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Abstract. We analyze and implement the SIDH PoK-based construction from De
Feo, Dobson, Galbraith, and Zobernig. We improve the SIDH-PoK built-in functions
to allow an efficient constant-time implementation. After that, we combine it with
Fiat-Shamir transform to get an SIDH PoK-based signature scheme that we short
label as SIDH-sign. We suggest SIDH-sign-p377, SIDH-sign-p546, and SIDH-sign-p697
as instances that provide security compared to NIST L1, L3, and L5. To the best of
our knowledge, the three proposed instances provide the best performance among
digital signature schemes based on isogenies.
Keywords: isogeny-based cryptography · signature scheme · proof-of-knowledge ·
implementation

1 Introduction
Recently, De Feo, Dobson, Galbraith, and Zobernig found an issue on the soundness
proof for Supersingular Isogeny Diffie-Hellman (SIDH) [JD11, DJP14] based identifi-
cation scheme [DDGZ21], which negatively impacts the signature schemes proposals
from [YAJ+17] and [GPS20]. As a solution, [DDGZ21] presents an isogeny-based Proof of
Knowledge (PoK) that relies on a new hardness assumption, and is immune to previously
presented adaptive attacks [GPST16, BKM+20, DGL+20, FP22].

As a constructive implication of [DDGZ21], the authors hint at a non-interactive
signature scheme using the Fiat-Shamir transformation, secure in the quantum random
oracle model [LZ19]. It is worth mentioning that the resulting SIDH PoK-based signature
works with large smooth isogenies (concerning powers of two and three), opposite to the
proposals from [DG19, DPV19, EKP20, BKV19, DKL+20, BDK+21, DLW22] that require
larger isogenies.

Related work. In 2019, De Feo and Galbraith proposed a signature scheme named SeaSign
by combining the Commutative SIDH (CSIDH) [CLM+18] and Fiat-Shamir transformation
with aborts [DG19]. SeaSign aims to have shorter keys than lattice signatures, but signing
and verification are currently costly. Later, Decru, Panny, and Vercauteren improved
SeaSign performance by allowing the prover not to answer a limited number of said
parallel executions to decrease the rejection probability [DPV19]. Subsequently, Beullens,
Kleinjung, and Vercauteren introduced a promising signature scheme labeled as CSI-
FiSh [BKV19] by integrating similar optimizations of SeaSign on Stolbunov’s signature
scheme [Sto12]. They showed that including quadratic twists cuts the public key size in half,
being 300 times faster and about three times smaller than any optimized version of SeaSign.
In 2020, Kaafarani, Katsumata, and Pintore suggested a Lossy variant of CSI-FiSh with
smaller signature sizes but two times slower than the original CSI-FiSh [EKP20].

A disadvantage of SeaSign, CSI-FiSh and its lossy variant, and the new scheme
from [BDK+21], is that their current proposals and implementations use CSIDH-512, which
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seems to bring lower quantum security than NIST Level 1 [BBP+21, Pei20, CSCJR21]. In
particular, some state-of-the-art works [Pei20, CSCJR21] hint CSIDH instances with 2048
bits are good choices to close NIST Level 1 of security. Nevertheless, using large CSIDH
instantiations (with about 2048 bits) would considerably slowdown on the performance
and increase signature sizes for these CSIDH-based schemes, negatively impacting higher
security levels compared to NIST Level 3 and 5.

Lastly, De Feo, Kohel, Leroux, Petit, and Wesolowski introduced a short-signature
scheme called SQIsign [DKL+20]. They only target NIST level 1 of security, with sig-
natures of 204 bytes, secret keys of 16 bytes, and public keys of 64 bytes; their C-code
implementation claims 0.6 seconds for key generation, 2.5 seconds for signing, and 50
milliseconds for verification. Most recently, De Feo, Leroux, and Wesolowski showed that
the security proof of SQISign is invalid; additionally, they fixed the issue and formulated
a new computational assumption; they improved the signature computation in SQIsign
by a factor of 2x [DLW22]. To the best of our knowledge, the current SQIsign signature
implementation remains non-constant-time, and making it constant-time looks like a
formidable task. It is still an open problem.

Contributions. For simplicity, we write SIDH-sign to a short naming of the SIDH
PoK-based signature. We focus on describing and implementing the SIDH-sign signature,
and list as follows our main contributions:

• we propose a uniform pseudo-random function to sample order-3b kernel points;

• we present an efficient free-inverse and deterministic procedure of CanonicalBasis
to compute SIDH public x-only order-3b points for arbitrary Montgomery curves.
Our proposal permits an efficient free-inverse entangled basis generation with shared
Elligator (required in the compressed SIKE version) using precomputed tables of 32
bytes;

• we give an efficient SIDH-strategy based algorithm to find two-dimensional discrete
logarithms on the 3b-torsion subgroup for arbitrary Montgomery curves and without
precomputated tables;

• we provide the first constant-time C-code implementation of the PoK from [DDGZ21];
and then

• we afford an efficient constant-time C-code implementation of SIDH-sign and suggest

– SIDH-sign-p377 with desired NIST Level 1 (L1) of security,

– SIDH-sign-p546 with desired NIST Level 3 (L2) of security, and

– SIDH-sign-p697 with desired NIST Level 5 (L5) of security.

Our security suggestions are obtained from the security analysis and SIKE proposals
of [LWS21]. We also include benchmarks according to the NIST competition 3rd
round SIKE parameter sets: SIDH-sign-p[434/503/610/751]. Our code is freely
available at https://github.com/SIDH-sign/SIDH-Sign.

