
Improved Pump and Jump BKZ by Sharp Simulator

Leizhang Wang ∗1, Wenwen Xia1, Geng Wang2, Baocang Wang1, and Dawu Gu2

1Xidian University
2Shanghai Jiaotong University

Abstract

The General Sieve Kernel (G6K) implemented a variety of lattice reduction algorithms based
on sieving algorithms. One of the representative of these lattice reduction algorithms is Pump
and jump-BKZ (pnj-BKZ) algorithm which is currently considered as the fastest lattice reduction
algorithm. The pnj-BKZ is a BKZ-type lattice reduction algorithm which includes the jump
strategy, and uses Pump as the SVP Oracle. Here, Pump which was also proposed in G6K, is an
SVP sloving algorithm that combines progressive sieve technology and dimforfree technology.
However unlike classical BKZ, there is no simulator for predicting the behavior of the pnj-BKZ
algorithm when jump greater than 1, which is helpful to find a better lattice reduction strategy.
There are two main differences between pnj-BKZ and the classical BKZ algorithm: one is that
after pnj-BKZ performs the SVP Oracle on a certain projected sublattice, it won’t calling SVP
Oracle for the next nearest projected sublattice. Instead, pnj-BKZ jumps to the corresponding
projected sublattice after J (J ≥ 1) indexs to run the algorithm for solving the SVP. By using
this jump technique, the number of times that the SVP algorithm needs to be called for each
round of pnj-BKZ will be reduced to about 1/J times of original. The second is that pnj-BKZ
uses Pump as the SVP Oracle on the projected sublattice. Based on the BKZ2.0 simulator, we
proposes a pnj-BKZ simulator by using the properties of HKZ reduction basis. Experiments
show that our proposed pnj-BKZ simulator can well predicate the behavior of pnj-BKZ with
jump greater than 1. Besides, we use this pnj-BKZ simulator to give the optimization strategy
for choosing jump which can improve the reducing efficiency of pnj-BKZ. Our optimized pnj-
BKZ is 2.9 and 2.6 times faster in solving TU LWE challenge (n = 75, α = 0.005) and TU LWE
challenge (n = 60, α = 0.010) than G6K’s default LWE sloving strategy.

Keywords: pnj-BKZ Simulator, Optimal Jump Strategy, TU LWE Challenge, G6K

1 Introduction

Hard problems on lattice: Learning with Errors problem (LWE) and Short Integer Solution (SIS)
Problem play central role in cryptography for constructing cryptographic constructions[1], e.g.
quantum-safe public-key encryption/key exchange and signatures schemes: Reg09[2], LP11[3], ADPS16[4],
BG14a[5]; fully homomorphic encryption: BV11[6], GSW13[7]; and obfuscation of some families of
circuits BVWW16[8]. In order to estimate the concrete security strength of these lattice-based
cryptographic schemes, generally, the LWE and SIS problem are first reduced to u-SVP on an em-
bedding lattice, and then calculating the computational cost of lattice reduction algorithm solving
the u-SVP on the embedding lattice. Furthermore, the simulator of lattice reduction algorithm was
constructed to more accurately predict the behavior of lattice reduction algorithm and to construct
a more efficient lattice reduction algorithm.

There are many simulators[9, 10, 11] of lattice reduction algorithms like BKZ, BKZ2.0, Progressive-
BKZ which can accurately predict how the quality of output basis change during reducing. pnj-BKZ
as currently the fastest lattice reduction algorithm, however there is no accurate simulator for pnj-
BKZ when jump > 1. Since these simulators of classical lattice reduction algorithms can only

∗Corresponding auther: leizhangalpha@163.com

1

predict the value of jump equal to 1. By constructing simulator for pnj-BKZ when jump > 1,
we can find more efficient lattice reducation strategy to solve these approximate-SVP on lattice
like (M)LWE and (M)SIS which are the hard problems that almost all lattice based cryptographic
schemes’ security based on. Therefore, it is of great significance to study how much improvement
the jump technology can bring to the lattice reduction algorithm in order to accurately evaluate the
concrete security strength of lattice based cryptographic schemes.

In this paper, we proposed pnj-BKZ simulator by using the information of HKZ basis when
jump ≥ 1. The results of experiments show that we can simulate well that how lattice basis
changed in each tour of pnj-BKZ when jump ≥ 1. In addition, we use this pnj-BKZ simulator to
give a optimized jump choosing strategy. In the end, using optimized jump choosing strategy, we
can solve TU LWE challenge 1 (n = 75, α = 0.005) 2.9 times faster than that of G6K’s default LWE
sloving strategy[12].

2 Preliminaries

Definition 1 (Lattice). A lattice L is generated by a basis B which is a set of linearly independent
vectors {b1,b2, . . . ,bn} ∈ Rm. We will refer to it as L (b1,b2, . . . ,bn) = {

∑n
i=1 zibi, zi ∈ Z}. In

this paper the length of v ∈ Rm is the Euclidean norm ‖v‖.

Definition 2 (Gram-Schmidt Basis and Projective Sublattice). For a given lattice basis B =
(b1,b2, . . . ,bn), we define its Gram-Schmidt orthogonal basis B∗ = (b∗1,b

∗
2, . . . ,b

∗
n) by b∗i = bi −∑i−1

j=1 µijb
∗
j for 1 ≤ j < i ≤ n, where µij =

〈bi,b
∗
j 〉

‖b∗j‖2
are the Gram-Schmidt coefficients (abbrevi-

ated as GS-coefficients). In this paper we use li to represent the value of log (‖b∗i ‖). The lattice
determinant is defined as det(L (B)) :=

∏n
i=1 ‖b∗i ‖ and it is equal to the volume vol(L (B)) of the

fundamental parallelepiped. We denote the orthogonal projection by πi : Rm → span (b1, . . . ,bi−1)
⊥

for i ∈ {1, 2, . . . , n}. In particular, π· is used as the identity map. We denote the local block by the
projective sublattice L[i:j] := L (πi (bi) , πi (bi+1) , . . . , πi (bj)), for j ∈ {i, i+ 1, . . . , n}.

Definition 3 (Shortest Vector). A non-zero vector in a lattice L that has the minimum norm is
called the shortest vector. We use λ1 (L) to denote the norm of the shortest vector. The notion
is also defined for a projective sublattice as λ1

(
L[i:d]

)
. The shortest vector problem (SVP) is the

problem of finding a vector of length λ1 (L) on a Lattice. For a function γ (n) of a lattice dimension
n, the standard definition of γ-approximate SVP is the problem of finding a vector shorter than
γ (n) · λ1 (L).

