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Abstract. In this paper we present our solution to the CHES Challenge 2020, the
task of which it was to break masked hardware respective software implementations
of the lightweight cipher Clyde by means of side-channel analysis. We target the
secret cipher state after processing of the first S-box layer. Using the provided trace
data we obtain a strongly biased posterior distribution for the secret-shared cipher
state at the targeted point; this enables us to see exploitable biases even before the
secret sharing based masking. These biases on the unshared state can be evaluated
one S-box at a time and combined across traces, which enables us to recover likely
key hypotheses S-box by S-box.
In order to see the shared cipher state, we employ a deep neural network similar to
the one used by Gohr, Jacob and Schindler to solve the CHES 2018 AES challenge.
We modify their architecture to predict the exact bit sequence of the secret-shared
cipher state. We find that convergence of training on this task is unsatisfying with
the standard encoding of the shared cipher state and therefore introduce a different
encoding of the prediction target, which we call the scattershot encoding. In order to
further investigate how exactly the scattershot encoding helps to solve the task at
hand, we construct a simple synthetic task where convergence problems very similar
to those we observed in our side-channel task appear with the naive target data
encoding but disappear with the scattershot encoding.
We complete our analysis by showing results that we obtained with a “classical”
method (as opposed to an AI-based method), namely the stochastic approach, that
we generalize for this purpose first to the setting of shared keys. We show that
the neural network draws on a much broader set of features, which may partially
explain why the neural-network based approach massively outperforms the stochastic
approach. On the other hand, the stochastic approach provides insights into properties
of the implementation, in particular the observation that the S-boxes behave very
different regarding the easiness respective hardness of their prediction.
Keywords: Lightweight cryptography · Clyde-cipher · Side-channel analysis · Coun-
termeasures · Masking · Secret-sharing · ISW-Multiplication · Deep neural network ·
Residual neural network · Stochastic approach · CHES Challenge 2020

1 Introduction
Nowadays, there are several emerging areas such as the Internet of Things, healthcare,
distributed control systems, sensor networks or cyber physical systems, in which highly-
constrained devices are interconnected, typically communicating wirelessly with one another,
and working in concert to accomplish some task. This poses new challenges to the crypto-
graphic community, as these devices process more and more sensitive data while being
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themselves usually not very well protected and thus easily accessible. Furthermore, because
the majority of current cryptographic algorithms was designed for desktop/server environ-
ments, many of these algorithms do not fit into constrained devices whose computational
power is limited.
This raises the need for new cryptographic algorithms that on the one hand can be
operated under limited resources and on the other hand can be protected against side-
channel and fault attacks without loosing too much of its performance. It further served
the National Institute of Standards and Technology (NIST) in August 2018 as motivation
for a competition searching for so-called lightweight ciphers that fulfill the demands for
efficiency and side-channel resistance mentioned above [14]. NIST received 57 submissions
to be considered for standardization. After the initial review of the submissions, 56 were
selected as Round 1 candidates, out of which 32 were selected to continue to round 2. On
March 29, 2021, NIST announced ten finalists that are currently standardized.
One of the second round candidates is the Spook authenticated encryption scheme with
associated data (AEAD) [4]. Its block cipher is the so called Clyde cipher that follows
a tweakable LS-design consisting of 6 rounds. Clyde can efficiently be protected against
side-channel attacks by Boolean masking and the aim of the CHES challenge 2020 was
to examine the effectiveness of this countermeasure. For that purpose several challenges
varying in the amount of masking were posted prior to the CHES conference 2020. A team
of eight colleagues1 at BSI worked on the software challenges and won all the prizes that
were finally awarded.

Main Contributions In this paper, we provide a detailed description as well as a further
analysis of our solution to the different challenges. Using a deep neural network, we were
able to overcome the masking countermeasure by extracting a lot of information on the
unmasked cipher state already from a single trace. This required seeing all bits of the
masked internal state with very high bias, which proved difficult, since some bits of the
internal state were much more challenging to learn for our neural networks than others.
Indeed, our attempts to directly predict some of these bits seemed to not converge to
results better than random guessing.
In order to achieve convergence for all bits of the targeted internal state variable, we
represent the internal state in a way which is designed to achieve the following objectives:

• The chosen state representation allows for full and efficient reconstruction of the
standard representation of the internal state as a bit-vector, even in the presence of
noise (i.e. taking a target state s ∈ F128d

2 with alternative representation v ∈ Rn, any
v′ ∈ Rn with small ‖v − v′‖2 should suffice to reconstruct s without much error).

• The chosen state representation should make it difficult to reduce loss by making
progress on the prediction of easy bits in isolation. Instead, progress on predicting any
part of the target vector should be correlated with progress on the whole prediction
problem.

We achieve this by a surprisingly simple method, namely by sending the target values
through a random linear map before training. Given a list of training traces X and a list
of target internal state values Y , we hence essentially replace yi ∈ Y with y′i := Ayi, where
multiplication is performed over Z and A is a random binary matrix. We then try to learn
to predict y′i from xi ∈ X by minimizing standard mean squared error loss. When using
the trained model on new power traces, we simply multiply the model output with the
Moore-Penrose pseudoinverse A+ of A to obtain predictions for each bit of the target state.

1Members of the BSI-team (in alphabetical order): Tobias Damm, Aron Gohr, Sven Jacob, Dominik
Klein, Friederike Laus, Natalie Peter, Werner Schindler, Vivien Thiel.



A. Gohr, F. Laus, W. Schindler 3

We call this method of sending the target values that our model is intended to ultimately
predict through a random linear function the scattershot encoding.
That a simple random transformation of the target values helps to obtain a better model
is to some extent surprising, since a linear post-processing step of this type is in principle
easy to represent for a neural network. This makes the scattershot encoding worthy to be
studied on its own. We show that convergence problems similar to those observed with the
side-channel task under consideration appear also in a synthetic problem, namely when
trying to teach a neural network to compute a simple F2-linear function, and that the
scattershot encoding helps achieve uniform convergence at that task as well.
Having obtained models for all of the software challenges of the CHES 2020 side-channel
contest, we afterwards study their performance. We find that the easiest, 3-share challenge
can be solved with around 20-30 traces, whereas a few ten thousand traces are required
for the hardest 8-share challenge. Our analyses also reveal that different nibbles of the
unshared internal state still represent vastly different levels of difficulty to our neural
network, which is unexpected, since the implementation runs all nibbles in parallel using
the same code.
Finally, we complete our findings by applying the stochastic approach as a “classical”
statistical profiled method to the problem at hand. We find that our neural network and
the stochastic approach consider the same parts of the internal state to be difficult to
predict; however, the performance of the neural network is vastly superior. An further
analysis of the leakage the two approaches exploit might serve as an explanation for this
behavior, as it turns out that the AI-based approach is able to extract information from a
much larger range of the trace.

Related Work Deep learning recently entered the field of side-channel analysis and
turned out to be a powerful tool that enlarges an attackers’ capabilities compared to other
techniques. For a recent overview on the subject we refer to [15] and the references therein.
The neural network architecture used in our deep learning approach was first introduced
in [8] to break a protected AES implementation. In [8], the side-channel attack extracted
the Hamming weights of all AES subkeys. Afterwards, a equation solving stage was used
to perform a limited amount of error correction on the extracted Hamming weights while
simultaneously deriving the full key values from the Hamming weight guesses. This work
uses the same network architecture, but cannot use any of the subsequent post-processing
ideas used in [8]. There are multiple reasons for this: the Clyde-128 key schedule does not
impose significant constraints on the values we might recover the side-channel data made
available in the contest does not cover the full round number of the cipher anyway and we
never get to see any unmasked internal state in the Clyde attack.
Our solution to the CHES challenge presented in this paper combines a signal extraction
stage relying heavily on a neural network with classical elements, such as the choice of
a suitable leakage target variable and leakage model as well as a manually designed key
extraction stage that combines leakage over many traces to derive the target key.
In general, the question whether AI-based methods are superior over classical statistical
methods is of great interest, and we complete our analysis of the strength of the neural
network based leakage extraction stage by developing an alternative solution based on
the stochastic approach. Combining classical and machine learning based techniques
in order to achieve the best possible exploitation of the available signal is common in
state-of-the-art side-channel attacks, since it is expected that some parts of optimal attacks
will be difficult for neural networks to execute. Accordingly, there is a significant amount
of recent research that is aimed at combining the strengths of deep learning and classical
methods in side-channel analysis; for instance, a first approach that combines the stochastic
approach with deep learning methods has recently been proposed in [18].
Another attack on the same data set as used in the present paper has been proposed in [5].
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The authors essentially show that a template attack can reach an overall similar level of
performance as our attack if it uses a deep understanding of the implementation. We show
that results comparable to theirs can be achieved by a neural network based attack that
exploits only the knowledge of the cipher state at one well-chosen point of the cipher’s
execution if a good representation of the training target is chosen.
Other notable recent work considered the possibility of combining classical template attacks
with deep learning based preprocessing of input traces, achieving competitive results on
several datasets at relatively low training cost [17].

Outline The outline of the remaining paper is as follows: First, we describe in Section 2
the side-channel contest of the CHES challenge 2020 before we detail the Clyde-128 cipher
and its masked implementation in Section 3. Then, in Section 4 we present our solution to
the CHES challenge based on a residual neural network and provide in Section 5 further
insights gained with the stochastic approach. Finally, conclusions and an outline of future
work are given in Section 6.

2 CHES Challenge 2020 Side-Channel Contest

2.1 Objectives
The CHES challenge 2020 consisted in a side-channel contest whose objective it was to
use side-channel analysis to break masked implementations of the Clyde-128 cipher [4].
The challenge involved a total of seven sub-challenges. Four of the challenges targeted a
software implementation of Clyde-128 protected by an efficient variant of ISW-masking
proposed by Goudarzi and Rouvain [9] with 3, 4, 6 and 8 shares. The remaining three
challenges targeted a hardware implementation of Clyde-128 using the glitch-resistant
ISW-masking developed by Cassiers et al. [6]. This paper focuses completely on the
software challenges. In the context of this contest, breaking an implementation means
deriving from trace and tweak information a simple ranking of all possible keys such that
the expected rank of the correct key is below 232.

