OrgAn: Organizational Anonymity with Low Latency

Debajyoti Das* '
imec-COSIC, KU Leuven
debajyoti.das @esat.kuleuven.be

Abstract

There is a growing demand for network-level anonymity
for delegates at global organizations such as the UN and
Red Cross. Numerous anonymous communication (AC)
systems have been proposed over the last few decades
to provide anonymity over the internet; however, they
either introduce high latency overhead, provide weaker
anonymity guarantees, or are difficult to be deployed at
the organizational networks. Recently, the PriFi system
introduced a client/relay/server model that suitably uti-
lizes the organizational network topology and proposes
a low-latency, strong-anonymity AC protocol. Using an
efficient lattice-based (almost) key-homomorphic pseudo-
random function and Netwon’s power sums, we present a
novel AC protocol OrgAn in this client/relay/server model
that provides strong anonymity against a global adver-
sary controlling the majority of the network. OrgAn’s
cryptographic design allows it to overcome several major
problems with any realistic PriFi instantiation: (a) unlike
PriFi, OrgAn avoids frequent, interactive, slot-agreement
protocol among the servers; (b) a PriFi relay has to re-
ceive frequent communication from the servers which can
not only become a latency bottleneck but also reveal the
access pattern to the servers and increases the chance of
server collusion/coercion, while OrgAn servers are absent
from any real-time process. We demonstrate how to make
this public-key cryptographic solution scale equally well
as the symmetric-cryptographic PriFi with practical pre-
computation and storage requirements. Through a proto-
type implementation we show that OrgAn provides simi-
lar throughput and end-to-end latency guarantees as PriFi,
while still discounting the setup challenges in PriFi.

1 Introduction

In an influential work, Le Blond et al. [34] recognize
an urgent need for traffic-analysis-resistant meta-data hid-
ing (anonymous) communication at multinational organi-
zations such as the International Committee of the Red

*Both the authors have contributed equally to the paper.
TMost part of the work was completed when Debajyoti Das was a
student at Purdue University.

Easwar Vivek Mangipudi”
Purdue University
emangipu@purdue.edu

Aniket Kate
Purdue University
aniket@purdue.edu

Cross (ICRC). The study finds that sensitive projects
such as humanitarian activities at these organizations can
be highly susceptible to subpoenas and powerful state-
sponsored network eavesdroppers, there is a clear demand
for anonymity for intra-organization communication and
their interactions with the global services. As a recent US
national Intelligence Council global trends report [38] in-
dicates we are moving towards a more contested world
post-pandemic, and anonymity needs at the international
organizations [43] are bound to grow.

Among different anonymous communication (AC) pro-
tocols, dining-cryptographers network (DC-net) [13] and
its successors [49, 10, 47, 26, 48, 29, 16, 50, 17, 5, 41,
35, 3] are suitable for this purpose, for their high traffic-
analysis resistance while maintaining low latency over-
head. Tor [23, 22] and mixing network-based proto-
cols [12, 45, 46, 33, 14, 18, 32, 31, 30] choose a trade-
off between low latency and stronger anonymity [19]; and
they are not suitable for organizational networks as they
route all the traffic over the Internet outside the network.
The latter not only increases the attack surface and makes
the communication traffic more susceptible to traffic anal-
ysis but also introduces latency overhead.

Nevertheless, most standard DC-net designs have two
major overheads: (i) First, all the users need to run a
key agreement protocol among themselves to agree on
shared secret keys; such an agreement protocol is not scal-
able as it comes with high communication overhead and
has to be repeated often towards stopping linkability/co-
relations across multiple rounds. (ii) Second, it requires
all the users to participate in a slot agreement protocol be-
fore every round; otherwise, two or more messages may
collide as only one user is supposed to send a message in
any given round.

With the above organizational anonymity problem in
mind, PriFi [8] introduces a novel client/relay/server
model that avoids the key agreement overhead — a set of
few servers (we call them setup servers) help the clients
establish shared secrets among themselves. The actual
anonymous communication happens through another re-
lay node and the servers only need to push messages
to this relay node. As its key features, PriFi removes
all server-to-server communications from the latency-



critical path. As demonstrated by Barman et al. [8], the
client/relay/server model is well-suited for organizational
anonymity; however, we observe three key problems with
the current cryptographic design': (i) PriFi continues with
the one user per slot model from Dissent [16] and its suc-
cessors [50], and a PriFi instantiation has to choose be-
tween running a regular slot selection protocol (where the
servers run expensive verifiable shuffle and communicate
with all the clients) and message linkability across differ-
ent rounds. (ii) While the servers do not talk to each other
in the online phase, they still need to be online and com-
municate with the relay node. This can allow any server to
predict the typical PriFi usage pattern at the organization.
(iii) Finally, every server and the relay has to know and in-
teract with each other, which may facilitate coercion and
collusion (possibly even in the future).

1.1 Our Contribution

We present OrgAn, a new AC protocol using almost key-
homomorphic pseudorandom functions (PRF) and New-
ton’s power sums in the client/relay/server model. Sim-
ilar to other recent DC-net based protocols, our proto-
col provides strong anonymity guarantees with resistance
against intersection attacks and active attacks under Dis-
crete Log (DL) and Ring Learning-with-rounding (R-
LWR) assumptions.

Importantly, OrgAn resolves the above-mentioned
three problems with the PriFi design. The use of additive
key-homomorphic PRF allows OrgAn to avoid the over-
heads of server-computed slot selection as messages from
all clients are processed together using Newton’s power
sums. As the generated output is a perfect shuffling of the
input messages, OrgAn also ensures that a client’s mes-
sages are not linkable across two different protocol runs
even without rerunning the setup. OrgAn servers do not
talk to each other or the relay node during the setup, and
OrgAn servers are omitted from the online phase; thus, we
call them setup servers. In fact, the setup servers and the
relay nodes do not even need to be aware of each others’
presence, which can be particularly useful against coer-
cion and collusion.

While providing the above features using a public key
cryptographic primitive (i.e., key-homomorphic PRF),
OrgAn also maintains latency overhead in milliseconds
using storage vs. computation tradeoff associated with
the R-LWR setting. Using a prototype implementation,
we show that OrgAn achieves reasonable round-trip-time
(RTT) of 46 milliseconds for a system of 100 clients when
communicating to the outside world compared to a typical
RTT of 18 milliseconds. Our evaluation demonstrates that
OrgAn can even scale for latency-sensitive and through-
put demanding applications — it can support up to 550

IFor reference, we add a short description of PriFi in Appendix B.

Kbps throughput for every client in an organization with
100 clients. We also compare the performance of Or-
gAn with the existing state-of-art (PriFi) and show that
performance-wise OrgAn is not very different from PriFi,
despite solving the issues mentioned above.

2 Overview

2.1 Setup and Communication Model

Consider an organizational network with N clients
u1,...,un. They wish to access intra-organizational ser-
vices and connect to services outside the organizational
network without revealing which client is accessing which
service.

There exists a relay R that acts as a gateway be-
tween the organizational network and the outside world.
It allows the clients of the OrgAn protocol to trans-
mit/receive messages to/from the outside would and intra-
organization services but does not act as a trusted third
party in the anonymization process. We assume that the
relay has high availability and high computation power.

Additionally, there is a set of K servers G, ...,Gk,
we call them sefup servers. These setup servers help the
clients in the setup or key agreement process but do not
participate in the anonymization process. These servers
are logical entities and can be run by anyone (volunteers,
paid services) inside or outside the organization, even by
the clients.

We do not require the setup servers and the relay to
communicate with each other during the setup phase or
protocol run — they do not even need to know each other.
The clients can mutually agree on the set of setup servers,
ensuring that for each client there is at least one setup
server that they trust. We do not even require the setup
servers to be online except for the setup phase. We only
focus on the anonymity of outgoing traffic. We consider
the solution provided by PriFi for incoming traffic ade-
quate and can easily fit into our system; hence, we do not
consider incoming traffic for the rest of the paper.

2.2 Threat Model

We consider a probabilistic polynomial time (PPT) adver-
sary A who can observe all network traffic. Additionally,
the adversary can compromise up to (N — 2) clients and
(K — 1) setup servers. Even the relay can be under ad-
versarial control, but we do not consider denial-of-service
(DoS) attacks from the relay, because the clients can eas-
ily identify if the availability of the relay is compromised
— and the organization does not want to openly show that
they are against the privacy of their members. However,
the relay may launch other active attacks as long as it can
not be detected/blamed by the honest clients.



T

\/ Interne}
A

\_/\\_/;

Local
Services

guard/setup
nodes with the
any-trust

RN

Non-interacting users

Organizational network (LAN)

Figure 1: System overview of OrgAn, where a set of non-
interacting users wants to access local services and the
Internet through a relay server but without revealing who
is accessing what. A group of setup servers help them
establish DC-net keys so that the users can run a DC-net
protocol using Newton’s power-sum method utilizing the
relay as a bulletin-board, but without trusting the relay.

We allow the adversary to launch active attacks from in-
side the organizational network. For simplicity of descrip-
tion, we do not consider any active attacks from outside of
the local network — such attacks can be easily handled by
proper ingress filtering by the relay; otherwise, the relay
itself will compromise its availability.

2.3 Goals

Anonymity. We want our protocol to achieve strong
sender anonymity for the outgoing traffic, i.e., the abil-
ity of the adversary to figure out which user has sent a
specific message should at most be negligibly better than
random guessing, even if all but two clients and all but
one setup server are compromised.

Accountability. In our protocol, we want the honest
clients to be able to detect the scenario where some mali-
cious client(s) or the relay tries to disrupt the protocol by
sending incorrect/malformed messages. In such an event,
the disruptive party should be identified with significant
probability, and no honest party should be misidentified
as a malicious party.

Low Latency. The system should operate with low la-
tency overhead to support latency-sensitive applications.

Scalability. We want OrgAn to support small to medium
organizations (i.e., up to several hundred clients).

2.3.1 Non-goals

Similar to other DC-net based protocols [41, 17, 16, 8,
50], our protocol does not consider an adversary whose
sole purpose is to launch DoS attacks. In fact, this re-
mains a challenging issue for all AC systems in general.
Nevertheless, similar to most other systems, the DoS at-
tacks are detectable and can result in at least one faulty
node being detected and dropped.

Similar to other DC-net protocols [8, 16, 5, 17, 50],
even OrgAn does not provide a solution for reliable packet
delivery. If packet loss occurs between the user and the re-
lay, the receiving end can request the packet again after a
timeout.

Moreover, as with other DC-net based protocols [41,
16, 8], it is out of scope to consider clients joining or leav-
ing the network between two setups.

2.4 Protocol Idea

Our protocol design is based on the idea that each client u;
has an individual secret share r; — here ZZ r; is known
to everyone, but the individual r; values with the honest
clients are not known. The clients achieve that using a
setup phase, with the help of a few setup servers. If there
is at least one honest setup server, the setup guarantees
can be achieved using an additive secret sharing scheme
between the setup servers and the clients.

In our protocol design, we use an almost key-
homomorphic PRF [9] F that satisfies F(k,d) =
F(ky,d) + F(k2,d) + e with bounded elements in the
error vector e and k = k; + ks. In a round d, each client
u; uses an element of F (r;, d), as the mask for their DC-
net cipher that they send to the relay for a slot ¢. Since the
relay knows ). r; but not the individual r; values asso-
ciated with the honest clients, it can decrypt the message
for slot ¢ only after receiving the DC-net ciphers from all
the clients for that slot by computing F (3, r;,d),. We
use some extra bits to eliminate the error e so the relay
can retrieve the message correctly.

The main rationale behind using an almost key-
homomorphic PRF instead of a perfectly key-
homomorphic PRF [6] is that the latter is computa-
tionally expensive. Using a lattice-based additive almost
key-homomorphic PRF we improve the performance
drastically (cf. Section 8) as compared to the (perfectly
key-homomorphic) PRF.

Base Protocol. We solve the slot agreement problem
generally faced by DC-net based protocols by construct-
ing power-sums of messages similar to Dicemix [41].
However, we do it (significantly) more efficiently than
Dicemix by exploiting the client/relay/server network
model and the (almost) key homomorphic property of F.
We describe our protocol in Section 4. However, there is



one crucial problem with the power-sum equation system
— with a large number of clients, solving the equation
system becomes the bottleneck of the whole system. Ad-
ditionally, for each IP packet (e.g., of 512 bytes length),
the relay should be able to link all the fragments, consid-
ering each round allows each client to send 226 bits (we
call them fragments, the limitation comes from the com-
putational limitation on group algebraic operations on a
large group).

Bulk Protocol. We design a Bulk protocol inspired by the
design of Dissent [16] to solve the above two problems.
First, OrgAn uses the power-sum equation system in one
round to generate a permutation for the clients. In the fol-
lowing round, the clients use that permutation (slot agree-
ment) to run a typical DC-net. The clients still generate
the masks for the ciphertexts using F. The bulk proto-
col provides unlinkability for IP packets, but not the frag-
ments of a single IP packet (by design).

