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Abstract. A new fundamental 4-round property against AES, called the zero-difference
property, was introduced by Rønjom, Bardeh and Helleseth at Asiacrypt 2017. Our
work characterizes it in a simple way by exploiting the notion of related differences
which was introduced and well analyzed by AES designers. We then are interested in
the way of extending the 4-round property by considering some further properties of
related differences over the AES linear layer, generalizing the zero-difference property.
This results in a new key recovery attack on 7-round AES which is the first attack on
7-round AES by exploiting the zero-difference property.
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1 Introduction
The Rijndael block cipher [DR98] has been designed in the late 1990’s by Joan Daemen and
Vincent Rijmen, and was chosen as the Advanced Encryption Standard (AES) by NIST in
2000. It is since then the most used and the most analysed symmetric primitive worldwide.
There are three versions of AES, with different key sizes, and a different number of rounds:
AES-128 with 10 rounds, AES-192 with 12 rounds, and AES-256 with 14 rounds. During
the previous two decades, many different cryptanalytic techniques have been applied to
AES. Up to now, the best attacks on AES-128 in the secret-key model cover seven rounds.
Impossible differential attack [LP21] and meet-in-the-middle attack [DFJ13] are the two
best-known attacks on AES-128.

A key recovery attack against a block cipher is generally based on the existence of
a distinguishing property. A distinguishing property refers to a statistical or structural
property of a cipher that a random permutation does not have, thus we can distinguish
the cipher from a random permutation. For example, impossible differential attacks and
meet-in-the-middle attacks on 7-round AES-128, exploit 4-round distinguishers.

Recently, in a series of works, new distinguishers for reduced-round AES appeared [GRR17,
RBH17,Gra18,BR19b,BR19a,Bar19]. These distinguishers exhibit new and fundamental
properties of the AES which result in new efficient key recovery attacks on 5-round AES.
At Eurocrypt 2017, the authors of [GRR17] proposed the first key-independent 5-round
distinguisher which requires 232 chosen texts with a computational cost of 235.6 look-ups
into a memory of size 236 bytes. They showed that by encrypting cosets of certain sub-
spaces of the plaintext space the number of times the difference of ciphertext pairs lies in a
particular subspace of the state space always is a multiple of 8, known as the multiple-of-8
property. However, this distinguisher could not be exploited directly for mounting a
key-recovery attack because of the particular subspace used in the multiple-of-8 property.
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This problem was solved in [Gra18] which results in a new key recovery attack on 5-round
AES. Subsequent work [BDK+18], at Crypto 2018, improved on their result and proposed
a key recovery attack on 5-round AES which requires 224 chosen plaintexts and operations.

At Asiacrypt 2017, the authors of [RBH17] presented distinguishers for 3- to 6-round
AES. The authors introduced a new deterministic 4-round property in AES, which states
that sets of pairs of plaintexts that are equivalent by exchange of any subset of diagonals
encrypts to a set of pairs of ciphertexts after four rounds that all have a difference of zero
in exactly the same columns before the final linear layer, called zero-difference property.
This deterministic property was extended to a probabilistic 5-round property in [BR19a].
By exploiting this 4-round distinguishing property, a new key recovery on 5-round AES
was described in [RBH17]. At Eurocrypt 2020, the authors of [DKRS20] improved the
key-recovery to the attack on 5-round AES to 29 adaptive chosen plaintexts and ciphertexts
(ACCs) and 223 encryptions, and proposed new attack on 5-round AES with 215 ACCs
and 216.5 operations.

The aim of our paper is to present a key recovery attack against 7-round AES-128
based on the zero-difference property. We provide a general formulation of the zero-
difference property which allows to combine the 4-round zero-difference property with
related differentials (introduced in [DR09]). It then results in a new 7-round related
differentials characteristic. We then present the first key-recovery attack on 7-round AES
based on the zero-difference property.

1.1 Our contributions
This work generalizes the zero-difference property by providing new insights into it. It
provides a simpler formulation and interpretation of the zero-difference property. For this,
we recall the notion of related differences and related differentials which were introduced
by Daemen and Rjimen in [DR09]. This notion provides a very simple formulation of the
zero-difference property. In particular, we show that the zero-difference property works on
larger sets of pairs of plaintexts than the one described in its original formulation [RBH17].
Most notably, we embed related differentials within the zero difference property for SPN’s.
We show here 2- and 4-round related differentials for AES, which result in extensions of the
zero-difference property up to 8-round AES. We describe a new 7-round related differential
characteristic for AES, which embeds 4-round related differentials. This permits to mount
a key recovery attack on 7-round AES which data/time/memory complexities below 2110.2.

1.2 Overview of this paper and main result
Section 2 describes the AES and recalls the notion of related difference and differential.
Section 3 presents the link between the notion of related difference and the zero-difference
property, and it generalizes the zero-difference property. Section 4 presents related
differentials trials for 2 and 4-round AES. It also explains how to extend the zero difference
property to 6 and 8 rounds. Section 5 explains how to mount a key-recovery attack on
7-round AES based on the zero-difference property. For comparison, Table 1 summarizes
the current best key-recovery attacks for 7 rounds of AES-128.

2 Preliminaries

2.1 AES
The Advanced Encryption Standard (AES) [AES01] is the most widely adopted block
cipher in the world today. An AES internal state α is typically represented by a 4 by 4
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Table 1: Current best cryptanalysis of 7-round AES-128 in the secret-key model.