Outline. We organize the paper as follows. Section 2 gives an overview of the mathematical
tools needed to understand the SIDH PoK-based construction. Section 3 presents our
algorithmic proposals, which allow making the SIDH PoK practical, and Section 3.3
describes the SIDH-sign signature. Section 4 draws the benchmarks and comparisons with
state-of-art isogeny-based signatures. Finally, Section 5 sums up our concluding remarks.

https://github.com/SIDH-sign/SIDH-Sign
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2 Preliminaries
In this section, we introduce all mathematical tools required in the SIDH PoK proposal
from [DDGZ21]. Let p = 2a3b − 1 be a prime number satisfying p ≡ 3 mod 4 for some
a, b ∈ Z+. Let us denote a prime field with p elements as Fp, and its quadratic field
extension by Fp2 := Fp[i]/(i2 + 1). Additionally, we set a supersingular curve E by means
of Equation 1, and assume E has exactly #E(Fp2) = (p+ 1)2 points over Fp2 .

E : y2 = x3 +Ax2 + x, A ∈ Fp2 . (1)

We denote the point at infinity of E as O, which plays as the neutral element. We say
P ∈ E is an order-d point if d is the smallest positive integer such that

[d]P = P + · · ·+ P︸ ︷︷ ︸
d times

= O,

and write E[d] to denote the d-torsion subgroup {P ∈ E(Fp2) | [d]P = O}.

Isogenies From Kernel. An isogeny ϕ : E → E′ over Fp2 is a non-zero rational map
fixing the point at infinity, ϕ(O) = O . If such isogeny exists, we say E and E′ are
isogenous over Fp2 , and this happens if and only if #E(Fp2) = #E′(Fp2). The kernel
kerϕ of ϕ is the set {P ∈ E(Fp2) | ϕ(P ) = O}. We only consider separable isogenies, and
refer to ϕ as d-isogeny when # kerϕ = d holds. Moreover, each d-isogeny is completely
described by its kernel. The dual isogeny ϕ̂ : E′ → E of ϕ satisfies that composing with ϕ
gives the multiplication by d, that is

ϕ̂ ◦ ϕ : P 7→ [d]P and ϕ ◦ ϕ̂ : P 7→ [d]P.

Consequently, we have ker
(
ϕ ◦ ϕ̂

)
= E[d] and ker

(
ϕ̂ ◦ ϕ

)
= E′[d]. However, in

practice, we only need to verify one composition. Given an order-d point K ∈ E,
IsogenyFromKernel(K) denotes the procedure to compute the d-isogeny ϕ : E → E′

with kerϕ = ⟨K⟩. Similarly, we use DualKernel(ϕ) to denote the computation of ker ϕ̂.

Kummer line. One beauty when working on Montgomery curves is that point arithmetic
and isogenies can prevent y-coordinates and focus on x-only points (much cheaper opera-
tions [CH17, Ren18]). We use the notation x(P ) to refer to the x-coordinate of an elliptic
curve point P . Formally, one works on the Kummer line {x(P ) | P ∈ E}, and with x-only
projective points (X : Z) describing x(P ) = X/Z for some point P ∈ E.

2.1 SIDH-based PoK construction
Let CanonicalBasis(E) denotes the procedure to find two order-3b points P and Q such
that ⟨P,Q⟩ = E[3b]. SIDH-based PoK is a Proof-of-Knowledge that relies on isogenies over
supersingular Montgomery curves, consisting of four algorithms: commitment, challenge,
response, and verification. As setup, it has

• the quadratic field Fp2 = Fp[i]/(i2 + 1) along with p = 2a3b − 1;

• the starting supersingular curve E0 : y2 = x3 + 6x2 + x 1; and

• the order-3b basis {P0, Q0} satisfying ⟨P0, Q0⟩ = E0[3b].
1We choose same E0 as in SIKE proposal [ACC+20], but it can be a different curve
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Given a public 2a-isogenous curve E′ to E. The prover wants to convince the verifier
she knows the secret 2a-isogeny ϕ : E → E′, which is equivalent to know kerϕ = ⟨Kϕ⟩.
Firstly, the prover creates a commitment as follows:

• Sample random 3b-isogeny kernel ⟨Kψ⟩ ⊂ E0;

• Write Kψ = [α]P0 + [β]Q0 ∈ E0 for α, β ∈ Z3b ;

• Compute Kψ′ ← ϕ(Kψ) as [α]ϕ(P0) + [β]ϕ(Q0) ∈ E1;

• ψ,E2 ← IsogenyFromKernel(Kψ);

• P2, Q2 ← CanonicalBasis(E2);

• Kϕ′ ← ψ(Kϕ) ∈ E2;

• ϕ′, E3 ← IsogenyFromKernel(Kϕ′);

• P3, Q3 ← ϕ′(P2), ϕ′(P2) ∈ E3;

• She then sends com = (E2, E3, P3, Q3) to the verifier.

The verifier receives com, and sends a challenge chall $←− {0, 1} to the prover. Subse-
quently, the prover responses

• if chall = 1 then

– resp← Kϕ′ ;

• else

– K
ψ̂
← DualKernel(ψ);

– Write K
ψ̂

= [γ]P2 + [δ]Q2 ∈ E2 for γ, δ ∈ Z3b ;

– resp← (γ, δ);

• She sends resp to the verifier.

Lastly, the verifier receives resp and verifies as below:

• (E2, E3, P3, Q3)← com

• if chall = 1 then

– Kϕ′ ← resp;
– Check Kϕ′ has order 2a and lies on E2, otherwise output reject.
– P2, Q2 ← CanonicalBasis(E2);
– ϕ′, E′

3 ← IsogenyFromKernel(Kϕ′);
– Verify E3 = E′

3 and P3 = ϕ′(P2), Q3 = ϕ′(Q2) otherwise output reject.

