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Abstract: Let q be an odd prime power and Fq3 be the finite field with q3 elements.

In this paper, we propose two classes of permutation trinomials of Fq3 for an arbitrary

odd characteristic based on the multivariate method and some subtle manipulation

of solving equations with low degrees over finite fields. Moreover, we demonstrate

that these two classes of permutation trinomials are QM inequivalent to all known

permutation polynomials over Fq3 . To the best of our knowledge, this paper is the

first to study the construction of nonlinearized permutation trinomials of Fq3 with

at least one coefficient lying in Fq3\Fq.
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1 Introduction

For a prime power q, let Fq denote the finite field with q elements and F∗
q denote the mul-

tiplicative group of Fq. A polynomial f(x) ∈ Fq[x] is called a permutation polynomial (PP) if

the associated polynomial mapping f : c → f(c) from Fq to itself is a bijection. Permutation

polynomials over finite fields have important applications in a wide range of areas such as coding

theory [5], combinational designs [7] and cryptography [8].

Permutation polynomials were first studied by Hermite [11] for the case of finite prime

fields and by Dickson [4] for arbitrary finite fields. Permutation polynomials with few terms,

especially binomials and trinomials, attract people’s interest due to their simple algebraic form
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and additional extraordinary properties [12]. So far a number of permutation binomials and

trinomials have been found in the literatures [1,10,13,14,21,24,26–28]. However, most of them

were constructed over the finite field Fq2 , and only very few permutation trinomials over Fq3 are

known. For the permutation trinomials of Fq3 in characteristic 2 and those in odd characteristic,

the reader is referred to [2, 9, 15,18,20,26] and [1, 3, 6, 16,25,27,28] respectively.

In this paper, we study the construction of nonlinearized permutation trinomials over Fq3
with the form

f(x) = axe1 + bxe2 + cx, (1)

where a, b, c ∈ F∗
q3 and e1, e2 are distinct integers with 1 < e1, e2 < q3 − 1. The objective

of this paper is to find new pairs (e1, e2) and coefficients a, b, c ∈ F∗
q3 such that f(x) defined

by (1) is a permutation polynomial over Fq3 for an arbitrary odd characteristic. By virtue

of some techniques in dealing with equations over finite fields, we present two new classes of

permutation trinomials with the form (1). Compared with the known results in this direction,

we demonstrate that the presented two classes of permutation trinomials are QM inequivalent

to all known permutation polynomials over Fq3 . It is worthy noting that the two classes of

permutation trinomials proposed in this paper are the first instances that at least one coefficient

of the nonlinearized permutation trinomials over Fq3 belongs to Fq3\Fq.

The rest of this paper is organized as follows. Section 2 proposes two classes of permutation

trinomials. Section 3 investigates the QM equivalence between the permutation polynomials in

this paper and the previously known permutation trinomials. Section 4 concludes this study.

2 Two new classes of permutation trinomials of the form (1)

In this section, we present two classes of permutation trinomials with the form (1) over the

finite field Fq3 . Throughout this paper, let q be an odd prime power, d | q3 − 1 and µd = {x ∈
Fq3 : xd = 1} be the set of d-th roots of unity in Fq3 . The trace function from Fq3 to its subfield

Fq is defined by Trq3/q(x) = x+ xq + xq
2
. For a function f(x) over Fq3 , we denote the image set

of f(x) by Im(f).

2.1 The first class of permutation trinomials of the form (1)

In this subsection, we consider the permutation property of

f1(x) = axq(q
2−q+1) + bxq

2−q+1 + 2x, a, b ∈ F∗
q3 (2)

over Fq3 . To prove the permutation property of f1(x), we need the following basic facts:
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(1) Fq3 =
{

0
}⋃{

xq+1 : x ∈ F∗
q3

}⋃{
εxq+1 : x ∈ F∗

q3

}
,

(2) each x ∈ F∗
q3 can be expressed as x = yzε,

where ε is a non-square in Fq3 , y ∈ F∗
q , z ∈ µq2+q+1, ε ∈ {1, σ, σ2} and σ ∈ F∗

q3 is a fixed non-

cubic element. The first fact is due to gcd(q+ 1, q3− 1) = 2 and the second one depends on the

value of gcd(q − 1, q2 + q + 1) which can also be readily verified.

Our first result is stated as follows.