Attack Rounds Data Time Memory Ref.
Impossible Differential 7 2112.2 2117.2 2112.2 [LDKK08]
Meet-in-the-Middle 7 2116 2116 2116 [DKS10]

Impossible Differential 7 2105.1 2113 274.1 [BLNS18]
Impossible Differential 7 2104.9 2110.9 271.9 [LP21]

Zero-difference 7 2110.2 2110.2 2110.2 Section 5
Meet-in-the-Middle 7 297 299 298 [DFJ13]

matrix of bytes 
α0 α4 α8 α12
α1 α5 α9 α13
α2 α6 α10 α14
α3 α7 α11 α15

 ,
where αi ∈ F28 . AES-128 has 10 rounds where one full round of AES applies four operations
to the state matrix:

• AddKey (AK) xors a 128-bit round-key to the state,

• SubBytes (SB) applies 16 identical Sboxes s, 8-bit to 8-bit, independently to each
byte of the state,

• ShiftRows (SR) shifts the i-th row left by i positions,

• MixColumns (MC) applies a fixed linear transformation to each column.

In the last round, the MC operation is omitted. Also, an additional AK is applied to last
internal state to produce the ciphertext. We denote by Rt(x) the sequence of t full rounds
of AES, including the last additional AK.

2.2 Related differentials
In [DR09], Daemen and Rijmen define a new type of difference called related differences.
They studied the propagation of these differences through the AES linear layer. We call
an element of Fq a word and a vector of words α = (α0, α1, ..., αn−1) ∈ Fn

q a state. Then
the related differences and differentials are defined in [DR09] as below:

Definition 1 (related differences [DR09]). A pair of differences ∆x,∆x′ ∈ Fn
q are related

differences if and only if:

∆xi∆x′i(∆xi ⊕∆x′i) = 0, for i = 0, ..., n− 1. (1)

It is obvious that relation (1) holds iff at least one of ∆xi, ∆x′i and ∆xi ⊕ ∆x′i
equals zero for every value of i. For a state α ∈ Fn

q , we can define four distinct states,
called a quartet, (α, α ⊕ ∆x, α ⊕ ∆x′, α ⊕ ∆x ⊕ ∆x′) where the two differences ∆x
and ∆x′ are related. The main important property of this quartet is that the sets
{αi, αi ⊕∆xi, αi ⊕∆x′i, αi ⊕∆xi ⊕∆x′i}, for every i, contain only two different elements.
As shown in [DR09], related differences can be combined into related differentials.

Definition 2 (related differentials [DR09]). Two differentials (∆x,∆y) and (∆x′,∆y′)
for a linear map M are related differentials if and only if, ∆y = M(∆x), ∆y′ = M(∆x′),
the differences ∆x,∆x′ are related differences and the differences ∆y, ∆y′ are related
differences.



4 New Key Recovery Attack on Reduced-Round AES

αi

αi ⊕∆xi αi ⊕∆x′i

αi ⊕∆xi ⊕∆x′i
∆xi ⊕∆x′

i

∆xi ⊕∆x′
i

∆xi∆xi

∆x′
i

Figure 1: A schematic of the related differences and the associated quartet. The square
collapses to a line or point depending on ∆xi and ∆x′i.

Moreover, it has been studied in [DR09] that AES MixColumns has some related
differentials, where two related differences ∆x and ∆x′ are defined over F4

28 . Four of them
are listed in Table 2. The other related differentials can be derived from these four by
means of rotation and/or multiplication by a scalar (see [DR09] for more details). In this
paper we call them byte-related differences and differentials when they are defined over
F4

28 .

Table 2: The sets of byte-related differentials over AES MixColumns.

∆x ∆y ∆x′ ∆y′ ∆x⊕∆x′ ∆y ⊕∆y′
[0, 1, 4, 7] [0, 9, 0, B] [5, 1, 0, 7] [E, 0, D, 0] [5, 0, 4, 0] [E, 9, D,B]
[0, 1, 0, 3] [0, 1, 4, 7] [2, 0, 1, 0] [5, 1, 0, 7] [2, 1, 1, 3] [5, 0, 4, 0]
[7, 0, 7, 7] [9, E, 0, 0] [7, 7, 7, 0] [0, 0, 9, E] [0, 7, 0, 7] [9, E, 9, E]
[0, 3, 2, 0] [7, 0, 7, 1] [2, 0, 0, 3] [7, 1, 7, 0] [2, 3, 2, 3] [0, 1, 0, 1]

2.3 Zero-difference cryptanalysis
In [RBH17], a new fundamental property against 2 rounds of SPNs was introduced, called
the zero-difference property. Consider an SPN where the round key is xored to state
α ∈ Fn

q . The Sbox layer S can be seen as the concatenation of n independent Sboxes s
over Fq and P denotes the linear layer. We recall here the main definitions and notations
from [RBH17].

Definition 3 (The zero-difference pattern [RBH17]). Let α ∈ Fn
q and define the zero-

difference pattern
ν(α) = (z0, z1, . . . , zn−1)

that returns a binary vector in Fn
2 where zi = 1 indicates that αi is zero or zi = 0 otherwise.

Through the paper we are interested in zero-difference patterns before the last linear
layer. Thus, ν(α) simply indicates the non-zero words of the state before the last linear
layer.
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Definition 4 ( [RBH17]). For a vector v ∈ Fn
2 and a pair of states α, β ∈ Fn

q define a new
state ρv(α, β) ∈ Fn

q such that the i’th component is defined by

ρv(α, β)i = αivi ⊕ βi(vi ⊕ 1).

This is equivalent to

ρv(α, β)i =
{
αi if vi = 1,
βi if vi = 0.

Notice that (α′, β′) = (ρv(α, β), ρv(β, α)) is a new pair of states formed by exchanging
individual words between α and β according to the binary coefficients of v. From the
definition it can be seen that

ρv(α, β)⊕ ρv(β, α) = α⊕ β. (2)

Assume d is the number of common words between α and β, αi = βi. Then, the number
of possible unique pairs (α′, β′) generated this way is 2n−d−1 (including the original pair).
Now, the following theorem shows a relation over 2-round SPN.