Heuristic 1 (Gaussian heuristic). Given a n-dimensional lattice L with determinant det (L), the
Gaussian heuristic predicts that there are about vol (C) /det (L) many lattice points in a measurable
subset C of Rn of volume vol (C).

In addition, the length of the shortest vector can be approximated by the radius of a sphere

whose volume is det (L), which can be approximated to
√

n
2πedet (L)

1/n
by using Stirling’s formula.

This is usually called the Gaussian heuristic of a lattice, and we denote it by

GH (L) = det (L)
1/n

/Vn (1)
1/n

,

where Vn (1) is the volume of unit ball of dimension n.

Definition 4 (BKZ reduction). A basis is BKZ-β reduced with factor δ, if it is LLL-δ reduced and
all Gram-Schmidt vectors satisfy ‖b∗i ‖ = λ1

(
L[i,k]

)
, where k = min (i+ β − 1, d) and d is dimension

of lattice. As the BKZ simulation algorithm heavily depends on the BKZ reduction algorithm, this
algorithm is explained in the next chapter in more detail.

1TU LWE Challenge presents sample instances for testing algorithms that solve the LWE problem. The main goal
of this challenge is to help assessing the hardness of the LWE problem in practice. Here is the link to this challenge:
https://www.latticechallenge.org/lwe challenge/challenge.php

2

Definition 5 (HKZ reduction). A basis is HKZ reduced, if it is size reduced and all Gram-Schmidt
vectors satisfy ‖b∗i ‖ = λ1

(
L[i,d]

)
, where d is dimension of lattice. This particularly means that bi is

a shortest vector of L[i,d].

Next we introduce the Geometric Series Assumption which is now a standard heuristic assumption
for predicting the behavior of lattice reduction algorithms. It is supported by extensive experimental
results [13] and states that the norm of the Gram-Schmidt vector decreases geometrically after
reduction.

Heuristic 2 (Geometric Series Assumption(GSA)). Let L be a d dimension lattice with basis b1, .
. . , bd. After execution of BKZ with block-size β, the norms of the Gram-Schmidt vectors satisfy

‖b∗i ‖ = δ2
β ·
∥∥b∗i+1

∥∥ ,
for 1 ≤ i ≤ d− 1, and where δβ =

(
β

2πe (πβ)
1/β
)1/(2(β−1))

.

In this paper, we use the speed of solving these standard form LWE problem[2] instances in the TU
LWE challenge as a measure of the efficiency improvement of our lattice reduction algorithm. Since
these standard LWE problem instances in the TU LWE challenge are standard form LWE problem,
we will use the AFG14-type lattice basis to reduce the standard form LWE problem instances in the
TU LWE challenge into u-SVP on the embedding lattice. Next, we briefly introduce the process of
this reduction.

AFG14[14] reduced standard form LWE problem to a u-SVP on a embedding lattice by con-
sturctiong embedding lattice basis from public information. The form of AFG14 type lattice basis
is like:

Definition 6 (AFG14 type lattice). In Ā 0
0 qIm−n 0
b . . . 1


where (A,b) is LWE instances, and Ā is row echelon form matrix of pubilc key matrix A. We can
see that there is an unusually short lattice vector (e, 1) in this lattice, and the expected length is
about σ

√
m.

3 Lattice Reduction Algorithm

Blockwise Korkine-Zolotarev (or BKZ) reduction algorithm is a lattice reduction algorithm whose
performance between LLL reduction algorithm and HKZ reduction algorithm introduced by Schnorr
and Euchner [15]. The main idea of BKZ algorithm is using β′ dimension SVP Oracle to find a d
dimension lattice vector vi ∈ L s.t. ‖πi (vi)‖ = GH

(
L[i:i+β′−1]

)
, then insert it in i-th position of

lattice basis, where β′ = min (β, d− i), β′ dimension SVP Oracle can be enumeration or sieving
and the dimension of lattice is d. After each inserting the quality of lattice basis will be improved.
Besides, after inserting a new short lattice vector, LLL algorithm is called to vanish the linear
dependence. The detailed execution process of BKZ can be seen in Algorithm 1.

The BKZ simulation algorithm was developed by Yuanmi Chen and Phong Nguyen [10] and can
be used to predicts the Gram-Schmidt norms of a lattice basis after N rounds of BKZ-β reduction.
The main idea of Yuanmi Chen and Phong Nguyen’s simulator is using GH assumption to predict
each the value of l′i by using the information about the value of l1, . . . , li+β′−1 and the value of
l′1, . . . , l

′
i−1, where i ∈ {1, 2, . . . , d} and l′i means i-th Gram-Schmidt norms of lattice basis vector

after reducation processed block L[i:i+β′−1]. The BKZ simulator can be described as shown in
Algorithm 2.

3

Algorithm 1 The Block Korkin-Zolotarev (BKZ) algorithm with jump

Input: A basis B = (b1, . . . ,bd), a blocksize β ∈ {2, . . . , d}, the value of jump (in classical BKZ

jump = 1), the Gram-Schmidt triangular matrix µ and ‖b∗1‖
2
, . . . , ‖b∗d‖

2
.

Output: The basis (b1, . . . ,bd) is BKZ-β reduced.

1: z ← 0; j ← 0; LLL (b1, . . . ,bd, µ);//LLL-reduce the basis, and update µ
2: while z < d− 1 do
3: j ← j mod (d− 1) + jump; k ← min (j + β − 1, d); h ← min (k + 1, d); //define the local

block
4: v ← SVPOracle

(
µ[j,k],

∥∥b∗j∥∥2
, . . . , ‖b∗k‖

2
)

;//find v = (vj , . . . , vk) ∈ Zk−j+1 \ {0} s.t.∥∥∥πj (∑k
i=jvibi

)∥∥∥ = λ1

(
L[j,k]

)
5: if b 6= (1, 0, . . . , 0) then

6: z ← 0; LLL
(
b1, . . . ,

∑k
i=jvibi,bj , . . . ,bh, µ

)
at stage j;//insert the new vector in the

lattice at the start of the current block, then remove the dependency in the current block, update
µ.

7: else
8: z ← z+ 1;LLL (b1, . . . ,bh, µ) at stage h− 1;//LLL-reduce the next block before enumer-

ation.
9: end if

10: end while

Algorithm 2 Simulation of BKZ reduction

Input: The logarithms of the Gram-Schmidt norms li = log ‖b∗i ‖, for i ∈ {1, . . . , d}, the desired
blocksize β ∈ {45, . . . , d} and the number of tours N to simulate.
Output: A prediction for the logarithms of the Gram-Schmidt norms l′i = log ‖b′∗i ‖ after N rounds
of BKZ reduction.

