
TrCBC is Insecure

Debrup Chakraborty and Samir Kundu

Indian Statistical Institute
203 B.T. Road. Kolkata 700108, India

debrup.chakraborty@gmail.com, samirkundu3@gmail.com

Abstract. TrCBC is a variant of CBC-MAC which appeared in Information Processing Let-
ters, 112(7):302-307, 2012. The authors claimed TrCBC to be a secure message authentication
code (MAC) with some interesting properties. If TrCBC is instantiated with a block cipher
with block length n, then it requires dλ/ne block cipher calls for authenticating a λ-bit
message and requires a single key, which is the block cipher key. We show that with high
probability, an adversary can forge TrCBC with just three queries. The attack that we show
can be applied to forge a large class of messages.

1 Introduction

CBC-MAC and its variants are widely used and are parts of different standards. It is known
that the basic CBC-MAC is not secure as a variable input length MAC; more precisely,
CBC-MAC is only secure if the message space is prefix-free, i.e., the message space does
not contain any two messages where one is a prefix of the other. In case the message space
is not prefix-free, a simple length extension attack can be performed to obtain a forgery
with probability 1. But, CBC-MAC is optimal in terms of the number of block-cipher calls.
If CBC-MAC is instantiated with a block-cipher of block length n, then to authenticate a
message of λ bits it requires a single key (which is the key of the underlying block cipher)
and dλ/ne block-cipher calls. This makes CBC-MAC a good choice for applications where
only fixed-length messages are required to be authenticated.

Over the years, several modifications over the basic CBC-MAC have been proposed
to accommodate general message spaces. Some notable constructions in this direction are
EMAC [7], XCBC[1], CMAC [2], TMAC [5], OMAC [4], GCBC1 [6], GCBC2 [6]. All these
variants require some extra overhead compared to the basic CBC-MAC either in terms of
the number of keys used and/or in the number of block-cipher calls required.

TrCBC is a variant of CBC-MAC proposed in [8]. The motivation of TrCBC construction
was to provide a CBC-MAC like message authentication code which works for general
message spaces but whose overhead in terms of the number of keys and block cipher calls
is exactly the same as the CBC-MAC. In [8], it is claimed that TrCBC achieves this with
the limitation that it can produce only short tags whose lengths are less than n/2-bits,
where n is the block-length of the underlying block cipher.

In this paper we show that TrCBC is insecure. A variant of the length extension attack
can be mounted on TrCBC which produces (n/2− 1)-bit tags with a success probability of
1/4. Thus this attack completely refutes the claims in [8].



2 Notations and Preliminaries

General Notations. For a natural number N , [N ] denotes the set {1, . . . , N}. For a

set X , X
$←− X denotes that X is chosen uniformly at random from X . The set of all

binary strings is denoted by {0, 1}∗ and the set of all n-bit strings is denoted by {0, 1}n.
For x, y ∈ {0, 1}∗, x‖y denotes the concatenation of x and y. For x ∈ {0, 1}∗ the length
of x is denoted by |x|. For any x ∈ {0, 1}∗, parsen(x) parses x as x1‖x2‖ . . . ‖x` where for
i ∈ [` − 1], |xi| = n and 0 < |x`| ≤ n. For x ∈ {0, 1}∗ and |x| ≤ n, Pad(x) = x‖10n−|x|−1,
if |x| < n, and Pad(x) = x, if |x| = n. For x ∈ {0, 1}∗ and |x| ≥ τ , MSBτ (x) and LSBτ (x)
stand for the most and least significant τ bits of x respectively. We call a string x ∈ {0, 1}n
as a block. We call z ∈ {0, 1}∗ as full block if |z| is a multiple of n and as incomplete block
otherwise.

Block ciphers. A block cipher is a function E : K × {0, 1}n → {0, 1}n, where K is the
key space, which generally contains fixed length strings; n is called the block length of the
block cipher. For K ∈ K and X ∈ {0, 1}n, we will generally denote E(K,X) by EK(X). A
block cipher also has an inverse denoted by E−1

K (), but we will not have any occasion to
use the inverse in this work.

Message Authentication Codes. A message authentication code(MAC) is a map F :
K×M→ {0, 1}τ , where K is the key space andM the message space. We often write FK(·)
to denote F (K, ·). The output of a MAC is called the tag, and τ is called the tag length.
The security of a MAC F is defined using an interaction of F with an adversary A. It is

assumed that A has an oracle access to FK(), where K
$←− K. For a query x ∈M of A the

oracle responds by sending y = FK(x). Let, A query x1, x2, . . . , xq and gets y1, y2, . . . , yq
as responses from the oracle. These queries are performed adaptively. Finally, A outputs a
pair (x∗, y∗), where x∗ /∈ {x1, x2, . . . , xq}. This pair is called a forgery and it is said that A
has successfully forged F if FK(x∗) = y∗. The auth-advantage of A is defined as

AdvauthF (A) = Pr[K
$←− K : A forges].