Theorem 1 ( [RBH17]). Let α, β ∈ Fn
q and α′ = ρv(α, β), β′ = ρv(β, α) for any v ∈ Fn

2 ,
then

ν(P ◦ S ◦ P ◦ S(α)⊕ P ◦ S ◦ P ◦ S(β)) = ν(P ◦ S ◦ P ◦ S(α′)⊕ P ◦ S ◦ P ◦ S(β′)) (3)

Theorem 1 states that sets of pairs of states that are equivalent by exchange of any
subset of words encrypts to a set of pairs of states after 2-round SPN that all have a
difference of (non-)zero in exactly the same words before the final linear layer. We call
these pairs of states related pairs. In the next section, we will show that the set of related
pairs is larger than the set considered here.

3 Generalize zero-difference cryptanalysis with related dif-
ferences

The central notion of this work is to redefine the zero-difference property with the concept
of related differences. This permits to generate more related pairs than the pairs mentioned
in Subsection 2.3. Moreover, related differentials can be combined with zero-difference
property exploiting this redefinition.

3.1 Generating more related pairs
Zero-difference cryptanalysis [RBH17,BR19a] works with a quartet (α, β, ρv(α, β), ρv(β, α)),
where α, β ∈ Fn

q . This quartet is very similar to the quartet defined by two related
differences ∆x and ∆x′ in Subsection 2.2. More precisely, this quartet can be defined by
two related differences ∆x and ∆x′ where the following condition holds:

∆x′i(∆xi ⊕∆x′i) = 0, for i = 0, ..., n− 1.

Interestingly, this quartet has the same property that the quartet defined by related
differences has:

The sets {αi, αi ⊕∆xi, αi ⊕∆x′i, αi ⊕∆xi ⊕∆x′i}, for every i, contain only
two different elements.
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The only difference between these two quartets is the condition ∆xi = 0 was not considered
in zero-difference property for generating new pairs of states. We will show that considering
the condition ∆xi = 0 makes it possible to generate more number of related pairs, α = α0
and α ⊕ ∆x = α1, instead of 2n−d−1 pairs in the Definition 4. Let consider a quartet
(α, α⊕∆x, α⊕∆x′, α⊕∆x⊕∆x′). Since we can choose two related differences ∆x and
∆x′, if we choose ∆xi = 0 for some i, then there is exactly one value in those coordinates i
of α and α⊕∆x, i.e. αi. So we have freedom to choose a second value for those coordinates
i, i.e. αi ⊕∆x′i. In this way, when d words of ∆x are zero, at most (qd − 1) · 2n−d−1 pairs
can be generated. Note that, if ∆xi 6= 0 for some i, then it means that we already chose
the two values for those coordinates of α and α⊕∆x.1

In order to cover all related pairs, the trivial case is also considered when both ∆xi

and ∆x′i can equal zero for some coordinates i, which means that the four states have
the common value in this coordinate. So we can state that the property of this quartet is
that the sets {αi, αi ⊕∆xi, αi ⊕∆x′i, αi ⊕∆xi ⊕∆x′i}, for every i, contain at most two
different elements.

As we have seen, the property of quartets defined by two related differences ∆x and ∆x′
is as the same as the ones exploit in zero-difference property. However, by exploiting the
concept of related differences we can generate more related pairs. In the next subsection, we
will show that quartets defined by related differences work in the zero-difference property
as well.

3.2 Zero-difference cryptanalysis revisited
In Subsection 3.1, it is shown that more related quartets than the ones exploited in the
zero-difference cryptanalysis can be defined by two related differences. Most notably,
zero-difference cryptanalysis takes advantage of a property which can be also achieved by
a quartet defined by two related differences. It then allows to redefine the main result of
zero-difference cryptanalysis in [RBH17], Theorem 1, with the notion of related differences.

Theorem 2. Let α ∈ Fn
q and ∆x,∆x′ ∈ Fn

q be two related differences then

ν(F (α)⊕ F (α⊕∆x)) = ν(F (α⊕∆x′)⊕ F (α⊕∆x⊕∆x′)) (4)

where F = P ◦ S ◦ P ◦ S.

Proof. Since the Sbox layer operates independently on individual words and the sets
{αi, αi ⊕ ∆xi, αi ⊕ ∆x′i, αi ⊕ ∆xi ⊕ ∆x′i}, for every i, contain at most two different
elements, we have

S(α)⊕ S(α⊕∆x)⊕ S(α⊕∆x′)⊕ S(α⊕∆x⊕∆x′) = 0.

It then follows that

P (S(α))⊕ P (S(α⊕∆x))⊕ P (S(α⊕∆x′))⊕ P (S(α⊕∆x⊕∆x′)) = 0.

Since the Sbox layer operates independently on individual words and each S-box is a
permutation, the (non-)zero words of each input difference map into (non-)zero words in
the corresponding output difference

ν(F (α)⊕ F (α⊕∆x)) = ν(F (α⊕∆x′)⊕ F (α⊕∆x⊕∆x′)).

1In [Gra18], a similar technique was used to generate new pairs of texts.



Navid Ghaedi Bardeh and Vincent Rijmen 7

Assume now that d words of ∆x equal zero, then ∆x′ can take qd − 1 different values
for those words, and there are 2(n−d)−1 choices for exchanging non-zero words, between α
and α⊕∆x (there are n− d distinct words). So it means that there are 2(n−d)−1 · (qd − 1)
different related pairs which all follow the relation (4). For typical 128-bit SPN based
block ciphers, we have q = 232 and n = 4. As an example, by selecting d = 2, the total
number of related pairs that are generated in this way is 265, including the original pair of
texts.

The central advantage of redefining the zero-difference property with the concept of
related differences, is to combine two techniques: related differentials and zero-difference
cryptanalysis. In the next subsection, we discuss this in more details.

