
Designated-Verifier Linkable Ring Signatures

Pourandokht Behrouz, Panagiotis Grontas, Vangelis Konstantakatos, Aris
Pagourtzis, and Marianna Spyrakou

pbehrouz@mail.ntua.gr, pgrontas@corelab.ntua.gr,
vangelis1993@hotmail.com, pagour@cs.ntua.gr, mspyrakou@mail.ntua.gr

April 14, 2022

Abstract. We introduce Designated-Verifier Linkable Ring Signatures
(DVLRS), a novel cryptographic primitive which combines designated-
verifier and linkable ring signatures1. Our goal is to guarantee signer
ambiguity and provide the capability to the designated verifier to add
‘noise’ using simulated signatures that are publicly verifiable. This in-
creases the privacy of the participants, as it does not allow an adver-
sary to bypass the anonymity provided by ring signatures by using the
content of a message to identify the signer. We model unforgeability,
anonymity, linkability and non-transferability for DVLRS and provide
a secure construction in the Random Oracle model. Finally, we explore
some first applications for our primitive, which revolve around the use
case of an anonymous assessment system that also protects the subject
of the evaluation, even if the private key is compromised.

Keywords: ring signatures, designated verifier, non-transferability, link-
ability, anonymity

1 Introduction

We present Designated-Verifier Linkable Ring Signatures (DVLRS), a new type
of privacy-oriented digital signature. Our primitive is a linkable ring signature
[15], i.e. it protects the anonymity of the signers by ‘hiding’ their identity among
a set of peers. Signed messages appear to be coming from the set as a whole,
without the ability to exactly pinpoint the sender. Moreover, messages are pub-
licly linkable, i.e. messages coming from the same sender can be identified and
grouped together, without disclosing the sender’s identity. At the same time our
primitive is a designated-verifier signature [7], as it is simulatable by an entity
‘outside’ the ring, designated during signing, while maintaining public verifiabil-
ity. As a result, only this designated verifier can be convinced of which messages
actually originate from signers in the ring. This option, however, is not available
to the public, as all signatures are indistinguishable to them. Consequently, our
scheme enhances the privacy of ring members compared to plain ring signatures.
1 A previous version of this work was presented at the 24th International Conference

on Information Security and Cryptology (ICISC 2021), December 1-3, 2021

At the same time, DVLRS provide more control to the designated verifier, as
they can be used to inject ‘noise’ - fake messages with simulated signatures -
thus altering the public view of the adversary. More importantly, it provides
protection to the designated verifier against an adversary who tries to extort or
otherwise gain hold of their private key, as even if they succeed, they can gain
no valuable information on which messages come from real ring members and
which are ‘noise’. This makes our scheme useful to a number of privacy-focused
scenarios such as evaluation systems and surveys for sensitive data.

1.1 Related Work

Since our primitive combines the notions of Designated-Verifier Signatures (DVS)
and Linkable Ring Signatures (LRS), we review the evolution of these primitives
by focusing on their semantics and their security properties.

DVS were proposed in [7] as a way to restrict the entities that can be con-
vinced by a proof. The relevant property, non-transferability, states that the
verifier cannot use the resulting signatures to convince other parties. Their con-
struction utilizes an OR proof, stating in effect that the signer knows their secret
signing key or the secret key of the verifier. Verification uses both public keys. As
a result, the designated verifier can be sure that the signer created a signature
they did not create themselves. However, the public, while being able to check if
the signature is valid, cannot distinguish between a signer-generated and a sim-
ulated signature, i.e. one created with the secret key of the verifier. A variation,
strong DVS, also proposed in [7], are not publicly verifiable as the secret key
of the designated verifier is a required input of the verification algorithm. The
simplest way to create strong DVS is to encrypt (part of) the signature with the
public key of the designated verifier, but other constructions are possible [21].
DVS have many applications to privacy related scenarios, such as receipt-free
and coercion-resistance electronic voting [7, 8].

Subsequent works refined the construction and security properties of DVS. In
[22] non-transferability was formally defined in the context of universal designated-
verifier signatures, where the designation functionality is not restricted to the
signer. In [12], it was noted that in some previous schemes the signer or the des-
ignated verifier could delegate their signing rights, by giving away a function of
their respective secret keys and not fully revealing them. As this capability could
have negative effects in some applications, a new property non-delegatability was
defined. It essentially states that a non-delegatable DVS is a proof of knowledge
of the signer or designated verifier secret key. They also note that the original
DVS scheme of [7] was non-delegatable. In [11] a generic definition of DVS and
their related security notions is presented.

Ring signatures were originally proposed in [20] as a method to anonymize
the signer of a message, by hiding their identity inside a group of possible signers-
peers. The signature was verified by the ring public key, without anyone being
able to pinpoint the exact signer. Unlike previous schemes, e.g. [3], rings can
be formed spontaneously and there is no group manager that may revoke the
anonymity of the members. [15] proposed a ring signature as an OR proof by

2

using the classic technique of [5] and added the feature of linkability, where sig-
natures coming from the same signer were linked together using pseudoidentities
or tags. The pseudoidentities were ‘alternate’ public keys - group elements com-
puted using the private key of the signer - embedded in the signature that enabled
the signer to remain anonymous. Their construction could be used to prevent
double-voting in anonymous electronic elections. Linkable ring signatures have
also been used in anonymous cryptocurrencies like Monero [18]. While in [15] the
linkability tag results in computational anonymity, other constructions provided
for perfect anonymity [13] and improved security models [16]. Non-slanderability
[13] ensures that no signer can generate a signature that is determined to be
linked to another one not generated by the same signer. Another variation, ring
signatures with designated linkability [14] restrict who can link signatures. We
stress that these signatures are in essence designated linker as the designation
is applicable only to linking. Our primitive is entirely different as it considers
designation for the verifier, specifying who can be certain that a signature is
real and therefore be convinced by it. One drawback of ring signatures, is that
while the cryptographic construction might hide the signer, its identity could be
revealed from the contents of the message. DVLRS bypasses this problem with
the capacity for simulated messages created by the designated verifier.

The notions of designated verifier and ring signatures have been combined
in [10], where any holder of a ring signature can designate it to a verifier, and
[9] which provides a strong DV ring signature for whistle blowing. However,
these primitives share an implicit connection, as any ring party can become the
designated verifier by signing fake messages on behalf of the ring [20]. The rest
of the ring members and the public will not be able to tell these simulated
signatures from legitimate ones. Linkability breaks this implicit connection by
limiting non-transferability as any member who wants to transfer conviction of
a signature to a third party, simply has to prove they did not produce the signa-
ture themselves. This can be done by using the linkability tag (pseudoidentity),
even in zero knowledge. As a result, there is a need to consider linkable ring sig-
natures with a designated verifier, to restore the conceptual connection between
LRS and DVS and provide for more versatility. This is exactly what DVLRS
accomplish. A similar previous attempt to add linkability to designated verifier
ring signatures was made in [4] for use in receipt free e-voting. The resulting
signatures, however, are only strongly designated, since part of the signature is
encrypted with the public key of the verifier. In addition they are not publicly
linkable as the pseudoidentities are encrypted as well. So both verification and
linking require the secret key. Our approach, DVLRS, are both publicly verifiable
and publicly linkable. Furthermore, in [4], they only achieve non-transferability
against a computationally bounded adversary2. A big advantage of our work is
that we accomplish perfect non-transferability, i.e. even an unbounded attacker
cannot distinguish signatures from simulations.