We say that F is (ε, t) secure if for every adversary A, which runs for time at most t,
AdvauthF (A) ≤ ε. A dominant paradigm of designing MACs is by using block ciphers, and
CBC-MAC and its variants are some notable examples of block cipher based MACs.

CBC-MAC : Consider the map CBC : K ×M → {0, 1}n, where M ⊆ ∪i>0{0, 1}ni. For
M ∈ M, let parse(M) = M1||M2|| · · · ||M`, and let C0 = 0n, Ci = EK(mi ⊕ Ci−1) for
i ∈ [`], where EK : {0, 1}n → {0, 1}n is a block cipher. We define CBC(K,M) = C`. We
often denote CBC(K,M) by CBCK(M). A schematic view of the function CBCK(M) is
shown in Figure 2. The function CBC is called the CBC-MAC and it is a secure MAC if the
underlying block cipher E is a pseudorandom function and the message space M is prefix



free, i.e., for any two distinct x, y ∈M, x is not a prefix of y. For practical purposes, CBC
is used in scenarios where the message space contains strings of fixed length, such message
spaces are prefix free.

EK

M1

⊕
M2

EK

· · · ⊕
Mℓ−1

EK

⊕
Mℓ

EK

T

Fig. 1. The function CBC(M). EK is a block cipher of block size n and M = M1|| . . . ||M`, where |Mi| = n,
for i ∈ [`].

Let X1, X2, . . . , X` ∈ {0, 1}n, then it is easy to see that for any 1 < k < `,

CBCK (X1‖ · · · ‖Xk‖ · · · ‖X`) = CBCK (CBCK(X1‖ · · · ‖Xk)⊕Xk+1‖Xk+2‖ · · · ‖X`) . (1)

Thus, if CBCK(X1‖ · · · ‖Xk) = T , then

CBCK (X1‖ · · · ‖Xk‖ · · · ‖X`) = CBCK (T ⊕Xk+1‖Xk+2‖ · · · ‖X`) .

This property can be easily translated into a forgery attack: an adversary queriesX1‖ · · · ‖Xk

and gets response as T ; further it queries T ⊕Xk+1‖Xk+2‖ · · · ‖X` and gets the response
T1; and finally it produces (X1‖ · · · ‖Xk‖ · · · ‖X`, T1) as a forgery. From (1), it is easy to
verify that the forgery will be successful with probability 1. This specific attack is called
the length extension attack and this cannot be mounted if the message space is prefix free.

3 The Scheme TrCBC

TrCBC instantiated with a block cipher E : K×{0, 1}n → {0, 1}n is described in details in
Figure 2. A schematic diagram of the same is shown in Figure 3. TrCBC takes a random

key K
$← K and a message M ∈ {0, 1}∗ as a input and returns a tag T ∈ {0, 1}τ of length

τ < n/2.



MAC Algorithm: TrCBCK(M)

Input: K
$←− K, M ∈ {0, 1}∗.

Output: T ∈ {0, 1}τ , where τ < n/2.

01. M1‖ · · · ‖M` ← parsen(M);
02. Y ← 0n;
03. for i← 1 to `− 1 do
04. X ← Y ⊕Mi;
05. Y ← EK(X);
06. end for
07. if |M`| = n then
08. X ← Y ⊕M`;
09. Y ← EK(X);
10. T ← MSBτ (Y );
11. else
12. X ← Y ⊕ Pad(M`);
13. Y ← EK(X);
14. T ← LSBτ (Y );
15. end if
16. return T .

Fig. 2. Specification of TrCBC instantiated with an n-bit block cipher EK .

A simplified view of TrCBC in terms of the function CBC would be useful. Let M ∈
{0, 1}∗ where |M | = λ. Let x1||x2|| . . . ||x` = parse(M) and let r = |x`|. Notice that
r = λ− (`− 1)n = λ− (dλ/ne − 1)n. We define TrCBC as

TrCBCK(M) =

{
MSBτ (CBCK(M)) if r = n.
LSBτ

(
CBCK(M ||10n−r−1)

)
if r < n.

(2)

4 An Attack on TrCBC

It was claimed in [8] that TrCBC is a secure MAC if the underlying block cipher is a
pseudorandom function. We show that an adversary making just three queries to the MAC
oracle can successfully forge TrCBC with probability 1/4.

