
Side-Channel Analysis of Lattice-Based
Post-Quantum Cryptography:

Exploiting Polynomial Multiplication
Catinca Mujdei, Arthur Beckers, Jose Bermundo, Angshuman Karmakar,

Lennert Wouters and Ingrid Verbauwhede

imec-COSIC, KU Leuven, Kasteelpark Arenberg 10, B-3001 Leuven-Heverlee, Belgium,
catinca_mujdei@yahoo.ca,firstname.lastname@esat.kuleuven.be

Abstract. Polynomial multiplication algorithms such as Toom-Cook and the Number
Theoretic Transform are fundamental building blocks for lattice-based post-quantum
cryptography. In this work we present correlation power analysis based side-channel
analysis methodologies targeting every polynomial multiplication strategy for all
lattice-based post-quantum key encapsulation mechanisms in the final round of the
NIST post-quantum standardization procedure. We perform practical experiments
on real side-channel measurements demonstrating that our method allows to extract
the secret key from all lattice-based post-quantum key encapsulation mechanisms.
Our analysis demonstrates that the used polynomial multiplication strategy can
significantly impact the time complexity of the attack.

Keywords: post-quantum cryptography, side-channel analysis, number-theoretic trans-
form, Toom-Cook

1 Introduction
The advent of quantum computers and their impact on the security of classical public-key
cryptography (PKC) has increased research interest into post-quantum cryptography
(PQC). The majority of the PQC research is being conducted in the context of the PQC
standardization procedure lead by the National Institute of Standards and Technology
(NIST) [NIS17]. NIST recently requested more research into the physical security of the
PQC implementations as part of the, currently ongoing, final round of the standardization
process [AASA+17].

New cryptographic primitives are first assessed cryptanalytically to ensure their the-
oretical security [ABD16, APS15, DDGR20]. A real-world implementation of a secure
cryptographic primitive can still be vulnerable to implementation or physical attacks.
Side-channel attacks are considered passive physical attacks in which the adversary is
able to acquire side-channel information (e.g. power consumption, electromagnetic (EM)
radiation, execution time, etc.) that is unintentionally produced by the implementation.
This side-channel information can be exploited to extract secret information [KJJ99].

Lattice-based hard problems have a long history of being used for cryptographic
constructions. Starting with Ajtai’s seminal work on the short integer solution hard
problem [Ajt96], and later with the introduction of NTRU [HPS98] and the learning
with errors (LWE) hard problem [Reg04]. However, compared to PKC primitives such
as RSA [RSA78] and elliptic-curve cryptography (ECC) [Mil86, Kob87], lattice-based
cryptography received little attention in the context of physical security.

mailto:catinca_mujdei@yahoo.ca, firstname.lastname@esat.kuleuven.be


The current body of work related to side-channel analysis of PQC can be divided
in two major classes. The first class of attacks use side-channels to perform chosen
ciphertext attacks (CCA). Multiple works demonstrated that LWE and learning with
rounding (LWR) schemes such as Kyber and Saber are vulnerable to CCA based side-
channel attacks by exploiting leakage caused by the Fujisaki-Okamoto (FO) transforma-
tion [RRCB20, BDH+21, XPRO20]. NTRU based schemes using the FO transform or
the Saito-Xagawa-Yamakawa transform have also been shown vulnerable to CCA based
side-channel attacks [REB+21]. Most of these attacks use purposefully crafted ciphertext,
such that the decrypted message depends on a single secret coefficient. By varying the
ciphertext the secret coefficients can be retrieved using statistical tests (e.g. the t-test).
On average a few thousand traces are sufficient to recover the full private key. All lattice
based schemes have been shown vulnerable to CCA side-channel attacks. However, the
ciphertexts used in most CCA based attacks will not decrypt to a valid message, and
will therefore result in decryption failures. Limiting the maximum number of allowed
decryption failures can prevent these attacks. For example, a device can impede CCA
based side-channel attacks by deleting all key material after a certain amount of decryption
failures have been observed.

The second class of attacks target the private key directly. This class of attack can
use valid ciphertext inputs that do not lead to decryption failures. Primas et al. target
the number theoretic transform (NTT) using profiled single trace attacks [PPM17], Pessl
et al. later expanded on these attacks in [PP19]. NTRU, being the oldest variant of the
lattice based finalists, has thus far received most attention when it comes to physical
side-channel attacks. Huang et al. target the polynomial multiplication of NTRU prime
using correlation power analysis (CPA), horizontal CPA, template attacks and simple
power analysis (SPA) [HCY20]. Earlier works by Lee et al. [LSCH10] targeted NTRU
using CPA, while Silverman et al. [SW07] performed timing attacks on NTRUEncrypt.
Note that several variants, parameter sets and implementations exist for NTRU, the listed
papers do not all target the most recent variant. In contrast, in this work we focus on the
schemes, and their reference implementations, that are currently in the final round of the
NIST PQC competition.

Interestingly, the current body of work related to the side-channel security of PQC is
focused on CCA attacks and more advanced profiled attacks. In this work we investigate
the applicability of classical non-profiled CPA approaches. Specifically, we provide a side-
channel analysis of the polynomial multiplication implementations used by all lattice-based
NIST PQC KEM finalists.

Concretely the contributions of this paper can be summarised as follows:

• We propose a non-profiled side-channel attack methodology targeting all the differ-
ent polynomial multiplication algorithms used in lattice-based cryptography. We
categorically show how these algorithms can be attacked using CPA. Our techniques
are generic for the different multiplication algorithms.

• We demonstrate practical side-channel attacks using real power traces on lattice-
based KEMs in the final round of NIST standardization procedure i.e. NTRU-
KEM [CDH+19], Kyber [ABD+21], and Saber [BMD+20]. For each of these schemes
there are multiple implementations relying on different multiplication algorithms.
We exhaustively demonstrate our attack on all the reference implementations of
these schemes.

• We compare the complexity of attacking the different schemes, multiplication methods
and parameter choices using CPA. We show how the different multiplication strategies
can have a significant impact on the data and time complexity of the attack.

2



Outline
In Section 2 we provide background information on the studied lattice-based cryptosystems
as well as the different strategies used for polynomial multiplication. In Section 3 we discuss
how Toom-Cook-based polynomial multiplication can be attacked using CPA. Similarly, in
Section 4 we apply our techniques to the NTT. In Section 5 we provide practical results,
demonstrating key recovery using real-world side-channel measurements on all lattice-based
KEMs in the final round of NIST standardization procedure. Finally, in Section 6, we
discuss and summarise our results, and discuss potential countermeasures.

2 Preliminaries
This section provides general notation and background information on lattice-based KEMs.
We also describe the Number Theoretic Transform and Toom-Cook polynomial multiplica-
tion strategies that are used by these lattice-based KEMs.

2.1 Notations
Throughout this paper, we denote by Zq the ring of integers modulo q for a positive integer
q. We consider rings of the form Rq = Zq[x]/(xn + 1), with n a power of 2, of which the
elements are denoted by lower-case letters, sometimes considering the variable x implicit;
if the variable x of a polynomial a(x) ∈ Rq is specified, then we denote its i-th coefficient
as ai. Vectors and matrices are written in bold lower and bold upper case, respectively.
Given a vector vvv, we write the mean value of its coefficients as vvv. Sampling an element x
from a distribution χ over some domain D is denoted as x← χ (D).

2.2 Lattice-based cryptosystems
The lattice-based KEMs in the final round of the NIST PQC competition are based on two
constructions. First, Kyber [ABD+21] and Saber [DKRV19], which are both variants of
the public-key encryption (PKE) scheme attributed to Lyubashevsky, Peikert and Regev
(LPR) [LPR10]. Secondly, NTRU-like schemes [CDH+19], which were first proposed by
Hoffstein, Pipher and Silverman [HPS98]. Specific transforms are applied to these schemes
to transform them from chosen-plaintext attack secure PKE to chosen-ciphertext attack
(CCA) secure KEM.

We briefly cover these schemes here, and refer the reader to the original submission
documents (e.g. [ABD+21, BMD+20, CDH+20]) for more details.

LPR encryption scheme. Regev’s Learning With Errors (LWE) problem [Reg05, Reg04]
entails solving a system of “noisy” linear equations: given a fixed secret sss ∈ Zkq , an error
e ∈ Zq and a uniformly random aaa ∈ Zkq , the goal is to recover sss from (aaa, b = aaa · sss + e).
Secret and error sampling for LWE-based schemes is typically done over a centered
binomial distribution βµ for a positive even integer µ [ADPS16]. Samples of βµ lie within
x ∈

{
−µ2 ,−

µ
2 + 1, . . . , µ2 − 1, µ2

}
and are distributed according to the probability mass

function
Pr[x|x← βµ] = µ!

(µ/2 + x)!(µ/2− x)!2
−µ.

The LPR-scheme is based on the hardness of Ring-LWE (RLWE) [LPR10], an algebraic
extension of LWE, with samples of the form (a, b = a · s + e) for polynomials a, s, e all
belonging to Rq = Zq[x]/(xn + 1). The module variant Module-LWE (MLWE) [LS15]
treats samples of the form (AAA,bbb = AAA · sss+ eee) for AAA ∈ Rl×lq and sss,eee ∈ Rlq. Learning With
Rounding (LWR) [BPR12] adds the random error term implicitly in the second component

3



of the LWE-sample (instead of explicitly adding it) by scaling down from q to a smaller
modulus p. Such a sample is of the form

(
a, b =

⌊
p
qa · s

⌉)
∈ Zkq × Zp. Ring as well as

module variants also exist for LWR. b
Algorithm 1 describes key generation in an LPR-based scheme. The public key is a

RLWE-sample (a, b) and is based on the secret key s. Algorithm 2 illustrates encryption of
an n-bit message m (after mapping it to Rq): two additional LWE-samples are generated
and m is added to the most significant bits of the second sample. Decryption (see
Algorithm 3) multiplies the first sample by the secret key, then subtracts it from the second
sample. A final decoding step removes the randomness introduced by the error terms e, e′
and e′′ from m’, yielding m.

In this paper, we target the medium security parameter sets of the MLWE-based KEM
Kyber (l = 3, n = 256, q = 3329 and µ = 4) and MLWR-based KEM Saber (l = 3, n = 256,
q = 213, p = 210 and µ = 8). Nevertheless, the presented attacks can be easily extended to
other security levels.