2 There is no security model or security analysis provided in [4] for their signature
scheme, however it is straightforward to see that a computationally unbounded at-
tacker can distinguish simulations.

3

1.2 Contribution

To the best of our knowledge, Designated-Verifier Linkable Ring Signatures are
the first attempt to combine plain designated-verifier signatures and publicly
linkable ring signatures. We provide a generic security model and formally de-
fine all the relevant security properties that should be satisfied: unforgeability,
anonymity, linkability and non-transferability. The definition of linkability is
extended to include non-slanderability. Our definition for non-transferability is
also novel since it adapts the one in [11] for linkability. This is of particular
interest, since one has to make sure that the linkability tag does not allow an
attacker to distinguish simulations. Our security model is a novel contribution
on its own, as it can be used to evaluate future DVLRS instantiations.

We also provide a concrete construction for DVLRS and proofs for all its
claimed security properties in the random oracle model. The proposed scheme
builds upon the work of [15] and adds a designated verifier capable of simulat-
ing signatures and linking them to arbitrary ring members. We achieve perfect
non-transferability, by making these simulations information theoretically indis-
tinguishable. By construction, in our scheme, unforgeability amounts to a proof
of knowledge for the secret key of the signer or the designated verifier. Thus
DVLRS cannot be delegated and our proof of unforgeability directly implies a
proof of non-delegatability [12, 7]. Finally, we discuss applications of DVLRS by
generalizing the case of an anonymous evaluation system that also protects the
subject of the evaluation, even if the private key is compromised, by allowing
the insertion of simulated signatures.

2 DVLRS Model

2.1 Notation and assumptions

The security parameter is denoted by λ. We let n denote the size of the universe
U of possible public keys and nL = |L| for a subset (ring) L ⊆ U . We denote
equality with = and assignment with ←. All our security definitions are in the
form of games which take as input the security parameter and return 1 for True
and 0 for False. For conciseness, we return the condition and not its result. An
algorithm that terminates unsuccessfully is denoted as returning ⊥. A uniformly
at random selection is denoted with ←$. We assume the adversary A has state
which is maintained throughout successive operations. In the games it is always
omitted for brevity. We collectively refer to the cryptographic parameters of
our scheme (groups, generators etc.) as params. They are an input to all our
algorithms, but are also omitted. We denote a public key as pk and a secret key
as sk. A pseudoidentity is denoted as pid. Typically it is computed as a function
of the sk that is believed to be difficult to invert. Other parameters can also take
part in its computation like the public keys of L like in [15], possibly combined
with some event description from {0, 1}∗ as in [13]. Its actual form depends on
the application. We denote by PID the set of pid’s. The designated verifier is
denoted as D, while the index of the signer in the ring is π. The security of our

4

scheme rests on standard cryptographic assumptions like the hardness of the
discrete logarithm problem (DLP) and the decisional Diffie-Hellman assumption
(DDH), which are omitted for brevity.

2.2 DVLRS definition and basic properties

We begin by defining DVLRS and their basic security properties.

Definition 1. A Designated-Verifier Linkable Ring Signature Π is a tuple of
PPT algorithms (Setup,KGen, Sign,Extract, Sim,Vrfy, Link) with the following syn-
tax:

– params← Setup(λ) generates the parameters of DVLRS. These include cryp-
tographic groups, the message spaceMSG, and the set of possible pseudoiden-
tities PID .

– (sk, pk) ← KGen() is the key generation algorithm which allows keys to be
created in an ad-hoc manner. This algorithm is used by all players including
the designated verifier.

– σ ← Sign(L, m, pkD, skπ) is used to sign a message m by some π ∈ [nL].
– pid← Extract(σ) is an algorithm that can obtain the pseudoidentity pid from

a signature.
– σ ← Sim(L, m, pkD, skD, pid) is the signature simulation algorithm that al-

lows the designated verifier D to produce indistinguishable signatures for
pseudoidentity pid.

– {0, 1} ← Vrfy(σ, L, m, pkD) is the verification algorithm which outputs 1 if
the signature is valid and 0 otherwise.

– {0, 1} ← Link(σ,L, σ′, L) is the linking algorithm which outputs 1 if σ and
σ′ originate from the same signer or if they are simulated to look like they
originate from the same signer.

In Definition 1, the pseudoidentity pid must be given as input to the simu-
lator to allow linking. This means that to link a simulated signature to a ring
member, the designated verifier must first see a single signature from them.
This might seem as a drawback of our definition, but in a practical applica-
tion it is of no importance as its protocol could force all participants to post a
single signed registration message for each pseudoidentity they assume. Such a
message would not carry sensitive content. Then the designated verifier could
use the Extract functionality to create a registry of pseudoidentities to simulate
signatures. Furthermore, the designated verifier can create simulations taking
random pid←$PID. These won’t be linked to the signatures of a real signer
and can be generated before the verifier sees any signatures.

The completeness of our scheme is obtained from the following correctness
properties that guarantee that honestly generated signatures are usable.

Verification Correctness states that honestly user-generated or simulated sig-
natures are valid. More formally: If σ ← Sign(L, m, pkD, sk) for sk ∈ L or σ ←
Sim(L, m, pkD, skD, pid) for (pkD, skD) ← KGen(), then Vrfy(σ,L, m, pkD) = 1
with overwhelming probability. Otherwise Vrfy(σ, L, m, pkD) = 0

5

Linking Correctness states the conditions for linking. Two signatures over
the same ring L, should always be linked if they are honestly generated by the
same signer, if one is an honestly generated signature and a verifier created a
simulation with the particular pseudoidentity or if they are simulations using
the same pseudoidentity. Note that the inputs of the linking algorithm have to
be valid signatures. If they are not, the output of this algorithm is irrelevant.
Formally: Link(σ,L, σ′, L) = 1 if and only if one of the following holds:

i σ ← Sign(L, m, pkD, skπ) and σ′ ← Sign(L, m′, pk′D, skπ)
ii σ ← Sign(L, m, pkD, skπ) and σ′ ← Sim(L, m′, pk′D, sk′D,Extract(σ))
iii σ ← Sim(L, m, pkD, skD, pid) and σ′ ← Sim(L, m′, pk′D, sk′D, pid)

Note here that we have limited linking to signatures formed over the same ring
L. This is simply a choice made for ease of exposition. Modifying the definitions
for linking over event tags [13] or even with no restrictions [1] is straightforward.

2.3 Adversarial capabilities

We will consider a strong adaptive adversary that has the ability to add more
users to the system, take control of users of its choice, collect all signatures ever
exchanged and request signatures and simulations at will on behalf of any of
the users of any ring. To model these capabilities of A we utilize the following
oracles3, similar to [17, 13, 12]:

– pk← JO(). The Joining Oracle, upon request adds a public key to the list
of public keys U , and returns it.

