
IACR Transactions on Cryptographic Hardware and Embedded Systems
ISSN XXXX-XXXX, Vol. 2023, No. 1, pp. 1–38. DOI:XXXXXXXX

Medha: Microcoded Hardware Accelerator for
computing on Encrypted Data

Ahmet Can Mert1, Aikata1, Sunmin Kwon2, Youngsam Shin2, Donghoon
Yoo2, Yongwoo Lee2 and Sujoy Sinha Roy1

1 IAIK, Graz University of Technology, Graz, Austria
{ahmet.mert,aikata,sujoy.sinharoy}@iaik.tugraz.at

2 Samsung Advanced Institute of Technology, Suwon, Republic of Korea
{sunmin7.kwon,youngsam.shin,say.yoo,yw0803.lee}@samsung.com

Abstract.
Homomorphic encryption enables computation on encrypted data, and hence it has
a great potential in privacy-preserving outsourcing of computations to the cloud.
Hardware acceleration of homomorphic encryption is crucial as software implemen-
tations are very slow. In this paper, we present design methodologies for building
a programmable hardware accelerator for speeding up the cloud-side homomorphic
evaluations on encrypted data.
First, we propose a divide-and-conquer technique that enables homomorphic evalua-
tions in the polynomial ring RQ,2N = ZQ[x]/(x2N + 1) to use a hardware accelerator
that has been built for the smaller ring RQ,N = ZQ[x]/(xN + 1). The technique
makes it possible to use a single hardware accelerator flexibly for supporting several
homomorphic encryption parameter sets.
Next, we present several architectural design methods that we use to realize the
flexible and instruction-set accelerator architecture, which we call ‘Medha’. At every
level of the implementation hierarchy, we explore possibilities for parallel processing.
Starting from hardware-friendly parallel algorithms for the basic building blocks, we
gradually build heavily parallel RNS polynomial arithmetic units. Next, many of these
parallel units are interconnected elegantly so that their interconnections require the
minimum number of nets, therefore making the overall architecture placement-friendly
on the platform. As homomorphic encryption is computation- as well as data-centric,
the speed of homomorphic evaluations depends greatly on the way the data variables
are handled. For Medha, we take a memory-conservative design approach and get rid
of any off-chip memory access during homomorphic evaluations.
Finally, we implement Medha in a Xilinx Alveo U250 FPGA and measure timing
performances of the microcoded homomorphic addition, multiplication, key-switching,
and rescaling routines for the leveled fully homomorphic encryption scheme RNS-
HEAAN at 200 MHz clock frequency. For the large parameter sets (logQ,N) =
(438, 214) and (546, 215), Medha achieves accelerations by up to 68× and 78× times
respectively compared to a highly optimized software implementation Microsoft SEAL
running at 2.3 GHz.
Keywords: Homomorphic Encryption, CKKS, Flexible, Hardware Accelerator

1 Introduction
Cloud computing services are very popular and provide high-performance computational
resources to the users [AFG+10]. Despite its advantages, conventional cloud computing has
security and privacy risks as the data of the user, becomes visible (as plaintext) during any

Licensed under Creative Commons License CC-BY 4.0.

https://doi.org/XXXXXXXX
mailto:{ahmet.mert,aikata,sujoy.sinharoy}@iaik.tugraz.at
mailto:{sunmin7.kwon,youngsam.shin,say.yoo,yw0803.lee}@samsung.com
http://creativecommons.org/licenses/by/4.0/

2 Medha: Microcoded Hardware Accelerator for Processing Encrypted Data

computation in the cloud. Isolation techniques are followed with certain trust assumptions.
Yet, in recent years several data leaks have been reported.

Fully Homomorphic Encryption (FHE) [RAD78] enables logical and arithmetic opera-
tions on encrypted data without requiring any decryption of the data. Clients can keep
their data in encrypted format in the cloud and perform computations, e.g., inference, pre-
diction, statistics, etc., directly on the encrypted data without revealing their confidential
data. Similarly, the cloud-based service providers do not need to reveal their trade secrets,
e.g., models or methods, to the clients. If a service provider keeps the model or method
secret, a client cannot run the computation locally on her plaintext data. In this way,
FHE solves conflicting privacy needs of users and service providers.

In 2009, Gentry constructed the first FHE scheme [Gen09]. FHE quickly gained interest
from both academia and industry. During the last 10 years, faster and faster FHE schemes
started appearing with orders of magnitude improvements in performance. There are
several FHE or leveled FHE schemes in the literature. The difference between an FHE and
a leveled-FHE is that the latter could perform computations correctly only up to a certain
complexity level whereas the first one could do arbitrary computations. It is possible to
transform a leveled-FHE into an FHE by introducing a special procedure ‘bootstrapping’
that refreshes ciphertexts. This paper focuses on the hardware acceleration aspects of
leveled-FHE. In the remaining part of the paper, we will use the term HE to represent
leveled-FHE. For evaluating arithmetic operations homomorphically, BFV [FV12] and
BGV [BGV11] are popular. TFHE [CGGI20] is efficient for evaluating Boolean gates.
For performing computations on encrypted real numbers, HEAAN [CKKS17] and its
Residue Number System (RNS) variant RNS-HEAAN [CHK+18] are efficient. In fact,
RNS-HEAAN is the fastest scheme for performing approximate computations on the
encrypted real data.

1.1 Related hardware acceleration works and motivation
Although a decade of research in algorithmic and mathematical optimizations has made HE
schemes orders of magnitude faster than their first-generation counterparts, homomorphic
evaluations in software are four to five orders of magnitude slower than equivalent compu-
tations on the plaintext. Therefore, the hardware acceleration of HE is crucial in reducing
this performance gap. While it is true that developing an accelerator for homomorphic
evaluation will take a longer design-time and more effort than writing a software program,
the reduction in computation time and energy consumption in the cloud server will be
huge in long-term.

Earliest reported FPGA-base accelerator [WH13] and ASIC-based accelerator [WHEW14]
targeted speeding up the 768K-bit modular multiplication of the first generation integer-
based homomorphic encryption scheme [GH11]. In the following years several accelerator
architectures [RJV+15, TRG+20, RNH19, RTJ+20, FSK+21, XZH21, KKK+22, SFK+22]
have implemented selected building blocks of homomorphic encryption on ASIC and FPGA
platforms, or presented simulation-based performance estimates without making real pro-
totypes. While such works indicate that ASIC and FPGA platforms have the potential
to accelerate HE, they do not fully capture the engineering challenges that appear only
in the actual hardware implementations, especially when the architectures are very large.
Therefore, simulation-based performance estimates may change greatly when real hardware
accelerators for homomorphic encryption are made.

Before we describe related hardware acceleration works for cloud-side homomorphic com-
puting, we would like to mention that hardware acceleration could also be used to speedup
client-side encryption and decryption operations. One example accelerator is [MOS20].
Compared to homomorphic evaluation on encrypted data, homomorphic encryption and
decryption are much simpler and less frequent. They are quite similar to simple ring-LWE

Mert, Aikata, Kwon, Shin, Yoo, Lee, Sinha Roy 3

encryption and decryption used in lattice-based post-quantum cryptography. In homomor-
phic encryption the real bottleneck is the slowness of cloud-side homomorphic evaluations.
Therefore, in this paper we focus only on the hardware acceleration of cloud-side evalua-
tions. Readers may also study symmetric-homomorphic hybrid protocols where a client
simply encrypts the data using an homomorphic encryption friendly block-cipher such as
Pasta [DGH+21] to save communication bandwidth. Thereafter, the cloud evaluates the
expensive block-cipher decryption homomorphically before computing the actual task.

Recently, several papers [FSK+21, KKK+22, SFK+22, KLK+22] proposed ASIC-based
high-end accelerator architectures and claimed three to four orders of magnitude speedups
with respect to software for performing homomorphic evaluations. These works use
simulation and logic synthesis for obtaining performance and area estimates respectively,
without going through the complete ASIC design flow or fabricating a real ASIC chip.
Following the chip fabrication price estimates [MUS], fabricating these ASIC chips will
require millions of dollars of investments.

To the best of our knowledge, CoFHEE [NSA+22] is the only ASIC accelerator that
has been fabricated and proven in silicon. CoFHEE’s total die area is 15 mm2 and it
accelerates homomorphic evaluations only up to 2.5× compared to the SEAL software
library. In their year-long effort to design the chip, the authors follow the complete ASIC
design flow, implement a custom clock distribution network, perform pre-silicon verification
using simulation and FPGA prototyping, and finally perform post-silicon validation to
know that their ASIC chip works correctly. The authors of CoFHEE raise concerns about
the feasibility of F1 [FSK+21] in silicon (see Sec. 9 of [NSA+22]).

Although FPGAs are slower than ASIC platforms, their relatively shorter design cycle,
re-programmability to fix bugs easily, reusability, and significantly cheaper price make
FPGAs popular for implementing performance-critical algorithms. The FPGA-based
programmable accelerators [SRTJ+19, TRV20] demonstrated latency reductions by one
order compared to software implementations. ‘HEAX’ [RLPD20] obtained more than
two orders of magnitude throughput with respect to software implementations using one
Intel FPGA. While the speedup is impressive, a limitation of HEAX is that it is not
programmable and its block-pipelined architecture was designed specifically for the key-
switching of RNS-HEAAN. Contrary to HEAX, the programmable accelerator [SRTJ+19]
uses the same computational resources to execute several homomorphic evaluation routines.
While programmability is a desired feature in accelerators, the one order speedup of
HEAX [RLPD20] over the programmable processor [SRTJ+19, TRV20] may give an
impression that block-pipelined and specifically optimized accelerators are significantly
superior to flexible accelerators for HE.

In this work, we dig deep into architectural explorations to see if programmable
and flexible accelerator architectures can be built without sacrificing performance. The
availability of a programmable accelerator will make it possible to run and accelerate several
types of homomorphic evaluation routines without requiring a new accelerator architecture.
However, developing a real prototype of a flexible and high-performance accelerator for
homomorphic encryption is full of design challenges. This motivates us to see how far
we can push homomorphic computing on encrypted data in practice using programmable
hardware. Sharing the experiences and methodologies for designing a real high-performance
accelerator will help the research community identify the actual engineering challenges as
well as future research directions for potential performance improvements.

Another research gap is the lack of a parameter-flexible accelerator. Homomorphic
applications of different complexities (multiplicative depths) demand different parameter
sets. Hence, supporting several parameter sets is another important yet currently unfulfilled
requirement for the cloud-side accelerators. Almost all of the reported accelerators [RJV+18,
SRTJ+19, RLPD20, TRV20] have been designed for specific parameter sets and they lack
the flexibility to support more than one parameter set. That motivates us to design a

4 Medha: Microcoded Hardware Accelerator for Processing Encrypted Data

programmable and parameter-flexible accelerator for homomorphic encryption.

1.2 Contributions
To address the above-mentioned research gaps, we design a programmable and parameter-
flexible hardware accelerator architecture ‘Medha’ and implement it in a Xilinx Alveo U250
Card. Medha accelerates the homomorphic addition, multiplication, key-switching, re-
scaling, and rotation operations of the RNS-HEAAN [CHK+18] scheme for large parameter
sets by around two orders of magnitude compared to software implementations.

The main contributions of our paper reside at both algorithmic and architecture levels.
First, we propose a design methodology that offers the flexibility to support several
polynomial degrees using a fixed hardware accelerator. It efficiently performs homomorphic
computations on ‘large-degree’ ciphertext-polynomials using compute units that have been
optimized to handle ‘small-degree’ ciphertext-polynomials. Therefore, several homomorphic
applications can be accelerated using the same architecture. Additionally, the proposed
methodology reduces the on-chip memory and logic requirements.

On the architecture side, our main contributions are in the high-levels of the implemen-
tation hierarchy where different compute and memory elements are organized. To compute
the arithmetic of residue polynomials, we design a novel Residue Polynomial Arithmetic
Unit (RPAU) pragmatically. Our RPAU contains a multi-core Number Theoretic Trans-
form (NTT) unit for polynomial multiplication, two parallel sets of dyadic arithmetic units,
and a customized on-chip memory for storing operand and resultant residue polynomials.
The designed RPAU is an instruction-set architecture. We can execute dyadic arithmetic
and NTT instructions in parallel. This parallelism is very useful in minimizing the cycle
count of key-switching operation, which is the costliest subroutine in HE. We observe
around 40% reduction in the latency at the cost of around 20% increase in the area.

A memory-conservative design approach is followed to save on-chip memory elements
for useful computations. A customized on-chip memory is designed to store residue
polynomials inside the RPAU. Even for the largest supported polynomial degree with
215 coefficients, the on-chip memory is able to store all the residue polynomials during
a homomorphic multiplication and key-switching, therefore eliminating the need for any
off-chip data exchange during a computation (which is very slow). We are the first to report
fully on-chip computation of the two HE subroutines for such large-degree polynomials.

At the highest level of the implementation hierarchy, several RPAUs are instantiated
and interconnected. The parallel RPAUs must perform data exchanges between themselves
during the modulus switching steps of the key-switching and rescaling operations. Trivially
connecting every RPAU to the remaining RPAUs demands a quadratic number of nets
and makes actual implementation infeasible when there are several large RPAUs in the
architecture. Therefore, finding an optimal way of interconnecting the RPAUs is critical
due to two main reasons. Firstly, because each RPAU consumes a large area and has
thousands of bits of input/output ports, their placement on the design platform becomes a
challenging engineering problem. Previous works, e.g., [RJV+15, RJV+18] bypassed that
engineering problem by performing data exchanges happen via a shared off-chip memory
at a great performance cost. Secondly, if the data transfer rate is compromised to reduce
the number of interconnects, then there will be a drastic impact on the performance of
key-switching and rescaling. After studying different ways of interconnecting the RPAUs,
we propose a ‘ring’ styled interconnection with efficient scheduling of data transfers. The
ring reduces the number of interconnects to a linear complexity without introducing any
performance loss. We observe that the proposed ring is crucial for making large HE
implementations feasible on SLR-based very large Xilinx FPGAs.

Besides the above-mentioned main contributions, we make optimizations at the lower
levels of the implementation hierarchy where polynomial and coefficient operations are
performed. We implement a unified and multi-core NTT-based multiplier with optimal

Mert, Aikata, Kwon, Shin, Yoo, Lee, Sinha Roy 5

scheduling for memory reads and writes. We use hardware-friendly parameters (e.g.,
word-size, primes, etc.) and parallel algorithms to perform fast modular arithmetic.

Organization: The paper is organized as follows. Sec. 2 presents a brief background.
Next, we present the proposed flexible design methodology for the polynomial degree
and its applications to the RNS-HEAAN scheme in Sec. 3. In Sec. 4, the proposed
flexible instruction-set accelerator is presented. The accelerator architecture is realized
hierarchically starting from low-level polynomial arithmetic units in Sec. 4.2 and then
organizing different compute and memory elements in Sec. 4.3. Detailed experimental
results and comparisons are provided in Sec. 5 and the final section draws the conclusions.

2 Background
2.1 Notation
Let ZQ represent the ring integers in the range [0, Q− 1]. Any modular reduction by a
modulus Q in [0, Q− 1] is denoted as [.]q. The polynomial ring RQ,N = ZQ[x]/(xN + 1)
contains polynomials of degree at most N − 1 with coefficients in ZQ. An integer is repre-
sented using a normal font and lowercase letter, e.g., a ∈ ZQ. A polynomial is represented
using a bold font and lowercase letter, a ∈ RQ,N . When a residue number system (RNS)
is used with a composite modulus Q =

∏L−1
i=0 qi, a polynomial in RQ,N becomes a vector

of residue polynomials in the RNS. Let a[i] ∈ Rqi,N be the i-th residue polynomial in the
RNS representation of a ∈ RQ,N . Rk

Q,N represents a k-tuple of polynomials from RQ,N .
Thereafter, the i-th residue polynomial of the j-th member from the tuple a ∈ Rk

Q,N is
represented as a[j][i] ∈ Rqi,N .

The Number Theoretic Transform (NTT) of a polynomial a is represented by ã. The
multiplication between two elements of a ring is denoted by the · operator. The coefficient-
wise multiplication between two polynomials is denoted by the ⋆ operator. Multiplying all
the coefficients of a polynomial a by an integer scalar c is denoted by a⊙ c or c⊙ a.