Algorithm 1 LPR key generation
1: a← U(Rq)
2: s, e← βµ(Rq)
3: b = a · s+ e
4: return (pk = (a, b), sk = s)

Algorithm 2 LPR encryption: input (pk,m)
1: s′, e′, e′′ ← βµ(Rq)
2: b′ = a · s′ + e′

3: v′ = b · s′ + e′′ +
⌊
q
2
⌋
m

4: return ct = (b′, v′)

Algorithm 3 LPR decryption: input (ct, sk)
1: m′ = v′ − b′ · s
2: return Decode(m′)

The chosen plaintext attack secure LPR-based PKEs can be converted to CCA-secure
KEMs using a variant [HHK17] of the Fujisaki-Okamato (FO) [FO99, FO13] transform.
The transform can prevent attacks that make use of a so-called plaintext-checking oracle,
which reveals information about the secret key by providing the decryption of specially-
crafted ciphertexts. Figure 1 shows the decapsulation process. The input ciphertext c is
first decrypted, after which the obtained plaintext is re-encrypted, resulting in c′. The
shared key is not revealed when a decryption failure occurs (i.e., c 6= c′). In other words,
an attacker can no longer gain information about the secret key as maliciously chosen
ciphertexts are rejected during decapsulation. However, as shown by Ravi et al., this
approach does not mitigate CCAs that make use of side-channel leakages [RRCB20].

x cs

pk

m
=
?c' c

c
(shared key)

or random key 

k
EncryptionDecryption

Decapsulation

Side-channel leakage

s

yes

no

Figure 1: The decapsulation procedure with re-encryption stage using the FO-transform.
The green and blue coloured components respectively denote what the attacker can or
cannot control during a chosen-ciphertext attack.

4



NTRU. NTRU-like schemes consider polynomial rings Z3[x]/Φn, Zq[x]/Φn and Zq[x]/(Φ1·
Φn), where Φ1 = x− 1 and Φn = xn−1 + xn−2 + · · ·+ 1. Key generation, encryption and
decryption are described in Algorithms 4, 6, and 5 respectively. The routines Sample and
Lift and sets Lr and Lm are explained in detail in [CDH+19]. The NTRU-submission to
the NIST PQC standardization procedure is a combination of NTRUEncrypt and NTRU-
HRSS-KEM, and proposes parameter sets for both ntruhps and ntruhrss. NTRU’s secret
coefficients {0, 1, 2} are not binomially distributed: coefficients 0 occur with probability
86

256 , whereas 1 and 2 occur both with probability 85
256 .

Algorithm 4 NTRU key generation
1: f, g ← Sample()
2: fq ← f−1 mod (q,Φn)
3: h← 3 · g · fq mod (q,Φ1 · Φn)
4: hq ← h−1 mod (q,Φn)
5: fp ← f−1 mod (3 · Φn)
6: return (pk = h, sk = (f, fp, hq))

Algorithm 5 NTRU decryption: input (ct, sk)
1: if c 6= 0 mod (q,Φ1), return fail
2: a← (c · f) mod (q,Φ1 · Φn)
3: m← (a · fp) mod (3,Φn)
4: m′ ← Lift(m)
5: r ← ((c−m′) · hq) mod (q,Φn)
6: If (r,m) ∈ Lr × Lm return (r,m, 0)
7: return (0, 0, 1)

Algorithm 6 NTRU encryption: input (pk, (r,m))
1: m′ ← Lift(m)
2: c← (r · h+m′) mod (q,Φ1 · Φn)
3: return ct = c

The initial NTRU submissions [CDH+19] also used the FO-transform to achieve CCA-
security. Instead, the final round submission of NTRU [CDH+20] uses the Saito-Xagawa-
Yamakawa [SXY18] transform (Algorithm 5 line 1). In contrast to the FO-transform,
the Saito-Xagawa-Yamakawa transform does not require re-encryption, and thus greatly
improves the efficiency of the cryptographic scheme. In this work we use side-channel
analysis to target the polynomial multiplication directly, this makes the presented attacks
independent of the used transform.

2.3 Multiplication strategies
Lattice-based cryptosystems usually resort to either the Number Theoretic Transform
(O(n logn)) [Pol71] or Toom-Cook/Karatsuba (O

(
n1+ε) , 0 < ε < 1) [Too63, Coo66, KO62]

for efficient multiplication of polynomials with n coefficients. Neither one of the two
algorithms is unambiguously the fastest in any scenario, characterized by operand size
and target processor architecture, since asymptotic complexities include constant factors
[ACC+21]. The core idea of both multiplication strategies is multiplication by point
evaluation. Given two n-coefficient polynomials a(x), b(x) ∈ Rq, evaluated at 2n − 1
distinct points {x1, x2, . . . , x2n−1} ∈ Zq, we can compute the coefficients of (a · b)(x) by
interpolation of the values (a · b)(xi) = a(xi)b(xi), 1 ≤ i ≤ 2n− 1.

2.3.1 Toom-Cook

The base case of Toom-Cook-based [Too63, Coo66] multiplication is that of Karat-
suba, [KO62] which we illustrate for two linear polynomials a(x) = a0 + a1x and b(x) =
b0 + b1x. Three evaluation points suffice, namely x1 = 0, x2 = 1 and x3 =∞. We then
get a(0) = a0, a(1) = a0 + a1, a(∞) = a1, b(0) = b0, b(1) = b0 + b1, b(∞) = b1. These
point evaluations can be interpolated as (a · b)(x) = a0b0 + (a1b0 + a0b1)x + a1b1x

2 =
a(0)b(0)+(a(1)b(1)−a(0)b(0)−a(∞)b(∞))x+a(∞)b(∞). This interpolation by point evalu-
ation reduces the number of scalar multiplications from four (a0b0, a1b0, a0b1, a1b1) to three

5



(a(0)b(0), a(1)b(1), a(∞)b(∞)). Karatsuba’s strategy can be applied to polynomials of
arbitrary (power-of-two) number of coefficients n by rewriting a(x) = a0(x) + a1(x)xn

2 and
b(x) = b0(x)+b1(x)xn

2 , and similarly splitting the sub-polynomials a0(x), a1(x), b0(x), b1(x)
until a threshold degree is reached. Below this threshold degree the naive schoolbook
method is used for multiplication.

The method of w-way Toom-Cook generalizes the idea of Karatsuba by splitting rw-
coefficient polynomials into w parts and performing the multiplication for r coefficients,
after which the results are recombined. That is, given two such polynomials a(x) and
b(x), these are split as a(y) = a0(x) + a1(x) · y + a2(x) · y2 + · · · + aw−1(x) · yw−1 and
b(y) = b0(x)+b1(x) ·y+b2(x) ·y2 + · · ·+bw−1(x) ·yw−1, with y = xr. The sub-polynomials
a0(x), . . . , aw−1(x), b0(x), . . . , bw−1(x) are then multiplied together in a suitable way to
facilitate interpolation. Multiplying the sub-polynomials is often done by applying a
number of Karatsuba-layers, before resorting to schoolbook multiplication.

All Toom-Cook-based versions of Saber and NTRU use w = 4, with evaluation points
x1 = 0, x2 = 1, x3 = −1, x4 = 2, x5 = −2, x6 = 3, x7 = ∞. Saber further splits the
resulting sub-polynomials by two Karatsuba-layers, after which a 16-coefficient schoolbook
multiplication is performed. All NTRU-versions follow a similar structure, but with
four Karatsuba-layers (except for ntruhps2048509, which uses only three) and varying
schoolbook thresholds. To illustrate the 4-way Toom-Cook procedure, we consider two
n-coefficient polynomials a(x) and b(x) that are split into four “equally large” polynomials:
a(y) = a0(x)+a1(x)·y+a2(x)·y2+a3(x)·y3 and b(y) = b0(x)+b1(x)·y+b2(x)·y2+b3(x)·y3,
with y = x

n
4 . Out of the seven n

4 -coefficient multiplications, denoted by (∗), at seven
evaluation points as described above, we consider the following four ones:

mul1 = a(0) ∗ (0) = a0(x) ∗ b0(x) (1)
mul2 = a(2) ∗ b(2)

= (a0(x) + 2 · a1(x) + 4 · a2(x) + 8 · a3(x))
∗ (b0(x) + 2 · b1(x) + 4 · b2(x) + 8 · b3(x))

(2)

mul3 = a(3) ∗ b(3)
= (a0(x) + 3 · a1(x) + 9 · a2(x) + 27 · a3(x))
∗ (b0(x) + 3 · b1(x) + 9 · b2(x) + 27 · b3(x))

(3)

mul4 = a(∞) ∗ b(∞) = a3(x) ∗ b3(x) (4)

2.3.2 Number Theoretic Transform

The Number Theoretic Transform (NTT) can be regarded as a special form of the Fast
Fourier Transform (FFT). Since it computes over Zq instead of C, no floating-point
operations are required. The NTT also facilitates polynomial multiplication by some form
of point evaluation. If

q ≡ 1 mod n, (5)

then a primitive nth root of unity ω ∈ Zq, satisfying ωn/2 ≡ −1 mod q, exists and
xn − 1 can be factorized as

∏n−1
i=0

(
x− ωi

)
. Given two polynomials a(x), b(x) ∈ Rq to be

multiplied, the NTT is concerned with computing the point evaluations NTT(a(x)) =(
a(ω0), . . . , a(ωn−1)

)
and NTT(b(x)) =

(
b(ω0), . . . , b(ωn−1)

)
. Multiplication of a(x) and

b(x) modulo xn − 1 can then be computed as NTT−1 (NTT(a(x)) ◦NTT(b(x))), where
(◦) denotes coefficient-wise multiplication.

If n = 2k, a power of 2, then the NTT can be computed by iteratively factorizing the
original xn − 1 “in half” down to linear degree. Implementation-wise, each factorization
can be computed as Zq[x]/

(
xn/22i − ζ2

)
→
(
xn/2i + ζ

)
×
(
xn/2i − ζ

)
: a0(x) + a1(x) ·

6



xn/22i−1 7→ (a0(x)− ζ · a1(x), a0(x) + ζ · a1(x)), for some power ζ of ω, called a twiddle
factor. The above mapping is termed the Cooley-Tukey butterfly [CT65], and its inverse
(up to a factor 1

2 ) the Gentleman-Sande butterfly [GS66].
Negacyclic NTT: Most LWE-based schemes multiply over a ring Rq = Zq[x]/(xn+1).