• else

– (γ, δ)← resp;
– P2, Q2 ← CanonicalBasis(E2);
– K

ψ̂
← [γ]P2 + [δ]Q2 ∈ E2;

– K
ψ̂′ ← [γ]P3 + [δ]Q3 ∈ E3;
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– Check K
ψ̂
,K

ψ̂′ have order 3b, otherwise output reject.

– ψ̂, E′
0 ← IsogenyFromKernel(K

ϕ̂
);

– ψ̂′, E′
1 ← IsogenyFromKernel(K

ϕ̂
);

– Verify E0 = E′
0 and E1 = E′

1, otherwise output reject.

• Output accept.

As a way to describe the security assumption, Figure 1 illustrates the hard problem of
the above PoK, and assumes the cases from Figure 1a and Figure 1a do not simultaneously
occur for a fixed instance. Essentially, the hardness assumption relies on distinguishing
between well-formed and altered instances (E2, E3, P3, Q3) [DDGZ21, §2.1 and §3.2], and
on the computational hardness of finding ϕ : E0 → E1.

(E0, P0, Q0) (E1, P1, Q1)

(E2, P2, Q2) (E3, P3, Q3)

ϕ

ψ

ϕ′

ψ′

(a) Given kerϕ′ = ⟨K′
ϕ⟩. The verifier accepts

whenever ϕ′ is a 2a-isogeny with co-domain
curve equal E3, ϕ′(P2) = P3, and ϕ′(Q2) =
Q3.

(E0, P0, Q0) (E1, P1, Q1)

(E2, P2, Q2) (E3, P3, Q3)

ϕ

ψ̂

ϕ′

ψ̂′

(b) Given ker ψ̂ = ⟨[γ]P2+[δ]Q2⟩ and ker ψ̂′ =
⟨[γ]P3 +[δ]Q3⟩. The verifier accepts whenever
ψ̂ and ψ̂′ are 3b-isogenies with co-domain
curves equal E0 and E1, respectively.

Figure 1: The points P2, Q2 ← CanonicalBasis(E2) are computed on the fly. Dashed
arrows are secret and unknown by the adversary and distinguisher.

2.2 Sigma protocol & the Fiat-Shamir transform
The sigma protocol described by Section 2.1 is 2-special sound under the relation

RweakSIDH := {(E1, ψ) | ψ : E0 → E1 is a 2a-isogeny} .

When repeated κ times, it becomes a Honest-Verifier Zero-Knowledge (HVZK) PoK with
soundness 2−κ [DDGZ21].

Notice that this PoK proves knowledge of the private key related to a public key
as an interactive identification protocol. These protocols can be converted into digital
signature schemes using the strong Fiat-Shamir transform [FS86, BPW12]. The main
idea is to avoid the interaction between the prover and the verifier by allowing the prover
to generate the challenge as the hash of the statement and the commitment. In our
case, the prover would first generate κ commitments comi and then obtains the challenge
chall = H(pk, com0, . . . , comκ−1). We denote with pk an SIDH public key composed of the
triplet: (E1, P1, Q1). Each bit of chall represents the challenge challi that determines
the response values for comi. This transformation has been proven secure [Unr17] in the
Quantum Random Oracle Model (QROM).
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3 Efficient SIDH-PoK built-in function proposals
This section centers on describing the way we efficiently did each computation from Sec-
tion 2.1. Let us start with the sampling of a random 3b-isogeny kernel Kψ. Let
⟨P,Q⟩ = E[3b], then the number of different order-3b subgroups ⟨R⟩ ⊂ E[3b] is 4×3b−1. In
fact, either ⟨R⟩ coincides with ⟨P + [k]Q⟩ or ⟨[k]P +Q⟩ for some integer k ∈ J0 . . 3b − 1K.
Furthermore, Equation 2 give us a bijection between {0, 1, 2, 3} × J0 . . 3b−1 − 1K and the
set A of order-3b subgroups of E[3b].

f : (o, k) 7→
{
⟨P + [o3b−1 + k]Q⟩ if o ̸= 3,
⟨[3k]P +Q⟩ otherwise. . (2)

There is a uniform pseudo-random function to sample elements on the set A of order-3b
subgroups of E[3b]. The idea is to construct a uniform pseudo-random function g : Z+ →
{0, 1, 2, 3} × J0 . . 3b−1 − 1K, then compose it with f : {0, 1, 2, 3} × J0 . . 3b−1 − 1K→ A and
get h = f ◦ g as desired. In particular, g, as described by Algorithm 1, makes the magic
for us.

Algorithm 1 Pseudo-random function g : Z+ → {0, 1, 2, 3} × J0 . . 3b−1 − 1K

Inputs: A positive integer b
Output: A random element (o, k) ∈ {0, 1, 2, 3} × J0 . . 3b−1 − 1K

1: B← number of bytes of 3b−1

2: repeat
3: var← (B + 1) random bytes using SHAKE256 as a PRG
4: k ← B least significant bytes of var
5: o′ ← most significant byte of var
6: until k < 3b−1

7: o← two least significant bits of o′

8: return (o, k)

Dual Kernel. Let us sample (o, k) and ⟨R⟩ by using Algorithm 1 and Equation 2. Let ψ
be a 3b-isogeny with kernel ⟨R⟩,

f̂ : o 7→
{
⟨ψ(Q)⟩ if o ̸= 3,
⟨ψ(P )⟩ otherwise. .

and ψ̂ be the 3b-isogeny with kernel R̂ = f̂(o). By construction, ψ ◦ ψ̂ has kernel equal to
⟨P,Q⟩ = E[3b], and thus f̂ describes the dual 3b-isogeny kernel concerning ψ.

