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Abstract. A new fundamental 4-round property of AES, called the zero-difference
property, was introduced by Rønjom, Bardeh and Helleseth at Asiacrypt 2017. Our
work characterizes it in a simple way by exploiting the notion of related differences
which was introduced and well analyzed by the AES designers. We extend the
4-round property by considering some further properties of related differences over
the AES linear layer, generalizing the zero-difference property. This results in a new
key-recovery attack on 7-round AES which is the first attack on 7-round AES by
exploiting the zero-difference property.
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1 Introduction
The Rijndael block cipher [DR98] has been designed in the late 1990’s by Joan Daemen and
Vincent Rijmen, and was chosen as the Advanced Encryption Standard (AES) by NIST in
2000. It is since then the most used and the most analysed symmetric primitive worldwide.
There are three versions of AES, with different key sizes, and a different number of rounds:
AES-128 with 10 rounds, AES-192 with 12 rounds, and AES-256 with 14 rounds. During
the previous two decades, many different cryptanalytic techniques have been applied to
AES. Up to now, the best attacks on AES-128 in the secret-key model cover seven rounds.
The impossible-differential attack [LP21] and the meet-in-the-middle attack [DFJ13] are
the best-known two attacks on AES-128.

A key-recovery attack against a block cipher is generally based on the existence of
a distinguishing property. A distinguishing property refers to a statistical or structural
property of a cipher that a random permutation does not have, thus we can distinguish
the cipher from a random permutation. For example, impossible-differential attacks and
meet-in-the-middle attacks on 7-round AES-128 exploit 4-round distinguishers.

Recently, in a series of works, new distinguishers for reduced-round AES appeared [GRR17,
RBH17,Gra18,BR19b,BR19a,Bar19]. These distinguishers exhibit new and fundamental
properties of the AES which result in new efficient key-recovery attacks on 5-round AES.
At Eurocrypt 2017, the authors of [GRR17] proposed the first key-independent 5-round
distinguisher which requires 232 chosen texts with a computational cost of 235.6 look-ups
into a memory of size 236 bytes. They showed that by encrypting cosets of certain sub-
spaces of the plaintext space the number of times the difference of ciphertext pairs lies in a
particular subspace of the state space always is a multiple of 8, known as the multiple-of-8
property. However, this distinguisher could not be exploited directly for mounting a key-
recovery attack because of the particular subspace used in the multiple-of-8 property. This
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problem was solved in [Gra18] which results in a new key-recovery attack on 5-round AES.
Subsequent work at Crypto 2018 improved on their result and proposed a key-recovery
attack on 5-round AES which requires 224 chosen plaintexts and operations [BDK+18].

At Asiacrypt 2017, the authors of [RBH17] presented distinguishers for 3- to 6-round
AES. The authors introduced a new deterministic 4-round property in AES, which states
that sets of pairs of plaintexts that are equivalent by exchange of any subset of diagonals
encrypts to a set of pairs of ciphertexts after four rounds that all have a difference of
zero in exactly the same columns before the final linear layer, called the zero-difference
property. This deterministic property was extended to a probabilistic 5-round property
in [BR19a]. By exploiting this 4-round distinguishing property, a new key-recovery on
5-round AES was described in [RBH17]. At Eurocrypt 2020, the authors of [DKRS20]
improved the key-recovery to the attack on 5-round AES to 29 adaptive chosen plaintexts
and ciphertexts (ACCs) and 223 encryptions, and proposed a new attack on 5-round AES
with 215 ACCs and 216.5 operations.

The aim of our paper is to present a key-recovery attack against 7-round AES-128
based on the zero-difference property. We provide a general formulation of the zero-
difference property which allows to combine the 4-round zero-difference property with
related differentials (introduced in [DR09]). It results in a new 7-round related differentials
characteristic. We then present the first key-recovery attack on 7-round AES based on the
zero-difference property.

1.1 Our contributions
This work generalizes the zero-difference property by providing new insights into it. It
provides a simpler formulation and interpretation of the zero-difference property. For this,
we recall the notion of related differences and related differentials which were introduced
by Daemen and Rijmen in [DR09]. Related differentials can be considered a particular
form of second-order differentials [Lai94] where the AND of the differences defining the
second-order differential equals zero.

The notion of related differences provides a very simple formulation of the zero-difference
property. In particular, we show that the zero-difference property works on larger sets of
pairs of plaintexts than the one described in its original formulation [RBH17]. We use
the concept related differences to redefine the zero-difference property for SPN’s. Most
notably, we embed related differentials within the zero difference property for SPN’s. We
show here related differentials up to 4 rounds of AES, which result in extensions of the
zero-difference property up to 8-round AES. We describe a new 7-round related-differential
characteristic for AES, which embeds 4-round related differentials. This permits to mount
a key-recovery attack on 7-round AES which data/time/memory complexities below 2110.2.

1.2 Related work
The idea of using several differentials simultaneously in an attack has been studied in
several works (see [DKR97,BG11,Tie16,RBH17,Gra18,DKRS20]). Besides the results
which are constituted by assuming independence of the differentials, few works [Tie16,
RBH17,Gra18,DKRS20] have studied the propagation of multiple input differences through
a cipher with a focus on the correlation between their differentials.

Related differentials can be considered as a particular form of polytopic differentials
(polytopic transition) introduced in polytopic cryptanalysis [Tie16]. While there is not any
specific relation between input differences considered in polytopic differentials, the input
and output differences in related differentials are restricted to have a specific form (they
have to be related differences).

As opposed to higher-order differentials, the probability of related differentials can be
evaluated by the ordinary differential cryptanalysis technique due to the specific form of
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related differences considered in related differentials.

1.3 Overview of this paper and main result
Section 2 describes the AES and recalls the notion of related difference and differential.
Section 3 presents the link between the notion of related difference and the zero-difference
property, and it generalizes the zero-difference property. Section 4 presents related
differentials trails for 2 and 4-round AES. It also explains how to extend the zero-difference
property to 6 and 8 rounds. Section 5 explains how to mount a key-recovery attack on
7-round AES based on the zero-difference property. For comparison, Table 1 summarizes
the current best key-recovery attacks for 7 rounds of AES-128. Note that most of the
known best attacks exploit properties of the AES key-schedule. Our result is independent
of the key-schedule, which makes it in some sense more general.

Table 1: Current best cryptanalysis of 7-round AES-128 in the secret-key model.