Theorem 1. Let q be an odd prime power and a, b ∈ F∗
q3. Then

f1(x) = axq(q
2−q+1) + bxq

2−q+1 + 2x

is a permutation polynomial of Fq3 if one of the following conditions is satisfied:

(1) ab = 1 and aq
2+q+1 6= −1;

(2) ab ∈ F∗
q\{1} and aq

2+q+1 + 2ab+ bq
2+q+1 = 0.

Proof. (1) According to the first basic fact given as above, to prove that f1(x) permutes Fq3 , it

suffices to prove that the image sets of f1(0), f1(x
q+1) and f1(εx

q+1) form the whole field Fq3 ,

where ε is a non-square element in Fq3 . Observe that f1(0) = 0 and

f1(x
q+1) = ax2q + bx2 + 2xq+1 = a

(
xq + bx

)2
,

f1(εx
q+1) = aεq

3−q2+qx2q + bεq
2−q+1x2 + 2εxq+1 = aεq

3−q2+q(xq + bεq
2−qx

)2
.

Since ab = 1 and aq
2+q+1 6= −1, we have bq

2+q+1 6= −1. This implies that both xq + bx and

xq+bεq
2−qx are permutation polynomials over Fq3 , which indicates that one of the image sets of

f1(x
q+1) and f1(εx

q+1) is the set of all squares in F∗
q3 and the other is the set of all non-squares

in F∗
q3 . This proves (1).

(2) Let a = y1z1ε1 and b = y2z2ε2 with y1, y2 ∈ F∗
q , z1, z2 ∈ µq2+q+1 and ε1, ε2 ∈ {1, σ, σ2},

where σ ∈ F∗
q3 is a fixed non-cubic element. Since ab = y1y2z1z2ε1ε2 ∈ F∗

q , we have z1z2ε1ε2 ∈ F∗
q ,

which implies

(z1z2ε1ε2)
q2+q+1 = (z1z2ε1ε2)

3 = (ε1ε2)
q2+q+1. (3)

If gcd(q−1, q2+q+1) = 3, then both z1z2 ∈ µq2+q+1 and z1z2ε1ε2 ∈ F∗
q are cubic elements, which

implies ε1ε2 is a cubic element. Together with the fact ε1 = ε2 = 1 when gcd(q−1, q2+q+1) = 1,

without loss of generality, we can assume that ε1 = ε and ε2 = ε2 with ε ∈ {1, σ}. Substituting

ε1 = ε and ε2 = ε2 into (3) gives ( z1z2ε3
εq2+q+1

)3
= 1.
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Setting λ = z1z2ε3

εq2+q+1
implies λ ∈ F∗

q and λ3 = 1. Then z2 can also be written as z2 = εq
2+q+1λ
z1ε3

.

Plugging a = y1z1ε1 and b = y2z2ε2 into the condition aq
2+q+1 + 2ab+ bq

2+q+1 = 0 leads to

εq
2+q+1y31 + 2εq

2+q+1λy1y2 + ε2(q
2+q+1)y32 = 0,

that is

y31 + 2λy1y2 + εq
2+q+1y32 = 0.

Since y1, y2 ∈ F∗
q , we can assume y1 = βy2 for some β ∈ F∗

q . Then the above equation becomes

β3y32 + 2λβy22 + εq
2+q+1y32 = 0.

It can be seen that εq
2+q+1 + β3 6= 0 due to y2 6= 0. Further, from the above equation we can

derive y2 = − 2λβ

εq2+q+1+β3
, and then y1 = − 2λβ2

εq2+q+1+β3
. Subsequently,

a = − 2λβ2

εq2+q+1 + β3
z1ε, b = − 2λ2βεq

2+q+1

(εq2+q+1 + β3)z1ε
. (4)

Substituting (4) into f1(x), it then turns into

f1(x) = −2(εq
2+q+1 + β3)−1

(
β2ε(λz1)x

q(q2−q+1) + βεq
2+q(λz1)

−1xq
2−q+1 − (εq

2+q+1 + β3)x
)
.

Since (λz1)
q2+q+1 = λ3 = 1 due to λ ∈ F∗

q , λ
3 = 1 and z1 ∈ µq2+q+1, we know λz1 ∈ µq2+q+1.

Hence, there exists an α ∈ F∗
q3 such that λz1 = αq

2−q. Substituting x with αx, f1(x) becomes

f1(x) = −2α(εq
2+q+1 + β3)−1

(
β2εxq(q

2−q+1) + βεq
2+qxq

2−q+1 − (εq
2+q+1 + β3)x

)
.