3.3 Embedding related differentials within zero-difference cryptanalysis
Now we are ready to combine the zero-difference property with related differentials for
SPNs. Consider a t-round SPN which is divided into two parts: E = F ◦ G. Thus G
represents the first t− 2 rounds of the encryption operation, and F represents the final
two rounds of the encryption operation. Assume that there are related differentials with
probability pr over G:

∆x G−→ ∆y,

∆x′ G−→ ∆y′.

Since differences ∆y and ∆y′ are related differences, we are allowed to combine it with the
results of Theorem 2

ν(F (α)⊕ F (α⊕∆y)) = ν(F (α⊕∆y′)⊕ F (α⊕∆y ⊕∆y′)).

We then have a zero-difference property over the t-round SPN with probability pr:

ν(F ◦G(α)⊕ F ◦G(α⊕∆x)) = ν(F ◦G(α⊕∆x′)⊕ F ◦G(α⊕∆x⊕∆x′)).

The existence of related differentials for an SPN relies on the details of its linear layer. In
the case of AES-like ciphers, the linear layer is composed of the MixColumns and ShiftRows
transformations. As studied in [DR09], there exist some MixColumns transformations
without related differentials. However, there are some MixColumns transformations which
have related differentials. So, in these cases, the combination mentioned here is not
avoidable.

In the next section, we will show that there are related differentials for up to 4-round
AES with certain probabilities. They result into extensions of the zero-difference property
up to 8 rounds, using the generalization mentioned here.

4 Extensions of zero-difference property for reduced-round
AES

In this section, we investigate how to extend the result of Theorem 2 to 6- and 8-round AES.
For this, we look for related differentials over reduced-round AES. Let first reformulated the
result of Theorem 2 for AES. Let S = SB ◦AK ◦MC ◦SB and P = SR ◦AK ◦MC ◦SR
where S can be seen as the concatenation of four independent superboxes operating over
F4

28 . Then, four-round AES can be seen as

R4 = AK ◦MC ◦ SR ◦ S ◦ P ◦ S ◦ SR ◦AK.

This is a typical superbox representation of 4-round AES in the literature [DR09,Gil14,
RBH17]. So the relation (4) also holds for the case of four-round AES where F = R4 and
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α,∆x,∆x′ ∈ F4×4
28 . We also assume ∆x,∆x′ are (diagonal-) related differences if and only

if
∆xi∆x′i(∆xi ⊕∆x′i) = 0, for i = 0, 1, 2, 3,

where ∆xi and ∆x′i indicate the diagonal i of the differences. It other words, the diagonals
i in αi, αi ⊕∆xi, αi ⊕∆x′i and αi ⊕∆xi ⊕∆x′i take at most two values, for every i.

Our aim now is to find related differentials over reduced-round AES. The basic idea
consists of choosing an input quartet (α, α⊕∆x, α⊕∆x′, α⊕∆x⊕∆x′), where ∆x and
∆x′ are related differences, such that the corresponding output quartet (Rt(α), Rt(α ⊕
∆x), Rt(α⊕∆x′), Rt(α⊕∆x⊕∆x′)) for t = 2, 4, can be also defined by only two related
differences

∆y = Rt(α)⊕Rt(α⊕∆x),∆y′ = Rt(α)⊕Rt(α⊕∆x′).

Then, the relation (4) will extend to 6-round and 8-round AES. To determine the essential
role of MC in creating our results, we denote by now R4 = MC ◦G ◦MC ◦G where

G = SR ◦ SB ◦AK ◦MC ◦ SR ◦ SB ◦AK.

G can also be seen as four parallel super-boxes operating on 4 bytes of the state indepen-
dently (not four bytes placed in a column of state). This 4-round AES decomposition
is a bit different from the decomposition of 4-round AES mentioned above. However,
this 4-round AES decomposition will clearly show how the middle and last MC affect
differences which forms a basis for our results. We have noticed that a careful combination
of byte-related differentials sets from Table 2, provides related differentials over 2-round
and 4-round AES.

4.1 2-round related differentials for AES
Let us now consider an input quartet (α, α⊕∆x, α⊕∆x′, α⊕∆x⊕∆x′) where

α =


α0 α4 α8 α12
α1 α5 α9 α13
α2 α6 α10 α14
α3 α7 α11 α15

 , ∆x =


∆x0 ∆x4 ∆x8 ∆x12
∆x1 ∆x5 ∆x9 ∆x13
∆x2 ∆x6 ∆x10 ∆x14
∆x3 ∆x7 ∆x11 ∆x15

 ,

∆x′ =


∆x0 0 ∆x8 0

0 ∆x5 0 ∆x13
∆x2 0 ∆x10 0

0 ∆x7 0 ∆x15

 , ∆x⊕∆x′ =


0 ∆x4 0 ∆x12

∆x1 0 ∆x9 0
0 ∆x6 0 ∆x14

∆x3 0 ∆x11 0

 ,
and ∆x and ∆x′ are related differences. It is obvious from this quartet that two states
α⊕∆x′ and α⊕∆x⊕∆x′ are generated by exchanging diagonals 1 and 3 between α and
α⊕∆x. Now assume that we have

G(α)⊕G(α⊕∆x) =


2λ0 3λ1 λ2 λ3
λ0 2λ1 3λ2 λ3
λ0 λ1 2λ2 3λ3
3λ0 λ1 λ2 2λ3

 , (5)

where λi ∈ F28 . Since G acting independently on 32-bits of the state, the differences
G(α)⊕G(α⊕∆x′) and G(α)⊕G(α⊕∆x⊕∆x′) equal respectively

2λ0 0 λ2 0
0 2λ1 0 λ3
λ0 0 2λ2 0
0 λ1 0 2λ3

 ,


0 3λ1 0 λ3
λ0 0 3λ2 0
0 λ1 0 3λ3

3λ0 0 λ2 0

 . (6)
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Figure 2: 2-round related differential trails starting with ∆x, ∆x′ and ∆x⊕∆x′ respectively.
The probability (binary logarithm) of each map is indicated under the corresponding arrow.