To this end, we can exploit the fact that x2n − 1 = (xn + 1)(xn − 1), hence any root of
xn + 1 is also a root of x2n − 1. If a primitive 2nth root of unity ω2n exists, then these
shared roots can be written as the odd powers ω2j+1

2n = ω2n · ωjn, for j ∈ {0, . . . , n − 1},
with ωn = ω2

2n. When multiplying two polynomials a(x) and b(x) over Rq, it suffices to
compute the regular n-coefficient NTT on a(ω2n · x) and b(ω2n · x). This procedure is
called the negacyclic NTT, and it strengthens Condition (5) to

q ≡ 1 mod 2n. (6)

We assume from now on to be always working over rings of the form Rq = Zq[x]/(xn + 1).

Incomplete NTT: For efficiency reasons, one might want to stop the recursive split-
ting prematurely after l (with l < k) layers, so that the component-wise multiplication is
of modular degree at least 2. The resulting incomplete NTT generalizes Condition (6) to
q ≡ 1 mod n

2k−l−1 , so that a primitive n
2k−l−1 th root of unity exists.

Modulus unsuitable for NTT: Some authors of LWE-based schemes choose to use
a modulus q not satisfying Condition (6), as is the case for Saber and NTRU. To facilitate
NTT-based polynomial multiplication, we can represent the polynomial coefficients in
[− q2 ,

q
2 ) and choose a new modulus q′ such that both q′ > nq2

2 and Condition (6) hold
[CHK+21]. After performing polynomial multiplication by the NTT over Zq′ [x], the
resulting coefficients can then be reduced back to Zq[x].

Among the lattice-based KEM finalists, NTRU and Saber were initially designed
to use Toom-Cook/Karatsuba [HRSS17, KRSS, KMRV18, MKV20]-based polynomial
multiplications. However, Chung et al. [CHK+21] later proposed NTT-based multiplication
for these schemes using a larger modulus as described in this section. The most efficient
implementations of Kyber have always used NTT based multiplication.

2.3.3 Montgomery reduction

When performing the NTT, we should be careful to avoid register overflow, which may
occur when multiplying a polynomial coefficient with (a power of) a twiddle factor [LS19].
Therefore, we must modularly reduce intermediate NTT-values by q regularly enough. The
Montgomery modular multiplication [Mon85] can be used to implement 32-bit modular
reduction efficiently in constant-time [PP19], and is suitable for the 32-bit registers of
the Cortex-M4 [CHK+21]. Montgomery reduction makes use of the REDC algorithm,
which requires a value R > q such that gcd(q,R) = 1 and basic computations modR are
inexpensive. The algorithm provides an efficient way to compute TR−1 mod q, given T, if
0 ≤ T < Rq is satisfied, and requires modular reduction by R instead of q.

2.4 Correlation Power Analysis
The attacks covered in this paper use the Correlation Power Anlysis (CPA) method
introduced by Brier et al. [BCO04]. In essence the attacker will attempt to recover the
cryptographic key using a divide-and-conquer approach. A target device implements the
target cipher and produces some (unintentional) side-channel leakage that is recorded by
the attacker. A power model (e.g. Hamming weight or Hamming distance) is combined
with a known input and unknown secret key. The attacker will guess the secret key by
computing the correlation (e.g. using Pearson correlation) between the hypothethical
power consumption and real side-channel measurements.

7



In the remainder of this work we exploit side-channel leakage of the multiplication
between the secret polynomial and a ciphertext polynomial during decryption, as indicated
in Figure 1. Specifically, we target Line 1 in Algorithm 3 for LWE-based schemes and
Line 2 in Algorithm 5 for NTRU-like schemes. We try to recover all n coefficients of the
secret polynomials and we verify their correctness by decrypting the encryption of a known
plaintext.

3 Correlation Power Analysis on Toom-Cook-based poly-
nomial multiplication

In this Section we propose a CPA-approach targeting Toom-Cook-based multiplication
in both Saber and NTRU. The attacks for both schemes follow the same main structure,
but differ slightly because of the integer ring to which the secret polynomial coefficients
belong, as well as the schoolbook threshold. This section starts by providing details on
the targeted schoolbook multiplication implementation, followed by the general structure
of the attack and scheme-specific details.

3.1 Schoolbook multiplication implementation

We target the basic schoolbook multiplication proposed by Kannwischer et al. in [KRS18]
which is used in multiple implementations of Saber and NTRU. The polynomial coefficients
are all packed in pairs, which allows for efficient manipulation by the 32-bit ARMv7E-M
instruction set. The latter includes parallel multiplications and instructions that can
compute on combinations of low and high halfwords. Our attack targets the generic
structure of the multiplication and is therefore independent of the target platform and
instruction set. The implementation follows a parallelogram-like structure, as illustrated
by Figure 2, to perform an 8-coefficient multiplication of a ciphertext polynomial a(x) =∑7
i=0 aix

i and secret polynomial b(x) =
∑7
i=0 bix

i. Each column consists of all additive
terms needed to compute ci, 0 ≤ i < 15, the coefficients of the resulting polynomial
c(x) =

∑14
i=0 cix

i = a(x) · b(x). Each rectangle refers to the execution of one instruction. A
rectangle containing two terms indicates that both operations are performed in parallel by
a single instruction. The parallelogram-like structure can be generalized for an arbitrary
number of coefficients of the multiplicands a(x) and b(x). The order of operations is degree-
dependent: instructions in the same column are normally executed one after another,
whereas neighbouring columns might not be. We refer to the source code in the pqm4-library
[KRSS] for the ordering for all relevant degrees.

We exploit the side-channel leakage that results from storing the coefficients ci. Note
that, for any m-coefficient polynomial multiplication, every secret coefficient bi, 0 ≤ i < m,
is involved in one scalar multiplication per resulting coefficient ci, ci+1, . . . , ci+m−1. It
thus suffices to only target the computation of c0, . . . , cm−1 to recover all coefficients bi,
0 ≤ i < m. Our strategy is then to guess each coefficient bi, 0 ≤ i < m, in that order,
based on the value of ci, so that we need to already know the values of b0, . . . , bi−1, taking
into account the parallelogram-like structure.

Table 1 lists the parameter sets deployed by Saber and NTRU for Toom-Cook-based
polynomial multiplication. The schoolbook thresholds vary from 10 to 16. The fourth
column of the table also lists in brackets the number of sub-polynomials that each original
polynomial splits into at the schoolbook level. It can be computed as ≈ n

schoolbook threshold .
This is the number of schoolbook multiplications that we target.

8



Figure 2: Left: An illustration of the operations executed during 8-coefficient polynomial
multiplication c(x) =

∑14
i=0 cix

i = a(x) · b(x) of arbitrary polynomials a(x) =
∑7
i=0 aix

i

and b(x) =
∑7
i=0 bix

i. Right: Sub-division of 16-coefficient schoolbook multiplication into
four 8-coefficient multiplication according to specific order as indicated by the numbers in
the separate sub-parallelograms [KRS18].

Table 1: Saber and NTRU Toom-Cook parameter sets.
name n q schoolbook threshold(s)
Saber 256 1024 = 210 16 (16)

ntruhps2048509 509 2048 = 211 16 (32)
ntruhps2048677 677 2048 = 211 10 (24), 11 (40)

ntruhrss701 701 8192 = 213 11 (64)
ntruhps4096821 821 4096 = 212 12 (8), 13 (56)

3.2 Generic structure of the known-ciphertext attack

3.2.1 Attacker model

We assume that the attacker has physical access to a device performing a decapsulation
procedure using a long-term key. Additionally, he can submit as many valid ciphertexts
as he wants. He is not required to know the output of the decapsulation, but passively
records side-channel information.

3.2.2 General outline

The core idea of our attack is to target various executions of schoolbook multiplication, as
many as there are sub-polynomials into which the original secret polynomial splits at the
schoolbook threshold degree. The recovered sub-polynomials are combined to retrieve the
original n-coefficient polynomial.

Recalling our previous discussion on 4-way Toom-Cook, we consider each of Equations
(1), (2), (3) and (4), which all multiply two n

4 -coefficient polynomials. These multiplications
usually involve several Karatsuba-layers, followed by the targeted schoolbook multiplication
at the threshold degree. For example, Saber uses n = 256 with two Karatsuba-layers and
schoolbook threshold degree 16. For this case the structure for Equation (1) is shown in
Figure 3: there are 9 multiplications at the threshold degree, but it suffices to target the
4 (non-composite) ones led to by the full arrows, since the total of 64 secret coefficients
b0

:16(x), b0
16:32(x), b0

32:48(x), b0
48:(x) can be recovered from these. Similarly, we recover the

64 coefficients of b3(x) directly from Equation (4). We then combine our knowledge of
b0(x) and b3(x) in order to recover b0(x) + 2 · b1(x) + 4 · b2(x) + 8 · b3(x) from Equation (2),
and b0(x) + 3 · b1(x) + 9 · b2(x) + 27 · b3(x) from (3). Finally, b1(x) and b2(x) are recovered
by solving a linear system.

9



Figure 3: Splitting structure of 64-coefficient polynomials in Saber. The full green lines
denote the multiplications exploited in our attack. Schoolbook multiplications are denoted
by (·).

3.2.3 Attack on schoolbook multiplication

We assume to be given a set of n-coefficient ciphertext polynomials a(x) =
∑n−1
i=0 aix

i and
their corresponding decapsulation side-channel measurements. We also assume that all of
these side-channel measurements are captured from a device with a fixed secret polynomial
b(x) =

∑n−1
i=0 bix

i. Our goal is to recover all coefficients bi·m, . . . , b(i+1)·m−1, for all 0 ≤ i <
n
m , when the schoolbook multiplication

(∑m−1
j=0 ai·m+jx

j
)
·
(∑m−1

j=0 bi·m+jx
j
)
is executed.

For ease of notation, we will from now on denote a0 := ai·m, . . . , am−1 := a(i+1)·m−1 and
b0 := bi·m, . . . , bm−1 := b(i+1)·m−1 for a certain chosen 0 ≤ i < n

m . We first perform a
structured CPA-strategy, called CPA from right to left, on the schoolbook parallelogram,
resulting in a set of guesses for b0, b1, . . . , bm−1. Some of the secret coefficients are not
recoverable using CPA. For example, when b0 = · · · = bi = 0 for some 0 ≤ i < m, the
intermediate target values c0, . . . , ci will always be zero, regardless of the input ciphertext
coefficient. We propose an iterative approach to rectify incorrect guesses of the secret
polynomial coefficients.