Attack Rounds Data Time Memory Key schedule Ref.
Impossible Differential 7 2112.2 2117.2 2112.2 yes [LDKK08]
Meet-in-the-Middle 7 2116 2116 2116 yes [DKS10]

Impossible Differential 7 2105.1 2113 274.1 yes [BLNS18]
Impossible Differential 7 2104.9 2110.9 271.9 yes [LP21]
Zero-Difference 7 2110.2 2110.2 2110.2 no Section 5
Meet-in-the-Middle 7 297 299 298 yes [DFJ13]

2 Preliminaries
In this section, we start by providing a brief description of the AES. Then, the related
differences and differentials, and the zero-difference cryptanalysis are described briefly with
necessary results. We work throughout this paper with finite fields of characteristic 2 that
are fields containing q = 2m elements, seen as extensions of F2 .

2.1 AES
The Advanced Encryption Standard (AES) [AES01] is the most widely adopted block
cipher in the world today. An AES internal state α is typically represented by a 4 by 4
matrix of bytes 

α0 α4 α8 α12
α1 α5 α9 α13
α2 α6 α10 α14
α3 α7 α11 α15

 ,
where αi ∈ F28 . AES-128 has 10 rounds where one full round of AES applies four

operations to the state matrix:

• SubBytes (SB) applies 16 identical Sboxes Sa, 8-bit to 8-bit, independently to each
byte of the state,

• ShiftRows (SR) shifts the i-th row left by i positions,

• MixColumns (MC) applies a fixed linear transformation to each column,

• AddKey (AK) xors a 128-bit round-key to the state.
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In the last round, the MC operation is omitted. Also, an additional AK is applied to the
plaintext before it is used as input to the first round. We denote by Rt(x) the sequence of
t full rounds of AES, including the first additional AK.

2.2 Related differentials
In [DR09], Daemen and Rijmen define a new type of difference called related differences.
They studied the propagation of these differences through the AES linear layer. We call
an element of Fq a word and a vector of words α = (α0, α1, ..., αn−1) ∈ Fn

q a state. Then
the related differences and differentials are defined in [DR09] as below:
Definition 1 (related differences [DR09]). A pair of differences ∆x,∆x′ ∈ Fn

q are related
differences if and only if:

∆xi∆x′i(∆xi ⊕∆x′i) = 0, for i = 0, ..., n− 1. (1)
It is obvious that relation (1) holds iff at least one of ∆xi, ∆x′i and ∆xi ⊕ ∆x′i

equals zero for every value of i. For a state α ∈ Fn
q , we can define four distinct states,

called a quartet, (α, α ⊕ ∆x, α ⊕ ∆x′, α ⊕ ∆x ⊕ ∆x′) where the two differences ∆x
and ∆x′ are related. The main important property of this quartet is that the sets
{αi, αi ⊕∆xi, αi ⊕∆x′i, αi ⊕∆xi ⊕∆x′i}, for every i, contain only two different elements.
In general, the set of all related differences ∆x and ∆x′ is defined as follows

H ={(∆x,∆x′) ∈ Fn
q × Fn

q | ∀i ∆xi = 0 or ∆x′i = 0 or ∆xi ⊕∆x′i = 0}.
As shown in [DR09], related differences can be combined into related differentials.

αi

αi ⊕∆xi αi ⊕∆x′i

αi ⊕∆xi ⊕∆x′i
∆xi ⊕∆x′

i

∆xi ⊕∆x′
i

∆xi∆xi

∆x′
i

Figure 1: A schematic of the related differences and the associated quartet. The square
collapses to a line or point depending on ∆xi and ∆x′i.

Definition 2 (related differentials [DR09]). Two differentials (∆x,∆y) and (∆x′,∆y′)
for a linear map M are related differentials if and only if, ∆y = M(∆x), ∆y′ = M(∆x′),
the differences ∆x,∆x′ are related differences and the differences ∆y, ∆y′ are related
differences.

The MixColumns map of AES has some related differentials, where two related differ-
ences ∆x and ∆x′ are defined over F4

28 [DR09]. Four of them are listed in Table 2. The
other related differentials can be derived from these four by means of rotation and/or
multiplication by a scalar (see [DR09] for more details). In this paper we call them
byte-related differences and differentials when they are defined over F4

28 .
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Table 2: The sets of byte-related differentials over AES MixColumns.

∆x ∆y ∆x′ ∆y′ ∆x⊕∆x′ ∆y ⊕∆y′
[0, 1, 4, 7] [0, 9, 0, B] [5, 1, 0, 7] [E, 0, D, 0] [5, 0, 4, 0] [E, 9, D,B]
[0, 1, 0, 3] [0, 1, 4, 7] [2, 0, 1, 0] [5, 1, 0, 7] [2, 1, 1, 3] [5, 0, 4, 0]
[7, 0, 7, 7] [9, E, 0, 0] [7, 7, 7, 0] [0, 0, 9, E] [0, 7, 0, 7] [9, E, 9, E]
[0, 3, 2, 0] [7, 0, 7, 1] [2, 0, 0, 3] [7, 1, 7, 0] [2, 3, 2, 3] [0, 1, 0, 1]

2.3 Zero-difference cryptanalysis
In [RBH17], a new fundamental property against 2 rounds of SPNs was introduced, called
the zero-difference property. Consider an SPN where the round key is xored to state
α ∈ Fn

q . The Sbox layer S can be seen as the concatenation of n independent Sboxes Sx

over Fq and P denotes the linear layer. We recall here the main definitions and notations
from [RBH17].

Definition 3 (The zero-difference pattern [RBH17]). Let α ∈ Fn
q and define the zero-

difference pattern
ν(α) = (z0, z1, . . . , zn−1)

that returns a binary vector in Fn
2 where zi = 1 indicates that αi is zero or zi = 0 otherwise.

Thus, ν(α) simply indicates the non-zero words of the state.

Definition 4 ( [RBH17]). For a vector v ∈ Fn
2 and a pair of states α, β ∈ Fn

q define a new
state ρv(α, β) ∈ Fn

q such that the i’th component is defined by

ρv(α, β)i = αivi ⊕ βi(vi ⊕ 1).

This is equivalent to
ρv(α, β)i =

{
αi if vi = 1,
βi if vi = 0.

