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Abstract. Privacy preservation is a sensitive issue in our modern society. It is
becoming increasingly important in many applications in this ever-growing and highly
connected digital era. Functional encryption is a computation on encrypted data
paradigm that allows users to retrieve the evaluation of a function on encrypted
data without revealing the data, thus effectively protecting users’ privacy. However,
existing functional encryption implementations are still very time-consuming for
practical deployment, especially when applied to machine learning applications
that involve huge amount of data. In this paper, we present a high performance
implementation of inner-product functional encryption (IPFE) based on ring-learning
with errors on graphics processing units. We propose novel techniques to parallelize
the Gaussian sampling, which is one of the most time-consuming operations in the
IPFE scheme. We further execute a systematic investigation to select the best strategy
for implementing number theoretic transform and inverse number theoretic transform
for different security levels. Compared to the existing AVX2 implementation of IPFE,
our implementation on a RTX 2060 GPU device can achieve 34.24×, 40.02×, 156.30×
and 18.76× speed-up for Setup, Encrypt, KeyGen and Decrypt respectively. Finally,
we propose a fast privacy-preserving Support Vector Machine (SVM) application to
classify data securely using our GPU-accelerated IPFE scheme. Experimental results
show that our implementation can classify 100 inputs with 591 support vectors in 688
ms (less than a second), which is 33.12× faster than the AVX2 version that takes 23
seconds.
Keywords: Inner-product functional encryption · Ring-learning with errors · Graph-
ics processing units · Support vector machines · privacy-preserving

1 Introduction
Rapid research and development in the fields of the internet of things (IoT) and web
technologies have helped them to penetrate almost every facets of our society. This has
made our current society producer and consumer of massive amounts of data which is
unprecedented in history. This massive flow of data has ushered us into a data driven
society where there is a palpable link between the data and real-world activities. Advances
in data analysis and computing power have enabled us to observe, reason, and act on the
data in a far better way for the overall betterment of the society. Some examples are the
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protection and efficient usage of our natural resources, better allocation of public funds
for greater reach and minimizing loss, advancing drug discovery and medical research, etc.
However, like any other breakthrough in science and technology, the advances in data
analysis technologies can be also used in many insidious applications. Unfortunately, it is
not very uncommon to see these technologies being used for aggressive guerilla marketing,
interference in general elections, beguiling vulnerable sections of the society, etc. Therefore,
it is a general consensus among public lawmakers, philanthropists, and many industry
leaders that ethical and responsible use of data is an absolute necessity and measures
should be put into place to enforce this. Many governing bodies have introduced laws for
this purpose such as the European Union’s General Data Protection Regulation, South
Korea’s Personal Information Protection Act, etc. However, these laws are often limited
by their respective jurisdiction and do not provide an universal solution. Also they often
falls short to meet their objectives against rogue and powerful entities. Computation on
Encrypted Data (COED) is an umbrella term that comprises of three technologies, ho-
momorphic encryption (HE) [Gen09], multi-party computation (MPC) [CCD88, BGW88],
and functional encryption (FE) [BSW11, O’N10]. These techniques allow a user compute
on encrypted data. Thus these technologies offer a universal and provable solution for
maintaining privacy and integrity of their data while allowing essential and intended opera-
tions to run on them. Among these three technologies, FE is the newest and relatively less
studied. Unlike the other two COED techniques which can theoretically compute arbitrary
functions, FE schemes are designed for some specific functions. This makes it less generic
than MPC or HE techniques but due to the application specific design, FE schemes are
more efficient. Briefly, in an FE scheme, a user can encrypt the data using a public key
and decryption returns the function calculated on the input plaintext. This allows the
user to share their data in encrypted form and allow the third party (e.g., cloud server) to
retrieve a function of it without revealing the original data.

Inner-product functional encryption (IPFE) [ABCP15] is one of the FE constructions
that support the computation of inner-product between two vectors. Similar to the MPC
and HE techniques, FE or IPFE techniques are also computationally demanding and
improving the efficiency of IPFE schemes is still an open problem to be solved. A recent
work [MKMS22] has tried to address this issue by designing an IPFE scheme based on
Ring-Learning with Errors (RLWE) [LPR10]. The main advantage here is the relatively
shorter keys and possibility of using faster number theoretic transform (NTT) [Pol71] based
polynomial multiplications. This is more efficient compared to the LWE [Reg04] based
constructions [ABCP15, ALS16] with larger keys and slower matrix vector multiplications.
This work is also first to provide concrete instantiations of their scheme with different
levels of security. In their implementation, for the medium security level, the IPFE decrypt
function takes 17ms, which seems to be reasonably fast. However, as an example a machine
learning classification task can easily take up to hundreds of decryptions which is not very
efficient for practical deployment. We deliberate on this further in Sec. 4.1.

Our fundamental motivation behind this work was to investigate efficient alternatives to
mainstream privacy-preserving COED techniques such as FE and HE. We found that the
RLWE-IPFE [MKMS22] scheme suits for the greatest part of our purpose. In this paper,
we present cuFE, the first parallel implementation of the above mentioned RLWE-IPFE
scheme on a graphics processing unit (GPU). We exploit the different levels of parallelism
in the RLWE-IPFE scheme for efficient implementation on massively parallel platforms
like GPU. We show that the performance of FE can be accelerated significantly to bring
it within the realm of practicality. This highly optimized implementation can be used
to offload IPFE decryption to a cloud server, enabling high performance and privacy
preserving machine learning applications. Since GPUs are widely adopted in many cloud
computing services (e.g., Amazon Web Services (AWS) [AWS] and IBM cloud [IBM]), our
proposed solution can be widely adopted by many applications. Further, cuFE also allows
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the GPU-accelerated IPFE encryption to be performed on the user side, which is useful to
the machine learning applications that frequently update their data.

The contributions of this paper are summarized briefly below:

1. We analyze the performance bottlenecks and identify the opportunities in parallelizing
various computational components. We explore different parallelization techniques
(coarse-grain and fine-grain) to speed up the RLWE-IPFE scheme [MKMS22]. We
are the first to show how these computational components can be efficiently mapped
to different independent computing units in a parallel computing platform, which in
our case is a GPU.

2. We describe techniques to effectively parallelize the Gaussian sampling process in
a massively parallel architecture like GPU. This is also the first Gaussian sampler
implemented on a GPU that achieves a very high sampling throughput. On a
RTX2060 GPU, our GPU-accelerated Gaussian sampler can generate 131.26× 106

samples per second, which is 4.29× faster than the AVX2 implementation. This high
performance Gaussian sampler is used to speed-up one of the most time-consuming
operations in the RLWE-IPFE [MKMS22] scheme. To the best of our knowledge,
this is first such parallel implementation constant-time discrete Gaussian sampling.
This can be of independent interest for other lattice-based cryptographic schemes
that requires a discrete Gaussian sampler such as lattice-based signatures [DDLL13,
FHK+20].

3. Number theoretic transform (NTT) is another computation intensive operation in
the RLWE-IPFE [MKMS22]. Recently, Lee et al. [LH21] demonstrated an efficient
technique to compute parallel NTT by combining the first two levels. However, their
technique employed a static indexing pattern, which cannot be extended to cover
more NTT levels. In this paper, we propose a novel dynamic indexing pattern to
allow the level combination to be done on more levels. On a RTX2060 GPU, our
GPU-accelerated NTT with length n = 4096 can calculate 73590 NTTs per second,
which is 1.39× faster than the technique proposed by Lee et al. [LH21]

4. We propose a privacy-preserving SVM classification technique using RLWE-IPFE
scheme as a suitable use case to validate the performance of the proposed cuFE.
We further discuss different approaches to perform the SVM classification protected
by the RLWE-IPFE scheme to extract maximum efficiency. The advanced vector
extensions (AVX2) optimized version of the RLWE-IPFE [MKMS22] takes 23s to
classify 100 data with 591 support vectors on a CPU. With cuFE, we only need
0.7s to complete the same classification task, which shows a 33× speed-up. Our
proposed GPU-accelerated solution opens up the possibilities to employ RLWE-
IPFE [MKMS22] on other more complicated machine learning techniques, which
is arguably too slow to be practical when executed on a CPU. For instance, the
convolution operations on convolutional neural network (CNN) can be performed
through a series of inner-product. This allows cuFE to be used in protecting the
privacy of CNN computation with practical performance.