CPA from right to left: The name of this procedure refers to the direction in which we
traverse the schoolbook multiplication parallelogram (recall the parallelogram from Figure
2). The core idea is, given b0, . . . , bi−1 for some 0 ≤ i < m, to determine bi as the value
bguess giving the maximum correlation between the side-channel traces and the Hamming
weight of

ci = ai · b0 + · · · a1bi−1 + a0bguess. (7)

If the resulting correlation coefficient is below a threshold r_min, we set bguess = 0 and
the corresponding correlation to 0. The value of r_min is determined empirically and
will depend on the target platform and measurement setup. As a baseline we recommend
taking the average value of the correlation coefficient for the entire trace and multiplying
this by a safety margin of 1.5. More details on setting r_min are provided in Section 5.2.

We chose to use a threshold r_min to help cope with two scenarios in which the

10



correlation coefficient for ci can be close to zero. The first scenario occurs when b0, . . . , bi
are truly 0, as there will not be any value for bguess for which the resulting correlation
coefficient is larger than r_min. If all correlation coefficients are below r_min it is likely
that bi is 0. Similarly, bguess is likely to be correct if the resulting correlation coefficient is
larger than r_min.

Secondly, if a wrong guess was made for one of the b0, . . . , bi−1 then ci yields a low
correlation for all possible values of bguess. Intuitively, if we incorrectly force our guess for
coefficient bi to be 0, then the ensuing guesses for bj , i < j < m will be wrong as well (i.e.
the error propagates). We propose one possible correction mechanism, which we refer to
as the iterative approach, to detect and correct such invalid guesses.

Iterative approach: Given the regular structure of the multiplication the correlation
coefficients for the different secret coefficients are expected to be of the same magnitude.
If the correlation for bm−1 is significantly lower compared to when it would have been
guessed correctly, then one of the bi, 0 ≤ i < m− 1, was likely guessed incorrectly, and
the error will propagate when guessing bi+1, . . . , bm−1. If guessing bm−1 results in a low
correlation we impose the first values b0, . . . , bj , for some 0 ≤ j < m− 1, to be set to an
unrecoverable value. The range of unrecoverable values depends on the target scheme,
details are provided in Sections 3.3 and 3.4 for Saber and NTRU respectively. Afterwards
we run the CPA from right to left again (but only for bj+1, . . . , bm−1). More specifically,
for increasing value of j, we enumerate all combinations of values for b0, . . . , bj which we
would not have been able to guess. This iterative process can be automated by setting a
minimal correlation value t_min which needs to be attained by the correlation for bm−1.
The value of t_min is set in an empirical manner and will be discussed in Section 5.2.
We repeat this iterative procedure until the correlation for bm−1 satisfies our condition of
being larger than t_min.

We propose two different iterative approaches: one for b0(x) and b3(x) (“iterative
approach without offset”), and one for b0(x) + 2 · b1(x) + 4 · b2(x) + 8 · b3(x) and b0(x) + 3 ·
b1(x) + 9 · b2(x) + 27 · b3(x) (“iterative approach with offset”). For further scheme-specific
details of the iterative approaches, we refer to Sections 3.3 and 3.4.

Our choice of only checking the correlation for bm−1 is motivated by the observation
of unavoidable error propagation once one of the bi is wrongly guessed. Moreover, we
observed that, if all coefficients b0, . . . , bi−1 are correctly guessed, then the correlation for
the correct value ci will increase for increasing value of i. If after the iterative approach
the correct key is still not recovered the attack should be repeated with either more traces
or different values for r_min and t_min. Alternatively a more complex attack strategy can
be developed that combines the CPA from right to left with a CPA from left to right.

3.3 Attack on Saber
In the case of Saber, the ciphertext coefficients a0, . . . , a15 lie within the range {0, 1, . . . ,
1022, 1023}, whereas the secret coefficients b0, . . . , b15 lie within {0, 1, 2, 3, 4, 1020, 1021, 1022,
1023}. Saber deploys a threshold degree 16 for schoolbook multiplication, of which the
structure is split into four equally large 8-coefficient multiplications as illustrated in Figure
2. We target sub-parallelogram 1 for coefficients b0, b1, . . . , b7, as well as sub-parallelogram
2 for b8, . . . , b15. We operate according to the following procedure:

1. Perform CPA from right to left and iterative approach on sub-parallelogram 1,
resulting in a set of guesses for b0, b1, . . . , b7.

2. Perform CPA from right to left (without the iterative approach) on sub-parallelogram
2, resulting in a set of guesses for b8, . . . , b15.

11



3. Adjust the set of guesses from Step 1 based on the quality of the set of guesses from
Step 2.

In the following paragraphs we clarify each of the necessary components for this procedure.

Iterative approach: For the scenario of “iterative approach without offset”, the cases
b0 = b1 = · · · = bi−1 = 0 and bi ∈ {1, 2, 4} for some 0 ≤ i < 7 will all give the same
correlation for ci. Recall from Equation (7) that ci will have the same Hamming weight for
all of these cases. It is possible that one of the above cases occurred for a certain 0 ≤ i < 7
if correlation for b7 is not larger than t_min. If this correlation check fails indeed, then we
try out the other two cases for the same value of i, to see whether the CPA-results for one
of these might yield success instead. If t_min is still not attained, we next consider the
cases

• b0 = b1 = · · · = bi = 0 and bi+1 /∈ {0, 1023} for some 0 ≤ i < 8,

• b0 = b1 = · · · = bj−1 = 0, bj = 1023, bj+1 = bj+2 = · · · = bi = 0 and bi+1 6= 0 for
some 0 ≤ j < i < 7,

which will cause the values of c0, . . . , ci to have zero variance (but not ci+1). Thus, in
these cases, we are unable to guess b0, . . . , bi. The iterative approach enumerates these
cases until an instance is found for which the correlation of b7 reaches t_min. We start the
enumeration by setting b0 to either 0 or 1023. For any other value of b0, the value of r_min
would have been attained during the initial CPA-execution and b7 would have been guessed
with a higher correlation than t_min. More generally, for increasing value of 0 ≤ i < j < 8,
we first set bi = 1023, and in case of failure, we also set bi+1 = bi+2 = · · · = bj = 0 for
increasing value of 0 < j < 8 until t_min is attained. If the latter does not occur, we
“permanently” set bi to 0, and repeat the same procedure for i+ 1.

We explain the procedure of “iterative approach with offset” for b0(x) + 2 · b1(x) + 4 ·
b2(x)+8 ·b3(x), which is analogous to the procedure for b0(x)+3 ·b1(x)+9 ·b2(x)+27 ·b3(x).
For this iterative approach, we assume that all coefficients b0(x) and b3(x) have already
been recovered. It thus remains to recover 2 · b1(x) + 4 · b2(x), of which the coefficients can
take on any value 2 · r + 4 · s with r, s ∈ {0, 1, 2, 3, 4, 1020, 1021, 1022, 1023}. We sort these
values by decreasing probability, taking into account the centered binomial distribution of
Saber’s secret coefficients. The value of b0 represents b0

i + 2 · b1
i + 4 · b2

i + 8 · b3
i for some

i ∈ {0, 16, 32, 48} (recall Figure 3). We will set the value of 2 · b1
i +4 · b2

i to be the first entry
of the sorted list if the CPA from right to left did not result in a value for b7 with higher
correlation than t_min. This process is repeated for all entries in the sorted list until a
value for b7 with higher correlation than t_min is found. From our practical experiments
it is clear that only changing the value of b0 will eventually make the CPA succeed. This
iterative approach will only be successful if b0(x) and b3(x) have been recovered correctly,
hence the need for a successful “iterative approach without offset”.

We only perform an iterative approach for the guesses of b0, . . . , b7. When guessing
bi for some 8 ≤ i < 15, we are computing ci, for which we already have an offset
a7bi−7 + · · ·+ ai−7b7. Practice has shown that these offsets will result in correct guesses
for b8, . . . , b14, removing the need for an iterative approach. However, if the guesses for
b0, . . . , b7 are wrong, then the guesses for c8, . . . , c14 will be wrong as well.

Re-assessment of b0, . . . , b7 based on b8, . . . , b14: The CPA from right to left followed
by the iterative approach proves to be effective when recovering b0, . . . , b7, unless the first
few coefficients are zero. That is, if b0 = b1 = · · · = bk = 0, for some 0 ≤ k < 7. In that
case our technique will assign the correct value of bk+1 to b0, the value of bk+2 to b1, and
so on. Moreover, the guesses for b7−k, . . . , b7 will all be set to 0 since this value will each
time give the highest correlation for Equation (7). This “shift” in the recovered values

12



for b0, . . . , b7 can be detect by the values b8, . . . , b14 not being recovered by the iterative
approach. We reject the guesses for b0, . . . , b7 if b7 was guessed to be 0 and the guess for
b14 did not attain a correlation of at least t_min. We correct the guesses for b0, . . . , b7
by “shifting them to the right”, that is, by setting our guess for bi+1 to our guess for bi,
for 0 ≤ i < 7, and our guess for b0 to 0, after which we again try to recover coefficients
b8, . . . , b14. This shifting procedure is repeated until t_min is reached by b14.

3.4 Attack on NTRU
For NTRU the secret coefficient are in the range {0, 1, 2}, whereas the ciphertext coefficients
are in the range [0, q). Ambiguity will arise if all coefficients of a sub-polynomial are either
0 and 1, or 0 and 2, as the Hamming weight for each ci in Equation (7) will be the same
for both cases. This is not an unlikely scenario because of the distribution of NTRU’s
secret coefficients (see Section 2.2). Nevertheless, we can take this scenario into account
when combining all our sub-polynomial guesses into the full polynomial. Depending on
the value of n, different values for the schoolbook threshold are considered, as indicated
by Table 1. We make a distinction between the several NTRU-versions based on whether
the schoolbook threshold is less than 16 or equal to 16.

3.4.1 ntruhps2048677, ntruhrss701 and ntruhps4096821

These three NTRU-versions have a threshold degree less than 16, for which the schoolbook
multiplication consists of one sub-parallelogram instead of four. Additionally, the order
of operations has an “overlapping” structure regarding the indices of the ci, that is,
c1, c3, c5, . . . , c2(threshold−1)−1, c0, c2, c4, . . . , c2(threshold−1) for thresholds 10, 11 and 12, and
c1, c3, c5, . . . , c2(threshold−1)−1, c2(threshold−1), c2(threshold−1)−2, . . . , c4, c2, c0 for threshold 13.
An even number of zeros as the first coefficients (when b0 = b1 = · · · = bi = 0 for some
odd positive integer i) will not be recoverable as only one sub-parallelogram is involved
in the schoolbook multiplication process. Nevertheless, as previously mentioned, we can
recover from this scenario when combining all the sub-polynomial guesses. Specifically, we
can use our guesses that have an even number of zeroes as their last coefficients, and try
several combinations that are shifted by an even number.

