective values passing through the hardware components
of the processor when executing a masked program. The
symbolic variables in expressions are typed as masks, secret
or public variables (e.g. plaintext). Other variables, whose
value does not depend on the inputs (such as loop counters),
have concrete values. These expressions provide an accurate
leakage model due to the manipulated data, and proving that
these expressions, or some combinations of expressions, are
statistically independent from secret values gives a valuable
guarantee regarding secret independence on a real execution.
ARMISTICE leverages a formal analysis tool to prove the
absence of leakage in a given leakage model, and allows to
avoid a statistical analysis or interpretation as would happen
with a leakage trace simulator.

The verification process is depicted in Figure 7. First, from
a binary code, an entry point of the program to analyze and
information on symbolic variables with their type, an execution
trace is generated using an external symbolic execution engine.
This step enables to retrieve 1) the sequence of instructions
executed by the program (we assume a single execution path
i.e. no symbolic input controls jumps) and 2) the memory
content and general purpose registers at the beginning of

the program to be analyzed. Then, the execution trace is
simulated using the user-specified processor model which
computes the symbolic expressions in hardware elements at
each execution cycle and performs all formal checks according
to the user-specified leakage model, either value-based or
transition-based. The formal verification is performed using
an external tool. ARMISTICE retrieves the verification results
and eventually outputs a synthesis of all the results. It can
also give, for each detected leakage, the involved assembly
instruction(s), the leaking expression as well as the leaking
hardware element. The user can leverage these precise sources
of leakage to remove them. For example, he can then reorder
instructions or insert specific instructions, and check that the
new code is leakage-free.

Implementation: The different parts of ARMISTICE are im-
plemented in Python. Currently, there are two processor mod-
els for the Armv7-m ISA: one at ISA level and one at micro-
architecture level, denoted Arm ISA and Arm Cortex-M3 re-
spectively. In the Arm ISA model, each instruction executes
in one cycle and only modifies the content of the destination
registers or the memory according to its semantics. The Arm
Cortex-M3 model implements a cycle-accurate description of
the abstract model presented in Section IV with a 3-stage
pipeline (DEC, EXE1, EXE2). Modelled hardware compo-
nents comprise GPR, internal CPU and memory registers, data
memory as well as multiplexers and buses. At each simulation
cycle, each modelled hardware component is updated accord-
ing to the instruction processed in the corresponding pipeline
stage. The framework offers an easy way to add other models
by implementing a specified interface, comprising a few func-
tions called by a common simulation engine core. Currently,
the execution trace is generated using the symbolic engine
angr [28]. The formal verification of a symbolic expression is
performed by LeakageVerif [29]. LeakageVerif determines if
the expression is statistically independent from all the secret
variables in the expression, i.e. if the expression is first-order
probing secure for the considered leakage model.

Back to the motivating example: Let us now consider again
our software implementation of the ISW AND algorithm, with
a C code implementation shown in Listing 1, and its compiler-
emitted assembly code from Listing 2. The results of the
ARMISTICE analysis on Cortex-M3 in the transition leakage
model are reported in the tables from Figure 8. The upper
table displays, for each instruction, which micro-architectural
elements are leaking, together with a link to the expression and
the secrets values (a, b, c) leaked by that expression in the
lower table. The correlation plot is the one from Figure 1,
with annotations to explain the leakage origins using the
expressions from the tables. It is worth reminding here that
due to the nature of the operation performed by the ISW AND,
a bitwise and, a leakage on a or b implies a leakage on c.

As made obvious in Figure 8, no processor cycle is leakage-
free and all secrets are leaking in the transition leakage model
most of the time. The leakages found by ARMISTICE match
perfectly those found experimentally on the STM32F1. Next
section will dive deeper in the details of the ARMISTICE results
with real benchmarks.
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VI. EXPERIMENTAL EVALUATION

We show that our framework ARMISTICE modelling the
Cortex-M3 allows us to find theoretical secret leakages in
the micro-architecture, even when the masking scheme has
been shown to be secure in their considered leakage model.
Finally, we show on examples that the secret leakages found
are experimentally visible.

A. Benchmarks

In order to illustrate the relevance of ARMISTICE, We con-
sider 4 C-source implementations masked in the first-order
value-based probing security model: Secmult, the popular
secure Galois field multiplication [30]; AES-Herbst and AES-KS
a masked version of AES and its key schedule, following
the masking scheme proposed by Herbst er al. [31]; AES-Yao
another masked version of AES [32]. The main difference in
AES-Yao, compared to AES-Herbst, is the multiplication by
constants 2 and 3 in the MixColumns step that is performed via
table lookups. As the key schedule in AES-Yao is not masked,
it is not considered in the evaluation. C-source benchmarks
were compiled using GCC 10.2, at optimisation level 02. These
benchmarks are first-order value-based masked, hence they are
not secure in the transition-based leakage model. ARMISTICE is
likely to detect leakages at ISA and micro-architectural level.