In other words, since two diagonals in each of input differences ∆x′ and ∆x⊕∆x′ equal zero,
it then causes that the two diagonals in the corresponding output differences equal zero
(notice that G contains two SR operations). Therefore, MC maps these three differences
(5) and (6) to a set of differences


5λ0 0 4λ2 0
0 5λ1 0 4λ3

4λ0 0 5λ2 0
0 4λ1 0 5λ3

 ,


5λ0 7λ1 0 λ3
λ0 5λ1 7λ2 0
0 λ1 5λ2 7λ3

7λ0 0 λ2 5λ3

 ,


0 7λ1 4λ2 λ3
λ0 0 7λ2 4λ3
4λ0 λ1 0 7λ3
7λ0 4λ1 λ2 0

 , (7)

which are related differences. Therefore,

ν(R6(α)⊕R6(α⊕∆x)) = ν(R6(α⊕∆x′)⊕R6(α⊕∆x⊕∆x′)).

We now need to evaluate the probability that, given an input random pair (α, α⊕∆x), the
condition (5) holds. At random, this condition happens with probability (232− 1) · 2−128 ≈
2−96, since there are 232−1 values for (λ0, λ1, λ2, λ3). Then, the differences (6) happen with
probability one. This 2-round related differentials trail is depicted in Figure 2. We have
also noticed that an identical rotation on all columns of the difference G(α)⊕G(α⊕∆x),
causes a new related differentials trail. There are three different possible cases for such
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rotations on G(α)⊕G(α⊕∆x), i.e.
3λ0 λ1 λ2 2λ3
2λ0 3λ1 λ2 λ3
λ0 2λ1 3λ2 λ3
λ0 λ1 2λ2 3λ3

 ,

λ0 λ1 2λ2 3λ3
3λ0 λ1 λ2 2λ3
2λ0 3λ1 λ2 λ3
λ0 2λ1 3λ2 λ3

 ,

λ0 2λ1 3λ2 λ3
λ0 λ1 2λ2 3λ3
3λ0 λ1 λ2 2λ3
2λ0 3λ1 2λ2 λ3

 .
So there are four possible difference values for G(α) ⊕ G(α ⊕ ∆x). Then, such event
happens with probability 4 · 2−96 = 2−94 at random. We may summarize the result as
follows.
Theorem 3. Let α ∈ F4×4

28 and ∆x,∆x′ ∈ F4×4
28 be two related differences, where all

diagonals in ∆x are non-zero and two non-consecutive diagonals in ∆x′ are zero, then the
relations

R4(α)⊕R4(α⊕∆x)⊕R4(α⊕∆x′)⊕R4(α⊕∆x⊕∆x′) = 0 (8)

and

ν(R6(α)⊕R6(α⊕∆x)) = ν(R6(α⊕∆x′)⊕R6(α⊕∆x⊕∆x′)) (9)

hold with probability 2−94.

Proof. Assume that the input quartet (α, α ⊕∆x, α ⊕∆x′, α ⊕∆x ⊕∆x′) conforms to
differences (5) and (6) which happens with probability 4 · 2−96 = 2−94, then the differences

∆y = R2(α)⊕R2(α⊕∆x),∆y′ = R2(α)⊕R2(α⊕∆x′)

are also related differences. The result then directly follows due to Theorem 2.

More importantly, this 2-round related differentials can be extended to 4-round related
differentials.

4.2 4-round related differentials for AES
Suppose now that the differences (7) map to the following differences through G, respec-
tively:

5γ0 0 4γ2 0
0 4γ1 0 5γ3

4γ0 0 5γ2 0
0 5γ1 0 4γ3

 ,


5γ0 γ1 0 7γ3
γ0 0 7γ2 5γ3
0 7γ1 5γ2 γ3

7γ0 5γ1 γ2 0

 ,


0 γ1 4γ2 7γ3
γ0 4γ1 7γ2 0
4γ0 7γ1 0 7γ3
7γ0 0 γ2 4γ3

 , (10)

where γi ∈ F28 . Then MC maps these three differences to a new set of differences,
respectively:

Eγ0 9γ1 Dγ2 Bγ3
9γ0 Dγ1 Bγ2 Eγ3
Dγ0 Bγ1 Eγ2 9γ3
Bγ0 Eγ1 9γ2 Dγ3

 ,

Eγ0 0 Dγ2 0

0 Dγ1 0 Eγ3
Dγ0 0 Eγ2 0

0 Eγ1 0 Dγ3

 ,


0 9γ1 0 Bγ3
9γ0 0 Bγ2 0
0 Bγ1 0 9γ3
Bγ0 0 9γ2 0

 ,
(11)

which are again related differences. It is worth noting that this 4-round differential is
iterative (depicted in Figure 3). Unfortunately, the probability of this differential is very
low. The probability that the difference

5γ0 0 4γ2 0
0 4γ1 0 5γ3

4γ0 0 5γ2 0
0 5γ1 0 4γ3
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Figure 3: 4-round related differential trails starting with ∆x, ∆x′ and ∆x⊕∆x′ respectively.
The probability (binary logarithm) of each map is indicated under the corresponding arrow.

happens is (232 − 1) · 2−64 ≈ 2−32, since there are 232 − 1 values for (γ0, γ1, γ2, γ3). And,
the difference 

5γ0 γ1 0 7γ3
γ0 0 7γ2 5γ3
0 7γ1 5γ2 γ3

7γ0 5γ1 γ2 0


happens with probability 2−64 (notice that the output difference of the first superbox is
already determined). The probability of 4-round related differentials trail is 2−32 · 2−64 ·
2−96 = 2−192. Also, another set of related differences, by exchanging the positions of 5γi

and 4γi, and 7γi and γi in the related differences set (10), works here. And, there are
four sets of related differences for (5). Therefore, in total, there are eight 4-round related
differentials trails so the probability of this event is 4 · 2 · 2−192 = 2−189 which makes that
the iteration of this related differentials has a too low probability. However, it provides
relations up to 6 rounds