Iterative approach: Given the secret range {0, 1, 2}, when correlating against c0 = a0 · b0
for b0(x) or b3(x), we either get zero variance for the Hamming weight of c0 when b0 = 0,
or indistinguishable variance when b0 ∈ {1, 2} as c0 will in both cases always have the
same Hamming weight. In case the correlation exceeds the value of r_min, we set our
guess for b0 to 2 and we proceed with the CPA from right to left. If the value for the
last coefficient bthreshold−1 was not guessed with at least correlation t_min, we try out
the value b0 = 1. In case this fails again, we permanently set b0 to 0. This procedure is
repeated for bi for increasing value 0 ≤ i < threshold until t_min is attained. We extend
this “iterative approach without offset” by rejecting guesses of which the locations within
the traces do not correspond with the specific ordering of the operations.

The “iterative approach with offset” is the same as for Saber, except now the sorted
list of values is much shorter so that the correct value will be found more quickly.

3.4.2 ntruhps2048509

Since this version of NTRU uses the same schoolbook threshold as Saber, we can use the
same overall strategy as applied in Saber, but using the iterative approach previously
discussed for the other NTRU-versions.

13



4 Correlation Power Analysis on NTT-based polynomial
multiplication

In this section, we propose a CPA-approach targeting the NTT, for which we again exploit
the underlying schoolbook multiplication. The main two differences with the CPA on
Toom-Cook are that the ranges of the secret coefficients are now greatly magnified through
the NTT, whereas the schoolbook threshold degree is smaller. Table 2 lists the moduli,
as well as the schoolbook threshold degree, deployed by the NTT-based implementations
of Kyber, Saber and NTRU. Kyber is the only KEM to originally have an NTT-friendly
modulus. Note that NTTn, the size of the NTT, is chosen to efficiently facilitate an NTT,
and is always at least as large as n.

Table 2: Kyber, Saber and NTRU NTT parameter sets.
name NTTn q (or q′) schoolbook threshold

Kyber768 256 3329 2
Saber 256 25166081 3

ntruhps2048509 1024 1043969 4
ntruhps2048677 1536 1389569 3

ntruhrss701 1536 5747201 3
ntruhps4096821 1728 3365569 3

4.1 Schoolbook multiplication implementation
Even though most NTT-based multiplications used in different PQC schemes deploy unique
NTT-structures, the implementation of the schoolbook multiplication is always similar.
We illustrate the concept for threshold degree 3 (as in ntruhps4096821), which can be
easily generalized for arbitrary degrees. Given are two polynomials in the NTT-domain
â(x) = â0 + â1x+ â2x

2 and b̂(x) = b̂0 + b̂1x+ b̂2x
2, defined over Rq = Zq[x]/(x3 − ζ) for

some power of a twiddle factor ζ. Modular multiplication of these two polynomials yields

â(x) · b̂(x) ≡ (â0 + â1x+ â2x
2) · (b̂0 + b̂1x+ b̂2x

2) mod x3 − ζ (8)
= (â0b̂0 + ζ(â1b̂2 + â2b̂1)) + (â0b̂1 + â1b̂0 + ζâ2b̂2)x+ (â0b̂2 + â1b̂1 + â2b̂0)x2

= ĉ0 + ĉ1x+ ĉ2x
2.

For the source code implementing these computations, we refer to the pqm4-library [KRSS].
The computation of ĉ0 involves the addition â1b̂2 + â2b̂1, followed by a Montgomery
multiplication with ζ ′, after which a0b0 is added. The coefficient ĉ1 is computed in a
similar manner. No Montgomery multiplication by ζ ′ is needed when computing ĉ2. For
efficiency reasons involving the inverse NTT, one last Montgomery reduction is applied to
the final values of all three ĉ0, ĉ1, ĉ2, before being stored consecutively. We will target
the Hamming weight of the first resulting coefficient being stored, and the Hamming
distance between consecutively stored coefficients, the order of which depends on the target
implementation.

4.2 Generic structure of the side-channel attack
4.2.1 Attacker model

We assume the same attacker model as for our CPA on Toom-Cook-based multiplication.
The only difference is that we can not simply use any random, valid ciphertexts for our
attacks on NTRU’s and Saber’s NTT.

14



For NTRU, while targeting an m ×m schoolbook multiplication we would need to
consider all possible combinations of them secret values involved for each of them resulting
coefficients. We refer to the second line in Equation (8), that shows how to compute the
m resulting values for the case of ntruhps4096821. The number of combinations (q′)m
increases with the value of the modulus q′. We propose a strategy that eliminates the
need to guess these combinations for NTRU in Section 4.4. As Saber uses an even larger
modulus q′ we will resort to guessing the secret coefficients byte per byte, which reduces
our search space to

[
0, 28). This attack strategy is explained in more detail in Section 4.5

and requires ciphertexts of which the NTT-coefficients can take on any 32-bit values.

4.2.2 General outline

We are given a size-NTTn NTT that uses m-coefficient schoolbook multiplication. That is,
after applying the necessary NTT-layers on two n-coefficient polynomials a(x) and b(x),
there are NTTn

m schoolbook multiplications to perform of the form

(
âm·i + · · ·+ âm·i+m−1x

m−1) · (b̂m·i + · · ·+ b̂m·i+m−1x
m−1

)
mod (xm − ζi)

= ĉm·i + · · ·+ ĉm·i+m−1x
m−1

for some power of a twiddle factor ζi and 0 ≤ i < NTTn

m . Our aim is to target each of
these NTTn

m schoolbook multiplications to retrieve all coefficients ĉm·i+j , 0 ≤ i < NTTn

m ,
0 ≤ j < m. To check the correctness of our guesses, we simply apply the inverse NTT and
check whether the result matches the coefficients of c(x) = a(x) · b(x) mod xn + 1.

4.2.3 Attack on schoolbook multiplication

As mentioned in Section 4.1, given a schoolbook multiplication characterized by some
index 0 ≤ i < NTTn

m , we target the storage of all resulting values ĉm·i+j , 0 ≤ j < m. The
final Montgomery reduction reduces the coefficients ĉm·i+j to the interval

(
− q2 ,

q
2
]
. As

explained later in Section 4.6, it suffices to consider this same range for the coefficients
b̂m·i+j . We select the value of b̂m·i+j with highest correlation for ĉm·i+j .

Iterative approach: As for the attack on Toom-Cook-based multiplication, we can use
an iterative approach to correct invalid guesses. Only for relatively small moduli, such
as q = 3329 for Kyber, we do not explicitly implement an iterative approach, as we can
already iterate over all possible combinations for (ĉ2i, ĉ2i+1), 0 ≤ i < 128, in a reasonable
amount of time. For larger moduli, as in the NTRU-based schemes, the range of possible
values is much larger, so that we can no longer consider all combinations, as further
explained in Section 4.4.

4.3 Attack on Kyber
Kyber is the only KEM in this paper using a relatively small NTT-modulus. Since
n = NTTn = 256 = 28 and q = 3329 = 13 ·n+ 1, Kyber can facilitate a 7-layer, incomplete
NTT, followed by a 2-coefficient schoolbook multiplication. In the implementation, the
two resulting coefficients ĉ2i = â2ib̂2i + ζâ2i+1b̂2i+1 and ĉ2i+1 = â2ib̂2i+1 + â2i+1b̂2i, for
a 0 ≤ i < 128 are stored by the same instruction instead of consecutively. We thus
need to guess two coefficients at once within the range

(
− q2 ,

q
2
]
, implying a search over

q2 = 11082241 combinations. Iterating over this number of combinations can still be done
efficiently. We simply select the pair of values resulting in the largest correlation coefficient
as our key guess.

15



4.4 Attack on NTRU
As opposed to Kyber, the NTT-moduli for all NTRU-versions are rather large, on the
order of 220 (recall Table 2). It thus becomes computationally intensive, but not impos-
sible, to try out all possible combinations of the secret coefficients when analyzing the
schoolbook multiplication. For a schoolbook threshold m, recovering the secret coefficients
b̂m·i, . . . , b̂(m+1)·i−1 requires making ≈ 220·m key guesses, when correlating against the
resulting ĉm·i, . . . , ĉ(m−1)·i−1, for any 0 ≤ i < NTTn

m . This makes correlating against the
Hamming weight of all possible key values nearly impossible.

An alternative approach simplifies the attack by choosing each ciphertext polynomial
a(x) in such a way that only NTT-coefficients of the form âm·i, 0 ≤ i < NTTn

m , can be
non-zero. This would imply that ĉm·i+j = âm·i · b̂m·i+j , for all 0 ≤ j < m, hence we need
not be concerned with any of the Montgomery multiplications by a power of a twiddle
factor ζ. For such a set of NTT-coefficients with “regular” indices to be all zero, we can
choose the corresponding original ciphertext coefficients to be zero. Such ciphertexts c
will still pass the check in Line 1 of Algorithm 5. This approach will however lead to
decryption failures which can be detected by the device under attack.

We illustrate the specifications of the attack for the case of ntruhps4096821. After
carefully selecting the ciphertext coefficients, we correlate against the Hamming weight
of the resulting coefficients, each time they are stored during execution. Depending on
the NTRU-version, the number of consecutive storing operations varies. For example,
ntruhps4096821 stores its resulting coefficients in groups of 24 = 8 · 3 coefficients. The
values ĉ24i+j are (mostly) stored sequentially for increasing value of 0 ≤ j < 24, so
that we can correlate against the Hamming weight of ĉ24i when guessing its value. We
then correlate against the Hamming distance between ĉ24i and ĉ24i+1 when guessing the
latter coefficient, and so on, for all 0 ≤ i < 72. Hamming distance implies a dependency
between two coefficients, in the sense that ĉ24i+1 can only be correctly guessed if ĉ24i
was correctly guessed, and so on. We exploit this characteristic in the iterative approach.
These observations are of course implementation-specific: if a different implementation
strategy stores (for example) intermediates, then our attack would be greatly simplified as
we can target the individual ĉi’s.