3.1 Canonical Basis
Notice Equation 1 has a projective representation given by Equation 3, where x = X/Z ∈
Fp2 and y = Y/Z ∈ Fp2 satisfies Equation 1.

E : Y 2Z2 = X3Z +AX2Z2 +XZ3 (3)

Thus, given X and Z we can check the existence of Y ∈ Fp2 by determining whether
the right-hand side of Equation 3 is QR23. Now, following the ideas from [CCC+19],
we next give an efficient description of Elligator (without inverse computations): let’s

2We write QR to refer quadratic residue. Similarly, QNR means quadratic non-residue.
3The QR check of an element (t0 + t1i) ∈ Fp2 is efficiently done via the QR test of its norm t2

0 + t2
1

over Fp [CJL+17].
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assume A ≠ 0, and let u ∈ Fp2 be a QR that does not belong Fp and r ∈ Fp2 , then,
if (X : Z) = (−A : 1 + ur2) ensure existence of Y and X/Z is a QNR, there is also a
Y ′ for (X ′ : Z ′) = (−Aur2 : 1 + ur2) [PDJ21]. Algorithm 2 applies the above ideas to
deterministically get a projective x-only point (X : Z) on E by using the below equation

X3Z +AX2Z2 +XZ3 = A · (1 + ur2) ·
[
A2 · (ur2)− (1 + ur2)2

]
.

Take note that X/Z is QRN if and only if XZ too; furthermore, we require Z such that i)
A is QNR and Z is QR, or ii) A is QR and Z is QNR.

Algorithm 2 Elligator2 procedure without field inversion
Inputs: A-coefficient of a supersingular curve E given by Equation 1, an element r ∈ Fp,

and a QR u ∈ Fp2 that does not belong Fp
Output: A projective x-only point (X : Z) on E, and a point-shape identifier qr ∈ {0, 1}

1: Z ← ur2

2: X ′ ← AZ
3: Y ′ ← AX ′

4: s← A+X ′

5: Z ← Z + 1
6: t← Z2

7: Y ′ ← Y ′ − t
8: Y ′ ← sY ′

9: if Y ′ is QR then
10: X ← −A
11: qr← 1
12: else
13: X ← −X ′

14: qr← 0
15: end if
16: return (X : Z), qr

Recall, we do not have any restriction for r, and for efficiency, we can choose small
values of r ∈ Fp. In fact, for a fixed u we suggest to precompute two lists QR and QNR of 32
bytes that describe 8-bits integers r ∈ Fp satisfying Z = 1+ur2 is a QR or not, respectively.
It is worth to mention, (X : Z) = (−A : 1 + ur2) and (X ′ : Z ′) = (−Aur2 : 1 + ur2) share
the same Z-coordinate, and permit to efficiently compute x(P −Q) by using Equation 4.

x(P −Q) = [x(P )3 +Ax(P )2 + x(P )](1 + r
√
u)2

[x(P )− x(Q)]2
, (4)

where x(P ) = X/Z and x(Q) = X ′/Z. Algorithm 3 summarizes how to get x(P −
Q) with projective x-only points as inputs. Finally, Algorithm 4 describes an efficient
implementation of CanonicalBasis. Lemma 1 illustrates why Algorithm 4 works.

Lemma 1. Let Fp2 = Fp[i]/(i2 + 1) where p = 2a3b − 1 is a prime number, A-coefficient
of a supersingular curve E given by Equation 1, u = (i+ 1)2 ∈ Fp2 , and let QR and QNR
two lists of 32 bytes that describe 8-bits elements r ∈ Fp satisfying Z = 1 + ur2 is a QR or
not, respectively. Then, Algorithm 4 correctly gets the projective x-only points x(P ), x(Q),
and x(P −Q) such that E[3b] = ⟨P,Q⟩.

Proof. Let r ∈ Fp2 be as in Line 8 from Algorithm 4, and let x(P ), x(Q), and x(P −Q)
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Algorithm 3 get_P_minus_Q procedure without field inversion
Inputs: A-coefficient of a supersingular curve E given by Equation 1, x(P ) := (X : Z) =

(−A : 1+ur2), x(Q) := (X ′ : Z ′) = (−Aur2 : 1+ur2), the element r ∈ Fp, and u′ =
√
u

Output: The projective x-only point x(P −Q) = (X : Z)
1: t← u′r
2: t← t+ 1
3: t← t2

4: X ← X2

5: Z ← Z2

6: s← AX
7: s← sZ
8: x← XZ
9: x← s+ x

10: X ← XX
11: x← X + x
12: X ← Xt
13: t← X −X ′

14: t← t2

15: Z ← tZ
16: return (X : Z)

be the output of Algorithm 4. Then,

Pr
[
[2a]P has order 3b

]
= Pr

[
[2a3b−1]P ̸= O

]
= 3

4 , and

Pr
[
[2a]Q has order 3b

]
= Pr

[
[2a3b−1]Q ̸= O

]
= 3

4 .

Now, assuming P and Q behave as independent random points, we have

Pr[P and Q have order 3b] = Pr
[
[2a3b−1]P ̸= O

]
× Pr

[
[2a3b−1]Q ̸= O

]
= 9

16 .