– sk ← CO(pk). The Corruption Oracle, on input a public key pk that is an
output of JO returns the secret key sk such that (pk, sk)← KGen().

– σ ← SO(L, m, pkD, pkπ). The Signing Oracle, on input a list of public keys L
a message m, a public key pkD and a public key pkπ ∈ L, outputs a signature
σ such that σ ← Sign(L, m, pkD, skπ) and (pkπ, skπ)← KGen().

– σ ← MO(L, m, pkD, pid). The Simulation Oracle, on input a list of public
keys L a message m, a public key pkD, a pseudoidentity pid, outputs a sig-
nature σ such that σ ← Sim(L, m, pkD, skD, pid) and (pkD, skD)← KGen().

These oracles capture the adaptive nature of A. For example, as part of a poten-
tial attack, he can after receiving signatures of his choice from SO, request that
more users are added to the system from JO, then request even more signatures
potentially even from the newly added users, and so forth.

We must point out that while the adversary can collect all messages and
signatures, it does not monitor communication addresses, timing information
and related metadata, as such information would trivially enable them to dis-
tinguish between simulated and real signatures. In essence, we can assume that
all signed messages are publicly available as standalone items. Additionally, we
expect the designated verifier to adopt an obfuscation strategy when posting
fake signatures.
3 For convenience, we use the same symbol to denote both an oracle and its set of

outputs.

6

2.4 Unforgeability

Unforgeability intuitively implies the inability of a party that is not a member of
a ring to produce a valid signature for that ring, without designating themselves
as the Designated-Verifier. To formally define unforgeability for a DVLRS scheme
Π, we consider the experiment Expunf

A,Π,n in Game 1.1.

Game 1.1: Unforgeability experiment Expunf
A,Π,n

Input : λ
Output: {0, 1}
params← Π.Setup(1λ)

U ←
{
(pki, ski)← Π.KGen()

}n

i=1

(σ, L = {pki}
nL
i=1, m, pkD, Dt)← ARO,JO,CO,SO,MO(U)

return Vrfy(σ, L, m, pkD) = 1 AND ∀i ∈ Dt pki /∈ LANDD /∈ Dt AND
σ /∈ SO AND σ /∈MO

The adversary queries all the oracles (RO,JO, CO,SO,MO) according to
any adaptive strategy. The corruption oracle CO models the ability of A to
control any number of members of U . With Dt we denote the set of indices
of the keys that have been corrupted. A chooses the list of public keys L, a
designated verifier D with corresponding public key pkD, a message m and cre-
ates a forged signature σ. The adversary succeeds if the signature verifies, (i.e.
Vrfy(σ, L, m, pkD) = 1) and if none of the keys contained in L, nor pkD, have
been queried to CO and if the signature is not the query output of SO or MO.

Note that this corresponds to the strong security notion of Unforgeability w.r.t
insider corruption of [2], adapted for the existence of a Designated-Verifier.

Definition 2. Unforgeability
A DVLRS scheme Π is unforgeable if for any PPT adversary A:

AdvunfA (λ) = Pr
[
Expunf

A,Π,n(λ) = 1
]
≤ negl(λ)

2.5 Anonymity

Anonymity, also referred to as signer ambiguity in [15], intuitively implies the
inability of any party, including the designated verifier, to identify the private
key used to create a signature. Formally, we consider the experiment Expanon

A,Π,n,t

in Game 1.2.
The adversary selects a designated verifier and samples public keys in or-

der to be able to request signatures for messages of their choice. A can also
utilise existing signatures or simulations by respectively querying the oracles
RO,SO,MO. In order to perform the attack, it selects a ring L of nL public
keys and a message m to its benefit. A has also the power to control up to t

7

Game 1.2: Anonymity experiment Expanon
A,Π,n,t

Input : λ
Output: {0, 1}
params← Π.Setup(1λ)

U ←
{
(pki, ski)← Π.KGen()

}n

i=1

pkD ← A(choose,U)
(nL, L = {pki}

nL
i=1, m, Dt)← ARO,JO,CO,SO,MO(U)

π←$ [nL]
σ ← Π.Sign(L, m, pkD, skπ)

ξ ← ARO,SO,CO,MO(guess, L, m, σ,Dt)
if SO has not been invoked for (pkπ, L) AND π /∈ Dt AND ξ ̸= ⊥ then

return ξ = π AND 0 ≤ t < nL − 1
else

return ⊥
end

members of the ring L, modelled by calls to the oracle CO. The set of indices
of corrupted members is again denoted by Dt and is dynamically updated each
time CO is used. The challenger randomly selects a ring member (indexed by π)
and creates a signature on its behalf. A must guess which member of the ring
has signed the signature. Clearly, if A controls all members of L except π it can
trivially win. As a result, we require that there are at least two members that
are not controlled by A and that the oracle CO has not been queried for π.

Also, recall that our definition of linking correctness, does not allow link-
ing signatures on different rings. As a result, A cannot link σ with signatures
originating from singleton subrings of L. Finally, a subtle observation that must
be made concerns an identity leakage because of linkability. For the signatures
being returned from the SO, A can select the identity of the signer. This iden-
tity will be reflected in the pseudoidentity of the particular signature. While A
cannot ask signatures for the target member π, it can ask signatures for all the
other members of the ring. As a result, using the pid, it can learn if the signature
originates from π and thus win the game. To avoid this situation, we assume that
for Game 1.2, the SO returns signatures that correspond to a public key selected
uniformly at random from the ring.

Definition 3. Anonymity
A DVLRS scheme Π is t-anonymous if for any PPT adversary A:

Advanon
A (λ) = Pr

[
Expanon

A,Π,n,t(λ) = 1
]
− 1

nL − t
≤ negl(λ)

2.6 Linkability

Linkability intuitively means that if two signatures come from the same signer
over the same ring L, they have to be linked. In the literature for linkable ring

8

signatures, a weak definition of linkability is often used [1, 13]. This definition
requires that a signer who controls a single private key, should not be able to
produce two unlinkable signatures, but it allows, for example, a signer who knows
two secret keys to produce three pairwise unlinkable signatures. This allows the
adversary to circumvent linkability with a very realistic attack [16]; two colluding
ring members who share their secret keys with each other can create signatures
that are not linked to either of them. Our definition is stronger, i.e. we require
that a signer that controls k − 1 private keys cannot produce k valid pairwise
unlinkable signatures. To formally define linkability for a DVLRS scheme Π, we
use the experiment Explink

A,Π,n in Game 1.3.