2.2 Data Sets and Evaluation Framework
For each challenge, the organizers collected and published large random- and fixed-key
datasets. The random-key datasets for the software challenge consisted of 200,000 power
traces covering the first half of the first round of the execution of Clyde-128 on the all-zero
message block with varying tweak values; tweaks, keys and shared keys were also given.
The fixed-key datasets contained only the trace and tweak information. Additionally, the
organizers provided the source code of the corresponding implementations, proof-of-concept
attacks on the weakest software and hardware targets, documentation explaining the main
ideas behind the implementations and an evaluation environment based on the container
tool singularity [13]. Submissions were tested against unknown test data held by the
organizers.

3 Clyde-128 Cipher
In this section, we briefly describe the Clyde-128 cipher, before we detail its masked
software implementation in the context of the CHES challenge 2020. The description of
the cipher is based on [4], with slightly adapted notation, while the description of the
masked implementation is based on code inspection.
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3.1 TLS Design

The Clyde-128 cipher is a tweakable block cipher that is part of Spook, an algorithm for
authenticated encryption with associated data (AEAD) and a second-round candidate
of the NIST Lightweight Cryptography competition2. It relies on a tweakable LS-design
(TLS-design) [11, 10] and works on n = (s · l)-bit states, where s = 4 denotes the size
of the S-box and l = 32 the size of the L-box. The full cipher state is referred to as
x ∈ Fs×l2 , a row state is denoted as x[i, ·], i = 0, . . . , s − 1, and a column state as x[·, j],
j = 0, . . . , l − 1. In the following, we will simultaneously use bitmatrices x ∈ Fs×l2 as well
as rowwise reshaped bitvectors B ∈ Fs·l2 , which are related via

x[i, j] = B[i · l + j].

The basic TLS-design is summarized in Algorithm 1 and next, we describe the different
building blocks in more details.

Algorithm 1 Clyde-128 TLS-design with s-bit S-box and 2l-bit L-box.
1: Input: plaintext p ∈ Fs×l2 , tweakey TK ∈ Fs×l2 , s-bit S-box S, 2l-bit modified L-box
L′, where s = 4 and l = 32.

2: Output: ciphertext matrix x ∈ Fs×l2
3: x← p⊕ TK(0)
4: for σ = 0, . . . , Ns − 1 do
5: for ρ = 0, 1 do
6: r = 2σ + ρ
7: for j = 0, . . . , l − 1 do
8: x[·, j] = S

(
x[·, j]

)
9: end for

10: for i = 0, . . . , s2 − 1 do
11:

(
x[2i, ·], x[2i+ 1, ·]

)
= L′

(
x[2i, ·], x[2i+ 1, ·]

)
12: end for
13: x[·, 0]← x[·, 0]⊕W (r)
14: end for
15: x← x⊕ TK(σ + 1)
16: end for

Tweakey The tweakey scheduling algorithm for the n-bit key k ∈ Fn2 and the n-bit tweak
T ∈ Fn2 reads as follows: First, the tweak is divided into n

2 -bit halves t0 and t1, that is,
T = t0||t1. Then, the tweakey depends on the remainder of the round index i by division
by three as

TK(3i) = k ⊕ (t0||t1)
TK(3i+ 1) = k ⊕ (t0 ⊕ t1||t1)
TK(3i+ 2) = k ⊕ (t0||t0 ⊕ t1).

S-Box The 4-bit S-box is a variant of the S-box proposed in [3] and can efficiently be
computed using four AND-gates and four XOR-gates as follows: Let x ∈ F4

2 be a 4-bit

2For further information, see https://csrc.nist.gov/projects/lightweight-cryptography
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word, then y = S(x) is given by

y[1] =
(
x[0]� x[1]

)
⊕ x[2],

y[0] =
(
x[3]� x[0]

)
⊕ x[1],

y[3] =
(
y[1]� x[3]

)
⊕ x[0],

y[2] =
(
y[0]� y[1]

)
⊕ x[3].

In fact, the for-loop in lines 7-9 of Algorithm 1 for the computation of the S-box is not
necessary, but for a full Clyde-state x ∈ F4×32

2 , the S-box can be computed as

y[1, ·] =
(
x[0, ·]� x[1, ·]

)
⊕ x[2, ·],

y[0, ·] =
(
x[3, ·]� x[0, ·]

)
⊕ x[1, ·],

y[3, ·] =
(
y[1, ·]� x[3, ·]

)
⊕ x[0, ·],

y[2, ·] =
(
y[0, ·]� y[1, ·]

)
⊕ x[3, ·]. (1)

L-Box The modified L-box L′ acts on pairs of 32-bit words (x, y) ∈ F32
2 × F32

2 as

(a, b) = L′(x, y) =
(

circ(0xec045008) · xT ⊕ circ(0x36000f60) · yT

circ(0x1b0007b0) · xT ⊕ circ(0xec045008) · yT

)
,

where circ(c) denotes a circulant matrix with first row c in hexadecimal notation, so that

c =
31∑
i=0

ci2i corresponds to the row vector (c0, . . . , c31). The L-box can efficiently be

implemented as well using six word-level (left) rotations and six 32-bit XORs per word:

a = x⊕ rot(x, 12),
b = y ⊕ rot(y, 12),
a = a⊕ rot(a, 3),
b = b⊕ rot(b, 3),
a = a⊕ rot(x, 17),
b = b⊕ rot(y, 17),
c = a⊕ rot(a, 31),
d = b⊕ rot(b, 31),
a = a⊕ rot(d, 26),
b = b⊕ rot(c, 25),
a = a⊕ rot(c, 15),
b = b⊕ rot(d, 15). (2)

Also the L-box can be computed in parallel for the two row pairs
(
x[0, ·], x[1, ·]

)
and(

x[2, ·], x[3, ·]
)
.

Round Constants Finally, the round constants, which can be computed using a 4-bit
LSFR, are given by four bits that are XORed with the first column of the Clyde-state.
They read for the different rounds r = 0, . . . , 11 as

r = 0 (1, 0, 0, 0) r = 1 (0, 1, 0, 0) r = 2 (0, 0, 1, 0) r = 3 (0, 0, 0, 1)
r = 4 (1, 1, 0, 0) r = 5 (0, 1, 1, 0) r = 6 (0, 0, 1, 1) r = 7 (1, 1, 0, 1)
r = 8 (1, 0, 1, 0) r = 9 (0, 1, 0, 1) r = 10 (1, 1, 1, 0) r = 11 (0, 1, 1, 1).
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3.2 Masked Implementation
In the context of the CHES challenge 2020, the implementation of the Clyde-128 cipher
is masked according to [9] by decomposing a sensitive variable x ∈ Fs×l2 into d shares
(x0, . . . , xd−1) such that

x = x0 ⊕ · · · ⊕ xd−1.

In the sequel, we add the shares as a third dimension to the data and denote masked
versions of a variable/operator with ·̃, e.g. x̃ ∈ Fs×l×d2 denotes the masked version of
x ∈ Fs×l2 and for (i, j) ∈ {0, . . . , s− 1} × {0, . . . , l − 1} it holds

x[i, j] =
d−1⊕
`=0

x̃[i, j, `].

The masked Clyde-128 algorithm is summarized in Algorithm 2.

Algorithm 2 Masked Clyde-128 Algorithm.
1: Input: plaintext p ∈ Fs×l2 , tweak T ∈ Fs×l2 , shared key k̃ ∈ Fs×l×d2 , masked s-bit
S-box S̃, masked 2l-bit modified L-box L̃′, where s = 4 and l = 32.

2: Output: ciphertext matrix x ∈ Fs×l2
3: x̃← k̃
4: x̃[·, ·, 0]← x̃[·, ·, 0]⊕ T (0)
5: x̃[·, ·, 0]← x̃[·, ·, 0]⊕ p
6: for σ = 0, . . . , 5 do
7: x̃ = S̃

(
x̃, refresh = 1

)
8: x̃ = L̃′(x̃)
9: x̃[·, 0, 0]← x̃[·, 0, 0]⊕W (2σ)

10: x̃ = S̃
(
x̃, refresh = 0

)
11: x̃ = L̃′(x̃)
12: x̃[·, 0, 0]← x̃[·, 0, 0]⊕W (2σ + 1)
13: x̃ = x̃⊕ k̃
14: x̃[·, ·, 0] = x̃[·, ·, 0]⊕ T (σ + 1)
15: end for
16: x = x̃[·, ·, 0]⊕ · · · ⊕ x̃[·, ·, d− 1]

The masked state x̃ ∈ Fs×l×d2 is initialized with the shared key k̃ ∈ Fs×l×d2 in line 3,
before the tweak T ∈ Fs×l2 and the plaintext p ∈ Fs×l2 are added to the first share slice
x̃[·, ·, 0] ∈ Fs×l2 in lines 4 and 5 respectively. The masked S̃-box is implemented based
on (1). For the multiplications (AND-gates), the ISW-multiplication algorithm [12] given
in Algorithm 3 is used, while the additions (XOR-gates) are computed sharewise. During
the first computation of the S̃-box in each of the six rounds, a mask refreshing of y[1, ·]
is performed according to Algorithm 4 as an additional countermeasure (line 7). For
d ∈ {1, 2, 3}, the mask refreshing algorithm is used with m = 1, while for d ∈ {4, . . . , 8},
it is run twice, first with m = 1 and then with m = 3. The refreshing method has been
proposed and further analyzed in [2, 1].
The linear L̃-box in line 8 is computed based on (2) in parallel for the different shares and
the constant W (r) ∈ Fs2 is added to the first share slice x[·, 0, 0] ∈ Fs2 in line 12. Then, in
line 13 the key is added to the current state and next, in line 14 the tweak to the first slice
of the shares. Finally, the unmasked output is obtained by XORing the different shares.
The recorded traces capture the first half of the first round of Algorithm 2. An exemplary
trace is given for d = 4 shares in Figure 1, where the ISW-multiplication of the S̃-box, the
mask refreshing as well as the L̃′-box computation are clearly visible.3.