Rt(α)⊕Rt(α⊕∆x)⊕Rt(α⊕∆x′)⊕Rt(α⊕∆x⊕∆x′) = 0, (12)

for 0 < t ≤ 6, since all differences are related differences every two rounds. We may
summarize the results as follows.
Theorem 4. Let α ∈ F4×4

28 and ∆x,∆x′ ∈ F4×4
28 be two related differences, where all

diagonals in ∆x are non-zero and two non-consecutive diagonals in ∆x′ are zero, then the
relations

Rt(α)⊕Rt(α⊕∆x)⊕Rt(α⊕∆x′)⊕Rt(α⊕∆x⊕∆x′) = 0, (13)

for 0 < t ≤ 6, and

ν(R8(α)⊕R8(α⊕∆x)) = ν(R8(α⊕∆x′)⊕R8(α⊕∆x⊕∆x′)) (14)
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hold with probability 2−189.

Proof. Assume that the input quartet (α, α⊕∆x, α⊕∆x′, α⊕∆x⊕∆x′) conforms the
4-round differential depicted in Figure 3 which happens with probability 2−189. Since the
input differences, and state differences at the end of round 2 and 4 are related differences,
from Theorem 2, we have

Rt(α)⊕Rt(α⊕∆x)⊕Rt(α⊕∆x′)⊕Rt(α⊕∆x⊕∆x′) = 0

for 0 < t ≤ 6. Also, since the differences

∆y = R4(α)⊕R4(α⊕∆x),∆y′ = R4(α)⊕R4(α⊕∆x′),

are also related differences, due to Theorem 2 we have

ν(R8(α)⊕R8(α⊕∆x)) = ν(R8(α⊕∆x′)⊕R8(α⊕∆x⊕∆x′))

There is another 4-round related differentials trail, provided in Appendix A. In the
next section, we show that the results of Theorem 4 can be used to attack 7-round AES.

5 New key-recovery attack for 7 round of AES-128
In this section, we present a 7-round key-recovery attack for AES-128, which follows from
a straight-forward extension of relation (13). Let an input quartet (P0, P0 ⊕ ∆x, P0 ⊕
∆x′, P0 ⊕∆x⊕∆x′) be generated by two related differences ∆x and ∆x′ where P0 is a
random plaintext and all diagonals in ∆x are non-zero and two non-consecutive diagonals
in ∆x′ are zero. Let (C0, C1, C2, C3) be the corresponding ciphertexts after 7-round AES.
Assume now this input quartet (P0, P0 ⊕ ∆x, P0 ⊕ ∆x′, P0 ⊕ ∆x ⊕ ∆x′) conforms the
differential characteristics depicted in Figure 4, which embeds the previous 4-round related
differentials characteristic in the first four rounds. From Theorem 4, with probability
2−189, we have

R6(P0)⊕R6(P0 ⊕∆x)⊕R6(P0 ⊕∆x′)⊕R6(P0 ⊕∆x⊕∆x′) = 0. (15)

Assume the following additional condition holds

ν(R7(P0)⊕R7(P0 ⊕∆x′)) = ν(R7(P0 ⊕∆x)⊕R7(P0 ⊕∆x⊕∆x′)), (16)

where wt(ν(R7(P0)⊕R7(P0⊕∆x′)) = 2. In other words, it means that SR−1◦MC−1(C0⊕
C2) is zero in two columns and that SR−1 ◦MC−1(C1 ⊕ C3) is zero in exactly the same
columns. The goal of this attack is to find candidates for this quartet by filtering output
quartets exploiting the condition (16). Then, for each of candidates the condition (15)
will be partially checked to recover some bytes of last-round key. And, by guessing the
rest of bytes of last-round key, it will be checked that the quartet conforms the 7-round
differential characteristics.

We first need to evaluate the probability that the condition (16) holds. Since two
diagonals in the difference R4(P0)⊕R4(P0⊕∆x′) are non-zero, see (11). Then, in order to
satisfy (16), two diagonals in the difference R5(P0)⊕R5(P0 ⊕∆x′) should be zero which
means that four bytes in this difference should be zero. Therefore, two columns in the
difference R6(P0)⊕R6(P0 ⊕∆x′) equal zero. Also, from (15), we know that

R6(P0)⊕R6(P0 ⊕∆x′) = R6(P0 ⊕∆x)⊕R6(P0 ⊕∆x⊕∆x′).
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Figure 4: 7-round differential trails starting with ∆x,∆x′ and ∆x ⊕ ∆x′ respectively.
A white cell indicates that the state difference is zero for that bytes. Both darker and
lighter line pattern cell indicate that the state difference is non-zero in the cell while darker
one also indicates the value of difference in a cell equal to the value of one of other two
differences in the same cell.

It then means that two columns in the difference R6(P0⊕∆x)⊕R6(P0⊕∆x⊕∆x′) equal
zero. Equivalently, two columns in the difference R6(P0) ⊕ R6(P0 ⊕∆x) equal the two
corresponding columns in the difference R6(P0)⊕R6(P0 ⊕∆x⊕∆x′).