Our implementation is available in the public domain: https://anonymous.4open.science/
r/cuFE-A8BB

2 Background
2.1 General Purpose GPU
GPU is a very well known parallel platform to speed up computations. It was initially
developed for graphics applications, but later on expanded to other applications, known
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as general purpose GPU (GPGPU). This is possible due to the availability of software
development kit (SDK), such as CUDA [NVI22] and OpenCL [ope]. GPUs are very
popular platform in fields like artificial intelligence and machine learning to speed up their
respective protocols. Usage of GPUs in cryptography is not new or uncommon (albeit
less popular). Some examples are cryptanalysis [BG12, LS19, DSvW21], speeding up
cryptographic algorithms [JKA+21, ABVMA18, LH21, Tez21], crypto-currency mining,
etc. We have provided a brief overview of the GPU architecture and programming model
below.

3 Overview of GPU Architecture

Figure 1: Overview of the SM architecture in a GPU

GPU is a massively parallel architecture, consists of hundreds to thousands of cores.
Unlike the CPU core, GPU cores do not have complicated hardware to handle branch
operations. However, a GPU consists of many independent cores; they are grouped into a
larger unit called Streaming Multiprocessor (SM), which is illustrated in Figure 1. For
instance, the RTX2060 is a GPU with Turing architecture that comes with 34 SMs, each
SM consists of 64 cores. This massively parallel architecture allows GPU to be used for
accelerating many computationally expensive algorithms. CUDA is the SDK released by
NVIDIA to ease the programming of GPU for general purpose computing. Under the
CUDA programming model, multiple threads are organized as a block, and multiple blocks
form a grid. Referring to Figure 1, each thread and block can be indexed individually using
the built-in variables (threadIdx and blockIdx). To allow efficient instruction scheduling,
32 threads are grouped into one warps, in which all threads within the warp execute the
same instructions.

Besides the parallel processor architecture, GPUs also has a deep memory structure
which is different from the CPU. The fastest memory in the GPU is the register, followed
by shared memory and global memory (DRAM). Registers are very fast but small in size
(e.g., 64K words per SM for the RTX2060). Shared memory is a user-managed cache with
configurable sizes, ranging from 48K–128K words. On the other hand, global memory is
large (several gigabytes) but very slow compared to registers and shared memory. When
we use the GPU, data is usually transferred to the global memory first. GPU processes
these data by moving them to the registers or shared memory whenever necessary. Many
GPU implementation techniques center around the intelligent use of memory to achieve
high throughput.

4 GPU Programming Model
There are two common strategies to map the computation of an algorithm to the GPU,
based on different types of parallelism. Fine-grain parallelism refers to the inner parallelism
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Figure 2: Warp divergence issue in the GPU.

that can be found in an algorithm. For instance, matrix-vector multiplication exhibits rich
inner parallelism, which can be easily parallelized by multiple threads in a GPU. On the
other hand, coarse-grain parallelism, also known as data-level parallelism, refers to the case
where each parallel thread computes one instance of the target algorithm on different input
data, in a serial manner. For example, one can instantiate multiple threads on a GPU,
wherein each thread computes one AES encryption in serial. Fine-grain parallelism relies on
the amount of parallelizable computations within an algorithm in order to achieve a short
latency. However, some algorithms may not have sufficient parallelizable computations to
fully exploit the GPU resources. Coarse-grain parallelism can be very useful in throughput
oriented applications, but it may create a very long latency if the target algorithm is very
complicated. Hence, a combination of fine-grain and coarse-grain parallelism could be
useful for certain applications to achieve a balanced latency and throughput performance.
A notable example can be found in [LH21], where the authors proposed to compute one
Kyber [BDK+18] key-encapsulation mechanism (KEM) per GPU block (fine-grain), and
utilize many parallel blocks (coarse-grain) to execute many different instantiations.

After deciding the strategy to map the computational tasks to a GPU, we need to
make sure that our implementation always allow all the threads from the same warp to
execute the same instruction. Note that the GPU schedules instructions in a lock-step
of 32 threads (one warp), so that all threads within the same warp can execute the same
instruction together. Failure to abide to this rule may cause the warp to re-schedule
different instructions within the same warp, which has a significant penalty. This warp
divergence issue is illustrated in Figure 2. The first if/else statement divides one warp
into two parts, wherein 16 threads execute instruction 1, and the other 16 threads execute
instruction 2. This causes each warp to issue two different instructions and complete them
in two cycles. Note that when the first 16 threads are executing instruction 1, another half
of the warp is actually idle. Since there are two diverged paths in this example, we name
it as 2-way warp divergence. An inefficient implementation may have more than 2-way
warp divergence, which can be a serious performance bottleneck. On the other hand, a
divergence free implementation (the second if/else loop on the right) allows the entire
warp to compute the same instruction in one clock cycle. This allows the GPU to schedule
all instructions in a highly efficient manner.

4.1 Overview of RLWE-IPFE
Functional encryption is a generalization of traditional public-key encryption, which goes
beyond the traditional all-or-nothing access to the data of public-key encryption. More
formally for a particular functionality f , an authorized user holding a secret-key skf , and
an encrypted message m, an FE scheme allows the authorized user to calculate f (m) by
applying the decryption operation of the FE using the key skf . An FE scheme has 4
operations namely Setup, KeyGen, Encrypt, and Decrypt. A Setup returns a public-key
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(pk) and a master secret-key msk for a given security level. The KeyGen function accepts
the msk and a function f and returns a secret-key skf associated with the function f . The
Encrypt function accepts the public-key pk and a message m and returns the ciphertext
ctm. Finally, the Decrypt function accepts skf and ctm and returns f (m). In practice, a
generic FE scheme is highly inefficient. Moreover, they are either secure against a bounded
number of collusions [GVW12, GKP+13] or dependent on strong primitives [GGH+13].
Therefore an alternate research direction has emerged to design FE schemes with specific
classes of functionalities which are efficient in practice. Among these functionalities
inner-product is one of the most popular subclasses of FE.

In IPFE, the message is a vector x ∈Ml, the secret-key sky of an user is associated
with another l-dimensional vector y. In IPFE scheme an user holding sky can compute
⟨x, y⟩ =

∑l
i=1 xi∗yi i.e. the inner-product without revealing x. IPFE has been instantiated

using different hard problems such as decisional Diffie-Hellman [ABCP15], decisional
Composite Reminder [ALS16], and Learning With Errors (LWE) [ABCP15, ALS16].
Except for the LWE based instantiations, the other IPFE constructions are vulnerable
to quantum attacks. For LWE-based IPFE schemes, the schemes are computationally
demanding with very large keys. Hence it was an open problem to design a quantum-secure
and efficient IPFE scheme. The RLWE-IPFE scheme proposed by Mera et al. [MKMS22]
is first such scheme which provides a solution to this problem. The authors have used
hard lattices problems on ideal lattices (RLWE) instead of standard lattices (LWE) as the
underlying hard problem. This has helped them to design a scheme with smaller key-sizes
and faster execution due to the use of NTT-based multiplication. To prove their claim, the
authors also provided concrete parameters for their scheme for different levels of security
as shown in Table. 1 and implementations. We briefly describe the single input FE scheme
from Mera et al. [MKMS22] below. For more detailed information we refer the interested
reader to the original paper [MKMS22].