2.5 What We Achieve

In our design, we solve two latency-critical problems in-
herent in most DC-net designs: (i) We get rid of the slot
agreement overhead (that is present also in PriFi) by us-
ing the Dicemix-like power-sum equation system [41];
(i) We avoid the requirement for regular key-agreement
in other DC-net designs, using key-homomorphic PRFs.
Even though we use public-key cryptographic construc-
tions to solve those, we demonstrate that parties can
push most computation-heavy tasks to the pre-processing
phase. By getting rid of these overheads, we achieve
a round-trip-time (RTT) of 46 milliseconds for a sys-
tem of 100 clients when communicating to the outside
world compared to a typical RTT of 18 milliseconds. We
demonstrate that OrgAn can scale for latency-sensitive
and throughput demanding applications by utilizing sev-
eral hours of pre-processing per day.

We formally show that OrgAn provides strong sender
anonymity against global passive adversaries (in Sec-
tion 6.2). We also prove the security of our protocol
against relevant active attacks (in Section 6.3) — we show
that honest clients can detect such active attacks with
overwhelming probability and identify a malicious party
with significant probability.

2.6 Comparison with Relevant Protocols

Onion routing systems such as the Tor network [23, 22]
and typical deployment of mixnet designs [12, 45, 46, 33,
14, 18, 32, 31, 30] are not suitable for the organizational
network or the LAN setting under consideration here as
they route all the traffic over the Internet outside the net-
work and can introduce high latency overhead. Although

mixnets conceptually can be deployed inside the organi-
zational network for intra-organization communications,
the deployment overhead becomes really high (because
of the number of mix servers required) to provide strong
anonymity guarantees. Moreover, Das et al. [20] shows
that protocols inspired from dining cryptographers’ net-
work (DC-net), with co-ordination among the users, can
achieve better anonymity compared to other techniques
when low latency is required. With low latency and re-
sistance to traffic-correlation attacks in mind, this work
focuses on the DC-net based AC protocols.

As illustrated in Fig. 2, we divide the DC-net based
systems into three protocol architectures: point-to-point
(P2P) DC-nets, client-server MPC, and client-relay-server
aggregation. In the following, we compare our proto-
col OrgAn with prominent DC-net based solutions across
these architectures.

P2P DC-nets. In P2P DC-net protocols [26, 41, 16],
the clients perform the anonymous broadcast themselves
without involving any external computational server.
These designs incur significant overhead (computation, as
well as bandwidth) for key agreement and slot agreement.
For example, DiceMix [41] takes several seconds to com-
plete a protocol run for a small number of clients. OrgAn
can be considered as an overhaul of DiceMix [41], where
we remove the interaction among clients by utilizing the
client/relay/server model.

Client-server DC-nets. P2P DC-nets do not scale well as
the numbers of clients increase. Client-server DC-net pro-
tocols [50, 15, 24, 3, 35, 5, 17] aim at making these proto-
col scale by shifting the DC-net (or similar computations)
to the servers as MPC. The assumptions on the servers
range from two-servers only, three-servers only, the any-
trust assumption to a 3/4 honest majority assumption,
and correspondingly these protocols offer different guar-
antees in terms of the robustness, fairness and censorship-
resistance. Nevertheless, all these protocols still require
quadratic computation (in the number of clients) and may
not be able to manage overall latency overhead of less
than a second. Moreover, from the organizational network
perspective, the regular interaction between the servers
makes them vulnerable to collusion in a geo-politically
diverse setting.

Client/Relay/Server Model. PriFi [8] introduces what
we call client/relay/server model that utilizes a relay
server to avoid major latency overheads, while achiev-
ing anonymity in an organizational network. How-
ever, the packets from the same user are linkable in be-
tween two setup runs in PriFi — if that needs to be
avoided, the expensive setup needs to be run after every
round. Thus, PriFi achieves high throughput with com-
promised anonymity guaratees, or strong anonymity with
less throughput. Our protocol OrgAn provides stronger



C \ Interactive MPC
Internet < among online

— servers

Q

Y y

\ T % %

Interaction \ @ * * ”
among users\” Non-interacting users

(b) In server-aided model of [35, 50, 3,
5, 17] and others, each client only com-
municates with a set of servers, which
interact with each other (performing a
multi-party computation) towards re-
alizing anonymous broadcast for the

(a) In the original DC-net [13, 26],
Dissent [16], Dicemix [41] and sim-
ilar protocols, clients interact with
each others over point-to-point links to
achieve anonymous broadcast among

themselves. clients.

¥

C Internet ¢

Internet

guard/setup-,
nodes with the™,
any-trust

assumption *

(¢) In the client/relay/server architecture of
PriFi [8] and this work, the online phase does not
involve any communication between the clients
and the servers; in this work, we demonstrate
that the servers also do not need to communicate
among themselves. Based on the network setting,
the relay node may or may not know the servers

R R

Non-interacting users

Figure 2: Illustrative Examples for Different Architectures for DC-net Inspired Protocols. The Internet cloud in these
examples can be conveniently replaced by any bulletin board or broadcast channel.

anonymity guarantees by achieving unlinkability among
the packets from the same user without compromising the
throughput.

Although both PriFi and OrgAn depend on a group of
setup servers to generate shared secrets among the users
— OrgAn does not require any involvement from those
servers during the protocol run; thus, reducing the chance
of coercion and collusion among them or with the relay.

3 Preliminaries

In this section we describe some building blocks that we
use in our protocol.

Power-sum Equations and Solution[41, 27]. Consider
the following system of equations:

E(l)=z1+ x5+ +an €7
EQ2) =21+ 25+ -+ €7Zp

E(N):x?+z§+--~+xmezp

with each z; € Zy. This equation system can be solved
using Newton’s identities [41, 27]. Mathematically we
denote the function as SolveEqn(E(1),...,E(N)) that
takes such an equation system as input, and outputs an
unordered set of N elements {z1, 23, . . ., N}, if the equa-
tion system is solvable. In the base protocol phase, each
x; is the input of client u;; the equation system is com-
puted and solved by the relay R to find an unordered set
of client messages.

Ring Learning-with-rounding Assumption. Below we
define the Ring Learning-with-rounding (R-LWR) prob-
lem. It is assumed that the R-LWR problem is difficult to
solve by a computationally bounded adversary.

Definition 1 (R-LWR [7]). Let the Ring-LWR distribu-
tion D, to be over Ry X Ry, VvV > q obtained by choos-
ing a < R, uniformly at random for some s € R, and
outputting (a,b) = (a, |a - s|y). The decisional R-LWR
problem R-LWR,, , 4 consists of distinguishing samples
(a;, b;) from uniform and independently drawn samples
(ai, lll') € R, x Rq.

Then, R-LWR assumption states that the advantage of
an adversary A in solving the decisional R-LWR problem
AaviERCA) = [P A(a, |a - sq) = 1] - PriA(a, u) =
1]| is negligible, with the probabilities taken over a ~
U(Ry),s ~U(Ry), andu ~ U(Ry).

Almost Key-homomorphic Pseudorandom Function.
A key-homomorphic pseudo random function family
(PRF) [9] is a PRF which is homomorphic in the key-input
of the function. Our protocol uses the lattice based pseu-
dorandom function family [9] F(k,d) = |k - H(d)]q €
Ry, for k,H(d) € Ry, d € {0,1}*. Rq and Ry are poly-
nomial rings; each element of the ring is a polynomial of
degree less than U with integer coefficients, represented as
a vector of U elements in Zq and Z,. When the elements
are polynomials (-) indicates the product of two such
polynomial ring elements. F is computationally indistin-
guishable from a random function family, and almost key-
homomorphic, i.e., F(k,d) = F(ky,d) + F(ka,d) + €
where € € R, with each coefficient of € € {0,1}. The



Table 1: Protocol and system parameters for OrgAn

U  Setofall Nusers; N = |U]|
I Setofall K setup servers; K = |I]
G  The j-th setup server
R The relay node
n  The security parameter
ad [b,c]  Draw uniformly at random from an integer range [b, c|
Zp,Zq,Zy  Groups of prime orders p, q, V resp.
|z]  Nearest Integer of =

z1||ze  String z; is appended with string o
H(-)  Hash function used in the PRF that maps strings
of arbitrary length to a element in ring Ry
H(:) Cryptographic hash function that maps
{0,1}* t0 {0,1}7
F(k,t); ™ element of the PRF obtained from key k for slot ¢

security of the PRF considered here is based on the above
Ring-LWR assumption.

For any element a € Zy, the rounding-down function
|-]q is defined as [a]q = [a- 3| € Zq. Rounding down a
vector involves rounding down each element of the vector.

Eliminating the Error. While the employed PRF intro-
duces an error, we use a suitable scaling of messages to
eliminate the error while computing the equation system.
For example, let k = k; + ko. Consider two clients with
messages T1, %2 € Zp. To compute x1 + x5 at the relay,
the two clients forward ¢; = k- z1 + F(k1,d); and co =
k- xo + F(ko, d); for a certain d, ¢t and suitable positive
integer . The relay computes ¢ = ¢; + co — F(k,d): =
K1+ Ko + e. It computes % and rounds the value to the
nearest integer to obtain x; + xo. Here, F(k, d); is the t"
element of the vector F (k, d). We refer to Section 4.2 for
details on the elimination of the introduced error.

Additionally, our protocol uses a digital signature
scheme [42] that is existentially unforgeable under
chosen-message attacks [39]. Let (S,V) be the signa-
ture scheme — given a private-public key pair (p, P),
o = Sp(z) denotes the signature of message « with the
key p, and using the function Vp (2, o) anyone can verify
the signature.

4 Core Protocol

In this section, we present the core OrgAn protocol, and in
Section 5 we extend our protocol to defend against active
attacks. As mentioned in Section 2.1, our system consists
of the following set of parties: (i) a set of N clients de-
noted as uq, ..., uy that (or some of them) want to com-
municate with the outside world; (ii) a set of K setup
servers denoted as (G, . . . , Gk that reside outside the or-
ganizational network; (iii) one relay server R that acts as
a gateway. We assume that all the protocol parties in our
system have access to a public key infrastructure (PKI),
where each party X has a long-term private-public key
pair (px, Px). We summarize the notations in Table 1.

s € Zy'; a global system-parameter

ServerSetup (setup server G, set

U={ui,...,un}):
{rij,...,rn;} = split s into N shares
Send r;; to user u; over TLS foreach ¢ € {1,...,N}

i GK}) :
i1, ..., I,k = Wait for shares from each G; € I

=35 Ty

Send “Setup completed” to the relay R

ClientSetup (user u;, set [ = {G1,..

RelaySetup() :
Initiate ServerSetup(G;, ) foreach G; € T
Initiate ClientSetup (us, I) for each u; € U
Wait for ”Setup completed” from each u,; € U

Figure 3: Setup protocol in OrgAn

Our protocol first runs a one-time setup phase, and then
starts running the protocol. In our protocol, the setup
phase is run only once and never again.

4.1 Setup Phase

Each setup server G splits a publicly known constant s
into N secret shares {ry,,...,ry;} such that s, r;; € Z
and ), r;; = s. It distributes the shares among the
clients, where each client u; receives the share r;;. Note
here, all the setup servers use the same s value.That is a
global parameter of the protocol; however, the shares for
the clients generated by each honest setup server are in-
dependent of other servers and unknown to other servers.
We assume that the setup servers communicate with the
clients using some authenticated and confidential channel
(for example, using TLS [40, 25]).

After receiving one share from each setup server, each
client u; has the following secrets: {r;i,...,r;x};r;; €
ZY. Each client u; computes: r; = E;"Zl ri; € Zy.
We present the pseudo-code for the setup run by the setup
servers and the clients in Figure 3.