Notice that (α′, β′) = (ρv(α, β), ρv(β, α)) is a new pair of states formed by exchanging
individual words between α and β according to the binary coefficients of v. From the
definition it can be seen that

ρv(α, β)⊕ ρv(β, α) = α⊕ β. (2)

Assume d is the total number of common words between α and β, αi = βi. Then, the
number of possible unique pairs (α′, β′) generated this way is 2n−d−1 (including the original
pair). Now, the following theorem shows a relation over a 2-round SPN.

Theorem 1 ( [RBH17]). Let α, β ∈ Fn
q and α′ = ρv(α, β), β′ = ρv(β, α) for any v ∈ Fn

2 ,
then

ν(S ◦ P ◦ S(α)⊕ S ◦ P ◦ S(β)) = ν(S ◦ P ◦ S(α′)⊕ S ◦ P ◦ S(β′))

Since P is linear and invertible, given a difference ∆x ∈ Fn
q , we can compute the

difference after P−1(∆x), with probability one. Therefore, we define µ(∆x) = ν(P−1(∆x))
and reformulate the result of Theorem 1 to a full 2-round SPN:

µ(P ◦ S ◦ P ◦ S(α)⊕ P ◦ S ◦ P ◦ S(β)) = µ(P ◦ S ◦ P ◦ S(α′)⊕ P ◦ S ◦ P ◦ S(β′)) (3)

Theorem 1 states that sets of pairs of states that are equivalent by exchange of any subset
of words encrypts to a set of pairs of states after 2-round SPN that all have a difference of
(non-)zero in exactly the same words before the final linear layer. We call these pairs of
states related pairs. In the next section, we will show that the set of related pairs is larger
than the set considered here.
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3 Generalization of zero-difference cryptanalysis with re-
lated differences

The central notion of this work is to redefine the zero-difference property with the concept
of related differences. We will show that quartets defined with two related differences have
the same property that quartets exploited in the zero-difference property have. This allows
to redefine the main result of zero-difference cryptanalysis in [RBH17], Theorem 1, with
the notion of related differences. Moreover, this redefinition permits to generate a larger
number of related pairs than mentioned in Subsection 2.3.

Besides generating a larger number of related pairs, this redefinition allows to embed
related differentials within the zero-difference property. Since both input and output
differences in related differentials are related differences, this combination is intuitively
straightforward. Then, as a result, the adversary can attack more rounds of an SPN if
related differentials exist for that SPN.

3.1 Generating more related pairs
Zero-difference cryptanalysis [RBH17,BR19a] works with a quartet (α, β, ρv(α, β), ρv(β, α)),
where α, β ∈ Fn

q . This quartet is very similar to the quartet defined by two related
differences ∆x and ∆x′ in Subsection 2.2. More precisely, this quartet can be defined by
two related differences ∆x and ∆x′ where the following condition holds:

∆x′i(∆xi ⊕∆x′i) = 0, for i = 0, ..., n− 1.

Interestingly, this quartet has the same property that the quartet defined by related
differences has:

The sets {αi, αi ⊕∆xi, αi ⊕∆x′i, αi ⊕∆xi ⊕∆x′i}, for every i, contain only
two different elements.

The only difference between these two quartets is that the condition ∆xi = 0 was not
considered in zero-difference property for generating new pairs of states. The following
theorem shows that quartets defined by related differences work in the zero-difference
property as well.

Theorem 2. Let α ∈ Fn
q and ∆x,∆x′ ∈ Fn

q be two related differences then

µ(F (α)⊕ F (α⊕∆x)) = µ(F (α⊕∆x′)⊕ F (α⊕∆x⊕∆x′)) (4)

where F = P ◦ S ◦ P ◦ S.

Proof. Since the Sbox layer operates independently on individual words and the sets
{αi, αi ⊕∆xi, αi ⊕∆x′i, αi ⊕∆xi ⊕∆x′i}, for every i, contain only two different elements,
we have

S(α)⊕ S(α⊕∆x)⊕ S(α⊕∆x′)⊕ S(α⊕∆x⊕∆x′) = 0.
It then follows that

P (S(α))⊕ P (S(α⊕∆x))⊕ P (S(α⊕∆x′))⊕ P (S(α⊕∆x⊕∆x′)) = 0.

Since the Sbox layer operates independently on individual words and each S-box is a
permutation, the (non-)zero words of each input difference map into (non-)zero words in
the corresponding output difference

µ(F (α)⊕ F (α⊕∆x)) = µ(F (α⊕∆x′)⊕ F (α⊕∆x⊕∆x′)).



6 New Key-Recovery Attack on Reduced-Round AES

We now show that considering the condition ∆xi = 0 makes it possible to generate a
larger number of related pairs, instead of the 2n−d−1 pairs in Definition 4. The set of all
related pairs constituted by all related differences ∆x and ∆x′ is defined as follows

Z ={(α, α⊕∆x, α⊕∆x′, α⊕∆x⊕∆x′) ∈ Fn
q × Fn

q × Fn
q × Fn

q | (∆x,∆x′) ∈ H}

Since we can choose two related differences ∆x and ∆x′, if we choose ∆xi = 0 for some
i, then there is exactly one value in those coordinates i of α and α⊕∆x, i.e. αi. So we
have freedom to choose a second value for those coordinates i, i.e. αi ⊕∆x′i. In this way,
when d words of ∆x are zero, at most (qd − 1) · 2n−d−1 pairs can be generated. Note
that, if ∆xi 6= 0 for some i, then it means that we already chose the two values for those
coordinates of α and α ⊕ ∆x.1 For typical 128-bit SPN based block ciphers, we have
q = 232 and n = 4. As an example, by selecting d = 2, the total number of related pairs
that are generated in this way is 265, including the original pair.

In order to cover all cases to generate new pairs of states, the trivial case is also
considered when both ∆xi and ∆x′i can equal zero for some coordinates i, which means
that the four states have a common value in this coordinate. So we can state that the
property of this quartet is that the sets {αi, αi⊕∆xi, αi⊕∆x′i, αi⊕∆xi⊕∆x′i}, for every
i, contain at most two different elements.

The main advantage of redefining the zero-difference property with the concept of
related differences, is to combine two techniques: related differentials and zero-difference
cryptanalysis. In the next subsection, we discuss this in more details.

3.2 Embedding related differentials within zero-difference cryptanalysis
Now we are ready to combine the zero-difference property with related differentials for
SPNs. Consider a t-round SPN which is divided into two parts: E = F ◦ F ′, where F ′
represents the first t− 2 rounds of the encryption operation, and F represents the final
two rounds of the encryption operation. Assume that there are related differentials with
probability pr over F ′:

∆x F ′

−→ ∆y,

∆x′ F ′

−→ ∆y′.