3Image taken from https://git-crypto.elen.ucl.ac.be/spook/masked_spook_sw

https://git-crypto.elen.ucl.ac.be/spook/masked_spook_sw
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Algorithm 3 ISW-Multiplication Algorithm.
1: Input: d-shares (a0, . . . , ad−1) of a ∈ Fl2 and (b0, . . . , bd−1) of b ∈ Fl2
2: Output: d-share (c0, . . . , cd−1) with

⊕d−1
i=0 ci =

(⊕d−1
i=0 ai

)
�
(⊕d−1

i=0 bi

)
3: for i = 0, . . . , d− 1 do
4: ci ← ai � bi
5: end for
6: for i = 0, . . . , d− 1 do
7: for j = i+ 1, . . . , d− 1 do
8: rij

R
∈ Fl2

9: rji ← (ai � bj)⊕ rij
10: rji ← rji ⊕ (aj � bi)
11: ci ← ci ⊕ rij
12: cj ← cj ⊕ rji
13: end for
14: end for

Algorithm 4 Mask Refreshing.
1: Input: d-share (a0, . . . , ad−1) of a ∈ Fl2 satisfying a = a0 ⊕ · · · ⊕ ad−1, parameter m
2: Output: refreshed d-share (a′0, . . . , a′d−1) of a ∈ Fl2 satisfying a = a′0 ⊕ · · · ⊕ a′d−1
3: for i = 0, . . . , d− 1 do
4: ri

R
∈ Fl2

5: ai ← ai ⊕ ri
6: a(i+m) mod d ← a(i+m) mod d ⊕ ri
7: end for

Figure 1: Exemplary trace for d = 4.
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4 Deep Learning Approach
4.1 Overview
Our deep learning based solution to the CHES 2020 side-channel challenge relies on the
following main ideas:

• We basically predict Hamming weights of some sensitive variables derived from the
cipher state shares. To this aim, we use a deep residual neural network following the
architecture first introduced in [8].

• In the Hamming weight model, we actually derive many different but related sensitive
variables from each state word via a technique that we call the scattershot encoding.
In a nutshell, the intuition behind the scattershot encoding is to provide the neural
network with a large number of interrelated tasks of varying difficulty that are close
to the assumed leakage model (here: Hamming weight leakage of the shared cipher
state) and which together solve the desired prediction problem. With their help we
can then obtain bit-level predictions of the targeted share values with high precision
by post-processing the predicted Hamming weights by some linear algebra. Our
findings indicate that these bit-level predictions are difficult or impossible to learn
with the required precision for our network without the scattershot encoding.

• Finally, we combine bit-level predictions over many traces by predicting the un-
shared values of the sensitive variables. Comparing predictions from traces and key
hypotheses, we get a ranking of the unshared keys.

In combination, these ideas allowed us to break all software challenges of the contest with
a data complexity that improved the state-of-the-art. For instance, the 3-share challenge
can be broken with ≈ 25 traces.
In the sequel, we first describe our leakage target and the high-level strategy of our key
recovery method. Our strategy presupposes that the shared cipher state at a particular
point of execution leaks to the power trace essentially in its entirety, with only a modest
amount of noise. This capability is achieved by combining a deep neural network with a
simple post-processing step. Then we describe the structure of our deep neural network,
the scattershot encoding and how the latter is used to obtain bit-level prediction on the
shared cipher state.
Finally, we provide some experimental evidence that our methods solve the challenge and
that in particular the scattershot encoding is helpful for solving the challenge problem.

4.2 Overall Strategy
Targeted State We target the cipher state after the first S-box. The unshared cipher
state x ∈ F4×32

2 is given by x = S(p ⊕ T ⊕K), where p ∈ F4×32
2 denotes the plaintext,

T denotes the tweak value, and S denotes application of the S-box layer. S(p⊕ T ⊕K)
depends in a simple way on plaintext, tweak and key and should therefore be well suited to
constrain K given partial knowledge of S(·) for several pi, Ti. The fact that the S-box is
involved means that errors in the key get spread out to 4 bits of the observed state, which
should amplify the ability of the adversary to distinguish between almost-correct and fully
correct key hypotheses. The dependence of the observed value on p, T,K holds for each
S-box separately, so that given successful recovery of the cipher state, a key ranking can
be derived one S-box at a time, implying the ability to recover the whole key efficiently.

Dealing With the Masking Countermeasure Because of the presence of the masking
countermeasure the cipher state is only available during execution in a secret-shared form.
We will therefore try to read out the secret-shared cipher state x̃ ∈ F4×32×d

2 instead of
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the unshared state. If we had the full shared state, the unshared state x could be simply
obtained by setting x[a, b] = ⊕d−1

b=0 x̃[a, b, c].
Let X be a random variable that is realized by a power trace reading and let Y a random
variable whose distribution coincides with that of the target states. Then, the image of X
is a subset of Rn, where n is the number of samples in each power trace, Y is uniformly
distributed on F4×d×32

2 , and X and Y are dependent variables.
Assume that we possess an oracle O which given a trace t outputs values p ∈ R4×d×32,
where p[a, b, c] ≈ P(Y [a, b, c] = 1|X = t), i.e. p[a, b, c] approximates the probability that
x̃[a, b, c] is set given the information contained in the trace t. Then

P(x[a, b] = 1|X = t) ≈
∑
v∈M

 ∏
0≤i≤d−1,vi=1

p[a, b, i]
∏

0≤i≤d−1,vi=0
(1− p[a, b, i])

 ,

where M = {v ∈ Fd2 : vtv = 1}.
Remark 1. Of course, {X = t} is a zero set. In the above formula we tacitly assume that
the conditional densities converge if we replace t on the right-hand side by ε-balls around t.

Combining Leakage Across Traces Let {t0, t1, t2, . . . , tk} be a set of traces with associ-
ated plaintexts pi and tweaks Ti. Given our oracle O, we can calculate for each i and each
(a, c) ∈ {0, 1, 2, 3} × {0, 1, . . . , 30, 31} a probability pi[a, b] := O(ti) for the corresponding
bit value of the unshared target state to be set. We partition the key K into 32 nibbles
aligned with the S-boxes. Now, if K[b] ∈ F4

2 is a hypothesis for the b-th partial key, we
calculate the true values x[·, b](K[b]) given pi, Ti and K[b]. We consider the score s(K[b])

s(K[b]) :=
∥∥x[·, b](K[b])− pi[·, b]

∥∥
2

and rank the key hypotheses in lowest-is-best order. Since ‖u1 + u2‖2 = ‖u1‖2 + ‖u2‖2 for
orthogonal vectors u1, u2, adding up these partial key rankings for all indices b is the same
as using an analogous ranking method on the full key. We thus get a ranking of the full
key space, where it is efficiently possible to determine the rank of any given key hypothesis
up to a small error.

4.3 Deep Neural Network
In the sequel, we implement an oracle of the desired kind with the help of a deep neural
network and a slight post-processing of its outputs. To this aim, we explain in this section
how our network is designed and trained as well as the required post-processing step.

Preliminary Investigations Based on the public description and source code available
for the implementation under attack, we regarded it likely that the word-wise Hamming
weights of the key shares would leak. We were rapidly able to confirm this hyptothesis using
a straightforward application of a deep residual neural network following the architecture
used in [8]. However, although we could see the Hamming weights of the words fairly well,
Hamming weight leakage was not enough to break the challenge and various attempts to
directly find sufficient single-bit leakage were not successful, even in case of the 3-share
challenge.

Basic Ideas The deep residual neural network follows the architecture introduced in [8].
In particular, this entails the following:

• We treat Hamming weight prediction as a regression problem and not as one of
categorical prediction. Simply put, our predictions are real-valued approximations of
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the integer values that represent the ground truth Hamming weights to be extracted.
This helps to overcome the problem of poorly represented (i.e. rare) output classes
by exploiting the natural order on the output domain.

• We treat the prediction problem as approximately subsampling invariant. This means
that reducing the number of points in a trace might harm prediction accuracy, but
should not introduce systematic errors in the predictions.

• A prediction of the sensitive variable produced by a relatively simple, shallow model
may be improved upon by further post-processing.

On top of these ideas, the most important ingredient to the success of our deep learning
model is that we create a very large number of mutually correlated prediction targets for
the network. Together, these prediction targets solve the relatively difficult problem of
predicting the value of the shared cipher state at a certain point of its operation with
bit-level precision. For our model, we create a total of 400d prediction targets, where
d is the number of secret shares in the implementation under attack. These prediction
targets can be broken down into 4d groups of targets, where each group contains hundred
targets that work together to solve one word of the shared state. Basically, the scattershot
encoding transforms a bit-string into a sequence of Hamming weights of a large number of
random sub-strings.
Since the resolution of the trace data and the number of state shares differs between
the different software challenges, network parameters differ accordingly for the different
challenges. Our neural networks are therefore parameterized by the following variables:

• Input size I: number of data points (equivalently, the size of the input layer) in each
trace to be processed by the network.

• Subsampling factor q1 and subsample size q2: number of subsampled versions of the
input trace that are analyzed in parallel by the network as in [8] and the size of each
subsampled trace. By definition, we have I = q1 · q2.

• Network depth: number of residual blocks used by the network.

• Word size n: number of bits in each sensitive variable that we will try to extract
from the traces. Generally, there will be 4d variables to extract for a challenge with
d secret shares.

• Scattershot size N and a set of scattershot masks m1,m2, . . . ,mN ∈ Fn2 : number of
auxiliary sensitive variables that we generate in the scattershot encoding for each
secret share and a randomly chosen generating set of Fn2 .

For all four challenges we used a network depth of 10 residual blocks, a word size of 32,
a scattershot size of 100 and a set of scattershot masks chosen at random once for all
experiments. In contrast, q1, q2 and some training parameters needed to be chosen
differently for different challenges; Table 1 gives details on all the challenges. Further
details can be found in the supplementary data to this paper.

Preprocessing Given an input trace T of size I, we first decompose the trace into
subsampled traces T1, T2, . . . , Tq1 , where Ti consists of the points of T with index i mod q1.
Each subsampled trace Ti therefore contains q2 points. The Ti are subsequently called
slices of the original trace.



12 Breaking Masked Implementations of the Clyde-Cipher

Number of Outputs, Output Activation In total, our network generates 4Nd outputs
for a d-share target. The ground truth associated to each output is the Hamming weight
of some bit vector and therefore a priori a non-negative integer, making rectified linear
units a natural choice for final layer activations, since they calculate a linear function of
their input that is truncated to non-negative output values.