Game 1.3: Linkability experiment Explink
A,Π,n

Input : λ
Output: {0, 1}
params← Π.Setup(1λ)

U ←
{
(pki, ski)← Π.KGen()

}n

i=1

({σi}ki=1, L = {pki}
nL
i=1, {mi}

k
i=1, {pkDi

}ki=1, Dt)← ARO,JO,CO,SO,MO(U)

return Vrfy(σi, L, mi, pkDi
) = 1 ∀i ∈ [k] AND

Link(σi, L, σj , L) = 0 ∀i, j ∈ [k], i ̸= j AND
|{pki : i ∈ Dt} ∩ L| < k ANDDi /∈ Dt ∀i ∈ [k] AND
σi /∈ SO ∀i ∈ [k] AND
σi /∈MO ∀i ∈ [k]

The adversaryA queries all the oracles (RO,JO, CO,SO,MO) according to
any adaptive strategy. We denote by Dt the set of indices of ring members A has
taken control of. This is modeled by calls to the corruption oracle CO. A chooses
the list of public keys L, k messages {mi}ki=1, k designated verifiers {pkDi

}ki=1 and
creates k signatures {σi}ki=1. The adversary succeeds if all k signatures verify,
(i.e. Vrfy(σi, L, mi, pkDi

) = 1, ∀i ∈ [k]), if the signatures are pairwise unlinkable
(i.e. Link(σi, L, σj , L) = 0, ∀i, j ∈ [k], i ̸= j), if strictly less than k keys that
are contained in L have been queried to CO, if none of the signatures have a
corrupted key as designated verifier and finally if the signatures {σi}ki=1 are not
query outputs of SO or MO. It should be noted, that designated verifiers are
allowed to create signatures that are linked or unlinked with any given signature
that is designated to them. This is by design, to ensure non-transferability.

Definition 4. Linkability
A DVLRS scheme Π is linkable if for any PPT adversary A:

AdvlinkA (λ) = Pr
[
Explink

A,Π,n(λ) = 1
]
≤ negl(λ)

Finally, there is another notion closely related to linkability, called non-
slanderability in [23]. Intuitively this ensures that given a signature generated

9

by a member of a ring, even a collusion by all the rest, cannot produce a valid
signature that is linked to it. However, this is a property that is implied by our
stronger notion of linkability, together with unforgeability.

2.7 Non-Transferability

Non-Transferability means that given a valid signature an adversary cannot dis-
tinguish whether it is the output of the Sign or Sim algorithm. Intuitively this
ensures that signatures are only useful to the designated verifier, since a third
party can never know whether a signature is real or a simulation. To formally
define Non-Transferability for a DVLRS scheme Π, we use Exptrans

A,Π,n in Game 1.4.

Game 1.4: Non-Transferability experiment Exptrans
A,Π,n

Input : λ
Output: {0, 1}
params← Π.Setup(1λ)

U ←
{
(pki, ski)← Π.KGen()

}n

i=1

(L = {pki}
nL
i=1, m, pkD, pkπ)← ARO,JO(choose,U)

σ0 ← Π.Sign(L, m, pkD, skπ)
pid0 ← Π.Extract(σ0)
σ1 ← Π.Sim(L, m, pkD, skD, pid0)
b←$ {0, 1}
b′ ← ARO,JO(guess, L, m, σb)
return b = b′

The adversary in this experiment can be computationally unbounded. Con-
sequently, it is not given access to the oracles CO,SO,MO since it can just
compute their outputs. A chooses the ring L, a message m, a designated verifier
pkD and a target ring member pkπ ∈ L. The system produces a signature σ0

and a simulation σ1 with the same pseudoidentity pid, and randomly chooses to
give one of them to A. Note that for σ1 to be created, σ0 has to be generated
first, so that the pid can be extracted. A then must guess if they received the
signature or the simulation. Thus:

Definition 5. Non-Transferability
A DVLRS scheme Π is perfectly non-transferable if for any unbounded ad-

versary A:
AdvtransA (λ) = Pr

[
Exptrans

A,Π,n(λ) = 1
]
− 1

2
= 0

It is worth noting that in Exptrans
A,Π,n, A has to distinguish between a sig-

nature and a simulation for the same pid. A more general security experi-
ment would be for the system to randomly select a signer index π←$ [nL] to
generate σ0 ← Π.Sign(L, m, pkD, skπ) and randomly select a pid to generate

10

σ1 ← Π.Sim(L, m, pkD, skD, pid). A would again have to guess if they received the
signature or the simulation. This stronger requirement however, is not needed
to capture the intuitive notion of non-tranferability.

3 A DVLRS Construction

Our construction builds on [15], by adding a designated verifier capable of simu-
lating signatures. Intuitively, the signature generation algorithm takes as input
the public key of the designated verifier, apart from the public keys of the ring
members. In effect, this means that a signature is a proof of knowledge of either
a secret signing key belonging to one of the ring members or the secret desig-
nated verifier key. A ‘real’ signature is obtained from knowing the former, while
a simulated signature from knowing the latter.

3.1 Setup

Our scheme operates in a group G of prime order q, where the DDH assumption
holds. Messages are binary strings i.e.MSG = {0, 1}∗. The pseudoidentities are
computed in G, that is, PID = G. We assume that each signer has a credential
consisting of a private part and its public counterpart. In particular, we consider
nL signers with private keys {ski = xi}nL

i=1 ∈ Zq and corresponding public keys
{pki = yi = gxi}nL

i=1 ∈ G. Messages are encoded as group elements m ∈ G. We
assume two random oracles HG,Hq that map binary strings to G,Zq respectively.

3.2 Signature

The signer decides on a message m and signs it using DVLRS. Signature ver-
ification is public, but tied to a specific verifier identified by a key. The ring
L consists of nL public keys, namely L = {yi}nL

i=1. The signer’s index is π. We
denote the designated verifier’s private key by xD and public key by yD = gxD .

Signing In order to generate the signature for message m, the signer invokes the
Sign(L, m, pkD, skπ) algorithm:

– The signer computes h← HG(L) and ŷ ← hxπ as the pseudoidentity.
– The signer picks u,wπ, rπ ←$Zq uniformly at random and computes:

cπ+1 ← Hq(L, ŷ, yD, gu, hu, gwπyrπD , m)

– For i ∈ {π + 1, ..., nL, 1, ..., π − 1}, the signer picks si, wi, ri←$Zq and com-
putes:

ci+1 ← Hq(L, ŷ, yD, gsiyci+wi
i , hsi ŷci+wi , gwiyriD , m)

– Finally, the signer sets sπ ← u− (cπ + wπ)xπ.
– The signature is σ = (c1, {si}nL

i=1, {wi}nL
i=1, {ri}

nL
i=1, ŷ)

It is obvious from the form of the signature that Extract(σ) = ŷ.

11

Verification To verify the signature σ = (c1, {si}nL
i=1, {wi}nL

i=1, {ri}
nL
i=1, ŷ) a pub-

lic verifier invokes the Vrfy(σ,L, m, yD) algorithm which:

– Recomputes h← HG(L).
– For all ring members indexed by i ∈ [nL] it computes:

z′i ← gsiyci+wi
i , z′′i ← hsi ŷci+wi , z′′′i ← gwiyriD ,

ci+1 ← Hq(L, ŷ, yD, z′i, z
′′
i , z

′′′
i , m)

– The signature verifies if and only if:

c1 = Hq(L, ŷ, yD, z′n, z
′′
n, z

′′′
n , m)

Simulation In order to generate a simulated signature on message m, the desig-
nated verifier invokes the Sim(L, m, yD, xD, ŷ) algorithm, for some pseudoidentity
ŷ ∈ G:

– Compute h← HG(L).
– Pick α, β, s1←$Zq and compute:

c2 ← Hq(L, ŷ, yD, gs1yβ1 , h
s1 ŷβ , gα, m)

– For i ∈ {2, . . . , nL} wrapping-up to 1, select si, wi, ri←$Zq and compute:

ci+1 ← Hq(L, ŷ, yD, gsiyci+wi
i , hsi ŷci+wi , gwiyriD , m)

– Set w1 ← β − c1 and r1 ← (α− w1) · x−1
D .