4.1.1 Construction

We define the polynomial ring R = Z[x]/xn + 1 and the quotient ring Rq = R/qR =
Zq[x]/xn + 1. 1R is the identity element of this ring where the constant term is set to
1 and all other coefficients are set to 0. The RLWE-IPFE scheme allows encrypting
non-negative vectors. Further, the l-dimensional message x and the vector y are bounded
by Bx and By such that ||x||∞ ≤ Bx and ||y||∞ ≤ By. K is a constant set to be greater
than the maximum value of the inner-product i.e. K > lBxBy. Dσ is a discrete Gaussian
distribution with standard deviation σ and mean 0. When a variable v is sampled randomly
from a particular distribution χ we write a← χ. This notation is extended to polynomial or
vectors to denote that each vector elements or coefficients have been sampled independently
from a particular distribution. Also, [l] stands for the set {1, . . . , l}.

Setup

1. Sample a ∈ Rq uniformly at random
2. Sample (si, ei ← Dσ1) ∈ R for i ∈ {1, 2, · · · , l}
3. Compute pki = a · si + ei ∈ Rq for i ∈ {1, 2, · · · , l}
4. Set, msk = {si | i ∈ [ℓ]} and mpk =

(
a, {pki | i ∈ [l]}

)
Encrypt Given a message x = (x1, x2, · · · , xℓ) ∈ Zl and ||x||∞ ≤ Bx, the Encrypt is as
follows,

• Sample (r, f0 ← Dσ2) ∈ Rq

• Sample (fi ← Dσ3) ∈ Rq independently for all i ∈ {1, 2, · · · , l}
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• Calculate ct0 = a · r + f0, cti = pki · r + fi + ⌊q/K⌋xi · 1R for all i ∈ [l]
• Output ctx =

(
ct0 , {cti | i ∈ [l]}

)
as encryption of x.

KeyGen Given a vector y = (y1, y2, · · · , yl) ∈ Zl such that ||y||∞ ≤ By, The decryption-
key corresponding y is calculated as below.

sky =
l∑

i=1
yisi ∈ R

Decrypt To decrypt the ciphertext ctx =
(
ct0 , {cti | i ∈ [l]}

)
using the decryption key sk

and y we compute,

d =
( l∑

i=1
yicti

)
− ct0 · sky

This d will be very close to ⌊q/K⌋⟨x, y⟩1R with some noise. For properly chosen parameters
these noise can be eliminated and we can extract ⟨x, y⟩. This is discussed below.

Correctness

We can write the decryption value d as

d =
( l∑

i=1
yicti

)
− ct0 · sky =

l∑
i=1

(yieir + yifi − yisif0)︸ ︷︷ ︸
noise

+⌊q/K⌋ ⟨x, y⟩ 1R

To recover the inner-product, we need ||noise||∞ < ⌊q/2K⌋. We fix a security parameter
κ. With non-negligible probability we have, ||ei||∞, ||si||∞ ≤

√
κσ1, also ||r||∞, ||f0||∞ ≤√

κσ2 and ||fi||∞ ≤
√

κσ3. Therefore, we can bound the noise as,∣∣∣∣∣∣∣∣ ℓ∑
i=1

(yieir + yifi − yisif0)
∣∣∣∣∣∣∣∣

∞
≤ ℓ(2nκσ1σ2 +

√
κσ3)By

Hence, for correctness, we need to choose the parameters of the RLWE-IPFE scheme such
that l(2nκσ1σ2 +

√
κσ3)By < ⌊q/2K⌋. FE or specifically IPFE can have different variants

such as multi-client FE which is a stronger form of FE where there is multiple sources
of the data comes. And it is possible for each client to encrypt their data individually
without thrusting other clients [CSG+18]. Another example is decentralized multi-client
FE [ABKW19, CSG+18] which eliminates the need for a trusted authority who maintains
all the secret keys in the system in and generates the decryption keys.

We want to stress that, similar to the implementations of Mera et al. [MKMS22], we
have considered the single input FE scheme here to demonstrate our GPU implementation.
Nevertheless we strongly believe that our optimization techniques can be extended to other
variants of RLWE-IPFE trivially as the basic computational elements remain the same for
different variants of RLWE-IPFE. Henceforth, we use the term RLWE-IPFE for the IPFE
scheme by Mera et al. [MKMS22] only.

4.2 Related Work
FE can provide privacy preservation on artificial intelligence (AI) applications. For
example, Bahadori et al. [BJMS21] and Ligier et al. [LCFS17] presented two interesting
works that utilized FE for Quadratic Functions (FE-QF) and IPFE respectively, to protect
data classification on MNIST dataset. A similar work was also presented by Ryffel et
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Table 1: Parameter sets of RLWE-IPFE [MKMS22].
Security PQ FE Gaussian Ring CRT

level Security Bounds Parameters Parameters moduli

Low 76.3
Bx : 2
By : 2
l = 64

σ1 : 33
σ2 : 59473921
σ3 : 118947840

n : 2048
⌈log q⌉ : 66

q1 : 214 − 212 + 1
q2 : 223 − 217 + 1
q3 : 229 − 218 + 1

Medium 119.2
Bx : 4
By : 16
l = 785

σ1 : 225.14
σ2 : 258376412.19
σ3 : 516752822.39

n : 4096
⌈log q⌉ : 86

q1 : 224 − 214 + 1
q2 : 231 − 217 + 1
q3 : 231 − 224 + 1

High 246.2
Bx : 32
By : 32

l = 1024

σ1 : 2049
σ2 : 5371330561
σ3 : 10742661120

n : 8192
⌈log q⌉ : 101

q1 : 217 − 214 + 1
q2 : 220 − 214 + 1
q3 : 232 − 220 + 1
q4 : 232 − 230 + 1

al. [RPB+19], where FE was used to build a secure deep learning framework. Another recent
work from Mera et al. [MKMS22] also demonstrated the secure classification task using
logistic regression on MNIST dataset. Besides protecting the classical AI algorithms, IPFE
can also be used to safeguard more advanced AI algorithm like federated learning [YFX+21].
On the other hand, IPFE is also used to protect outsourced computations on encrypted
database against the untrusted cloud server [YSQW20]. Although IPFE is getting popular,
the performance presented in previous work is still not very impressive, due to the its
inherent heavy computations.

Number theoretic transform (NTT) is the most time-consuming operation in RLWE-
IPFE [MKMS22]. Accelerating the computation of NTT remains an active research area
that attracted a lot of attention over the past decade. Pöppelmann et al. [POG15] proposed
to combine the Cooley-Tukey (forward) [CT65] and the Gentleman-Sande (inverse) NTT
to remove the bit-reverse step. Mera et al. applied this strategy [POG15] into their
RLWE-IPFE [MKMS22] to achieve a better performance. The interest to utilize specialized
hardware to accelerate NTT is growing in recent years. For instance, Fritzmann et al. [FS19]
designed a hardware architecture with low-power consumption, which was experimentally
verified on an ASIC platform. Zhang et al. [ZYC+20] also presented an optimized NTT
implementation on an FPGA to support the Newhope key-encapsulation mechanism
(KEM). However, these techniques are specific to the specialized hardware platforms (ASIC
and FPGA), which are not commonly found in the cloud server environment.