The First Layer After the preprocessing, each of the q1 subsampled partial traces is
processed first by a batch normalization layer. Each batch-normalized partial trace is then
processed separately by a shared fully connected layer with 4Nd rectified linear outputs.
The entire neural network state at this stage is thus comprised of q1 vectors vi of 4Nd
real values each, where vi is the vector associated to subsampled slice i. Each slice vi of
the state is further subdivided into 4d columns of N values. Each column of N values
is subsequently processed separately from the others (with communication only to the
corresponding column in neighbouring slices of the overall network state) and intended to
produce a prediction for the Hamming weights of the N prediction targets corresponding
to one 32-bit word of the shared state.

Residual Blocks Subsequently, each column is updated by repeating the following steps
in a number of residual blocks, where each residual block computes the input of the next
residual block:

1.) Batch normalize the current output state of each column.

2.) Apply a one-dimensional convolution of kernel size 3 with N output channels to the
batch normalized state of each column, running the convolution across all the slices
after padding with zeros on both ends (“same” padding in keras). Call the output
vector of the convolution (w0, w1, . . . , wq1−1).

3.) Add vi and wi together to obtain the input for the next residual block.

This structure is repeated for t blocks, where t = 10 in all our experiments.

Predicting the Target by Averaging Finally, we are left with q1 vectors vi ∈ R4Nd that
we hope will approximate our prediction targets. These are subjected to a final averaging
step that simply calculates the mean of the q1 vectors and outputs it as our prediction.

Intuitions Behind this Architecture This neural network architecture was first introduced
for an AES side-channel task in [8], where it achieved highly precise byte-level Hamming
weight prediction for all bytes of the expanded keys of a protected AES implementation.
Here, splitting up the processing of the full trace into a number of subtraces helped to achieve
dimensionality reduction, to reduce overfitting, and to leverage subsampling invariance of
the side-channel prediction problem. The use of convolutional windows of width 3 allows
some communication between the subnetworks processing different subsampled slices of
the trace under consideration, which should improve slice-wise prediction quality. The
choice of a deep residual neural network was motivated mainly by its good scaling with
network depth.

4.4 The Scattershot Encoding: Achieving Bit-Level Precision
Motivating Problem In side-channel analysis, the adversary obtains usually only partial
information about the target key by using the side-channel, but desires bit-level information,
typically of some cryptographic key. They therefore will likely need to combine information
from a large number of traces and/or use additional cryptanalytic techniques to determine
the secret. For instance, in [8] first a neural network is used to approximately determine
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the Hamming weights of all bytes of the expanded AES key of the implementation under
attack, and then a SAT solver subsequently computes the exact key from this partial
information. Effectively, this strategy combines leakage from various parts of a single
power trace with prior knowledge about the cipher under attack to exactly recover the key.
For the masked implementation of Clyde-128 under study in the CHES Challenge 2020,
we were easily able to show significant leakage of the Hamming weights of the 32-bit words
of secret-shared subkeys and cipher state at various points during the cipher’s execution.
However, each execution of the cipher uses fresh randomness for the computation of
the initial secret sharing and the shares are refreshed with new randomness during the
execution as well. This severely limits the ability of an adversary to combine leakage
either across traces or across different leakage points within a single trace. Essentially, to
find the secret key a significant amount of information about the unshared key must be
exploitable from a single trace. This information can then be combined across traces to
extract enough information on the unshared secret in order to enable an exhaustive attack
on the remaining possibilities.
We tried to directly learn to predict single bits of the secret shares of the keys and cipher
states. Our attempts, however, did not yield useful results even for the 3-share challenge,
which is why we came up with the scattershot encoding that we detail next.

Scattershot Encoding Assume that we are given the task of guessing a bit string b =
b1, b2, . . . , bk and the only available information are the Hamming weights hi of b · mi,
where m0,m1, . . . ,ml is a collection of known random bit strings of length k and where ·
denotes component-wise multiplication. Once the mi form a generating subset of Rk, this
task is easy: assume without loss of generality that the mi form a basis, then

k∑
j=1

mi(j)λj = hi

is a linear equation system with a coefficient matrix M of full rank and λi = bi is its only
solution. We call the weights hi the scattershot encoding of b with respect to the masks mi.

Recovering Target Variables from Noisy Scattershot Encodings In the presence of
noise, recovering a bit string from its scattershot encoding with respect to a known set of
masks becomes a problem of linear approximation in a natural way. Indeed, we can model
the problem in an idealized setting as follows: assume that in the above situation we are
given h̃i := hi +Xi instead of the true encoding by the hi values, where the Xi ∼ N(0, σ2)
are i.i.d. normally-distributed random variables centered at zero. For a given combination
of λi ∈ {0, 1} to explain the observed h̃i, we get X = h̃ −Mλ, where X = (Xi)i=1,...,k,
h̃ = (h̃i)i=1,...,k. The probability density p(λ) of X at this value is (up to multiplicative,
constant factor) given by

p(λ) ∝ e−
‖h̃−Mλ‖2

2
2σ2 .

If there is no prior knowledge about the true values of the bi, sorting the candidates by
descending value of p(λ) yields an optimal guessing strategy in this situation. Since the
exponential is strictly monotonously increasing irrespective of base (as long as the base is
> 1), this ranking is the same as that obtained by ordering the values by ‖h̃−Mλ‖2 in
ascending order.
While it is possible to efficiently compute the ranking so induced (see e.g. [7]), it is in our
context more useful to simply relax to the real numbers and find a minimal real solution
for the λi by linear regression. This is due to the fact that solutions to the relaxed problem
contain some information on the amount of uncertainty about the value of specific bits bi
of the sequence to be guessed, which is crucial for the implementation of our secret state
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Table 1: Challenge-specific parameters for our deep neural network.
Challenge Number of

EpochsNe
Batch Size Steps per

Epoch
Validation
Steps

q1 q2

Sw3 800 128 500 50 100 625
Sw4 800 128 500 50 167 499
Sw6 1000 32 2000 200 250 625
Sw8 1000 32 2000 200 250 875

oracle from the previous section. In addition, with a scattershot size of N , solving the
linear regression can simply be done by multiplying the output array of the neural network
for each share word from the right with a fixed N × 32-matrix that only depends on the
choice of scattershot masks.

Intuitions behind the Scattershot Encoding We assumed that some kind of Hamming
weight model would describe the leakage well, which was quickly confirmed by experiments.
However, the question is which parts of the cipher state to calculate Hamming weights over:
we were able to see word-level Hamming weights very well, but bit-level state recovery
seemed significantly harder. In particular, achieving uniform convergence for all target bits
of the shared state proved difficult in our experiments to recover the state bits directly.
The scattershot encoding gives the neural network a number of different Hamming weight
models to work with. In addition, all of these problems are closely correlated to each
other, so progress on any of the scattershot targets should help the next layer in the deep
residual network achieve better precision on all of the other targets. We hoped that with
these assumptions, the scattershot encoding would help the network achieve faster and
more uniform convergence across all target bits, which turned out to be true.

4.5 Training the Network
Preprocessing the Data To train our deep neural network, we first merged all of the
released 10,000-trace random-key files from the competition website. This gave us a dataset
of 200,000 traces with associated keys and tweaks, the plaintext being uniformly the zero
message. We then computed a random shuffling of the training data and divided the
shuffled data into a training and a validation set, holding out 20,000 traces for validation.
We determined the cipher state based on the tweak, the secret-shared key and the plaintext
data given in the original dataset using the Python implementation of the masked Clyde
implementation provided by the organizers and subsequently brought it into scattershot
encoded form by applying the relevant linear transformation. A set of scattershot masks
was generated at random and can be found in the supplementary data set to this paper.

Training We generated minibatches for training and validation by random selection of
samples from the training respectively validation set at training time using a generator,
where we used different settings for the minibatch size for the different challenges. Likewise,
the length of training (number of epochs and training steps per epoch, i.e. the number of
minibatches used in each epoch) varied between the challenges.
For all training runs we used the Adam optimizer with a cyclic variable learning rate and
mean square error loss against the ground truth targets as loss function. At the end of
each epoch, we calculated the mean square error loss for the current network also on the
validation set and stored the best network weights (according to validation loss) to disk.
We set the learning rate lri for epoch i so that

log2(lri) = log2(low) +
(
log2(high)− log2(low)

)
·
(
(Ne − 1)− i mod Ne

)
/(Ne − 1),
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where Ne is the number of epochs in each cycle and low and high denote upper and lower
bounds for the learning rates used in each cycle. In other words, each cycle used an
exponential learning rate decay followed by resetting the learning rate to the high value
at the beginning of the next learning rate cycle. We hoped that this setup would allow
sufficient time for fine-tuning of weights at the lower learning rate levels as well as escape
from local minima at the higher learning rates. We used low = 0.001, high = 0.00002 and
Ne = 10 throughout our experiments. All relevant parameters are summarized in Table 1.

Computational Cost of Training With network and training parameters as well as the
sizes of input and output vectors of our networks being quite different between the different
challenges, it is no surprise that the computational cost of training runs differs accordingly.
For Sw3, a single training epoch using the parameters given in Table 1 takes about 100
seconds on a computer equipped with a single GTX 1080 Ti graphics card and a few
gigabytes of not otherwise occupied RAM. A full training run can therefore be completed
in about a day. For Sw8, on the other hand, a single epoch takes about 1050 seconds on
the same machine, resulting in roughly a million seconds for a complete training run, or a
bit less than two weeks.

4.6 Results
Evaluation Data Along with the random-key training data for each challenge, the orga-
nizers of the competition released fixed-key datasets to allow participants to evaluate the
performance of their solutions. The fixed-key datasets were never used in either training or
model selection, so results on these datasets should be representative of the performance
reached for the key extraction task at hand.
In the sequel, we will have a closer look the behavior of our solution on the simplest
software challenge (Sw3, d = 3 shares). For the other challenges, we only report some
statistics on whole-key ranking achieved with the appropriate number of traces.