2.2 Homomorphic Encryption
In a typical homomorphic encryption protocol, there are two parties: a client and a cloud
server. The cloud contains data encrypted (i.e., ciphertext) by the client, and the client
performs computations on its encrypted data in the cloud. At the end of computations,
the client receives the encrypted results from the cloud and performs decryptions locally
to recover the plaintext results. The encryption and decryption operations are performed
using the secret-key and private-key of the client, respectively.

Several ideal lattice-based homomorphic encryption schemes, e.g., BGV [BGV11],
BFV [FV12], and HEAAN [CHK+18] use the following framework. Let, a client’s secret-
key be sk = (1, s) ∈ R2

Q,N and the corresponding public-key be pk = (b, a) ∈ R2
Q,N . Each

key is a pair of polynomials in the polynomial ring RQ,N where Q is the coefficient-modulus
and N is the polynomial ring degree. Client encrypts a message m using pk and obtains
the ciphertext ct← (c0 = r · b + e0 + m, c1 = r · a + e1) ∈ R2

Q,N where ei is a Gaussian
distributed error-polynomial and r is a uniformly random polynomial. Let, a cloud contains
two ciphertexts ct = (c0, c1) and ct′ = (c′

0, c′
1) ∈ R2

Q,N of the client as the encrypted
messages m and m′ respectively. The cloud can compute a valid encryption of m + m′

simply by adding the two ciphertexts as ctadd ← (c0 + c′
0, c1 + c′

1) ∈ R2
Q,N . Computing an

encryption of m ·m′ is relatively complex, scheme specific and involves several steps. First,
the two ciphertexts are multiplied to obtain ctmult = (c0 ·c′

0, c0 ·c′
1 +c1 ·c′

0, c1 ·c′
1) ∈ R3

Q,N .
This intermediate result has three polynomial components and could be decrypted using
(1, s, s2) but not using sk = (1, s). Next, a special operation known as the ‘Key-Switching’,

6 Medha: Microcoded Hardware Accelerator for Processing Encrypted Data

Figure 1: Implementation hierarchy of homomorphic encryption. Key generation, encryp-
tion, and decryption are performed on the user side. These user-side operations also include
encoding, decoding, and error sampling at the lowest level. Homomorphic evaluations on
ciphertexts using homomorphic addition, subtraction, multiplication, relinearization, etc.,
are performed at the cloud side. Our hardware accelerator is designed for accelerating
cloud-side operations which are significantly more expensive than user-side operations.

is used to transform the three-component ciphertext ctmult, which is decryptable under
(1, s, s2), into the two-component ciphertext ctrelin decryptable under (1, s). In this
context, key-switching is called re-linearization as it produces a linear ciphertext.

Fig. 1 shows the hierarchy of different operations that are used in a homomorphic
application. At the highest level of this hierarchy, there are homomorphic procedures
for performing computations (e.g., addition, multiplication, key-switching, etc.) on the
ciphertexts. These high-level operations translate into the arithmetic of polynomials:
polynomial addition, polynomial subtraction, polynomial multiplication, coefficient-wise
multiplication, coefficient-wise modular reduction, and coefficient-wise scalar multiplication.
Finally, the lowest level of this hierarchy is composed of modular arithmetic.

2.3 Residue Number System (RNS)

In HE, typically the size of Q is several hundreds to several thousands of bits. Arithmetic
operations with a large coefficient modulus require multi-precision arithmetic and it
reduces the performance of HE-based applications. The Residue Number System (RNS) is
a popular choice for implementing HE on hardware and software platforms as it enables
the parallelization of computations. To work with the RNS, the modulus Q is chosen to
be a product of small coprimes qi such that Q =

∏L−1
i=0 qi. These coprimes form the base

B = {q0, . . . , qL−1} of the RNS. Any long integer a ∈ ZQ gets mapped into the set of small
residues ai = a (mod qi) in the RNS. On the other hand, a set of small residues ai in the
RNS can be combined together using the Chinese Remainder Theorem (CRT) to obtain
the integer a ∈ ZQ.

In ideal lattice-based homomorphic encryption schemes, with the application of RNS,
a polynomial a ∈ RQ,N gets mapped into the set of residue polynomials in the RNS base.
These residue polynomials have small coefficients and therefore they can be processed
without requiring expensive multi-precision arithmetic operations. Additionally, on plat-
forms with parallelism, e.g., hardware platforms or superscalar processors, a set of residue
polynomials can be processed in parallel. In summary, the application of RNS makes
implementations of homomorphic encryption simpler, modular, and faster.

Mert, Aikata, Kwon, Shin, Yoo, Lee, Sinha Roy 7

2.4 RNS-HEAAN
RNS-HEAAN [CHK+18] is an RNS variant of the original HEAAN [CKKS17] homomorphic
encryption scheme. The original HEAAN [CKKS17] scheme uses a large modulus (which is
a power of two) and its expensive multi-precision integer arithmetic becomes a performance
bottleneck. Our hardware accelerator Medha has been optimized to accelerate the cloud-
side homomorphic operations of RNS-HEAAN. In this section, we briefly describe the
cloud side arithmetic routines of the RNS-HEAAN variant that is used in SEAL [SEA20].
We chose SEAL’s RNS-HEAAN variant for our implementation to make fair performance
comparisons with SEAL [SEA20] and HEAX [RLPD20].

To use RNS-HEAAN in an application, the first step is to set up the scheme parameters
such as the degree N of the polynomial ring, size of the maximum ciphertext modulus QL,
RNS-base BL with L small prime moduli, etc., depending on the maximum multiplicative
depth L required by the application for a desired level of security. The multiplicative
depth is the maximum number of consecutive homomorphic multiplications that can be
performed before a wrong result is produced due to too much noise. After the setup phase,
the key generation phase generates the public-private key pair and the relinearization
key. The relinearization key which is a key-switching key, say KSK = (KSK0, KSK1), is sent
to the cloud as it will be used to relinearize the result of a homomorphic multiplication
using the key-switching procedure. Each of KSK0 and KSK1 is an L-tuple and resides in
RL

pQL,N . Here p is a special prime that is used only during the key-switching operation.
Sometimes we denote this special prime by qL and consider the extended RNS base to be
BL = {q0, . . . , qL−1, p}. We use the notation KSK0[i] to select the i-th element from the
L-tuple. This element is in RpQL,N and therefore it consists of (L + 1) residue polynomials
in the RNS representation. We use the notation KSK0[i][j] to represent the j-th residue
polynomial of KSK0[i]. In summary, each of KSK0 and KSK1 is a vector of L(L + 1) residue
polynomials. Similarly, the slot rotation operation requires a key-switching which uses
Galois keys, GK = (GK0, GK1). The Galois keys are also sent to the cloud. A ciphertext at
the multiplicative level l ≤ L is represented using the RNS base Bl = {q0, . . . , ql−1}.

To get a detailed description of RNS-HEAAN, the readers may follow the original
publication [CHK+18] and SEAL’s [SEA20] RNS-HEAAN implementation documentation.

RNS-HEAAN subroutines used in the Cloud: In the following part, we use the
notation Ql to represent the ciphertext-modulus at the multiplicative level l where Ql =∏l−1

i=0 qi with l < L. It implicitly performs all arithmetic operations on the residue
polynomials. From now on, we use just HEAAN to represent RNS-HEAAN.

• HEAAN.Add(ct, ct′): It adds the respective polynomials of the two ciphertexts ct =
(c0, c1) ∈ R2

Ql,N and ct′ = (c′
0, c′

1) ∈ R2
Ql,N , and computes ctadd = (d0, d1) where

d0 = c0 + c′
0 ∈ R2

Ql,N and d1 = c1 + c′
1 ∈ R2

Ql,N .

• HEAAN.Mult(ct, ct′): It multiplies two input ciphertexts c = (c0, c1) ∈ R2
Ql,N and

ct′ = (c′
0, c′

1) ∈ R2
Ql,N , and computes d0 = c0 · c′

0 ∈ RQl,N , d1 = c0 · c′
1 + c1 · c′

0 ∈
RQl,N , and d2 = c1 · c′

1 ∈ RQl,N . The output is the non-linear ciphertext dt =
(d0, d1, d2) ∈ R3

Ql,N .

• HEAAN.Relin(dt, KSK): It re-linearizes the result of HEAAN.Mult and produces a cipher-
text with two polynomial components so that it is decryptable under the secret key.
Let d′

2[i] =
[
d2

]
qi

for 0 ≤ i < l. Now compute ct′′ = (c′′
0 , c′′

1) where c′′
0 =

∑l−1
i=0 d′

2[i] ·
KSK0[i] ∈ RpQl,N and c′′

1 =
∑l−1

i=0 d′
2[i] · KSK1[i] ∈ RpQl,N . Finally, output the re-

linearized ciphertext ctrelin = (d0, d1) + (HEAAN.ModDown(c′′
0), HEAAN.ModDown(c′′

1))
(mod Ql). The HEAAN.ModDown operation is used to reduce coefficient modulus from
pQl to Ql and is computationally similar to the rescaling operation.

8 Medha: Microcoded Hardware Accelerator for Processing Encrypted Data

Algorithm 1 HEAAN.Add Algorithm
In: ct = (c̃0, c̃1), ct′ = (c̃′

0, c̃′
1) ∈ R2

Ql,N

Out: d = (d̃0, d̃1) ∈ R2
Ql,N

1: d̃0 ← c̃0 + c̃′
0

2: d̃1 ← c̃1 + c̃′
1

Algorithm 2 HEAAN.Mult Algorithm
In: ct = (c̃0, c̃1), ct′ = (c̃′

0, c̃′
1) ∈ R2

Ql,N

Out: d = (d̃0, d̃1, d̃2) ∈ R3
Ql,N

1: d̃0 ← c̃0 ⋆ c̃′
0, d̃2 ← c̃1 ⋆ c̃′

1
2: d̃1 ← c̃0 ⋆ c̃′

1 + c̃1 ⋆ c̃′
0

Algorithm 3 HEAAN.ModDown Algorithm
In: d̃ ∈ RpQl,N

Out: d̃
′ ∈ RQl,N

1: t← INTT(d̃[l])
2: for i = 0 to l − 1 do
3: t̃← NTT(

[
t
]

qi
) ▷ in Zqi

4: d̃′[i]←
[
p−1 ⊙ (d̃[i]− t̃)

]
qi

5: end for

Algorithm 4 HEAAN.Rescale Algorithm
In: d̃ ∈ RQl,N

Out: d̃
′ ∈ RQl−1,N

1: t← INTT(d̃[l − 1])
2: for i = 0 to l − 2 do
3: t̃← NTT(

[
t
]

qi
) ▷ in Zqi

4: d̃′[i]←
[
q−1

l ⊙ (d̃[i]− t̃)
]

qi

5: end for

Algorithm 5 HEAAN.Relin Algorithm
In: d = (d̃0, d̃1, d̃2) ∈ R3

Ql,N , ˜KSK0 ∈ Rl
pQl,N , ˜KSK1 ∈ Rl

pQl,N

Out: d′ = (d̃′
0, d̃

′
1) ∈ R2

Ql,N

1: for j = 0 to l − 1 do
2: d2[j]← INTT(d̃2[j]) ▷ in Zqj

3: end for
4: for j = 0 to l do ▷ Here ql is used to represent special prime p
5: (c̃′′

0 [j], c̃′′
1 [j])← 0

6: for i = 0 to l − 1 do
7: r̃ ← NTT(

[
d2[i]

]
qj

) ▷ in Zqj

8: c̃′′
0 [j]←

[
c̃′′

0 [j] + ˜KSK0[i][j] ⋆ r̃
]

qj
, c̃′′

1 [j]←
[
c̃′′

1 [j] + ˜KSK1[i][j] ⋆ r̃
]

qj

9: end for
10: end for
11: d̃

′
0 ← d̃0 + HEAAN.ModDown(c̃′′

0), d̃
′
1 ← d̃1 + HEAAN.ModDown(c̃′′

1)

• HEAAN.Rescale(c): It takes a ciphertext-polynomial c ∈ RQl,N with level l and
produces a ciphertext element with level l−1. Let c′ ∈ RQl−1,N such that c′[i] = c[l]
(mod qi) for 0 ≤ i ≤ l−1. Then, compute c′′ = c−c′ ∈ RQl−1,N . Finally, output the
rescaled ciphertext element c′′ = q−1

l ⊙ c′′ ∈ RQl−1,N . To rescale a ciphertext that
consists of two polynomials, the above procedure is applied to both the polynomials.

• HEAAN.Rotate(ct, GK): The slot rotation operation takes a ciphertext ct = (c0, c1) ∈
R2

Ql,N and Galois key GK as input, and it involves automorphism followed by key-
switching using Galois keys. Automorphism is a special permutation of ciphertext
coefficients. After automorphism, the ciphertext is encrypted under a rotated secret
key. Therefore, a key-switching is required to obtain a chiphetext that is encrypted
under the original secret key.

In optimized HEAAN implementations, the ciphertexts and key-switching key are
kept in the NTT domain with RNS bases, which improves the performance. The NTT
is a method used for efficient implementation of large-degree polynomial multiplication
operation, which is detailed in Sec. 2.5. The textbook HEAAN subroutines above were pre-
sented using non-NTT representation for the sake of simplicity. The steps of the optimized

Mert, Aikata, Kwon, Shin, Yoo, Lee, Sinha Roy 9

homomorphic HEAAN.Add, HEAAN.Mult, HEAAN.Relin, HEAAN.ModDown and HEAAN.Rescale
operations using NTT domain polynomials are given in Algorithm 1, 2, 5, 3 and 4 respec-
tively. The tilde symbol on top of a variable indicates that the polynomial is in the NTT
domain. From now on, we use the optimized subroutines with NTT representation.

2.5 Number Theoretic Transform (NTT)
The multiplication of very large degree polynomials is one of the major performance
bottlenecks for the HE implementations. The Number Theoretic Transform or NTT enables
fast polynomial multiplications by reducing the complexity of polynomial multiplication
to O(n · log n), and it is extensively employed for the implementation of HE schemes. The
NTT is defined as the Discrete Fourier Transform over Zq. An N -point NTT operation
transforms a polynomial a of degree N − 1 degree polynomial into another N − 1 degree
polynomial ã . The NTT uses the powers of N -th root of unity ω (also referred to as
twiddle factors) which satisfies ωn ≡ 1 (mod q) and ωi ̸= 1 (mod q) ∀i < N , where q ≡ 1
(mod N). Similarly, inverse NTT (INTT) follows the same method with the modular
inverse of ω and the resulting coefficients should be scaled by 1/N .

When the polynomial ring is in the form of Zq[x]/xN +1 and q ≡ 1 (mod 2N), negative
wrapped convolution technique enables an efficient NTT-based polynomial multiplication
method. First, NTT is performed on input polynomials, then the resulting polynomials
are coefficient-wise multiplied and finally, the INTT operation is performed. However, this
technique requires input and output polynomials to be pre- and post-processed with 2N -th
root of unity, respectively. Roy et al. [SRVM+14] and Poppelmann et al. [POG15] showed
how to merge pre-processing with NTT and post-processing with INTT, respectively.
These new NTT and INTT operations use 2N -th root of unity and its modular inverse,
respectively. Polynomial multiplication operation c = a ·b (mod xN +1) can be performed
using new NTT and INTT operations as shown in Eqn. 1.

c = INTT(NTT(a) ⋆ NTT(b)) (1)

3 Flexible Design Methodology
3.1 Homomorphic Encryption Applications Require Flexibility
Different homomorphic applications require different multiplicative depths, hence the
parameter sets of the underlying homomorphic encryption instances change with the
complexity of the application. For example, the SEAL [SEA20] software library uses RNS-
HEAAN parameters (log2 Q, N) = (109, 212), (218, 213) and (438, 214) for the multiplicative
depths 2, 4, and 8, respectively. As software implementations are inherently flexible, such
changes in the parameter sets do not require a re-implementation of the software – they
affect only the performance and memory allocation overheads. E.g., SEAL [SEA20] handles
the memory allocation for different parameters flexibly by dynamically allocating memory
blocks in the heap. On the other hand, hardware implementations are generally not flexible
as the compute cores and memory elements are hardwired by a fixed set of wires. As
a consequence, when the hardware acceleration of cloud-side homomorphic evaluation
routines is considered, the drastic changes in the sizes of the parameter sets pose a major
challenge. To satisfy the flexibility requirements associated with different applications,
one naive approach will be to install several parameter-specific optimized accelerators in
the cloud. With that, the cloud can choose an appropriate accelerator for evaluating a
given homomorphic application. This approach will give optimal execution time for any
application, but will cause redundancy by requiring several accelerator units. A second
approach will be to use a single accelerator which has been designed for a large parameter.