4.2 Base Protocol

Our protocol can be divided into several rounds; in one
round each client u; can send one message z;. In every
round, the relay R maintains N slots to receive N equa-
tions. The relay retrieves the N messages from N clients
by solving those equations. For a round d, the protocol is
run in the following steps:

Client Ciphertext Generation. Each client u; with a
message T; € Zp computes the following, for each slot ¢
in a round d:



s € Z{: a global system-parameter
T': number of slots to be used in the current round

RelayProtocol(round d):

P17...,PT = —F(K~S,d)

fori € {1,...,N} do
(di,ci(1),- -+, ci(T)) = Wait for message from u;
fort € {1,...,T} do

Py = Py +¢i(t) mod q

if (d%2 = 1) //Base round, T' = N // then
Eqi,...,En = Lpl/‘%-' mOdpw“:LPN/H.I mod p
(z1,t1) ..., (N, tn) = SolveEqn(En, ..., EN)
Store (t1,...,tn); Broadcast (z1,t1)..., (2N, tN)

else
//Bulkround, T" = t1 + ...tN//
t =0z, ,z¢ = |P1/c] modp,---,|P/K]

mod p
fori e {1,...,N} do
packet; = x¢ 1| ||Teqe,s t=1t+ 1t

Send packety, ..., packety to internet
Broadcast (packety, ..., packety)

ClientProtocol(client u;, packet M, round d) :
if (d%2 = 1) //Baseround, T = N // then
v; = number of fragments required to send packet M
x; = pick a random number uniformly at random
foreachj € {1,...,T} do
¢;(j) = GenCipher((z;||v;), d, §)
Send (d, ¢;(1),- -+ ,c¢;i(N)) torelay R
(Try,t1), -, (T7y, tn) = wait for response from R
if !E(Iﬁvl,t]‘) : (:Eﬂ-],tj) = (:L‘i,l/i) then
Run Blame protocol
else
T=t1+--+t;_1,T=t1+--+1tn
else
//Bulkround, T' =ty +...tn//
i1, , %4, = Split packet M into v; fragments
foreacht € {1,...,T} do
ifT <j<T+v then
¢;(t) = GenCipher(z; t_z,d,t) // Send packet
1
else
¢;(t) = GenCipher(0, d,t) // Send zeros //
Send (d, c;(1), -+ ,¢;(T))to R
D1, ..., Dy = wait for response from R
if13D; : D; = M then Run Blame protocol

GenCipher(message z, round d, slot t) :
if (%2 = 1) theny; = 2 mod p; y2 = K - y1 mod q
elsey> = k- mod q
¢=y2 + F(ri,d) mod q; returnc

Figure 4: Protocol run in OrgAn. The texts in // — //
blocks denote comments, and this color relates to defenses
against disruption that we describe in Section 5. The exact
details of those defenses are skipped here.

pi(t) = F (r4,d), € Zq
ci(t)y=k- mf +pi(t) € Zqg

q>p
k> 2N
Client u; then sends the ordered set {c;(1),...,¢;(N)}
tagged with the round number d to the relay.
Note that 2} is computed as a group element in Zg,
however for computing & - ¢, it is treated as integer as
long as x - 2 < q. We discuss shortly the exact relation
between p, q and « for which the equation system holds.

Slot Value Reveal. For a slot ¢, the relay R collects the
ciphertexts ¢ (t), ..., cn(t) from all the clients and com-
putes:

P(t) =ci(t) +---+en(t) — F(K-s,d); € Zg
=(k- (@) +ay+ -+ an) +e) €Zq

After dividing P(t) by  and rounding to the nearest inte-
ger, the relay gets:
E(t)=|P(t)/k] modp=uzai+azl+ - +ay€Z
It is important to note that F(t) is in Zy. The structure of
E(t) remains unharmed as long as g > pxN > 2pN?. We
discuss the appropriate choices of p and g for satisfactory
performance in Section 7. Once all the slot values from
all the clients are received, the relay has E(1),..., E(N).
The relay can solve the above equation sys-

tem to retrieve x1,%2,...,xn (without knowing
which message belongs to which client) using
SolveEqn(E(1),..., E(N)). Once the individual

values x1, Ta, ..., xN are retrieved, the relay can forward
them to the outside world. We present the pseudocode for
the protocol in Figure 4. The setup servers do not take
part during the protocol run at all.

4.3 Scaling with Bulk Protocol

The protocol described in Section 4.2 (what we call Base
protocol) is a perfectly fine protocol to communicate to
the outside world, except it does not scale well with the
number of clients. If the number of clients increases, solv-
ing the equation system becomes a bottleneck. Also, in or-
der to send a single IP packet (typically 512 Bytes) using
our Base protocol the client needs to break the packet into
multiple fragments and send them over multiple rounds —
and that adds a computational/management overhead. So,
we present a Bulk protocol that minimizes the above two
problems. Our Bulk protocol draws its inspiration from
the Bulk protocol in Dissent [16]. Each client participates
in one round of Base protocol and one round of Bulk pro-
tocol to send one IP packet.



Client Permutation Generation with Base Protocol.
Each client picks a random number z; € Z, and uses
one round of Base protocol to broadcast (z;, v;) to all the
users, where v; is the number of fragments required to
send the IP packet the client wants to send. When the
relay broadcasts the output set of pairs (z;,v;) it gener-
ates a random permutation W of those pairs. Each client ¢
checks the position ¥ (i) of their own input in the output
permutation. The client u; sends v; consecutive fragments
in the immediate next Bulk round, starting from the slot

Z;P:(il)*l vy(j) + 1. The Bulk round will have a total of
T= Z!\':l v; slots.

Client Ciphertext Generation in Bulk Round. Each
client wu; splits the IP packet into v; fragments

Zi1,- .- L;,,. For each slot ¢ in the Bulk round, the client
computes:

T(i)—1

Z Vo (j)

j=1

es(t) = {pi(t)

w- i+ pilt)

T, = pi(t) = F (ri, d),
t<Tiort>T;,+v;
t:E+J7O<J§V2

u; then sends the ordered set {c;(1),...,¢;(T)} tagged

with the round number d to the relay R.

Message Reveal. Similar to the Base protocol, for every
slot ¢ the relay R collects the ciphertexts ¢; (), ..., en(t)
from all the users and computes the following:

P(t) =e1(t) + - + en(t) — F(K - 5, ),

The relay can reveal the corresponding slot value by com-
puting | P(¢t)/k] mod p. The relay retrieves the whole
IP packets by bitwise concatenating the slot values of the
associated slots. Then the relay sends the retrieved IP
packets to the outside world.

Multiple Rounds. The value of F (r;,d) can be com-
puted for arbitrarily large value of d. This means the pro-
tocol can be run for a large number of rounds without the
need to rerun the setup. Additionally, the relay does not
need to receive ciphertexts for different rounds in the cor-
rect sequence, the relay can map them correctly using the
round tag and slot id associated with each ciphertext.

Although the round number d can be arbitrarily large
in F (r;,d), for forward secrecy we recommend running
the setup once every few days. The relay can invoke this
procedure at regular intervals. If the relay does not run
the setup regularly as expected, the clients will suspect
the relay’s malicious intentions.

4.4 Performance Improvement with Pre-
processed PRF Values

Much of the computation overhead on the client dur-
ing the protocol run can be reduced using some pre-

processing. The pre-processing can happen in the follow-
ing two steps:

Pre-processing Hash Computation. Recall that we use
a lattice based PRF of the form F(r;,d) = |r; - H(d)]q.
The part #(d) is entirely independent of any secret values
associated with the client, and the input to H gradually
increases with the round number. Therefore, for a large
integer T, the hash values for the range of input values
[1, %] can be pre-processed and provided to the clients as
part of the installation. The clients only need to rerun the
setup when those hash values are exhausted, and with the
new set of secrets, they can start reusing the hash values.
This eliminates the hash computation overhead from the
client altogether.

Pre-processing Overall PRF Computation. Addition-
ally, we assume that the clients have a preprocessing time
everyday before they start using the system — using the
already available hash values, the clients can preprocess
the PRF computation for several rounds (or for the whole
day). With the preprocessed p;(t) = F (r;,d), values,
each client needs to perform only one scalar multiplica-
tion and one addition to compute ¢;(t) = k-x; j+p;(t) for
every round. In Section 7, we explore this pre-processing
and real-time split in detail.

S Handling Disruption

We now describe how OrgAn can detect and defend
against a compromised or malfunctioning participants that
might disrupt the protocol by sending wrong/malformed
ciphertexts. As suggested in Section 2.2, we do not con-
sider active attacks from outside the organizational net-
work.

5.1 Disruption Detection

To detect a disruption we modify our protocol for the
relay R to broadcast a response message with the val-
ues x1,...,xN at the end of each round. Each client u;
checks if her x; exists in the response message. If x;
cannot be found, the client can initiate the Blame pro-
tocol for a disrupted round d by broadcasting the tuple
(d, F (I‘i, d) ,.’L’i).

Note that the disruption detection technique depends on
the relay R delivering the same response message to all
the client. In case the relay does not do that, the technique
mentioned in Section 5.5 defends against that.

A client u; cannot find x; in the response message
means the relay has retrieved at least one wrong message.
It is possible in three ways: (1) the relay has done the com-
putations wrong or intentionally modified the messages,
(2) some malicious client has sent a bad ciphertext, (3)
Some malicious setup server has distributed wrong shares.



If the relay did not act maliciously, it is its responsibility
to find the culprit.

5.2 Blame Protocol

The Blame protocol for a round is invoked by at least one
client, and then it is run by the relay R. For the Blame
protocol to work correctly, we need to slightly modify the
setup phase as well as the protocol run as described below.

Modifications in the Setup Phase. In the setup phase,
now the setup servers need to generate additional in-
formation along with r; ; values to verify the correct-
ness of the PRF computation. Let the secret shared
by Gj to client u; be ry; = {aijl,...,oziju} such
that each oyj1,...,55u € Zy and let all the setup
servers and the relay mutually agree on g,h of or-
der 7 > qv. Then each guard server G; computes

Fri,- _ {ga,;jl hPii , Qa2 hﬁi]l’ o ’ga,;juh,@uu} with

blinding factors 3. & Zy. The setup server also com-

putes £ such that for each ¢, Zg‘zl oje = sg+€p-vmod T
and a range proof 7 ¢ proving 0 < £, < N. Since we use a
non-standard order v, we use commitments on a standard
elliptic curve of higher order 7 and use suitable verifica-
tion procedure (c.f. Section 5.4). G sends a signature
oij = Spcj (ui, Tr,;, e ¢) along with the values r;;, Te ¢
to the client wu;.

Once the client u, receives the tuple (r;;, 055, T ¢), w;
computes Iy, verifies the signature o;;. If those verifi-
cations are successful, u; forwards (I'y,;, 04, e ¢) to the
relay I2. Note that the relay receives redundant ¢ o from
each client. The relay additionally verifies the following
two conditions:

e for each £ € {1,2,...,u} if Hi»\'zlgo‘iﬂhﬁi“ =
g*h* . (g7¢h “*) holds, where s =
{s1,82,...,su}; it also verifies m¢ . The quantities
s’,t, are defined analogously from the blinding
factors S3(,).

* if each o;; is a valid signature of (u;, I'y,;) generated
by the setup server G;.

The above steps in the setup phase ensure that each
setup server has generated and distributed the r; ; values
correctly. Therefore, during the Blame protocol run, the
relay or the clients will not require interaction with the
setup servers.

Modifications in the Protocol Run. During the pro-
tocol run, each client w; sends all the ciphertext val-
ues {c;(1),...,¢;(N)} along with a signature o; =
Sp.. ((d,ci(1), ..., ci(N))), for round number d. The re-
lay verifies the signature and also stores o; for future use.

Blame Protocol Run. A client can invoke the Blame
protocol for a round d by broadcasting the tuple
(d, F (r;,d) , x;) corresponding to round d.

Once Blame is invoked, the relay asks all the clients
to send their F (r;,d) and z; values. Additionally, each
client u; needs to send a non-interactive zero-knowledge
proof (NIZKP) \; of correct evaluation of the function F.
If a Base round is disrupted F (r;, d), z; and \; values are
sent for all the slots in that round. For a Bulk round, it is
sufficient to verify only the disrupted slot. However, the
preceding Base round is also opened when a Bulk round
is disrupted. We provide the detailed structure and the
verification method of \; values in Section 5.4. A non-
compliant client will be blamed by the relay.

Once all the values are received, the relay recomputes
the ¢;(¢) values with the newly sent values of F (r;, d) and
x;, and verify that they are consistent with the previously
sent values. Additionally, the relay verifies the correctness
of F (r;,d), values using \; values. The client who sent
a wrong ¢;(t) or \; will be blamed and excluded from the
protocol. If the Blame has been raised wrongly, the relay
can prove that by broadcasting the F (r;, d) and z; values
it received from all the clients.

If at least one slot is disrupted and no client is found
guilty (all clients have run the protocol correctly), that
means the shares r;; distributed by the setup servers to the
clients were not correct, or the relay is the disruptor. How-
ever, if it is the first case, the relay should have flagged that
during the verifications in the setup phase, and hence, the
relay is blamed.

If a Base round is disrupted since no actual information
is transmitted, the clients can reveal the F (r;, d) and x;
values — then they can just rerun the Base round and use
the new slot agreement for the next Bulk round. However,
if a Bulk round is disrupted, since the clients reveal the
F (r;,d) and x; values, anonymity is trivially broken. To
avoid that we design a second version of the Blame pro-
tocol to leak only 1-bit without deanonymizing the client.

5.3 Version of Blame Protocol without
Breaking Anonymity

For this version of the Blame protocol to work for Bulk
rounds, we further modify our Bulk protocol to include
an additional flag bit that tells the relay to run the Blame
protocol for the last Bulk round — a client can initiate the
Blame protocol anonymously by setting the flag bit to 1.
As part of the content of the message in Bulk protocol,
instead of a random number, the client sends the slot index
and bit index for the slot that he wants to open. Similar to
PriFi, the clients in OrgAn invoke the Blame protocol for
a bit position where the original value is 0 (if the original
message bit is 1 for a client, that trivially reveals that the
slot belongs to the client). This allows the clients to invoke
the Blame protocol without revealing their identities if a
Bulk round is disrupted. Additionally, since the Blame
protocol is invoked without revealing the client’s identity,



the client also needs to include a proof to prove that the
disrupted slot was actually owned by her — we describe
the proof below. It is important to note here, in this version
of the Blame protocol the preceding Base round is not
opened.