Single-Trace State Extraction Our attack essentially first tries to match the observed
traces to a probability distribution on the internal secret-shared cipher state. Then it
computes the induced probability distribution on the corresponding unshared cipher state
by calculating the convolution product of the d share-distributions, compare equation (4.2),
and finally matches the inferred distribution to all possible key hypotheses. For this to
work well, we need fairly strong biases on the shared cipher state from a single trace, since
the convolution product leads to a decay of any biases that is exponential in the number
of shares.
Fortunately, we do get strong biases on the secret-shared state. Indeed, as Figure 2 shows,
even some nibbles of the unshared key can be read out with high reliability already from a
single trace in the Sw3 case. Interestingly, however, the results strongly depend on the
considered S-box: some of them (e.g. S-box 17, but also S-boxes 23 and 26) seem to be
rather easy to predict, while most S-boxes are harder (e.g. S-boxes 0 or ), if not impossible
to predict (e.g. S-boxes 16 or 21, whose key rank distribution is close to uniform).
This is even more apparent when we look at extracting the target secret-shared state
after the first S-box layer. Table 2 shows some fairly representative examples of bitwise
differences between predicted state and ground truth for a version of our Sw6 model trained
on a slightly smaller data set than the model used in our attack on Sw6.

Global Key Rank Our attack needs 20-30 traces to break the 3-share challenge; a few
hundred to break the 4-share challenge; a few thousand for the six-share challenge, and tens
of thousands for the 8-share challenge. For details, we refer to the independent evaluation
given by the organizers of the CHES 2020 competition in [5]. Compared to running our
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Partial Key Ranking (Single S-box) in the Single-Trace Setting

S-box 17 (best)
S-Box 0
S-box 21 (worst)

Figure 2: Key rank distribution in a single-trace attack for three selected S-boxes. For
this test, 100 traces were selected at random from the FKEY_SW3_K1_1000_0 data set
and the key extraction algorithm was run separately on each trace. The statistic here
shown gives the number of cases where the true partial key for the nibble in question was
found at the rank given on the x-axis.

Table 2: Bitwise differences between the predicted and correct first word of secret-shared
cipher state on Sw6. The first five traces of RKEY_SW6_10000_19 served as test dataset.
The model used in this experiment has been trained only on RKEY_SW6_10000_0-14, so
these examples were not seen by this model during training.

Trace 1 Trace 2 Trace 3 Trace 4 Trace 5
0x81050d0 0x802e1810 0x5490 0x2015010 0x600142
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own evaluation using the test data available in the competition, this has the advantage that
their evaluation included their own solution, against which our solution can be compared.
In general, the number of traces needed to achieve a drop of the key rank under the 232

bound required follows a distribution with a fairly heavy tail, making it difficult to obtain
reliable measurements of the expected data cost for the 8-share challenge.

4.7 Dissecting the Scattershot Encoding
Problem Statement Our networks failed to learn the extraction of all output bits when
we tried to learn to predict these bits directly. Instead, we predict a scattershot encoding
of our target data. In the attack phase, we have to reverse the encoding in order to retrieve
predictions for the bit-values of the shared target variables from the output of the network.
This is surprising, since the scattershot encoding is nothing but a linear transformation of
the output values. We therefore did some further investigations understand the success of
this trick a bit better.

Difficulties in Studying the Scattershot Encoding The task under discussion in this
paper makes it difficult to study problems in network convergence in a systematic way:
even for the 3-share problem, the time to train an instance of our network is about a
day on our hardware. Furthermore, it is difficult to say, in absolute terms, how well the
obtained network exploits the available signal and to find out exactly which properties of
the task cause the convergence problems.

A Synthetic Problem We therefore aimed at figuring out a simpler learning problem
that would exhibit similar convergence problems as our side-channel task. To this end, we
tried to learn the F2-linear function

f : F32
2 → F32

2 , f(x) = Ax,

where A is the lower triangular matrix with all entries below or on the main diagonal
equal to one. We tried to learn f by observing random input-output pairs using a fully
connected deep neural network.
Remark 2. The i-th coordinate function of f is fi(x) =

⊕i
j=1 xj . The problem of learning

the last of these coordinate functions in isolation (i.e. given only random inputs and
{0, 1}-valued outputs of the coordinate function) using feed-forward neural networks is
expected to be difficult, which is confirmed by experiments: training feed-forward networks
to predict the parity of 32-bit bitstrings fails unless the networks are trained with structured
input. However, learning f is expected to be easier, since the network is now forced to
learn a number of XOR-sums. Some of these are of low Hamming weight and therefore easy
to learn, and knowing how to compute these might be helpful for learning the components
that are harder to predict.

Neural Network Designs In order to test the difficulty of learning to compute f with and
without the scattershot encoding, we considered two simple network architectures. Both
of them are deep residual networks with ten residual blocks, where each block consists of a
batch normalization layer followed by a fully connected layer with rectifier nonlinearities.
They take a vector of 32 bits as input, have 100 nodes in each of the internal layers and
use a single dense layer with ReLu activations after the input to expand the input to a
vector of dimension 100. However, they differ in the output layers:

• The final layer of Model 1 uses a sigmoid activation funtion to obtain output values
between 0 and 1 and outputs 32 such values, thereby directly predicting the target
bits.
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Figure 3: Accuracy of target prediction for Model 1 and Model 2 on learning a simple
F2-linear function. The x-axis gives the targeted bit position inside the target and the
y-axis shows the obtained accuracy. Model 2 uses a scattershot encoding of the targets
while Model 1 does not.

• Model 2 predicts a scattershot encoding of the target values and therefore outputs
100 values using a final linear activation.

Training and Validation Both models were trained for 100 epochs on the same training
data set. Training was performed with the Adam optimizer using default parameters in
Keras and a constant batch size of 5,000. Ten percent of the training set was withheld for
validation in order to track the evolution of the loss value for both models.

Testing Finally, both models were tested using a freshly generated test set consisting of
another 106 example vectors. For each bit of the target output, we measured how often
either prediction output matched ground truth.

Results Within the training budget of the experiment, Model 1 failed to converge on the
last five bits of the target function; it predicted the other bits very well. Model 2, on the
other hand, showed some degree of convergence for all bits, although the last two bits had
accuracies of only 59 and 61 percent respectively when training was stopped. Figure 3
gives additional details.
Additionally, a qualitative comparison of the loss evolution for both models shows that
Model 1 converges through punctuated equilibria, effectively learning to predict one bit of
the target at a time and then getting stuck. The loss of Model 2, on the other hand, is
smoothly decreasing throughout the training run. It is also worth noting that many of the
equilibria require a temporary significant increase of validation loss to leave, suggesting
some stability of the corresponding local minima of the loss function. This is illustrated
in Figure 4 which validation loss progress for Model 1 (left) and Model 2 (right) over
100 epochs of training. Note that the scale of the loss is not comparable between both
approaches, since the range of the scattershot targets (which are Hamming weights of parts
of the target vector) is much larger than the binary values of the target values themselves.
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Figure 4: Validation loss evolution for Model 1 (left) and Model 2 (right) over 100 epochs
of training.

Remark 3. It is worth mentioning that our experiment described here using synthetic data
contains no noise. In principle, there is no uncertainty about the signal and there is a
simple algorithm that recovers all the target bits. Still, at least the results of the simple
ML-based analysis we conducted suggest that some bits of the target are much less readily
exploitable than others; the direct attack has difficulties to see any bias at all for some of
them. It is tempting to speculate that the very strong differences we see in the apparent
exploitability of different S-boxes in the CHES 2020 challenge task are likewise due partly
or wholly to logical difficulties of extracting the signal instead of being due to the absence
of an exploitable signal for the problematic S-boxes. This suspicion is (weakly) supported
by the observation that the implementation provides no clear reason for the existence of
these differences in leakage and the fact that the use of the scattershot encoding helps to
solve some S-boxes that otherwise show no significant bias. The learning history of our
direct attack attempt also showed some support for a pattern of temporary stalling over
the first 400 epochs of training that is similar to that observed in the synthetic task, in
spite of our use of a cylic learning rate schedule to prevent the model from getting stuck
in local minima (see Figure 5).

5 The Stochastic Approach
In this section we present further analyses and insights that we gained with the help of
the stochastic approach [16]. To this aim, we first extend its concept in Subsection 5.1 to
a tweakable block cipher with shared keys whose implementation is protected by Boolean
masking, before we show the results of some numerical experiments (Subsection 5.3).
Finally, Subsection 5.4 contains a brief comparison between the attack efficiencies of the
stochastic approach and of the neural network. As in the “classical” stochastic approach,
we assume that the random variable

It(x, z, k̃) := ht(x, z, k̃) +Rt (3)

quantifies the random electrical current (or the power consumption) at time t, where its
distribution depends on the triple (x, z, k̃). Here, x and z denote a part of the plaintext
(possibly including a tweak) and the masking bits, while k̃ denotes the part of the shared key
which is targeted by the attack. The leakage function ht(x, z, k̃) quantifies the deterministic
part of the leakage while the random variable Rt models the noise. The noise is caused
by other operations which are computed in parallel to the targeted one (independent of
(x, z, k̃)) and maybe to some degree on the effect of the power measurement. We assume
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Figure 5: Development of the loss rate of our model in an attempt to directly learn
predicting the target bits of the 3-share challenge. The loss given for each epoch is the
lowest validation loss attained in the next ten epochs of training; this removes the effect
of the cyclic learning rate schedule on loss development, which would otherwise clearly
dominate. Some signs of capture by local minima are evident for epochs 60-87, 90-139 and
150-269.

that the noise vector Rt is independent of hz(x, z, k̃) and is normally distributed with
expectation 0. The profiling essentially works as usual (with shared subkeys in place of
subkeys), while the key extraction is more challenging because of the shared keys.

5.1 Different Steps of the Stochastic Approach
In the following we adjust the stochastic approach to shared keys, and we explain and
justify the decision rule.