Since the differences ∆y and ∆y′ are related differences, from Theorem 2, we have

µ(F (β)⊕ F (β ⊕∆y)) = µ(F (β ⊕∆y′)⊕ F (β ⊕∆y ⊕∆y′)), (5)

where β = F ′(α) and α ∈ Fn
q . We then have a zero-difference property over the t-round

SPN with probability pr:

µ(F ◦ F ′(α)⊕ F ◦ F ′(α⊕∆x)) = µ(F ◦ F ′(α⊕∆x′)⊕ F ◦ F ′(α⊕∆x⊕∆x′)). (6)

We add this as a simple theorem to summarize the combination of the zero-difference
property with related differentials for SPNs.

Theorem 3. Let E = F ◦ F ′, where F ′ and F are a t-round and a two-round SPN,
respectively. If ∆y = F ′(∆x) and ∆y′ = F ′(∆x′) are related differentials with probability
pr, then

µ(E(α)⊕ E(α⊕∆x)) = µ(E(α⊕∆x′)⊕ E(α⊕∆x⊕∆x′)) (7)

holds with probability pr.
1In [Gra18], a similar technique was used to generate new pairs of texts.
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Proof. Since differences ∆y and ∆y′ are related differences, with probability pr, from The-
orem 2, we have

µ(F (β)⊕ F (β ⊕∆y)) = µ(F (β ⊕∆y′)⊕ F (β ⊕∆y ⊕∆y′)),

where β = F ′(α) and α ∈ Fn
q . It then follows that

µ(F ◦ F ′(α)⊕ F ◦ F ′(α⊕∆x)) = µ(F ◦ F ′(α⊕∆x′)⊕ F ◦ F ′(α⊕∆x⊕∆x′)).

The existence of related differentials for an SPN relies on the details of its linear layer. In
the case of AES-like ciphers, the linear layer is composed of the MixColumns and ShiftRows
transformations. As studied in [DR09], there exist some MixColumns-like transformations
without related differentials. They show examples of matrices with Hadamard structures
which allow no related differentials. For example, they showed that the following 4 × 4
Hadamard matrix

MAnubis =


1 2 4 6
2 1 6 4
4 6 1 2
6 4 2 1


which is used for linear transformation in the Anubis block cipher [BR00] has related
differentials. However, if the four 6’s are replaced by 9’s, then there are no related
differentials.

Thus, in the cases of matrices which have related differentials, the combination men-
tioned here is not avoidable. In the next section, we will show that there are related
differentials for up to 4-round AES with certain probabilities. They result into extensions
of the zero-difference property up to 8 rounds, using the generalization mentioned here.

4 Extensions of the zero-difference property for reduced-
round AES

In this section, we investigate how to extend the result of Theorem 2 to 6- and 8-round AES.
For this, we look for related differentials over reduced-round AES. Let’s first reformulate
the result of Theorem 2 for AES. Let S = SB◦AK ◦MC ◦SB and P = SR◦AK ◦MC ◦SR
where S can be seen as the concatenation of four independent superboxes operating over
F4

28 . Then, four-round AES can be seen as

R4 = AK ◦MC ◦ SR ◦ S ◦ P ◦ S ◦ SR ◦AK.

This is a typical superbox representation of 4-round AES in the literature [DR09,Gil14,
RBH17]. So the relation (4) also holds for the case of four-round AES where F = R4 and
α,∆x,∆x′ ∈ F4×4

28 . We say that ∆x,∆x′ are diagonal related differences if and only if

∆xi∆x′i(∆xi ⊕∆x′i) = 0, for i = 0, 1, 2, 3,

where ∆xi and ∆x′i indicate the diagonal i of the differences. It other words, the diagonals
i in αi, αi ⊕∆xi, αi ⊕∆x′i and αi ⊕∆xi ⊕∆x′i take at most two values, for every i.

Our aim now is to find related differentials over reduced-round AES. The basic idea
consists of choosing an input quartet (α, α ⊕ ∆x, α ⊕ ∆x′, α ⊕ ∆x ⊕ ∆x′), where ∆x
and ∆x′ are diagonal related differences, such that the corresponding output quartet
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Figure 2: A graphical representation of G given input and output x and y respectively.
Input and output of each super-box indicates with a same color.

(Rt(α), Rt(α⊕∆x), Rt(α⊕∆x′), Rt(α⊕∆x⊕∆x′)) for t = 2, 4, can be also defined by
only two related differences

∆y = Rt(α)⊕Rt(α⊕∆x),∆y′ = Rt(α)⊕Rt(α⊕∆x′).

Then, the relation (4) will extend to 6-round and 8-round AES. To determine the essential
role of MC in creating our results, we denote by now R4 = MC ◦G ◦MC ◦G where

G = SR ◦ SB ◦AK ◦MC ◦ SR ◦ SB ◦AK.

G can also be seen as four parallel superboxes operating on 4 bytes of the state independently
(not four bytes placed in a column of state), a graphical representation of G depicted
in Figure 2. This 4-round AES decomposition is a bit different from the decomposition
of 4-round AES mentioned above. However, this 4-round AES decomposition will clearly
show how the middle and last MC affect differences which forms a basis for our results.
We have noticed that a careful combination of byte-related differentials sets from Table 2,
provides related differentials over 2-round and 4-round AES.

4.1 2-round related differentials for AES

Consider an input quartet (α, α⊕∆x, α⊕∆x′, α⊕∆x⊕∆x′) where

α =


α0 α4 α8 α12
α1 α5 α9 α13
α2 α6 α10 α14
α3 α7 α11 α15

 , ∆x =


∆x0 ∆x4 ∆x8 ∆x12
∆x1 ∆x5 ∆x9 ∆x13
∆x2 ∆x6 ∆x10 ∆x14
∆x3 ∆x7 ∆x11 ∆x15

 ,

∆x′ =


∆x0 0 ∆x8 0

0 ∆x5 0 ∆x13
∆x2 0 ∆x10 0

0 ∆x7 0 ∆x15

 , ∆x⊕∆x′ =


0 ∆x4 0 ∆x12

∆x1 0 ∆x9 0
0 ∆x6 0 ∆x14

∆x3 0 ∆x11 0

 ,
and ∆x and ∆x′ are related differences. It is obvious from this quartet that two states
α⊕∆x′ and α⊕∆x⊕∆x′ are generated by exchanging diagonals 1 and 3 between α and
α⊕∆x. Now assume that we have