Iterative approach: As the range
(
− q
′

2 ,
q′

2

]
can become quite large, we prematurely stop

our brute-force search over this interval once we guess a value for each ĉ24i, 0 ≤ i < 72,
with correlation exceeding a given threshold. The threshold can be established in a similar
way as r_min and t_min in the CPA on Toom-Cook. We then continue by guessing ĉ24i+1,
based on our guess for ĉ24i. If no value can be found for ĉ24i+1 with high enough correlation,
we back-track to our guess for ĉ24i, eliminate it, and sweep over the remaining range of(
− q
′

2 ,
q′

2

]
to find another guess for ĉ24i. We repeat this procedure until we find a guess for

ĉ24i+1 with high enough correlation, and then we proceed analogously for ĉ24i+2, and so
on.

4.5 Attack on Saber
For Saber the modulus q′ is 25166081, roughly 10 times larger compared to the moduli
for NTRU. The increased range

(
− q
′

2 ,
q′

2

]
of values for the secret coefficients decreases

the efficiency of some of the previous CPA-approaches, as in the best-case scenario an
attacker would have to iterate over roughly 220 key guesses. The exact number of key
guesses that have to be enumerated depends on the implementation and leakage model.
For the provided reference implementation we would have to recover four secret coefficient
simultaneously, as the results of the 4×4 schoolbook multiplication are stored consecutively.

16



In practice, this mean we would have to make roughly 280 guesses. To alleviate this issue
we propose a different strategy that targets the scalar multiplication on a smaller level.

Given two 32-bit values â = â[3] · 224 + â[2] · 216 + â[1] · 28 + â[0] (known) and b̂ =
b̂[3] · 224 + b̂[2] · 216 + b̂[1] · 28 + b̂[0] (secret) to be multiplied. This byte notation simplifies
the following statements. If we choose â[0] = â[1] = â[2] = 0, then

â · b̂ mod 232 = â[3] · b̂[0] mod 28.

The right-hand side of the latter equation can take on at most 28 values, so that we can
guess b̂[0] in a reasonable amount of time. Next, if we choose â[0] = â[1] = 0, we observe
that

â · b̂ mod 232 =
(
â[3] · b̂[0] · 28 + â[2] ·

(
b̂[1] · 28 + b̂[0]

))
mod 216.

Since we already know â[3], b̂[0] and â[2], the right-hand side of the latter equation can
again only take on at most 28 distinct values, so we can guess b̂[1]. In an analogous way,
we recover b̂[2] and then finally b̂[3].

Note that we previously correlated against store operations for all CPAs, whereas we
now consider the 32 least significant bits of the results of 32-bit multiplications. We found
the individual scalar multiplications in

ζ ·
(
â4i+3 · b̂4i+2 + â4i+2 · b̂4i+3

)
+ â4i+1 · b̂4i + â4i · b̂4i+1, 0 ≤ i < 64, (9)

to yield the largest correlation against the traces of all four computations in Saber’s 4× 4
schoolbook multiplication. The eight NTT-coefficients are multiplied, and subsequently
accumulated in the same order as shown in Equation (9). We execute the (accumulated)
CPA-approach as explained earlier each time such a new scalar multiplication is performed.
We use the Hamming-weight model when correlating against â4i+3 ·b̂4i+2, and the Hamming-
distance model for all ensuing operations. This attack strategy requires the attacker to
submit invalid ciphertexts and can be detected by the device under attack if suitable
countermeasures are implemented.

4.6 A note on the binomial distribution
Even if the polynomial coefficients of the original secret polynomial a(x) are restricted to
a very small range, applying the NTT will greatly enlarge this range, of which the size is
on the order of the modulus q (or q′) times the number of NTT-layers. The distribution
appears to be bell-shaped, as shown in Figure 4 on the left for Saber. However, all
intermediate results in the computation of the (inverse) NTT are equivalent mod q (or
mod q′). Hence, we only need consider reduced secret NTT-values within, for example,
the range

(
− q2 ,

q
2
]
(or

(
− q
′

2 ,
q′

2

]
). We collapse the bell-shaped distribution to this interval

in the rightmost plot in Figure 4. This plot shows that there is no distinctive distribution
in the new range, so we will consider the distribution to be uniform. We therefore do
not take into account the original centered binomial distribution of the secret polynomial
coefficients in our CPA.

5 Results
This section covers the practical CPA results for both Toom-Cook and the NTT, as proposed
in Sections 3 and 4, respectively. The attacks are implemented in Python and executed on
a MacBook with 1.3 GHz Dual-Core Intel Core i5 processor. All pqm4-implementations
were compiled using the arm-none-eabi-gcc compiler. The implementations are mostly
written in C, but large parts of the Toom-Cook and NTT-based polynomial multiplication
are written in assembly.

17



Figure 4: Histograms illustrating the distribution of the secret NTT-coefficients in Saber,
unreduced (left) and reduced to

(
− q
′

2 ,
q′

2

]
(right), 105 samples, 1000 bins.

5.1 Measurement set-up
Our attack results are based on the code provided by the pqm4-library [KRSS], a common
framework for implementations and benchmarks of the NIST PQC finalists on the ARM
Cortex-M4 microprocessor, which is equipped with the 32-bit ARMv7E-M architecture.
This resource-constrained platform is often used for efficiency evaluation of cryptographic
implementations due to its large enough memory to support public-key algorithms, while
still being reasonably small and cheap [KMRV18].

Side-channel measurements were acquired from a NewAE CW308 UFO board combined
with a STM32F415 (Cortex-M4) target board. The instantaneous power consumption was
amplified using a Mini-Circuits ZFL-1000LN+ amplifier, low-pass filtered (20 MHz) and
sampled by a Tektronix DPO7254C oscilloscope using a sample rate of 200 MS/s. The
STM32F415 microcontroller was configured to use an 8 MHz external clock and 24 MHz
core operating frequency. The external clock was provided by a signal generator that
shared a reference clock with the oscilloscope.

5.2 CPA on Toom-Cook
The acquired side-channel traces cover the polynomial multiplication, but not the full
decapsulation to reduce the runtime. The trace length increases with the value of n:
we use traces of 3.5 · 105 samples for n = 256 (Saber) and 5 · 106 samples for n = 821
(ntruhps4096821).

To reduce the overall runtime of the attack, we first locate each schoolbook multiplication
and segment the input trace. In this way the Pearson correlation coefficient can be
calculated over short trace segments instead of the full trace. We locate a schoolbook
multiplication by searching the moment in time where the first non-zero bi, 0 ≤ i < m,
is involved in the computation of ci. As b0 = · · · = bi−1 = 0, there is only a small range
of values that ci = a0 · bi can take on (depending on the range of bi), for each of which
we correlate against the traces. The instance with highest correlation gives us a reference
point in time at which the schoolbook multiplication is performed, and also provides us
with a reference for selecting r_min and t_min. The value of r_min is set to a generous
lower bound on these correlation values, for which we chose 0.05. For t_min we consider
an average of the correlations. Regarding Saber and ntruhps2048509 (which both use a
threshold degree 16) we set t_min to 0.4, whereas a more generous value 0.5 is considered
for the other NTRU-based schemes.

Saber and NTRU Table 3 lists the minimum number of traces for the CPA on Toom-
Cook for full recovery of a secret polynomial as well as the average runtimes. On average
the required number of traces decreases for a smaller schoolbook threshold and for a lower

18



Table 3: Saber and NTRU Toom-Cook CPA runtimes.
name minimum number of traces average runtime (s)
Saber 200 4

ntruhps2048509 400 10
ntruhps2048677 100 23

ntruhrss701 200 32
ntruhps4096821 100 38

value of n. The average runtime increases with n. Moreover, the runtime is affected by the
average duration of the iterative approach for each sub-polynomial, which will depend on
the signal-to-noise ratio (SNR) of the measurements and the selected r_min and t_min.

The proposed approach can be easily adapted for other versions of Saber, such as the
higher-security FireSaber that uses a reduced set of secret coefficients {0, 1, 2, 3, 1021, 1022,
1023}. In fact, this reduced set of secret coefficients would speed up the iterative approach
resulting in lower overall runtime. For NTRU, the runtimes only consider a single full run
of guessing all coefficients, iterative approach included. This does not include testing for
combinations with “shifted zeros” for b0(x) and b3(x), which would require new guesses
for b0(x) + 2 · b1(x) + 4 · b2(x) + 8 · b3(x) and b0(x) + 3 · b1(x) + 9 · b2(x) + 27 · b3(x). The
number of such cases is relatively small, resulting in a minor impact on the overall runtime.

5.3 CPA on NTT
Note that guessing groups of NTT-coefficients can be easily parallelized, since individual
groups can be guessed independently. The runtimes provided in Table 4 were obtained using
sequential recovery without parallelization. The side-channel traces cover the polynomial
multiplication, and the number of samples per trace ranges from 2 · 104 for Kyber to 5 · 105

for ntruhps4096821.
The following technique was used to reduce the number of time samples used during

the CPA attack. Schoolbook multiplication is implemented in such a way that each of the
m×m schoolbook multiplications of two pairs of m NTT-coefficients is followed by the
m×m schoolbook multiplication of the next two pairs of m NTT-coefficients. Depending
on the implementation, resulting coefficients can be stored after each m×m multiplication,
or they can be stored after j multiplications, for some j ≥ 1. We consider all these j ·m
coefficients being consecutively stored as a group. For each group, we can narrow down
the approximate location within the measured traces of when the coefficients are being
stored; we search for as many distinctive peaks in the variance as there are groups. Based
on these variance peaks, we can restrict our CPA to much smaller ranges than the full
trace domain. We illustrate our reasoning for the case of ntruhps4096821 with size-1728
NTT, schoolbook threshold degree 3, and eight 3× 3 schoolbook multiplications per group.
We thus expect 1728

8·3 = 72 variance peaks, as shown in Figure 5, which plots the trace
variance during the full schoolbook multiplication that takes place between the forward
and inverse NTT.

Kyber Our approach requires 200 traces to recover all NTTn coefficients. Guessing
one pair of coefficients takes roughly 5 minutes on average. Here we used a brute-force
approach where the coefficients resulting from the modular multiplication were guessed in
their entirety. Therefore we only provided valid ciphertexts as inputs to the decapsulation.