5.2 Vector space bases for different substeps
At first the attacker/evaluator needs to select appropriate vector space bases together
with corresponding points of interest. To this aim it is necessary to identify and model
the operations which are relevant for the current at a given timepoint. This requires a
good understanding of the implementation and usually some trial and error, that means
trying different points of interest and different vector space bases and observing which one
fits best at the given time instance. In this paragraph we describe different operations of
Algorithm 2 that can be used in the stochastic approach and provide the corresponding
bases. To this aim, we fix an S-box s and consider the different S-boxes separately. We
always include g0,t;̃k = 1 in our bases to model the (sub-)key-independent signal. In order
to guarantee that the coefficients of the different basis vectors are of the same magnitude,
we subtracted a global mean trace from all traces before computing the coefficients. (This
significantly reduces the absolute values of the key-independent coefficients β0,t;̃k, which
would dominate otherwise, possibly spoiling the parameter estimation.) The remaining
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estimation of the basis coefficients can be performed as usual by solving a least-squares
problem (with shared key bits in place of key bits).

(1) Key Loading (Line 3 of Algorithm 2), 4 · d POIs
Assuming a Hamming weight leakage (see also Subsection 4.3), we can take the single
bits of x̃[·, s, ·] as basis vectors, which are in total 4 · d ones. This can be achieved if
we set

h̄∗t (x̃, z, k̃) := β0,t;k̃ +
3∑
i=0

d∑
j=1

βi,j,t;k̃ḡi,j,t;k̃(x̃, z, k̃),

ḡi,j,t;k̃(x̃, z, k̃) = k̃[i, s, j − 1].

(2) Tweak Addition (Line 4 of Algorithm 2), 4 POIs

h̄∗t (x̃, z, k̃) = β0,t;k̃ +
3∑
i=0

βi,t,k̃ḡi,t;k̃(x̃, z, k̃),

ḡi,t;k̃(x̃, z, k̃) = k̃[i, s, 0]⊕ T [i, s].

(3) Computation of the S-Box (Line 7 of Algorithm 2), d POIs
During the computation of the S-box there are according to (1) ISW-multiplications
and XOR-operations that can be exploited. The evaluation of the S-box involves
several masking bits in the thereby used ISW-multiplication, we first provide some
further details on its evaluation, before we propose basis functions.
The S-box is applied to all shares of the jth column x̃[·, j, ·] of the working state,
j ∈ {0, 1, . . . , 31}. In the notation of (3)) we have

• known plaintext x = T (0)[·, j] ⊕ p[·, j] ∈ {0, 1}4, inclusive the tweak value; in
the challenges p[i, j] = 0 for all (i, j) ∈ {0, 1, 2, 3} × {0, . . . , 31}. Formally, we
may extend x to the shares 1, . . . , d − 1 by setting x ≡ 0 there, denoting this
consistently by x̃.
• shared key K̃[·, j, ·] ∈ {0, 1}4d that is relevant for the jth S-box.
• masking bits: The evaluation of an S-box (1)) requires four times Algorithm 3
(ISW-multiplication), four times an XOR-operation and once Algorithm 4 (mask
refreshing). All together, these subalgorithms require 4

(
d
2
)
+0+d = 2d(d−1)+d =

2d(d− 1
2 ) masking bits.

In particular, (x, z, k̃) ∈ {0, 1}4 × {0, 1}2d(d− 1
2 ) × {0, 1}4d, and all the intermediate

values that occur within the evaluation of the S-box can be expressed in terms of x, z
and k̃.
The amount of masking bits might become critical as it grows quadratically in the
number of shares. Altogether, there are 2d(d − 1

2 ) + 4d = 2d(d + 3
2 ) unknown bits

(masking bits and shared key bits). This does not cause a problem in the profiling
phase, but the key extraction (see Section 4) becomes numerically infeasible as the
number of shares d increases. For d = 3 the number of unknown bits equals 27, which
should be feasible, but already for d = 4 it is 44.
Hence, at least for d > 3 strategies are needed that reduce the amount of unknown
bits. All the shared key bits occur (implicitly) in the first two ISW-multiplications
and in the subsequent XOR-additions (computing y[1] and y[0] for all shares). Mask
refreshing is not relevant for these operations because it only updates y[1] after it has
been calculated. Restricting our attack on the S-box to these four substeps “wastes”
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the side-channel information which stems from the computation of y[3] and y[2]. On
the positive side this limits the number of unknown bits to 2

(
d
2
)

= d(d− 1).

After these considerations, we exemplary show the proposed basis functions for the
masked stated ỹ[1, :] = (x̃[0, :]� x̃[1, :]︸ ︷︷ ︸

=q̃

)⊕ x̃[2, :]:

(a) (Single) ISW-Multiplication (Line 4 of Algorithm 3), d POIs, masking bits
ci = ai � bi

h̄∗t (x̃, z, k̃) = β0,t;k̃ +
d∑
j=1

βj,t,k̃ḡj,t;k̃(x̃, z, k̃),

ḡj,t;k̃(x̃, z, k̃) = x̃[0, s, j − 1]x̃[1, s, j − 1].

(b) (Single) ISW-Multiplication (Lines 9 and 10 of Algorithm 3), d(d− 1) POIs ai� bj
and aj � bi, similarly as above

(c) (Single) XOR (according to (1)), d POIs

h̄∗t (x̃, z, k̃) = β0,t;k̃ +
d∑
j=1

βj,t;k̃ḡj,t;k̃(x̃, z, k̃),

ḡj,t;k̃(x̃, z, k̃) = q̃[j − 1]⊕ x̃[2, s, j − 1].

Remark 4. (i) The real amount of masking bits depends on how far one evaluates
computation of the S-box, e.g. whether one only considers y[1], or y[1] and y[0], or
the complete S-box. As mentioned earlier, using only y[1] and y[0] the masking bits
needed for the mask refreshing of y[1] can be neglected. On the negative side, some
information gets lost.

(ii) Furthermore, the multiplications in the ISW-Algorithm 3 (line 4: ci = ai � bi, line 9:
ai � bj , line 10: aj � bi) can be observed without masking bits. As a consequence,
the operations in (1), (2), (3)(a) and (3)(b) for y[1] and y[0] can be exploited
completely without masking bits. Only the subsequent XOR in step (3)(c) that
requires the execution of the full ISW-multiplication needs the masking bits rij of
the ISW-algorithm.

5.2.1 Estimation of the Covariance Matrix

Let t1 < . . . < tm be the chosen points of interest. As mentioned earlier, we assume
Rt = It(x, z, k̃)−ht(x, z, k̃) to be centered normally distributed, so that the m-dimensional
random vector (It1(x, z, k̃)−ht1(x, z, k̃), . . . , Itm(x, z, k̃)−htm(x, z, k̃)) is centered normally
distributed as well for some covariance matrix C. Then

~I~t(x, z, k̃) := (It1(x, z, k̃), . . . , Itm(x, z, k̃))

has m-dimensional density

f(x,z,k̃) : Rm → R, f(x,z,k̃)(~i~t) = 1
(2π)m/2

√
detC

e−0.5(~i~t−~h~t(x,z,k̃))TC−1(~i~t−~h~t(x,z,k̃)). (4)

Here, ~t = (t1, . . . , tm)T denotes the collection of points of interest and ~i~t refers to the
measured current vector at the time instances t1, . . . , tm. In the key extraction the attacker
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does not know the masking values and treats them as realizations of random variables.
The random vector ~I~t(x, Z, k̃) has density

fx,k̃(·) := |M |−1
∑
z∈M

fx,z,k̃(·),

where M := {0, 1}u denotes the set of admissible masking values, and u ≤ 2d(d − 0.5)
denotes the number of considered masking bits.
Since the exact leakage function ~h~t (m-dimensional vector) is unknown in the key extraction
phase, we substitute in (4) the estimated approximate leakage function ~̃h∗~t and the estimated
covariance matrix C̃, yielding an approximate density f̃(x,z,k̃) : Rm → R.

5.2.2 Key extraction

Let k̃ = (k̃0, . . . , k̃d−1) ∈ {0, 1}4d be the targeted part of the shared key, while its d
components denote the 4-bit subvectors of the particular shares. Since for each power
trace the key shares are selected randomly they are in general different for all power traces.
However, it is not necessary to determine all these key shares. Instead, we have to guess
the (unshared) subkey k ∈ {0, 1}4 on the basis of N3 power traces.
We introduce the subkey classes

C(k′) := {k̃′ := (k̃′0, . . . , k̃′d−1) | k̃′0 ⊕ · · · ⊕ k̃′d−1 = k′} for k′ ∈ {0, 1}4,

that means C(k′) denotes the set of all shared key candidates for the slice K̃[·, i, ·] whose
XOR-sum equals k′. Each class C(k′) contains 24(d−1) elements because the shares
k̃′0, . . . , k̃

′
d−2 may attain any value while k̃′d−1 is determined via k̃′d−1 = k′⊕ k̃′0⊕· · ·⊕ k̃′d−2.

We define the likelihood function α(·) by

αN3(k′) :=
N3∏
j=1

∑
k̃′∈C(k′)

∑
z′∈M

f̃x,z′,k̃′(~ij;~t) for k′ ∈ {0, 1}4, (5)

where ~ij;~t denotes the current vector of the jth power trace. We decide for that key
candidate k∗ ∈ {0, 1}4, for which αN3(k∗) is maximal (maximum likelihood estimator). If
the power consumption at the considered time instants t1, . . . , tm does not depend on all
masking bits (e.g. because only one or two ISW-multiplications are considered), the inner
sums in (5) have less than 22d(d− 1

2 ) terms, speeding up the evaluation of (5).
Remark 5. Depending on the number m of points of interest it may be profitable to apply
e.g. a PCA or LDA. This does not affect formula (5) in general, but only the densities
f(x, z, k̃).