We also select 4 Arm assembly-level masked implementa-
tions. Arm-Add and Arm-Add-opt are two masked implemen-
tations of an addition of two secrets split in two shares [33].
They are provided as Arm assembly code and are, to the best
of our understanding, designed to be masked in the first-order
transition-based probing security considering GPR. ARMISTICE
should then not detect leakages due to write in the RF. Dil-And
is a 32-bit masked logical AND and Dil-A2B is a 32-bit
conversion from arithmetic to boolean masking. These two
functions are provided as part of a masking scheme of the
Dilithium algorithm for the Cortex-M3 [34]. Both versions
have been implemented using an enhanced version of the

MAPS simulator. As they are supposed to take into account
the Cortex-M3 micro-architecture, it is interesting to know if
ARMISTICE can find remaining secret leakages or not at micro-
architectural level.

B. Leakage Analysis

For each benchmark, a verification is performed on both the
Arm ISA and Arm Cortex-M3 processor models.

Table 9 presents a synthesis of the analysis results for the
Cortex-M3 processor model per benchmark. Namely, it gives
for each modelled component of the Cortex-M3 the number
of secret data leakages in the value-based leakage model (#VL
column) and in the transition-based one (#TL column). The
results for the GPR (line “R0O to R14”) can also be obtained
with the Arm ISA processor model and correspond to the ISA
level model, in which the only hardware elements considered
as a source of leakages are the GPR. This also comprises
values read from and written to memory as they necessarily
pass through a GPR.

At ISA level, for Secmult, AES-KS, AES-Herbst and AES-Yao,
the analysis in the value-based leakage model confirms there
is no leakage in the GPR, hence nor in memory, as claimed
by their authors.

For the Arm Cortex-M3 processor model, for the same
benchmarks, we can first notice that as expected there is
no leakage in the value-based leakage model, except for
the memory related components (DataOut, DataIn and
ReadWriteBuffer). This is because when a masked byte of
the AES state is read, the whole memory word is actually
read in memory and transferred, containing four state bytes.
As there is a single mask byte for masking each of these four
bytes, this constitutes a leakage. We can also notice that there
is an enormous amount of leakages in transition on micro-
architectural components for these benchmarks. In fact, all
of the components except MuxRegAddr2, RegAddr2, MuxBS,
MuxDataAdder and 5 GPR have at least a transition revealing
secret information. While a verification in the value-based



BENCHMARK Secmult AES-KS AES-Herbst AES-Yao Arm-Add Arm-Add-Opt Dil-And Dil-A2B
NB OF ANALYSED INSTR. 365 3001 5409 4527 122 106 79 443
COMPONENT #VL | #TL | #VL | #TL | #VL #TL #VL #TL #VL | #TL | #VL | #TL #VL | #TL | #VL | #TL
GPR

RO to R14 0 0 0 99 0 190 0 155 71 83 66 72 0 0 0 0
DECODE STAGE

Port A 0 1 0 144 0 10 0 46 44 68 50 58 0 0 0 0
Mux Reg A 0 1 0 144 0 19 0 36 44 68 51 60 0 0 0 0
Reg A 0 0 0 144 0 0 0 36 43 67 51 60 0 0 0 0
Port B 0 16 0 541 0 226 0 244 61 78 35 44 0 0 0 0
Mux Reg B 0 16 0 553 0 226 0 243 64 78 45 44 0 0 0 0
Reg B 0 23 0 283 0 137 0 145 59 72 41 50 0 0 0 0
Mux Reg Addr 1 0 0 0 18 0 0 0 0 1 2 0 0 0 0 0 0
Reg Addr 1 - - 0 18 0 0 0 0 0 0 0 0 0 0 0 0
Mux Reg Addr 2/ Reg Addr2 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ALU DATA PATH

Mux BS 7/ Mux Data Adder 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Barrel Shifter 0 0 0 246 0 70 0 92 55 81 61 69 0 0 0 0
Data Adder 0 0 0 18 0 0 0 0 0 0 0 0 0 0 0 0
ALU / Mux ALU Out 0 0 0 27 0 0 0 0 71 87 66 75 0 0 0 14
AGU & LSU DATA PATH