We consider TrCBC instantiated with a block cipher of block length n (which is even).
We fix the tag length τ = n/2 − 1. Let x1, x2, x3 be fixed but arbitrary strings such that
|x1| = |x3| = n and |x2| = n − 2. We set M1 = x1, M2 = x2||10 and M3 = x3. The three
queries which the adversary asks along with the responses are as follows.

1. Query X(1) = M1||M2, and get T1 as response.
2. Query X(2) = M1||x2, and get T2 as response.
3. Query X(3) = M1||M2||M3, and get T3 as response.

Finally the adversary submits (M∗, T ∗) as the forgery, where



EK

M1

⊕
M2

EK

· · · ⊕
Mℓ−1

EK

⊕
Mℓ

EK

MSBτ (.)

T

EK

M1

⊕
M2

EK

· · · ⊕
Mℓ−1

EK

⊕
Pad(Mℓ)

EK

LSBτ (.)

T

Fig. 3. The TrCBC construction. First figure is for the full block messages, i.e., the message length is a
multiple of the block size n, and the second figure is for messages whose length is not a multiple of n.
Pad(M`) = M`‖10n−|M`|−1 and τ < n/2.

M∗ = (T1‖b∗1b∗2‖T2)⊕M3, T ∗ = T3 where b∗1, b
∗
2

$←− {0, 1}.

Note that (M∗, T ∗) is a valid forgery, as M∗ which is a single block message has never
been queried to the oracle. We are left to show that this forgery is successful with high
probability. We claim that for any choice of K ∈ K,

Pr[TrCBCK(M∗) = T ∗] = 1/4,

where the probability is over the choice of b∗1, b
∗
2. We substantiate our claim below.

From the TrCBC construction and our simplified description of TrCBC in Eq.(2) we get,

T1 = TrCBCK(M1||M2) = MSBτ (CBCK (M1‖M2)) (3)

T2 = TrCBCK(M1||x2) = LSBτ (CBCK (M1‖x2‖10)) = LSBτ (CBCK (M1‖M2)) (4)

T3 = TrCBCK(M1||M2||M3) = MSBτ (CBCK (M1||M2||M3)) . (5)

As |T1| = |T2| = τ = n/2− 1, we have for some b1, b2 ∈ {0, 1},

T1‖b1b2‖T2 = CBCK(M1||M2). (6)



Hence, using (6) and (1)

MSBτ (CBCK(T1‖b1b2‖T2 ⊕M3)) = MSBτ (CBCK (CBCK(M1||M2)⊕M3))

= MSBτ (CBCK (M1||M2||M3))

= T3,

and

TrCBCK(M∗) = MSBτ (CBCK((T1‖b∗1b∗2‖T2)⊕M3)) .

As b∗1, b
∗
2 are chosen uniformly at random from {0, 1}, so with probability 1/4, we have

(b∗1, b
∗
2) = (b1, b2), and thus

Pr[TrCBCK(M∗) = T3] =
1

4
,

as claimed.

5 Discussions

The source of insecurity. The following are the main characteristics of TrCBC:

1. For full block messages, TrCBC is exactly the CBC-MAC scheme, except that instead of
the full output only a part of the output is produced as the tag, in particular τ < n/2
most significant bits only forms the tag.

2. For messages which are not full block, a deterministic padding is applied and the CBC-
MAC of the padded message is computed and the least significant τ bits are output as
a tag.

The idea behind such a design seems to be separating the outputs for full block and
incomplete block messages and the authors thought that a small tag length would prevent
a length extension type of attack. But, as only a deterministic padding scheme is applied,
hence for any message M ∈ {0, 1}mn where the last block is not 0n almost all bits of
CBCK(M) can be recovered with just two queries to TrCBC. To see this, let M = M ′||x,
where |x| = n and x 6= 0n. Let x = an · · · a2a1, where ai ∈ {0, 1}, and j be the smallest
element in [n] such that aj = 1. Let M1 = M ′||anan−1 · · · aj−1. Then, following the padding
scheme in TrCBC we have,

TrCBCK(M) = MSBτ (CBCK(M)),

TrCBCK(M1) = LSBτ (CBCK(M)).

Our attack essentially uses the above property of TrCBC to recover 2τ many bits of
CBCK(M). This property can be further used to forge a large class of messages, which
we describe next.



A generic attack. Consider a message X = X1||X2|| . . . ||X`, for ` ≥ 2 and suppose there
exists k ∈ [`− 1] such that Xk 6= 0n, i.e, X1||X2|| . . . ||X`−1 is not the all zero string. Let,
Xk = x‖10m, where the first 1 (from the left) in Xk occurs in the mth place. As before,
we fix the tag length τ = n/2− 1. Let an adversary query with the three queries specified
below:

1. X(1) = X1||X2|| . . . ||Xk.

2. X(2) = X1||X2|| . . . ‖Xk−1||x.

3. X(3) = X1||X2|| . . . ||X`.

Let the responses to the above three queries be T1, T2, T2 respectively, and let

M∗ = ((T1‖b∗1b∗2‖T2)⊕Xk+1)‖Xk+2‖ . . . ‖X`,

where b∗1, b
∗
2

$←− {0, 1}. Then following the same arguments as in Section 4 it is easy to verify
that (M∗, T3) will be a forgery with success probability 1/4.