Background and justification of decision rule (5) While for masked implementations
with “usual” (i.e. unshared) keys the optimal decision rule in terms of the densities is
obvious, which is, however, not the case for implementations with shared keys. Although
decision rule (5) appears natural, it deserves some further explanation.
We assume that the relevant (targeted) parts of the plaintexts x1, . . . , xN3 and masking
values z1, . . . , zN3 of the power traces j = 1, 2, . . . , N3 are realizations of independent and
identically distributed random vectors (X1, Z1), . . . , (XN3 , ZN3). Since the tweak values
are uniformly distributed, the Xj can be assumed to be uniformly distributed on their
domain as well. The random vector ~I~t(Xj , Zj , k̃j) describes the jth random m-dimensional
current vector at the time instants ~t = (t1, . . . , tm), while k̃j ∈ {0, 1}4d denotes the correct
shared subkey of trace j.
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Assume that the random variables X and Z are independent and uniformly distributed on
their respective domains. Then the random variable

fx,z′;k̃′(~I~t(x, z, k̃))

quantifies the randomm-dimensional density of a power trace for the shared key candidate k̃′
when k̃ is the correct shared subkey. At this point, z denotes the correct masking value,
while z′ ∈M is an admissible masking value. We define

A(k′ | k) :=
∑
k̃′∈Ck′

∑
k̃∈Ck

∑
x∈{0,1}p

∑
z∈M

∑
z′∈M

E~R~t

(
fx,z′;k̃′

(
~I~t(x, z, k̃)

))
=

= 2p|M |
∑
k̃′∈Ck′

∑
k̃∈Ck

∑
z′∈M

EX,Z,~R~t

(
fX,z′;k̃′

(
~I~t(X,Z, k̃)

))
for k, k′ ∈ {0, 1}4.(6)

Since the shared subkeys are selected uniformly within the particular subkey classes, the
term (6) equals (up to a constant) the expected value of fx,z′;k̃′

(
~I~t(x, z, k̃)

)
, averaged

over randomly selected shared subkeys k̃′ ∈ C(k′), k̃ ∈ C(k), random plaintexts X, random
masking value Z and admissible masking values Z ′.
As noted above, the random vectors (X1, Z1), . . . , (XN3 , ZN3) and the selection of the
shared subkeys are independent for all traces. Thus, to decide whether decision rule (5)
can be successful it suffices to focus on the expectation of a single trace. Thus, if

A(k | k) > A(k′ | k) for all k, k′ ∈ {0, 1}4, (7)

the decision rule (5) finds the correct key (with large probability), provided that the sample
size N3 is sufficiently large. In other words, (7) provides a sufficient condition for the
success of decision rule (5). At this point, note that if Y denotes a Rn-valued random
variable with Lebesgue density f(·) and g : Rn → R, then E(g(Y )) =

∫
Rn g(y)f(y) dy

(provided that the integral exists).
Depending on the leakage model, other decision rules than (5) may be reasonable as well.
The correct shared subkey k̃ should always provide a large contribution to the outer sum
of (5) for the correct subkey class C(k). However, it might happen that within some wrong
subkey class C(k′′) several wrong shared key candidates make a significant contribution to
the corresponding outer sum, in total exceeding the sum for the correct subkey class C(k).
In this case, a reasonable option would be to define the likelihood function α∗(·) by

α∗N3
(k′) :=

N3∏
j=1

max
k̃′∈C(k′)

{∑
z∈M

f̃x,z,k̃′(~ij;~t)
}

for k′ ∈ {0, 1}4, (8)

and to decide for that key candidate k∗ ∈ {0, 1}4 for which α∗N3
(k∗) is maximal (maximum

likelihood estimator). For decision rule (8) the equivalent to (6) reads as

A∗(k′ | k) :=
∑
k̃∈Ck

∑
x∈{0,1}p

∑
z∈M

max
k̃′∈C(k′)

{∑
z′∈M

E~R~t

(
fx,z′;k̃′

(
~I~t(x, z, k̃)

))}
for k, k′ ∈ {0, 1}4.

The equivalent of the sufficient condition (7) is given by

A∗(k | k) > A∗(k′ | k) for all k, k′ ∈ {0, 1}4.

Example 1. This example illustrates definition (6) and the sufficient condition (7). To
keep it simple we consider 1-bit subkeys instead of 4-bit subkeys as above. We assume
a non-masked implementation with leakage model ht(x̃, k̃) = a + b · ham(x̃ ⊕ k̃). Here,
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x̃, k̃ ∈ {0, 1}d, a ≥ 0 and b > 0 are constants, while ham(·) denotes the Hamming weight.
In this scenario, only two subkey classes C(0) and C(1) exist, where

C(i) =

k̃′ = (k̃′0, . . . , k̃′d−1) |
d−1⊕
j=0

k̃′j = i

 .

We focus on a single time point t (i.e., m = 1) and assume that the leakage Rt is N(0, σ2)-
distributed. Since the implementation is not masked, the two inner sums (over z and z′)
in the first line of (6) vanish. We compute the expectation

ERt
(
fx̃;k̃′

(
~I~t(x̃, k̃)

))
=
∫ ∞
−∞

fx̃;k̃′(y)fx̃;k̃(y) dy

= 1√
2πσ

∫ ∞
−∞

e−
(y−(a+ham(x̃⊕k̃′)b))2

2σ2 e−
(y−(a+ham(x̃⊕k̃)b))2

2σ2
√

2πσ
dy

= 1√
2πσ
√

2πσ

∫ ∞
−∞

e−
2y2−2y(a+ham(x̃⊕k̃′)b)−2y(a+ham(x̃⊕k̃)b)+(a+ham(x̃⊕k̃′)b)2+(a+ham(x̃⊕k̃)b)2

2σ2 dy

= 1
2
√
πσ

1√
2π σ√

2

∫ ∞
−∞

e−
(
y− (a+ham(x̃⊕k̃′)b)+(a+ham(x̃⊕k̃)b)

2

)2

2(σ/
√

2)2 e−
((a+ham(x̃⊕k̃′)b)−(a+ham(x̃⊕k̃)b))2

4σ2 dy

= 1
2
√
πσ

e−
(ham(x̃⊕k̃′)−ham(x̃⊕k̃))2

4(σ/b)2 . (9)

Equation (9) confirms the intuition that the expectation is maximal if k̃′ = k̃, and that
it is the smaller the more the assumed Hamming weight ham(x̃ ⊕ k̃′) differs from the
correct Hamming weight ham(x̃⊕ k̃′). We note that G = {0, 1}d, equipped with ⊕ (bitwise
XOR-operation), is an Abelian group. In particular, C(0) is a subgroup of G with index 2.
If x̃ ∈ C(0), then C(i)⊕ x̃ = C(i) for i = 0, 1, whereas C(i)⊕ x̃ = C(1− i) if x̃ ∈ C(1). If we
assume that the shared plaintexts are uniformly distributed on {0, 1}d, then (9), Fubini’s
Theorem and the above considerations simplify (6) (with x̃ in place of x) to

A(k′ | k) =
∑

x̃∈{0,1}d

∑
k̃′∈C(k′)

∑
k̃∈C(k)

1
2
√
πσ

e−
(ham(x̃⊕k̃′)−ham(x̃⊕k̃))2

4(σ/b)2

= 2d−1

 ∑
k̃′∈C(k′)

∑
k̃∈C(k)

1
2
√
πσ

e−
(ham(k̃′)−ham(k̃))2

4(σ/b)2

+
∑

k̃′∈C(1−k′)

∑
k̃∈C(1−k)

1
2
√
πσ

e−
(ham(k̃′)−ham(k̃))2

4(σ/b)2

 . (10)

Likewise, (10) applies when x is uniformly distributed on {0, 1} and x̃ = (x, 0 . . . , 0), the
case which corresponds to the Clyde cipher. In this case, the factor 2d−1 is replaced by 1,
and x̃ ∈ {0, 1}d in the outer sum reads x ∈ {0, 1} (as in (6)). Note that (10) does not
depend on x̃. Furthermore, also (11) remains valid with smaller constant c.
By (10) it suffices to verify the sufficient condition (7) for (k, k′) ∈ {(0, 0), (0, 1)}. Obviously,
in C(0) there exist

(
d

2u
)
elements with Hamming weight 2u (for 0 ≤ 2u ≤ d), while C(1)

contains
(

d
2v+1

)
elements with Hamming weight 2v+1 (for 0 ≤ 2v+1 ≤ d). This observation
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allows to further simplify (10) to

A(0 | 0) = c

b d2 c∑
u=0

b d2 c∑
v=0

( d

2u

)( d

2v

)
z

(2u−2v)2

0 +
b d−1

2 c∑
u=0

bb d−1
2 c∑

v=0

( d

2u + 1
)( d

2v + 1
)

z
(2u−2v)2

0


A(1 | 0) = c

b d−1
2 c∑

u=0

b d2 c∑
v=0

( d

2u + 1
)( d

2v

)
z

(2u+1−2v)2

0 +
b d2 c∑
u=0

bb d−1
2 c∑

v=0

( d

2u

)( d

2v + 1
)

z
(2u−2v−1)2

0

 , (11)

where c = 2d−1

2
√
πσ

> 0 and z0 = e−
1

4(σ/b)2 ∈ (0, 1).
For the special case d = 3, careful computations yield

A(0 | 0) = 2c
(
10 + 6z4

0
)

and A(1 | 0) = 2c
(
15z0 + z9

0
)
.

Let
p(z) := 10− 15z + 6z4 − z9,

so that the sufficient condition (7) is equivalent to p(z0) > 0. It holds that p(z) > 0 for
z ∈ (0, 1): We have p′(z) = −15 + 24z3 − 9z8 and p′′(z) = 72z2 − 72z7, so in particular
p(0) = 10, p(1) = 0, p′(0) = −15, p′(1) = 0 and p′′(z) > 0 for z ∈ (0, 1). Thus p′(z) < 0
for z ∈ (0, 1), which proves the claim. Hence for d = 3, condition (7) is fulfilled. Similarly,

A∗(0 | 0) = c∗ · 1 and A∗(1 | 0) = c∗z0,

where c∗ = 1
2
√
πσ

> 0 and z0 = e−
1

4(σ/b)2 ∈ (0, 1), and thus A∗(0 | 0) > A∗(1 | 0).