G(α)⊕G(α⊕∆x) =


2λ0 3λ1 λ2 λ3
λ0 2λ1 3λ2 λ3
λ0 λ1 2λ2 3λ3
3λ0 λ1 λ2 2λ3

 , (8)
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Figure 3: 2-round related differential trails starting with ∆x, ∆x′ and ∆x⊕∆x′ respectively.

where λi ∈ F28 . Since G is acting independently on 32-bit chunks of the state, the
differences G(α)⊕G(α⊕∆x′) and G(α)⊕G(α⊕∆x⊕∆x′) equal respectively

2λ0 0 λ2 0
0 2λ1 0 λ3
λ0 0 2λ2 0
0 λ1 0 2λ3

 ,


0 3λ1 0 λ3
λ0 0 3λ2 0
0 λ1 0 3λ3

3λ0 0 λ2 0

 . (9)

In other words, since two diagonals in each of input differences ∆x′ and ∆x⊕∆x′ equal
zero, we have that the two diagonals in the corresponding output differences equal zero
(notice that G contains two SR operations). Therefore, MC maps the three differences
given in (8) and (9) to the following set of differences

5λ0 0 4λ2 0
0 5λ1 0 4λ3

4λ0 0 5λ2 0
0 4λ1 0 5λ3

 ,


5λ0 7λ1 0 λ3
λ0 5λ1 7λ2 0
0 λ1 5λ2 7λ3

7λ0 0 λ2 5λ3

 ,


0 7λ1 4λ2 λ3
λ0 0 7λ2 4λ3
4λ0 λ1 0 7λ3
7λ0 4λ1 λ2 0

 , (10)

which are diagonal related differences. Therefore,

µ(R6(α)⊕R6(α⊕∆x)) = µ(R6(α⊕∆x′)⊕R6(α⊕∆x⊕∆x′)).

We now need to estimate the probability that, given an input quartet (α, α ⊕∆x, α ⊕
∆x′, α ⊕ ∆x ⊕ ∆x′), the conditions (8) and (9) hold. Note that the input and output
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differences of G are related differences. This implies that for every i the sets

{G(αi), G(αi ⊕∆xi), G(αi ⊕∆x′i), G(αi ⊕∆xi ⊕∆x′i}

contain only two different elements. In other words, the output (input) difference of each
superbox in G takes exactly a specific value considering this quartet. If we assume that the
output differences of each superbox in G have a uniform distribution, then, for each specific
value of (λ0, λ1, λ2, λ3), the conditions (8) and (9) hold with probability (232−1)−4 ≈ 2−128.
Thus, considering all possible non-zero values of each λi, the conditions (8) and (9) holds
with probability (28 − 1)4 · 2−128 ≈ 2−96.

This 2-round related differentials trail is depicted in Figure 3. We have also noticed
that an identical rotation on all columns of the difference G(α) ⊕ G(α ⊕ ∆x), causes
a new related-differentials trail. There are three different cases for such rotations on
G(α)⊕G(α⊕∆x), i.e.

3λ0 λ1 λ2 2λ3
2λ0 3λ1 λ2 λ3
λ0 2λ1 3λ2 λ3
λ0 λ1 2λ2 3λ3

 ,

λ0 λ1 2λ2 3λ3
3λ0 λ1 λ2 2λ3
2λ0 3λ1 λ2 λ3
λ0 2λ1 3λ2 λ3

 ,

λ0 2λ1 3λ2 λ3
λ0 λ1 2λ2 3λ3
3λ0 λ1 λ2 2λ3
2λ0 3λ1 2λ2 λ3

 .
So there are four possible difference values for G(α) ⊕ G(α ⊕ ∆x). Then, such event
happens with probability approximately 4 · 2−96 = 2−94. For a random permutation, such
an event happens with a negligible probability. We may summarize the result as follows.

Theorem 4. Let α ∈ F4×4
28 and ∆x,∆x′ ∈ F4×4

28 be two related differences, where all
diagonals in ∆x are non-zero and two non-consecutive diagonals in ∆x′ are zero, then the
relations

R4(α)⊕R4(α⊕∆x)⊕R4(α⊕∆x′)⊕R4(α⊕∆x⊕∆x′) = 0 (11)

and

µ(R6(α)⊕R6(α⊕∆x)) = µ(R6(α⊕∆x′)⊕R6(α⊕∆x⊕∆x′)) (12)

hold with probability approximately 2−94, averaged over all possible keys.

Proof. Assume that the input quartet (α, α ⊕∆x, α ⊕∆x′, α ⊕∆x ⊕∆x′) conforms to
differences (8) and (9) which happens with probability approximately 4 · 2−96 = 2−94, then
the differences

∆y = R2(α)⊕R2(α⊕∆x),∆y′ = R2(α)⊕R2(α⊕∆x′)

are also related differences. The result then follows directly due to Theorem 2.

More importantly, these 2-round related differentials can be extended to 4-round related
differentials.

4.2 4-round related differentials for AES
Suppose now that the differences (10) map to the following differences through G, respec-
tively:

5γ0 0 4γ2 0
0 4γ1 0 5γ3

4γ0 0 5γ2 0
0 5γ1 0 4γ3

 ,


5γ0 γ1 0 7γ3
γ0 0 7γ2 5γ3
0 7γ1 5γ2 γ3

7γ0 5γ1 γ2 0

 ,


0 γ1 4γ2 7γ3
γ0 4γ1 7γ2 0
4γ0 7γ1 0 7γ3
7γ0 0 γ2 4γ3

 , (13)
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Figure 4: 4-round related differential trails starting with ∆x, ∆x′ and ∆x⊕∆x′ respectively.
Differences ∆x, ∆x′ and ∆x⊕∆x′ are not shown here through the lack of space.

where γi ∈ F28 . Then MC maps these three differences to a new set of differences,
respectively:

Eγ0 9γ1 Dγ2 Bγ3
9γ0 Dγ1 Bγ2 Eγ3
Dγ0 Bγ1 Eγ2 9γ3
Bγ0 Eγ1 9γ2 Dγ3

 ,

Eγ0 0 Dγ2 0

0 Dγ1 0 Eγ3
Dγ0 0 Eγ2 0

0 Eγ1 0 Dγ3

 ,


0 9γ1 0 Bγ3
9γ0 0 Bγ2 0
0 Bγ1 0 9γ3
Bγ0 0 9γ2 0

 ,
(14)

which are again diagonal related differences. Using the similar considerations to estimate
the probability of set of related differences (8) and (9) in Subsection 4.1, we expect that
the set of differences (13) holds with probability (28 − 1)4 · (232 − 1)−4 ≈ 2−96, since there
are (28 − 1)4 non-zero values for (γ0, γ1, γ2, γ3) and the specific output difference of each
superbox happens with probability (232 − 1)−1.