– The simulated signature is σ = (c1, {si}nL
i=1, {wi}nL

i=1, {ri}
nL
i=1, ŷ)

Linking The linking algorithm Link(σ,L, σ′, L) outputs 1 if and only if Extract(σ) =
Extract(σ′).

4 Security Analysis of our construction

We now analyse the security of our construction for completeness, unforgeabil-
ity (Definition 2), anonymity (Definition 3), linkability (Definition 4) and non-
tranferability (Definition 5).

4.1 Completeness

Lemma 1. An honestly generated DVLRS σ verifies correctly.

Proof. It suffices to show that z′π = gu and z′′π = hu. Indeed:

zπ = gsπycπ+wπ
i = gu−xπ(cπ+wπ)ycπ+wπ

π = gu

z′′π = hsπ ŷcπ+wπ = hu−xπ(cπ+wπ)ŷcπ+wπ = hu

⊓⊔

12

Lemma 2. A simulated DVLRS σ verifies correctly.

Proof. It suffices to show that z′1 = gs1y1
β and z′′1 = hs1 ŷβ and z′′′1 = ga. Indeed:

z′1 = gs1yc1+w1
1 = gs1yc1+β−c1

1 = gs1yβ1

z′′1 = hs1 ŷc1+w1 = hs1 ŷc1+β−c1 = hs1 ŷβ

z′′′1 = gw1yr1D = gw1gxD(a−w1)x
−1
D = ga

⊓⊔

Lemma 3. Our DVLRS scheme has linking correctness.

Proof. Assume two signatures σ, σ′ created on the same ring L. If they are
honestly generated from the same signer π then Extract(σ) = Extract(σ′) = ŷ =
hxπ which means that Link(σ,L, σ′, L) = 1. If σ is honestly generated from signer
π and σ′ is a simulation for ŷ = hxπ then by construction Link(σ,L, σ′, L) = 1.
The same applies to the case of two honest simulations. ⊓⊔

Theorem 1. Our DVLRS scheme has verification and linking correctness.

Proof. A direct consequence of Lemma 1, Lemma 2, Lemma 3. ⊓⊔

4.2 Unforgeability

Theorem 2 (Unforgeability). Our DVLRS scheme is unforgeable in the RO
model if DLP is hard in G.

The proof for Theorem 2 employs techniques from [15, 13, 19, 6].

Proof. Assume a PPT adversary A which makes at most qH queries to Hq and
HG combined, and at most qO queries to JO, CO, SO and MO combined and
AdvunfA (λ) > negl(λ). We will create an algorithm M, that given as an input a
generator g ∈ G and n0 DLP instances {yi}n0

i=1, outputs the discrete logarithm
of at least one of them, i.e. a xj such that gxj = yj for some j ∈ [n0] by using A
as a subroutine, and therefore providing us with the desired contradiction. M
sets the params G, g, q and U = {yi}n0

i=1 as the initial set of public keys, and gives
them to A. Whenever A queries one of the oracles, M will answer as below:

– Hq: M outputs r←$Zq.
– HG: M calculates r←$Zq and outputs gr.
– JO: M calculates r←$Zq and adds gr to U .
– CO: M on a query for a yj /∈ {yi}n0

i=1 outputs the corresponding secret key
rj such as grj = yj . Otherwise halts for queries of yj ∈ {yi}n0

i=1.
– SO: A gives M, L ⊂ U , a message m ∈ G,yπ ∈ L and yD ∈ U . Let gr = h =

HG(L). If yπ /∈ {yi}n0
i=1 M knows rπ such that grπ = yπ and computes σ ←

Sign(L, m, yD, rπ), while maintaining consistencies for Hq and HG. It outputs

13

σ. Otherwise it chooses randomly {ci}nL
i=1, {wi}nL

i=1, {ri}
nL
i=1, {si}

nL
i=1←$Zq and

computes ŷ ← yrπ. For each i ∈ [nL] back patch to:

ci+1 ← Hq(L, ŷ, yD, gsiyci+wi
i , hsi ŷci+wi , gwiyriD , m)

and output σ = (c1, {si}nL
i=1, {wi}nL

i=1, {ri}
nL
i=1, ŷ). Note that this looks just

like a signature generated by ring member with public key yπ.
– MO: A gives M, L ⊆ U , message m ∈ G,yD ∈ U and ŷ ∈ G. Let gr = h =

HG(L). If yD /∈ {yi}n0
i=1 M knows rD such that grD = yD and computes σ ←

Sim(L, m, yD, rD, ŷ), while keeping consistencies for Hq and HG. It outputs σ.
Otherwise it chooses randomly {ci}nL

i=1, {wi}nL
i=1, {ri}

nL
i=1, {si}

nL
i=1←$Zq. For

each i ∈ [nL] back patch to:

ci+1 ← Hq(L, ŷ, yD, gsiyci+wi
i , hsi ŷci+wi , gwiyriD , m)

and output σ = (c1, {si}nL
i=1, {wi}nL

i=1, {ri}
nL
i=1, ŷ). Note that this looks just

like a simulation generated by designated verifier with public key yD and
pseudoidentity ŷ.

We can assume that whenever A outputs a successful forgery, it has queried to
the random oracles all of the nL queries used in the Vrfy algorithm. It is trivial
to show that if it had not, it would have only negl(λ) probability of success.
Also without loss of generality we can assume that successful forgeries will have
L ⊆ {yi}n0

i=1 and yD ∈ {yi}n0
i=1. Let {Xi}

inL
i=i1

denote the first time each of the
queries used in Vrfy appear in the transcript of A. We call a successful forgery
σ an (l, π)-forgery if i1 = l and

XinL
= Hq(L, ŷ, yD, gsπ−1y

cπ−1+wπ−1

π−1 , hsπ−1 ŷcπ−1+wπ−1 , gwπ−1y
rπ−1

D , m)

Since 1 ≤ l ≤ qH + nLqO and 1 ≤ π ≤ nL, there exist some l, π such that the
probability that A produces a successful (l, π)-forgery is non negligible.
M will do a rewind simulation for each value of l and π. From the Rewind on
Success Lemma [15] it will obtain with non negligible probability two successful
(l, π)-forgeries σ, σ′ with:

gu = gsπycπ+wπ
π = gsπ+xπ(cπ+wπ) (1)

hv = hsπ ŷcπ+wπ = hsπ+x(cπ+wπ) (2)
gν = gwπyrπD = gwπ+xD·rπ (3)

gu = gs
′
πy

c′π+w′
π

π = gs
′
π+xπ(c

′
π+w′

π) (4)
hv = hs′π ŷc

′
π+w′

π = hs′π+x(c′π+w′
π) (5)

gν = gw
′
πy

r′π
D = gw

′
π+xD·r′π (6)

Since cπ ̸= c′π it holds that sπ ̸= s′π or wπ ̸= w′
π ∧ rπ ̸= r′π.