GPUs are becoming the de facto accelerator in many cloud services like AWS [AWS]
and IBM [IBM]. Some previous research works were performed to investigate the efficient
ways to implement NTT on a GPU. Recently, Lee et al. [LH21] presented the NTT
implementation on GPUs for Kyber KEM [BDK+18]. They proposed to combine the first
two levels of NTT so that more computations can be performed on the registers, effectively
reducing the accesses to shared memory. However, each block in a GPU can only host
maximum 1024 threads, so the technique proposed by Lee et al. [LH21] is only suitable when
the polynomial length n ≤ 2048. Another recent work by Ozerk et al. [ÖEM+22] presented
a technique to compute NTT with n ≥ 2048 by computing multiple butterfly operations
per thread. This technique does not require synchronization across different blocks, but
it is not a fully parallel solution. Another interesting work by Jung et al. [JKA+21]
shows an optimized implementation of NTT for fully homomorphic encryption (FHE).
However, FHE employs NTT with very large polynomial length (n = 65536), which is
much larger than the target RLWE-IPFE (2048 ≤ n ≤ 8192). Note that the available
GPU optimization strategies are directly affected by the polynomial length. This implies
that the techniques proposed by Jung et al. [JKA+21] may not be directly applicable to
RLWE-IPFE.



KyungHyun Han, Wai-Kong Lee, Angshuman Karmakar, Jose Maria Bermudo Mera and
Seong Oun Hwang 9

Table 2: Computational breakdown of the RLWE-IPFE (medium security level) [MKMS22]
Gaussian Polynomial Scalar CRT Others

1

Sampling Multiplication Multiplication
Setup 28% 77% – – 5%

Encrypt 23% 73% – – 4%
KeyGen – – 98% 1% 1%
Decrypt – 6% 91% 2% 1%

1 Including random seeds, point-wise addition/subtraction and etc.

Algorithm 1: Pseudocode: Scalar multiplication in KeyGen and Decrypt.
Input: Vector x with length n, Matrix y with size l ×Nmod × n
Output: Vector z with length n

1 for i=0; i< l; i=i+1 do
2 for j=0; j< Nmod; j=j+1 do
3 for k=0; k< n; k=k+1 do
4 mac = x[j][i]× y[i][j][k];
5 z[j][k] = mac + z[j][k];

5 Proposed method
In this section, we first identify the main computational bottlenecks and the parts of of
RLWE-IPFE implementation which can be accelerated using parallelization. Then, we
describe our strategies to parallelize the RLWE-IPFE technique on GPU platforms.

5.1 Bottlenecks and Scopes for Parallelization
Table 2 shows the breakdown of the major computations in the reference implementation
of RLWE-IPFE [MKMS22], evaluated on an Intel i7-9700F processor. It can be seen that
polynomial multiplication using NTT is the most time-consuming operation, taking up
to 77% and 73% of the Setup and Encrypt time respectively. Gaussian sampling is the
next time-consuming operation, which is only used in Setup and Encrypt. The remaining
operations are relatively lightweight compared to Gaussian sampling and polynomial
multiplication. Note that in the KeyGen and Decrypt process, majority of time is spent in
computing scalar multiplication, which can be easily parallelized on a GPU. However, the
Gaussian sampling and NTT requires significant effort to fully harnessing the massively
parallel GPU architecture.

Algorithm 1 shows the scalar multiplication found in KeyGen and Decrypt functions.
The inputs are a vector with length n and a matrix with size l × Nmod × n. Scalar
multiplication is performed between a point from the vector x and a vector extracted from
matrix y, and the results are added with the previous results from vector z (lines 3 – 5).
Since there are Nmod CRT channels, scalar multiplication is performed Nmod times (line 2).
This process is repeated for l times (line 1). Althogh the scalar multiplications is highly
parallelizable, a naive implementation on a GPU may lead to sub-optimal performance.
For instance, one can instantiate l blocks and m threads, where each thread is assigned to
compute the j and k loops (lines 2 – 5). This approach is easy to implement, but suffers
from potential data hazard that happens when each block is accessing the vector z in line 5.
To avoid this problem, we need to synchronize all thread blocks after each MAC operation,
which is very costly. In this paper we propose to parallelize the k loop (line 3) across GPU
blocks. We instantiate 1024 threads (the maximum threads per GPU block) and n/1024
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(a) CPU (b) GPU

Figure 3: Mapping the implementation of Gaussian sampler and polynomial multiplication
to GPU

blocks to perform the MAC operations in lines 3 – 5. In this way, each thread is operating
on a different element in the vector z over the i and j loops. This avoids the data hazard
issue and do not needs any block-wise synchronization, which is very efficient on the GPU.

Referring to Figure 3(a), the Setup and Encrypt in RLWE-IPFE involve the Gaussian
sampling and polynomial multiplication, which are the most time-consuming computations.
The Gaussian Sampler generates Nmod × n samples which are split into three Chinese
Remainder Theorem (CRT) channels. The subsequent polynomial multiplication involves
NTT, point-wise multiplication and inverse NTT. This process is repeated for l times. A
close observation reveals that the NTT and inverse NTT exhibit rich parallelism as they
are operating in polynomials with length n. Referring to Figure 3(b), NTT and inverse
NTT can be easily mapped to a GPU block with m parallel threads, and repeats n/m
rounds to complete the computation. The polynomial multiplication is performed l times
on different random samples that are independent of each other. Hence, we can utilize l
GPU blocks to compute all the polynomial multiplication in parallel. To achieve this, we
need to ensure that the Gaussian samples are ready before all polynomial multiplication
begins. Hence, the Gaussian Sampler needs to generate l × n samples first, followed by
the parallel polynomial multiplication. The Gaussian sampling process can be parallelized
in a coarse-grain manner by utilizing Nblk blocks and NGT threads, in which each thread
computes a few Gaussian samples.

In the subsequent sub-sections, we present the detailed explanation on the proposed
parallel Gaussian sampling and optimized NTT implementation techniques on the GPU.

5.2 High Performance Parallel Gaussian Sampling
5.2.1 Parallel Discrete Gaussian Sampler

As described in Sec. 4.1, the RLWE-IPFE needs to generate lots of samples from 3
different discrete Gaussian distributions namely σ1, σ2, and σ3 (Table. 1). This is quite
different compared to other lattice-based schemes [DDLL13, FHK+20] where discrete
Gaussian sampling is used in mainly two different ways. Firstly, in the RLWE-IPFE
scheme the standard deviations of the discrete Gaussian distributions (σ2, σ3) are orders
of magnitude larger compared to other lattice-based schemes such as Falcon (2 or

√
5)

and BLISS (< 300) digital signature schemes. Secondly, in our current scenario we need
to generate samples from 3 different distributions whereas in other lattice-based schemes
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there is only one distribution. We also have to keep in mind that, since the samples from
the discrete Gaussian distributions are secret values, we have to execute the sampling
operation in constant-time. Otherwise, it is potentially feasible to mount efficient side-
channel attacks [GBHLY16, Pes16] using timing leakage. Although, there exists some
techniques [KLL21, HKR+18, HPRR20, KRR+18, ZSS19, KRVV19] for constant-time
discrete Gaussian sampling, the method FACCT [ZSS19] proposed by Zhao et al. is
most suitable for our scenario. For this method to generate a sample from a discrete
Gaussian distribution with standard deviation σt, first a sample x← Dσ0 from a smaller
base distribution with fixed σ0 =

√
1/(2 ln 2) is generated. Next, another integer y is

sampled uniformly from the set {0, 1, . . . , k − 1} where k = ⌈σt/σ0⌉. Finally, a sample

z = y + kx is produced from Dσt
with probability ρ = exp

(−y(y + 2kx)
2σ2

t

)
. The last

step of this method is performed using a Bernoulli sampler first proposed in the BLISS
signature scheme [DDLL13]. This method follows the distribution Dσt [ZSS19]. Also, if
the Bernoulli and the base sampling can be done in constant-time then the whole process
runs in constant-time. FACCT [ZSS19] introduced a constant-time Bernoulli sampler (a
non-constant-time version was proposed in BLISS) in their work. For the sampling from
the base sampler, it is best suited to use the linear search cumulative distribution table
(CDT) based sampler [BCNS15]. Since σ0 is small, the CDT table is very small (12 entries),
the linear search is very efficient and simpler to implement. In this case, the bit-sliced
based sampling methods which has some pre- and post-processing costs do not offer any
discernible advantage. As the most complex part of this method which is sampling from
the base sampler Dσ0 is fixed, we can generate samples from different distributions Dσ1 ,
Dσ2 , and Dσ3 by varying the constant k only. This results in a very simple and efficient
solution for the constant-time discrete Gaussian sampling for the RLWE-IPFE scheme.