10 Medha: Microcoded Hardware Accelerator for Processing Encrypted Data

With this approach, all homomorphic applications irrespective of their complexities will
have to use the large and fixed parameter set. Therefore, this approach will cause poor
performances for applications that do not require a large parameter set. In this paper,
we propose a third approach which is a divide-and-conquer approach. It enables using a
single hardware accelerator, that has been designed for a smaller parameter, for supporting
several larger parameter sets flexibly without causing any major performance loss.

For the cloud-side operations, the size of coefficient modulus Q and the polynomial
degree N change with the multiplicative depth. Attaining flexibility in the modulus
size is relatively easy if the homomorphic encryption scheme uses RNS. As explained in
Sec. 2.4, an RNS-based homomorphic encryption scheme operates using a set of moduli.
Therefore, a change in the size of the coefficient modulus is equivalent to addition or
deletion of moduli to/from the RNS base. The hardware accelerators [SRTJ+19, TRV20]
implement Q-flexibility by instantiating several parallel residue arithmetic processors in
the architecture. Each such processor is used in a time-shared manner to support more
than one moduli.

Implementing flexibility for the polynomial degree N in a hardware accelerator is not
straightforward. In the literature, there is only one accelerator F1 [FSK+21] that supports
multiple parameter sets with the polynomial degrees ranging from 210 to 214 by allocating
computational resources for the largest parameter. For smaller parameters, it uses a subset
of the available computational resources. This approach increases the complexity of the
implementation as it requires the computational resources for the largest parameter. Also,
extra logic elements are required to bypass a subset of idle computational resources for
smaller parameters.

Our proposed flexible accelerator design methodology is fundamentally different from
the method used in F1. It uses arithmetic units that have been optimized for a fixed-and-
smaller parameter to perform operations for larger parameters.

3.2 Design Methodology for Flexibility in Polynomial Degree
Let’s assume that there is an accelerator architecture that has been optimized for the
homomorphic operations with polynomial degree N . The research problem is: How could
we use the accelerator for larger parameter sets, e.g., with the polynomial degrees 2N , 4N ,
etc.? To solve the problem, we propose a divide-and-conquer approach. We apply the
polynomial version of CRT to the ciphertexts (which consist of residue polynomials) and
split a ciphertext with a large polynomial degree (i.e., ct ∈ R2

Q,2N) into several ciphertexts
with smaller polynomial degrees (i.e., ct′ ∈ R4

Q,N). Next, these smaller ciphertexts (with
polynomial degrees N) are processed using the given hardware accelerator that has been
optimized for the polynomial degree N . The splitting can be applied recursively.

Let the irreducible polynomial f of the ring RQ,2N = ZQ[x]/f be of the form f =
x2N + 1. Let all the moduli qi in the RNS base of the Q be primes such that qi ≡ 1
(mod 4N). Then 4N -th primitive root of the unity will exist in Zqi

. Let ζ4N be one such
primitive root of the unity, i.e., ζ4N

4N ≡ 1 (mod qi) and ζ2N
4N ≡ −1 (mod qi). Then, f can

be re-written as x2N − ζ2N
4N and factored into polynomials fp and fm in ZQ as shown in

Eqn. 2.
f(x) = fp(x) · fm(x) = (xN − ζN

4N) · (xN + ζN
4N) (2)

Note that f is irreducible over integers but not over ZQ. Since fp and fm are coprime,
the isomorphism Rqi,2N = Zqi

[x]/f 7→ Zqi
[x]/fp × Zqi

[x]/fm exists. Thus, any operation
in the polynomial ring Rqi,2N can be mapped to smaller operations in the polynomial
rings Zqi

[x]/fp and Zqi
[x]/fm. From now on, we use Rqi,N,p and Rqi,N,m (cf. RQ,N,p and

RQ,N,m) to represent the polynomial rings Zqi [x]/fp and Zqi [x]/fm (cf. ZQ[x]/fp and
ZQ[x]/fm), respectively.

Mert, Aikata, Kwon, Shin, Yoo, Lee, Sinha Roy 11

Algorithm 6 HEAAN.Add Algorithm for 2N

In: ct(p) = (c̃(p)
0 , c̃

(p)
1) ∈ R2

Ql,N,p

In: ct(m) = (c̃(m)
0 , c̃

(m)
1) ∈ R2

Ql,N,m

In: ct′(p) = (c̃′(p)
0 , c̃

′(p)
1) ∈ R2

Ql,N,p

In: ct′(m) = (c̃′(m)
0 , c̃

′(m)
1) ∈ R2

Ql,N,m

Out: d(p) = (d̃(p)
0 , d̃

(p)
1) ∈ R2

Ql,N,p

Out: d(m) = (d̃(m)
0 , d̃

(m)
1) ∈ R2

Ql,N,m

1: d̃
(p)
0 ← c̃

(p)
0 + c̃

′(p)
0

2: d̃
(p)
1 ← c̃

(p)
1 + c̃

′(p)
1

3: d̃
(m)
0 ← c̃

(m)
0 + c̃

′(m)
0

4: d̃
(m)
1 ← c̃

(m)
1 + c̃

′(m)
1

Algorithm 7 HEAAN.Mult Algorithm for 2N

In: ct(p) = (c̃(p)
0 , c̃

(p)
1) ∈ R2

Ql,N,p

In: ct(m) = (c̃(m)
0 , c̃

(m)
1) ∈ R2

Ql,N,m

In: ct′(p) = (c̃′(p)
0 , c̃

′(p)
1) ∈ R2

Ql,N,p

In: ct′(m) = (c̃′(m)
0 , c̃

′(m)
1) ∈ R2

Ql,N,m

Out: d(p) = (d̃(p)
0 , d̃

(p)
1 , d̃

(p)
2) ∈ R3

Ql,N,p

Out: d(m) = (d̃(m)
0 , d̃

(m)
1 , d̃

(m)
2) ∈ R3

Ql,N,m

1: d̃
(p)
0 ← c̃

(p)
0 ⋆ c̃

′(p)
0 , d̃

(p)
2 ← c̃

(p)
1 ⋆ c̃

′(p)
1

2: d̃
(p)
1 ← c̃

(p)
0 ⋆ c̃

′(p)
1 + c̃

(p)
1 ⋆ c̃

′(p)
0

3: d̃
(m)
0 ← c̃

(m)
0 ⋆ c̃

′(m)
0 , d̃

(m)
2 ← c̃

(m)
1 ⋆ c̃

′(m)
1

4: d̃
(m)
1 ← c̃

(m)
0 ⋆ c̃

′(m)
1 + c̃

(m)
1 ⋆ c̃

′(m)
0

Using the isomorphism a large ciphertext ct = (c0, c1) ∈ R2
Q,2N can be split into two

smaller ciphertexts ct(p) = (c(p)
0 , c

(p)
1) ∈ R2

Q,N,p and ct(m) = (c(m)
0 , c

(m)
1) ∈ R2

Q,N,m. After
that, the homomorphic operations can be performed on the smaller ciphertexts. This
approach enables efficient re-use of a fixed hardware architecture that has been optimized
for the smaller parameter with the polynomial degree N . Additionally, management of the
smaller data variables in the limited on-chip memory of a hardware accelerator becomes
relatively easier.

The splitting of a ciphertext is essentially the splittings of its polynomials. A polynomial
a ∈ RQ,2N is split into the two polynomials ap = a (mod fp) ∈ RQ,N,p and am = a
(mod fm) ∈ RQ,N,m. On the opposite mapping, the two smaller polynomials ap and am

can be joined using the CRT to obtain the large polynomial a as

a = (ap + am)1
2 + (ap − am)ζ−N

4N

2 xN (mod Q). (3)

The same applies to the key-switching key. The splitting and joining operations each
have a linear time complexity. They can be performed in the software or in the hardware.
For example, a software system that is using a hardware accelerator as a coprocessor,
can do the splitting job before sending the small ciphertexts to the hardware. Similarly,
the software system can combine the partial results returned by the hardware. In the
remaining part of the paper, we will use the two functions Split() and Join() to perform
the splitting and joining operations respectively.

3.3 RNS-HEAAN Subroutines with Flexible Method
Here we provide concrete algorithmic descriptions of the subroutines of RNS-HEAAN to
implement the flexibility that we discussed in the previous section.

HEAAN.Add and HEAAN.Mult subroutines: Let two large ciphertexts be ct and ct′ ∈
R2

Ql,2N . Using the Split() function, each of them is split into two smaller ciphertexts.
Algorithm 6 and Algorithm 7 show how the smaller ciphertexts are processed to perform
the homomorphic addition and multiplication in the larger ring RQl,2N . In the RNS these
polynomial operations are performed on the residue polynomials.

HEAAN.Relin and HEAAN.Rescale subroutines: The steps of relinearization and rescaling
operations for the polynomial degree of 2N are shown in Algorithm 8 and Algorithm 9,

12 Medha: Microcoded Hardware Accelerator for Processing Encrypted Data

Algorithm 8 HEAAN.Relin Algorithm for 2N

In: d(p) = (d̃(p)
0 , d̃

(p)
1 , d̃

(p)
2) ∈ R3

Ql,N,p, d(m) = (d̃(m)
0 , d̃

(m)
1 , d̃

(m)
2) ∈ R3

Ql,N,m

In: ˜KSK(p)
0 ∈ Rl

pQl,N,p, ˜KSK(p)
1 ∈ Rl

pQl,N,p, ˜KSK(m)
0 ∈ Rl

pQl,N,m, ˜KSK(m)
1 ∈ Rl

pQl,N,m

Out: d(p) = (d̃(p)
0 , d̃

(p)
1) ∈ R2

Ql,N,p, d(m) = (d̃(m)
0 , d̃

(m)
1) ∈ R2

Ql,N,m

1: for j = 0 to l − 1 do
2: d

(p)
2 [j]← INTTp(d̃(p)

2 [j]), d
(m)
2 [j]← INTTm(d̃(m)

2 [j]) ▷ in Zqj

3: d2[j]← Join(d(p)
2 [j], d

(m)
2 [j])

4: end for
5: for j = 0 to l do ▷ Here ql is used to represent p

6: (c′′(p)
0 [j], c

′′(p)
1 [j], c

′′(m)
0 [j], c

′′(m)
1 [j])← 0

7: for i = 0 to l − 1 do
8: r(p), r(m) ← Split(

[
d2[i]

]
qj

)
9: r̃(p) ← NTTp(r(p)), r̃(m) ← NTTm(r(m)) ▷ in Zqj

10: c
′′(p)
0 [j]←

[
c

′′(p)
0 [j] + ˜KSK(p)

0 [i][j] ⋆ r̃(p)]
qj

11: c
′′(p)
1 [j]←

[
c

′′(p)
1 [j] + ˜KSK(p)

1 [i][j] ⋆ r̃(p)]
qj

12: c
′′(m)
0 [j]←

[
c

′′(m)
0 [j] + ˜KSK(m)

0 [i][j] ⋆ r̃(m)]
qj

13: c
′′(m)
1 [j]←

[
c

′′(m)
1 [j] + ˜KSK(m)

1 [i][j] ⋆ r̃(m)]
qj

14: end for
15: end for
16: (d̃′(p)

0 , d̃
′(m)
0)← (d̃(p)

0 , d̃
(m)
0) + (HEAAN.ModDown(c̃′′(p)

0), HEAAN.ModDown(c̃′′(m)
0))

17: (d̃′(p)
1 , d̃

′(m)
1)← (d̃(p)

1 , d̃
(m)
1) + (HEAAN.ModDown(c̃′′(p)

1), HEAAN.ModDown(c̃′′(m)
1))

Algorithm 9 HEAAN.Rescale Algorithm for 2N

In: d̃
(p) ∈ RQl,N,p, d̃

(m) ∈ RQl,N,m

Out: d̃
′(p) ∈ RQl−1,N,p, d̃

′(m) ∈ RQl−1,N,m

1: t(p) ← INTTp(d̃(p)[l − 1]), t(m) ← INTTm(d̃(m)[l − 1])
2: t← Join(t(p), t(m))
3: for i = 0 to l − 2 do
4: r(p), r(m) ← Split(

[
t
]

qi
)

5: r̃(p) ← NTTp(r(p)), r̃(m) ← NTTm(r(m)) ▷ in Zqi

6: d̃
′(p)[i]←

[
q−1

l ⊙ (d̃(p)[i]− r̃(p))
]

qi
, d̃

′(m)[i]←
[
q−1

l ⊙ (d̃(m)[i]− r̃(m))
]

qi

7: end for

respectively. The mod-down and rescaling operations are very similar as shown in Algo-
rithm 3 and Algorithm 4, thus the steps of the mod-down operation for 2N can easily be
constructed from the steps of rescaling operation (Algorithm 9). The relinearization, mod-
down and rescaling operations for the polynomial degree of 2N are more complex than the
homomorphic addition and multiplication operations as they require the Split/Join and
NTT/INTT operations. As shown in step 7 of Algorithm 5, the key switching multiplication
part of the relinearization operation requires the polynomials of the ciphertext d2 to be
reduced by qj , which cannot be performed independently on d

(p)
2 and d

(m)
2 . Therefore,

before the modular reduction by qj the two small polynomials are joined using Join in step
3 of Algorithm 8. After the modular reduction, the reduced large polynomial is again split
into two small polynomials using Split in step 8 of Algorithm 8. Similarly, the mod-down
and rescaling operations also require the split and join operations as they involve modular

Mert, Aikata, Kwon, Shin, Yoo, Lee, Sinha Roy 13

Table 1: Parameter Sets

Param. Set (log2(pQ), N) L + 1 Mul. Depth Sec. Level
Set-1 (438, 214) 8 7 >128-bit
Set-2 (546, 215) 10 9 >128-bit

reductions.
Note that the resultant polynomials after a Split operation reside in two different

polynomial rings ZQ[x]/xN − ζN
4N and ZQ[x]/xN + ζN

4N . The NTT and INTT operations
over these different polynomial rings are performed using different twiddle constants. We
use NTTp/INTTp and NTTm/INTTm to represent the NTT/INTT operations over the two rings
ZQ[x]/xN − ζN

4N and ZQ[x]/xN + ζN
4N , respectively.

4 Architecture of Medha
4.1 Parameter Selection
To implement RNS-HEAAN with the proposed flexible design method, we use 60 and
54-bit prime moduli as RNS bases similar to SEAL [SEA20] and HEAX [RLPD20] with
each prime satisfying qi ≡ 1 (mod 4N). For proof of the concept, Medha is implemented
to support two large parameter sets as shown in Table 1. It supports two polynomial
degrees, N = 214 and 2N = 215, with up to 546-bit coefficient modulus size using 10 prime
moduli. Next, we present the low-level arithmetic units of the Medha.

4.2 Low-level Arithmetic Units
In this section, we present the low-level arithmetic units of Medha starting from the lowest
level of the implementation hierarchy (Fig. 1) containing modular arithmetic, namely
addition, subtraction and multiplication. They are the most frequently used modules. We
use bit-parallel multipliers made of DSPs available in FPGAs. To bypass the expensive
modular reduction circuits from [SRTJ+19, RLPD20], we use pseudo-Mersenne primes in
the RNS base and perform very cheap modular reductions. Similar reduction circuits are
popular in lattice-based post-quantum cryptography. See Appendix A for details.

4.2.1 Parallel NTT Architecture

The next level of Fig. 1, performs the arithmetic of large-degree polynomials. Polynomial
multiplication is the most expensive operation and it can be implemented efficiently using
NTT-based polynomial multiplication. The NTT unit has been designed and optimized
for N = 214.