– If sπ ̸= s′π : solving 1, 4 yields:

xπ =
s′π − sπ

cπ − c′π + wπ − w′
π

mod q

14

– If wπ ̸= w′
π ∧ rπ ̸= r′π : solving 3, 6 yields:

xD =
w′

π − wπ

rπ − r′π
mod q

M has solved at least one hard DLP instance, a contradiction. ⊓⊔

4.3 Anonymity

Theorem 3 (Anonymity). Our DVLRS scheme is anonymous (signer am-
biguous) in the RO model if the DDH assumption holds in G.

To prove Theorem 3 we adapt the proofs of [15, 16] for our scheme. In par-
ticular, assume a PPT adversary A which succeeds in the experiment ExpAnon

A,Π,n,t

with AdvanonA (λ) at least ϵ after at most n queries to JO, qHG queries to HG
and running time T . Then there exists an algorithm M that breaks the DDH
assumption for G in time at most nqHGT with probability at least 1

2 + ϵ
4 .

Proof. We constructM. Its input will be the group G (of order q) and a tuple of
elements Aβ , Bβ , Cβ ∈ G. Assume that Aβ = ga, Bβ = gb for a, b ∈ Zq unknown
to M. Its output will be a bit β indicating if Cβ = gab, (β = 1) or not (β = 0).
M begins by simulating JO. For yπ ∈ L to hold, it follows that A has queried

JO for it.M selects a random A query and substitutes yπ = Aβ . All other such
queries are answered with a random y←$G. In the same manner M randomly
selects one of the queries to HG and returns h = Bβ . All other queries to HG
are simulated by returning h = gk, k←$Zq. The answer to an SO(L′, m′, yD, y)

query for some L′ = {yi}
n′
L

i=1 is simulated as:

– Select π′←$ [nL′]
– If h ̸= Bβ then set ŷ = ykπ′

– If h = Bβ and yπ = Aβ then set ŷ = Cβ

– If h = Bβ and yπ ̸= Aβ then set ŷ = B
xπ′
β

– Select cπ′ , {si, wi, ri}nL′
i=1←$Zq and for i ∈ {π′, · · · , nL′ , 1, · · · , π′ − 1} com-

pute
{
ci+1 ← Hq(L

′, ŷ, yD, gsiyci+wi
i , hsi ŷci+wi , gwiyriD , m′)

}
– Set cπ′ ← Hq(L

′, ŷ, yD, gsπ′−1y
cπ′−1+wπ′−1

π′−1 , hsπ′−1 ŷcπ′−1+wπ′−1 , gwπ′−1y
rπ′−1

D , m′).

When M receives (L, m, Dt) it checks if yπ ∈ L and π /∈ Dt, which occurs
with probability nL−t

n and that there exists a query for L in HG, which is true
with probability 1

qH
. Otherwise it halts. If HG(L) has not been queried with L,

then it sets Bβ = HG(L). Then M generates the challenge signature σ. The CO
calls are answered faithfully, except if xπ is requested. Then M returns ⊥. If
the guess stage is successfully completed, A returns ξ ∈ [nL]. If ξ = π then M
returns 1. Otherwise M selects uniformly at random from {0, 1}.

In the case of a DDH tuple (β = 1), A succeeds in ExpAnon
A,Π,n,t with probability

at least 1
nL−t + ϵ. This means:

Pr[M(Aβ , Bβ , Cβ) = 1|β = 1] ≥ (
1

nL − t
+ϵ)+

1

2
(1− 1

nL − t
−ϵ) ≥ 1

2
+

1

2(nL − t)
+
ϵ

2

15

In the case of a non-DDH tuple (β = 0), if ξ = π then M cannot return 0.
Otherwise, it selects its output uniformly at random:

Pr[M(Aβ , Bβ , Cβ) = 0|β = 0] = (
1

nL − t
) · 0+ (1− 1

nL − t
) · 1

2
=

1

2
− 1

2(nL − t)

As a result: Pr[M(Aβ , Bβ , Cβ) = β] ≥ 1
2 + ϵ

4 , a contradiction.
Regarding the running time M halts with probability nL−t

n · 1
qH

. Thus after
at most nqH

nL−t executions A will have succeeed once. If the running time of A is
at most T on success, M requires at most nqhT steps. ⊓⊔

4.4 Linkability

Theorem 4 (Linkability). Our DVLRS scheme is linkable in the RO model
if DLP is hard in G.

Proof. We adapt the techniques of [15, 19, 6] for our stronger definition. Assume
a PPT adversary A which makes at most qH queries to Hq and HG combined,
and at most qO queries to JO, CO,SO and MO combined, with AdvlinkA (λ) >
negl(λ). We will create an algorithm M that given as input a group G of order
q, and n0 DLP instances {yi}n0

i=1 outputs the discrete logarithm of at least one
of them, i.e a xj such that gxj = yj for some j ∈ [n0] by using A, and therefore
providing us with the desired contradiction on the assumption that DLP is hard.
M sets as params G, g, q and U = {yi}n0

i=1 as the initial set of public keys, and
gives them to A.M simulates the oracle calls of A as in the proof of Theorem 2.

After a successful run, A will have output k signatures {σi}ki=1 that are
pairwise unlinkable, for a ring L ⊆ U of its choice, for which it has corrupted less
than k keys and has not corrupted any of the designated verifier keys {yDi

}ki=1.
W.l.o.g {yDi

}ki=1 ⊂ {yi}
n0
i=1 and at least one of the yi ∈ L for i ∈ [n0]. The

adversary must have, with negligible exception, queried the random oracles with
all of the queries used in the Vrfy algorithm. So following the notation of the
unforgeability proof in subsection 4.2, these will be (li, πi)-forgeries for some
values of 0 < li < qH + nLqO and 1 < πi < nL for all i ∈ [k].

We can distinguish 2 cases:
Case 1: A produces, with negligible exception, signature tuples with less

than k distinct πi. Therefore there will be at least one pair of signatures that
are (la, π)-forgery and (lb, π)-forgery for the same value π and w.l.o.g la < lb.M
will do a rewind simulation to the la’th query, and by the Rewind on Success
Lemma [15], will get with non negligible probability {σ′

i}ki=a with σ′
a being an

(la, π)-forgery.
As in the proof of Theorem 2, we can derive from equations 1,2,3,4,5,6 that:

– If sπ ̸= s′π : solving 1, 2, 4, 5 yields:

xπ = x =
s′π − sπ

cπ − c′π + wπ − w′
π

mod q

16

– If wπ ̸= w′
π ∧ rπ ̸= r′π : solving 3, 6 yields:

xD =
w′

π − wπ

rπ − r′π
mod q

This means that either the pseudoidentity of σa is ŷa = hxπ or the discrete
logarithm of yDa

is solved.
Now M does a rewind of the first transcript of A to the lb’th query, and

similarly ether solves the discrete logarithm of yDb
or the pseudoidentity of σb

is ŷb = hxπ . However that means that Link(σa, L, σb, L) = 1 which contradicts
our assumption that the signatures A outputs are pairwise unlinkable.