One way to implement this technique on a GPU is to exploit the fine-grain parallelism
within each Gaussian sampling process. For instance, the AVX2 impelemtntation of
FACCT [ZSS19] can generate four random samples in parallel. The reference implementa-
tion provided by RLWE-IPFE scheme [MKMS22] follows this approach to speed up the
Gaussian sampling process. However, this approach does not exhibit sufficient parallelism
to fully exploit the massively parallel architecture in a GPU. Note that for the KeyGen and
Encrypt processes, we need to generate l×n Gaussian samples. For instance, for a medium
security level, 4096× 785 = 3, 215, 360 Gaussian samples are required for each Encrypt.
Note that a typical real world application may need to encrypt more than hundreds of
data vectors, resulting in a huge amount of computations required, which makes Gaussian
sampling one of the main bottlenecks for cuHE.

In this paper, we propose to parallelize FACCT in a coarse-grain manner, wherein
each thread generates one Gaussian sample independently. This is to avoid the need
for any synchronization among threads, which can be expensive in a GPU. Referring to
Figure 4, l GPU blocks are instantiated, where each block contains NGT threads. Each
thread is responsible of encrypting 24× 16 = 384 bytes of AES counter values in the first
iteration (z = 0). For instance, thread T0 encrypts the counter values 0–23, T1 encrypts
the counter values 24–47, and so on. Within each thread, the random samples generated
from AES encryption are passed through Uniform, CDT and Bernoulli sampling to obtain
one Gaussian sample. If the sample is rejected, a new sample is generated by increasing
the counter value. Note that there are NGT × Nblk × k × 24 produced at one time, so
this counter value is increased accordingly to avoid using the same counter with other
threads. We also limit this trial by a parameter Ns, so that there will not be too many
repeated trials in a particular thread. This can avoid some threads spending too much
time waiting for other threads that have many repeated trials. Within each thread, this
process is repeated for k iterations, where k = n/NGT . This is to ensure that each GPU
block can generate n Gaussian samples. In total, l × n Gaussian samples are generated.
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Figure 4: Parallel Gaussian sampling on a GPU and the generation of counter values.

Table 3: Comparing the throughput of Gaussian sampling on CPU and GPU
CPU1 GPU Speed-up
AVX2 RTX 2060 CPU / GPU

Throughput (×106 samples/s) 30.59 131.26 4.29×
1 Intel i7-9700F processor

5.2.2 Other optimizations

AES-256 encryption is the most time-consuming part in Guassian sampling. A typical way
to speed-up AES implementation on GPUs is to employ four pre-computed T-box [LCPG16]
stored on the shared memory. A recent publication [Tez21] shows that using one T-box
can eliminate all the shared memory bank conflicts and achieve significant speed-up
compared to using four T-box. We follow the strategy described by [Tez21] in our AES-256
implementation using only one T-box. Note that since each thread is generating their
own Gaussian samples independently, the sequence of these samples are stored differently
compared to the serial version. It is not an issue since the sequence of Gaussian samples
does not affect the security of the Gaussian sampler. However, due to this reason, the
test vectors generated from the CPU serial version may not be same with cuFE. We
do not store the random samples generated from AES-256 in shared memory, because
it exceeds the maximum allowable shared memory size. Instead, we store the random
samples in the local memory within each thread, which allows the computation to enjoy a
better cache performance compared to global memory [NVI22]. The uniform, CDT and
Bernoulli sampling operates on these random samples stored in the local memory. The
CDT sampling table was stored in the constant memory as it is accessed globally by all
threads. We have also tried to store this CDT table on the shared memory, but it does not
provide any performance benefit. This is because the CDT sampling process is relatively
lightweight compared to the other operations in Gaussian sampling. Moreover, loading
this table onto the shared memory introduces some overhead, which potentially offsets its
benefits. After all the Gaussian samples are generated, we move them from local memory
to the global memory. Referring to Table 3, the proposed GPU-based Gaussian sampler is
4.29× faster than the AVX2 implementation.
5.3 Number Theoretic Transform
This subsection presents various techniques to optimize the parallel NTT implementation
on GPUs for low and medium security RLWE-IPFE, where the polynomial lengths are
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Algorithm 2: Pseudocode: Combining the first two levels in Kyber NTT [LH21]
Input: Polynomial r with length n = 256, precomputed twiddle factors twi_tb
Output: Polynomial r in the NTT domain

1 sel = blockIdx.x % Nmod; // Select CRT channel through the block ID
2 level = 1; /* 64 threads are launched in parallel, where tid refers to

the ID of each thread. */
3 len = 128; twi = twi_tb[sel][level + ⌊tid/len⌋];
4 j1 = ⌊tid/len⌋ * len + tid;
5 j2 = ⌊tid/len⌋ * len + tid + 64 ;
6 t = mod_mul(twi, r[j1 + len]); // Modular multiplication
7 g1 = r[j1] - t; g2 = r[j1] + t; // r[j1 + len] ; r[j1] ;
8 t = mod_mul(twi, r[j2 + len]);
9 g3 = r[j2] - t; g4 = r[j2] + t; // r[j2 + len] ; r[j2] ;

10 level = level × 2;
11 len = 64; twi = twi_tb[sel][level + ⌊tid/len⌋];
12 j1 = ⌊tid/len⌋ * len + tid;
13 j2 = ⌊tid/len⌋ * len + tid + 128 ;
14 t = mod_mul(twi, g4);
15 r[j1 + len] = g2 - t; r[j1] = g2 + t; // r[j1 + len] ; r[j1] ;
16 twi = twi_tb[sel][level + ⌊(tid + 64)/len⌋];
17 t = mod_mul(twi, g3);
18 r[j2 + len] = g1 - t; r[j2] = g1 + t; // r[j2 + len] ; r[j2] ;
19 level = level × 2;
20 for len=32; len≥ 2; len=len/2 do

/* Computes each level in parallel, without combining levels. */

n = 2048 and n = 4096 respectively. Recall that the Gaussian samples generated are
stored in the global memory. To perform the NTT and iNTT efficiently, these Gaussian
samples are loaded onto shared memory for a faster access speed. After the polynomial
multiplication completes, these data are written back to the global memory for subsequent
computations. Recently, Lee et al. [LH21] proposed a two-level-combination technique
to utilize more registers for computations. In this paper, we propose a novel technique
that improves the this [LH21] further. In particular, the two-level-combination technique
proposed by [LH21] only works for the first two levels of NTT. We propose a novel technique
that extends this to cover all the levels in NTT computation. This allows more intermediate
data to be stored in registers, effectively reducing accesses to the slower shared memory.