5.3 Numerical Results
Next, we show some numerical results of the stochastic approach and discuss its advantages
and shortcomings. In particular, we have a closer look at the estimated basis coefficients
and the information they contain. We focus on d = 3 shares here, substract a global
mean trace before the estimation and use only those operations that can be exploited
without any masking bits, namely the key loading, the plaintext and tweak addition and
the ISW-multiplication in the first two steps of the S-box computation, see also Remark 4.
This yields in total 50 POIs that are chosen manually by inspecting the evolution of the
estimated coefficients for S-box 17 in the interval in which the respective operation takes
place. Indeed, for the selected S-box there is always a sharp peak in the signal that allows
to take the corresponding time point as POI. As we know that all s = 32 S-boxes are
processed in parallel, the same POIs can be taken for all other S-boxes as well. Figure 6
exemplarily shows the evolution of the 4 · d = 12 estimated coefficients for the key loading
(left column) and the ISW-multiplications ai � bi (middle column) respective ai � bj (right
column) in case of the “easy” S-box 17 (top row), an “medium” S-box 23 (middle row) and
a “difficult” S-box 0 (bottom row). Each subfigure depict the evolution of the estimated
values of the coefficients in front of the different basis functions, plotted over the range in
which the respective operations take place. Already here the coefficients indicate that the
different S-boxes are differently difficult to attack, as the coefficients of the “easy” S-box 17
are very clear, while the ones of the harder S-boxes are much noisier. In particular for
S-box 17 one sees a sharp peak for each basis function, which allows to select appropriate
POIs simply by visual inspection. Also, depending on the exploited operation, the order of
magnitude of the coefficients for the different S-boxes varies considerably, the coefficients
for S-box 17 are up to five times as large as those for e.g. S-box 0.
To further illustrate the different difficulty levels, we display in Figure 7 the evolution of the
coefficient corresponding to a single key bit if all 32 S-boxes are estimated simultaneously.
In accordance with the observations in the neural network approach, see also Figure 2,
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(a) Key loading S-box 17 (b) ai � bi for S-box 17 (c) ai � bj for S-box 17

(d) Key loading S-box 23 (e) ai � bi for S-box 23 (f) ai � bj for S-box 23

(g) Key loading S-box 0 (h) ai � bi for S-box 0 (i) ai � bj for S-box 0

Figure 6: Estimation of basis coefficients for different operations and S-boxes.

the easiest S-box 17 shows the highest peak, while the medium S-boxes 20, 23 or 26
already yield significantly lower peaks (approximately one half of the maximal peak),
which are however still clearly distinguishable from the other, rather noisy signals of the
remaining S-boxes whose height is only one sixth compared to the maximal height. These
observations are qualitatively similar in case of the ISW-multiplication, see Figures 7(b)
and (c), where we exemplarily show the first coefficients for the computation of the first
ci = ai � bi respective ai � bj in the ISW-multiplication for x[0]� x[1].

Next, we examined how many traces are needed to identify the correct (unshared) key.
In case of S-box 17, these are approximately 50 traces when avoiding operations that
involve masking bits. It turned out that including masking bits does not yield significantly
better results, but leads to a much higher numerical effort in the attack phase. This might
be explained by the observation that already the key loading and the plaintext addition
involve all unknown key bits and that their estimated coefficients are higher and clearer as
in case of the operations in the context of the ISW-multiplication.

Contrary to the deep learning based approach, the attack phase does not succeed for the
difficult S-boxes, even when taking a high number of traces. This is most likely due to the
fact that already the estimation of the coefficients yield rather poor results.

The leakage of the “easy” S-box 17 is very large, allowing a successful attack on subkey k17.
Unfortunately, its large leakage spoils the sigma-to-noise ratio of the other S-boxes. The
signal-to-noise ratio quantifies the impact of small and large β-coefficients. We define
~x = (x0, . . . , x31), ~z = (z0, . . . , z31), and ~̃k = (k̃0, . . . , k̃31) and assume that the power
consumption of all S-boxes are independent. This justifies to extend equation (3) from a
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(a) Key loading

(b) ai � bi

(c) ai � bj

Figure 7: Estimation of basis coefficients for different operations and all S-boxes simulta-
neously.



A. Gohr, F. Laus, W. Schindler 29

Figure 8: Estimation of the signal-to-noise ratio of the different S-boxes for the key
loading operation.

single to all S-boxes by

It(~x, ~z, ~̃k) =
31∑
j=0

ht(j)(xj , zj , k̃j) +R∗t .

The random variable R∗t summarizes the (centered) noise at time t that does not originate
from any of the 32 S-box operations but from further operations that take place at the
same time. We interpret the values x0, . . . , x31 and z0, . . . , z31 as realizations of random
variables X0, . . . , X31, Z0, . . . , Z31, so that

Var
(
It( ~X, ~Z, ~̃k)

)
=

31∑
j=0

VarXj ,Zj
(
ht(j)(Xj , Zj , k̃j)

)
+ Var (R∗t ) .

The term VarXj ,Zj (·, ·, ·) quantifies the “algorithmic noise”, which depends on Xj , Zj

and k̃j . Given a fixed shared key ~̃k, it depends on the signal-to-noise ratio

SNR(r) :=
VarXr,Zr

(
ht(r)(Xr, Zr, k̃r)

)∑
j=0,...,31;j 6=r

VarXj ,Zj
(
ht(j)(Xj , Zj , k̃j)

)
+ Var (R∗t )

whether an S-Box r is “easy” or “difficult”.
If g(j),0,t,k̃j = 1, g(j),1,t,k̃j , . . . , g(j),u−1,t,k̃j denotes an orthonormal basis for S-box j, the
computation of the algorithmic variance of S-box j simplifies to

VarXj ,Zj
(
ht(j)(Xj , Zj , k̃j)

)
≈
u−1∑
τ=1

β2
(j),τ,t;k̃j

≈
u−1∑
τ=1

β̃2
(j),τ,t;k̃j

.

Figure 8 shows the estimated signal-to-noise ratio of the different S-boxes for the key
loading operation. The corresponding figures of the other operations look qualitatively
similar.

5.4 Leakage Assessment
The implementation at hand is especially protected against side-channel attacks. Neverthe-
less, with our neural network-based approach it is possible to extract enough information
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to reveal the secret key, and in the aftermath of the contest we had a closer look at the
parts of the implementation that are actually leaking sensitive information.
By its design it is evident which operations of the algorithm the stochastic approach
exploits, as these are directly reflected in the choice of the basis functions. For the neural
network approach, however, it is less clear which information the network uses, since it
is fed with the whole (subsampled) traces and performs the selection of relevant points
on its own. At the same time, this illustrates one of the major advantages of neural
network-based approaches, as they do not require the preselection of points of interest,
but find them of their own.
We did different experiments to find out which points in the trace are important for our
neural network based leakage extractor. All of them were run on the 3-share data set,
as we did not expect substantially different phenomena to appear for the higher targets.
We did, however, not test this assumption, but leave it for future research. We tried the
following techniques:

• First, we subdivided our 62,500 point into 625 windows, each of which consisting of
100 points, and compared the predicted bit probabilities for the shared state before
and after zeroizing each window, averaging results over a small set of traces.

• We calculated the gradient of the predictor as a function of the input trace for a
subset of input traces in our data set.

In both experiments, we assumed that points that are of interest to the neural network
would show up as points in which the influence of small changes to the trace on the
prediction output is high. Both experiments yielded qualitatively similar results, so we
only describe the results of the window-wise zeroization experiment in more details.

Methods We selected 200 traces from the data set FKEY_SW3_K1_1000_0, sent them
through our predictor, and converted the scattershot predictions into predictions of single
key bits. We then zeroized each of our 625 windows in turn, ran the same prediction using
the altered trace, and finally calculated the mean square error of the new prediction with
respect to the prediction obtained from the unaltered trace.

Results The main active region for all traces was found to be between data points 35,000
and 60,000, with smaller and less significant active regions also at the very beginning of the
trace for some S-boxes. Within that very broad active region, large differences in signal
attribution were observed between different S-boxes. Figure 9 shows the relevant profile
for the S-boxes 17, 0 and 22. It is worth noting here that the prediction of the particularly
difficult S-box 22 draws on some regions of the trace that are not used at all for the
other two S-boxes. Matching the operations of the algorithm with the shape of the trace
and the time points the first two active regions around time point 38,000 and 43,000 are
during the S-box computation, more precisely they correspond to the ISW-multiplications(
y[1, ·] � x[3, ·]

)
⊕ x[0, ·] and y[2, ·] =

(
y[0, ·] � y[1, ·]

)
(see equation (1)) after the mask

refreshing. The very active region after point 48,000 is during the computation of the
L-box, which is rather surprising and seems a bit odd since the network actually aims
at predicting the S-box output. Furthermore, it might serve as an explanation why
the AI-based approach considerably outperforms the stochastic approach (and any other
classical approach we tried such as templates), since these approaches cannot exploit the
L-box computation acting on rows of the Clyde-state instead of columns. This is mainly
due to numerical reasons, in particular the huge amount of masking bits and the fresh
randomness caused by the mask refreshing. The stochastic approach yet helped us to
understand why attacks on different S-boxes are so differently efficient and allowed to
quantify this knowledge.
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Figure 9: Results of our main leakage attribution experiment for our deep neural network.
Input traces for the 3-share challenge were divided into 625 windows 100 data points in
length and the perturbation of the bit-wise prediction vector induced by zeroizing each
window was recorded. Results here shown are for three selected S-boxes.

6 Conclusion and Future Work

In this paper we presented our deep learning-based solution to the CHES 2020 challenge
and gave further insights into certain aspects of our approach, in particular the scattershot
encoding.
Furthermore, we provided and analyzed an alternative, “classical” approach, namely the
stochastic approach. Compared to previous works, both the AI-method (in form of the
scattershot encoding) as well as the stochastic approach (in form of the key extraction
phase) had to be adapted to the masked setting encountered in the contest, where the
randomly chosen shared states make the combination of leakage information across different
traces much more difficult compared to an unshared setting.
Our results show that fairly strong logical countermeasures can be broken by a deep learning-
based attack that uses only a limited amount of information about the implementation.
This might be a hint that complete new strategies and countermeasures are needed to
protect implementations against AI-based attacks.
However, our results also show that explaining the leakage found by such methods is not
always easy: we do, for instance, not have a good explanation from first principles yet
for the massive difference in the magnitude of leakage observed for different S-boxes. In
addition, it can be difficult to distinguish logical problems of leakage extraction from
the lack of leakage: this point is driven home especially by our experiments to better
understand the effect scattershot encodings using a completely synthetic problem.
Our research also shows that much remains to be discovered in a wide variety of areas around
ML-based side-channel attacks: pre-processing, data representation, network architectures
and post-processing model outputs are all less well understood for side-channel analysis
than in more standard application domains of ML-methods such as signals processing
tasks.
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