Case 2: A produces signatures with k distinct πi.M will do k rewind simula-
tions, to the li’th query for every i ∈ [k] and similarly to the unforgeability proof
in subsection 4.2 will each time solve the discrete logarithm of yDi

or yπi
. Solv-

ing even one of the yDi
is enough, since we assumed that {yDi

}ki=1 ⊂ {yi}
n0
i=1.

Otherwise the discrete logarithm of every y ∈ L is found, and since we assumed
that at least one of the yi ∈ L for i ∈ [n0], again M has won. ⊓⊔

4.5 Non-Transferability

Theorem 5 (Non-Transferability). Our DVLRS scheme is perfectly non-
transferable in the RO model.

Proof. We argue that the distributions of Sign and Sim for the same message m,
ring L, designated verifier public key yD and pseudoidentity ŷ are the same.

We can look at each part of the signature σ0 and simulation σ1 separately:
c1 for both is the output of the random oracle Hq with at least one part of it’s
input chosen at random. Thus, c1 is distributed uniformly at random in Zq.

All of the si are chosen at random for σ1. For σ0 all but sπ are also chosen at
random. However sπ ← u− (cπ +wπ)xπ with u being a random value, therefore
sπ is also a uniformly random value in Zq. With a similar argument it can be
shown that the values ri and wi are also distributed uniformly at random in Zq

for both the signature and the simulation.
The only remaining part of the signature is the pseudoidentity ŷ and this

will be the exact same group element for both σ0 and σ1. Note that the verifier
can only produce such a simulation after first having seen a real signature from
a ring member with that given pseudoidentity. This however gives no advantage
to an adversary who tries to distinguish a signature from a simulation.

It is clear that A in Exptrans
A,Π,n is given at random one of two valid σ0, σ1 which

follow the same distribution. Thus A cannot do better than a random guess. ⊓⊔
Another property that we can prove for our scheme, is that an adversary that

is given a simulation or a signature that have a random pseudoidentity, cannot
distinguish them with non-negligible advantage. This additional property can be
useful in some applications to give the designated verifier more freedom on creat-
ing ‘noise’. Our scheme has this property, albeit only against a computationally
bounded adversary. We omit the details.

17

5 Applications

DVLRS schemes have a number of useful applications which benefit from the
novel combination of anonymity, linkability and non-transferability.

To begin with, anonymous surveys or feedback systems satisfy the need for
quality improvement by involving anonymous opinions of reviewers. Such sys-
tems are used, for instance, in educational institutions for instructor evaluation.
However, the possibility of negative reviews, exacerbated by the anonymity of the
reviewers, might hinder adoption. DVLRS allow for the evaluation to keep only
its intrinsic value for the instructors by enabling them, as designated verifiers,
to add ‘noise’ to the reviews using messages with simulated signatures. Thus
the reviewees will be able to improve themselves and at the same time avoid
repercussions for negative reviews. This feature will make adoption of such sys-
tems easier. In this scenario, only the instructor should be the entity capable of
adding noise and it makes no sense for them to be a ring member. In particular,
by using DVLRS, reviewers can form rings according to organizational charac-
teristics (e.g. a course) and anonymously submit authentic feedback using the
Sign algorithm. The reviewees, on the other hand, will be able to group feedback
signed by the same reviewer, using the Link algorithm. The linkability property,
will allow the formation of a consistent view of individual opinions and their evo-
lution through the course of time. Thus, instructors, as the designated verifiers,
will be able to adapt their techniques and monitor the results. At the same time,
they will be able to simulate signatures using the Sim algorithm and link them to
the pseudoidentity of a reviewer, or to a random one. By the non-transferability
property of the designated verifier signature, only the reviewee is aware which
of the feedback were signed by the reviewers, and the results of the feedback are
not transferable to a third party - i.e. a higher authority. Even if the private
key of the designated verifier or any of the signers is compromised, it would still
be impossible to distinguish which messages were generated by the designated
verifier and which by the ring members. So, as we discussed in subsection 1.1,
removing public verifiability cannot provide any help in this scenario.

Another use case of the DVLRS scheme is for enhanced privacy for leaking
secrets, an application that served as the original motivation for ring signatures
in [20]. As an example, assume that a member of a corrupted organisation wants
to leak information to the authorities without revealing his identity. Using a plain
ring signature as in [20], could result in the corrupted leadership punishing all
the ring members indiscriminately. With DVLRS the information can be safely
leaked by setting the authorities as the designated verifier so that there can be
no proof of any leak. Now the signature cannot be used to convince the public,
but the law enforcement can still use the information to initiate an investigation.
Additionally, linkability helps the informant give updates on his information.

Similar applications, that benefit from the non-transferability property of
the designated verifier apart from anonymity and linkability, can be found in
protecting databases that contain sensitive data (such as medical or financial
records). In many such cases, anonymity in the identities of the participants is
not enough, since such data is extremely valuable or the subjects can be iden-

18

tified from the content of the messages. For instance, in financial surveys the
participating companies usually submit fiscal data, which can be collected and
correlated to other public sources. DVLRS schemes defend against such attacks,
as the simulated signatures cast doubt on the authenticity of such data to ev-
eryone except the designated verifier. For the same reason, they add another
layer of protection for the survey participants, as the ability to simulate signa-
tures indistinguishable to the original makes buyers unsure of whether they are
paying for authentic data. Furthermore, using the linkability property all the
data belonging to a single entity could be linked, speeding up data retrieval and
change tracking in the survey data for any participant. We must note, however,
that our scheme requires an active strategy by the designated verifier.

6 Conclusion and Future Work

In further work, we plan to implement DVLRS and integrate it with an anony-
mous evaluation system, as described in section 5. We also intend to explore
different constructions of DVLRS that improve their security, functionality and
efficiency. Concretely, our instantiation has signatures with size that scales lin-
early to that of the ring. This does not only impact the performance of our
scheme, but also its privacy, as it might force the applications to use a smaller
ring, i.e. anonymity set. We plan to improve on this. Our ultimate goal is to
make the size of DVLRS independent of the ring size (i.e. constant as in [23, 1],
while retaining all the desired security properties. Another direction we aim to
explore, is an alternative construction that achieves unconditional anonymity in
a manner similar to [13].

Finally, we plan to consider the possibility of modifying the semantics of non-
transferability so that it treats ring members in a privileged manner, by allowing
them to distinguish which signatures actually come from other ring members and
which are simulations. This will open up new applications for DVLRS.

References

[1] Man Ho Au, Sherman S. M. Chow, Willy Susilo, and Patrick P. Tsang.
“Short Linkable Ring Signatures Revisited”. In: Third European PKI Work-
shop: EuroPKI 2006, vol. 4043. LNCS. Springer, 2006, pp. 101–115. doi:
10.1007/11774716_9.

[2] Adam Bender, Jonathan Katz, and Ruggero Morselli. “Ring Signatures:
Stronger Definitions, and Constructions without Random Oracles”. In: J.
Cryptol. 22.1 (2009), pp. 114–138.

[3] David Chaum and Eugène van Heyst. “Group Signatures”. In: EURO-
CRYPT 91. Vol. 547. LNCS. Springer, 1991, pp. 257–265. doi: 10.1007/3-
540-46416-6_22.