For the client to be able to prove the ownership of a
slot without revealing the identity, we make a minor mod-
ification to our Base protocol — instead of publishing a
random number x during the Base round, the client pub-
lishes the hash Hy(D,x). Here D is the response mes-
sage sent by the relay in the last Bulk round, and H;(-)
is a cryptography secure hash function that maps {0, 1}*
to {0, 1}". If the Bulk round is disrupted, the client can
publish x along with the slot index and bit index to prove
that the slot was owned by her without revealing her own
identity. The security level of this technique depends on
the value of 7, — that determines the probability of the
adversary finding a collision.

Suppose, the Blame protocol is invoked for bit posi-
tion ¢ of slot index ¢. In this version of Blame protocol,
a clients does not send the x; and F (r;, d), values to the
relay; instead sends the ¢-th bit of F (r;, d), and a tuple
(g’/’lhw;,gwi’h%) where v, is the first (¢ — 1) bits and
1y is the last (¢ — ¢) bits of F (r;, d),. 17, ¢4 are the cor-
responding parts of the blinding factor. Additionally, the
client sends )\;, a non-interactive zero knowledge range
proof for correct PRF evaluation (refer to Section 5.4 for
more details). This allows the client to reveal the ¢-th bit
of F (r;,d), without revealing the value, and allows the
relay to verify that the bit is indeed the ¢-th bit of correct
PRF value. If a client fails to provide the above values,
the relay blames that client as the culprit. If no client is
detected as the culprit, by default, the relay is blamed.
However, if the Blame has been raised wrongly, the relay
can prove its innocence by broadcasting the values it has
received from all the clients.

Since the clients can invoke the Blame protocol anony-
mously, it is possible for some clients to keep invok-
ing it to slow down the system. However, that will not
break anonymity or stop the system completely. On the
other hand, in our first version of the Blame protocol, if a
client wrongly invokes the Blame protocol, everyone can
see the identity of the client, and the client can be pun-
ished. However, anonymity is compromised for the dis-
rupted round. In our final design, we choose to protect
anonymity, and use the second version for our security
theorems and proofs.

5.4 Verifiability of PRF

Recall that the PRF values were generated by first per-
forming ring product as element-wise multiplication of
the NTT transform of k and #(-), and then apply-
ing inverse NTT transform on the output from the first

step. More specifically, let the NTT transforms of r;
be 5 = {1, 2,...,au}. and of H(-) be H =
{hl, ho,..., hu}; also let L; = ££i1,€1‘2, R aéiu} de-
note the element-wise product of H, ;. Then we have,
li. = oy - hy for & < u. Let the Inverse NTT of L; is
denoted by W; = {w;1, w2, - ,w;u}. Then we have:
Wik = U1 2;21 £;;97%=Y mod v, where Q is the u-
th primitive root of unity.

The final PRF output set is obtained as |W;|]q =
{lwir]g, [wizla: -+ [winle} = {21,202, 2}
Therefore, the following holds for each index £ < u:
Vzik + e = quw;i for some 0 < e;;, < V.

Below we describe the steps that enable the relay to
verify the correctness of the PRF computations during the
Blame protocol run:

Additional Steps during Setup Phase. Let all
setup servers and the relay mutually agree on gen-
erator g, h of a multiplicative group G of order
7 > qVv. Each setup server G; computes pp,, =

{go‘iﬂhﬁ”l,g“iﬂhﬂ“z, .. ,ga”“hﬁ”“} for . & Zy
and a signature 0;; = Sp (i, pr,,; ), and sends them to
client u;. The client verifies the signature and the com-
putation of py, ;, and forwards them to the relay. After re-
ceiving the p,,; values from each client, the relay verifies
the signatures as well.

Client Side Computation. During the blame protocol,
a client computes e;;, and range proofs [11] 7 ; x, Te ik
verifying 0 < e;, < V, 0 < &3 < min(7,uv?), where
wip + Epv =u! Zl;:l i - Q7*0~1 mod 7. Then the
client sends as a NIZKP for correct PRF computation,
A= (ge1"‘"'he'/ik,71'e71;7k, e k) to the relay, without reveal-
ing ;. Here, €], is defined and computed analogously to
e;r with the corresponding blinding factors.

Relay Side Computation. The relay R can compute the

values {gga"'1 Wit aimpbia - gawpfi } using the values
it received during the setup phase. Using this, the relay

can compute:

u
guik hw;A — g_VEikh7VE;k H(gau hﬁi_j)hj-ﬂ’k(j’l)-u’l

=1

for k < u. Note here, v, 2, h; are public information, and
¢/, is the blinding factor for £;.

To verify that a PRF value z;; is correct, the relay
needs to verify g¥#i hVZix . geir heir = gawik h9%ix . Here,
20, wiy, el are defined analogously to 2, Wik, €;, With
the corresponding blinding factors.

Note that the relay can compute @97 -

N2 /
(gwl hwl) - g¥2h"2, corresponding to the Blame for a

Bulk round. Additionally, the relay needs to verify the
range proofs 7 ; 1, and 7 ; j.

10



5.5 Equivocation Protection

With our key-homomorphic PRF based construction, we
achieve protection against equivocation almost for free.
We include a summary of history till round (d — 1) as
part of the key of the PRF function in round d: p;(t)
F(h(d—1)-r;,d), € Zq where h(d—1) is computed lo-
cally by each client as h(d —1) = H(h(d—2),D(d—1))
for the response message D(d — 1) sent by the relay in
round (d — 1). H(-) is a cryptographically secure hash
function that maps {0, 1}* to {0, 1} for the security pa-
rameter 7). Note that the multiplication between h(d — 1)
and r; is a scalar multiplication since h(d — 1) is a scalar
value.

Then the relay reveals the slot value for a slot ¢ in the
round d from the ciphertexts ¢ (t), . .., cn(t) using,

Pit)=c1(t)+ -+ en(t) — F(h(d—1) - K-s,d);

With this minor modification, the relay will be unable to
retrieve all future messages if it transmits different values
for D(d) to different clients in any round.

6 Security Analysis

In this section, we argue the anonymity properties of the
protocol in the passive adversary setting, as well as against
relevant active attacks. Here we present the security the-
orems and their implications, and postpone the proofs to
Appendix A. The security definition of PRFs is also pre-
sented in Appendix A.

6.1 Anonymity Definition

We focus on sender anonymity for our protocol. We for-
mally define anonymity based on AnoA [36] framework
as an indistinguishability-based interactive game between
a challenger (running the protocol) and a PPT adversary.
The goal of the adversary is to find out which of the two
adversarially-chosen senders has sent a message to a spe-
cific recipient (sender anonymity). More formally, the ad-
versary can send polynomial number of input messages
of the form (Input,u, R, m), then one challenge mes-
sage (Chall,ug,u1, Ro, R1,mo, m1), and tries to guess
a challenge bit b of the challenger in the game.

Definition 2 ((«, 0)-IND-ANO). A protocol 11 is («, J)-
IND-ANO for the security parameter 1, an anonymity
Sfunction o and a distinguishing factor 5(-) > 0, if for
all PPT machines A,

Pr[0 = (A|ch(I1, «, 0))] < Pr[0 = (A|ch(I],, 1))] +
o(n)-

Definition 3 (Sender anonymity). A protocol 11 provides
d-sender anonymity if it is (cga, d)-IND—-ANO for aiss as
defined in Figure 5.

Upon message (Input,u, R, m):
RunProtocol(u, R, m)

Upon message (Chall,ug,u1, Ro, R1,mo, m1):
Compute (u*, R*) < a(ug,u1, Ro, R1,b)
RunProtocol(u*, R*, mg)

RunProtocol(u, R, m):

Run ITon 7 = (u, R, m) and forward all messages that are
sent by IT to the adversary A and send all messages by the
adversary to IT.

asa(uo, u1, Ro, R1,b) = (up, Ro)

Figure 5: Adaptive AnoA Challenger Ch(II, v, b) [36]

6.2 Anonymity Analysis

Theorem 1 (Sender Anonymity of Base Protocol). As-
suming F() is a computationally secure pseudorandom
function, the Base protocol of OrgAn provides sender
anonymity as defined in Definition 3 with negligible ¢
against any global passive adversary A, as long as at
least two clients and one setup server are honest.

The above theorem shows that the Base protocol of Or-
gAn provides sender anonymity with negligible adversar-
ial advantage when the protocol runs without any disrup-
tion. Now we extend the argument for Bulk protocol.

Theorem 2 (Sender Anonymity of OrgAn). Assuming
F() is a computationally secure pseudorandom function,
OrgAn provides sender anonymity (when Bulk protocol
is employed) as defined in Definition 3 with negligible §
against any global passive adversary A, as long as at
least two clients and one setup server are honest.

Note that we are considering a whole IP packet as the
message in our anonymity game. Therefore the challenge
message in the anonymity game can be of varying length.
The above theorem considers both Base and Bulk rounds,
and OrgAn provides anonymity with negligible ¢ as long
as the PRF F is secure, given that the protocol is run with-
out any disruption.

6.3 Security against Active Attacks

When a malicious client tries to disrupt the protocol by
sending a malformed message, we want the honest clients
to be able to detect that with overwhelming probability
and be able to identify and punish the culprit. But first,
we want to show that the relay cannot launch equivocation
attacks, i.e., all honest clients receive the same response
message after a round.

Lemma 1. Assuming F is a secure PRF as well as (al-
most) key homomorphic with a bounded error e, and H

11



is a collision-resistant hash function, if the relay sends
two different output messages D; and D; (D; # Dj) to
any two honest clients u; and w; in a round d, the relay
lose the ability to run any later rounds with overwhelming

probability.

A direct corollary of the above lemma is that the hon-
est clients can detect any disruption with overwhelming
probability.

Corollary 1. Assuming F is a secure PRF as well as (al-
most) key homomorphic with a bounded error e, and H
is a collision-resistant hash function, only with negligible
probability, the adversarial relay can disrupt the message
x; of an honest client u; in round d without getting de-
tected or losing the ability to run later rounds.

If the Blame protocol is invoked, it is desired that the
culprit is identified correctly with overwhelming proba-
bility and no honest client can be blamed wrongly for the
disruption.

Theorem 3. Assuming \; proves correct computation of
F(r;,t) for a client u; with overwhelming probability and
S() is cryptographically secure signature scheme, if the
Blame protocol is run for a disrupted round d, with over-
whelming probability at least one disruptive party is iden-
tified, and an honest party is not (mis-)identified as a dis-
ruptor.

Unlike the Base protocol, the x; and F(r;,t) values are
not opened if a Bulk round is disrupted. Therefore, we ad-
ditionally want that for a disrupted slot ¢ in a Bulk round
only the client owning that slot can launch the Blame pro-
tocol.

Lemma 2. Assuming Hi is a collision resistant hash
function, and the computation power of the adversary is
limited by T hash computations between two consecutive
Base rounds where T is polynomial in np, the Blame pro-
tocol in disrupted Bulk round d can be invoked by a mali-
cious client u* for a slot £ which is not owned by u* only
with a probability negligible in 1.

The above lemma is important to ensure that a mali-
cious client cannot launch the Blame protocol for an ar-
bitrary slot just to break anonymity of a Bulk round. Re-
call that, when a Base round is disrupted, the x; and PRF
values are anyway opened during the Blame phase. And
therefore, anonymity is trivially broken for a disrupted
Base round when the x; and PRF values are opened. To
solve that, OrgAn reruns the Base round and uses the new
slot agreement for the next Bulk round. Hence, we do not
want a disrupted Base round to influence anonymity for
other rounds.

Theorem 4. Assuming F is a secure pseudorandom func-
tion, and further assuming that at least one of the setup

nodes is honest, the Blame protocol for a Base round d
does not break anonymity for any other round d’ # d.

Recall that this leakage is not there where a Bulk round
is disrupted. Because when client chooses to invoke the
Blame protocol, only the bit position is opened where the
original bit value was 0. Therefore, anonymity of the
client is protected, and Blame is invoked with probability
almost % in case of a disruption. According to Theorem 3,
the disruptor is identified with overwhelming probability
when Blame is invoked.

7 Implementation

We have developed a proof-of-concept implementation”
of OrgAn in Rust. Although the current version of im-
plementation is not optimized for performance and par-
allelization, it encompasses the complete functionality to
enable a successful test run. We use the Flint2 [1] library
for solving powersum equations. In the following, we dis-
cuss the considerations that we make for our implementa-
tion.

Parallelization of Slot Message Computations. The ex-
istence of ‘slot’ is only virtual and all the messages of all
the slots per round are computed and forwarded to the re-
lay together by the client.

Preprocessing. We assume that the hash values are avail-
able to the clients as a part of the installation. As we al-
ready mentioned earlier, we assume that the clients have
a preprocessing time every day before they start using the
system; using the available hash values, the clients prepro-
cess the expensive part of PRF computation: f = r; - H().
During the protocol run, to compute a PRF value a client
only needs to compute the multiplication between § and
h(), where h() is the summary of the history and thus
cannot be preprocessed.