Therefore, to prove that f1(x) permutes Fq3 , it suffices to prove that

β2εxq(q
2−q+1) + βεq

2+qxq
2−q+1 − (εq

2+q+1 + β3)x = d (5)

has at most one solution in Fq3 for any d ∈ Fq3 .

Case I. d = 0. For this case, (5) can be written as

xq(q
2−q+1)(εq

2+qxq
2−q − β2)(βxq2−q − ε) = 0.

We claim that neither εq
2+qxq

2−q − β2 nor βxq
2−q − ε is 0. Otherwise, εq

2+qxq
2−q − β2 = 0

implies (β2/εq
2+q)q

2+q+1 = 1 and βxq
2−q − ε = 0 implies (ε/β)q

2+q+1 = 1. In either case we can

deduce εq
2+q+1 = β3 due to β ∈ F∗

q and εq
2+q+1 + β3 6= 0. Using the values of a and b given in

(4), a calculation gives ab = 4β3εq
2+q+1

(εq2+q+1+β3)2
= 1, which contradicts with ab 6= 1. Therefore, (5)

has only the zero solution in Fq3 .
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Case II. d 6= 0. Obviously, in this case x = 0 is not a solution of (5). Let y = xq, z = yq,

d1 = dq, d2 = dq1, then from (5), we obtain the system of equations
β2ε

xy

z
+ βεq

2+q xz

y
− (εq

2+q+1 + β3)x = d, (6)

β2εq
yz

x
+ βεq

2+1xy

z
− (εq

2+q+1 + β3)y = d1, (7)

β2εq
2 xz

y
+ βεq+1 yz

x
− (εq

2+q+1 + β3)z = d2. (8)

Eliminating the terms xy
z and yz

x from (6), (7) and (8) results in

εq
2
β(εq

2+q+1 + β3)
xz

y
− (εq

2+q+1 + β3)(εq
2+1x− βεy + β2z) = εq

2+1d− βεd1 + β2d2.

Note that εq
2 x
y − β 6= 0 from the fact εq

2+q+1 6= β3. Then we can obtain that

z =
εq

2+1x− βεy + ∆

β(εq2 xy − β)
(9)

with

∆ =
εq

2+1d− βεd1 + β2d2

εq2+q+1 + β3
. (10)

Rewriting (8) as
yz

x
(β2

x

y
− εq+1)(εq

2 x

y
− β) = d2

and substituting (9) into the above equation leads to

y

x
(εq

2+1x− βεy + ∆)(β2
x

y
− εq+1) = βd2,

which gives

εq
2+1x− βεy + ∆ =

βd2x

β2x− εq+1y
(11)

and

ε(εq
2
x− βy)(β2x− εq+1y) = (βd2 −∆β2)x+ ∆εq+1y. (12)

Further, using the value of z given in (9) and combining with (11) and (12), one obtains

y

z
=

β(εq
2
x− βy)

εq2+1x− βεy + ∆
=

(εq
2
x− βy)(β2x− εq+1y)

d2x
=

(βd2 −∆β2)x+ ∆εq+1y

εd2x
. (13)

This together with (6), i.e.,
xz

y
(β2

y

z
− εq2+q)(εy

z
− β) = d

one gets

−∆
((

(β3−εq2+q+1)d2−∆β4
)
x+∆β2εq+1y

)
(β2x−εq+1y) = dd2

(
(βd2−∆β2)x+∆εq+1y

)
. (14)
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Note that εq
2+qxq

2−q−β2 6= 0, i.e., εq
2+qz 6= β2y as we claimed in Case I. Taking q2-th power on

both sides of it gives β2x− εq+1y 6= 0. Then substituting (12) into (14) and dividing β2x− εq+1y

on both sides of it, one obtains

−∆
(
((β3 − εq2+q+1)d2 −∆β4)x+ ∆β2εq+1y

)
= εdd2(ε

q2x− βy),

i.e.,

(εq
2+1dd2 + ∆((β3 − εq2+q+1)d2 −∆β4))x = (βεdd2 −∆2β2εq+1)y. (15)

Case II-1. βεdd2 − ∆2β2εq+1 = 0. If this case happens, then dd2 = ∆2βεq and (15) holds

only when

εq
2+1dd2 + ∆((β3 − εq2+q+1)d2 −∆β4) = 0

due to x 6= 0. Substituting dd2 = ∆2βεq into the above equation, we can obtain that