5.3.1 Extended Level-Combination in NTT

Algorithm 2 shows the NTT implementation by [LH21] targeting polynomials with n = 256.
Lee et al. [LH21] only combined the first two levels in their NTT implementation, due
to many inefficient if/else control statements to combine the remaining levels. Figure
5 shows the detailed data indexing pattern in NTT used in Algorithm 2. The registers
g1–g4 are used to store the result of the butterfly operations when len = 128 (lines 6 and
8 in Algorithm 2). These registers g1–g4 are reused in the next level when len = 64. For
instance, at len = 128, the data written to g2 and g4 (indices 0–127) are consumed by the
same indices at len = 64. However, this technique is hard to extend to the subsequent
levels when len ≤ 32. Referring to Figure 5, the parallel threads are indexing a different
register for butterfly operation on len = 16. The 0-15 and 32-47 threads access to g2
and g4, but the 16-31 and 48-63 threads access to g1 and g3. This requires an if/else
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Figure 5: Data indexing patterns for level combination (n = 256) proposed by [ [LH21]]
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Figure 6: The proposed data indexing patterns for level combination (n = 256)

statement to separate each 16 threads so that they read the correct values. However, at
level len ≤ 16, the if/else control is performed within a warp (smaller than 32 threads),
which creates warp divergence and seriously degrades the performance [LH21].

We propose a technique to extend this method to all levels in NTT, which is illustrated
in Figure 6. To avoid using the if/else control statements, we need to ensure that all
threads within a warp can read the same registers. Referring to Figure 6, the proposed
indexing pattern uses only 16 threads to compute the first 32 NTT points, which is different
from [LH21] that uses 32 threads (see Figure 5). This allows all threads within a warp
to read the same registers, so we do not need the if/else control statement anymore. To
achieve this efficient indexing pattern, we need dynamic indices for len < 32, because there
is always four discontinuous ranges that changes dynamically for a different level when
len < 32. The dynamic indices can be constructed by using the equations shown in Table
4. The term ⌊tid/len⌋ × 4× len is to construct the interval of the indices; tid % len is to
avoid referring the same index; len× {0, 1, 2, 3} is used to index register g1− g4.

After successfully resolving the performance issues in levels len < 32, we can now
extend the two-level combination technique [LH21] to all the levels in NTT. This two-level-
combination technique (Algorithm 2, lines 3 – 17) is repeatedly applied to all levels, which
is detailed in Algorithm 3. There are n/4 threads launched, each thread needs to compute
two butterfly operations. The variable level is determined first by multiplying four at each
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Table 4: The required indices for computing NTT at level len = 16
Register Static indices [LH21] Dynamic indices (Ours)

name (len = 16) (all lengths)
g1 16-31, 80- 95, 144-159, 208-223 ⌊tid/len⌋ × 4× len + tid % len + len× 1
g2 0-15, 64- 79, 128-143, 192-207 ⌊tid/len⌋ × 4× len + tid % len + len× 0
g3 48-63, 112-127, 176-191, 240-255 ⌊tid/len⌋ × 4× len + tid % len + len× 3
g4 32-47, 96-111, 160-175, 224-239 ⌊tid/len⌋ × 4× len + tid % len + len× 2

Algorithm 3: Applying two-level-combination to all levels in NTT
Input: Polynomial r with length n, precomputed twiddle factors twi_tb
Output: Polynomial r in the NTT domain.
/* n/4 threads are launched in parallel, where tid refers to the ID

of each thread. */
1 sel = blockIdx.x % Nmod; // Select CRT channel through the block ID

2 for level=1; level≤ n/4; do
3 level = level × 4; len = ⌊n/level⌋;
4 j = ⌊tid/len⌋ × 4× len + tid % len;
5 twi = twi_tb[sel][⌊level/4⌋+ ⌊j/len/4⌋];
6 j1 = j; j2 = j + len;
7 t = mod_mul(twi, r[j1 + len × 2]);
8 g1 = r[j1] - t; g2 = r[j1] + t; // r[j1 + len × 2] ; r[j1] ;
9 t = mod_mul(twi, r[j2 + len × 2]);

10 g3 = r[j2] - t; g4 = r[j2] + t; // r[j2 + len × 2] ; r[j2] ;

11 twi = twi_tb[sel][⌊level/2⌋+ ⌊j/len/2⌋]; j1 = j;
12 t = mod_mul(twi, g4);
13 r[j1 + len] = g2 - t; r[j1] = g2 + t // r[j1 + len] ; r[j1] ;
14 twi = twi_tb[sel][⌊level/2⌋+ ⌊j/len/2⌋+ 1]; j2 = j + len × 2;
15 t = mod_mul(twi, g3);
16 r[j2 + len] = g1 - t; r[j2] = g1 + t // r[j2 + len] ; r[j2] ;

17 if level < n; // for odd level
18 then
19 level = level × 2; len = ⌊n/level⌋;
20 j = ⌊tid/len⌋ × 2× len + tid % len;
21 twi = twi_tb[sel][⌊level/2⌋+ ⌊j/len/2⌋];
22 t = mod_mul(twi, r[j + len]);
23 r[j + len] = r[j] - t; r[j] = r[j] + t // r[j + len] ; r[j] ;
24 j = j + n / 2;
25 twi = twi_tb[sel][⌊level/2⌋+ ⌊j/len/2⌋];
26 t = mod_mul(twi, r[j + len]);
27 r[j + len] = r[j] - t; r[j] = r[j] + t; // r[j + len] ; r[j] ;

two-level-combination (line 3), followed by the calculation of len (line 3). The variables j
and len are used to calculate the indices to array r that stores the intermediate results.
We observed that j and len depend on level, which allows the indices to array r to be
calculated by the same formula at every level. For instance, len is calculated ⌊n/level⌋
and j is calculated ⌊tid/len⌋ × 2α × len + tid % len, which α is the number of combining
levels. Line 5 loads the twiddle factors and lines 6 computes the indices j1 and j2. Lines
7–16 are modified from Algorithm 2, which combines the first two levels in NTT. The
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Figure 7: Comparing the implementation of NTT (n=2048)
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Figure 8: Comparing the implementation of NTT (n=4096)

intermediate results are stored back to the shared memory in lines 13 and 16. Note that
the same two-level-combination (lines 2 – 16) is repeated for the subsequent levels. To
handle the case where the number of levels is odd (e.g., n = 2048 with 11 levels), the last
level processed lines 17–27. This allows us to cache some intermediate data in the registers
and reduce the accesses to shared memory. Algorithm 3 can also be extended to support
k-level-combination. For instance, to use three-level combination, we set α = 3 and utilizes
23 registers, which computes 23−1 butterfly operations in each round.

5.3.2 Micro-benchmarking the NTT Implementation

To evaluate the effectiveness of the proposed NTT implementation technique, we perform
a micro-benchmark experiment and compare it to the technique proposed by Lee et
al. [LH21]. In this experiment, we evaluate throughput of computing NTT with length
of n = 2048 (low security level) and n = 4096 (medium security level), with batch sizes
ranging from 1 – 4096. Referring to Figure 7, we observed that the implementation
without any level combination achieve the best performance when the batch size is small
(≤ 16). This is because the shared memory is not fully stressed when the batch size is
small, so the effect of using more registers through level-combination technique is not
obvious. However, when the batch size increases beyond 16, the two-level-combination
technique [LH21] is giving a better performance. The proposed extended level combination
techniques consistently outperforming [LH21] when the batch size increases beyond 32.
Note that for large batch sizes (≥ 512), the proposed extended three-level-combination
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technique is clearly outperforming the other techniques. This is because combining three
levels grants more opportunities to reuse the registers, compared to only combining two
levels. The proposed technique is also better than [LH21] because the level-combination
can be extended to cover all NTT levels. Similar performance can also be observed in
Figure 8 for the case n = 4096. For applications that need to process a large batch of
data, the extended three-level-combination is more suitable to be used. Note that we do
not present the results for four-level-combination as it does not improve the performance
further. In general, we can conclude that combining more NTT levels can allow a better
throughput performance, but this performance gain is also limited by the available GPU
resources. When a GPU is already achieving the peak performance, combining more NTT
levels may not improve the performance anymore. The most suitable level to be combined
using our technique varies across different GPUs, which can be determined experimentally.