Fragmentation and Defragmentation of Packets. The
clients transmit 7, bits of data per slot in a Bulk round; the
typical Ethernet IP packet (with a Maximum Transmis-
sion Unit (MTU) of 1500 bytes) is broken down into mul-
tiple fragments of 7 bits each and forwarded to the relay
in multiple slots. After computing all the messages, the
relay node identifies the fragments of each client, forms
the full IP packets by combining the fragments, and for-
wards it to the outside network.

Parallelization of Base and Bulk Rounds. The Base and
Bulk rounds are not required to be run sequentially, in-
stead, they can be run on independent parallel threads by
the relay, with the only requirement that a Base round cor-
responding to a Bulk round has run before the Bulk round.
For this performance optimization, the protocol requires

Zhttps://github.com/zhtluo/organ

12



one minor modification — the computation of PRFs in a
Base round only includes the history h() of previous Base
rounds; however, the Bulk rounds still consider the history
of both Base and Bulk rounds. In terms of equivocation
protection the only difference now is that, if the (adver-
sarial) relay equivocates in a given Bulk round, he will be
caught in the next Bulk round instead of the immediate
next Base round.

System Parameters. The values of (p, g, v, U) are cho-
sen such that the PRF construction offers at-least 128 bits
of security estimated using the Iwe-estimator [4, 2]. (p,
q, V) are of bit-lengths (7p, 1, 7)) respectively. For the
base round, each client chooses a 64 bit random value for
slot selection (64 bit hash output of random correspond-
ing value from previous round); hence we use 1, = 64.
In the bulk round, the clients forward 226 bits of data in
each slot, with 7, = 226. The corresponding parameters
for base and bulk rounds are:

* Base: (1p, g, v, U) = (64,84, 112,2048)

* Bulk: (np, ng, 7v, U) = (226,256,293, 8192)

The modulus Vv of the ring used for the base and bulk
protocols are (57 x 296 41) and (7 x 220 +1) respectively
such that v mod 2u = 1. For error elimination in the PRF
computation, we use k = 1000 in our implementation.

Note that, even though our choice of 7, = 64 for Base
rounds restricts the security of the hash function H; to
maximum 64 bits, for all other cryptographic construc-
tions we choose at least 128-bit security. we find this
choice of np, to be satisfactory as the adversary has to find
a pre-image before the next Base round to use that against
an honest client.

8 Performance Evaluation

8.1 Microbenchmarks

Here we evaluate the overheads of different steps for the
clients and the relay individually using our prototype im-
plementation. All the measurements are average of 10
runs of the same experiment, unless otherwise specified.
8.1.1 Overhead for the Clients

Preprocessing Overhead for Clients. We evaluate
the preprocessing overhead for clients on an 16-virtual
core AWS EC2 c4.4xlarge instance. Each PRF (pre-
)computation corresponding to a base round takes 0.5 mil-
liseconds; and for a bulk round, it takes 5 milliseconds —
the difference arising from the orders of the ring elements
2048 and 8192. A total of 5.5 milliseconds of prepro-
cessing for one set of base and bulk rounds of protocol
allowing to forward #122X226 bt for each client in a 100
client system — that would amount to ~ 39.6 minutes
of preprocessing for 1 GB of anonymous communication
for each client. For 12 hours of preprocessing per day,

13

our current implementation can support 18.1GB of anony-
mous communication data per client, in a 100 client sys-
tem. We want to note that the preprocessing overhead can
be further reduced with an optimal implementation with
improved parallelism.

Real-time Overhead for Clients. The real-time over-
head for clients only involves additions and multiplica-
tions and does not involve any costly computations. The
total computation for a client in a base round, as well as
bulk round, takes less than half a millisecond (for a 100
client system). The base round involves a few hundred
additions and multiplications for each client. For a bulk
round, the client only needs one scalar multiplication per
slot, one addition (of the message), in addition to the his-
tory computation. The history is computed only once for
each round.

8.1.2 Overhead for Relay to Solve Equations System

We use an Amazon AWS EC2 c5.24xlarge instance, with
96 virtual cores to run this benchmark for the relay. In ev-
ery Base round the relay needs to solve the equations sys-
tem with N equations where N is the number of clients.
We choose 1, = 64 bits as the message size for each mes-
sage in Base rounds.

Fig. 6a shows the time taken by the relay to solve one
equation system using a single thread for different number
of clients for the chosen 7p. Each equation system corre-
sponds to one base protocol round which is used to send
one IP packet for each client in the bulk protocol round.
For 100 clients, the relay solves ~ 550 equation systems
per second (using multi-threading) and hence can support
~ 550 packets per client per second. Fig. 6b shows the
number of equation systems solved per second by a multi-
threaded relay node. For a packet size p of 1 KB, this cor-
responds to a throughput of 550 KBps and 225 KBps if the
average packet size is 512 bytes. With increasing clients
in the system, the time taken to solve the equations system
increases rapidly, reducing the number of total equation
systems solved and the throughput.

8.2 End-to-end Latency Evaluation

Experimental Setup. We use an AWS EC2 c5.24xlarge
instance acting as the relay and ten EC2 c4.4xlarge in-
stances simulating all the clients, each instance simulat-
ing multiple clients. We run the real-time phase of both
OrgAn and PriFi in the same setup. However, we want
to note that PriFi has to run its setup phase once for ev-
ery round to offer the same level of anonymity as OrgAn.
In our experiments, we ignore the overhead of such setup
runs® as well as the costs of equivocation protection in

3In order to allow 1 GB of data for a client, assuming an average IP
packet size of 1KB, the setup in PriFi needs to be run ~ 106 times, and



3 100
80
60
40
20

Time (milliseconds)

100 150 200
Number of clients

100 150 200 50
Number of clients

50

(a) Time taken (y-axis) by a (b) Number of equation sys-
single-threaded relay node to tems (7") solved per second (y-
solve the equation system for axis) by a multi-threaded relay
the different number of clients for different number of clients
(z-axis). (x-axis).

Figure 6: Time taken for solving a single equation system
and number of such equation systems solved by the relay
in the base round with message length 7, = 64. The
values show mean of 100 runs of the protocol.

Table 2: Client-relay-client round trip time (RTT) for the
slot selection using the base protocol phase in OrgAn.

Nodes
RTT (msec)

50
37

100
56

150
84

200
116

PriFi. Similar to the clients in OrgAn, the relay node also
has precomputed hash values and preprocesses the expen-
sive part of the PRF computation.

Round-trip-time (RTT) of Base Round. In Table 2 we
show the round trip time (RTT), the time from sending a
message to receiving the response message from the relay,
in the Base protocol of OrgAn. The time is computed
from the last client who sends the message to the time the
response message is received from the relay. For a 100
client system, the base protocol introduces a delay of less
than 60 milliseconds.

End-to-end Latency. We consider that the Base and Bulk
rounds of OrgAn are run in parallel threads as mentioned
in Section 7. Fig. 7 shows the round trip time (RTT) of
Bulk rounds of OrgAn while pinging an external server
(the IP address google.com); we compare the RTT of Bulk
rounds in OrgAn with PriFi. Barman et al. [§] already
show that PriFi outperforms other existing protocols with
significant margins, and therefore, it is sufficient to com-
pare our performance with only PriFi.

We measure the round-trip time of the ping experienced
by the last client thread that sends the message to the relay.
For PriFi we assume that the PRG values from the guard
nodes for each slot are received by the relay before the
round starts. In a 100 client system, PriFi has as RTT of
24 milliseconds and OrgAn has 27 milliseconds when the
packets sent by all the clients are small (56 Bytes); when
the packet sent by each client is of size 1 KB the RTT

an equal number of verifiable shuffle among the guard nodes in PriFi to
achieve unlinkability for each IP packet.

14

I I
100 |-| —&— OrgAn-NP-1KB -
] —o— OrgAn-56B
=] . iFi*-
g S0l * PriFi*-56B B
Q OrgAn-1KB
= -#-  PriFi*-1KB
‘g 60 - y
g
H
) 40 - y
~
20 .

|
150

Number of clients

Figure 7: Round trip time (RTT) to ping an external server
google.com by forwarding 56 byte and 1KB message us-
ing the bulk protocol of OrgAn and PriFi* (that excludes
the cost of setup and equivocation protection from PriFi).
The suffix in the legend indicates the packet size used.
OrgAn-NP is OrgAn with no pre-processing.

becomes 29 and 46 milliseconds respectively. While Or-
gAn introduces a (slightly) higher end-to-end latency than
PriFi, as discussed earlier, it comes with all the suggested
advantages including packet-level unlinkability. We note
that the performance of OrgAn can be significantly im-
proved with a better implementation that can optimally
parallelize the computations including group operations.

Throughput Comparison. We compare the through-
put of OrgAn with PriFi protocol in Fig. 8 using a Rust
implementation of the protocols . We use an AWS
EC2 c5.24xlarge instance acting as the relay and ten
EC2 c4.4xlarge instances simulating all the clients, each
instance launching multiple clients. To compute the
throughput for OrgAn, we compute the time taken by the
client to run 100 base and bulk rounds sequentially. For
each set of base and bulk rounds, for a 100 client system,
each client forwards 1KB of message data. Since each
slot supports a client data of 226 bits, to forward 1KB,
each client uses 37 slots, thus totaling 3700 slots (of the
bulk round) for a 100 client system. For 100 rounds, each
forwards 100KB; dividing this value by the time taken to
complete 100 base and bulk rounds provides the through-
put achieved. While we show throughput using sequen-
tial rounds, in a deployment, multiple rounds can be pro-
cessed in parallel for higher throughput.

For PriFi, similar to OrgAn we consider 1KB messages.
In a round, each client uses one slot for its messages,
thus the total number of slots in a round is the number
of clients. To compute the throughput, we compute the
total time taken by the clients to forward 100 such mes-
sages (rounds) to the relay. After collecting each set of
messages from the clients, the relay forwards a packet
to indicate the end of the round. To achieve the packet
level of anonymity as OrgAn, PriFi needs to run a setup
phase for each round of communication by the clients.



Fig. 8 shows the throughput achieved by our implemen-
tation of PriFi without setup. To estimate the time taken
to run the setup phase of PriFi, we use a publicly avail-
able implementation [21] of Neff’s verifiable shuffle pro-
tocol [37]. Each such verifiable shuffle, including shuffle
and its verification take ~ 0.432 seconds for 100 values
on an AWS EC2 c4.4xlarge server machine. Consider-
ing 10 servers for each verifiable shuffle protocol would
lead to 4.3 seconds of setup time per round for the PriFi
protocol. Since the time taken for setup is much higher
compared to the client message generation, the latency
is dominated by the setup time reducing the throughput.
In Fig. 8, PriFi* is the throughput of the system without
the setup phase. PriFi** is the estimated throughput of
PriFi with setup phase for each packet (1KB) using a ver-
ifiable shuffle with 10 guard servers. Fig. 8 also shows
the throughput of OrgAn with and without pre-processing
(shown as OrgAn-NP). Since the processing and network
delays dominated when running sequentially on a single
thread, preprocessing the PRF values offered only minor
improvement in the throughput. PriFi** shows that for
the same (packet) level of anonymity, OrgAn outperforms
PriFi.

Communication and Computation Costs. In both Or-
gAn and PriFi all the clients forward values for each slot
in the bulk rounds. Considering a data size of 1KB, each
client forwards 1KB of message data in PriFi, wherein
OrgAn, each client forwards a total of 1.13KB of data.
This is because, to forward a data size of 226 bits in each
slot, the client masks with a pseudo-random value of 256
bits in OrgAn whereas, in PriFi, it is just XORed with a
pseudo-random value retaining the bit-length. In OrgAn,
the relay collects all the slot messages from the clients and
performs group addition and scaling; in PriFi all the slot
messages are XORed.

é 15 & —— OrgAn

v N OrgAn-NP

R= 10 |~ B -+-  PriFi*

2 PriFi**

&  5F i
)

g —ee

£ R N ) —
= 0 | ! T L

Number of clients

Figure 8: Throughput comparison between OrgAn and
PriFi systems for sequentially running 100 1KB message
rounds. PriFi* is PriFi protocol without the setup phase.
PriFi** is PriFi assuming 10 servers are running the shuf-
fle protocol (setup) for each round. OrgAn-NP is OrgAn
with no pre-processing.

15

8.3 Storage Overhead for Hash Data

We assume that the hash values required for the PRF com-
putations are already available to the clients (as part of the
installation). The amount of hash data used is 112 x 2048
bits for one base round and 293 x 8192 bits for one bulk
round. With one base round and one bulk round each
client can transmit one IP packet. Therefore, if a storage
of 10 GB is alllcgcated for hash data, each client can trans-
mit (112“0;;’”?2%3%192) &~ 30422 IP packets anony-
mously. Assuming an average size of 1 KB per IP packet,
this would correspond to ~ 29.72 MB of anonymous data
for each client. This is for a single set of shares from the
setup servers. During the setup phase, the setup servers
forward multiple secret sharings of the vector s instead of
a single set of shares to the clients. If they forward 34
such sharings amounting to 9.72 MB of shares per server
(and 18.95 MB of proof of correct secret sharing), each
client can transmit 1 GB of data anonymously. When
the allocated budget of anonymous communication is ex-
hausted, the client triggers a setup for re-sharing by the
setup servers; the stored hash data is reused after every
setup phase.