∆(βεq
2+q+1∆ + (β3 − εq2+q+1)d2 −∆β4) = 0

i.e.,

∆(εq
2+q+1 − β3)(β∆− d2) = 0. (16)

Then, by (10), one gets

(εq
2+1d− βεd1 + β2d2)(βε

q2+1d− β2εd1 − εq
2+q+1d2) = 0. (17)

Recall that d1 = dq and d2 = dq1. Thus the polynomial εq
2+1d− βεd1 + β2d2, i.e.,

εq
2+1d− βεdq + β2dq

2

with respect to d is a linearized polynomial over Fq3 and it permutes Fq3 if and only if the

determinant of the matrix  εq
2+1 −βε β2

β2 εq+1 −βεq

−βεq2 β2 εq
2+q


is nonzero. A direct calculation gives the determinant of the above matrix is (εq

2+q+1+β3)2 6= 0,

which means εq
2+1d − βεd1 + β2d2 is a permutation polynomial of Fq3 . Hence εq

2+1d − βεd1 +

β2d2 6= 0 since d 6= 0. Similarly, we can derive βεq
2+1d−β2εd1−εq

2+q+1d2 6= 0. This contradicts

with (17), which implies (15) has no solution in Fq3 .

Case II-2. βεdd2 −∆2β2εq+1 6= 0. In this case (15) gives y = θx with

θ =
εq

2+1dd2 + ∆((β3 − εq2+q+1)d2 −∆β4)

βεdd2 −∆2β2εq+1
. (18)
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Using the relation y = θx, (12) becomes

ε(εq
2 − βθ)(β2 − εq+1θ)x2 =

(
βd2 − (β2 − εq+1θ)∆

)
x. (19)

Next we show that neither εq
2 − βθ nor β2 − εq+1θ is 0. If εq

2 − βθ = 0, then θ = εq
2
/β can be

simplified to

∆(εq
2+q+1 − β3)(β∆− d2) = 0

by (18), which is exactly (16) and it cannot hold as we proved before. If β2 − εq+1θ = 0, then

(19) holds only when

βd2 − (β2 − εq+1θ)∆ = 0 = βd2

due to x 6= 0. This is impossible since β 6= 0 and d2 6= 0. Hence, by (19), we can get

x =
(βd2 −∆β2) + ∆εq+1θ

ε(εq2 − βθ)(β2 − εq+1θ)
. (20)

Combining the above cases, we can conclude that the solution of (5) is zero when d = 0 and

is given by (20) when d 6= 0. This completes the proof.

2.2 The second class of permutation trinomials of the form (1)

In this subsection, we investigate the permutation property of

f2(x) = xq
2−q+1 + axq

2
+ bx, a, b ∈ F∗

q3 (21)

over Fq3 .

Lemma 1. ([19,22,29]) Let n and d be positive integers such that d|(pn−1), where p is a prime.

Let h(x) ∈ Fpn [x]. Then f(x) = xh
(
x

pn−1
d

)
is a permutation polynomial over Fpn if and only if

g(x) = xh(x)
pn−1

d permutes the set of d-th roots of unity in Fpn.

According to Lemma 1, to prove that f2(x) permutes Fq3 , it suffices to prove that

g(x) = x(axq+1 + xq + b)q−1

permutes µq2+q+1. Then we can do this by the following two steps.

Step 1. Prove that axq+1 + xq + b 6= 0 for any x ∈ µq2+q+1. Suppose that axq+1 + xq + b = 0

for some x ∈ µq2+q+1, then we have ax+ 1 6= 0 since x 6= 0 and b 6= 0, and consequently,

xq = − b

ax+ 1
, xq

2
= − bq(ax+ 1)

−aqb+ ax+ 1
.
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The fact xq
2+q+1 = 1 implies bq+1x = −aqb+ ax+ 1. Hence, we only need to verify that

(a− bq+1)x = aqb− 1 (22)

does not hold for any x ∈ µq2+q+1 satisfying axq+1 + xq + b = 0.

Step 2. Prove that g(x1) 6= g(x2) for any distinct x1, x2 ∈ µq2+q+1. Suppose that there are

distinct x1, x2 ∈ µq2+q+1 such that g(x1) = g(x2) holds, then

x1
(
axq+1

1 + xq1 + b
)q−1

= x2
(
axq+1

2 + xq2 + b
)q−1

,

i.e., (
axq+1

1 + xq1 + b

axq+1
2 + xq2 + b

)q−1

=
x2
x1
.