1: for i = 1 to 45 do
2: ri ← average log ‖b∗i ‖ of a HKZ reduced random unit-volume 45-dimensional lattice
3: end for
4: for i = 46 to β do

5: ci ← log
(

Vi (1)
−1/i

)
= log

(
Γ(i/2+1)1/i

π1/2

)
6: end for
7: for j = 1 to N do
8: flag ← true //flag to store whether L[k,d] has changed
9: for k = 1 to d− 45 do

10: β′ ← min (β, d− k + 1) //Dimension of local block
11: h← min (k + β − 1, d) //End index of local block

12: log (V)←
∑h
i=1 li −

∑k−1
i=1 l

′
i

13: if flag = true then
14: if log (V) /β′ + cβ′ < lk then
15: l′k ← log (V) /β′ + cβ′

16: flag ← false
17: end if
18: else
19: l′k ← log (V) /β′ + cβ′

20: end if
21: end for
22: log (V)←

∑h
i=1 li −

∑k−1
i=1 l

′
i

23: for k = d− 44 to d do
24: l′k ←

log(V)
45 + rk+45−d

25: end for
26: for k = 1 to d do
27: lk ← l′k
28: end for
29: end for
30: return l1,...,d

4

Before we introduce pnj-BKZ, we first give a description of the subroutine Pump algorithm that
pnj-BKZ needs to call frequently. Pump[12] is an SVP solving algorithm that combines dimforfree
technology [16] and progressive-sieving technology [17]. In G6K Pump is usually used as a SVP
Oracle to find short lattice vectors whose projection vector is the shortest in corresponding projection
sublattice. The detailed description of Pump we gived in Algorithm 3.

Algorithm 3 Pump

Input: B, κ, β, ds = f, stn = 30
Output: B

1: r := κ+ β; l := max {κ+ f + 1, r − stn} ; ilb := κ; L := ∅;
2: Bπ[κ,r] := LLL

(
Bπ[κ,r]

)
;

3: //Phase=“init”;
4: L := gauss sieve

(
Bπ[l,r],L

)
;

5: //Phase=“up”;
6: while l > κ+ f do
7: L :=

{
EL (v, 1)

∣∣v ∈ L
}
, l := l − 1;

8: L := sieve
(
Bπ[l,r],L

)
;

9: end while
10: //Phase=“down”;
11: while d > 1 & ilb < κ+ ds do
12: BL := best lifts (L); //score all the vectors in best lifts list of L, and score each vi with

score (vi) := θ−i ‖vi‖
‖b∗i ‖

;

13: if BL 6= ∅ then
14: ii := BL.index (max (BL));//Find the best scoring position;
15: Insert vii into the basis Bπ[κ,r];
16: ilb := ii + 1;
17: else
18: L :=

{
SL (v, 1)

∣∣v ∈ L
}

;
19: end if
20: L := sieve

(
Bπ[l,r],L

)
;

21: l := l + 1;
22: end while
23: return B

The pnj-BKZ algorithm is a BKZ-like lattice reduction algorithm that uses Pump as the subrou-
tine for finding the shortest vector on the projected sublattice. Unlike the classic BKZ algorithm,
pnj-BKZ performs jumps with a jump greater than 1. More specificly, after executing the SVP algo-
rithm on a certain block B[i:i+β′−1], instead of calling SVP algorithm on the nearest block B[i+1:i+β′],
the SVP algorithm will be used on the B[i+J:i+β′+J−1] block after jumping J indexes. The following
is the detialed description of pnj-BKZ.

5

Algorithm 4 pnj-BKZ

Input: B, β, fextra, jump = 1
Output: B

1: f := min
{
max

{
0, β−40

2

}
, b11.5 + 0.075βc

}
+ fextra;

2: ds := f + 3; β := β + fextra;
3: B=LLL (B);

4: for i ∈
{

1, . . . , d+2f−β
jump

}
do

5: if 1 ≤ i ≤ f+1
jump then

6: κ, β′, f ′ := 1, β − f + jump · i− 1, jump · i− 1
7: else if f+1

jump ≤ i ≤
d−β+f
jump then

8: j := jump · i− f
9: κ, β′, f ′ := j, β, f

10: else
11: j := jump · i− (d− β + f)
12: κ, β′, f ′ := d− β + j, β − j + 1, f − j + 1
13: end if
14: Bπ[k:β′+k−1] · vi = Pump

(
Bπ[k:β′+k−1],κ,β′,f ′,ds

)
15: B=LLL (B)
16: end for
17: B=Pump (B, d− β + f + 1, β, f)
18: return B

Different from the classic BKZ, pnj-BKZ will adopt the jump strategy, resulting in J − 1 hard
to estimate l′i values between jumps, as shown in the following figure 1:

Figure 1: pnj-BKZ with jump > 1

Since only knowing the estimation of l′1, when calculating the l′1+J of the next block, information
about values of l′i is needed, where i ∈ {2, 3, . . . , J}, but the l′i value will change because of the
inserting of l′1 and it is hard to accurately predict these J−1 values of l′i. Therefore when BKZ-type
algorithm with a jump greater than 1, the classic BKZ2.0 simulator cannot be accurately predicted
the l′1+J of the next block because lacking necessary information about l′i , where i ∈ {2, 3, . . . , J}.

4 Simulation of pnj-BKZ

4.1 pnj-BKZ Simulator

The jump strategy which adopted for pnj-BKZ, results in lacking the necessary information about
J − 1 values of l′i, i ∈ {2, 3, . . . , J}, when calculating the l′1+J of the next block as shown in Figure

6

1. We naturally thought of using the information of the HKZ basis to predict these J − 1 values of
l′i between jumps. More precisely, if each block is HKZ reduced, we can know that

l′i = log GH
(
L[i:i−(i mod J)+β−1]

)
≈ 1

2
log

β − (i mod J)

2πe
+

1

β − (i mod J)

i−(i mod J)+β−1∑
j=1

lj −
i−1∑
j=1

l′j


where (i mod J) ∈ {1, 2, . . . , J − 1} and J is the value of jump. In addition, the values from above
formula can be calculated by using the Gaussian Heuristic and the information of values of l′k where
(k mod J) ∈ {0, 1, . . . , i− 1 mod J} which has been obtained. Figure 2 below can intuitively help
the readers to understand. Besides, when pnj-BKZ turn on sieving during the pumpdown stage, the
HKZ basis is obtained after each Pump reduction. Below we give an algorithmic description of the
pnj-BKZ simulator utilizing HKZ basis information:

Figure 2: Predict l′i using the information of HKZ reduction where (i mod J) ∈ {1, 2, . . . , J − 1}

7

Algorithm 5 Simulation of pnj-BKZ reduction

Input: The logarithms of the Gram-Schmidt norms li = log ‖b∗i ‖, for i ∈ {1, . . . , d}, the desired
blocksize β ∈ {45, . . . , d}, the number of tours N and the size of jump J to simulate.
Output: A prediction for the logarithms of the Gram-Schmidt norms l′i = log ‖b′∗i ‖ after N rounds
pnj-BKZ reduction with jumpsize is J .