Addr Adder 0 0 0 18 0 0 0 0 0 0 0 0 0 0 0 0
Mux Data Reg 0 0 0 18 0 70 0 47 2 2 0 0 0 0 0 0
Data Reg 0 2 0 32 0 378 0 438 2 2 0 1 0 1 0 1
Mux Data Write / Data Out 0 0 0 18 0 70 0 47 2 2 0 0 0 0 0 0
Data In 7 7 122 577 1444 1444 1136 1199 2 4 0 0 0 0 0 0
Data Extract. 0 0 0 99 0 70 0 191 0 0 0 0 0 0 0 0
MEMORY

Addr Buffer 0 0 0 18 0 0 0 0 0 0 0 0 0 0 0 0
Read Write Buffer 7 10 122 864 1444 1838 1136 1259 2 4 0 0 0 1 0 1
WRITE BACK TO REGFILE

Mux Bus D 0 0 0 153 0 70 0 191 71 87 66 75 0 0 0 14

Fig. 9. ARMISTICE analysis results for the 8 benchmarks. Columns #VL (resp. #TL) gives the number of value (resp. transition) leakages found.

leakage model at the ISA level is a required first step towards
leakage-free implementations, it leaves many secret leakages
on the table.

The Arm-Add and Arm-Add-Opt benchmarks both contain
secret leakages in GPR in the value-based and transition-based
leakage models. This suggests that there may be a flaw in the
design of these programs contrary to the claim of the authors.
Unsurprisingly, there are many other secret leakages in other
hardware elements of the core, as those were not taken into
consideration in the masking scheme design.

Finally, for the Dil-And and Dil-A2B benchmarks, almost
all the secret leakages in value and transition have been
eliminated. Yet, a few secret leakages in transition remain:
they occur on the path from the ALU to the RegFile, in the
DataReg, and in the ReadWriteBuffer. We first looked at
leakages in the path from the ALU to the RF in Dil-A2B,
as it should have been taken into consideration in the design
of these programs. Unfortunately, the leaking expressions are
too big for a manual analysis (more than 800 KB per leaking
expression). Therefore, we rather performed a manual analysis
of the leaking expressions reported for the Dil-And program.
Both leakages on DataReg and ReadWriteBuffer happen
when writing back in memory the two shares of the result.
If the two stores have been separated by a logical instruction
to clean the data path, this instruction does neither erase the
content of the Data Reg, nor the one of the ReadWriteBuffer.
Consequently, the two stores of the two shares reveal the secret
results in these two hardware elements. We show in the next
section that this secret leakage can be experimentally observed
at the ARMISTICE’s reported time in the power trace.

These results show that the ISA level or the value-based
leakage model are not good abstractions of the real power
consumption. Instead, there is a need to take into account a

more detailed description of the device executing the program.
The RTL level combined with the transition-based leakage
model is a better abstraction for leakage analysis, as together
they are much closer to the hardware transitions, responsible
for most of the power consumption. Besides, the Dil-And
and Dil-A2B results show that it is difficult to take into
account micro-architectural details without a formal approach,
as manual approaches will fail to take into account every
aspect, even with detailed knowledge. These results thus show
the relevance of the proposed approach, by being able to
pinpoint the instructions, the moments and hardware elements
in the core responsible for secret leakages, even for codes
designed to be secure for the Cortex-M3 core.

C. Accuracy and Exploitability

In order to illustrate the accuracy of the approach, we run
three experiments. First, in order to show that the leakages
found on the Dil-And benchmark are real, we capture 500,000
traces with the setup described in Section IV-B1. We run
a specific t-test on the leaking expression and look at the
t-test value for the samples corresponding to the cycles at
which ARMISTICE detected the leakages: the results, shown
in Figure 11, demonstrate a perfect match.

In a second experiment, we repeat the same process for all
of the simple secret leaking expressions in the first round of
the Key Schedule in the transition leakage model. By simple,
we mean expressions with at most one binary operator. There
are height such expressions. In Figure 10, we can see that
all the secret leakages experimentally observed are detected
by ARMISTICE at the expected location in the trace. However,
four secret leakages detected by ARMISTICE do not translate
into concluding t-tests, making them seemingly false positives.
However, after further investigations:
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Fig. 10. Comparison between the secret leakages found by ARMISTICE in the first round of AES-KS, and the corresponding specific t-tests. The pink
rectangles indicate the cycles at which a leakage was found in ARMISTICE for the corresponding expression.