NTRU We ran the CPA on NTRU’s NTT with each time 500 traces. Due to the long
run-time we fixed the number of traces for each NTRU-version to 500. We attacked NTRU
using the alternative approach proposed in Section 4.4 due to the high time complexity of
performing an attack with only valid ciphtertexts.

19



Figure 5: Variance plot of 500 traces of schoolbook multiplication in ntruhps4096821,
showing 72 peaks.

We considered the following values for the iterative approach threshold: 0.3 for
ntruhps2048509 and ntruhps4096821, and 0.5 for ntruhps2048677 and ntruhrss701.
We clearly see the influence of the size of the NTT-modulus q′ on the runtime per group
of coefficients in Table 3. The larger the value of q′, the larger the range of values to
brute-force over. Note that, unlike for Kyber, the runtimes also cover the iterative approach
needed for corrections. Table 3 lists in the third column the number of elements contained
in each independent group, as well as the number of groups in the fourth column.

Table 4: NTRU NTT CPA runtimes.
name average running number of number of

time per group (s) elements per group groups
ntruhps2048509 300 16 (4 sets of 4) 64
ntruhps2048677 282 3 512

ntruhrss701 1040 3 512
ntruhps4096821 9840 24 (8 sets of 3) 72

Saber Similar to NTRU we applied the alternative approach when attacking Saber (see
Section 4.5). In contrast with NTRU we do not target the Hamming distance leakage of
the full 32-bit state but target only 8 bits at a time. Targeting a smaller portion of the
state reduces the SNR and results in a significant increase in the number of traces required
to mount the attack. A minimum of 10000 traces was required to mount a successful
attack. Given the reduced number of target bits, the correct guess is not always ranked
highest. We therefore enumerate all possible values for b̂[0], for each of these we then
perform the proposed CPA to guess the remaining three bytes. Afterwards, we select the
full value b̂ = b̂[3] · 224 + b̂[2] · 216 + b̂[1] · 28 + b̂[0] giving the highest correlation. Guessing
one of the four bytes takes about 20s on average, which we have to repeat 4 · 256 per secret
NTT-coefficient.

6 Conclusion
In this paper we propose a non-profiled side-channel attack methodology that targets
polynomial multiplication. We apply our methodology to all lattice-based KEMs in the
final round of the NIST PQC competition. In doing so we target both Toom-Cook-based
multiplication and NTT-based multiplication. Both of these polynomial multiplication
strategies perform point-wise multiplication at a threshold level before the results are
interpolated. We demonstrate how the secret operands involved in these scalar multipli-
cations can be recovered using correlation power analysis. Our experiments show that
Toom-Cook-based polynomial multiplication is more straightforward to attack. This is

20



reflected in the large difference between the runtimes of the attacks targeting Toom-Cook
implementations with the attacks on implementations of the NTT-based multiplication.
While we demonstrate our methodology for Kyber, Saber and NTRU, it is also applicable to
any other unprotected lattice-based scheme using Toom-Cook or the NTT for polynomial
multiplication. The proposed attacks can be mitigated by using masking and hiding
countermeasures [BDK+21, BGR+21].

7 Acknowledgements
This work was supported in part by Semiconductor Research Corporation (SRC).

21



References
[AASA+17] Gorjan Alagic, Jacob Alperin-Sheriff, Daniel Apon, David Cooper, Quynh

Dang, John Kelsey, Yi-Kai Liu, Carl Miller, Dustin Moodyand Rene Peralta,
Ray Perlner, Angela Robinson, and Daniel Smith-Tone. Status report on the
second round of the nist post-quantum cryptography standardization process.
https://nvlpubs.nist.gov/nistpubs/ir/2020/NIST.IR.8309.pdf, 2017.
[Online; accessed 08-Oct-2021].

[ABD16] Martin R. Albrecht, Shi Bai, and Léo Ducas. A subfield lattice attack on
overstretched NTRU assumptions - cryptanalysis of some FHE and graded
encoding schemes. In Matthew Robshaw and Jonathan Katz, editors, Ad-
vances in Cryptology - CRYPTO 2016 - 36th Annual International Cryptology
Conference, Santa Barbara, CA, USA, August 14-18, 2016, Proceedings, Part
I, volume 9814 of Lecture Notes in Computer Science, pages 153–178. Springer,
2016.

[ABD+21] Roberto Avanzi, Joppe Bos, Léo Ducas, Eike Kiltz, Tancréde Lepoint, Vadim
Lyubashevsky, John M. Schanck, Peter Schwabe, Gregor Seiler, and Damien
Stehlé. CRYSTALS-Kyber. algorithm specifications and supporting docu-
mentation. (round 3 submission). https://pq-crystals.org/kyber/data/
kyber-specification-round3-20210131.pdf, 2021. [Online; accessed 30-
September-2021].

[ACC+21] Erdem Alkim, Dean Yun-Li Cheng, Chi-Ming Marvin Chung, Hülya Evkan,
Leo Wei-Lun Huang, Vincent Hwang, Ching-Lin Trista Li, Ruben Niederhagen,
Cheng-Jhih Shih, Julian Wälde, and Bo-Yin Yang. Polynomial multiplication
in NTRU prime comparison of optimization strategies on Cortex-M4. IACR
Trans. Cryptogr. Hardw. Embed. Syst., 2021(1):217–238, 2021.

[ADPS16] Erdem Alkim, Léo Ducas, Thomas Pöppelmann, and Peter Schwabe. Post-
quantum key exchange - A New Hope. In Thorsten Holz and Stefan Savage,
editors, 25th USENIX Security Symposium, USENIX Security 16, Austin,
TX, USA, August 10-12, 2016, pages 327–343. USENIX Association, 2016.

[Ajt96] M. Ajtai. Generating hard instances of lattice problems (extended abstract).
In In Proceedings of the Twenty-Eighth Annual ACM Symposium on the
Theory of Computing, pages 99–108. ACM, 1996.

[APS15] Martin R. Albrecht, Rachel Player, and Sam Scott. On the concrete hardness
of learning with errors. J. Math. Cryptol., 9(3):169–203, 2015.

[BCO04] Eric Brier, Christophe Clavier, and Francis Olivier. Correlation power analysis
with a leakage model. In Marc Joye and Jean-Jacques Quisquater, editors,
Cryptographic Hardware and Embedded Systems - CHES 2004: 6th Inter-
national Workshop Cambridge, MA, USA, August 11-13, 2004. Proceedings,
volume 3156 of Lecture Notes in Computer Science, pages 16–29. Springer,
2004.

[BDH+21] Shivam Bhasin, Jan-Pieter D’Anvers, Daniel Heinz, Thomas Pöppelmann,
and Michiel Van Beirendonck. Attacking and Defending Masked Polynomial
Comparison for Lattice-Based Cryptography. IACR Trans. Cryptogr. Hardw.
Embed. Syst., 2021(3):334–359, 2021.

[BDK+21] Michiel Van Beirendonck, Jan-Pieter D’Anvers, Angshuman Karmakar, Josep
Balasch, and Ingrid Verbauwhede. A side-channel-resistant implementation
of SABER. ACM J. Emerg. Technol. Comput. Syst., 17(2):10:1–10:26, 2021.

22

https://nvlpubs.nist.gov/nistpubs/ir/2020/NIST.IR.8309.pdf
https://pq-crystals.org/kyber/data/kyber-specification-round3-20210131.pdf
https://pq-crystals.org/kyber/data/kyber-specification-round3-20210131.pdf


[BGR+21] Joppe W. Bos, Marc Gourjon, Joost Renes, Tobias Schneider, and Christine
van Vredendaal. Masking kyber: First- and higher-order implementations.
IACR Trans. Cryptogr. Hardw. Embed. Syst., 2021(4):173–214, 2021.

[BMD+20] Andrea Basso, Jose Maria Bermudo Mera, Jan-Pieter D’Anvers, Angshu-
man Karmakar, Sujoy Sinha Roy, Michiel Van Beirendonck, and Fred-
erik Vercauteren. SABER: Mod-LWR based KEM (Round 3 Submis-
sion). https://www.esat.kuleuven.be/cosic/pqcrypto/saber/files/
saberspecround3.pdf, 2020. [Online; accessed 30-September-2021].

[BPR12] Abhishek Banerjee, Chris Peikert, and Alon Rosen. Pseudorandom functions
and lattices. In David Pointcheval and Thomas Johansson, editors, Advances
in Cryptology - EUROCRYPT 2012 - 31st Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Cambridge, UK,
April 15-19, 2012. Proceedings, volume 7237 of Lecture Notes in Computer
Science, pages 719–737. Springer, 2012.

[CDH+19] Cong Chen, Oussama Danba, Jeffrey Hoffstein, Andreas Hülsing, Joost Rijn-
eveld, John M. Schanck, Peter Schwabe, William Whyte, and Zhenfei Zhang.
NTRU algorithm specifications and supporting documentation. Second PQC
Standardization Conference, 2019, University of California, Santa Barbara,
USA, 2019.

[CDH+20] Cong Chen, Oussama Danba, Jeffrey Hoffstein, Andreas Hülsing, Joost Rijn-
eveld, John M. Schanck, Tsunekazu Saito, Peter Schwabe, William Whyte,
Keita Xagawa, Takashi Yamakawa, and Zhenfei Zhang. NTRU algorithm
specifications and supporting documentation,. Second PQC Standardization
Conference, 2019, University of California, Santa Barbara, USA, 2020. [Online;
accessed 30-September-2021].

[CHK+21] Chi-Ming Marvin Chung, Vincent Hwang, Matthias J. Kannwischer, Gregor
Seiler, Cheng-Jhih Shih, and Bo-Yin Yang. NTT multiplication for ntt-
unfriendly rings new speed records for saber and NTRU on Cortex-M4 and
AVX2. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2021(2):159–188, 2021.

[Coo66] S. A. Cook. On the Minimum Computation Time of Functions. PhD thesis,
Harvard University, 1966. pp. 51-77.

[CT65] James W. Cooley and John W. Tukey. An algorithm for the machine calcula-
tion of complex fourier series. Mathematics of Computation, 19(90):297–301,
1965.

[DDGR20] Dana Dachman-Soled, Léo Ducas, Huijing Gong, and Mélissa Rossi. LWE with
side information: Attacks and concrete security estimation. In Daniele Mic-
ciancio and Thomas Ristenpart, editors, Advances in Cryptology - CRYPTO
2020 - 40th Annual International Cryptology Conference, CRYPTO 2020,
Santa Barbara, CA, USA, August 17-21, 2020, Proceedings, Part II, volume
12171 of Lecture Notes in Computer Science, pages 329–358. Springer, 2020.