Since x2
x1
∈ µq2+q+1\{1}, we assume x2

x1
= ωq−1 and ω /∈ Fq. Then the above equation yields

axq+1
1 + xq1 + b = ξω(axq+1

2 + xq2 + b)

for some ξ ∈ F∗
q . Combining with x2 = x1ω

q−1, one gets

θ1x
q+1
1 + θ2x

q
1 + θ3 = 0, (23)

where

θ1 = a(1− ξω)q
2
, θ2 = 1− ξωq2−q+1 and θ3 = b(1− ξω). (24)

It can be seen that θ3 = b(1− ξω) 6= 0 from ω /∈ Fq. Then from (23), we can obtain that

xq1 = − θ3
θ1x1 + θ2

, xq
2

1 = − θq3(θ1x1 + θ2)

−θq1θ3 + θq2(θ1x1 + θ2)
.

The fact xq
2+q+1

1 = 1 implies

θq+1
3 x1 = −θq1θ3 + θq2(θ1x1 + θ2),

that is,

(θq+1
3 − θ1θq2)x1 = (θq+1

2 − θq1θ3). (25)

Case I. θq+1
3 − θ1θq2 = 0. If θq+1

3 − θ1θq2 = 0, from (25) we know that θq+1
2 − θq1θ3 = 0. This

together with (24) gives{
θq+1
3 − θ1θq2 = bq+1(1− ξω)q+1 − a(1− ξω)q

2
(1− ξωq3−q2+q) = 0,

θq+1
2 − θq1θ3 = (1− ξωq2−q+1)q+1 − aqb(1− ξω)2 = 0,
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which can be simplified as{
(bq+1 − a)(1 + ξ2ωq+1) = ξ(bq+1(ω + ωq)− a(ωq

2
+ ωq

3−q2+q)), (26)

(1− aqb)(1 + ξ2ω2) = ξ(ωq
2−q+1 + ωq

3−q2+q − 2aqbω). (27)

Thus, in order to obtain a contradiction, we have to show that (26) and (27) cannot hold

simultaneously for any ω ∈ Fq3\Fq and ξ ∈ F∗
q with given a and b.

Case II. θq+1
3 − θ1θq2 6= 0. For this case, from (25) we have

x1 =
θq+1
2 − θq1θ3
θq+1
3 − θ1θq2

.

Substituting it into (23) and dividing θq+1
3 on both sides lead to

θq
2+q+1

1 + θq
2+q+1

2 + θq
2+q+1

3 = θ1θ
q
2θ
q2

3 + θq1θ
q2

2 θ3 + θq
2

1 θ2θ
q
3.

Then by (24) and a straightforward computation, one obtains(
aq

2+q+1 + bq
2+q+1 − Trq3/q(a

qb) + 1
)
ω1+q+q2ξ3 −

[
Trq3/q

(
(aq

2+q+1 + bq
2+q+1

− 2abq
2
)ωq+1

)
+ Trq3/q

(
(1− aqb)ω2

) ]
ξ2 +

[
Trq3/q

(
(aq

2+q+1 + bq
2+q+1 − 2aqb)ω

)
+ Trq3/q

(
(1− aq2bq)ωq2−q+1

)]
ξ −

(
aq

2+q+1 + bq
2+q+1 − Trq3/q(a

qb) + 1
)

= 0.

(28)

Hence, to prove g(x1) 6= g(x2), we need to show that (28) has no solution on ξ for any ω ∈ Fq3\Fq
with given a and b.

Our second main result is stated as follows.

Theorem 2. Let q be an odd prime power and a, b ∈ F∗
q3. Then

f2(x) = xq
2−q+1 + axq

2
+ bx

is a permutation polynomial over Fq3 if one of the following conditions is satisfied:

(1) aqb = 1 and aq
2+q+1 6= 1;

(2) aqb ∈ F∗
q\{1} and aq

2+q+1 − 2aqb+ bq
2+q+1 = 0.

Proof. We can prove this result by employing the above strategy.

(1) Step 1. If aqb = 1, then (22) is reduced to (a − bq+1)x = 0 which leads to a − bq+1 = 0

due to x 6= 0. Since aqb = 1, one has

a− bq+1 = a− 1

aq+q2
=
aq

2+q+1 − 1

aq+q2
6= 0
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since aq
2+q+1 6= 1. This implies (22) does not hold and then axq+1 + xq + b 6= 0 for any

x ∈ µq2+q+1.