Therefore, the probability of success in one iteration of Algorithm 4 becomes

Pr
[
r gives an order-3b basis {P,Q}

]
= Pr[Line 9 returns x(P ) = (−A : 1 + ur2)]
× Pr[P and Q have order 3b]
× Pr

[
[2a3b−1]P ̸= ±[2a3b−1]Q

]
=

(
1
2

) (
9
16

) (
3
4

)
= 27

128 .

That is, we expect (in average) 32×27
128 = 6.75 success from 32 random samples, which

implies Algorithm 4 correctly gets an order-3b point basis.

3.2 Decomposition by scalars
We follow the strategy approach of computing ℓe isogenies, which was recently applied to
solving two dimensional discrete logarithms [PB21]. The main difference in our case study
is that we must compute two dimensional discrete logarithms on a random curve E; that
is, we want to find γ, δ ∈ J0 . . 3b − 1K given R = [γ]P + [δ]Q. Our approach does not use
precomputed tables, it only requires a strategy coded as in SIDH:

• a list Sb of b− 1 positive integers, and
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Algorithm 4 CanonicalBasis procedure
Inputs: prime number p = 2a3b − 1, A-coefficient of a supersingular curve E given

by Equation 1, u = (i+ 1)2 ∈ Fp2 , and two lists QR and QNR of 32 bytes that describe
8-bits elements r ∈ Fp satisfying Z = 1 + ur2 is a QR or not, respectively.

Output: The projective x-only points x(P ), x(Q), and x(P −Q) on E s.t. E[3b] = ⟨P,Q⟩

1: if A is QR then
2: T ← QNR
3: else
4: T ← QR
5: end if
6: u′ ← i+ 1
7: for t in T do
8: r ← i+ t
9: x(P ), shape← Eligator2(A, r, u) // (X : Z) = x(P )

10: if shape = 0 then
11: skip this iteration, and go to next iteration
12: end if
13: x(Q)← (−Aur2 : Z)
14: if shape = 0 then
15: skip this iteration, and go to next iteration
16: end if
17: x(P −Q)← get_P_minus_Q(A, x(P ), x(Q), r, u′)
18: if [2a]P or [2a]Q has order smaller than 3b then
19: skip this iteration, and go to next iteration
20: end if
21: if [2a3b−1]P = ±[2a3b−1]Q then
22: skip this iteration, and go to next iteration
23: end if
24: finalize loop iterations, and go to Line 26 // At this point, ⟨P,Q⟩ = E[3b]
25: end for
26: return x(P ), x(Q), x(P −Q)

• each entry Sb[j] determines the number of point triplings before including a new
point on the computations.

As pointed out in [PB21], we require to perform point additions (not only-x points)
as efficiently as possible. So, we also translate the problem in E into an isomorphic
Twisted Edwards curve and use projective coordinates (X : Y : Z) to ensure efficient point
additions, doubling, and triplings. Let us write γ =

∑b−1
j=0 γ

j , and δ =
∑b−1
j=0 δj3j . For

each b′ ∈ J0 . . b− 1K we have

[
3b−1−b′

] R− b′−1∑
j=0

[γj3j ]P −
b′∑
j=0

[δj3j ]Q

 = [γb′ ]
([

3b−1]
P

)
+ [δb′ ]

([
3b−1]

Q
)

=


O
±

[
3b−1]

P
±

[
3b−1]

Q
±

[
3b−1]

(P +Q)
±

[
3b−1]

(P + [2]Q).

(5)

Next, strategy Sb describes a weighted subgraph contained into a discrete rectangular
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triangle ∆ of size b, and then it has a cost equal to

cost(Sb) = cost(Sh) + cost(Sb−h) + (n− h) · q + h · p,

where 1 ≤ h ≤ b − 1, and p determines a point tripling cost while q the cost for
computing cb′ and db′ both in {0, 1, 2}. Notice, we have 9 options for (cb′ , db′) ∈
{(0, 0), (1, 1), (2, 2), (0, 1), (0, 2), (1, 2), (1, 0), (2, 0), (2, 1)}. So, assuming uniform distri-
bution on the choices of (cb′ , db′), we suggest to set q as the average cost of these nine
possibilities. We say Sb is optimal if it has the minimum possible cost. Algorithm 5
draws our strategy approach and tries to iteratively find each coefficient γb′ and δb′ by
reducing into Equation 5 and solving it (as opposite to 3b-isogenies case, which looks for
the 3-isogeny kernel). In summary, the strategy evaluation concerning Sb has a running
time of O(b log2(b)) point operations and essentially shares the same structure (procedure)
as computing 3b-isogenies.

Algorithm 5 two dimensional discrete logarithm computation based on SIDH-like strate-
gies
Inputs: two linearly independent order-3b points P and Q, a point R ∈ ⟨P,Q⟩, and an

strategy Sb coded as a list of b− 1 positive.
Output: γ =

∑b−1
j=0 γj3j and δ =

∑b−1
j=0 δj3j ∈ Z3b such that R = [γ]P + [δ]Q

1: γ ← 0
2: δ ← 0
3: points← []
4: indexes← []
5: index← 0
6: k ← 0
7: for row := 1 to b− 1 do
8: while index < b− row do
9: indexes[n]← index

10: points[n]← R
11: R←

[
3Sb[k]]R

12: index← index + Sb[k]
13: k ← k + 1
14: n← n+ 1
15: end while // This while loop computes the left-hand side of Equation 5
16: Get γrow−1 and δrow−1 by means of Equation 5
17: for j := 0 to n− 1 do
18: points[j]← points[j]−

[
3row−1+indexes[j]] ([γrow−1]P + [δrow−1]Q)

19: end for
20: R← points[n− 1]
21: index = indexes[n− 1]
22: n← n− 1
23: end for
24: Get γb−1 and δb−1 by means of Equation 5
25: γ ←

∑b−1
j=0 γj3j

26: δ ←
∑b−1
j=0 δj3j

27: return γ, δ

Two dimensional ladder. Let’s assume we have the following task: given γ, δ ∈ Z3b and
P,Q ∈ E, we want to compute [γ]P + [δ]Q. Notice that verification is the only place where
double scalar multiplication is needed, so one of the best ways to compute it is through
the Euclidean two dimensional algorithm [CS18, Algorithm 9].
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Recovery of y-coordinate. Since all the computations on the Montgomery curves
are concern x-only points, once we need to move to Twisted Edwards curves, we use
Okeya-Sakurai y-coordinate recovery formula as in [CS18, §4.3].