Thus, the probability of 4-round related differentials trail is 2−96 · 2−96 = 2−192

approximately. Also another set of related differences, by exchanging the positions of 5γi

and 4γi, and 7γi and γi in the related differences set (13), works here. And, there are four
sets of related differences for (8) and (9). Therefore, in total, there are eight 4-round related
differentials trails so the probability of this event is 4 · 2 · 2−192 = 2−189 approximately.
For a random permutation, such an event happens with a negligible probability. It then
provides relations up to 6 rounds

Rt(α)⊕Rt(α⊕∆x)⊕Rt(α⊕∆x′)⊕Rt(α⊕∆x⊕∆x′) = 0,

for 0 < t ≤ 6, since all differences are diagonal related differences every two rounds. There
is another 4-round related differentials trail, provided in Appendix A. We may summarize
the results as follows.
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Theorem 5. Let α ∈ F4×4
28 and ∆x,∆x′ ∈ F4×4

28 be two related differences, where all
diagonals in ∆x are non-zero and two non-consecutive diagonals in ∆x′ are zero, then the
relations

Rt(α)⊕Rt(α⊕∆x)⊕Rt(α⊕∆x′)⊕Rt(α⊕∆x⊕∆x′) = 0, (15)

for 0 < t ≤ 6, and

µ(R8(α)⊕R8(α⊕∆x)) = µ(R8(α⊕∆x′)⊕R8(α⊕∆x⊕∆x′)) (16)

hold with probability approximately 2−189, averaged over all possible keys.

Proof. Assume that the input quartet (α, α⊕∆x, α⊕∆x′, α⊕∆x⊕∆x′) conforms to the
4-round differential depicted in Figure 4 which happens with probability 2−189. Since the
input differences, and state differences at the end of round 2 and 4 are diagonal related
differences, from Theorem 2, we have

Rt(α)⊕Rt(α⊕∆x)⊕Rt(α⊕∆x′)⊕Rt(α⊕∆x⊕∆x′) = 0

for 0 < t ≤ 6. Also, since the differences

∆y = R4(α)⊕R4(α⊕∆x),∆y′ = R4(α)⊕R4(α⊕∆x′),

are also related differences, due to Theorem 2 we have

µ(R8(α)⊕R8(α⊕∆x)) = µ(R8(α⊕∆x′)⊕R8(α⊕∆x⊕∆x′))

Note that the probability that a random input quartet follows the set of relations 15 is
negligible since a random quartet satisfies each relation with probability 2−128. However,
Theorem 5 by itself cannot be considered as a distinguisher since the adversary cannot
check those relations without the knowledge of the round-keys. In the next section, we
show that the results of Theorem 5 can be exploited to mount a key recovery attack on
7-round AES.

5 New key-recovery attack for 7-round of AES-128
In this section, we present a 7-round key-recovery attack for AES-128, which follows from
a straight-forward extension of Equation 15. Let an input quartet (P0, P0 ⊕ ∆x, P0 ⊕
∆x′, P0 ⊕∆x⊕∆x′) be generated by two related differences ∆x and ∆x′ where P0 is a
random plaintext and all diagonals in ∆x are non-zero and two non-consecutive diagonals
in ∆x′ are zero. Let (C0, C1, C2, C3) be the corresponding ciphertexts after 7-round AES.
Assume now this input quartet (P0, P0 ⊕ ∆x, P0 ⊕ ∆x′, P0 ⊕ ∆x ⊕ ∆x′) conforms to
the differential characteristics depicted in Figure 5, which embeds the previous 4-round
related-differentials characteristic in the first four rounds. It happens with probability
2−189 from Theorem 5. Thus, we have

R6(P0)⊕R6(P0 ⊕∆x)⊕R6(P0 ⊕∆x′)⊕R6(P0 ⊕∆x⊕∆x′) = 0. (17)

Assume the following additional condition holds

µ(R7(P0)⊕R7(P0 ⊕∆x′)) = µ(R7(P0 ⊕∆x)⊕R7(P0 ⊕∆x⊕∆x′)), (18)

where wt(µ(R7(P0)⊕R7(P0⊕∆x′)) = 2. In other words, it means that SR−1◦MC−1(C0⊕
C2) is zero in two columns and that SR−1 ◦MC−1(C1 ⊕ C3) is zero in exactly the same
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Figure 5: 7-round differential trails starting with ∆x,∆x′ and ∆x ⊕ ∆x′ respectively.
A white cell indicates that the state difference is zero for that bytes. Both darker and
lighter line pattern cell indicate that the state difference is non-zero in the cell while darker
one also indicates the value of difference in a cell equal to the value of one of other two
differences in the same cell.

columns. The goal of this attack is to find candidates for this quartet by first filtering output
quartets exploiting the Condition (18). Then, for each of candidates the Condition (17)
will be partially checked to recover some bytes of the last-round key. And, by guessing
the remaining bytes of the last-round key, we can perform the check whether the quartet
conforms to the 7-round differential characteristics.

We first need to estimate the probability that Condition (18) holds. Denote Ωt =
Rt(P0)⊕Rt(P0 ⊕∆x′). Condition (18) indicates that two columns in Ω6 should be zero.
On the other hand, observe that two diagonals in the difference Ω4 are zero, see (14). This
induces that two diagonals in the difference Ω5 are zero. It follows that four bytes in Ω5

should be zero. Thus, the pair (P0, P0⊕∆x′) follows Condition (18) when four bytes in Ω5

are zero. The pair (P0⊕∆x, P0⊕∆x⊕∆x′) then satisfies Condition (18) with probability
one since

R6(P0)⊕R6(P0 ⊕∆x′) = R6(P0 ⊕∆x)⊕R6(P0 ⊕∆x⊕∆x′).