Our NTT-based multiplier uses an iterative NTT approach. It utilizes the decimation-
in-time (DiT) approach for the forward NTT and decimation-in-frequency (DiF) approach
for the inverse NTT (INTT) [Sco17]. This particular combination eliminates the need for
any coefficient permutations before the NTTs or after the INTT. The DiT NTT Algorithm
is presented in Algorithm 10 in Appendix B.

For fast polynomial multiplications, we implement a multi-core parallel NTT unit
borrowing the best practices from [RJV+18, SRTJ+19, RLPD20] including the routing
and BRAM access optimizations from [RJV+18]. In addition, we apply an ‘address
delaying’ technique that results in a significant reduction in the register consumption
without causing any performance overhead. Fig. 2 shows a high-level organization of the
memory elements (for storing the polynomial-parts) and the compute cores (for processing

14 Medha: Microcoded Hardware Accelerator for Processing Encrypted Data

Figure 2: Organization of memory and compute cores for parallel NTT

the coefficients) inside the NTT unit. The bus matrix rearranges the processed coefficients
before writing them to the memory elements. We put multiple layers of pipeline registers
(shown in green in Fig. 2) to increase the clock frequency. The number of parallel compute
cores is a design parameter that depends on area and performance budgets. Our NTT
unit is optimized for polynomials of N = 214 coefficients and it uses 16 compute cores. It
computes one 214-point NTT in around 7,168 cycles.

4.2.2 Unified Compute Core for DiT NTT and DiF INTT

We design a single NTT unit that employs unified compute cores for the DiT NTT
and DiF INTT. In DiT, a new coefficient-pair (u′, t′) is computed from (u, t) as follows:
(u′, t′) ← (u + t · ω, u − t · ω). Whereas in DiF, a new coefficient-pair is computed as
(u′′, t′′) ← (u+t

2 , (u−t)·ω
2). These operations are referred to as the butterfly operations.

Our unified compute core uses one modular multiplier, one modular adder, two modular
subtractors and a few two-to-one multiplexers. The modular multiplier is heavily pipelined
(around 20 stages) to achieve high clock frequency. From now on, we refer to compute
core as the butterfly core.
Address delaying optimization: We propose an ‘address delaying’ optimization that
causes a significant reduction in the register consumption of the pipelined butterfly cores.
Let us consider the processing of coefficient pairs during DiT NTT. After reading the
coefficient t, computation of the intermediate data ω · t progresses through a long chain
of pipeline registers present inside the modular multiplier. For the correct computation
of (u + t · ω, u − t · ω), u and ω · t must reach the inputs of the adder and subtractor
synchronously in the same cycle. In [RJV+18], both u and t are read together from the
memory and then u is passed through a long chain of redundant registers just to make
sure that both u and ω · t arrive together at the adder and subtracter.

Our pipeline strategy avoids the above-mentioned bloated register consumption by
simply delaying the read of coefficient u from the memory. This technique saves around
1,200 registers per butterfly unit and around 192,00 registers for overall architecture. We
keep u and t in separate memory elements as shown in Fig. 2 so that they can be read
separately just-in-time. The timing diagram in Fig. 3 shows how the {u, t} coefficients are
read during a DiT NTT. Reading of the t-coefficients for the consecutive butterfly operations
is initiated several cycles (equal to the number of pipeline stages in the modular multiplier)

Mert, Aikata, Kwon, Shin, Yoo, Lee, Sinha Roy 15

Figure 3: The timing diagram for our DiT method of NTT. Due to pipelined datapath,
the reading of the u coefficients is delayed so that we can add or subtract them when
the corresponding modular multiplication results t · ω are ready. The results of butterfly
operations are written synchronously. For the DiF method, the read-write happen oppo-
sitely: we read the u and t coefficients synchronously but write them asynchronously. The
notations &R and &W are for reading and writing addresses respectively.

ahead of reading the u-coefficients. As a consequence, each modular multiplication result
and the respective u appear synchronously at the inputs of the adder and subtractor
circuits for correct computation. We extend the above-mentioned pipeline strategy to the
DiF method of INTT. The difference is that both u and t are read simultaneously but the
result coefficients are written separately into the memory.

4.2.3 Twiddle Factors during NTT

Optimized software implementations (e.g., SEAL [SEA20]) and also the hardware imple-
mentations [SRTJ+19, RLPD20] save cycle count of NTT by keeping all twiddle constants
in large tables. As previous hardware implementations [SRTJ+19, RLPD20] indicated that
HE is memory-bound, we follow a memory-conservative design approach and compute the
twiddle constants on the fly and in parallel to the butterfly operations, therefore avoiding
large BRAM consumption. Each NTT butterfly unit is coupled with a twiddle factor
generation unit which mainly consists of a modular multiplier and two BRAM36K memory
units for storing a few initial twiddle factor constants. The multiplier in the twiddle
factor generation unit is not an additional cost as it is reused to parallelize coefficient-wise
multiplication and modular reduction operations.

4.2.4 Automorphism Unit

The automorphism operation requires permutation of polynomial coefficients. In our
architecture, the permutation is a simple memory read-write operation. Since, a HEAAN
ciphertext is in the NTT domain, special care has to be taken to generate the read addresses
required during the permutation. The read and write addresses are generated on the fly
using a Galois element.

4.2.5 Building Blocks for Supporting Parameter Flexibility

The proposed flexible design method requires very few specific low-level building blocks,
which can be implemented easily.

16 Medha: Microcoded Hardware Accelerator for Processing Encrypted Data

Split and Join operations: Although they can be performed by a software system
(master mode), we implement them in the hardware to avoid unnecessary HW-SW data
transfers. A naive approach is utilizing separate computation units for these operations. In-
stead, for implementing the split and join operations efficiently, we leverage the resemblance
of split and join operations to DiT and DiF butterfly structures respectively, and implement
the split and join operations without any additional hardware cost using the butterfly cores.
Since the NTT unit has 16 butterfly cores, each of Split and Join takes≈1,024 clock cycles.

On-the-fly twiddle factor generation: As explained in Sec. 3.2, the proposed architec-
ture should support N -point NTT and INTT operations for three different polynomial rings:
ZQ[x]/x214 + 1 for the parameter with the polynomial degree N = 214; ZQ[x]/x214 + ζ2N

4N

and ZQ[x]/x214 − ζ2N
4N for the parameter with the polynomial degree 2N = 215. The

ring-specific NTTs use different twiddle constants. As described earlier, our twiddle factor
generation unit stores only a few initial constants and starting from them computes the
remaining constants on-the-fly. As there are three rings, three sets of initial twiddle
constants are required to be stored in the memory. That will increase the on-chip memory
requirement. Instead, we store only the initial twiddle constants for the polynomial rings
ZQ[x]/x214 − ζ2N

4N and ZQ[x]/x214 + ζ2N
4N . When an NTT/INTT for the ring ZQ[x]/x214 + 1

is to be computed, the required initial twiddle constants are generated by multiplying
those for the ring ZQ[x]/x214 − ζ2N

4N with ζi
4N where i changes with the NTT stages.

4.3 Architecture of the Homomorphic Processor
We take the optimized polynomial arithmetic units from the previous section and or-
ganize them in the architecture of Medha. Medha is an instruction-set architecture
(ISA) and therefore programmable to run the homomorphic subroutines, namely addi-
tion/subtraction, multiplication, key-switching, relinearization and rescaling flexibly by
reusing the same compute units. Previous works [RJV+18, SRTJ+19] presented ISAs for
accelerating homomorphic encryption, but their performance advantages remained limited,
e.g., only one order speedup [SRTJ+19] compared to SW implementations. On the contrary,
HEAX [RLPD20] organized its polynomial arithmetic elements in a subroutine-specific
manner to implement a key-switching unit that gives over two orders higher throughput
compared to SW. The one order speedup of HEAX over [SRTJ+19] demonstrated that
block-pipelined and subroutine-specific HE accelerators are much superior to programmable
accelerators that reuse compute elements.

We organize compute and memory elements pragmatically and realize a flexible and
programmable accelerator that achieves up to 78× performance improvement compared to
Microsoft SEAL [SEA20]. Our work shows that HE accelerators do not have to sacrifice
programmability to achieve high speed. The following subsections describe how we organize
compute and memory elements.

4.3.1 Design of Residue Polynomial Arithmetic Unit (RPAU)

In any RNS-based HE, an arithmetic operator is applied to a ‘vector’ of residue polynomials.
The idea has some similarities with the Single Instruction Multiple Data (SIMD) processors.
To benefit from such arithmetic parallelism [RJV+15], Medha instantiates multiple high-
level units for processing the residue polynomials in parallel. These units are called the
Residue Polynomial Arithmetic Unit (RPAU) and they are ISA. Any high-level instruction
for Medha essentially gets translated into instructions for the RPAUs.

Fig. 4 shows the organization of polynomial arithmetic cores and memory elements in-
side our proposed RPAU. We observe that the inner loop of key-switching or re-linearization
(see Sec. 2) executes one NTT and several coefficient-wise polynomial operations. Therefore,

Mert, Aikata, Kwon, Shin, Yoo, Lee, Sinha Roy 17

Figure 4: Architecture of the Residue Polynomial Arithmetic Unit (RPAU).

we keep two groups of compute cores, namely RPAU.All and RPAU.Dyadic in the RPAU.
The RPAU.All group is capable of performing all kinds of polynomial arithmetic operations
fast using 16 cores. The RPAU.Dyadic group can only perform coefficient-wise (i.e., dyadic)
operations using only 4 cores. The two compute groups are executed in parallel during
key-switching (or re-linearization) and re-scaling (or mod-down) operations.

Parallel execution of RPAU.All and RPAU.Dyadic: Our RPAU can execute two in-
structions, one using RPAU.All and the other using RPAU.Dyadic, concurrently in parallel
and save around 40% cycles. The rationale behind this novel design decision is explained
as follows.

As shown in Algorithm 2 and Algorithm 5, some of the steps in HEAAN.Mult and
HEAAN.Relin can be performed in parallel. For example, calculation of d̃0, d̃1 and d̃2,
NTT(d̃2) can performed using RPAU.Dyadic and RPAU.All, respectively, in parallel. Inside
the loop of the key-switching, the steps are sequential due to data dependencies. As the
loop iterates several times, we can unroll it and then ‘block-pipeline’ the loop-internals.
We have different options for applying parallel processing.

• Option 1: Running more than one NTTs in parallel inside the RPAU will be useful if
we unroll the key-switching loop shown in steps 4-10 of Algorithm 5. E.g., unrolling
by a factor 4 will require 4 NTT units, therefore almost increasing the logic count of
RPAU by 4 times. Hence, this approach is not attractive.

• Option 2: Using only one NTT unit with more compute cores. Compared to the
previous option, this option will be simpler as well as more effective in reducing the
latency irrespective of data dependencies. E.g., instead of using 16 cores in the NTT,
if we use 32 or 64 cores then we can reduce the cycle count of an NTT by a factor of
2 or 4 respectively. A potential problem is that we may not see a similar reduction in
the overall computation time due to a slow-down in the clock frequency of the much
larger architecture. Another problem is that the number of cores in NTT increases
by powers of two, leaving no room for a middle solution.

• Option 3: Use only one NTT unit in the RPAU and reduce or completely hide
the latency of the coefficient-wise operations by executing NTT and coefficient-wise

18 Medha: Microcoded Hardware Accelerator for Processing Encrypted Data

Figure 5: Parallel processing of HEAAN.Mult and HEAAN.Relin using two threads inside
j-th RPAU.

polynomial operations in parallel. Using a few extra modular adder and multipliers,
we can compute these cheap coefficient-wise operations in parallel to NTTs. For
example, using only four extra modular arithmetic cores, we can compute two dyadic
polynomial arithmetic instructions (taking 2 × 4, 096 cycles) concurrently to an
NTT (taking around 7,168 cycles) and effectively reduce the latency of steps 7-8 in
Algorithm 5 to the latency of one NTT only.

We apply Option 3 as it is computationally fast and at the same time requires a minor
increase in the logic area. The RPAU.Dyadic group in Fig. 4 executes coefficient-wise
instructions in parallel to NTT instructions in the RPAU.All group. We observe 40%
reduction in the latency at the price of only 20% increase in the logic resources. Fig. 5
gives a timing diagram and shows how we can speedup the computation of HEAAN.Mult
and HEAAN.Relin using the two parallel compute groups.

4.3.2 Organization of On-chip Memory inside RPAU

Peak memory requirement: After optimizing the steps of homomorphic multiplication
followed by relinearization, we observe that the peak memory requirement per RPAU is
equal to storing seven residue polynomials (ciphertext-dependent data), and additional 2L
residue polynomials of the key-switching-key. E.g., for Set-1 we have L = 7 and therefore
we need to store 21 residue polynomials on-chip for each RPAU to eliminate off-chip
memory access completely during key-switching. In a similar way, the peak memory
requirement for Set-2 with 2N = 215 and L = 9 becomes equivalent to storing 49 residue
polynomials of degree N = 214 per RPAU. To handle such large data, an option will be to
use an off-chip memory. That will involve the cost of slow data exchanges. Note that the
proposed parameter-flexible design methodology makes such a data-partitioning easy to
implement.

We take a step further and aim at keeping all the data in the on-chip memory for both
Set-1 and 2. Neither BRAMs nor URAMs alone in U250 could store such a big data, but
their combination with a few tricks can.

Mert, Aikata, Kwon, Shin, Yoo, Lee, Sinha Roy 19

Figure 6: Organization of memory elements inside the memory bank. One memory bank
is connected to a one core of the NTT unit. There are 16 such memory banks inside each
RPAU. Any residue polynomial is split into 16 fragments, and one fragment is stored in
one RPM-i of a memory module.

On the fly key-switching key generation: The large size of the key-switching key
increases the peak memory requirement significantly. We notice that the KSK0 component
of the key-switching key KSK is generated by expanding a pseudorandom public seed.
The other component KSK1 is computed using the secret key. Therefore, the cloud can
regenerate KSK0 itself from the seed. We use that to avoid storing half of the key-switching
key by generating the pseudorandom polynomials of KSK0 on-the-fly using a PRNG in the
hardware. Note that similar techniques are used in lattice-based post-quantum algorithms,
example [DKRV19], to generate their public polynomials.

In our implementation, we use the 64-bit Trivium core [Bou20]. The trivium core takes
a 64-bit seed as input, performs 18 round initialization in 18 clock cycles, and thereafter
generates 64-bit random data per cycle without any stall. We use four Trivium cores per
RPAU as there are four dyadic cores too per RPAU. These dyadic cores consume the
Trivium×4 generated pseudorandom words.

Overall, on the fly generation of KSK0 reduces the storage space for the key-switching
key by half. For 2N = 215 and L = 9 now we need to store only 31 214-degree residue
polynomials in the on-chip memory per RPAU.

Memory unit: We keep all the data variables for both the parameter sets Set-1 and 2 in
the designed on-chip memory unit. We are the first to achieve fully on-chip computation
of the key-switching operation for the two large parameters. On the target U250 FPGA,
one URAM is 8 times larger than one BRAM36K. However, both types of memory have
only two ports. Quantitatively, one 214-degree residue polynomial needs 32 BRAM36K or
4 URAM slices. If a polynomial is stored using 4 URAMs, then due to URAM’s I/O port
limitation we cannot use all 16 cores of the NTT unit during an NTT/INTT operation.
Hence, designing the memory unit of the RPAU requires careful consideration of the

20 Medha: Microcoded Hardware Accelerator for Processing Encrypted Data

computation and architectural constraints.
We make the memory organization modular inside the RPAU. To provide fast data

access during NTT, we assign one ‘memory-bank’ exclusively to each butterfly core. One
‘memory bank’ is a heterogeneous collection of BRAMs and URAMs as shown in Fig. 6.
The memory-bank of the i-th core of NTT keeps only the i-th fragments of all the 31
residue polynomials. In Fig. 6 the abbreviation ‘RPM’ stands for the residue polynomial
memory. There are 13 RPMs as there are 13 ciphertext-dependent residue polynomials.
Each RPM stores 1/16-th of the consecutive coefficients, i.e., 1,024 coefficients for N = 214.