1: for i = 1 to 45 do
2: ri ← average log ‖b∗i ‖ of a HKZ reduced random unit-volume 45-dimensional lattice
3: end for
4: for i = 46 to β do

5: ci ← log
(

Vi (1)
−1/i

)
= log

(
Γ(i/2+1)1/i

π1/2

)
6: end for
7: for j = 1 to N do
8: flag ← true //flag to store whether L[k,d] has changed
9: for k = 1 to d− β do

10: β′ ← min (β, d− k + 1) //Dimension of local block
11: if k ≡ 0 (mod J) then
12: h← min (k + β − 1, d) //End index of local block

13: log (V)←
∑h
i=1 li −

∑k−1
i=1 l

′
i

14: if flag = true then
15: if log (V) /β′ + cβ′ < lk then
16: l′k ← log (V) /β′ + cβ′

17: flag ← false
18: end if
19: else
20: l′k ← log (V) /β′ + cβ′

21: end if
22: else
23: h← min (k − (k mod J) + β, d) //End index of local block

24: log (V)←
∑h
i=1 li −

∑k−1
i=1 l

′
i

25: if flag = true then
26: if log (V) / (β′ − (k mod J)) + cβ′−(k mod J) < lk then
27: l′k ← log (V) / (β′ − (k mod J)) + cβ′−(k mod J)

28: flag ← false
29: end if
30: else
31: l′k ← log (V) / (β′ − (k mod J)) + cβ′−(k mod J)

32: end if
33: end if
34: end for
35: for k = d− β to d− 45 do
36: β′ ← d− k //Dimension of local block
37: h← d //End index of local block

38: log (V)←
∑h
i=1 li −

∑k−1
i=1 l

′
i

39: if flag = true then
40: if log (V) /β′ + cβ′ < lk then
41: l′k ← log (V) /β′ + cβ′

42: flag ← false
43: end if
44: else
45: l′k ← log (V) /β′ + cβ′

46: end if
47: end for
48: log (V)←

∑h
i=1 li −

∑k−1
i=1 l

′
i

49: for k = d− 44 to d do
50: l′k ←

log(V)
45 + rk+45−d

51: end for
52: for k = 1 to d do
53: lk ← l′k
54: end for
55: end for
56: return l1,...,d

8

4.2 The actual simulation effect of pnj-BKZ simulator

Executing 20 rounds of pnj-BKZ with different block sizes of 60, 70, 80, 90, and 100 on the TU LWE
Challenge instances with jump values of 2, 4, and 6, respectively, and compare the actual reduction
results of each round with the simulation results of the pnj-BKZ simulator mentioned above.

Due to space limitations, we present several representative sets of comparison charts between the
li values predicted by the pnj-BKZ simulator and the actual pnj-BKZ output li values. We firstly
give these comparison charts about lattice basis: TU LWE challenge n = 75, α = 0.005; pnj-BKZ
parameter: blocksize=70, jump=6, pumpdownsieve=True and tours=1,4,8,12,16,20.

(a) Tours=1 (b) Tours=4 (c) Tours=8

(d) Tours=12 (e) Tours=16 (f) Tours=20

Figure 3: β=70, jump=6, Pumpdown sieve=True

From Figure 3, we can see that as the number of rounds executed by pnj-BKZ gradually increases,
these predicted values of li given by Algorithm 5 (Orange points in the figure 3) and these actual
output li values of pnj-BKZ (blue points in the figure 3) gradually approach. We set the sum square
error between the predicted value of li given by Algorithm 5 and the actual output li value of pnj-
BKZ as ξ and the smaller value of ξ means the better predication. When Tours=4, the value of ξ
is the smallest. The specific value of ξ is shown in the following table 1. Besides the value of ξ is
not more than 2 after the number of tours is greater than 8. That is, Algorithm 5 is accurate in
predicting the li value of pnj-BKZ when jump is greater than 1.

From table 1 we can see that in the first 4 tours, as the number of tours increases, ξ becomes
smaller and smaller. The reason for the bad fitting effective in Figure (a) and ξ is large in first 4
tours in table 1 is that the AFG14-type lattice[14] is a q-ary lattice and when the lattice basis is
not sufficiently reduced, these orthogonal q vectors in it may cause the Gaussian heuristic no longer
hold which eventually lead to the bad fitting effect in the first tour. After several tours of reduction,
the lattice quality is gradually improved, and the influence of these orthogonal q vector is gradually
eliminated. The actual output is gradually close to the prediction of the simulator. In order to
decrease the bad influence of the prediction accuracy dropping in the first tour of the simulator
which caused by these orthogonal q vectors, we suggest that using some low-dimensional pnj-BKZ
as the pre-processing reduction on the original embedding lattice before performing prediction. Then
the pre-processed reduction lattice basis is used as the input basis of pnj-BKZ simulator. Next, we
give the prediction effect based on the pre-processed lattice basis.

We firstly give these comparison charts about lattice basis: TU LWE challenge n = 75, α = 0.005;

9

Table 1: Sum Square Error between Simulation and Actual Values

Tours ξ

1 3.385652
2 2.165373
3 0.915308
4 0.596222
5 0.639893
6 0.664685
7 1.034195
8 1.20887
12 1.647955
16 1.753861
20 1.50844

pnj-BKZ parameter: blocksize=70, jump=6, pumpdownsieve=True, tours=1, 4, 8 without pre-
processed or with pre-processed.

(a) Tours=1, without pre-processed (b) Tours=4, without pre-processed (c) Tours=8, without pre-processed

(d) Tours=1, with pre-processed (e) Tours=4, with pre-processed (f) Tours=8, with pre-processed

Figure 4: β=70, jump=6, Pumpdown sieve=True

It can be seen from Figure 4 and Table 2 that the fitting error ξ of the first and second tours of
the pnj-BKZ simulator can be effectively decreased after pre-processing q-ary lattice basis, but ξ of
the third to eighth tours increase instead.