Therefore, the condition wt(ν(R7(P0) ⊕ R7(P0 ⊕ ∆x′)) = 2 happens when any two
diagonals in this difference R5(P0)⊕R5(P0 ⊕∆x′) are zero, i.e four bytes are zero. This
happens with probability

(4
2
)
· 2−4·8 ≈ 2−29.4,

(4
2
)
possible cases that two diagonals are

zero. So, in total, an input quartet (P0, P0 ⊕∆x, P0 ⊕∆x′, P0 ⊕∆x⊕∆x′) satisfies the
two conditions (15) and (16) with probability 2−189 · 2−29.4 = 2−218.4. On the other hand,
for a random output quartet (C0, C1, C2, C3), the probability that SR−1 ◦MC−1(C0⊕C2)
is zero in two columns, eight bytes, is

(4
2
)
· 2−8·8 ≈ 2−61.4,

(4
2
)
possible cases that two

columns are zero. And, the probability that SR−1 ◦MC−1(C1 ⊕ C3) is zero in the exact
same columns as SR−1 ◦MC−1(C0 ⊕ C2) is 2−64. Therefore, the probability that such
random output quartet satisfies the condition (16) is 2−61.4 · 2−64 = 2−125.4.

5.1 Data collection

To generate one input quartet (P0, P0 ⊕∆x, P0 ⊕∆x′, P0 ⊕∆x ⊕∆x′) conforming the
7-round characteristic where P0 is a random plaintext and all diagonals in ∆x are non-zero
and two non-consecutive diagonals in ∆x′ are zero, we pick two random subsets A0 and
A1 of F8

28 , each of size m. Then we generate all m2 possible plaintexts from these two
sets where the first and third diagonals take the possible elements from the set A0 and
the second and last diagonals take the possible elements from the set A1. Note that, from
each set, we can generate

(
m
2
)
unique combinations of pairs. Then the number of unique

quartets generated from this set, A = A0 ⊕ A1, is
(

m
2
)
·
(

m
2
)
(see [BR19a, Theorem 2]

for more details, assume there are only two sets). If we set m = 255.1, we can prepare
2109.2 · 2109.2 = 2218.4 such quartets. The expected number of quartets conforming the
7-round characteristic of Figure 4 equals one.

5.2 Search for double collisions

Among 2218.4 quartets, the expected number of quartets satisfying the condition (16) is
given by

2218.4−125.4 = 293.
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We can find them, using hash tables as follows. We know that both pairs (P0, P0 ⊕∆x′)
and (P0⊕∆x, P0⊕∆x⊕∆x′), which should satisfy the condition (16), are differed in ∆x′

P0 ⊕ (P0 ⊕∆x′) = ∆x′ = (P0 ⊕∆x)⊕ (P0 ⊕∆x⊕∆x′). (17)

We also know that the set of plaintexts A is formed by spanning the first and third
diagonals with the possible elements from A0 and the rest of diagonals with elements from
A1. In order to find two pairs that satisfy the condition (16), we first search for plaintext
pairs, which differ in ∆x′, such that their corresponding ciphertext pairs differ in two
columns before the last linear layer. Since we can generate 2109.2 combinations of pairs
from A0 and there are 255.1 elements in A1, the expected number of remaining pairs equals
255.1 · 2109.2−64 = 2100.3. Therefore, it requires 2110.2 table look ups in the ciphertexts
table, using a hash table.

We now want to generate pairs of pairs (quartets) from 2100.3 remaining pairs such
that they satisfy the condition (16). Notice that not all possible pairs of pairs, 2199.6

quartets, are our desired input quartets. In other words, we are interested in pairs of
pairs which satisfy (17). Also, notice that the plaintexts P0 ⊕∆x′ and P0 ⊕∆x⊕∆x′ are
generated by exchanging two diagonals between P0 and P0 ⊕∆x. Thus, in order to filter
these undesired input quartets, we insert 2100.3 remaining pairs in a hash table indexed by
∆x′, i,e. 2109.2 possible combinations of pairs from A0. So, we find quartets which satisfy
the conditions (16) and (17) simultaneously. It is expected that 2199.6−109.2 = 290.4 input
quartets are found. And, by repeating this for all possible cases where two columns in the
difference R7(P0)⊕R7(P0 ⊕∆x′) are zero,

(4
2
)

= 6 cases, we find 6 · 290.4 = 293 quartets
which satisfy the condition (16) and (17). This part requires 6 · 2 · 2100.3 table look ups in
the ciphertexts table.

5.3 Retrieving key candidates
We now check partially the condition (15) for each remaining quartet. W.l.o.g., we assume
that the first two columns of R6(P0)⊕R6(P0⊕∆x′) are non-zero and the last two columns
equal zero, which we already checked for the condition (16). Now we should check that

R6(P0)⊕R6(P0 ⊕∆x)⊕R6(P0 ⊕∆x′)⊕R6(P0 ⊕∆x⊕∆x′) = 0,

considering only the first two columns of each state. Let us denote the last-round key by
k7. We assume that the last SR and MC, and AK are swapped. It then means that an
equivalent round-key u7 = SR−1(MC−1(k7)) is xored with data before the last SR and
MC. For each (C0, C1, C2, C3), assuming that we already applied SR−1 ◦MC−1 to all
ciphertexts, we guess byte i of ui

7 and check

s−1(Ci
0 ⊕ ui

7)⊕ s−1(Ci
1 ⊕ ui

7)⊕ s−1(Ci
2 ⊕ ui

7)⊕ s−1(Ci
3 ⊕ ui

7) = 0, (18)

for i = {0, 1, 2, ..., 7} (all bytes placed in the first two columns) where s−1 is the inverse of
the AES Sbox and Ci

j denotes byte i of Cj . We then expect that there is a key candidate
for 8 bytes of u7, for each quartet. Now we check that each of the first and second
diagonal in the differences R5(P0) ⊕ R5(P0 ⊕ ∆x′) and R5(P0) ⊕ R5(P0 ⊕ ∆x ⊕ ∆x′)
contains only two active bytes since we computed the first two columns of the differences
R6(P0) ⊕ R6(P0 ⊕ ∆x′) and R6(P0) ⊕ R6(P0 ⊕ ∆x ⊕ ∆x′). This is a 64-bit filtering,
32-bit filtering by checking the condition on each difference R5(P0)⊕R5(P0 ⊕∆x′) and
R5(P0) ⊕ R5(P0 ⊕ ∆x ⊕ ∆x′). Then, the expected number of quartets satisfying this
condition equals 293−32−32 = 229.