In the figure, we use the peach and light green colors to represent RPMs that are based
on BRAMs and URAMs respectively. RPM-8, 9, and 10 are composed of BRAM36K
slices and are physically separated. Hence, they can be read/written in parallel. Whereas,
RPM-0-to-7 are implemented using a single pair of URAMs and are logically separated.
Hence, only one of them can be read and only one of them can be written every cycle. Also,
URAM-based RPM-11 and 12 are reserved for ciphertext-dependent residue polynomials.
Programmer decides which polynomial goes to which RPM taking care of data dependencies
and access patterns of the HE subroutine. The ‘Memory access controller’ block is
responsible for handling memory accesses of the two parallel computing groups RPAU.All
and RPAU.Dyadic.

We also use URAMs to store key-switching key. We need to store 2L = 18 214-degree
residue polynomials for key-switching key, which require 72 URAMs. Each address of a
URAM can store 72-bit. For a 54-bit coefficient modulus, one 214-degree residue polynomial
can be stored in (54 · 4)/72 = 3 URAMs instead of 4 by utilizing the left-over bits in each
URAM address. Therefore, for RPAU units with 54-bit coefficient modulus, we only use
56 URAMs instead of 72 to store key-switching key. Similarly, we use 63 URAMs instead
of 72 for 60-bit coefficient modulus.

4.3.3 Interconnecting Multiple RPAUs

The designed RPAU from the previous section is a fundamental compute element in our
programmable architecture. Just using one RPAU in a time-shared manner we can process
an HE subroutine. For fast computation time, we instantiate several RPAUs in parallel.
As key-switching and re-scaling operations require exchanging the residue polynomials for
different moduli, the RPAUs must perform data exchanges between them. If performed via
a shared memory, such data exchanges will slow down the HE operations. On the other
hand, connecting the RPAUs in the form of a star network will bring placement hurdles or
may even make an actual HW implementation impossible on FPGAs. We present a novel
way of connecting the RPAUs and optimally solve the problem.

First, we introduce the challenges in interconnecting the RPAUs and then describe our
solution. Like other large-scale Xilinx FPGAs [Xilb], our Alveo U250 platform uses SSI
technology and consists of four ‘semi-separated’ SLR regions. Two neighbouring SLRs are
connected using a limited number of wires. We observe that one SLR could fit up to three
RPAUs and hence at least three SLRs are needed to implement Medha. Interconnecting the
RPAUS must take SLR-to-SLR connection constraint into account to make implementation
feasible. Additionally, the communication unit between of the FPGA resides in SLR0 and
SLR1. An input ciphertext should be sent efficiently and stored in the memory blocks of
the RPAUs that reside in the other SLRs. Similarly, output polynomials should be read
from different SLRs to SLR1.

The naive solution would be connect the RPAUs in a ‘Star’ network keeping separate
paths for each connection. We found that such an interconnection complicates the routing,
bolts the number of nets crossing the SLRs, and ultimately reduces the clock frequency to
around 50 MHz or less.

We propose a ’Ring’ interconnection of the RPAUs to reduce the routing: only two
neighbouring RPAUs are connected. In many general-purpose applications, a ring network

Mert, Aikata, Kwon, Shin, Yoo, Lee, Sinha Roy 21

Figure 7: The proposed ’ring’ structured floorplan to minimize routing cost for the
implementation with 10 RPAU units.

is considered slow due to its serial communication. Interestingly, after analyzing the
computation steps of key-switching and re-scaling, we find that the exchange of residue
polynomials between the RPAUs could be transformed into a broadcasting protocol where
only one RPAU broadcasts a polynomial at a time and all the remaining RPAUs receive.
Such a transformation does not add any computation overhead. Therefore, in Medha we
connect neighbouring RPAUs only and the arrangement of all the RPAUs looks like a ring.
Each RPAU sends its data to any other RPAU through a chain of RPAUs. In Fig. 7, we
show placement of 10 RPAUs on the floor of the FPGA. The ring is marked with a red
line. For external communication signals, we followed the ’ring’ connection for sending
data signals from SLR1 to other SLRs as shown in Fig. 7.

4.3.4 Program Execution Unit

Our Medha is an instruction set architecture with its own program execution unit. An
RPAU receives its instructions from a program execution unit. Using dedicated program
controllers for each RPAU we can run asynchronously when there are no data dependencies
between the RPAUs. However, the key-switching operation requires periodic data exchanges
between RPAUs. Hence, we do not allocate dedicated program controllers for any RPAUs.
By analyzing the computation steps in the homomorphic subroutines, we observe that
most of the time the RPAUs could execute the same instruction in a SIMD manner. Only
during the mod-down and rescaling operations, the program execution flow splits into
two parallel branches: a subset of the RPAUs follow the first branch and the remaining
RPAUs follow the second branch. Hence, Medha uses only two program controllers inside
its program execution unit. We would also like to mention that by reducing the number of
program controllers to two from ‘one for each RPAU’ we greatly simplify the programming
model of Medha.

4.3.5 Scheduling of Homomorphic Operations

The proposed Medha is an instruction-set architecture. Therefore, efficient translation of
homomorphic operations into Medha instructions is crucial for achieving optimal perfor-
mance results. In this section, we describe the scheduling of homomorphic operations for
both parameter sets.

Scheduling for N = 214: HEAAN.Add operation is straightforward and it can easily be

22 Medha: Microcoded Hardware Accelerator for Processing Encrypted Data

implemented using two coefficient-wise addition instructions. The HEAAN.Mult operation
can be performed using coefficient-wise multiplication and addition instructions. As shown
in Algorithm 5, relinearization operation requires each residue polynomial in d̃2 to be
reduced by the other moduli (see step 7 of Algorithm 5). Hence, all residue polynomials
in d̃2 first need to be transformed to the time-domain using one INTT instruction in the
parallel RPAUs as shown in steps 1-3 of Algorithm 5. Since HEAAN.Relin operation needs
d̃2 output of HEAAN.Mult first, HEAAN.Mult and HEAAN.Relin operations can be performed
efficiently in parallel. As soon as d̃2 is generated, INTT operation is performed using the
main computation core while remaining outputs of HEAAN.Mult can be generated using
dyadic cores in parallel. Then, the i-th sends the i-th residue polynomial in d2 to the
other RPAUs through the ring structure. This operation is performed using an instruction
that broadcasts a residue polynomial in an RPAU to other RPAUs. The received d2[j]
are modulo-reduced by the other moduli and then converted back to the NTT domain.
This procedure is repeated for j = 0, 1, . . . , l − 1 as shown in Algorithm 5. Note that, the
coefficient-wise multiplications and accumulations in the key-switching loop (steps 7-8
in Algorithm 5) are performed in parallel to the NTTs using RPAU.Dyadic. Due to such
parallel processing, the overall cycle count of HE.Relin is primarily determined by the
latency of computing 1 INTT followed by l−1 NTTs. HEAAN.ModDown and HEAAN.Rescale
operations are implemented sequentially using INTT, NTT and broadcasting instructions
of the main core as they are not parallelizable in instruction-level.

Scheduling for 2N = 215: The scheduling of homomorphic operations for the parameter
size 2N = 215 is very similar to the scheduling for the parameter size N = 214 except
for the routines involving Split and Join functions. The HEAAN.Add and HEAAN.Mult
operations can be performed efficiently using coefficient-wise addition and multiplication
instructions on the split ciphertexts. We first store all split ciphertexts ct(p) and ct(b) into
the on-chip memory, then perform homomorphic operations ct(p). After that, we move
ct(m) into the proper memory locations and repeat the same homomorphic operations.

As shown in Algorithm 8, the relinearization operation requires split/join and there-
fore ct(p) and ct(m) cannot be processed completely independently. As a consequence,
HEAAN.Relin requires some extra on-chip data movement for split/join operations during
the computations. Due to split/join and extra on-chip data movements, the homomorphic
operations for the parameter size 2N = 215 costs more than 2× clock cycles than the
homomorphic operations for the parameter size N = 214.

4.3.6 Hardware-Software Interfacing of the Overall System

We implemented a proof-of-concept software stack (Fig. 8) consisting of a SEAL library,
User-Mode Driver (UMD), and Kernel Mode Driver (KMD). The UMD provides an
interface layer for SEAL, and KMD supports the scheduling of jobs. When a SEAL
command (supported by Medha) is executed, the corresponding UMD-API is called to
submit the command with the required parameters to KMD’s job queue as a job. Next,
KMD’s job scheduler sends the job to Medha. When Medha completes its task, the
result is read through the PCIe interface. All data communications are performed using
XDMA [Xilc] for fast transfers. We use the MicroBlaze (Xilinx’s microprocessor) unit
for controlling the communication between the host CPU and the RPAUs, and also for
monitoring the entire FPGA system.

5 Results
We described Medha in Verilog HDL and implemented in Xilinx Alveo U250 card. We
used Vivado 2019.1 tool with a performance-optimized implementation strategy. The

Mert, Aikata, Kwon, Shin, Yoo, Lee, Sinha Roy 23

Figure 8: CPU-FPGA interface and software stack

Table 2: Performance of each Instruction/Operation

Set Instruction/Operation Clock Lat. Throug.
Cycles∗ (µ sec) (per sec)

N -pt NTT ≈ 7,200 36 27,777
N -pt INTT ≈ 7,200 36 27,777

Set-1 RPAU-to-RPAU broadcast ≈ 512 2.56 390,625
& Scale by q−1

i (mod qj) ≈ 512 2.56 390,625
Set-2 C.wise Add/Sub/Mult (main) ≈ 512 2.56 390,625

C.wise Add/Sub/Mult/MAC (dyd) ≈ 4,096 20.48 48,828
Split/Join ≈ 1,024 5.12 195,312
Automorphism ≈ 512 2.56 390,625
Hom. Add 1,152 5.76 173,611

Set-1 Hom. Mult. + Relin. 99,448 497.24 2,011
Rescale 34,430 172.15 5,808
Hom. Add 2,865 14.33 69,783

Set-2 Hom. Mult. + Relin. 274,885 1,374.42 727
Rescale 75,464 377.32 2,650

∗All cycle counts are reported using a hardware-based counter.

implementation of Medha employs 10 RPAU units and works for the Set-1 and Set-2 from
Table 1.

5.1 Timing Results

The proposed implementation runs at 200MHz. In Table 2, we present the cycle count,
latency (in µ sec) and throughput results for each low-level instruction and high-level
operations for the Set-1 and Set-2. The cycle counts were collected using a hardware-based
counter. The low-level instructions for synchronizing main/dyadic cores, synchronizing
the program controllers, and ending the program do not consume any clock cycles, thus
they are not included in Table 2. Since we use only on-chip memory (i.e. registers and
BRAMs/URAMs) during the computations, the proposed architectures do not have any
DDR data transfer overhead.

24 Medha: Microcoded Hardware Accelerator for Processing Encrypted Data

Table 3: Resource Utilization of Arithmetic Modules on Alveo U250 Card

Modules LUTs REGs BRAMs URAMs DSPs
Processor 1,093,250 803,713 1,576.5 931 3,607
⌊Platform 128,237 132,090 296.5 1 7
⌊Prog. Controller 860 276 – – –
⌊Cryptoprocessor 963,131 669,353 1,280 930 3,600
RPAU Unit (54-bit) 76,474 57,180 128 92 360
⌊Memory Core 35,369 8,045 96 92 –
⌊KSK0 Core 1,934 1,654 – – –
⌊Dyadic Core 6,872 3,571 – – 40
⌊Main Core 32,214 41,248 32 – 320
RPAU Unit (60-bit) 79,631 57,479 128 102 360
⌊Memory Core 35,128 7,352 96 102 –
⌊KSK0 Core 2,031 1,491 – – –
⌊Dyadic Core 6,902 3,700 – – 40
⌊Main Core 35,488 42,324 32 – 320
Butterfly Unit 1,358 1,625 – – 10
⌊Modular Mult. 533 782 – – 10
TF Gen. Unit 755 962 2 – 10

5.2 Resource Utilization Results
Table 3 shows the resource requirements for the complete processor architecture, one RPAU
(with 54-bit and 60-bit modulus), one butterfly core, and one twiddle factor generation
core. The area figures for the complete processor also include the ‘Platform’ unit that is
responsible for the communication between the FPGA and the host CPU. The overall
design consumes 63.2% of LUTs, 23.2% of registers, 58.6% of BRAMs, 72.7% of URAMs and
29.3% of DSPs available on the Alveo U250 Card. Since we target performing homomorphic
operations using only on-chip memory, the proposed design has very high BRAM and
URAM utilization. Although the resulting URAM utilization allows instantiating more
RPAU units, there are several reasons preventing us from adding more RPAU units. Firstly,
the ’Platform’ unit consumes more resources than one RPAU unit and it resides across two
SLR regions, which limits the placement of new RPAUs. Secondly, increasing the number
of RPAU units (hence the number of RNS bases) will increase the size of key-switching key.
Therefore, each RPAU unit will employ more URAMs to store keys. Since each SLR region
has only 320 URAMs in Alveo U250 Card, placing 3 RPAUs into a single SLR region will
be much harder. Also, high routing cost of SLR-to-SLR communication prevents placing
one RPAU across multiple SLR regions. Finally, adding a new RPAU complicates the
routing and decreases the maximum achievable clock frequency of the overall design. Thus,
we set the number of RPAU units as 10.

Alveo U250 FPGA card can have a 215W maximum power consumption level [Xila]
with a typical consumption level of around 100W. For Medha, Vivado reported on-chip
power consumption of 62.12W.

5.3 Comparison with Related Works
Comparison with SEAL: There are various highly-optimized software implementations
of the HEAAN scheme based on homomorphic encryption libraries such as Microsoft
SEAL [SEA20] and Palisade [PRR17]. We compare the performance of Medha with the
single-threaded software implementation of the RNS-HEAAN on highly-optimized homo-
morphic encryption library Microsoft SEAL v3.6 [SEA20]. To present a fair comparison,
we modified the SEAL accordingly to work with the parameter sets defined in Table 1.

Mert, Aikata, Kwon, Shin, Yoo, Lee, Sinha Roy 25

Table 4: Latency Comparison with the SEAL [SEA20] and HEAX [RLPD20]

Set Work Add Mult. + Relin. Rescale

Set-1

Medha 5.76 µs 497.24 µs 172.15 µs

SEAL [SEA20] 418 µs 33,844 µs 6,429 µs
(72.56×) (68.06×) (37.34×)

SEAL [RLPD20] – 66,666 µs –
– (134.07×) –

HEAX [RLPD20] – 1,182.27 µs –
– (2.37 ×) –

Set-2
Medha 14.33 µs 1,374.42 µs 377.32 µs

SEAL [SEA20] 921 µs 108,401 µs 16,438 µs
(65.03×) (78.87×) (46.56×)

Table 5: Comparison of Hardware Accelerators for Homomorphic Evaluation

Work
Platform Real Best Freq. Area§ Plat.a

(A:ASIC) HW? speedup (GHz) (mm2 for ASIC) price
w.r.t. SW (% for FPGA) (US$)

F1 [FSK+21] A-14/12nm × 17K∗ 1 to 2 151.4 >4M
BTS [KKK+22] A-7nm × 2.2K∗ up to 1.2 373.6 >10M
BASALISC [GVBP+22] A-12nm × 4K∗ 1 to 2 150 >4M
CraterLake [SFK+22] A-14/12nm × 8.6K∗ 1 to 2 472.3 >13M
ARK [KLK+22] A-7nm × 36K∗ NA 418.3 >11.5M
CoFHEE [NSA+22] A-55nm ✓ 2.5 0.25 15 >55K
ReMCA [SYYZ22] Virtex-7 × NA 0.25 6.5L + 20.8B 26K
[SRTJ+19] ZCU102 ✓ 13 0.20 50L + 90B 3.3K
HEAWS [TRV20] AWS-F1 ✓ 20 0.25 75L + 83B Rent
HEAX [TRV20] Stratix 10 ✓ 164† 0.30 64L + 80B 8.5K
Medha‡ U250 ✓ 137δ 0.20 55L + 72B 9K

∗: Throughput is estimated by simulating a model of the accelerator.
†: Best asymptotic throughput from hardware.
δ: Throughput calculated from latency of one operation.
‡: Latency of HEAX is 2.37× slower than Medha.
§: In the Area column, ‘L’ and ‘B’ stand for % of logic and on-chip RAM elements used.
a: In the Price column, the estimated ASIC fabrication costs are based on [MUS].