In fact from table 1 we can also see that from tours 5 to tours 16, ξ is increasing. This may be
because the Dimforfree technique cannot find the expected short vector when the dimforfree value
f is relatively large (the default value f of dimforfree in G6K is larger than the f value given in
[Ducas18a][16]). This results in the actual lattice quality not being as good as the quality fitted by
the pnj-BKZ simulator which can be seen from Figure 3,4,5 that the slope of these orange points
(simulator prediction) is more gradual than the slope of these blue points (actual output value) when
the size of tours is bigger than 4.

The following comparison charts are lattice basis: TU LWE challenge n = 75, α = 0.005; pnj-
BKZ parameter: blocksize=90,100, jump=6, pumpdownsieve=True and tours=1,2,4,8 with pre-
processing.

From Figure 5, we can see that when blocksize increased to 90 or 100, our pnj-BKZ simulator

10

Table 2: Compare the Effect of Performing Pre-Processing on ξ

tours Without Processed Processed

1 3.385652 0.420675491
2 2.165373 0.688724249
3 0.915308 0.905874592
4 0.596222 1.03910109
5 0.639893 1.320071954
6 0.664685 1.25937722
7 1.034195 1.444779276
8 1.20887 1.450565411

(a) Blocksizes=90,Tours=1 (b) Blocksizes=90,Tours=4 (c) Blocksizes=90,Tours=8

(d) Blocksizes=100,Tours=1 (e) Blocksizes=100,Tours=2 (f) Blocksizes=100,Tours=4

Figure 5: β=90,100, jump=6, Pumpdown sieve=True with pre-processing

11

proposed in Algorithm 5 can still accurate predict the value of li output by pnj-BKZ when jump is
greater than 1, where orange points are these predicted values of li given by Algorithm 5 and blue
points are these actual output li values of pnj-BKZ. In addition, the value of ξ is not more than 1
when the number of tours is less than 4 when pre-processing q-ary lattice basis. When the number
of tours is bigger than 4, the actual reduction effect of pnj-BKZ is not as good as that predicted by
the pnj-BKZ simulator in Algorithm 5, but even if the number of tours reaches 20, the value of ξ
will not exceed 2. In order to better predicate the actual reduction effect of pnj-BKZ, we give the
corresponding discussion in the next subsection.

4.3 More Accurate Predictions Based on Actual Output Basis

To solve the problem that the actual reduced effect of pnj-BKZ is worse than that predicted by
Algorithm 5 when the number of tours increases, we give the following assumptions.

Heuristic 3 (Weaking reduacrion the effect of pnj-BKZ). When pnj-BKZ using the default value f
of dimforfree in G6K which is larger than the f value given in [Ducas18a][16], we assume that the
effect of pnj-BKZ with blocksize β same as a jump-BKZ with blocksize β − c, where c is a constant
relate to the size of β, dimforfree value f , size of jump and the value of current Tours.

If Heuristic 3 holds, we know that the key is to accurate estimate the value of c if we want
more precisely predicate the behavior of pnj-BKZ. Next, based on Algorithm 5, after obtaining
these slope values of these actual reduction basis of pnj-BKZ, we give an algorithm for calculating
c (β, i, J) , i ∈ {1, 2, . . . , N} and N is the size of total Tours. Using these c values calculated by this
algorithm, we can further construct a more accurate pnj-BKZ simulator than algorithm 5.

Algorithm 6 Calculating c Based on these Actual Output Basis

Input: The logarithms of the Gram-Schmidt norms li = log ‖b∗i ‖, for i ∈ {1, . . . , d}, the desired
blocksize β ∈ {45, . . . , d}, the number of tours N , the size of jump J to simulate, cbound, Bactual [j] ={
l
(j)
1 , . . . , l

(j)
d

}
, for j ∈ {1, . . . , N}.

Output: A list c (β, i, J) , i ∈ {1, 2, . . . , N}.
1: coptimal = 0;
2: ξbound = 20;
3: Bsim = []
4: for j ∈ {1, . . . , N} do
5: for c ∈ {0, . . . , cbound} do

6: B
(j)
sim = Algorithm 5 ({li|i ∈ {1, . . . , d}} ,Blocksize = β − c,Tours = j, Jump = J)

7: ξ=
∑d
i=1

(
l
(j)
sim,i − l

(j)
actual,i

)2

, where l
(j)
sim,i ∈

{
B

(j)
sim

}
and l

(j)
actual,i ∈

{
B

(j)
actual

}
8: if ξ < ξbound then
9: coptimal = c

10: ξbound = ξ
11: end if
12: end for
13: end for
14: return c (β, i, J) , i ∈ {1, 2, . . . , N}

Using these c (β, i, J) , i ∈ {1, 2, . . . , N} values calculated by Algorithm 6, and modifying the
input value β of pnj-BKZ (β,Jump = J ≥ 1,Tours = N) as β− c which is waited to be predicted by
Algorithm 5, we can effectively solve the problem that the value of ξ is a little big when the number
of tours increases.

Figures 6 below show the c (β, i, J) , i ∈ {1, 2, . . . , N} list corresponding to different β and jump
values. It can be seen from Figure 6 that for the same β value, as the jump increases, the c value
also increases, which indicates that the actual reduction effect of pnj-BKZ is weaker than jump-BKZ
when jump > 1. In addition, with the same β value and the same jump value, as the tours increases,

12

Table 3: ∆ξ Table (n=75, α = 0.005, β = 80 and β = 90)

β=80 β=90

Tours jump=2 jump=3 jump=4 jump=6 jump=2 jump=3 jump=4 jump=6 jump=9
1 0.00 0.01 0.04 0.21 0.00 0.00 0.02 0.15 0.75
2 0.00 0.04 0.20 0.62 0.00 0.02 0.09 0.47 1.36
3 0.01 0.10 0.24 0.93 0.02 0.08 0.24 0.79 3.09
4 0.03 0.15 0.41 1.07 0.03 0.14 0.36 0.91 4.89
5 0.07 0.21 0.47 1.23 0.06 0.18 0.40 1.12 4.31
6 0.07 0.26 0.57 1.32 0.07 0.21 0.46 1.05 3.62
7 0.10 0.26 0.61 1.48 0.08 0.22 0.50 1.24 3.28
8 0.10 0.26 0.62 1.36 0.09 0.24 0.46 1.35 4.35

the c value will increase slightly. However, in general, when the β value and the jump values are
fixed, the c value does not change much. These c (β, i, J) , i ∈ {1, 2, . . . , N} values can be found
experimentally to improve the predication accuracy of Algorithm 5.