3.3 Explicit description of SIDH-sign
As mentioned in Section 2.2, a digital signature scheme comes from the PoK of De Feo
et al. [DDGZ21]. Their original contribution gives insights on how to do this by using
the Fiat-Shamir transform and provide numbers for the sizes of the resulting scheme. For
precision, we next provide a clear idea of the different algorithms involved in the digital
signature.

A digital signature scheme consist of three main algorithms: keygen(λ), Sign(pk, sk,m),
and Verify(pk, σ,m). The first algorithm receives as input a security parameter λ in order
to generate a key pair with the appropriate parameters to later generate digital signatures
with security at least 2λ. The operations involved are detailed in Figure 2 and easily
extracted from the setup of the SIDH-PoK.

The second algorithm Sign(pk, sk,m) generates a digital signature σ of the message m
using the secret key sk and the public key pk required for the PoK. In Figure 2 we detail
the specifics of the algorithm. Basically, it can be seen as a repetitive call to the algorithm
commitment, from the PoK, then a challenge is computed by applying the Fiat-Shamir
transformation with the generated commitments and, finally, an iterative call to response
using the bits of the challenge is required to compute the last values of the signature.

In a similar way, algorithm Verify(pk, σ,m) generates the challenge using the commit-
ments in σ, the public key pk, and the message m. After that, it uses the bits of the
generated challenge and the responses in σ as inputs for the algorithm verification from
the PoK. If all the iterations are correct, the algorithm Verify(pk, σ,m) outputs accept.
More details of this algorithm are provided in Figure 3.

4 Experiments
In our implementation, all computations are with x-only projective points (omitting the
decomposition by scalars of Section 3.2). We take as the base 2a-isogenies and 3b-isogenies
implementation from the SIDH implementation. We apply the improvements of [EKA22]
when a is odd. Consequently, we work with commitments as (E2, x(P3), x(Q3), x(P3−Q3))
instead of (E2, E3, P3, Q3). In both signing and verifying, we use SHAKE256 as the hash
function H.

Now, SIDH-sign has private and public keys, and signatures of
(

log2(p)
2

)
-bits and

6 log2(p) (as in SIKE), and at most 10 log2(p)κ-bits where κ ∈ {128, 160, 192, 256}, respec-
tively; Table 1 encloses these sizes for each SIDH-sign instance. Notice, the case chall = 1
saves 1

10 of the bytes compared with chall = 0, and thus the minimum signature size
becomes of 19

20 × 10 log2(p)κ = 9.5 log2(p)κ-bits. Furthermore, in average we expect a
signature size of 9.75 log2(p)κ bits. Table 1 lists the sizes (in bytes) of different SIDH-sign
instantiations.

We replicate the benchmark experiments of SQISign in [DLW22] by using its publicly
available C-code implementation, to provide a baseline for comparing the performance
of SIDH-sign. Furthermore, we recall that while the SQISign implementation is not
constant-time, our C-code implementation of SIDH-sign is based on the constant-time
SIKE implementation. Indeed, we provide a constant-time implementation of all our results
from Section 3, and apply Longa’s tricks from [Lon22] to speed up the field field arithmetic.
We refactor the SIKE code to avoid unused variables in the PoK construction and make it
as small as possible. We also split the Alice and Bob computations into different curve
structures (for easy debugging). We do not really improve internal computations, we (in
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keygen(λ)

Sample random 2a-isogeny kernel ⟨Kϕ⟩ ⊂ E0

ϕ,E1 ← IsogenyFromKernel(Kϕ)
P1, Q1 ← ϕ(P0), ϕ(Q0) ∈ E1

pk = (E1, P1, Q1)
sk = (ϕ,Kϕ)
return (pk, sk)

Sign(pk, sk,m)

for i = 1 to κ do

Sample random 3b-isogeny kernel ⟨Kψi⟩ ⊂ E0

Find αi, βi s. t. Kψi = [αi]P0 + [βi]Q0 ∈ E0

Kψ′
i

= ϕ(Kψi )

ψi, E2,i ← IsogenyFromKernel(Kψi )
P2,i, Q2,i ← CanonicalBasis(E2,i)
Kϕ′

i
← ψi(Kϕ)

ϕ′
i, E3,i ← IsogenyFromKernel(Kϕ′

i
)

P3,i, Q3,i ← ϕ′
i(P2,i), ϕ′

i(P2,i) ∈ E3,i

comi = (E2,i, E3,i, P3,i, Q3,i)
end
chall = H(pk, com1, . . . , comκ)
for i = 1 to κ do

if chall[i] = 1 do
respi = Kϕ′

i

else
K
ψ̂i
← DualKernel(ψi)

Find γi, δi s. t. K
ψ̂i

= [γi]P2,i + [δi]Q2,i ∈ E2,i

respi = (γi, δi)
end

end
return σ = (com1, . . . , comκ, resp1, . . . , respκ)

Figure 2: Key Generation and signature algorithms. The public parameters are the curve
E0, and the points P0, Q0 ∈ E0 satisfying ⟨P0, Q0⟩ = E0[3b].

some sense) profile and clean their code for our case study. For compatibility, our prime
field arithmetic is based on CSIDH and SQIsign codes and allows us to integrate different
primes easily.