e Two of these leakages result from writing a byte in RO (ex6
and ex7). As shown in section IV-B5, transitions in RO on
a single byte can hardly be observed with 500,000 traces.
Here, in both cases, as there is still a remnant effect from
a big previous leakage, these leakages on RO cannot be
distinguished on the trace.

e One of these leakages results from the transition between
two register values put on the Bus B, but not written into
Reg B (ex5). In fact, the two corresponding instructions do
not read the registers, but the latter are selected because
of the immediate values contained in the instructions. We
designed a specific test vector for this case which confirmed
that no leakage can be observed in this case, at least with
our experimental setup.

o The last leakage corresponds to an already observed leakage
situation, since it occurs on ALUout (ex2). After investi-
gation, it appears that in some cases, the processor stalls
for one cycle, which is not taken into account in our
model. While we have not yet found out the reason why
such stall cycles occur, we suspect they come from the
fetch of some instructions in the Flash memory. Adding an
extra instruction to shift the two non leaking consecutive
instructions makes the stall cycle disappear and the leakage
found by ARMISTICE visible.

In order to deal with the non-visible leakages, one can
decide to deactivate leakage analysis in some hardware ele-
ments for a given data size if the leakages in these elements
are experimentally too small to be observable. Regarding the
unexplained stall cycles, not modelling them only results in
false positives as the stall resets some signal values. Yet, future
work includes understanding why such stall cycles occur.

For the third experiment, we modify the assembly code
of the previous experiment to remove all the possible secret
leakages detected by ARMISTICE. Some of them, occurring in

the memory, were not taken into consideration as they require
modifying the memory data layout of the program. For each
detected secret leakage, we add one or several instructions in
order to clean the parts of the data path involved in the leaking
transition. The added instructions can have three different
kinds: for transitions happening in the arithmetic and logic data
path, we use a orr 1r, 1r, 1r instruction, not a nop neither a
mov instruction, in order to be sure to clean regA and regB;
for transitions happening in the AGU, LSU or memory, we
use either a load or a store by making sure that the address
is secret independent and that the value read or written is a
constant; finally, for transitions happening in a GPR, we use
a orr rX, lr, 1r to erase the content of the register with a
constant value before the new one. Once all instructions are
added, the new code is run again on ARMISTICE to ensure that
no more leakage is found.

c=a&b ex0
ext
ex2 ex6 —=—

T-Test Value (500000 traces)
T—Tesl yalue (SOOOOQ lraces)

Time (sample) -

Fig. 11. Comparison between the se-
cret leakages found by ARMISTICE
in the Dil-And benchmark, and the
corresponding specific t-test. The pink
rectangle indicates the cycles at which
a leakage was found in ARMISTICE.
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Fig. 12. t-test values of the eight
originally leaking expressions (ex0 to
ex7) in AES-KS, after patching the
assembly code. No more expression is
leaking.

Figure 12 shows the t-test values obtained for all the
expressions after patching the code: all leakages have disap-
peared. This second experiment shows how ARMISTICE can



help designers remove all the potential secret leakages in a
code, by exhibiting the specific leakages, along with where
and when they happen. This information allows to write the
minimal code patch to remove such leaking transitions. The
patched code can eventually be analyzed by ARMISTICE in
order to verify the absence of leakage.

To conclude, ARMISTICE is a valuable tool that detects
secret leakages happening during the execution of a masked
software on a processor. It can also help patch a code to
suppress leakages, and verify a patched code. These results
show that a RTL description is a relevant abstraction level to
perform a formal leakage analysis. Although some modelled
transitions may not translate into visible leakages, removing
all RTL transitions leaking a secret provide a valuable security
guarantee.

Currently, glitches are not taken into consideration in
ArMISTICE. While nothing theoretically prevents considering
them, we believe that considering them “as such” will result
in a lot of detected leakages that are unlikely to be observed
on a real target device. A more detailed analysis of the circuit
is required in order to select existing glitches, which is left
for future work.

VII. CONCLUSION

In order to understand micro-architectural leakages which
reduce the security order of masked software implementations,
we presented the modelling of the core and memory subsystem
of an Arm Cortex-M3 based STM32F1 board. We presented
ARMISTICE, a framework for formally verifying the absence of
leakage considering first-order value-based or transition-based
probing security. We experimentally showed that our mod-
elling is relevant for detecting micro-architectural leakages as
well as manually removing them thanks to the ARMISTICE’S
output comprising leaking instructions as well as the hardware
components where the leakages stem from. Future work will
consider higher order leakage verification, the automation of
model extraction from a RTL design and automatic code
patching from an analysis result.
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