[DKRV19] Jan Pieter D’Anvers, Angshuman Karmakar, Sujoy Sinha Roy, and Frederik
Vercauteren. Saber: Mod-LWR based kem,. Second PQC Standardization
Conference, 2019, University of California, Santa Barbara, USA, 2019.

[FO99] Eiichiro Fujisaki and Tatsuaki Okamoto. Secure integration of asymmetric
and symmetric encryption schemes. In Michael Wiener, editor, Advances in
Cryptology — CRYPTO’ 99, pages 537–554, Berlin, Heidelberg, 1999. Springer
Berlin Heidelberg.

23

https://www.esat.kuleuven.be/cosic/pqcrypto/saber/files/saberspecround3.pdf
https://www.esat.kuleuven.be/cosic/pqcrypto/saber/files/saberspecround3.pdf


[FO13] Eiichiro Fujisaki and Tatsuaki Okamoto. Secure integration of asymmetric
and symmetric encryption schemes. Journal of Cryptology, 26(1):80–101, Jan
2013.

[GS66] W. M. Gentleman and G. Sande. Fast fourier transforms: For fun and profit.
In Proceedings of the November 7-10, 1966, Fall Joint Computer Conference,
AFIPS ’66 (Fall), page 563–578, New York, NY, USA, 1966. Association for
Computing Machinery.

[HCY20] Wei-Lun Huang, Jiun-Peng Chen, and Bo-Yin Yang. Power analysis on NTRU
prime. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2020(1):123–151, 2020.

[HHK17] Dennis Hofheinz, Kathrin Hövelmanns, and Eike Kiltz. A modular analysis
of the fujisaki-okamoto transformation. In Yael Kalai and Leonid Reyzin,
editors, Theory of Cryptography - 15th International Conference, TCC 2017,
Baltimore, MD, USA, November 12-15, 2017, Proceedings, Part I, volume
10677 of Lecture Notes in Computer Science, pages 341–371. Springer, 2017.

[HPS98] Jeffrey Hoffstein, Jill Pipher, and Joseph H. Silverman. NTRU: A ring-based
public key cryptosystem. In Joe P. Buhler, editor, Algorithmic Number
Theory: Third International Symposiun, ANTS-III Portland, Oregon, USA,
June 21–25, 1998 Proceedings, pages 267–288. Springer Berlin Heidelberg,
Berlin, Heidelberg, 1998.

[HRSS17] Andreas Hülsing, Joost Rijneveld, John M. Schanck, and Peter Schwabe.
High-speed key encapsulation from NTRU. In Wieland Fischer and Naofumi
Homma, editors, Cryptographic Hardware and Embedded Systems - CHES
2017 - 19th International Conference, Taipei, Taiwan, September 25-28, 2017,
Proceedings, volume 10529 of Lecture Notes in Computer Science, pages
232–252. Springer, 2017.

[KJJ99] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis.
In Michael J. Wiener, editor, Advances in Cryptology - CRYPTO ’99, 19th
Annual International Cryptology Conference, Santa Barbara, California, USA,
August 15-19, 1999, Proceedings, volume 1666 of Lecture Notes in Computer
Science, pages 388–397. Springer, 1999.

[KMRV18] Angshuman Karmakar, Jose Maria Bermudo Mera, Sujoy Sinha Roy, and In-
grid Verbauwhede. Saber on ARM CCA-secure module lattice-based key encap-
sulation on ARM. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2018(3):243–
266, 2018.

[KO62] A. Karatsuba and Yu. Ofman. Multiplication of many-digital numbers by
automatic computers. Proceedings of USSR Academy of Sciences, 145(7):293–
294, 1962.

[Kob87] Neal Koblitz. Elliptic curve cryptosystems. Mathematics of Computation,
48(177):203–203, 1987.

[KRS18] Matthias J. Kannwischer, Joost Rijneveld, and Peter Schwabe. Faster multipli-
cation in Z2m [x] on Cortex-M4 to speed up NIST PQC candidates. Cryptology
ePrint Archive, Report 2018/1018, 2018. https://eprint.iacr.org/2018/
1018,.

[KRSS] Matthias J. Kannwischer, Joost Rijneveld, Peter Schwabe, and Ko Stoffelen.
PQM4: Post-quantum crypto library for the ARM Cortex-M4. https://
github.com/mupq/pqm4; Accessed 30-September-2021.

24

https://eprint.iacr.org/2018/1018
https://eprint.iacr.org/2018/1018
https://github.com/mupq/pqm4
https://github.com/mupq/pqm4


[LPR10] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices
and learning with errors over rings. In Henri Gilbert, editor, Advances in
Cryptology – EUROCRYPT 2010: 29th Annual International Conference on
the Theory and Applications of Cryptographic Techniques, French Riviera,
May 30 – June 3, 2010. Proceedings, pages 1–23. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2010.

[LS15] Adeline Langlois and Damien Stehlé. Worst-case to average-case reductions
for module lattices. Des. Codes Cryptogr., 75(3):565–599, 2015.

[LS19] Vadim Lyubashevsky and Gregor Seiler. NTTRU: truly fast NTRU using
NTT. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2019(3):180–201, 2019.

[LSCH10] Mun-Kyu Lee, Jeong Song, Dooho Choi, and Dong-Guk Han. Countermeasures
against power analysis attacks for the ntru public key cryptosystem. IEICE
Transactions, 93-A:153–163, 01 2010.

[Mil86] Victor S. Miller. Use of elliptic curves in cryptography. In Hugh C. Williams,
editor, Advances in Cryptology — CRYPTO ’85 Proceedings, pages 417–426,
Berlin, Heidelberg, 1986. Springer Berlin Heidelberg.

[MKV20] Jose Maria Bermudo Mera, Angshuman Karmakar, and Ingrid Verbauwhede.
Time-memory trade-off in Toom-Cook multiplication: an application to
module-lattice based cryptography. IACR Trans. Cryptogr. Hardw. Embed.
Syst., 2020(2):222–244, 2020.

[Mon85] Peter L. Montgomery. Modular multiplication without trial division. Mathe-
matics of Computation, 44:519–521, 1985.

[NIS17] NIST. Post-quantum cryptography standardization. https:
//csrc.nist.gov/Projects/Post-Quantum-Cryptography/
Post-Quantum-Cryptography-Standardization, 2017. [Online; accessed
10-Oct-2021].

[Pol71] J. M. Pollard. The fast fourier transform in a finite field. Mathematics of
Computation, 25(114):365–374, 1971.

[PP19] Peter Pessl and Robert Primas. More practical single-trace attacks on the
number theoretic transform. In LATINCRYPT, volume 11774 of Lecture
Notes in Computer Science, pages 130–149. Springer, 2019.

[PPM17] Robert Primas, Peter Pessl, and Stefan Mangard. Single-trace side-channel
attacks on masked lattice-based encryption. In Wieland Fischer and Naofumi
Homma, editors, Cryptographic Hardware and Embedded Systems - CHES
2017 - 19th International Conference, Taipei, Taiwan, September 25-28, 2017,
Proceedings, volume 10529 of Lecture Notes in Computer Science, pages
513–533. Springer, 2017.

[REB+21] Prasanna Ravi, Martianus Frederic Ezerman, Shivam Bhasin, Anupam Chat-
topadhyay, and Sujoy Sinha Roy. Generic side-channel assisted chosen-
ciphertext attacks on streamlined NTRU prime. IACR Cryptol. ePrint Arch.,
page 718, 2021.

[Reg04] Oded Regev. New lattice-based cryptographic constructions. J. ACM,
51(6):899–942, 2004.

25

https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization


[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and
cryptography. In Proceedings of the thirty-seventh annual ACM symposium
on theory of computing, STOC ’05, pages 84–93. ACM, 2005.

[RRCB20] Prasanna Ravi, Sujoy Sinha Roy, Anupam Chattopadhyay, and Shivam Bhasin.
Generic side-channel attacks on cca-secure lattice-based PKE and KEMs.
IACR Trans. Cryptogr. Hardw. Embed. Syst., 2020(3):307–335, 2020.

[RSA78] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A method for
obtaining digital signatures and public-key cryptosystems. Commun. ACM,
21(2):120–126, 1978.

[SW07] Joseph H. Silverman and William Whyte. Timing Attacks on NTRUEncrypt
Via Variation in the Number of Hash Calls. In Masayuki Abe, editor, Topics in
Cryptology - CT-RSA 2007, The Cryptographers’ Track at the RSA Conference
2007, San Francisco, CA, USA, February 5-9, 2007, Proceedings, volume 4377
of Lecture Notes in Computer Science, pages 208–224. Springer, 2007.

[SXY18] Tsunekazu Saito, Keita Xagawa, and Takashi Yamakawa. Tightly-secure
key-encapsulation mechanism in the quantum random oracle model. In
Jesper Buus Nielsen and Vincent Rijmen, editors, Advances in Cryptology -
EUROCRYPT 2018 - 37th Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Tel Aviv, Israel, April 29 - May
3, 2018 Proceedings, Part III, volume 10822 of Lecture Notes in Computer
Science, pages 520–551. Springer, 2018.

[Too63] A.L Toom. The complexity of a scheme of functional elements realizing the
multiplication of integers. In Soviet Mathematics-Doklady, volume 7, pages
714–716, 1963. http://toomandre.com/my-articles/engmat/MULT-E.PDF.

[XPRO20] Zhuang Xu, Owen Pemberton, Sujoy Sinha Roy, and David F. Oswald. Mag-
nifying Side-Channel Leakage of Lattice-Based Cryptosystems with Chosen
Ciphertexts: The Case Study of Kyber. IACR Cryptol. ePrint Arch., page
912, 2020.

26


	Introduction
	Preliminaries
	Notations
	Lattice-based cryptosystems
	Multiplication strategies
	Correlation Power Analysis

	Correlation Power Analysis on Toom-Cook-based polynomial multiplication
	Schoolbook multiplication implementation
	Generic structure of the known-ciphertext attack
	Attack on Saber
	Attack on NTRU

	Correlation Power Analysis on NTT-based polynomial multiplication
	Schoolbook multiplication implementation
	Generic structure of the side-channel attack
	Attack on Kyber
	Attack on NTRU
	Attack on Saber
	A note on the binomial distribution

	Results
	Measurement set-up
	CPA on Toom-Cook
	CPA on NTT

	Conclusion
	Acknowledgements