The running time of SIDH-sign depends on the public challenge and is independent from
the private key. Table 2 draws the L1/L2 SQIsign-p3923 and SIDH-sign-p[377/434/503]
timings when generating key pairs, signing, and verifying. While Table 3 focuses on large
instantiations of SIDH-sign aimed at L3 and L5 parameters. All of our experiments were
executed on Ubuntu 21.04 running on an Intel Core i9-10885h machine with 32GB of RAM
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Verify(pk, σ,m)

Parse σ as σ = (com1, . . . , comκ, resp1, . . . , respκ)
chall = H(pk, com1, . . . , comκ)
for i ∈ 1, . . . , κ do

(E2,i, E3,i, P3,i, Q3,i)← comi
if chall[i] = 1 do
Kϕ′

i
← respi

if Kϕ′
i
/∈ E2,i and Kϕ′

i
order ̸= 2a do

return reject
end
P2,i, Q2,i ← CanonicalBasis(E2,i)
ϕ′
i, E

′
3,i ← IsogenyFromKernel(Kϕ′

i
)

if E3,i ̸= E′
3,i or P3,i ̸= ϕ′

i(P2,i), or Q3,i ̸= ϕ′
i(Q2,i) do

return reject
end

else
(γi, δi)← respi
P2,i, Q2,i ← CanonicalBasis(E2,i)
K
ψ̂i
← [γi]P2,i + [δi]Q2,i ∈ E2,i

K
ψ̂′

i

← [γi]P3,i + [δi]Q3,i ∈ E3,i

if K
ψ̂i

or K
ψ̂′

i

does not have order 3b do

return reject
end

ψ̂i, E
′
0,i ← IsogenyFromKernel(K

ψ̂i
)

ψ̂′
i, E

′
1,i ← IsogenyFromKernel(K

ψ̂′
i

)

if E0 ̸= E′
0,i or E1 ̸= E′

1,i do
return reject

end
end

end
return accept

Figure 3: Verification algorithm. The public parameters are the curve E0, and the points
P0, Q0 ∈ E0 satisfying ⟨P0, Q0⟩ = E0[3b].

Table 1: Byte sizes. Signature sizes correspond with the maximum (when chall = 0).
Security Level Private key Public Key Signature

SIDH-sign-p377 NIST L1 (κ = 128) 24 B 288 B 61.44 KB
SIDH-sign-p546 NIST L3 (κ = 192) 34 B 414 B 132.48 KB
SIDH-sign-p697 NIST L5 (κ = 256) 44 B 528 B 225.28 KB
SIDH-sign-p434 NIST L1 (κ = 128) 27 B 330 B 70.4 KB
SIDH-sign-p503 NIST L2 (κ = 160) 31 B 378 B 100.80 KB
SIDH-sign-p610 NIST L3 (κ = 192) 38 B 462 B 147.84 KB
SIDH-sign-p751 NIST L5 (κ = 256) 47 B 564 B 240.64 KB
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and clang 12.0.0 compiler. During the experiment the turbo boost and hyper-threading
settings were disabled and CPU clock was fixed at 2.0GH. Our code is freely available
at https://github.com/SIDH-sign/SIDH-Sign.

Table 2: Timings measured in milliseconds and millions of cycles for SQIsign-p3923 (L1)
compared to SIDH-sign-p377 (L1), SIDH-sign-p434 (L1) and SIDH-sign-p503 (L2). Q1
refers to the 1st quartile, and Q3 is the 3rd quartile.

SQIsign-p3923 SIDH-sign-p377 SIDH-sign-p434 SIDH-sign-p503
keygen Sign Verify keygen Sign Verify keygen Sign Verify keygen Sign Verify

Mcycles
Q1 789 3,987 77 5 3,133 1,816 7 4,405 2,543 10 7,859 4,455

median 819 4,028 78 5 3,213 1,859 7 4,521 2,594 10 8,002 4,528
Q3 851 4,099 82 5 3,265 1,892 7 4,603 2,642 10 8,122 4,598

ms
Q1 329 1,661 32 2 1,305 756 3 1,835 1,059 4 3,274 1,856

median 341 1,678 32 2 1,339 774 3 1,883 1,081 4 3,334 1,886
Q3 354 1,708 34 2 1,360 788 3 1,918 1,101 4 3,384 1,916

In the following, we discuss the result of the baseline experiment shown in Table 2
and Table 3, observing the median of cycles for each operation. The key generation for
SIDH-sign-p377 is 149 times faster than SQISign-p3923, at a trade-off where signature
verification is 23.7 times slower. Remarkably, we also achieve signature generation 1.25
times faster than SQISign using slower and constant-time code. Considering larger primes
such as p434 and p502, Table 2 shows that only key generation preserves the performance
advantage over SQISign, with greater trade-offs to signature verification cost and in
addition to slower signature generation. Moreover, at the same level of security, p377
offers much better performance when compared to p434, running ∼ 1.4 times faster for all
operations. Indeed, this performance gain is identical when comparing NIST L3 parameters
p546 and p610 in Table 3. For NIST L5 parameters, p697 is 2.05 times faster for key
generation and ∼ 2.15 times faster for signing and verifying, when compared to p751. The
main reason for the slower performance of p751 is that it is the only parameter set where
the optimizations to the prime field arithmetic in [Lon22] where not included. This is due
to an incompatibility regarding our code API and the length of the prime number.