Next, we define ∆ξ to represent how much the fitting error is decreased after these c values
are obtained and used in Algorithm 5. More specifically, ∆ξ indicates the difference between the
fitting error ξ of using Algorithm 5 only and the fitting error ξ of using Algorithm 5 which input β
subtracted the appropriate c value calculating from Algorithm 6.

(a) n=75, α = 0.005, β = 70 (b) n=75, α = 0.005, β = 80

(c) n=75, α = 0.005, β = 90

Figure 6: c List: n=75, α = 0.005, β=70, 80 and 90

From Table 3, we can know that Algorithm 6 can effectively reduce the fitting error ξ of Algorithm
5 when the jump value and the Tours value are large which can be seen more intuitively through
Figure 7 below.

In Figure 7, these blue points are ξ values of pnj-BKZ fitted by Algorithm 5 after inputting β
subtracting the appropriate c value, and these red points are ξ values of pnj-BKZ fitted by Algorithm
5 directly. From Figure 7, we can intuitively see that after obtaining the c value from Algorithm 6,

13

(a) β = 70, jump = 6 (b) β = 70, jump = 4 (c) β = 80, jump = 6 (d) β = 80, jump = 4

(e) β = 90, jump = 6 (f) β = 90, jump = 6 (g) β = 90, jump = 4

Figure 7: ξ Values of Algorithm 5 only and ξ Values of Algorithm 5 + Algorithm 6: n=75, α = 0.005

Algorithm 5 can accurately predict the behavior of pnj-BKZ, even if the number of tours are large.
What’s more, we can intuitively see that when the jump is larger (greater than 3), as the number
of rounds increases, these red points will grow to about 1. However, the blue points remains within
0.4 (jump < 9) even though the number of tours is increased to 8. This means that Algorithm 6 can
effectively solve the problem that the prediction accuracy of Algorithm 5 decreasing when number
of tours is high.

In short, we can use Algorithm 6 to find these c values of some low-dimensional pnj-BKZ through
experiments. But there is still a problem that how to estimate the value of c of high-dimensional
pnj-BKZ when jump > 1. We leave this question for future work.

5 Optimizing Jump Strategy

In this section, we use the pnj-BKZ simulator proposed in the previous section and the computational
cost model of pnj-BKZ to give the optimal jump value selection strategy.

5.1 Analysis of the Actual Reduction Effect of pnj-BKZ

From the analysis in section 4.2 and section 4.3, we can see that when jump > 1, the reduction
effect of pnj-BKZ is not the same as that of jump-BKZ under equal blocks. Below we first give
Figure 8 the actual reduction effect-time graph of the low-dimensional pnj-BKZ.

From Figure 8 we can see that given different time constraints, the optimal jump value is different.
In general, under the same blocksize β, the larger the jump, the shorter the time needed to execute
a tour of pnj-BKZ, but the smaller the quality improvement (∆slope) it can bring. If given enough
time, jump = 1 can bring the best quality improvement for same blocksize β. But if the running
time of pnj-BKZ is limited, for example, 1024 seconds, the pnj-BKZ with jump > 1 has performed
many tours and has improved the lattice quality already, but jump = 1 may not finish one tour of
reduction.

In other words, as long as the quality improvement ∆slope is fixed, it makes sense to choose
the optimal jump value such that the lattice quality improvement is at least greater than ∆slope
and the time cost of pnj-BKZ reduction is minimal. Therefore, we give an optimal jump selection
algorithm based on the above standard.

14

(a) n = 75, α = 0.005, β = 70

(b) n = 75, α = 0.005, β = 80

(c) n = 75, α = 0.005, β = 90

(d) n = 75, α = 0.005, β = 100

Figure 8: ∆slope-Time cost: n=75, α = 0.005

15

5.2 Jump Selection Strategy

Before giving the optimal jump selection strategy, we first give the computational cost model of
pnj-BKZ. As described in Algorithm 4, pnj-BKZ consists of a series of Pumps. Although the initial
index κ, blocksize β, and dimforfree values f of these Pumps are different, they can be regarded as a
(β−f)-dimensional progressive sieve in general (through the EL operation, a right-to-left progressive
sieving is realized). Therefore, ignoring calculating score function, embedding operation and other
operations with very small computational cost compared with sieving, the computational cost of
pnj-BKZ can be regarded as the sum cost of d+2f−β

jump progressive sieving on the (β − f)-dimension

projection sublattice. So we only need to give the computational cost model of the (β−f)-dimension
progressive sieving.

β−f∑
j=β0

2c·j+o(j) = 2cβ0

(
1 + 2c + · · ·+ 2c(β−f−β0)

)
≤ 2cβ0 · 2c(β−f+1)+o(β−f+1)

1− 2c
≈ O

(
2c(β−f)

)
The β0 is the dimension of initial sieving in Pump (In G6K β0 usually set as 40). Next, we give

the optimal selection strategy for jump by using the pnj-BKZ simulator (Algorithm 5) in section 4.

Algorithm 7 Optimal jump Selection Strategy Based on Fixed ∆slope

Input: B∗, β, tours = N, JBound, ∆Slopetarget
Output: jumpoptimal

1: slopeinit := Slope (B∗);
2: for jump ∈ {1, 2, . . . , JBound} do
3: ∆slope = 0
4: while tours ∈ {1, 2, . . . , N} && ∆slope < ∆Slopetarget do
5: B∗ =pnj-BKZ Simulator(basis = B∗, blocksize = β, Tours = tours, Jump = jump)
6: slopejump,tours = Slope (B∗)
7: ∆slope = slopejump,tours − slopeinit
8: if ∆Slope > ∆Slopetarget then

9: Timecost(β, Jump = jump)=j ·
[
d+2f−β
jump · 2

c(β−f)
]

10: end if
11: end while
12: end for
13: jumpoptimal = 1
14: Timecostmin=2128

15: for jump ∈ {1, 2, . . . , JBound} do
16: if Timecostmin > Timecost(β, Jump = jump) then
17: jumpoptimal = jump
18: Timecostmin = Timecost(β, Jump = jump)
19: end if
20: end for
21: return jumpoptimal

In algorithm 7, Slope (B∗) is a function that using the least squares fits the line composed of
values of li of vectors in B∗ to obtain the slope value which measures the quality of the lattice basis.

To sum up, it is meaningful to discuss the optimal jump selection strategy only when the initial
lattice quality is fixed and the reduction time or ∆slope is fixed. Because when the quality of lattice
basis is good, the price of a little quality improvement ∆slope is huge which may not necessarily
linear with time.