The latency of high-level homomorphic operations in SEAL [SEA20] and its comparison
to Medha for Set-1 and Set-2 are presented in Table 4. The timing results of SEAL
are obtained on an Intel i5-6200U CPU @ 2.30GHz × 4 with 16 GB RAM using gcc
version 9.3 in Ubuntu 20.04.2 LTS. The proposed architectures with Set-1 and Set-2
showed 68.06× and 78.87× performance improvements, respectively, for the homomorphic
multiplication with relinearization operation compared to the SEAL-based implementation.
The effectiveness of our approach increases with the larger parameter sets. In Table 4, we
also provide the performance results of SEAL from a single-threaded Intel Xeon(R) Silver
4108 running at 1.80 GHz, which was used in the HEAX paper [RLPD20], for the Set-1
parameter. Compared to this result, Medha shows 134.07× speed-up for homomorphic
multiplication and relinearization operations.

Comparison with HEAX: The fairest comparison is with the HEAX processor [RLPD20].
It is the only prior art for actual FPGA-based implementation of RNS-HEAAN and with
the same parameter set (Set-1). HEAX and Medha follow significantly different design
methodologies. Unlike Medha, HEAX unrolls the key-switching of RNS-HEAAN into steps
and then instantiates one dedicated block per step to attain high throughput. These blocks
are cascaded to realize a block-pipeline architecture. There are a total of six block-pipeline
stages in the implementation of the key-switching operation. During a key switching, all

26 Medha: Microcoded Hardware Accelerator for Processing Encrypted Data

the residue polynomials are processed one-by-one through the pipeline stages. Thanks to
such unrolled and block-pipelined architecture, HEAX achieves a very high asymptotic
throughput of 2,616 homomorphic multiplication including key-switching operations per
second at 300MHz on a Stratix10 FPGA for the Set-1 parameter.

In comparison, Medha is an instruction-set architecture with programmability, and
it reuses the RPAUs again and again for computing different steps of various homomor-
phic routines. Naturally, Medha is a low latency-oriented architecture. It still achieves
a competitive throughput (i.e., time/latency of one operation) of 2,011 homomorphic
multiplications including key-switching operations per second while running at a lower
clock frequency of 200MHz for the Set-1 parameter.

Latency-wise, Medha is more than 2× faster than HEAX as shown in Table 4 for
the Set-1 parameter. As the latency figures of HEAX are not specified in [RLPD20],
we estimate them based on the computation flow diagram from Table 5 and Figure 6
of [RLPD20] as follows. There are six stages of block-pipeline processing during a key-
switching (the last row or Set-C of Table-5 in [RLPD20]) and the stages have been designed
to have similar cycle counts. The first stage uses an 8-core inverse-NTT with at least
14,336 cycles latency. Thus, each stage has roughly 14,336 cycles of latency. As there are
seven RNS-moduli and 18 pipeline stages including a one-core INTT stage with 114,688
cycles latency (see Figure 6 of [RLPD20]), computing a full key-switching will take at
least 358,400 cycles. In comparison, our Medha has a latency of 99,448 cycles only for
computing one homomorphic multiplication plus a key-switching for the Set-1 parameter.

From an architect’s perspective, Medha has five main advantages over HEAX: (i) Medha
shows better latency performance with a competitive throughput, (ii) Medha uses only on-
chip memory during the computations while HEAX needs off-chip memory communication
during the key switching operation for Set-1, (iii) HEAX uses a fixed-pipelined architecture
tailored for HEAAN scheme while Medha’s instruction-based architecture allows flexibility,
(iv) HEAX uses separate arithmetic units to perform homomorphic multiplication and
relinearization, and it does not perform rescaling, homomorphic addition/subtraction, and
rotation operations in hardware (see Fig. 7 in [RLPD20]), and (v) HEAX provides support
for polynomial degree 214 while Medha supports homomorphic operations for multiple
parameters with N = 214 and 2N = 215. We should also note that the design principles of
Medha were not selected to outperform HEAX. Our main goal was to gain fast computation
time while keeping programmability. Our results show that our instruction-set architecture
can outperform a block-pipelined and specific architecture in terms of latency. Our results
bring a new direction to the design space, otherwise HEAX’s one order superiority over the
previous programmable processors [RJV+18, SRTJ+19] would have indicated that specific
and block-pipelined processors are the way to accelerate HE in HW.

Thanks to the significantly lower latency, Medha would be advantageous for practical
homomorphic applications compared to HEAX. The asymptotic throughput of HEAX is
achievable only if we assume that in the application there are plenty of data-independent
homomorphic operations most of the time and that there is no overhead at the host side (e.g.,
a SW system) concerning managing the input-output ciphertexts. Note that, already due
to the batching of messages, a homomorphic operation for the Set-1 parameter implicitly
performs the operation on N/2 = 8, 192 slots in parallel. In real-life applications, there
will be data dependencies and additionally, a SW host (which is running the application
and using the HW as a service) will introduce some overhead in the processing of operand
and result. For example, consider computing the e5 from an encryption of e. Hence, the
overall processing time of an application will greatly be determined by the latency instead
of throughput.

There is one more advantage of using a low-latency system from a full-stack implemen-
tation point of view. Different homomorphic compilers have been designed to translate
plaintext applications into homomorphic applications automatically. These compilers try to

Mert, Aikata, Kwon, Shin, Yoo, Lee, Sinha Roy 27

reduce execution time by reducing the number of homomorphic multiplications and depth
of multiplication chains. If the latency is used as a ‘cost’-metric, then the optimization
task for a homomorphic compiler becomes simpler. On the other hand, if the accelerator is
throughput-oriented, then the tasks for a homomorphic compiler become more challenging
as it has to identify different ways of parallelization and also make necessary arrangements
for handling the parallel ciphertexts (which are large in size).

Comparison with F1: [FSK+21] proposed an instruction-based wide-vector processor
architecture ‘F1’ and presented simulation-based performance estimates using a cycle
accurate C/C++ model of the hardware. In 14nm/12nm process, logic synthesis of F1’s
architecture description reported an absolute area of 151 mm2 and 1 GHz operating
frequency. F1 has been optimized for throughput. The authors estimate that F1 will
achieve a throughput of 500,000 homomorphic multiplication and relinearization per second
at 1 GHz for Set-1 parameter. How the throughput estimate is calculated is not discussed
in the paper. Although the paper mentions that F1 decouples data movements from
computation, it does not mention if the throughput estimates assume that the external
memory device gives the highest data rate. Benchmarking of different applications on
conventional CPUs show that external memory devices do not operate at their commercially
advertised peak data rate. Latency figures for homomorphic operations are not presented
in the paper [FSK+21].

We present a normalized performance comparison between F1 and Medha. F1 has 16
high-level clusters, each having one ‘unrolled’ NTT and many dyadic units. The unrolled
NTT uses a condensed 2D array of butterfly circuits. The number of multipliers in one
cluster of F1 is roughly 50% of the total multipliers available in one Alveo U250 board.
If we assume that the FPGA keeps one cluster of F1 and runs at 200 MHz, then the
performance of F1 will drop by 80 times (16 times due to the use of only one cluster and
another 5 times due to slower frequency), excluding the overhead of off-chip access. In this
scenario, F1 and Medha will have almost the same speed. If the overhead of off-chip access
is considered, then F1 will be slower than Medha. In reality, F1 may not be implementable
in present-day FPGAs. Unrolled NTT was first proposed in [GFS+12] and was found to
be impractical in FPGAs. As the multipliers are distributed homogeneously on the FPGA
floor, and SLR-to-SLR connections are limited in number, it is likely that F1’s unrolled
NTT may not fit in FPGAs. The authors of F1 did not report any FPGA-based results.

There are several additional limitations of the F1 architecture. Firstly, F1 uses 32-bit
moduli whereas Medha uses 60 and 54-bit moduli similar to SEAL. Thus F1 supports
lower-precision arithmetic of encrypted real numbers than Medha and SEAL. With 32-bit
moduli, Medha could accommodate around 16 RPAUs and therefore support around 15
multiplicative levels for N = 214. Secondly, unlike Medha’s efficient ring structure, F1
uses a crossbar network for realizing cluster-to-cluster communication. The proposed
crossbar network uses a 10 mm2 chip area with 19.6W design power. The Medha’s ring
structure limits the direct communication of an RPAU to only its two neighboring RPAUs,
hence it reduces the number of interconnects significantly. Although F1 supports multiple
polynomial degrees, it provides support only up to polynomial degree 214 while our Medha
supports the polynomial degrees 214 and 215.

Note that there is no real ASIC hardware of F1. Its simulation-based performance
estimates will be impressive only if a real F1 chip is ever built. Authors of F1 consider
chip-simulation as future work. Newer architectures BTS [KKK+22], CraterLake [SFK+22]
and ARK [KLK+22], BASALISC [GVBP+22] claim further performance improvements by
designing larger processors. Similar to F1, they present performance and area estimates
based on simulation and logic synthesis. Table 5 compares them and other hardware
accelerators with Medha.

28 Medha: Microcoded Hardware Accelerator for Processing Encrypted Data

Comparisons with other HW implementations: The works in [RJV+18, SRTJ+19,
TRV20] present the FPGA implementations for the high-level operations of the BFV scheme.
In [RJV+18], the authors proposed an implementation targeting vert large parameter
set (namely N = 215 and log2 Q = 1228) and their implementation suffers from off-chip
memory communication requirements. The works in [SRTJ+19] and [TRV20] use smaller
parameters (namely N = 212 and log2 Q = 180) and shows performance improvements for
homomorphic multiplication operation compared to the FV-NFLlib. Our design shows
better performance and supports significantly larger parameter set.

There are simulation-based works targeting acceleration of the BFV scheme using
compute-in-memory approach, where computations are performed using arithmetic units
very close to the memory elements [RTJ+20, TRG+20]. As these works target a signifi-
cantly different platform, presenting a fair comparison between these works and Medha is
not feasible.

Comparisons with GPU implementations: To the best of our knowledge, there are
only two GPU implementations for the RNS-HEAAN scheme in the literature [JKA+21,
BHM+20]. For the parameter set N = 214 and log2 Q = 360, [BHM+20] performs
homomorphic addition and homomorphic multiplication with relinearization in 0.04 ms
and 0.74 ms, respectively. For a similar parameter set (Set-1), our architecture shows 6.9×
and 1.5× better performance compared to their system running on an NVIDIA DGX-
1 multi-GPU system with 8 V100 GPUs for homomorphic addition and homomorphic
multiplication with relinearization, respectively. Also, their multi-GPU platform NVIDIA
DGX-1 has a reported maximum power consumption level of 3,500W which is 16× higher
compared to the Alveo U250 board (at peak power). The NVIDIA DGX-1 platform costs
$49,000 which is 6.3× higher than the Alveo U250 board. Therefore, Medha running on
an Alveo U250 board would be a more power-efficient and cheaper accelerator solution for
homomorphic applications.

The work in [JKA+21] supports bootstrapping and focuses on memory-centric opti-
mizations for an NVIDIA Tesla V100 GPU. Their work targets very large parameter set,
namely N = {216, 217} and log2 Q ≈ 2300. Therefore, it is not easy to perform a fair
comparison between their work and our architecture. There are also other GPU-based
accelerator implementations in the literature targeting other HE schemes (i.e., BFV) [DS15,
BVMA18, BPA+18, BCL+20] or partial operations such as NTT [ZIQ+21, ÖEM+22].

Comparisons with CHET and Cheetah: CHET [DSC+19] proposes a compiler that
selects the optimum parameters for HE applications and uses SEAL for performing the
evaluations. The comparison of Medha with SEAL shows more than 2-orders of magnitude
improvement. Cheetah [RCK+20] focuses on optimizing homomorphic deep neural network
applications using parameter tuning and operator scheduling at the application level.
The paper presents area estimation of a conceptual hardware accelerator depending on
parameters. Actual hardware implementation is not provided. Their conceptual hardware
uses 545 mm2 area in 5nm technology with a 400 MHz clock frequency. Individual
performance of neither the fundamental homomorphic routines (e.g., multiplication, key-
switching) nor building blocks (e.g., NTT, dyadic-mult) are provided. So it is hard to
compare Medha with Cheetah.

Medha focuses on the acceleration of homomorphic operations and evaluations using
a hardware platform, while CHET and Cheetah target optimum evaluations of HE ap-
plications by efficient automation. Medha’s existing FPGA implementation chooses the
maximum parameter set that can be accommodated in the Alveo U250 board. Unlike
other papers targeting neural-network applications, Medha provides general accelerator
design concepts for HE that can be applied to any application when a sufficiently large
platform becomes available.

Mert, Aikata, Kwon, Shin, Yoo, Lee, Sinha Roy 29

Benchmarking of homomorphic applications: The current FPGA implementation of
Medha can be used to run any homomorphic application that requires a parameter set
within Set-2 of Table 4.1. Medha can homomorphically evaluate inferences using low latency
machine learning models like Logistic Regression [GVBP+22], LeNet-5 [DSC+19], (low
latency cryptonets) LoLa-CIFAR and LoLa-MNIST [FSK+21], etc.[BHM+20, BCIV17],
that require parameters within Set-2. Apart from evaluating those models, our parameter
set is sufficient for approximate computation of various mathematical functions like logistic,
exponential, sin/cos/tan, etc., as shown in [KR20].

We present end-to-end application-benchmark results obtained from the hardware
design of Medha for evaluating the award winning logistic regression model [KSK+18] of
iDASH2017 competition. The model gives the probability of cancer and is trained on 1,579
samples and 18 features. We expand and evaluate the logistic regression function until x7,
which is sufficient for the application. Evaluating the logistic regression model requires 7
rotation, 11 rescaling, 5 multiplication and relinearization operations. The regression model
is implemented using the parameter set N = 214 and log2(pQ) = 384 in both SEAL and
Medha. SEAL finishes one batch of inference, which encodes 455 samples with 18 features,
in 0.7 seconds. In comparison, Medha takes only 10.85 ms on average, including 4.25 ms
for communication. Performing one batch of logistic regression inference in Medha takes
around 1.3M clock cycles with 834 low-level instructions. Note that the cost of sending
evaluation and rotation keys to the Medha is not included in the end-to-end latency since
they need to be sent only once in the beginning. Compared to SEAL, Medha evaluates the
model around 64× faster for this application benchmarking. The communication between
CPU and FPGA happens using XDMA. Our experiments show that the cost of sending
one polynomial of degree 214 from host CPU to the FPGA using XDMA is taking 125µs
on average. Medha uses its on-chip memory to store the key-switching keys and avoids
off-chip communication during the logistic regression operation.

PrivFT implementation [BHM+20] proposed for text classification using homomorphic
encryption runs a shallow network consisting of an embedding (hidden) layer and an output
fully connected layer. For the parameter N = 214 and log2(pQ) = 360 (i.e., L = 5), PrivFT
inference takes a ciphertext and performs three multiplications with scalars, 61+14=75
additions, and 14 rotations. Medha with Set-1 can perform the same operation in 0.36
seconds and achieve 1.8× speedup over the GPU implementation of PrivFT [BHM+20].

In [BCIV17], the privacy-preserving forecasting application in the smart grid scenario
uses a GMDH network having three hidden layers. It is evaluated for a smaller parameter
(namely N = 212 and log2 Q = 186 with L = 3). Medha’s Set-1 parameter is overly larger
than theirs, yet Medha performs this evaluation 150× faster. Every half an hour, Medha
can evaluate the energy price forecast for 60, 000 apartments, which is sufficient for a small
city, thus making Medha useful in the real-world scenario.

The state-of-the-art FPGA-based accelerator [RLPD20] HEAX did not report any
application benchmark. We report a significant limitation of HEAX when application
benchmark is taken into account. As stated earlier, the HEAX architecture keeps each
major polynomial arithmetic step as a dedicated block. The blocks are cascaded one after
another to realize the block pipelined end-to-end architecture of HEAX. In such a system,
the host computer must feed the FPGA with operand residue polynomials as fast as the
compute-stages in the pipelined architecture – otherwise there will be bubbles in the pipeline
stages. Our experimental results show that the CPU-FPGA XDMA communication is
slow enough to degrade the performance of HEAX significantly. Furthermore, HEAX
cannot take advantage of data locality in applications as any computed result (i.e., residue
polynomial) must come back to the CPU before it can be processed again by the FPGA.
In comparison, Medha is able to exploit data locality in the logistic regression application.