Therefore, the condition wt(µ(R7(P0)⊕R7(P0⊕∆x′)) = 2 happens when any two diagonals
in this difference Ω5 are zero, i.e. four bytes are zero. This happens with probability(4

2
)
· 2−4·8 ≈ 2−29.4, because there are

(4
2
)
possible cases that two diagonals are zero in Ω5 .

So, in total, an input quartet (P0, P0 ⊕ ∆x, P0 ⊕ ∆x′, P0 ⊕ ∆x ⊕ ∆x′) follows the
differential characteristics depicted in Figure 5 with probability 2−189 · 2−29.4 = 2−218.4.
On the other hand, for a random output quartet (C0, C1, C2, C3), the probability that
SR−1 ◦ MC−1(C0 ⊕ C2) is zero in two columns, eight bytes, is

(4
2
)
· 2−8·8 ≈ 2−61.4.

The probability that SR−1 ◦ MC−1(C1 ⊕ C3) is zero in the exact same columns as
SR−1 ◦MC−1(C0 ⊕ C2) is 2−64. Therefore, the probability that such random output
quartet satisfies Condition (18) is 2−61.4 · 2−64 = 2−125.4. The different steps of the attack
will be described in the next subsections.

5.1 Data collection
The input quartet (P0, P0 ⊕∆x, P0 ⊕∆x′, P0 ⊕∆x ⊕∆x′) can be seen as two pairs of
plaintexts where the plaintext pair (P0 ⊕∆x′, P0 ⊕∆x⊕∆x′) is generated by exchanging
two diagonals between plaintexts in (P0, P0 ⊕∆x). We now generate 2218.4 such unique
quartets as follows.

To generate input quartets (P0, P0 ⊕ ∆x, P0 ⊕ ∆x′, P0 ⊕ ∆x ⊕ ∆x′), where P0 is a
random plaintext and all diagonals in ∆x are non-zero and two non-consecutive diagonals
in ∆x′ are zero, we pick two random subsets A0 and A1 of F8

28 , each of size m. Then we
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generate all m2 possible plaintexts from these two sets where the first and third diagonals
take the possible elements from the set A0 and the second and last diagonals take the
possible elements from the set A1. Note that, from each set, we can generate

(
m
2
)
unique

combinations of pairs. Then the number of unique quartets generated from this set,
A = A0⊕A1, is

(
m
2
)
·
(

m
2
)
(see [BR19a, Theorem 2] for more details, assume there are only

two sets). If we set m = 255.1, then we can prepare 2109.2 · 2109.2 = 2218.4 such quartets.
The expected number of quartets conforming to the 7-round characteristic of Figure 5
equals one.

5.2 Search for double collisions
Among 2218.4 quartets, the expected number of quartets satisfying Condition (18) is given
by

2218.4−125.4 = 293.

We can find them, using hash tables as follows. We know that both pairs (P0, P0 ⊕∆x′)
and (P0 ⊕∆x, P0 ⊕∆x⊕∆x′), which should satisfy Condition (18), are different in ∆x′

P0 ⊕ (P0 ⊕∆x′) = ∆x′ = (P0 ⊕∆x)⊕ (P0 ⊕∆x⊕∆x′). (19)

We also know that the set of plaintexts A is formed by spanning the first and third
diagonals with the possible elements from A0 and the rest of diagonals with elements from
A1. In order to find two pairs that satisfy Condition (18), we first search for plaintext
pairs which differ in ∆x′, such that their corresponding ciphertext pairs differ in two
columns before the last linear layer. Since we can generate 2109.2 combinations of pairs
from A0 and there are 255.1 elements in A1, the expected number of remaining pairs equals
255.1 · 2109.2−64 = 2100.3. We store them in the list N1. Therefore, it requires 2110.2 table
look ups in the ciphertexts table, using a hash table.

We now want to generate pairs of pairs (quartets) from N1, 2100.3 pairs, such that they
satisfy Condition (18). Notice that N1 contains pairs which differ in ∆x′, so not all possible
pairs of pairs, 2199.6 quartets, are our desired input quartets. In other words, we are
interested in pairs of pairs which constitute a quartet made by ∆x′ and ∆x. Also, notice
that the plaintexts P0⊕∆x′ and P0⊕∆x⊕∆x′ are generated by exchanging two diagonals
between P0 and P0 ⊕∆x. Thus, in order to filter undesired input quartets, we insert the
2100.3 remaining pairs into a hash table indexed by ∆x′, i.e. 2109.2 possible combinations of
pairs from A0. So, we find quartets which satisfy the conditions (18) and (19) simultaneously.
The expected number of input quartets equals 2199.6−109.2 = 290.4. By repeating this for
all possible cases where two columns in the difference R7(P0) ⊕ R7(P0 ⊕∆x′) are zero,(4

2
)

= 6 cases, we find 6 · 290.4 = 293 quartets which satisfy conditions (18) and (19). This
part requires 6 · 2 · 2100.3 table look-ups in the ciphertext table.

5.3 Retrieving key candidates
We now check partially Condition (17) for each remaining quartet. W.l.o.g., we assume
that the first two columns of R6(P0)⊕R6(P0⊕∆x′) are non-zero and the last two columns
equal zero, which we already checked for in Condition (18). Now we should check that

R6(P0)⊕R6(P0 ⊕∆x)⊕R6(P0 ⊕∆x′)⊕R6(P0 ⊕∆x⊕∆x′) = 0,

considering only the first two columns of each state. Denote the last-round key by
k7. We swap the last SR and MC, and AK. This means that an equivalent round-
key u7 = SR−1(MC−1(k7)) is xored with data before the last SR and MC. For each
(C0, C1, C2, C3), assuming that we already applied SR−1 ◦MC−1 to all ciphertexts, we
guess byte i of ui

7 and check

S−1
a (Ci

0 ⊕ ui
7)⊕ S−1

a (Ci
1 ⊕ ui

7)⊕ S−1
a (Ci

2 ⊕ ui
7)⊕ S−1

a (Ci
3 ⊕ ui

7) = 0, (20)
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for i = {0, 1, 2, ..., 7} (all bytes placed in the first two columns) where S−1
a is the inverse

of the AES s-box and Ci
j denotes byte i of Cj . For each quartet, the expected number

of candidates for 8 bytes of u7 equals one2. Now we check that each of the first and
second diagonal in the differences R5(P0)⊕R5(P0⊕∆x′) and R5(P0)⊕R5(P0⊕∆x⊕∆x′)
contains only two active bytes since we computed the first two columns of the differences
R6(P0) ⊕ R6(P0 ⊕ ∆x′) and R6(P0) ⊕ R6(P0 ⊕ ∆x ⊕ ∆x′). This is a 64-bit filtering,
32-bit filtering by checking the condition on each difference R5(P0)⊕R5(P0 ⊕∆x′) and
R5(P0) ⊕ R5(P0 ⊕ ∆x ⊕ ∆x′). Then, the expected number of quartets satisfying this
condition equals 293−32−32 = 229.