19

https://doi.org/10.1007/11774716_9
https://doi.org/10.1007/3-540-46416-6_22
https://doi.org/10.1007/3-540-46416-6_22

[4] Guomin Chen, Chunhui Wu, Wei Han, Xiaofeng Chen, Hyunrok Lee, and
Kwangjo Kim. “A New Receipt-Free Voting Scheme Based on Linkable
Ring Signature for Designated Verifiers”. In: 2008 International Conference
on Embedded Software and Systems Symposia. 2008, pp. 18–23. doi: 10.
1109/ICESS.Symposia.2008.54.

[5] Ronald Cramer, Ivan Damgård, and Berry Schoenmakers. “Proofs of Par-
tial Knowledge and Simplified Design of Witness Hiding Protocols”. In:
CRYPTO 94. Vol. 839. LNCS. Springer, 1994, pp. 174–187.

[6] Javier Herranz and Germán Sáez. “Forking Lemmas for Ring Signature
Schemes”. In: INDOCRYPT 03. Vol. 2904. LNCS. Springer, 2003, pp. 266–
279. doi: 10.1007/978-3-540-24582-7_20.

[7] Markus Jakobsson, Kazue Sako, and Russell Impagliazzo. “Designated
Verifier Proofs and Their Applications”. In: EUROCRYPT 96. Vol. 1070.
LNCS. Springer, 1996, pp. 143–154.

[8] Ari Juels, Dario Catalano, and Markus Jakobsson. “Coercion-resistant
electronic elections”. In: WPES 2005. ACM, 2005, pp. 61–70. doi: 10.
1145/1102199.1102213.

[9] Ji-Seon Lee and Jik Hyun Chang. “Strong Designated Verifier Ring Signa-
ture Scheme”. In: Innovations and Advanced Techniques in Computer and
Information Sciences and Engineering. Dordrecht: Springer Netherlands,
2007, pp. 543–547. isbn: 978-1-4020-6268-1.

[10] Jin Li and Yanming Wang. “Universal Designated Verifier Ring Signature
(Proof) Without Random Oracles”. In: Emerging Directions in Embedded
and Ubiquitous Computing. Berlin, Heidelberg: Springer Berlin Heidelberg,
2006, pp. 332–341. isbn: 978-3-540-36851-9.

[11] Yong Li, Willy Susilo, Yi Mu, and Dingyi Pei. “Designated Verifier Signa-
ture: Definition, Framework and New Constructions”. In: Ubiquitous Intel-
ligence and Computing. Vol. 4611. LNCS. Springer, 2007, pp. 1191–1200.
doi: 10.1007/978-3-540-73549-6_116.

[12] Helger Lipmaa, Guilin Wang, and Feng Bao. “Designated Verifier Signa-
ture Schemes: Attacks, New Security Notions and a New Construction”.
In: ICALP. Vol. 3580. LNCS. Springer, 2005, pp. 459–471.

[13] Joseph K. Liu, Man Ho Au, Willy Susilo, and Jianying Zhou. “Linkable
Ring Signature with Unconditional Anonymity”. In: IEEE Trans. Knowl.
Data Eng. 26.1 (2014), pp. 157–165.

[14] Joseph K. Liu, Willy Susilo, and Duncan S. Wong. “Ring Signature with
Designated Linkability”. In: Advances in Information and Computer Se-
curity, IWSEC 06, vol. 4266. LNCS. Springer, 2006, pp. 104–119. doi:
10.1007/11908739_8.

[15] Joseph K. Liu, Victor K. Wei, and Duncan S. Wong. “Linkable Sponta-
neous Anonymous Group Signature for Ad Hoc Groups (Extended Ab-
stract)”. In: ACISP. Vol. 3108. LNCS. Springer, 2004, pp. 325–335.

[16] Joseph K. Liu and Duncan S. Wong. “Enhanced security models and
a generic construction approach for linkable ring signature”. In: Int. J.
Found. Comput. Sci 17.06 (2006), pp. 1403–1422.

20

https://doi.org/10.1109/ICESS.Symposia.2008.54
https://doi.org/10.1109/ICESS.Symposia.2008.54
https://doi.org/10.1007/978-3-540-24582-7_20
https://doi.org/10.1145/1102199.1102213
https://doi.org/10.1145/1102199.1102213
https://doi.org/10.1007/978-3-540-73549-6_116
https://doi.org/10.1007/11908739_8

[17] Joseph K. Liu and Duncan S. Wong. “Solutions to Key Exposure Problem
in Ring Signature”. In: Int. J. Netw. Secur. 6.2 (2008), pp. 170–180.

[18] Shen Noether. Ring Signature Confidential Transactions for Monero. Cryp-
tology ePrint Archive, Report 2015/1098.

[19] David Pointcheval and Jacques Stern. “Security Arguments for Digital
Signatures and Blind Signatures”. In: J. Cryptol. 13.3 (2000), pp. 361–
396. doi: 10.1007/s001450010003. url: https://doi.org/10.1007/
s001450010003.

[20] Ronald L. Rivest, Adi Shamir, and Yael Tauman. “How to Leak a Secret”.
In: ASIACRYPT 01. Vol. 2248. LNCS. Springer, 2001, pp. 552–565. doi:
10.1007/3-540-45682-1_32.

[21] Shahrokh Saeednia, Steve Kremer, and Olivier Markowitch. “An Efficient
Strong Designated Verifier Signature Scheme”. In: Jan. 2003, pp. 40–54.
isbn: 978-3-540-21376-5. doi: 10.1007/978-3-540-24691-6_4.

[22] Ron Steinfeld, Laurence Bull, Huaxiong Wang, and Josef Pieprzyk. “Uni-
versal Designated-Verifier Signatures”. In: ASIACRYPT 03, vol. 2894. LNCS.
Springer, 2003, pp. 523–542. doi: 10.1007/978-3-540-40061-5_33.

[23] Patrick P. Tsang and Victor K. Wei. “Short Linkable Ring Signatures for
E-Voting, E-Cash and Attestation”. In: Information Security Practice and
Experience. Vol. 3439. LNCS. Springer, 2005, pp. 48–60. doi: 10.1007/
978-3-540-31979-5_5.

21

https://doi.org/10.1007/s001450010003
https://doi.org/10.1007/s001450010003
https://doi.org/10.1007/s001450010003
https://doi.org/10.1007/3-540-45682-1_32
https://doi.org/10.1007/978-3-540-24691-6_4
https://doi.org/10.1007/978-3-540-40061-5_33
https://doi.org/10.1007/978-3-540-31979-5_5
https://doi.org/10.1007/978-3-540-31979-5_5

	Designated-Verifier Linkable Ring Signatures
	Introduction
	Related Work
	Contribution

	DVLRS Model
	Notation and assumptions
	DVLRS definition and basic properties
	Adversarial capabilities
	Unforgeability
	Anonymity
	Linkability
	Non-Transferability

	A DVLRS Construction
	Setup
	Signature

	Security Analysis of our construction
	Completeness
	Unforgeability
	Anonymity
	Linkability
	Non-Transferability

	Applications
	Conclusion and Future Work