The case of TCBC . Security properties of truncated CBC-MAC has been studied in details
in [3]. In [3] a scheme called TCBC is described as

TCBCK(X) = MSBτ (CBCK (pad1(X))) .

Where pad1(x) appends a 1 followed by sufficiently many zeros to X to make the length
of the resulting string a multiple of n. In particular if x1||x2|| . . . ||x` = parsen(X) then

pad1(X) =

{
X||10n−|x`|−1 if |x`| < n.
X||10n−1 if |x`| = n.

It has been proved in [3] that TCBC is a secure pseudorandom function. In particular if
TCBC is instantiated with a random permutation then any adversary making q queries with
length at most λ < 2n/4 cannot distinguish TCBC from a random function with probability

more than ε(λ, q) = O( q(q+λ)
2n−τ + λq2

2n ). Thus, unlike TrCBC for small values of τ , TCBC is a
secure MAC.

It is important to note the differences between TrCBC and TCBC. The padding scheme
of TCBC injectively maps any string in {0, 1}∗ to the set of strings ∪i≥1{0, 1}ni, whereas
the padding scheme for TrCBC is not injective. Also, for any message it is not possible for
an adversary to know more than τ bits of the final output of TCBC, but as we already
showed for TrCBC it is possible to know 2τ many bits of the output for a large class of
messages and this helps in the forgery attack. Finally, TCBC requires one more block cipher
call than TrCBC for full block messages.



6 Conclusion

We showed concrete and practical attacks on TrCBC. The forgery attack on TrCBC also
implies that it is not a pseudo-random function (PRF) as claimed in [8](Theorem 1). We
do not see any easy way to fix TrCBC such that it retains the interesting requirement of a
single key and dλ/ne many block cipher calls for authenticating a λ-bit message.

References

1. John Black and Phillip Rogaway. CBC MACs for arbitrary-length messages: The three-key constructions.
In Mihir Bellare, editor, Advances in Cryptology - CRYPTO 2000, 20th Annual International Cryptology
Conference, Santa Barbara, California, USA, August 20-24, 2000, Proceedings, volume 1880 of Lecture
Notes in Computer Science, pages 197–215. Springer, 2000.

2. Morris Dworkin. The CMAC mode for authentication. Recommendation for Block Cipher Modes of
Operation, 2005.

3. Peter Gazi, Krzysztof Pietrzak, and Stefano Tessaro. The exact PRF security of truncation: Tight bounds
for keyed sponges and truncated CBC. In Rosario Gennaro and Matthew Robshaw, editors, Advances
in Cryptology - CRYPTO 2015 - 35th Annual Cryptology Conference, Santa Barbara, CA, USA, August
16-20, 2015, Proceedings, Part I, volume 9215 of Lecture Notes in Computer Science, pages 368–387.
Springer, 2015.

4. Tetsu Iwata and Kaoru Kurosawa. OMAC: one-key CBC MAC. In Thomas Johansson, editor, Fast
Software Encryption, 10th International Workshop, FSE 2003, Lund, Sweden, February 24-26, 2003,
Revised Papers, volume 2887 of Lecture Notes in Computer Science, pages 129–153. Springer, 2003.

5. Kaoru Kurosawa and Tetsu Iwata. TMAC: two-key CBC MAC. In Marc Joye, editor, Topics in Cryp-
tology - CT-RSA 2003, The Cryptographers’ Track at the RSA Conference 2003, San Francisco, CA,
USA, April 13-17, 2003, Proceedings, volume 2612 of Lecture Notes in Computer Science, pages 33–49.
Springer, 2003.

6. Mridul Nandi. Fast and secure CBC-Type MAC algorithms. In Orr Dunkelman, editor, Fast Software
Encryption, 16th International Workshop, FSE 2009, Leuven, Belgium, February 22-25, 2009, Revised
Selected Papers, volume 5665 of Lecture Notes in Computer Science, pages 375–393. Springer, 2009.

7. Erez Petrank and Charles Rackoff. CBC MAC for real-time data sources. J. Cryptol., 13(3):315–338,
2000.

8. Liting Zhang, Wenling Wu, Peng Wang, and Bo Liang. TrCBC: Another look at CBC-MAC. Inf.
Process. Lett., 112(7):302–307, 2012.