ASIC accelerators such as F1 [FSK+21], BTS [KKK+22], CraterLake [SFK+22], etc.

30 Medha: Microcoded Hardware Accelerator for Processing Encrypted Data

target applications that require bootstrapping. They claim that their accelerators ‘compute’
deep learning applications several thousands of times faster than software. In reality, such
speedup claims are conjectures as no real ASIC prototypes of these accelerators yet exist.
F1 [FSK+21] and CraterLake [SFK+22] obtained benchmark estimates using software
models of their architectures. Sec. 1.1 discussed several bottlenecks that come in the
way of obtaining real chips from such large architectures. Furthermore, the performance
estimates assume that different processing stages in their architectures offer their maximum
throughput. E.g., [SFK+22] assumes a high data rate of 512 GB/s for external memory.
As real-life applications typically do not see the maximum throughput of main memory,
lower speedups will be observed when homomorphic applications are run.

6 Discussions
The hardest implementation challenge that we faced: We made a real hardware
accelerator for homomorphic encryption after overcoming several difficult design challenges
during different steps of the implementation flow. The hardest challenge we faced during
the implementation was finding an efficient placement of the proposed design on an actual
FPGA board. In a large design, although individual building blocks achieve high clock
frequency, the overall design still can end up with a low clock frequency due to congestion
issues (or even become impossible to route). Manual placement of building blocks is
needed to realize an efficient implementation. It took several months of experiments and
many design iterations for us to find an efficient placement of RPAU units and a way to
move data efficiently across a large FPGA, which yields high clock frequency. The first
step was detecting problematic timing paths which happened to be the data signals for
external communication routing from SLR1 to other SLR regions and placing extra pipeline
buffers in these paths for providing flexibility in routing and improving the clock frequency.
However, these additional buffers showed little or no improvements for the clock frequency
due to the inefficient placement of RPAU units. Finally, the ‘ring-like’ interconnection
detailed in Sec. 4.3.3, where each RPAU is constrained to a certain SLR region, made it
possible to achieve a high clock frequency. These real engineering challenges do not appear
when designers go up to the logic-synthesis of an architecture and report simulation-based
performance estimates.

Performance/cost estimate for larger parameters: In this paper, we implemented
Set-1 and 2 and both implementations do not require off-chip communications during a
key-switching. For larger parameter sets, it will no longer be possible to avoid off-chip
data transfers. In such implementations, the proposed flexible design method will be
particularly useful as it enables the re-use of smaller arithmetic units and memory. Now,
we present estimates for larger parameter sets assuming that the resources of the target
FPGA scale appropriately. For N = 216 and L = 9, the peak memory requirement for
the ciphertext-dependent data and key-switching key will be 25 and 4L = 36 residue
polynomials, respectively. Following the same practices from Sec. 4.3.2, each RPAU will
require 96 BRAMs and 208 URAMs. Then, the overall design will consume more than 2×
more URAMs.

Implementations on other platforms: Although we implemented Medha in Alveo
U250, the architecture is not tied to the specific FPGA. Large Xilinx FPGAs use the
SSI technology [Xilb] to combine multiple Super Logic Regions (SLR). Therefore, the
proposed ring of RPAUs (Sec. 4.3.3) will be essential to implementing multi-RPAU HE
architecture on large Xilinx FPGAs. Furthermore, the proposed ring interconnection of
RPAUs can be extended to multi-FPGA implementations. Multi-FPGA platforms e.g.,
Amazon AWS EC2 F1 instances [Ama17] or [S2C20] keep the FPGAs in ring formation

Mert, Aikata, Kwon, Shin, Yoo, Lee, Sinha Roy 31

where each FPGA communicates with its neighbouring FPGAs using high-bandwidth bus
(e.g., 400 Gbps bidirectional in [Ama17]). Therefore, during the key-switching operation,
residue polynomials can be broadcast in low latency over the ring similar to the RPAU-to-
RPAU broadcast. Multi-FPGA implementation of Medha will enhance its performance
further and enable implementations for larger parameter sets. Each FPGA will host a
set of RPAUs. Bootstrapping will definitely need several large FPGAs due to its sheer
computational cost. In comparison to large single-chip accelerator architectures such
as [FSK+21, KKK+22, SFK+22, KLK+22], multi-FPGA architectures will be modular by
nature, making designing, prototyping and testing convenient while keeping re-usability.
Furthermore, compared to the multi-million dollar ASIC architectures, a multi-FPGA
platform will significantly cheaper. One VU13P FPGA (which is present inside U250 card)
costs less than 9K US$, and hence using eight of them will still be at least 50 times cheaper
than fabricating [FSK+21] in silicon. Furthermore, FPGAs can be rented on hourly basis
from the AWS.

Medha can be ported to ASIC technologies. Medha has been described using Verilog
RTL and only the BRAMs/URAMs and DSP multipliers are Xilinx IPs. In ASIC, BRAMs
and URAMs will be replaced by dual-port SRAMs with the same functional and timing
behavior. Similarly, the DSP multipliers will be replaced by normal multipliers. Interesting,
the proposed ring interconnection of RPAUs will be ideal for an ASIC implementation.
In the ring, neighboring RPAUs will be placed side by side on the layout of the chip.
We anticipate that Medha’s clock frequency will improve by three to five times depend-
ing on the ASIC technology. One RPAU of Medha is synthesized in 65nm standard
cell ASIC library and it meets 600 MHz clock with 4.6 mm2 area. With newer technol-
ogy, e.g., 12nm ASIC, we anticipate that 1 GHz clock and a smaller area will be achievable.

Verification of Medha: We verified the functional correctness of Medha in a real
FPGA. Different homomorphic procedures, namely addition, multiplication, relinearization,
rescaling, key-switching, rotation, etc., are computed correctly by Medha. All homomorphic
procedures have branch-less and fixed control flow, making their testing convenient.

We consider formal verification of Medha as a future work. Complementing functionality
testing, model checking-based formal verification could be used to check if the architecture
description (e.g., HDL code, netlist, etc.) matched the specification. If performed correctly,
formal verification could detect corner case bugs that may remain undetected using testing.
Model checking-based formal verification assumes that the golden reference model is accu-
rate. Note that any mistake in the model description could give a false confidence that the
design is correct. Developing a complete and accurate model of a large HE accelerator
(that includes hundreds or thousands of parallel cores, different types of memory elements,
asynchronous IP blocks, etc.) will be a very challenging and time-taking research topic.
Besides, formal verification is not advanced enough to take physical properties (e.g., timing
violations) of the implementation platform into account. An emulated or simulated model
of a hardware is not comparable with a working ASIC/FPGA prototype. Therefore,
prototype testing cannot be replaced by formal verification of an architecture description.
Neither prototyping nor formal verification is used in [FSK+21, KKK+22, SFK+22] to
bring confidence on the functional correctness of these massively large FHE architectures.
Only [GVBP+22] reports formal verification of internal functional units, although no
actual prototype is developed yet.

Comparisons with hardware accelerators in other fields of research: Comparing
our hardware acceleration results with hardware acceleration results presented in other
fields of research will help us get a bigger picture. Hardware acceleration of AI is a very
popular research topic with many researchers involved. Acceleration of neural networks
on FPGA platforms show 15× to 150× speedups [ZSZ+17, LLS+20]. In general, ASIC

32 Medha: Microcoded Hardware Accelerator for Processing Encrypted Data

implementations show up to 10x performance improvements compared to FPGAs due to
higher clock frequency and additional customization. Intel’s latest AI chip [Gil19] obtains
up to 1,000× speed up compared to CPUs. Our Medha in FPGA shows 134× faster
latency than an Intel CPU running at 1.8 GHz. We anticipate that another 5× to 10×
speedup will be feasible if an ASIC-optimized instance of Medha is fabricated.

7 Conclusion

Despite being theoretically sound, HE suffers from performance issues due to its massive
computational costs. Hence, hardware accelerators are crucial for making HE fast and
practical. Also, providing support for multiple scheme parameters is another important
requirement for hardware accelerator as different applications demand different scheme
parameters. In this paper, we first propose a flexible design methodology for the polynomial
degree. It enables supporting multiple polynomial degrees using a fixed hardware archi-
tecture. Then, we propose Medha, a flexible and programmable accelerator architecture
that has been designed pragmatically to overcome the speed and flexibility limitations of
previous HE accelerators. Medha gains efficiency from its highly optimized polynomial
arithmetic blocks, parallel processing of instructions inside RPAU, parallel processing of
residue polynomials using many RPAUs, highly efficient ring-based interconnection of
RPAUs for data exchange, and customized on-chip memory unit. The memory-conservative
design approach used to build Medha made it possible for the first time to compute key-
switching without requiring any off-chip communication even for large HE parameters.
Medha also utilizes the proposed flexible design methodology for the polynomial degree
and it supports polynomial degrees 214 and 215 with coefficient modulus up to 546 bits.
Medha presents the first FPGA-based hardware accelerator for the RNS-HEAAN scheme
with the polynomial degree 215.

Medha was implemented in the Xilinx Alveo U250 card and accurate performance
results were obtained for two large parameter sets. Compared to the highly-optimized
SEAL [SEA20] library, our Medha achieved up to 68× and 78× speedup on an Intel
i5 CPU for the parameters (log Q, N) = (438, 214) and (546, 215), respectively. Medha
achieved almost 2.37× latency improvement compared to the block-pipelined and specific
hardware accelerator HEAX [RLPD20] for the parameter (log Q, N) = (438, 214). The
speed improvement shows that hardware accelerators for HE can attain high performance
without losing programmability or flexibility.

Acknowledgement

This work was supported in part by the Samsung Electronics co. ltd. and by the State
Government of Styria, Austria – Department Zukunftsfonds Steiermark. We thank the
anonymous reviewers for their useful suggestions and comments. We also thank Patrick
Schaumont for shepherding the paper.

References

[AFG+10] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D Joseph, Randy
Katz, Andy Konwinski, Gunho Lee, David Patterson, Ariel Rabkin, Ion Stoica,
et al. A view of cloud computing. Communications of the ACM, 53(4):50–58,
2010.

Mert, Aikata, Kwon, Shin, Yoo, Lee, Sinha Roy 33

[Ama17] Amazon. Amazon EC2 F1 Instances, Customizable FPGAs for Hardware
Acceleration Are Now Generally Available, 2017. https://tinyurl.com/
3tdf25hd.

[BCIV17] Joppe W. Bos, Wouter Castryck, Ilia Iliashenko, and Frederik Vercauteren.
Privacy-friendly forecasting for the smart grid using homomorphic encryption
and the group method of data handling. In Marc Joye and Abderrahmane
Nitaj, editors, Progress in Cryptology - AFRICACRYPT 2017, Dakar, Senegal,
May 24-26, 2017, Proceedings, volume 10239 of Lecture Notes in Computer
Science, pages 184–201, 2017.

[BCL+20] Ahmad Al Badawi, Jin Chao, Jie Lin, Chan Fook Mun, Jun Jie Sim, Benjamin
Hong Meng Tan, Xiao Nan, Khin Mi Mi Aung, and Vijay Ramaseshan
Chandrasekhar. Towards the alexnet moment for homomorphic encryption:
Hcnn, thefirst homomorphic cnn on encrypted data with gpus, 2020.

[BGV11] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. Fully homo-
morphic encryption without bootstrapping. Electron. Colloquium Comput.
Complex., page 111, 2011.

[BHM+20] Ahmad Al Badawi, Louie Hoang, Chan Fook Mun, Kim Laine, and Khin
Mi Mi Aung. Privft: Private and fast text classification with homomorphic
encryption. IEEE Access, 8:226544–226556, 2020.

[Bou20] Charles Bouillaguet. Trivium. https://github.com/cbouilla/trivium,
December 2020.

[BPA+18] Ahmad Al Badawi, Yuriy Polyakov, Khin Mi Mi Aung, Bharadwaj Veeravalli,
and Kurt Rohloff. Implementation and performance evaluation of rns variants
of the bfv homomorphic encryption scheme. Cryptology ePrint Archive,
Report 2018/589, 2018. https://eprint.iacr.org/2018/589.

[BVMA18] Ahmad Al Badawi, Bharadwaj Veeravalli, Chan Fook Mun, and Khin Mi Mi
Aung. High-performance fv somewhat homomorphic encryption on gpus: An
implementation using cuda. IACR Transactions on Cryptographic Hardware
and Embedded Systems, 2018(2):70–95, May 2018.

[CGGI20] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène.
Tfhe: fast fully homomorphic encryption over the torus. Journal of Cryptology,
33(1):34–91, 2020.

[CHK+18] Jung Hee Cheon, Kyoohyung Han, Andrey Kim, Miran Kim, and Yongsoo
Song. A full RNS variant of approximate homomorphic encryption. In Carlos
Cid and Michael J. Jacobson Jr., editors, Selected Areas in Cryptography -
SAC 2018 - 25th International Conference, Calgary, AB, Canada, August 15-
17, 2018, Revised Selected Papers, volume 11349 of Lecture Notes in Computer
Science, pages 347–368. Springer, 2018.

[CKKS17] Jung Hee Cheon, Andrey Kim, Miran Kim, and Yong Soo Song. Homomorphic
encryption for arithmetic of approximate numbers. In Tsuyoshi Takagi and
Thomas Peyrin, editors, Advances in Cryptology - ASIACRYPT 2017 - 23rd
International Conference on the Theory and Applications of Cryptology and
Information Security, Hong Kong, China, December 3-7, 2017, Proceedings,
Part I, volume 10624 of Lecture Notes in Computer Science, pages 409–437.
Springer, 2017.

https://tinyurl.com/3tdf25hd
https://tinyurl.com/3tdf25hd
https://github.com/cbouilla/trivium
https://eprint.iacr.org/2018/589

34 Medha: Microcoded Hardware Accelerator for Processing Encrypted Data

[DGH+21] Christoph Dobraunig, Lorenzo Grassi, Lukas Helminger, Christian Rech-
berger, Markus Schofnegger, and Roman Walch. Pasta: A case for hybrid
homomorphic encryption. Cryptology ePrint Archive, Paper 2021/731, 2021.
https://eprint.iacr.org/2021/731.

[DKRV19] Jan-Pieter D’Anvers, Angshuman Karmakar, Sujoy Sinha Roy, and Frederik
Vercauteren. SABER. Proposal to NIST PQC Standardization, Round2,
2019. https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/
round-2-submissions.

[DS15] Wei Dai and Berk Sunar. cuhe: A homomorphic encryption accelerator library.
In International Conference on Cryptography and Information Security in the
Balkans, pages 169–186. Springer, 2015.

[DSC+19] Roshan Dathathri, Olli Saarikivi, Hao Chen, Kim Laine, Kristin E. Lauter,
Saeed Maleki, Madanlal Musuvathi, and Todd Mytkowicz. CHET: an optimiz-
ing compiler for fully-homomorphic neural-network inferencing. In Kathryn S.
McKinley and Kathleen Fisher, editors, Proceedings of the 40th ACM SIG-
PLAN Conference on Programming Language Design and Implementation,
PLDI 2019, Phoenix, AZ, USA, June 22-26, 2019, pages 142–156. ACM,
2019.

[FSK+21] Axel Feldmann, Nikola Samardzic, Aleksandar Krastev, Srini Devadas, Ron
Dreslinski, Karim Eldefrawy, Nicholas Genise, Christopher Peikert, and Daniel
Sanchez. F1: A fast and programmable accelerator for fully homomorphic
encryption (extended version), 2021.

[FV12] Junfeng Fan and Frederik Vercauteren. Somewhat practical fully homomorphic
encryption. IACR Cryptol. ePrint Arch., page 144, 2012.

[Gen09] Craig Gentry. A Fully Homomorphic Encryption Scheme. PhD thesis, Stan-
ford, CA, USA, 2009.

[GFS+12] Norman Göttert, Thomas Feller, Michael Schneider, Johannes Buchmann,
and Sorin Huss. On the design of hardware building blocks for modern
lattice-based encryption schemes. In Proceedings of the 14th International
Conference on Cryptographic Hardware and Embedded Systems, CHES’12,
page 512–529, Berlin, Heidelberg, 2012. Springer-Verlag.