In the first step, for each remaining quartet, it requires four table look ups in s−1 for
each key candidates, ui

7. We check eight bytes of u7 so this step needs 4 · 8 · 28 table look
ups in s−1. In the second step, after eight bytes of ui

7 are computed, we need to decrypt
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partially the first two diagonals of R−2(Ci) for all four ciphertexts in the quartet. So this
step requires 4 · 8 table look ups in s−1. Therefore, these two steps can be done by

293(4 · 8 · 28 + 4 · 8) ≈ 2106

table look ups in s−1. The rest of bytes of u7 are recovered with an exhaustive search for
229 quartets, which takes 229 ·264 = 293 7-round encryption. Therefore, the data complexity
of the attack is 2110.2 chosen plaintexts, the memory complexity is 2110.2 128-bit blocks,
and the time complexity is dominated by encrypting the plaintexts. And, this attack is
independent of the AES key-schedule since only last round-key is recovered during the
attack.
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A Related differentials on reduced-round AES
A.1 3-round related differentials
Let us now consider an input quartet (α, α⊕∆x, α⊕∆x′, α⊕∆x⊕∆x′)

α =


α0 0 0 0
0 α5 0 0
0 0 α10 0
0 0 0 α15

 , ∆x =


∆x0 0 0 0

0 ∆x5 0 0
0 0 ∆x10 0
0 0 0 ∆x15

 ,

∆x′ =


∆x0 0 0 0

0 0 0 0
0 0 ∆x10 0
0 0 0 0

 , ∆x⊕∆x′ =


0 0 0 0
0 ∆x5 0 0
0 0 0 0
0 0 0 ∆x15

 ,
where ∆x and ∆x′ are related differences. This quartet conforms the differential charac-
teristics depicted in Figure 5 with probability of 4 · 2 · 2−24 · 2−96 = 2−117.
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Figure 5: 3-round related differential trails starting with ∆x, ∆x′ and ∆x⊕∆x′ respectively.
The probability (binary logarithm) of each map is indicated under the corresponding arrow.
Function F is SR ◦ SB.

A.2 4-round related differentials
Let us now consider an input quartet (α, α⊕∆x, α⊕∆x′, α⊕∆x⊕∆x′)

α =


α0 α4 α8 α12
α1 α5 α9 α13
α2 α6 α10 α14
α3 α7 α11 α15

 , ∆x =


∆x0 0 ∆x8 0

0 ∆x5 0 ∆x13
∆x2 0 ∆x10 0

0 ∆x7 0 ∆x15

 ,

∆x′ =


∆x0 ∆x4 0 ∆x12
∆x1 ∆x5 ∆x9 0

0 ∆x6 ∆x10 ∆x14
∆x3 0 ∆x11 ∆x15

 , ∆x⊕∆x′ =


0 ∆x4 ∆x8 ∆x12

∆x1 0 ∆x9 ∆x13
∆x2 ∆x6 0 ∆x14
∆x3 ∆x7 ∆x11 0

 ,
where ∆x and ∆x′ are related differences. This quartet conforms the the differential
characteristics depicted in Figure 6 with probability of 2−189.

B 6-round distinguisher for AES
Theorem 3 in Section 3 can be used directly to set up a straightforward 6-round chosen-
plaintext distinguisher for AES. Consider an input quartet (P0, P0⊕∆x, P0⊕∆x′, P0⊕∆x⊕
∆x′) generated by two related differences ∆x and ∆x′ where P0 is a random plaintext and
all diagonals in ∆x are non-zero and two non-consecutive diagonals in ∆x′ are zero. And,
let this input quartet map to (C0, C1, C2, C3) after 6-round AES encryption. By Theorem 3,
with probability 2−94 we have

ν(R6(P0)⊕R6(P0 ⊕∆x′)) = ν(R6(P0 ⊕∆x)⊕R6(P0 ⊕∆x⊕∆x′)). (19)
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Figure 6: 4-round related differentials trails starting with ∆x, ∆x′ and ∆x⊕∆x′ respec-
tively. The probability (binary logarithm) of each map is indicated under the corresponding
arrow.

Now assume the following condition is given by

wt(ν(R6(P0)⊕R6(P0 ⊕∆x)) = 3 (20)

It then means that SR−1 ◦MC−1(C0 ⊕ C1) is zero in three columns and that SR−1 ◦
MC−1(C2 ⊕ C3) is zero in exactly the same columns. This condition happens with
probability 4 · 2−96 = 2−94. So, in total, (C0, C1, C2, C3) follows (20) and (19) with
probability 2−94 · 2−94 = 2−188. In the random case, however, the probability that a
ciphertext quartet satisfies the conditions (20) and (19) simultaneously is 2−94 · 2−96 =
2−190.

Similar to data collection in Subsection 5.1, we set m = 247.5 and we prepare 2188

different input quartets. For the AES case, the expected number of quartets that satisfy
the conditions (20) and (19) equals one, while, at random, the expected number of quartets
equals 2188−190 = 2−2. Thus, the data complexity of the 6-rounds distinguisher is m2 = 295

chosen plaintexts.


	Introduction
	Our contributions
	Overview of this paper and main result

	Preliminaries
	AES
	Related differentials
	Zero-difference cryptanalysis

	Generalize zero-difference cryptanalysis with related differences
	Generating more related pairs
	Zero-difference cryptanalysis revisited
	Embedding related differentials within zero-difference cryptanalysis

	Extensions of zero-difference property for reduced-round AES
	2-round related differentials for AES
	4-round related differentials for AES

	New key-recovery attack for 7 round of AES-128
	Data collection
	Search for double collisions
	Retrieving key candidates

	Related differentials on reduced-round AES
	3-round related differentials
	4-round related differentials

	6-round distinguisher for AES