9 C(Client Churn

If a client is unavailable during a round, the shares from
that client will not be available and the relay will be un-
able to retrieve the message. This client churn issue is a
challenge for most DC-net inspired protocols, especially
in types (a) and (c) in Fig. 2. For OrgAn, if such a situa-
tion occurs the setup can be run again with the new set of
clients; however, all the advantages from the precomputa-
tions will be lost in that case. To avoid such problems, we
assume that the clients are run on office desktops (consid-
ering an office setting) that are less likely to go offline. We
welcome the community for a robust solution for client
churn in DC-net inspired systems.

Additionally, if we assume that the setup servers can be
contacted (even though they are not involved in the usual
protocol runs), they can collectively provide the F (r;, d),
values for an unavailable client ¢ for the upcoming rounds.
That provides an interesting possibility to mitigate the
client churn problem for OrgAn as well as PriFi. How-
ever, the system needs to agree that a client is indeed un-
available as otherwise a malicious relay may deanonymize
the client by claiming its unavailability to the setup servers
— we leave the exact solution to that problem for future
work.



10 Application Considerations

10.1 Problem of Enumerating All Clients

The protocol described in Section 4 requires the setup
servers to know all the clients in the system to be able to
share the r;; values. However, even if each setup server
does not know all the clients, the system will still work. A
setup server can split s only among the clients it knows.
As long as the relay knows the total number K of setup
servers, the relay can retrieve the messages correctly be-
cause ), ;r;; = K- s still holds. As long as each client
receives a secret share from at least one server it trusts,
the security guarantees also remain the same.

10.2 Supporting Lightweight Clients

If client churn is not a concern (e.g., a meeting scenario
where all the clients remain online throughout the whole
meeting or mixing Bitcoin scenario), we can run the pro-
tocol on mobile and other lightweight devices. We can do
that by offloading the preprocessing onto a desktop ma-
chine — during non-working hours that machine can pre-
process and store the data in a removable storage (e.g.,
micro-SD cards can store up to 128 GB of data). At the
beginning of the meeting, the removable storage can be
put into the mobile device and the mobile device can now
use the preprocessed data to run the protocol.

10.3 Application Scenarios

ICRC Scenario. In Section 1, we discuss a strong need
for traffic-analysis-resistant anonymous communication
for delegates at multinational organizations such as ICRC.
Similar to PriFi, OrgAn can also be deployed in such a
scenario. However, OrgAn has a major advantage over
PriFi — when each delegation brings their own local
trusted server, the communication between the relay and
the servers can become a bottleneck in the case of PriFi
as the relay needs to receive ciphertexts from each of the
servers for every round. Such a bottleneck is not present
in OrgAn since the servers and the relay do not communi-
cate with each other. Moreover, the servers in OrgAn are
logical entities and can be run by the clients, removing the
requirement of having external servers completely.

In the above scenario, the clients can use our protocol
to anonymously access different kinds of applications like
browsing, DNS queries, calls etc.

VPN. Two separate organizational networks can set up a
site-to-site virtual private network (VPN) between them
by utilizing the OrgAn setup. client A of organization X
can communicate to client B of organization Y without
revealing who is talking to whom. Similarly, a remote
access VPN can also be implemented using OrgAn.

16

Mixing Bitcoin Transactions. The Base protocol of Or-
gAn can be used for mixing Bitcoin transactions exactly
in the same way as Dicemix [41]. Since OrgAn eliminates
the necessity to run a key agreement for every round, Or-
gAn will yield a much faster transaction mixing protocol.
As future work, we plan to integrate OrgAn into Coin-
Shuffle++ protocol [41].

10.4 OrgAn as Non-Interactive Anonymous
Router (NIAS)

By eliminating the requirement of any setup phases (for
key agreement or slot agreement) before every round, and
since the setup servers do not take part at all during the
online phase of the protocol, OrgAn shows a practical way
of instantiating non-interactive anonymous routers [44].
In this case, the relay acts as the untrusted router, and the
clients can mix their messages using that router. We leave
the exact formalism for future work.

11 Conclusion

In this paper, we have presented a new AC protocol Or-
gAn to provide strong anonymity guarantees in an orga-
nizational network. Our protocol solved a crucial bottle-
neck in the state-of-art PriFi — PriFi had to choose be-
tween regularly running the setup phase involving expen-
sive verifiable shuffle among the setup servers and link-
ability among IP packets between two setup runs. Al-
though we have used public-key cryptography in our de-
sign, we demonstrated that OrgAn is still very practical
with the help of some preprocessing and storage require-
ments. Moreover, OrgAn has removed the dependency
on setup servers during the real-time phase completely.
Further, if the application scenario demands, the clients
can take up the roles of the setup servers during the setup
phase, thus, completely eliminating the need for any ex-
ternal servers. Conceptually, we could have used our Base
protocol to just solve the slot selection in PriFi, instead of
using our Bulk protocol. However, such a scheme will
still be dependent on the setup servers in the real-time
phase.

We do not solve the problem of client churn
where some clients in the system are suddenly ab-
sent/unavailable; it remains an open problem for all DC-
net inspired protocols. How to handle such client churn in
P2P DC-nets, and in client/relay/server model without re-
placing the relay with an MPC would be interesting future
works.



Acknowledgement

We thank Zhongtang Luo for his help with running the
experiments. We thank Bryan Ford and Ludovic Bar-
man for discussions during the early phase of the project,
and the anonymous reviewers and Tim Ruffling for the
insightful feedback. The work has been partially sup-
ported by the National Science Foundation (NSF) under
grant CNS-1846316, by the Research Council KU Leu-
ven under the grant C24/18/049, by CyberSecurity Re-
search Flanders with reference number VR20192203, and
by DARPA FA8750-19-C-0502. Any opinions, findings
and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily
reflect the views of any of the funders.

References

[1] FLINT: Fast Library for Number Theory, . https:
//www.flintlib.org/.

[2] LWE Estimator, . https://bitbucket.org/

malb/lwe—-estimator/src/master/.

[3] Ittai Abraham, Benny Pinkas, and Avishay Yanai.
Blinder — scalable, robust anonymous committed
broadcast. In Proceedings of the 2020 ACM SIGSAC

CCS, page 1233-1252, 2020.

[4] Martin R Albrecht, Rachel Player, and Sam Scott.
On the concrete hardness of learning with errors.
Journal of Mathematical Cryptology, 9(3):169-203,

2015.

[5] Nikolaos Alexopoulos, Aggelos Kiayias, Riivo
Talviste, and Thomas Zacharias. MCMix: Anony-
mous Messaging via Secure Multiparty Computa-
tion. In Proceedings of the 26th USENIX Security

Symposium, pages 1217-1234, 2017.

[6] Abhishek Banerjee and Chris Peikert. New and im-
proved key-homomorphic pseudorandom functions.

In Advances in Cryptology — CRYPTO 2014, 2014.

[7] Abhishek Banerjee, Chris Peikert, and Alon Rosen.
Pseudorandom functions and lattices. In Proceed-
ings of the 31st Annual International Conference
on Theory and Applications of Cryptographic Tech-

niques, EUROCRYPT’12, pages 719-737, 2012.

[8] Ludovic Barman, Italo Dacosta, Mahdi Zamani, En-
nan Zhai, Apostolos Pyrgelis, Bryan Ford, Joan
Feigenbaum, and Jean-Pierre Hubaux. Prifi: Low-
latency anonymity for organizational networks.
Proc. Priv. Enhancing Technol., 2020(4):24-47,

2020.

17

[9] Dan Boneh, Kevin Lewi, Hart Montgomery, and
Ananth Raghunathan. Key homomorphic prfs and
their applications. In Advances in Cryptology —
CRYPTO 2013, 2013.

[10] Jurjen Bos and Bert den Boer. Detection of
disrupters in the dc protocol. In Jean-Jacques
Quisquater and Joos Vandewalle, editors, Advances
in Cryptology — EUROCRYPT 89, pages 320-327,

1990.

[11] Benedikt Biinz, Jonathan Bootle, Dan Boneh, An-
drew Poelstra, Pieter Wuille, and Greg Maxwell.
Bulletproofs: Short proofs for confidential transac-
tions and more. In 2018 IEEE Symposium on Secu-

rity and Privacy (SP), pages 315-334. IEEE, 2018.

[12] David Chaum. Untraceable Electronic Mail, Return
Addresses, and Digital Pseudonyms. Communica-

tions of the ACM, 4(2):84-88, 1981.

[13] David Chaum. The dining cryptographers problem:
Unconditional sender and recipient untraceability.

Journal of Cryptology, 1(1):65-75, 1988.

[14] David Chaum, Debajyoti Das, Farid Javani, Aniket
Kate, Anna Krasnova, Joeri de Ruiter, and Alan T.
Sherman. cmix: Mixing with minimal real-time
asymmetric cryptographic operations. In ACNS,

2017.

[15] Henry Corrigan-Gibbs, Dan Boneh, and David
Mazieres. Riposte: An anonymous messaging sys-
tem handling millions of users. In IEEE Symposium

on Security and Privacy, pages 321-338, 2015.

[16] Henry Corrigan-Gibbs and Bryan Ford. Dissent:
Accountable Anonymous Group Messaging. In

Proc. ACM SIGSAC CCS, pages 340-350, 2010.

[17] Henry Corrigan-Gibbs, David Isaac Wolinsky, and
Bryan Ford. Proactively Accountable Anonymous
Messaging in Verdict. In Proc. 22nd USENIX Secu-

rity Symposium, pages 147-162, 2013.

[18] G. Danezis, R. Dingledine, and N. Mathewson.
Mixminion: design of a type iii anonymous remailer
protocol. In 2003 Symposium on Security and Pri-

vacy, 2003., pages 2—-15, 2003.

[19] D. Das, S. Meiser, E. Mohammadi, and A. Kate.
Anonymity trilemma: Strong anonymity, low band-
width overhead, low latency - choose two. In 2018
IEEE Symposium on Security and Privacy (SP),

pages 108-126, 2018.

[20] Debajyoti Das, Sebastian Meiser, Esfandiar Mo-

hammadi, and Aniket Kate. Comprehensive


https://www.flintlib.org/
https://www.flintlib.org/
https://bitbucket.org/malb/lwe-estimator/src/master/
https://bitbucket.org/malb/lwe-estimator/src/master/

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

anonymity trilemma: User coordination is not
enough. Proceedings on Privacy Enhancing Tech-
nologies, 2020:356-383, 2020.

DEDIS. DEDIS Advanced Crypto Library for Go.
https://github.com/dedis/kyber/tree/master/shuffle.
2019.

R. Dingledine and N. Mathewson.  Tor Pro-
tocol  Specification. https://gitweb.
torproject.org/torspec.git?a=blob_

plain; hb=HEAD; f=tor-spec.txt. Ac-
cessed Nov 2011.

Roger Dingledine, Nick Mathewson, and Paul
Syverson. Tor: The second-generation onion router.
In Proceedings of the 13th USENIX Security Sympo-
sium, page 21, 2004.

Saba Eskandarian, Henry Corrigan-Gibbs, Matei
Zaharia, and Dan Boneh. Express: Lowering the
cost of metadata-hiding communication with cryp-
tographic privacy. In Michael Bailey and Rachel
Greenstadt, editors, 30th USENIX Security Sympo-
sium, pages 1775-1792, 2021.

Sebastian Gajek, Mark Manulis, Olivier Pereira,
Ahmad-Reza Sadeghi, and Jorg Schwenk. Univer-
sally composable security analysis of tls. In Joon-
sang Baek, Feng Bao, Kefei Chen, and Xuejia Lai,
editors, Provable Security, pages 313-327, 2008.

Philippe Golle and Ari Juels. Dining cryptographers
revisited. In Proc. of Eurocrypt 2004, 2004.

Henry W Gould. The girard-waring power sum
formulas for symmetric functions, and fibonacci
sequences. Fibonacci Quarterly, 37(2):135-140,
1999. https://www.fg.math.ca/Issues/
37-2.pdf.

Jonathan Katz and Yehuda Lindell. Introduction to
modern cryptography. CRC press, 2020.

Anna Krasnova, Moritz Neikes, and Peter Schwabe.
Footprint scheduling for dining-cryptographer net-
works. In Jens Grossklags and Bart Preneel, editors,
FC, pages 385-402, 2016.

Albert Kwon, Henry Corrigan-Gibbs, Srinivas De-
vadas, and Bryan Ford. Atom: Horizontally scaling
strong anonymity. In Proceedings of the 26th SOSP,
page 406422, 2017.

David Lazar, Yossi Gilad, and Nickolai Zeldovich.
Karaoke: Distributed private messaging immune to
passive traffic analysis. In 13th USENIX OSDI),
pages 711-725, 2018.

18

(32]

(33]

[34]

(35]

(36]

(37]

(38]

(39]

[40]

[41]

[42]

[43]

Stevens Le Blond, David Choffnes, William Cald-
well, Peter Druschel, and Nicholas Merritt. Herd: A
Scalable, Traffic Analysis Resistant Anonymity Net-
work for VoIP Systems. In Proc. ACM SIGCOMM
2015, pages 639-652, 2015.