Table 3: Timings measured in milliseconds and millions of cycles concerning larger
parameter sets (L3 ad L5). Q1 refers to the 1st quartile, and Q3 is the 3rd quartile.

SIDH-sign-p546 SIDH-sign-p610 SIDH-sign-p697 SIDH-sign-p751
keygen Sign Verify keygen Sign Verify keygen Sign Verify keygen Sign Verify

Mcycles
Q1 13 12,181 6,982 19 17,440 9,822 27 30,660 17,740 56 66,353 38,141

median 13 12,334 7,075 19 17,649 9,977 27 31,188 18,011 56 67,400 38,606
Q3 13 12,541 7,161 19 17,942 10,101 27 31,506 18,260 56 67,949 39,054

ms
Q1 5 5,075 2,909 8 7,266 4,092 11 12,774 7,391 23 27,646 15,891

median 5 5,139 2,947 8 7,353 4,157 11 12,994 7,504 23 28,082 16,085
Q3 5 5,225 2,983 8 7,475 4,208 11 13,127 7,608 23 28,311 16,272

As a final remark, Table 4 shows the potential room for improvement with current
SIDH-sign development. There is a considerable difference with the running time of
our implementation of SIDH when compared to the up-to-date Microsoft version SIDH
3.5 [ACC+20], available at https://github.com/microsoft/PQCrypto-SIDH. This is mainly
due to our prime field arithmetic implementation being heavily based on CSIDH. Hence,
resorting to different methods that are applied to the Microsoft implementation could
possibly surpass our current performance achievements for SIDH-sign. For example, a
possible speed up could be the use of lazy reductions to avoid unnecessary computations
over the prime field arithmetic. We emphasize that any improvement in this direction can
be highly effective to SIDH-sign, as isogeny computations are performed during signature
and verification over κ iterations. Observe that our current implementation of SIDH runs
at least 1.16 times slower than its counterpart for p610, while p434, p503 and p751 run
approximately 1.5, 1.4 and 2.1 times slower, respectively.

On the other hand, to better understand the performance of Algorithm 4 (canonical
basis), Algorithm 5 (two dimensional discrete logarithm), and [CS18, Algorithm 9] (two

https://github.com/SIDH-sign/SIDH-Sign
https://github.com/microsoft/PQCrypto-SIDH
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Table 4: Timings measured in average of thousands of cycles for our SIDH implementation
compared to the Microsoft version.

p434 p503 p610 p751
This work [ACC+20] This work [ACC+20] This work [ACC+20] This work [ACC+20]

Alice keygen 7,548 4,903 10,609 7,476 19,922 16,744 56,600 26,709
Bob keygen 8,312 5,428 11,614 8,250 21,380 16,716 62,855 30,035
Alice key derivation 6,056 3,960 8,581 6,076 16,163 13,885 46,343 21,870
Bob key derivation 6,988 4,568 9,827 6,973 18,239 14,103 53,806 25,621

dimensional ladder), Table 5 illustrates that i) Algorithm 4 is as efficient as Bob’s SIDH
key generation, ii) [CS18, Algorithm 9] is much cheaper than any SIDH key generation,
and iii) Algorithm 5 is about 1.6x costlier than Bob’s SIDH key generation. However,
SIDH-sign calls (on average) κ/2 times Algorithm 5, and thus its impact becomes about
the same as κ times calls of Algorithm 4. Consequently, any improvement in computing two
dimensional discrete logarithms will positively impact the performance of the SIDH-sign
(since it is currently the bottleneck per iteration).

Table 5: Timings measured in average of thousands of cycles for computations of the
canonical basis (Algorithm 4), two dimensional discrete log (Algorithm 5) and two dimen-
sional ladder ([CS18, Algorithm 9]).

p377 p434 p503 p546 p610 p697 p751
Algorithm 4 6,027 8,498 10,791 14,468 20,450 31,256 61,509
Algorithm 5 9,150 13,144 18,314 23,790 34,694 44,570 97,361
[CS18, Algorithm 9] 1,203 1,859 2,320 3,284 4,322 5,871 11,259

5 Concluding remarks
Our results center on the weak-SIDH relation. Thus, any implementation of the PoK
under the strong-SIDH relation [DDGZ21, §6], which permits SIDH-key validations, will
(roughly) cost twice what we get. Similarly, using the compressed SIDH-keys to reduce the
signature sizes increase the timings of SIDH-sign. We do not focus on the strong-SIDH
and compressed SIDH key-based constructions, we leave them as future research.

Algorithm 4 permits an efficient free-inverse entangled basis generation with shared
Elligator [PDJ21, §3, Algorithm 3.2], which has smaller precomputed tables concerning
QR and QNR elements. We work with tables of 32 bytes (byte per element), while
current compressed SIKE implementations use precomputed tables of 20 quadratic field
elements giving 20× 2

⌊
log2(p)

8

⌉
bytes (e.g., SIKEp377 requires 1920 bytes per table). Our

implementation of Algorithm 4 is as efficient as the entangled basis generation used in
SIKE [ACC+20, PDJ21] but with much smaller precomputation stored.

On the other hand, it is worth highlighting that we can also use Algorithm 4 to
efficiently perform the built-in block CanonicalBasis in the isogeny-based primitive
of [FP21]. Likewise, a slight modification of Algorithm 5 allows finding 2-dimensional
discrete logarithms on the 2a-torsion subgroup E[2a], and thus we can use it as the
decomposition by scalars building block of [FP21].
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