[GH11] Craig Gentry and Shai Halevi. Implementing gentry’s fully-homomorphic
encryption scheme. In Kenneth G. Paterson, editor, Advances in Cryptology –
EUROCRYPT 2011, pages 129–148, Berlin, Heidelberg, 2011. Springer Berlin
Heidelberg.

[Gil19] Martin Giles. Intel’s new AI chips can crunch data 1,000 times faster than
normal ones, 2019. https://t.ly/zYF_.

[GVBP+22] Robin Geelen, Michiel Van Beirendonck, Hilder V. L. Pereira, Brian Huffman,
Tynan McAuley, Ben Selfridge, Daniel Wagner, Georgios Dimou, Ingrid
Verbauwhede, Frederik Vercauteren, and David W. Archer. Basalisc: Flexible
asynchronous hardware accelerator for fully homomorphic encryption, 2022.

[JKA+21] Wonkyung Jung, Sangpyo Kim, Jung Ho Ahn, Jung Hee Cheon, and Younho
Lee. Over 100x faster bootstrapping in fully homomorphic encryption through
memory-centric optimization with gpus. IACR Transactions on Cryptographic
Hardware and Embedded Systems, 2021(4):114–148, Aug. 2021.

https://eprint.iacr.org/2021/731
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/round-2-submissions
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/round-2-submissions
https://t.ly/zYF_

Mert, Aikata, Kwon, Shin, Yoo, Lee, Sinha Roy 35

[KKK+22] Sangpyo Kim, Jongmin Kim, Michael Jaemin Kim, Wonkyung Jung, John
Kim, Minsoo Rhu, and Jung Ho Ahn. Bts: An accelerator for bootstrappable
fully homomorphic encryption. In Proceedings of the 49th Annual International
Symposium on Computer Architecture, ISCA ’22, page 711–725, New York,
NY, USA, 2022. Association for Computing Machinery.

[KLK+22] Jongmin Kim, Gwangho Lee, Sangpyo Kim, Gina Sohn, John Kim, Minsoo
Rhu, and Jung Ho Ahn. Ark: Fully homomorphic encryption accelerator with
runtime data generation and inter-operation key reuse, 2022.

[KR20] Shabnam Khanna and Ciara Rafferty. Accelerating homomorphic encryption
using approximate computing techniques. In Pierangela Samarati, Sabrina
De Capitani di Vimercati, Mohammad S. Obaidat, and Jalel Ben-Othman,
editors, Proceedings of the 17th International Joint Conference on e-Business
and Telecommunications, ICETE 2020 - Volume 2: SECRYPT, Lieusaint,
Paris, France, July 8-10, 2020, pages 380–387. ScitePress, 2020.

[KSK+18] Andrey Kim, Yongsoo Song, Miran Kim, Keewoo Lee, and Jung Hee Cheon.
Logistic regression model training based on the approximate homomorphic
encryption. IACR Cryptol. ePrint Arch., page 254, 2018.

[LLS+20] Shuai Li, Yukui Luo, Kuangyuan Sun, Nandakishor Yadav, and Kyuwon Ken
Choi. A novel fpga accelerator design for real-time and ultra-low power deep
convolutional neural networks compared with titan x gpu. IEEE Access,
8:105455–105471, 2020.

[MOS20] Ahmet Can Mert, Erdinç Ozturk, and Erkay Savaş. Design and implementa-
tion of encryption/decryption architectures for bfv homomorphic encryption
scheme. IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
28(2):353–362, 2020.

[MUS] MUSE Semiconductor. TSMC MPW Full Block Tapeouts. https://www.
musesemi.com/full-block-tapeout-pricing. Accessed July 5th 2022.

[NSA+22] Mohammed Nabeel, Deepraj Soni, Mohammed Ashraf, Mizan Abraha Ge-
bremichael, Homer Gamil, Eduardo Chielle, Ramesh Karri, Mihai Sanduleanu,
and Michail Maniatakos. Cofhee: A co-processor for fully homomorphic
encryption execution, 2022.

[ÖEM+22] Özgün Özerk, Can Elgezen, Ahmet Can Mert, Erdinç Öztürk, and Erkay Savaş.
Efficient number theoretic transform implementation on gpu for homomorphic
encryption. The Journal of Supercomputing, 78(2):2840–2872, 2022.

[POG15] Thomas Pöppelmann, Tobias Oder, and Tim Güneysu. High-performance ideal
lattice-based cryptography on 8-bit atxmega microcontrollers. In International
Conference on Cryptology and Information Security in Latin America, pages
346–365. Springer, 2015.

[PRR17] Yuriy Polyakov, Kurt Rohloff, and Gerard W Ryan. Palisade lattice cryp-
tography library user manual. Cybersecurity Research Center, New Jersey
Institute ofTechnology (NJIT), Tech. Rep, 15, 2017.

[RAD78] R L Rivest, L Adleman, and M L Dertouzos. On data banks and privacy
homomorphisms. Foundations of Secure Computation, Academia Press, pages
169–179, 1978.

https://www.musesemi.com/full-block-tapeout-pricing
https://www.musesemi.com/full-block-tapeout-pricing

36 Medha: Microcoded Hardware Accelerator for Processing Encrypted Data

[RCK+20] Brandon Reagen, Wooseok Choi, Yeongil Ko, Vincent Lee, Gu-Yeon Wei,
Hsien-Hsin S. Lee, and David Brooks. Cheetah: Optimizing and accelerating
homomorphic encryption for private inference, 2020.

[RJV+15] S. Sinha Roy, K. Järvinen, F. Vercauteren, V. Dimitrov, and I. Verbauwhede.
Modular hardware architecture for somewhat homomorphic function evalua-
tion. In Cryptographic Hardware and Embedded Systems - CHES, 2015.

[RJV+18] S. Sinha Roy, K. Järvinen, J. Vliegen, F. Vercauteren, and I. Verbauwhede.
HEPCloud: An FPGA-based multicore processor for FV somewhat homomor-
phic function evaluation. IEEE Transactions on Computers, 2018.

[RLPD20] M. Sadegh Riazi, Kim Laine, Blake Pelton, and Wei Dai. HEAX: an architec-
ture for computing on encrypted data. In James R. Larus, Luis Ceze, and
Karin Strauss, editors, ASPLOS ’20: Architectural Support for Programming
Languages and Operating Systems, Lausanne, Switzerland, March 16-20, 2020,
pages 1295–1309. ACM, 2020.

[RNH19] Dayane Reis, Michael T. Niemier, and Xiaobo Sharon Hu. A computing-in-
memory engine for searching on homomorphically encrypted data. IEEE Jour-
nal on Exploratory Solid-State Computational Devices and Circuits, 5(2):123–
131, 2019.

[RTJ+20] Dayane Reis, Jonathan Takeshita, Taeho Jung, Michael Niemier, and Xi-
aobo Sharon Hu. Computing-in-memory for performance and energy-efficient
homomorphic encryption. IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, 28(11):2300–2313, Nov 2020.

[S2C20] S2C FPGA Prototyping Solutions. Prodigy S7-19PQ Logic System,
2020. https://www.s2ceda.com/Public/Uploads/ueditor/upload/file/
20210607/1623038280575807.pdf. Accessed July 2022.

[Sco17] Michael Scott. A note on the implementation of the number theoretic trans-
form. In Cryptography and Coding - 16th IMA International Conference,
IMACC 2017, Oxford, UK, December 12-14, 2017, Proceedings, pages 247–258.
Springer, 2017.

[SEA20] Microsoft SEAL (release 3.6). https://github.com/Microsoft/SEAL,
November 2020. Microsoft Research, Redmond, WA.

[SFK+22] Nikola Samardzic, Axel Feldmann, Aleksandar Krastev, Nathan Manohar,
Nicholas Genise, Srinivas Devadas, Karim Eldefrawy, Chris Peikert, and
Daniel Sanchez. Craterlake: A hardware accelerator for efficient unbounded
computation on encrypted data. In Proceedings of the 49th Annual Interna-
tional Symposium on Computer Architecture, ISCA ’22, page 173–187, New
York, NY, USA, 2022. Association for Computing Machinery.

[SRTJ+19] Sujoy Sinha Roy, Furkan Turan, Kimmo Jarvinen, Frederik Vercauteren, and
Ingrid Verbauwhede. Fpga-based high-performance parallel architecture for
homomorphic computing on encrypted data. In 2019 IEEE International
Symposium on High Performance Computer Architecture (HPCA), pages
387–398, 2019.

[SRVM+14] Sujoy Sinha Roy, Frederik Vercauteren, Nele Mentens, Donald Donglong
Chen, and Ingrid Verbauwhede. Compact ring-lwe cryptoprocessor. In
Lejla Batina and Matthew Robshaw, editors, Cryptographic Hardware and
Embedded Systems – CHES 2014, pages 371–391, Berlin, Heidelberg, 2014.
Springer Berlin Heidelberg.

https://www.s2ceda.com/Public/Uploads/ueditor/upload/file/20210607/1623038280575807.pdf
https://www.s2ceda.com/Public/Uploads/ueditor/upload/file/20210607/1623038280575807.pdf
https://github.com/Microsoft/SEAL

Mert, Aikata, Kwon, Shin, Yoo, Lee, Sinha Roy 37

[SYYZ22] Yang Su, Bai-Long Yang, Chen Yang, and Song-Yin Zhao. Remca: A
reconfigurable multi-core architecture for full rns variant of bfv homomorphic
evaluation. IEEE Transactions on Circuits and Systems I: Regular Papers,
69(7):2857–2870, 2022.

[TRG+20] Jonathan Takeshita, Dayane Reis, Ting Gong, Michael Niemier, X. Sharon Hu,
and Taeho Jung. Algorithmic acceleration of b/fv-like somewhat homomorphic
encryption for compute-enabled ram. Cryptology ePrint Archive, Report
2020/1223, 2020. https://ia.cr/2020/1223.

[TRV20] Furkan Turan, Sujoy Sinha Roy, and Ingrid Verbauwhede. Heaws: An
accelerator for homomorphic encryption on the amazon aws fpga. IEEE
Transactions on Computers, 69(8):1185–1196, 2020.

[WH13] Wei Wang and Xinming Huang. Fpga implementation of a large-number
multiplier for fully homomorphic encryption. In 2013 IEEE International
Symposium on Circuits and Systems (ISCAS), pages 2589–2592, 2013.

[WHEW14] Wei Wang, Xinming Huang, Niall Emmart, and Charles Weems. Vlsi design
of a large-number multiplier for fully homomorphic encryption. IEEE Trans-
actions on Very Large Scale Integration (VLSI) Systems, 22(9):1879–1887,
2014.

[Xila] Xilinx. Alveo U200 and U250 Data Center Accelerator Cards Data
Sheet. https://www.xilinx.com/support/documentation/data_sheets/
ds962-u200-u250.pdf.

[Xilb] Xilinx. Large FPGA Methodology Guide (UG872). https:
//www.xilinx.com/support/documentation/sw_manuals/xilinx14_
7/ug872_largefpga.pdf.

[Xilc] Xilinx. Xilinx DMA IP Reference Drivers. https://github.com/Xilinx/
dma_ip_drivers.

[XZH21] Guozhu Xin, Yifan Zhao, and Jun Han. A multi-layer parallel hardware
architecture for homomorphic computation in machine learning. In 2021
IEEE International Symposium on Circuits and Systems (ISCAS), pages 1–5,
2021.

[ZIQ+21] Yujia Zhai, Mohannad Ibrahim, Yiqin Qiu, Fabian Boemer, Zizhong Chen,
Alexey Titov, and Alexander Lyashevsky. Accelerating encrypted computing
on intel gpus. arXiv preprint arXiv:2109.14704, 2021.

[ZSZ+17] Ritchie Zhao, Weinan Song, Wentao Zhang, Tianwei Xing, Jeng-Hau Lin,
Mani Srivastava, Rajesh Gupta, and Zhiru Zhang. Accelerating binarized con-
volutional neural networks with software-programmable fpgas. In Proceedings
of the 2017 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays, FPGA ’17, page 15–24, New York, NY, USA, 2017. Association
for Computing Machinery.

[ZYC+20] Neng Zhang, Bohan Yang, Chen Chen, Shouyi Yin, Shaojun Wei, and Leibo
Liu. Highly efficient architecture of newhope-nist on fpga using low-complexity
ntt/intt. IACR Transactions on Cryptographic Hardware and Embedded
Systems, 2020(2):49–72, Mar. 2020.

https://ia.cr/2020/1223
https://www.xilinx.com/support/documentation/data_sheets/ds962-u200-u250.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds962-u200-u250.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx14_7/ug872_largefpga.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx14_7/ug872_largefpga.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx14_7/ug872_largefpga.pdf
https://github.com/Xilinx/dma_ip_drivers
https://github.com/Xilinx/dma_ip_drivers

38 Medha: Microcoded Hardware Accelerator for Processing Encrypted Data

A Modular Arithmetic Architectures
For implementing modular arithmetic, we use hardware-friendly algorithms and optimiza-
tions so that we can optimize these fundamental arithmetic blocks for both area and speed.
Modular addition and subtraction are the simplest blocks and they are implemented using
adder and subtractor circuits made of configurable fabric logic, i.e., LUTs.

For implementing modular multiplication, we use the DSP units available in FPGAs so
that the highest throughput can be achieved. We used several layers of pipeline registers to
meet high clock-frequency constraints. One integer multiplier (60-bit or 54-bit) consumes 10
DSP slices. The most commonly used methods for performing modular reduction are based
on the Barrett or Montgomery methods. The SEAL library [SEA20] and the hardware
architecture of the HEAX processor [RLPD20] use the Barrett reduction technique for
reducing the results of integer multiplications. Both Barrett and Montgomery methods
are based on multiplications. Another method for implementing the modular reduction
operation is using a table-based modular reduction approach as proposed in [RJV+18]. In
this method, the result of a multiplication is reduced in multiple steps where each step
reduces a part near the most significant bit using a pre-computed look-up table. Although
this method does not use any multipliers, it increases LUT utilization on FPGA and does
not provide an optimal solution when the modulus is constant.

When the modulus is selected as a sparse prime, the reduction operation can be
performed efficiently using only add and shift operations as proposed in [ZYC+20]. In this
work, we use reduction-friendly pseudo-Mersenne primes and employ the fast add-shift-
based modular reduction method to save both DSPs and LUTs [ZYC+20]. For example, the
first modulus in the RNS-basis (q0) is a 60-bit sparse prime 259 +225 +222−220 +1 and the
result of a multiplication (120 bit) is reduced using the relation 259 ≡ −225 − 222 + 220 − 1
(mod q0) recursively. This approach saves up to 45% LUT units compared to the table-
based modular reduction method.

B NTT Algorithm

Algorithm 10 Decimation-in-time (DIT) Forward NTT
In: a ∈ RQ,N and ψ ∈ Zq (2N -th root of unity)
Out: ã = NTT(a) ∈ RQ,N

1: ã← BitReverse(a) ▷ Permutation of coefficients
2: for m = 2 to N by m = 2m do
3: w ← 1, ψm ← ψN/m

4: for j = 0 to m/2− 1 do ▷ Butterfly loop
5: for k = 0 to N − 1 by m do
6: u← ã[k + j], t← ã[k + j +m/2]
7: ã[k + j]← u+ w · t
8: ã[k + j +m/2]← u− w · t
9: end for

10: w ← w · ψm

11: end for
12: end for

	Introduction
	Related hardware acceleration works and motivation
	Contributions

	Background
	Notation
	Homomorphic Encryption
	Residue Number System (RNS)
	RNS-HEAAN
	Number Theoretic Transform (NTT)

	Flexible Design Methodology
	Homomorphic Encryption Applications Require Flexibility
	Design Methodology for Flexibility in Polynomial Degree
	RNS-HEAAN Subroutines with Flexible Method

	Architecture of Medha
	Parameter Selection
	Low-level Arithmetic Units
	Architecture of the Homomorphic Processor

	Results
	Timing Results
	Resource Utilization Results
	Comparison with Related Works

	Discussions
	Conclusion
	Modular Arithmetic Architectures
	NTT Algorithm