Stevens Le Blond, David Choffnes, Wenxuan Zhou,
Peter Druschel, Hitesh Ballani, and Paul Fran-
cis. Towards Efficient Traffic-analysis Resistant
Anonymity Networks. In Proc. ACM SIGCOMM
2013, pages 303-314, 2013.

Stevens Le Blond, Alejandro Cuevas, Juan Ramén
Troncoso-Pastoriza, Philipp Jovanovic, Bryan Ford,
and Jean-Pierre Hubaux. On enforcing the digi-
tal immunity of a large humanitarian organization.
In 2018 IEEE Symposium on Security and Privacy
(SP), pages 424440, 2018.

Donghang Lu, Thomas Yurek, Samarth Kul-
shreshtha, Rahul Govind, Aniket Kate, and Andrew
Miller. Honeybadgermpc and Asynchromix: Practi-
cal asynchronous mpc and its application to anony-
mous communication. In Proceedings of the 2019
ACM SIGSAC CCS, pages 887-903, 2019.

M. Backes, A. Kate, P. Manoharan, S. Meiser, and E.
Mohammadi. AnoA: A Framework For Analyzing
Anonymous Communication Protocols. Journal of
Privacy and Confidentiality (JPC), 7(2)(5), 2016.

C. Andrew Neff. A verifiable secret shuffle and its
application to e-voting. ACM CCS, page 116-125,
2001.

USA Office of the Director of National Intelli-
gence (ODNI). Global trends 2040, 2021.

David Pointcheval and Jacques Stern. Security ar-
guments for digital signatures and blind signatures.
Journal of Cryptology, 13, 10 2001.

RFC 8446. The Transport Layer Security (TLS) Pro-
tocol Version 1.3. https://tools.ietf.org/html/rfc8446.
Accessed April 2021.

Tim Ruffing, Pedro Moreno-Sanchez, and Aniket
Kate. P2P Mixing and Unlinkable Bitcoin Trans-
actions. In Proc. 25th NDSS, 2017.

C. P. Schnorr. Efficient identification and signatures
for smart cards. In Gilles Brassard, editor, Advances
in Cryptology — CRYPTO’ 89 Proceedings, pages
239-252, 1990.

Craig R Scott and Stephen A Rains.  Anony-
mous communication in organizations: Assessing
use and appropriateness. Management Communica-
tion Quarterly, 19(2):157-197, 2005.


https://gitweb.torproject.org/torspec.git?a=blob_plain;hb=HEAD;f=tor-spec.txt
https://gitweb.torproject.org/torspec.git?a=blob_plain;hb=HEAD;f=tor-spec.txt
https://gitweb.torproject.org/torspec.git?a=blob_plain;hb=HEAD;f=tor-spec.txt
https://www.fq.math.ca/Issues/37-2.pdf
https://www.fq.math.ca/Issues/37-2.pdf

[44] Elaine Shi and Ke Wu. Non-interactive anonymous
router. In Advances in Cryptology - EUROCRYPT
2021, pages 489-520, 2021.

[45] Nirvan Tyagi, Yossi Gilad, Derek Leung, Matei Za-
haria, and Nickolai Zeldovich. Stadium: A dis-
tributed metadata-private messaging system. In Pro-

ceedings of ACM SOSP, pages 423-440, 10 2017.

[46] Jelle van den Hooff, David Lazar, Matei Zaharia,
and Nickolai Zeldovich. Vuvuzela: Scalable private
messaging resistant to traffic analysis. In Proc. 25th

ACM SOSP, 2015.

[47] Luis von Ahn, Andrew Bortz, and Nicholas J.
Hopper. K-anonymous message transmission. In
Proceedings of the 10th ACM SIGSAC CCS, page

122-130, 2003.

[48] Michael Waidner. Unconditional sender and recipi-
ent untraceability in spite of active attacks. In Ad-
vances in Cryptology — EUROCRYPT ’89, pages

302-319, 1990.

[49] Michael Waidner and Birgit Pfitzmann. The dining
cryptographers in the disco: Unconditional sender
and recipient untraceability with computationally
secure serviceability. In Advances in Cryptology —

EUROCRYPT 89, pages 690—690, 1990.

[50] David Isaac Wolinsky, Henry Corrigan-Gibbs,
Bryan Ford, and Aaron Johnson. Dissent in Num-
bers: Making Strong Anonymity Scale. In 10th

USENIX OSDI’12, pages 179-182, 2012.

A Postponed Proofs
A.1 Security Definition for PRFs

We borrow the security definition for PRFs from existing
literature [28] and use it in our security arguments.

Let Rand(D, O) denotes the set of all functions with
domain D and range ©O. We consider a distinguisher
A that tries to distinguish if a function g has been
picked randomly from a given function family F or from
Rand(D, O), when A is given oracle access to g. We write
A (g) to denote that A is given oracle access to g. We de-
fine the following security game:

Definition 4. Let F : K x D — O be a family of efficient
functions, and let A be an algorithm that takes an oracle
for a function to return a bit b. Consider the following two
experiments:

Exptprr(A) | Expt,(A)
K+« K | g+ Rand(D,0)
b=A(Fk) | b=A(g)

The adversarial advantage of A is defined as
Advr(A) = Pr[Exptppr(A)] — Pr [Expt,(A)].

If we use F in a protocol that requires that the security
can be broken with at most negligible probability for a
security parameter 7, we also want Adv x(A) to be neg-
ligible in 7. Therefore, we use the following security def-
inition for pseudorandom functions:

Definition 5. F is a secure pseudorandom function family
if, for all probabilistic polynomial time algorithms A, the
adversarial advantage Advx(A) in the security game
defined in Definition 4 is bounded by a negligible quan-
tity in the security parameter 1.

A.2 Anonymity Proofs

Theorem 1 (Sender Anonymity of Base Protocol). As-
suming F() is a computationally secure pseudorandom
function, the protocol Base protocol of OrgAn provides
sender anonymity as defined in Definition 3 with negligi-
ble 6 against any global passive adversary A, as long as
at least two users and one setup server are honest.

Proof of Theorem 1. Without loss of generality, let us as-
sume that users u; and uo are honest and their message
in a given round is x; and x5 respectively. Let us also
assume that only one setup server (z; is honest. Now we
prove security in two parts:

1. First, we use a modified version OrgAn* of the pro-
tocol OrgAn and show that the adversary has a negligi-
ble advantage against OrgAn*. In OrgAn™*, the user u;
uses a random function Fj.qnq(-) instead of F (rq,-) as
the masks to compute the ciphertexts; and the user uo uses
JT'.(rl + ra, ) - -Frand(')-

2. Next we show that, if an adversary Ay, Wins the
game against OrgAn in the anonymity game, we can con-
struct an adversary Apgp that can win the PRF game.

As our first step, we consider the anonymity game with
the protocol OrgAn*. In OrgAn*, all the protocol par-
ties except u1, us and G; behave exactly the same as Or-
gAn. However, in the hypothetical protocol OrgAn* we
assume that u; and ug collude in the following way: for
a given slot ¢ the user u; uses Fy.qnq(t) as the mask to
compute ciphertext ¢ (t) = Kz} + Frana(t), and the user
uy compute ciphertext ¢o(t) = kah + F (r1 +ra, d), —
Frand(t). For the time being, let us consider only one
round and we will extend the argument for multiple
rounds shortly.

In this hypothetical protocol OrgAn*, we can assume
that the users u; and us can exchange information about
ri,ro and F,qnq() with each other.

Claim 1. The protocol OrgAn* provides sender
anonymity with § = 0 against any global passive adver-
sary A, for a one-round protocol run.

19



Proof of Claim. Since Fqn4() is a random function, the
value F,.qnq(t) can be thought of as being chosen at ran-
dom. Let, fi = Frana(1l) and fo = F(r; +12,d), —
Frand(1). Then the adversary A has the following set of
equations for slot 1 with x1, zo, f1, fo as unknowns (we
skip the group notations for simplicity),

1. 21+ 22 = a1

2. Kr1 + f1 = a2

3. fg + KTy = as

4. fi+ fa=a4
and the adversary knows (x1,z2) = (b1, ba) or (ba,b1),
for some observer values of aq,as,as,as,b1,bs. Note
that the above equation system has a rank of at most 3;
both (b1, ba) or (b, by) will yield valid values of f1 and
f2. Therefore, slot 1 does not reveal anything about who
sent X1 or xa.

Since Frana is a random function, F.qnq(t) is unre-
lated from F,.4,4(t") for any ¢’ # ¢. And hence, a similar
argument can be extended for any other slot ¢’ as well,
independent of slot ¢. Since the overall equation system
to retrieve all the messages in a round is an identity, the
adversary has 6 = 0 advantage in the sender anonymity
game against the protocol OrgAn* for a one-round pro-
tocol run. o

Now let us consider the scenario when the protocol
OrgAn* is run for many rounds. For every round d and
slot ¢, the user u; can use (dN + t) as the input to the ran-
dom function F,.4,4(). In that case, the input to F.qp,q() is
never repeated, and OrgAn* provides sender anonymity
with § = 0 even for a multi-round protocol run. We skip
the formal claim statement and proof here, since they are
similar to that of Claim 1.

Now that we have proved J-sender anonymity for
OrgAn* with § = 0, we proceed to the next step to prove
the anonymity of OrgAn. We show that if there exists an
adversary Agnon that breaks sender anonymity for pro-
tocol OrgAn, we can construct an adversary Appp that
breaks the security assumption on pseudorandom function
F.

Claim 2. If there exists a PPT adversary Agnon With an
adversarial advantage 6 against the protocol OrgAn in
the sender anonymity game defined in Definition 3, there
exist an adversary Apgrr that can distinguish between F
and Fqnq With probability at least 0 in the PRF game
defined in Definition 4.

Proof of Claim. We start with the construction of Aprp:
Our adversary Aprp of the PRF game will run the whole
sender anonymity game as the challenger, except one
setup server (51 (as per our threat model, at least one setup
server is honest, and without loss of generality we assume
that to be G1).

The key K for the PRF game is decided based on
the random number ry; picked by G;. We pick, K =
Zj ri; = ry such that ry = K. Since G as an inde-
pendent honest party that does not collude with Apgrp or
Aanon’s Aprr does not know rq; or K.

Appr runs each round of the sender anonymity game
in the following way: for each slot value t Aprp queries
the PRF game with input value ¢ and receives a value f;.
Aprr asks the user u; in the sender anonymity game to
use f; to compute ¢;(t) = ka! + f;. Similarly, Aprp
asks ug to use co(t) = kat + F (r1 + ro,d), — fi. Aprr
runs the sender anonymity game until A0, halts. Aprp
returns 1 if and only if A,,,,, Wins the sender anonymity
game.

When f; is an output of F,4,4() the adversary Aprp
is effectively running OrgAn*, however, when f; =
F(K,d); it is running OrgAn. If A, has an advan-
tage of § in the sender anonymity game against OrgAn,
there would be a difference of at least § in the probabil-
ity Aprp outputs 1 when f; is the output of F.qnq() vs
when it is the output of F(), o

Following the above claim, if the adversarial advantage
of Agnon is non-negligible against OrgAn, so is the ad-
versarial advantage of Apgp in the PRF game — which
contradicts the assumption that F is a secure pseudoran-
dom function. O

Theorem 2 (Sender Anonymity of OrgAn). Assuming
F() is a computationally secure pseudorandom function,
the protocol OrgAn provides sender anonymity (when
Bulk protocol is employed) as defined in Definition 3 with
negligible 0 against any global passive adversary A, as
long as at least two users and one setup server are hon-
est.

Proof Sketch for Theorem 2. We use a similar technique
as the proof of Theorem 1 to prove this theorem: First,
we use a modified version OrgAn* of the protocol Or-
gAn that employs Bulk protocol and show that the adver-
sary has a negligible advantage against OrgAn*. Sim-
ilar to the proof of Theorem 1, the user vy in OrgAn*
uses a random function F,.qnq(t) instead of F (r1,d), as
the masks to compute the ciphertexts, and the user wus
uses F (ry +ra,d), — Frand(t). Next, we show that if
an adversary Ag,o, Wins the game against OrgAn in the
anonymity game, we can construct an adversary Apgp
that can win the PRF game.

Claim 3. The protocol OrgAn* provides sender
anonymity with § = 0 against any global passive adver-
sary A.

4More formally G can modeled similar to hybrid functionalities in
UC framework, and then the security game can be defined in that hybrid
functionality setting. We skip the rigorous formalization in this paper.

20



The proof of this claim is similar to the argument of
Claim | and its extension for multiple rounds, except, in
every even round (bulk) round the clients use group ad-
dition instead of powersum equation system. For every
slot ¢, the adversary can see ) |, x; where every x; are the
values sent by users u;. Since u; and us use the masks
Frand(t) and F (r1 4 ro,t) — Frand(t), the property of
Frand ensures that the adversary does not know if uq or
us 18 the actual sender for slot ¢.