In the first step, for each remaining quartet, four table look-ups in S−1
a are required for

each candidate ui
7. We check eight bytes of u7 so this step needs 4 · 8 · 28 table look-ups in

S−1
a . In the second step, after eight bytes of ui

7 are computed, we need to decrypt partially
the first two diagonals of SR−1 ◦MC−1 ◦SB−1(Ci) for all four ciphertexts in each quartet.
So this step requires 4 · 8 table look-ups in S−1

a . Therefore, these two steps can be done by

293(4 · 8 · 28 + 4 · 8) ≈ 2106

table look-ups in S−1
a . The remaining bytes of u7 are recovered with an exhaustive search

for 229 quartets, which takes 229 · 264 = 293 7-round encryptions.

5.4 The Attack Algorithm and its Analysis
The algorithm of our proposed attack is given in Algorithm 1. As described in Subsection 5.1,
2110.2 chosen plaintexts are encrypted from the set A = A0⊕A1. Steps 2, 3 can be performed
using hash tables. As described in Subsection 5.2, the expected size of the list N2 is 293.
Hence, Steps 4, 17 are performed for 293 quartets. These steps take 2106 table look ups
in S−1

a . Steps 18, 20 are performed for 229 quartets which take 293 7-round encryptions.
Therefore, the data complexity of the attack is 2110.2 chosen plaintexts, the memory
complexity is 2110.2 128-bit blocks, and the time complexity is dominated by encrypting
the plaintexts.

Note that this attack is independent of the AES key-schedule since only the last round-
key is recovered during the attack. The best two attacks on 7-round AES-128, namely
the impossible-differential and meet-in-the-middle attacks, exploit some relations between
round-keys caused by the AES key-schedule.
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Figure 6: 3-round related differential trails starting with ∆x, ∆x′ and ∆x⊕∆x′ respectively.
The function R′ is SR ◦ SB. Differences ∆x, ∆x′ and ∆x ⊕ ∆x′ are not shown here
through the lack of space.

A Related differentials on reduced-round AES

A.1 3-round related differentials

Let us now consider an input quartet (α, α⊕∆x, α⊕∆x′, α⊕∆x⊕∆x′)

α =


α0 0 0 0
0 α5 0 0
0 0 α10 0
0 0 0 α15

 , ∆x =


∆x0 0 0 0

0 ∆x5 0 0
0 0 ∆x10 0
0 0 0 ∆x15

 ,

∆x′ =


∆x0 0 0 0

0 0 0 0
0 0 ∆x10 0
0 0 0 0

 , ∆x⊕∆x′ =


0 0 0 0
0 ∆x5 0 0
0 0 0 0
0 0 0 ∆x15

 ,

where ∆x and ∆x′ are related differences. This quartet conforms the differential charac-
teristics depicted in Figure 6 with probability of 4 · 2 · 2−24 · 2−96 = 2−117.
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Figure 7: 4-round related differentials trails starting with ∆x, ∆x′ and ∆x⊕∆x′ respec-
tively. Differences ∆x, ∆x′ and ∆x⊕∆x′ are not shown here through the lack of space.

A.2 4-round related differentials
Let us now consider an input quartet (α, α⊕∆x, α⊕∆x′, α⊕∆x⊕∆x′)

α =


α0 α4 α8 α12
α1 α5 α9 α13
α2 α6 α10 α14
α3 α7 α11 α15

 , ∆x =


∆x0 0 ∆x8 0

0 ∆x5 0 ∆x13
∆x2 0 ∆x10 0

0 ∆x7 0 ∆x15

 ,

∆x′ =


∆x0 ∆x4 0 ∆x12
∆x1 ∆x5 ∆x9 0

0 ∆x6 ∆x10 ∆x14
∆x3 0 ∆x11 ∆x15

 , ∆x⊕∆x′ =


0 ∆x4 ∆x8 ∆x12

∆x1 0 ∆x9 ∆x13
∆x2 ∆x6 0 ∆x14
∆x3 ∆x7 ∆x11 0

 ,
where ∆x and ∆x′ are related differences. This quartet conforms the the differential
characteristics depicted in Figure 7 with probability of 2−189.

B 6-round distinguisher for AES
Theorem 4 in Section 3 can be used directly to set up a straightforward 6-round chosen-
plaintext distinguisher for AES. Consider an input quartet (P0, P0⊕∆x, P0⊕∆x′, P0⊕∆x⊕
∆x′) generated by two related differences ∆x and ∆x′ where P0 is a random plaintext and
all diagonals in ∆x are non-zero and two non-consecutive diagonals in ∆x′ are zero. And,
let this input quartet map to (C0, C1, C2, C3) after 6-round AES encryption. By Theorem 4,
with probability 2−94 we have

µ(R6(P0)⊕R6(P0 ⊕∆x′)) = µ(R6(P0 ⊕∆x)⊕R6(P0 ⊕∆x⊕∆x′)). (21)
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Now assume the following condition is given by

wt(µ(R6(P0)⊕R6(P0 ⊕∆x)) = 3 (22)

It then means that SR−1 ◦MC−1(C0 ⊕ C1) is zero in three columns and that SR−1 ◦
MC−1(C2 ⊕ C3) is zero in exactly the same columns. This condition happens with
probability 4 · 2−96 = 2−94. So, in total, (C0, C1, C2, C3) follows (22) and (21) with
probability 2−94 · 2−94 = 2−188. In the case of a random permutation, however, the
probability that a ciphertext quartet satisfies the conditions (22) and (21) simultaneously
is 2−94 · 2−96 = 2−190.

Similar to the data collection in Subsection 5.1, we set m = 247.5 and we prepare 2188

different input quartets. For the AES case, the expected number of quartets that satisfy
the conditions (22) and (21) equals one, while for a random permutation, the expected
number of quartets equals 2188−190 = 2−2. Thus, the data complexity of the 6-rounds
distinguisher is m2 = 295 chosen plaintexts.
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