16

6 Solving TU LWE Challenge by using Jump optimized pnj-
BKZ

For TU LWE challenge (n = 75, α = 0.005) and challenge (n = 60, α = 0.010) 2, we respectively
experimented the cost of solving these two challenges by using default strategy of pnj-BKZ which
jump = 1, and using the Jump optimization selection strategy in Section 4. From table 5, experi-
ments show that the pnj-BKZ with Jump optimization selection strategy can reduce the total cost
by 2.6∼2.9 times.

Table 4: Comparison of our optimized pnj-BKZ with the default pnj-BKZ in G6K

G6K Default pnj-BKZ Optimized pnj-BKZ
Jump jump = 1 Optimizing jump according to the size of β by Algorithm 7

Sieving During Pumpdown Turn off Turn on

Table 5: Efficiency improvement of jump-optimized pnj-BKZ solving TU LWE challenge

G6K Default pnj-BKZ Our Optimized pnj-BKZ Improvement
(n = 75, α = 0.005) 45109.931 15573.77 2.90
(n = 60, α = 0.010) 49012.32 18672.443 2.62

The target vector is successfully solved FALSE TRUE NA

All of the experiments in this paper are carried out on the same server. The configuration of
our server is as follows: Intel(R) Xeon(R) Silver 4110 CPU, Linux operating system, multi-thread
acceleration solution enabled, and the number of threads is uniformly set as 20.

In fact, when G6K’s default strategy(CPU version)3 solves these two TU LWE challenges of
(n = 75, α = 0.005) and (n = 60, α = 0.010), it cannot find the target vector after spending much
longer time compared to our optimized pnj-BKZ (it can be see from table3), and even reports an
error4. If the default LWE solving strategy in G6K can normally execute larger blocks of pnj-BKZ
to solve these challenges after debugging, the time cost will only be greater than the time cost in
Table 5. In other words, the efficiency gain from our optimized pnj-BKZ in solving these two TU
LWE challenges is actually at least greater than 2.8 and 2.6 times.

7 Discussion

In this section we will briefly discuss why Jump and Pumpdown stage turn on sieving will bring
good influence on reducing time costing and improving the quality of lattice basis.

Theorem 1. For the AFG14 lattice L with dimension d and lattice basis quality δ, the lower bound
of the dimension of progressive sieving required by Pump to find the target vector (e, 1) in this lattice
L is k. When GSA is established, k is:

k ≥ d− logδ
(det |L|)

1
d

σ
√

2πe
(1)

Proof. From [16] we know that we need the following inequality holds to solve approximate SVP on
lattice or projection sublattice : λ1

(
L[d−k+1:d]

)
≥ πd−k (λ1 (L))(The more shorter projection vector

are found in projection sublattice the speed of progressive sieving will be quicker [17] and reducing

2More information on this challenge can be found at the link below:
https://www.latticechallenge.org/lwe challenge/challenge.php

3https://github.com/fplll/g6k
4python3: hk3 sieve.cpp:1570: std::size t Siever::hk3 sieve execute delayed insertion(Siever::TS Transaction DB Type&,

float&, unsigned int): Assertion ‘insertion start index > TS start queue original’ failed.

17

the totall cost of Pump). Since under the GH assumption λ1

(
L[d−k+1:d]

)
= GH

(
L[d−k+1:d]

)
≈√

k
2πe

(∏d
i=d−k+1 ‖b∗i ‖

) 1
k

, by using GSA, we have:

λ1

(
L[d−k+1:d]

)
=

√
k

2πe

(det |L|)
1
k · δ

(d−k)(d−k−1)
k

‖b∗1‖
d−k
k

=

√
k

2πe

(det |L|)
1
k · δ

(d−k)(d−k−1)
k

(det |L|)
d−k
dk δ

(d−1)(d−k)
k

λ1

(
L[d−k+1:d]

)
=

√
k

2πe

(det |L|)
1
d

δd−k
(2)

Substituting equation 2 into the inequality from [Ducas18a][16], we get:
√

k
dσ
√
d ≤

√
k

2πe
(det|L|)

1
d

δd−k ,

where d is the dimension of lattice, σ is the standard deviation of LWE instances and k is the
dimension of progressive sieving needed to find the target vector. (In standard form LWE which
used in TU LWE challenge, the length of targe vector in embedding lattice is σ

√
d).

δd−k ≤ (det |L|)
1
d

σ
√

2πe

k ≥ d− logδ
(det |L|)

1
d

σ
√

2πe

From inequality 1 for a certain LWE instances, except for the lattice quality value δ, these right-
hand terms of the inequality sign are fixed. Therefore from Theorem 1, it can be clearly seen that
when the quality of the lattice is better, the smaller the projected sub-lattice dimension of the sieving
needed to find the target vector, that is, the total computational cost of Pump is smaller. ·1

Besides, from equation 2 in the proof of Theorem 1 we know that the better the quality of lattice
basis, the larger the λ1

(
L[d−k+1:d]

)
value will be. Meanwhile, the smaller the projected sublattice

dimension k of progressive sieving required to find target vector during Pump which leads to smaller
computational cost of Pump. When we consider Pump on a projected sublattice, we can replace
d with d′ and k with k′ in the equation 2. For a projected sublattice, the above analysis is also
established. That is, the better the lattice quality of current block where Pump working on, the
total computational cost of the Pump is smaller. Because Pump needs to perform progressive sieving
(expand from right to left) to find the shortest vector on the current projected sublattice, and it can
be seen from equation 2 that the dimension k′ of final sieving will decrease with the decrease of δ
(This can be understood as, in order to ensure that the value of λ1

(
L[d′−k′+1:d′]

)
is slightly larger

than the value of πd−k (λ1 (L)), when δ decreases, the dimension k′ of progressive sieving needed
can also be reduced accordingly).

This explains, to some extent, that when jump is greater than 1, and pnj-BKZ turn on sieving
during pumpdown stage, the algorithm can obtain the reduced basis with better quality and faster
speed than that of the default pnj-BKZ which jump = 1 and not turn on sieving during pumpdown
stage. From one hand, jump technique is used which can decrease the number of calls of SVP Oracle
to reduce overall overhead and to some extent this also will leads to lattice quality decreased when
the value of jump is large. On the anther hand, sieving is turned on during the pumpdown stage to
obtain a stronger reduced lattice basis (In fact every block is a d dimension HKZ basis) and make
it sensible to jump some index since current block has already been reduced. Therefore if jump is
greater than 1, and pnj-BKZ turn on sieving during pumpdown stage, the algorithm can obtain a
more reduced lattice basis and according to inequality 2 and we know that this will reducing the
total cost of progressive sieving and Pump.