5.4 Other Operations
Besides scalar multiplication, Gaussian sampling, and polynomial multiplication, the other
operations in RLWE-IPFE [MKMS22], have a negligible impact on the overall performance.
Therefore, they can be implemented in a more straightforward manner. Such operations
include random seed generation, CRT, inverse CRT, point-wise addition and subtraction.
The random seeds are generated on the CPU as it is simple and it acquires the randomness
from the operating system. The random polynomial used in Setup is also generated on
the CPU, as this is only used once and the operations involved are not heavy. The iCRT
involves computations in large integer, which is not trivial to parallelize in GPU. Since
iCRT is also not consuming a long time, we execute the iCRT and final extraction of result
on the CPU, using GMP library [GMP]. The other operations are all parallelized and
executed on the GPU. For all these operations implemented on the GPU, the computations
are performed on global memory instead of shared memory. This is because transferring
data between global and shared memory introduces overhead. Since these operations are
lightweight, the benefits of using shared memory is not significant. In Section 6.3, we also
show a technique to merge some of the kernels, so that the data can completely reside in
shared memory, resulting in a slightly better performance.

6 Support Vector Machine
Support Vector Machine (SVM) is one of the most widely used supervised learning
techniques for classification tasks. Given a set of training examples, SVM can be trained
to make a binary linear classification. In particular, SVM kernel first maps the training
examples to the points in the higher dimensional space. Then, it finds a line to classify the
new input data into two categories, wherein the points nearer to the line are called Support
Vectors (SVs). In this paper, we demonstrate a practical use case of SVM classification
secured by the proposed cuFE. The SVM implementation is based on the popular open
source library, libsvm [CL11] and the dataset ‘a1a’ from [FCLJ05].

6.1 Naive Solution: Exploiting the Fine-Grain Parallelism in IPFE
Figure 9 shows an overview of the steps in performing SVM classification in [CL11]. The
unprotected SVM (left side) reads one data and an SV, then computes the SVM_kernel,
which is essentially an inner product of data and the SV. This process is repeated for
all the trained SVs, followed by a classification to determine the class of the input data.
These three steps are repeated for all the data to be classified. Finally, SVM evaluates
the accuracy of classification. The right side shows a baseline implementation of IPFE-
protected SVM. The additional steps that enables IPFE protection include Setup, KeyGen,
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Figure 9: The overview of major steps in SVM [CL11]

Figure 10: SVM classification with RLWE-IPFE

Encrypt, and Decrypt. This allows us to apply cuFE to SVM tasks, where the IPFE
functions are parallelized and executed on the GPU.

Referring to Figure 10, the key server first performs Setup to generate the master
private (msk) and public (mpk) keys. For the dataset that we have used in our experiment
[FCLJ05], the data was stored in binary form. The dataset consists of a list of features

values which is stored in the {index:value} pair. For example, the list {5:1, 7:1, ...} refers
to a single vector of {0 0 0 0 1 0 1...}. The client first reads the data to be classified
and expand the original binary data into a series of vectors (x). Next, the client obtains
the mpk and encrypts the vectors, then send the ciphertext (ctx) to the server. On the
server side, the cloud server sends the trained SV (y) to the key server to obtain the
decryption key (Sk), and uses this key to decrypt the result of inner product (F (x, y))
between the input data and SV. Finally, the results of all of SVs are used to perform the
SVM classification. This process is repeated to classify all the input data.

The naive implementation only exploit the inner parallelism exists in RLWE-IPFE [MKMS22].
As an example, Algorithm 4 shows the Decrypt function for our naive SVM implementation.
This algorithm receives one encrypted data ctx, an SV y and the corresponding decryption
key sk as input, which are copied to the GPU (line 1). The subsequent operations (lines 2 –
8) are all performed on the GPU based on our proposed cuFE. Note that the triple bracket
<<< X, Y >>> refers to launching X blocks and Y threads on a GPU. The intermediate
result is copied back to the CPU (line 9) to extract the final result (line 10). Encrypt and
KeyGen can be parallelized in the same manner using the proposed cuFE implementation.
This approach exploits the inner parallelism within all the IPFE functions and provides
a modest speed-up against the AVX2 implementation. However, it does not fully utilize
the capability of a GPU, because fine-grain parallelism itself cannot generate sufficient
workload to fully utilize the computational resources available in a GPU.
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Algorithm 4: Naive SVM with IPFE: Decrypt Function
Input: Encrypted data ctx, Support Vector y, Secret Key sk
Output: Inner Product dy

/* d_ycrt and d_c0sy are the intermediate results. */
1 Copy ctx, y and sk from CPU memory to GPU global memory, denoted as

d_ctx, d_array and d_sk respectively.
2 crt_convert_generic<<<Nmod, l>>>(d_array, d_ycrt)
3 crt_mul_acc<<< ⌊n/1024⌋, 1024 >>>(d_ctx, d_ycrt, dev_dy)
4 NTT<<<Nmod,1024>>>(d_sk)
5 NTT<<<Nmod, 1024>>>(d_ctx + l ×Nmod ×n)
6 point_mul<<<Nmod, 1024>>>(d_c0sy, d_sk, d_ctx +l×Nmod ×n)
7 INTT<<<Nmod, 1024>>>(d_c0sy)
8 poly_sub_mod<<<Nmod, 1024>>>(dev_dy, d_c0sy, dev_dy)
9 Copy the intermediate result dev_dy from GPU global memory to CPU memory

(d_y).
10 round_extract_gmp(dy, d_y);

• Loop for # data
• Read data

• Loop for # SVs
• Read SV
• Key generation

• Decide a class of the data

• Key setup

• Data encryption

• Data decryption

Näıve SVM with IPFE

• Loop for # data
• Read data

• Loop for # SVs
• Read SV

• Key generation (parallel)

• Decide a class of the data

• Key setup

• Data encryption (parallel)

• Data decryption (parallel)

Optimized SVM with IPFE

• Loop for # data

Figure 11: The summary of proposed SVM implementation.

6.2 Optimized Solution: Exploiting the Coarse-grain and Fine-grain
Parallelism

To improve the performance of SVM classification, we propose to process multiple input
data instead of one at a time. This coarse-grain parallel approach is described in Figure
11(b). Encrypt is executed only once after reading all the input data and processing
them in a batch. Likewise, KeyGen and Decrypt processes are also executed in a batch
after reading all SVs. Note that if the number of input data is too large to be computed
within one batch, we can divide them into multiple batches, as long as it fits into the GPU
memory. In this way, we are essentially exploiting the coarse-grain parallelism from SVM
and the fine-grain parallelism from RLWE-IPFE [MKMS22], to speed-up the performance
of cuFE on a GPU.