Step 2. In Case I, when aqb = 1, (27) becomes

0 = ξ(ωq
2−q+1 + ωq

3−q2+q − 2ω) = ξωq
3−q2−q(ωq

2 − ωq)2,

which contradicts to the fact ω /∈ Fq. In Case II, the condition aqb = 1 implies aqb = aq
2
bq =

abq
2

= 1, then

aq
2+q+1 + bq

2+q+1 − 2 =
a2(q

2+q+1) − 2aq
2+q+1 + 1

aq2+q+1
=

(aq
2+q+1 − 1)2

aq2+q+1
∈ F∗

q

due to aq
2+q+1 6= 1 and (28) turns into(
aq

2+q+1 + bq
2+q+1 − 2

)
ω1+q+q2ξ3 − Trq3/q

(
(aq

2+q+1 + bq
2+q+1 − 2)ωq+1

)
ξ2

+ Trq3/q
(
(aq

2+q+1 + bq
2+q+1 − 2)ω

)
ξ −

(
aq

2+q+1 + bq
2+q+1 − 2

)
= 0.

(29)

Dividing both sides of (29) by aq
2+q+1 + bq

2+q+1 − 2 gives

ω1+q+q2ξ3 − Trq3/q
(
ωq+1

)
ξ2 + Trq3/q(ω)ξ − 1 = 0.

It can be verified that 1/ω, 1/ωq and 1/ωq
2

are three distinct solutions of the above equation.

Note that 1/ωq
i
/∈ Fq for i = 0, 1, 2 due to ω /∈ Fq. Therefore, this equation has no solution in

Fq, and then the desired result follows.

(2) For simplicity, denote τ = aqb and c = bq
2+q+1, then in this case we have τ ∈ F∗

q\{1},
c ∈ F∗

q and aq = τ/b. Further, from the condition aq
2+q+1 − 2aqb+ bq

2+q+1 = 0, we can obtain

τ3 − 2τc+ c2 = 0. (30)

Step 1. If (22) holds, then a − bq+1 6= 0 since aqb − 1 6= 0, and then (22) gives x = τ−1
a−bq+1 .

Since τ ∈ F∗
q and aq = τ/b, one has a = τ/bq

2
and

x =
τ − 1

τ/bq2 − bq+1
=
τ − 1

τ − c
bq

2
.

Plugging it into axq+1 + xq + b = 0 and multiplying both sides by (τ − c)2/b gives

τ(τ − 1)2 + (τ − 1)(τ − c) + (τ − c)2 = 0

due to τ−1
τ−c ∈ F∗

q and abq
2

= aqb = τ . That is

τ3 − 3τc+ c2 + c = 0. (31)
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By (31) and (30), one gets −τc + c = 0, i.e., τ = 1, a contradiction. Thus axq+1 + xq + b 6= 0

for any x ∈ µq2+q+1.

Step 2. In Case I, multiplying bq
2

on both sides of (26) and substituting τ = aqb, c = bq
2+q+1

into (26) and (27), we can obtain{
(c− τ)(1 + ξ2ωq+1) = ξ(c(ω + ωq)− τ(ωq

2
+ ωq

3−q2+q)), (32)

(1− τ)(1 + ξ2ω2
)

= ξ(ωq
2−q+1 + ωq

3−q2+q − 2τω) (33)

since abq
2

= aqb = τ . Taking q-th power on both sides of (32) (resp. (33)) and subtracting the

resulting equation from (32) (resp. (33)) gives{
(c− τ)(ωq+1 − ωq2+q)ξ2 = ξ(c(ω − ωq2)− τ(ωq

2
+ ωq

3−q2+q − ω − ωq2+q−1)),

(1− τ)(ω2 − ω2q)ξ2 = ξ(ωq
2−q+1 − ωq2+q−1 − 2τ(ω − ωq))

since τ, c, ξ ∈ Fq. Note that ω − ωq 6= 0 and ω − ωq2 6= 0 due to ω /∈ Fq. Then the above

equations can be reduced to{
(c− τ)ωqξ = c+ τ(1− ω−q2+q−1(ω + ωq

2
)), (34)

(1− τ)(ω + ωq)ξ = ωq
2−q−1(ω + ωq)− 2τ. (35)

Taking q-th power on both sides of (34) (resp. (35)) and subtracting the resulting equation from

(34) (resp. (35)), one can similarly obtain that{
(c− τ)ξ = −τ(ω−1 + ω−q + ω−q2),

(1− τ)ξ = −(ω−1 + ω−q + ω−q2).