18

8 Conclusion and Future work

In summary, we propose a pnj-BKZ simulator with jump ≥ 1 based on the properties of the HKZ
reduction basis, and the experimental results show that our simulator can well predict the behavior
of pnj-BKZ with jump ≥ 1. Secondly, based on the pnj-BKZ simulator, we optimized pnj-BKZ by
optimizing the value of jump. The optimized pnj-BKZ can solve the TU LWE challenge by 2.6∼2.9
times faster than the default pnj-BKZ of G6K which jump = 1 and not turn on sieving during
pumpdown stage.

We will further optimize the optimal selection strategy of jump by more experiments more with
different block sizes and the optimal value of jump based on our pnj-BKZ simulator. Besides, we
will try to find the relationship between value c in algorithm 6 and pnj-BKZ parameter (β, f , jump
and Tours). In addition, we will try to use this pnj-BKZ simulator to give a LWE solving strategy
with stronger reduction effect and less computational cost than the default reduction strategy of
G6K. What’s more, our simulator is based on the information about HKZ basis, so we will try to
construct a simulator of pnj-BKZ without turning on sieving during pumpdown. What’s more,

References

[1] M. R. Albrecht, F. Göpfert, F. Virdia, and T. Wunderer, “Revisiting the expected cost of solving
usvp and applications to lwe,” in Advances in Cryptology – ASIACRYPT 2017, T. Takagi and
T. Peyrin, Eds. Cham: Springer International Publishing, 2017, pp. 297–322.

[2] O. Regev, “On lattices, learning with errors, random linear codes, and cryptography,” in In
STOC. ACM Press, 2005, pp. 84–93.

[3] R. Lindner and C. Peikert, “Better key sizes (and attacks) for lwe-based encryption,” in Topics
in Cryptology – CT-RSA 2011, A. Kiayias, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg,
2011, pp. 319–339.

[4] E. Alkim, L. Ducas, T. Pöppelmann, and P. Schwabe, “Post-quantum key Exchange—A new
hope,” in 25th USENIX Security Symposium (USENIX Security 16). Austin, TX: USENIX
Association, Aug. 2016, pp. 327–343. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity16/technical-sessions/presentation/alkim

[5] S. Bai and S. D. Galbraith, “An improved compression technique for signatures based on learn-
ing with errors,” in Topics in Cryptology – CT-RSA 2014, J. Benaloh, Ed. Cham: Springer
International Publishing, 2014, pp. 28–47.

[6] Z. Brakerski and V. Vaikuntanathan, “Efficient fully homomorphic encryption from (standard)
lwe,” in 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science, 2011, pp.
97–106.

[7] C. Gentry, A. Sahai, and B. Waters, “Homomorphic encryption from learning with errors:
Conceptually-simpler, asymptotically-faster, attribute-based,” in Advances in Cryptology –
CRYPTO 2013, R. Canetti and J. A. Garay, Eds. Berlin, Heidelberg: Springer Berlin Heidel-
berg, 2013, pp. 75–92.

[8] Z. Brakerski, V. Vaikuntanathan, H. Wee, and D. Wichs, “Obfuscating conjunctions under
entropic ring lwe.” New York, NY, USA: Association for Computing Machinery, 2016.
[Online]. Available: https://doi.org/10.1145/2840728.2840764

[9] S. Bai, D. Stehlé, and W. Wen, “Measuring, simulating and exploiting the head concavity phe-
nomenon in bkz,” in Advances in Cryptology – ASIACRYPT 2018, T. Peyrin and S. Galbraith,
Eds. Cham: Springer International Publishing, 2018, pp. 369–404.

[10] Y. Chen and P. Q. Nguyen, “Bkz 2.0: Better lattice security estimates,” in Advances in Cryp-
tology – ASIACRYPT 2011, D. H. Lee and X. Wang, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2011, pp. 1–20.

19

https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/alkim
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/alkim
https://doi.org/10.1145/2840728.2840764

[11] Y. Aono, Y. Wang, T. Hayashi, and T. Takagi, “Improved progressive bkz algorithms and their
precise cost estimation by sharp simulator,” in Advances in Cryptology – EUROCRYPT 2016,
M. Fischlin and J.-S. Coron, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016, pp.
789–819.

[12] M. R. Albrecht, L. Ducas, G. Herold, E. Kirshanova, E. W. Postlethwaite, and M. Stevens,
“The general sieve kernel and new records in lattice reduction,” in Advances in Cryptology –
EUROCRYPT 2019, Y. Ishai and V. Rijmen, Eds. Cham: Springer International Publishing,
2019, pp. 717–746.

[13] M. Ajtai, “Generating random lattices according to the invariant distribution,” Draft of March,
vol. 2006, 2006.

[14] M. R. Albrecht, R. Fitzpatrick, and F. Göpfert, “On the efficacy of solving lwe by reduction to
unique-svp,” in Information Security and Cryptology – ICISC 2013, H.-S. Lee and D.-G. Han,
Eds. Cham: Springer International Publishing, 2014, pp. 293–310.

[15] C. P. Schnorr and M. Euchner, “Lattice basis reduction: Improved practical algorithms and
solving subset sum problems,” in Fundamentals of Computation Theory, L. Budach, Ed. Berlin,
Heidelberg: Springer Berlin Heidelberg, 1991, pp. 68–85.

[16] L. Ducas, “Shortest vector from lattice sieving: A few dimensions for free,” in Advances in Cryp-
tology – EUROCRYPT 2018, J. B. Nielsen and V. Rijmen, Eds. Cham: Springer International
Publishing, 2018, pp. 125–145.

[17] T. Laarhoven and A. Mariano, “Progressive lattice sieving,” in Post-Quantum Cryptography,
T. Lange and R. Steinwandt, Eds. Cham: Springer International Publishing, 2018, pp. 292–
311.

20

	Introduction
	Preliminaries
	Lattice Reduction Algorithm
	Simulation of pnj-BKZ
	pnj-BKZ Simulator
	The actual simulation effect of pnj-BKZ simulator
	More Accurate Predictions Based on Actual Output Basis

	Optimizing Jump Strategy
	Analysis of the Actual Reduction Effect of pnj-BKZ
	Jump Selection Strategy

	Solving TU LWE Challenge by using Jump optimized pnj-BKZ
	Discussion
	Conclusion and Future work