It is crucial to notice that the Base round before a Bulk
round reveals which slots are related, however, all those
slots are used to send a single message. Therefore, that is
not an actual leak and does not break anonymity.

Now that we have proved sender anonymity for
OrgAn* with § = 0, we can prove anonymity for OrgAn
exactly in the same way as in the proof of Theorem 1. We
show that if there exists an adversary A,y that breaks
sender anonymity for protocol OrgAn, we can construct
an adversary Appp that break the security assumption on
the PRF F.

Claim 4. If there exists a PPT adversary Agnon With an
adversarial advantage § against the protocol OrgAn in
the sender anonymity game defined in Definition 3, there
exist an adversary Apgr that can distinguish between F
and Fqnq with probability at least 0 in the PRF game
defined in Definition 4.

We construct Aprr and set up the anonymity game
exactly in the same way as the proof of Theorem 1. If the
adversarial advantage of A, is non-negligible against
OrgAn, so is the adversarial advantage of Apgp in the
PRF game — which contradicts the assumption that F is
a secure PRF. O

A.3 Integrity Proofs

Lemma 1. Assuming F is a secure PRF as well as (al-
most) key homomorphic with a bounded error e, and H
is a collision resistant hash function, if the relay sends
two different output messages D; and D; (D; # Dj) to
any two honest clients w; and w; in a round d, the relay
lose the ability to run any later rounds with overwhelming
probability.

Proof Sketch for Lemma 1. The retrieval of the messages
depends on the (almost) homomorphic property of the
PRF F. Suppose h; = H(D;) and h; = H(D;); by col-
lision resistance property h; # h; when D; # D;. clients
u; and u; uses the keys h; -r; and h; - r; as the keys to the
PRF F. If the relay wants to be able to decrypt messages
in the next round, the relay should be able to (1) solve
(hi - x; + hj - rj) from r; 4+ r; without knowing the in-
dividual values of r; and r;, (2) OR, somehow guess the
value of F(K-s+(h; —1)-r; + (h; — 1) -r;, d) within the

21

error bound of N - e (there are total N additions). The first
part cannot be solved; if the relay can achieve the second
part, using that knowledge we can construct an adversary
Ap g that wins the PRF game. O

Theorem 3. Assuming \; proves correct computation
of F(r;,t) for a client u; with overwhelming probability
and S() is cryptographically secure signature scheme, if
the Blame protocol is run for a disrupted round d, with
overwhelming probability at least one disruptive entity is
identified, and an honest entity is not (mis-)identified as a
disruptor.

Proof Sketch for Theorem 3. A round is disrupted in the
following three possible scenarios or a combination of
them:
1. atleast one client has used bad F (r;, dN + t) values,
2. at least one setup node has distributed bad r; ; val-
ues,
3. the relay just decided to corrupt the output set.

At least one client has used bad F (r;,dN +¢t) val-
ues. During the Blame protocol corresponding to a Base
round, each client sends their x; and F (r;, d), values us-
ing a direct channel, along with the proof \; of correct
computation of the PRF. And the relay recompute the c;
values using the newly received values. Unless \; is bro-
ken, the client cannot send a wrong F (r;, d), during value
opening. The client cannot send wrong z; value because
that will yield overall wrong c¢; computation.

In case a Bulk round is disrupted, if the ¢-th bit of a slot
is disrupted, the client sends the ¢-th bit of F (r;, d), and
a tuple (g¥* h¥ ,g¥2 h%) where 1)1 is the first (¢ — 1) bits
and 1y is the last (¢ — ¢) bits of F (r;,d),. Using those
values and J;, the relay verifies the correct computation
of PRF. Similar to the previous case, unless \; is broken,
the client cannot send wrong values.

Given the security of signing S(), the relay cannot forge
a signature for an honest client, and hence, cannot blame
an honest client unless the signature verification or \; ver-
ification fails. Even if the relay wants to collude with the
malicious clients, it has to blame at least one such client;
otherwise, the relay is blamed by default.

At least one setup node has distributed bad r; ; values.
In that case, the relay was supposed to verify the following
two things during the setup phase:

e for each ¢ € {1,2,...,u} if TIN  g@iichPise
g*h* . (g~V®h~"%) holds, where s
{s1,82,...,su}; it also verifies m¢ . The quantities
s’, ¥, are defined analogously from the blinding
factors 3(.y.

* if each o;; is a valid signature of (u;, I'y,; ) generated
by the setup server G;.

Since, the signature is cryptographically secure, the
clients could not have modified the values on the way.



Which means the relay was colluding with the corrupted
setup node if it did not flag a failure in verification.
Therefore, such an incident gets detected during the setup
phase, or the relay is blamed.

The relay just decided to corrupt the output set. If the
relay just corrupts the output set, because of the signature
verification and \; verification the relay cannot blame an
honest client. The relay cannot blame a setup node ei-
ther because of the reasons mentioned above. Hence, the
adversarial relay can either blame one of the clients con-
trolled by the adversary, or take the blame for the disrup-
tion. O

Lemma 2. Assuming Hy is a collision resistant hash
function, and the computation power of the adversary is
limited by T hash computations between two consecutive
Base rounds where T' is polynomial in np, the Blame pro-
tocol in disrupted Bulk round d can be invoked by a mali-
cious client u* for a slot £ which is not owned by u* only
with a probability negligible in np.

Proof Sketch for Lemma 2. The proof directly translates
from the security of the hash function H;. Each client
client; publishes H;(D,x) in the base round where x is
randomly picked, and D is the response message of the
last Bulk round.

To launch the Blame protocol for a Bulk round for a slot
¢ that does not belong to the client client™, the malicious
client has to find an 2* such that H,(D,x) = Hy(D, x*)
with the computation limit 7" — which breaks the colli-
sion resistant property of H;. Since the range of H; is
only 7p, the security of H is limited by 7. O

Theorem 4. Assuming F is a secure pseudorandom func-
tion, and further assuming that at least one of the setup
nodes is honest, the Blame protocol in round d does not
break anonymity for any other round d' # d.

Proof of Theorem 4. We want to prove the above theo-
rem using contradiction. For contradiction, let us assume
that there exist an adversary Ag,o, that can break the
anonymity of OrgAn for some round d’ # d, given that
the Blame protocol is run in round d; d and d’ can be any
arbitrary positive integers chosen by Ag,on, but less than
a finite value 7.

Here we use a construction similar to the proof of The-
orem 2, and construct an adversary Apprp using Agnon-
To reiterate the key features of Apgp: our PRF adversary
Apgrr will run the whole sender anonymity game as the
challenger, except one honest setup node G;. We force
G touse an ry; such that r; = K, where K is the chosen
key for the PRF game. For each slot value t < T, Aprp

SConsider T as the computational bound of Agnon. For a PPT ad-
versary 1" is polynomially large in the security parameter n

queries the PRF game with input value ¢ and receives a
value f;, Apgrr asks the client u; in the sender anonymity
game to use f; to compute c1(t) = kz! + f;. Similarly,
the client uy uses ¢o(t) = kal + F (r1 +12,d), — fi.

One key factor in this game is that Appp lets the adver-
sary Aqnon adaptively choose a round d when the protocol
OrgAn will be disrupted, and a round d’ when the chal-
lenge message will be sent. In all other rounds including
round d, Agnon 18 allowed to send input messages to the
protocol.

According to Theorem 2, the adversarial advantage of
Agnon 1s negligible without any disruption in round d'.
Our PRF adversary Apgp returns 1 if and only if Agon
wins the game, otherwise returns 0. Using a similar line
of argument as in the proof of Theorem 2, if A0, has
an non-negligible advantage of ¢ in the sender anonymity
game against OrgAn, there would be a difference of at
least § in the probability Aprp outputs 1 when f; is the
output of F,qnq() vs when it is the output of F(), hence
contradicting the security property of the PRF. O

B Short Description of PriFi

PriFi utilizes the client/relay/server model to solve
the bottleneck of running key-agreement protocol be-
fore every round of DC-net-based protocols. In this
client/relay/server model, PriFi protocol has three sets
of entities: 1. clients uq,...,uyN that want to commu-
nicate anonymously to outside services, 2. some servers
G1,...,Gk (or ‘guardnodes’ as they call them) that help
in the anonymization process, 3. and a relay or gateway
server IR. PriFi has a Setup phase when the clients and the
guardnodes establish some shared secrets among them-
selves; and agree on a permutation of slots where each
client knows only its own slot. Using the shared secrets,
the clients (and servers) can generate keys for several
Anonymize rounds. The clients can transmit actual data
in those rounds. However, if the clients want to agree on
a new permutation of slots, they need to re-run the setup
phase.

Setup Phase. Each client u; generates a pair of ephemeral
private-public keypair p;, P;. Then each client u; runs
an authenticated Diffie-Hellman key exchange using the
ephemeral keypair with each server G; to agree on a
shared secret r;;. Additionally, the servers run a ver-
ifiable shuffle algorithm to generate a permuted output
of the public keys m = {P.,, Pay, -, Pay} — where
Pai = c¢ - P; for a permutation « and some constant c;
and therefore, only a client with private key p; can recog-
nize the pseudonym key in 7 that corresponds to P;. The
shuffled output 7 is made public by the servers.

Anonymize Phase. For round k£ € {1,...,N},
each client u; generates the DC-net mask as X; =

22



@szoPRG(rij). If client u; is supposed to send their
message in round k (based on the permutation 7), u; sends
the ciphertext ¢; = m; @ X; to the relay R, otherwise u;
sends ¢; = X;. Each server G; generates their ciphertext
as Y; = ®N (PRG(r;;) and sends it to the relay.

After receiving all the N 4 K ciphertexts, the relays
XORs them together to retrieve my, corresponding to the
round k. The servers can send their ciphertexts to the relay
ahead of time to avoid any delay because of the servers.
It is assumed that my, is a full IP packet or part of an IP
packet (albeit null sourced) so that the relay can buffer it
and send it to the appropriate destination. When the relay
receives a response dj corresponding to a message my,
the relay encrypts dj, with the public key P, and broad-
casts that to all the clients.

Handling Disruption

PriFi uses a hash-based disruption detection mechanism.
The relay sends the hash of an upstream message with the
downstream traffic. The sender can detect an incorrect
hash and invoke the Blame protocol as described below.

Blame Protocol. The basic PriFi protocol is modified to
include an additional bit in the upstream messages; by set-
ting the bit to 1, a client can invoke the Blame protocol.
Additionally, the client includes the disrupted bit position
¢ and a non-interactive zero-knowledge proof (NIZKP) of
knowledge of the key pj corresponding to P, of slot k.
Therefore, only the owner of slot k& can invoke Blame if
slot & is disrupted.

23

Once the relay receives that information the relay
broadcasts them. Each client and guard verifies the
NIZKP, and if the verification is successful reveals the /-th
bit of PRG(r;;) for slot k using a non-anonymous signed
message. The relay verifies the signature and checks that
the values shared by the clients (and servers) are consis-
tent with the ¢; values (and Y; values). If a mismatch
is detected then that party is identified as the disrupting
party. If no mismatch is detected, the relay compares the
PRG(r;j). value sent by the client and PRG(7;;)¢ by the
server, for each pair of client and server. If a mismatch is
detected there, the client needs to prove that the rij value
was indeed sent by the server during the setup phase, and
the server needs to prove that the rij value it sent was
generated correctly. Whoever fails to provide the proof is
considered as the disrupting party. Note that, in the last
step (and only if the Blame protocol reaches this step),
the r;; value between the conflicting client and server is
opened.

Equivocation Protection. PriFi achieves defense against
equivocation attacks from the relay by utilizing the his-
tory of downstream messages. Each client u; keeps a per-
sonal copy of the history h;. Each upstream message is

symmetrically encrypted with a fresh key ~ and +y is sent
to the relay blinded by a function of the history h;. The

relay can unblind v and decrypt the message only if all
the clients have the same copy of the history. If the relay
sends two different downstream messages to two different
clients, the relay will not be able to decrypt messages in
any subsequent rounds.



	Introduction
	Our Contribution

	Overview
	Setup and Communication Model
	Threat Model
	Goals
	Non-goals

	Protocol Idea
	What We Achieve
	Comparison with Relevant Protocols

	Preliminaries
	Core Protocol
	Setup Phase
	Base Protocol
	Scaling with Bulk Protocol
	Performance Improvement with Pre-processed PRF Values

	Handling Disruption
	Disruption Detection
	Blame Protocol
	Version of Blame Protocol without Breaking Anonymity
	Verifiability of PRF
	Equivocation Protection

	Security Analysis
	Anonymity Definition
	Anonymity Analysis
	Security against Active Attacks

	Implementation
	Performance Evaluation
	Microbenchmarks
	Overhead for the Clients
	Overhead for Relay to Solve Equations System

	End-to-end Latency Evaluation
	Storage Overhead for Hash Data

	Client Churn
	Application Considerations
	Problem of Enumerating All Clients
	Supporting Lightweight Clients
	Application Scenarios
	OrgAn as Non-Interactive Anonymous Router (NIAS)

	Conclusion
	Postponed Proofs
	Security Definition for PRFs
	Anonymity Proofs
	Integrity Proofs

	Short Description of PriFi