This indicates (c− τ)/τ = 1− τ , i.e., τ − c = τ(τ − 1). Then, by (30), we have

τ3 − 2τc+ c2 = τ3 − τ2 + (τ − c)2 = τ2(τ − 1) + τ2(τ − 1)2 = τ3(τ − 1) = 0

which leads to τ = 0 or 1, a contradiction. Hence (26) and (27) cannot hold simultaneously.

In Case II, using aq
2+q+1 − 2aqb+ bq

2+q+1 = 0 and τ = aqb ∈ F∗
q , (28) turns into

(1− τ)ω1+q+q2ξ3 − (1− τ)Trq3/q(ω
2)ξ2 + (1− τ)Trq3/q(ω

q2−q+1)ξ − (1− τ) = 0.

Since τ 6= 1, the above equation is equivalent to

ω1+q+q2ξ3 − Trq3/q
(
ω2
)
ξ2 + Trq3/q(ω

q2−q+1)ξ − 1 = 0. (36)

It can be verified that 1

ωq2+q−1
, 1

ωq2−q+1
and 1

ωq3−q2+q
are three solutions of (36). Note that

1

ω(q2+q−1)qi
/∈ Fq for i = 0, 1, 2. Otherwise we have 1

ωq2+q−1
= 1

ωq2−q+1
, i.e.,

ω2q − ω2 = (ωq − ω)(ωq + ω) = 0,

which leads to ωq + ω = 0 due to ω /∈ Fq. Further, we have ωq
2

= (−ω)q = ω and consequently

ω = ωq, a contradiction to ω /∈ Fq. Therefore, (36) has no solution in Fq.
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Table 1: Known nonlinearized permutation trinomials over Fq3 with coefficients in {1, −1}

No. PPs q = pm References

1 x
q2+1

2 + xq − x p = 3, m 6≡ 2(mod 3) [6, Theorem 3.2]

2 x
q2+1

2 − xq − x p = 3, m 6≡ 2(mod 3) [6, Theorem 3.4]

3 x
q2+1

2 − xq + x p = 3, m 6≡ 1(mod 3) [6, Theorem 3.6]

4 x
q2+q4

2 − x
q2+1

2 + x p = 3, m 6≡ 2(mod3) [28, Table 4]

5 2x
q+q3

2 + xq + x q ≡ 3(mod 4), m odd [3, Table 1]

6 2x
q2+1

2 + xq
2

+ x q ≡ 3(mod 4), m odd [3, Table 2]

7 x
q3+q

2 + x
q2+1

2 − x p odd [16, Theorem 4.1]

8 xq
2+q−1 − xq2−q+1 + x p = 3, m 6≡ 1(mod 3) [27, Theorem 3.1]

9 −xq2+q−1 + xq
2

+ x p = 3, m 6≡ 1(mod 3) [27, Theorem 3.2]

10 xq
2+q−1 + xq − x p = 3, m 6≡ 1(mod 3) [27, Theorem 3.3]

11 xq
2+q−1 − xq3−q2+q + x p = 3, m 6≡ 2(mod 3) [27, Theorem 3.4]

12 −xq2+q−1 + xq + x p = 3, m 6≡ 2(mod 3) [27, Theorem 3.5]

13 xq
2+q−1 + xq

2 − x p = 3, m 6≡ 2(mod 3) [27, Theorem 3.6]

3 QM equivalence

In this section, we compare our permutation polynomials with those in the previous works.

Two permutation polynomials f(x) and g(x) in Fpn [x] are called quasi-multiplicative (QM, for

short) equivalent [24] if there exists an integer 1 ≤ e ≤ pn − 1 with gcd(e, pn − 1) = 1 and

f(x) = αg (γxe), where p is a prime, n is a positive integer and α, γ ∈ F∗
pn . Observe that two

QM equivalent permutation polynomials have the same number of terms. Thus, we only need to

compare our results with the known permutation trinomials over Fq3 with odd characteristic in

Tables 1 and 2 as well as the linearized permutation trinomials of the form axq
2
+bxq+cx ∈ Fq3 [x]

in [6], [28, Tables 2 and 3] and [3, Tables 1 and 2].

Observe that the monomial x is a term of all the known permutation trinomials over Fq3 .