As an example, we present Algorithm 5 to demonstrate the proposed idea on the
Decrypt process. Note that Algorithm 5 is similar to Algorithm 4, except that now we
process more input data in a batch. This can be achieved by increasing the number of
blocks (lines 2–4), where batch_sz defines the input size. If the number of input (SVs) is
too large that a GPU cannot process them in a single batch, we can set batch_sz to a
maximum size and repeat Algorithm 5 several times to fully process all input data. This
technique is applicable to all other IPFE functions. By processing more input in a batch,
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Algorithm 5: Optimized SVM with IPFE: Decrypt function
Input: Encrypted data ctx, Support Vector y, Secret Key sk, the number of input

batch_sz
Output: Inner Products dy

/* d_ycrt and d_c0sy are the intermediate results. */
1 Copy ctx, y and sk from CPU memory to GPU global memory, denoted as

d_ctx, d_array and d_sk respectively.
2 dim3 grid1(Nmod, batch_sz)
3 dim3 grid2(n/1024, batch_sz)
4 crt_convert_generic<<<grid1, l>>>(d_array, d_ycrt)
5 crt_mul_acc<<<grid2, 1024>>>(d_ctx, d_ycrt, dev_dy)
6 NTT<<<grid1, 1024>>>(d_sk)
7 NTT<<<grid1, 1024>>>(d_ctx +l×Nmod×n)
8 point_mul<<<grid1, 1024>>>(d_c0sy, d_sk, d_ctx +l×Nmod×n)
9 INTT<<<grid1, 1024>>>(d_c0sy)

10 poly_sub_mod<<<grid1, 1024>>>(dev_dy, d_c0sy, dev_dy)
11 Copy the dev_dy from GPU global memory to CPU memory (d_y).
12 round_extract_gmp(dy, d_y);
13 for i=0 ; i<batch_sz ; i++ do
14 round_extract_gmp(dy[i], d_y+i×Nmod×n);

this technique effectively increases the parallelism compared to Algorithm 4.

6.3 Further Optimization: Merging Multiple Kernels

The input data are stored on the shared memory/registers to allow faster computation.
However, these values are not kept when the kernel function is terminated, so the input data
has to be reloaded from global memory to shared memory/registers repeatedly, whenever
a new kernel is called. For example, referring to Algorithm 5, dev_dy used in line 6 is
re-used in line 11, while d_sk are used in lines 7 and 9. To avoid unnecessary data transfers
between different types of memories, we can merge all these kernels into one. Since all the
execution takes place within a single kernel, we can utilize shared memory/registers without
repeatedly copying the input to and from global memory. For instance, dev_dy used in
line 6 can be stored in shared memory and reused to compute the polynomial subtraction
in line 11. Once all execution completes, we can place the results on global memory. This
simplifies the memory flow among different kernels and improves the performance. In our
IPFE implementation, we always set the number of threads per block to 1024 for most of
the functions, so that we can maximize the parallelism. This allows us to easily merge
kernels that implement different functions, e.g., CRT conversion and multiplication in lines
5 and 6. However, recall that the extended three-level-combination proposed to speed
up NTT computation only uses 512 threads. This poses a challenge when we merge the
NTT and INTT kernels with the other kernels, due to the difference in number of threads
per block. On one hand, if we use the maximum number of threads (1024) to compute
NTT, half of the thread block is idle. On the other hand, if we reduce the block size in
other kernels to match the one in NTT, we are sacrificing too much parallelism, which
can degrade the overall performance. For this reason, we use the two-level-combination
(instead of three-level) when merging all the kernels, since this technique uses 1024 threads.
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Table 5: Execution times of IPFE SVM to compare the kernel merge technique on RTX
2060 (medium security level)
Functions SVM with SVM with SVM with

reference IPFE optimized IPFE merged IPFE
(3-level) (3-level) (2-level)

Setup 35.25 ms 36.69 ms 36.82 ms
Encrypt 26.69 ms 20.20 ms 20.25 ms
KeyGen 4.68 ms 0.11 ms 0.10 ms
Decrypt 6.14 ms 0.97 ms 0.95 ms
Classification (100 data, 591 SVs) 6462.61 ms 701.51 ms 687.96 ms

Table 6: Comparing IPFE (medium security level) on CPU (AVX2 optimized implementa-
tion) and GPU implementation

functions CPU GPU Speed-up
(AVX2) (merged IPFE) AVX2 / GPU

Setup 1261.15 ms 36.82 ms 34.24×
Encrypt 810.66 ms 20.25 ms 40.02×
KeyGen 17.13 ms 0.11 ms 156.30×
Decrypt 17.97 ms 0.96 ms 18.76×
Classification (100 data, 591 SVs) 22786.21 ms 687.97 ms 33.12×

7 Experiment
In this section, we present and discuss the experimental results of the implementation
techniques for SVM with IPFE on CPU and GPU. This experiment was conducted on
a workstation with an Intel i7-9700F processor with eight cores, 16GB RAM, and an
NVIDIA RTX 2060 (Turing architecture) GPU with 1920 cores and 6GB RAM. In the
following experiments, we implement the RLWE-IPFE [MKMS22] scheme with medium
security level, where n = 4096 and l = 785.

Table 5 shows the performance of SVM protected by the proposed cuFE, tested on a
dataset from [CL11] with 100 data and 591 SVs. The optimized IPFE uses the three-level-
combination technique to implement NTT, since it shows the best timing performance from
our micro-benchmarking (see Section 5.3.2). In the case of Setup, the optimized IPFE does
not enjoy any performance improvement over our reference GPU implementation. This is
because Setup is only performed once and remain unchanged in the SVM classification
process. In the case of Encrypt, the optimized IPFE is 1.32× faster than the reference,
because it is processing 100 data in a batch. Similarly, the KeyGen and Decrypt are
42.5× and 6.32× faster than the reference, since 591 SVs are processed in a batch. To
classify 100 data, the SVM applying optimized IPFE is ≈ 9× faster than the reference
version. Note that the reference version only relies on the fine-grain parallelism in IPFE,
so the performance is less appealing in most cases. In contrast, the optimized IPFE can
fully exploit the coarse-grain parallelism in SVM and the fine-grain parallelism in IPFE,
eventually achieving faster performance compared to the reference version. In all cases
excluding Setup and Encrypt, the merged IPFE is slightly faster than the optimized IPFE.
To classify 100 data with 591 SVs, the merged IPFE took 688ms, which is roughly the
same as the optimized version.

Table 6 compares the performance of RLWE-IPFE [MKMS22] protected SVM classifica-
tion on CPU and GPU. The AVX2 implementation is provided by RLWE-IPFE [MKMS22]
as a reference code and included in Table 6 for comparison. The proposed Setup imple-
mentation on GPU takes 36.82 ms, which is 34.24× faster than AVX2 implementation.
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Performing Encrypt on a GPU takes 20.25 ms, which is 40.02× faster than the AVX2
implementation. KeyGen executed on a GPU enjoyed the most performance gain; it takes
only 0.11 ms, which is 156.30× faster than AVX2 implementation. This is because cuFE
processes 591 SVs at once to fully exploit the parallelism on a GPU. Note that KeyGen is
used repeatedly for all the data and SVs, so the performance of this function is crucial in the
practical use. Similarly, Decrypt function also enjoy 18.76× faster performance compared
to AVX2 implementation, due to the huge parallelism available. However, the speed-up of
Decrypt is not as good as KeyGen. This is because the inverse CRT and the final extraction
of result involves large integer arithmetic, which is not trivially parallelizable on GPU. To
classify 100 data with 591 SVs, our cuHE is 33.12× faster than AVX2 implementation.

8 Conclusion
The first implementation of IPFE on GPU devices, cuFE, was presented in this paper.
We demonstrated that through several specially crafted implementation techniques, cuFE
can achieve remarkable speed-up against the already optimized AVX2 implementation
(from 18.76× to 156.30×) of a recently proposed RLWE-IPFE [MKMS22]. This opens
up the possibilities to apply IPFE on various machine learning applications that are too
complicated to be computed on the CPU. We anticipate that these results can facilitate
the adoption of FE in many practical scenarios, as the overheads of FE schemes are often
too costly for real applications. The proposed cuFE can be adopted easily by a cloud
server or personal computing device that is equipped with a GPU. Note that a GPU-based
solution is more flexible compared to other hardware accelerator like FPGA, as GPUs are
commonly found in many cloud servers, workstations and laptops.
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