Thus we only need to consider the QM equivalence between polynomials gi(x) = aix
si + bix

ti +

cix ∈ Fq3 [x] for i = 1, 2, where 1 ≤ si, ti ≤ pn − 1. For convenience, denote Emod q3−1 =

{e(mod q3 − 1)|e ∈ E}. According to the definition of QM equivalence, g1(x) is QM equivalent

to g2(x) if and only if the following two conditions are satisfied:
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Table 2: Known nonlinearized permutation trinomials over Fq3 with coefficients in F∗
q

No. PPs q = pm References

1 xq
2+q−1 +Axq

2−q+1 +Bx p > 3 [1, Theorem 3.1]

2 xq
2+q−1 +Axq

3−q2+q +Bx p > 3 [1, Theorem 3.3]

3 xq
2+q−1 +Axq

2 −Bx q ≡ 1(mod3), p > 3 [1, Theorem 3.4]

4 xq
2+q−1 +Axq −Bx p > 3 [1, Theorem 3.5]

5 xq
2−q+1 +Axq

3−q2+q +Bx p odd [25, Theorem 3.3]

6 xq
2+q−1 +Axq

2
+Bx p odd [25, Theorem 3.4]

7 xq
2+q−1 +Axq +Bx p odd [25, Theorem 3.5]

- where A,B ∈ F∗
q , as specified in references.

(C1) There exists e ∈ {1, s1, t1} with gcd(e, q3 − 1) = 1 such that

{s1, t1, 1} =
{
es2, et2, e

}
mod q3−1

.

(C2) For any e in (C1), there exist α, γ ∈ F∗
pn such that g1(x) and αg2 (γxe)’s corresponding

coefficients equal each other.

First, according to (C1), through a series of easy computations, it can be verified that

1) f1(x) and f2(x) are QM inequivalent to each other;

2) f1(x) and f2(x) are QM inequivalent to all known linearized permutation trinomials;

3) f1(x) is QM inequivalent to Nos. 1-4, 7-13 in Table 1 and Nos. 1-4, 6-7 in Table 2;

4) f2(x) is QM inequivalent to Nos. 1-6, 8-13 in Table 1 and Nos. 1-7 in Table 2.

Next, we show the inequivalence between f1(x) and No. 5, f1(x) and No. 6 in Table 1, f1(x)

and No. 5 in Table 2 as well as f2(x) and No. 7 in Table 1 by using (C2). Here we only give

the proof for the case f1(x) is QM inequivalent to No. 5 in Table 1 since the other cases can be

proved in the same manner.

Let f1(x) be given by Theorem 1 and g(x) be the No. 5 in Table 1. If f1(x) is QM equivalent

to g(x), then both (C1) and (C2) hold. A direct calculation indicates that e = q2 − q + 1 is the

unique integer satisfying (C1). Then (C2) implies that there exist α, γ ∈ F∗
pn such that

f1(x) = αg
(
γxq

2−q+1
)

= 2αγ
q3+q

2 x+ αγqxq
3−q2+q + αγxq

2−q+1

i.e., a = αγq, b = αγ, 2 = 2αγ
q3+q

2 , which leads to

ab = α2γq+1 = (αγ
q3+q

2 )2 = 1, aq
2+q+1 = (αγ)q

2+q+1 = (αγ
q3+q

2 )q
2+q+1 = 1.
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Thus f1(x) is QM equivalent to g(x) only when both ab = 1 and aq
2+q+1 = 1. This indicates

that No. 5 in Table 1 is a very special case of Theorem 1 and each f1(x) in Theorem 1 with

(ab, aq
2+q+1) 6= (1, 1) is QM inequivalent to No. 5 in Table 1.

Combining above discussions, we can conclude that the proposed two classes of permutation

trinomials are QM inequivalent to all known permutation polynomials over Fq3 .

4 Conclusion

In this paper, two classes of permutation trinomials over Fq3 with odd characteristic were

obtained based on the multivariate method and some techniques in solving equations with low

degrees over finite fields, and it was shown that they are QM inequivalent to all known permu-

tation trinomials over Fq3 . To our knowledge, our work is the first contribution to the study

of nonlinearized permutation trinomials of Fq3 with at least one coefficient in Fq3\Fq. Our ex-

periments indicate that the sufficient conditions in both Theorem 1 and Theorem 2 are also

necessary. However, it seems hard to confirm it in general. The reader is cordially invited to

attack this problem.
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