
A Practical-Quantum Differential Attack on
Block Ciphers

Tarun Yadav, Manoj Kumar, Amit Kumar, S K Pal

Scientific Analysis Group, DRDO, Metcalfe House Complex, Delhi-110 054, INDIA
{tarunyadav,manojkumar,amitkumar,skpal}@sag.drdo.in

Abstract. Differential attack is a basic cryptanalysis method for block
ciphers that exploits the high probability relations between the input and
output differences. The existing work in quantum differential cryptanal-
ysis of block ciphers focuses on resource estimation to recover the last
round subkeys on the basis of existing relations constructed on classical
computers. To find such relations using quantum computer, we propose
a method to search the high probability differential and impossible dif-
ferential characteristics using quantum computer. The method explores
all possible input and output difference pairs simultaneously using super-
position of qubits. The proposed method is used to design the quantum
circuit to search the differential characteristics for a toy cipher smallGIFT.
The branch-and-bound based method is used to validate differential and
impossible differential characteristics obtained using proposed method.

Keywords: Block Cipher, Differential Cryptanalysis, GIFT, Quantum
Cryptanalysis

1 Introduction

With the advances in development of quantum computers [11], there is a possible
threat on the security of asymmetric and symmetric cryptographic algorithms.
Existing asymmetric cryptosystem such as RSA and elliptic curve would become
insecure due to polynomial time solution on a quantum computer using Shor’s
algorithm [26]. The major impact of quantum computing on the security of
symmetric key cipher is the quadratic speed-up to search the key space using
Grover’s algorithm [13]. The classical symmetric ciphers can be attacked more
efficiently using the Grover’s search algorithm on quantum computers.

The block ciphers are widely deployed symmetric key cryptographic primitives
in the real world applications. The development of quantum computers with
sufficient qbits can pose a real threat on the security of block ciphers. The
exhaustive key search is the only readily available attack that is applicable
to every block cipher. Grover’s algorithm can provide a quadratic speed-up
in the exhaustive search of the entire key space. It can be used to reduce the
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exhaustive attack complexity of n-bit block cipher to 2n/2 on a quantum computer
in comparison to the complexity of 2n on classical computers. Therefore, the
complexity of 128-bit block cipher with a key size of 128 bits will be reduced to 64
bits on a quantum computer. To prevent this attack, there is recommendation [1]
to increase the key size to withstand post quantum security. The existing block
ciphers are expected to survive in the post quantum era but with a larger key
size.

The differential cryptanalysis is the most widely used cryptanalytic technique
to analyse the security of block ciphers. It was proposed by Biham and Shamir
and a full round differential attack was presented against DES [7]. A lot of
research work has been carried out to increase the efficiency of differential attack
in the past three decades. The first requirement for a differential attack is the
high probability relations between the input and output differences. To search the
optimal differential relations is a tedious task and a lot of research has been carried
out to improve the efficiency of search techniques. Initially, branch-and-bound
based methods were used to construct these relations and various improvements
in this approach has been proposed [20]. The major development in this area was
application of MILP to construct the optimal differential characteristics [24] [21].
The machine learning based approach has also been used to construct the high
probability differential distinguishers [30]. However, practical-quantum version
of the differential attack has never been presented in the open literature. The
impossible differential cryptanalysis is a variant of differential attack that uses zero
probability differential characteristics to filter out the wrong keys. The miss-in-
the-middle approach is used to construct the impossible differential characteristics.
MILP based search technique is also used to get the zero probability differential
characteristics. We present the first approach using quantum search to construct
the differential and impossible differential characteristics.

Existing work in quantum cryptanalysis. Recent developments in quantum
cryptanalysis of block ciphers focused on quantum resource estimation for ex-
haustive key search attack. For this purpose, block ciphers are implemented in
quantum circuits to estimate the cost of exhaustive key search using Grover’s
algorithm. NIST also used the same approach for indicating the strength of a
cipher in post quantum world [25]. Various authors presented the cost of exhaus-
tive key search on a quantum computer for the block ciphers AES [5] [12] [17],
Speck [2] [15], Simon [3] [22], ARIA [10], AES, GIFT [16] [4], SKINNY [4],
SATURNIN [4], PIPO [18], SPEEDY [27]. Quantum version of differential, linear
and impossible differential attacks have been explored in [19] [23] [29] and authors
have presented key recovery attacks using the existing characteristics. The use
of quantum computers to come up with the good differential characteristics for
block ciphers was left an open problem.

Our Contributions. In this work, we present a quantum version of the differen-
tial attack on block ciphers. We propose a quantum computer based method to
search high probability differential characteristics for the first time. We construct
a quantum circuit for the S-box and diffusion layer of a toy version of lightweight



Practical-Quantum Differential Attack 3

block cipher GIFT [6]. Using proposed method, we construct a quantum circuit to
find the 3-round differential characteristics. We make use of the Hadamard gates
to explore the all possible input and output differences. We run this circuit 10,000
times on qasm simulator and measure the qbits to get the optimal differential
characteristics. In the same experiment, we get the impossible differential (zero
probability) differential characteristics. We also used the branch-and-bound based
method to construct the characteristics for smallGIFT and compared it with the
output of proposed method.

Organisation. The remaining part of the paper is organised as follows. In
Section 2, we describe an 8-bit toy cipher smallGIFT. In Section 3, we construct
the quantum circuit for 4-bit S-box, diffusion layer, encryption and decryption
algorithm. Quantum differential and impossible differential characteristic search
for smallGIFT is described in section 4. We compare the results of quantum
differential characteristics search with the branch and bound based method in
Section 5. In section 6, we provide quantum resource estimation for GIFT-64.
The paper is concluded in Section 7.

2 Preliminaries

2.1 Quantum Gates

Various gates are used in a quantum computer which emulate the bit operations.
In this paper we have used Pauli-X, CNOT, Toffoli, Swap and Hadamard gates.
These gates are chosen to emulate the S-box and permutation operations used in
the cipher. Pauli-X gate is a single qubit gate and it is used to invert the state
of qubit as shown in Fig. 1. CNOT gate (Fig. 2) is double qubit gate and it is
used to perform the XOR operation as well as to transfer the state to another
qubit. Toffoli gate is a triple qubit gate and it is used to emulate the AND
THEN XOR operation as shown in Fig. 3. Toffoli gate with Pauli-X is used for
the OR operation as depicted in Fig. 3c. Swap gate (Fig. 4) is a double qubit
gate and it swaps the states of qubits. Permutation operation used in a cipher
is emulated using the swap gates. Hadamard gate (Fig. 5) is used to bring the
qubit in a superposition state. Such superposition states are required to explore
all possibilities corresponding to the input qubits.

|0⟩ X |1⟩

|1⟩ X |0⟩

Fig. 1: Pauli-X Gate
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x • x

y x⊕ y

Fig. 2: CNOT Gate

x • x

y • y

z z ⊕ (x · y)
(a) Toffoli Gate

x • x

y • y

|0⟩ (x · y)
(b) AND Circuit

x X • X x

y X • X y

|0⟩ X (x ∥ y)

(c) OR Circuit

Fig. 3: AND and OR operations using Toffoli Gate

|0⟩ × |1⟩

|1⟩ × |0⟩

Fig. 4: Swap Gate

|0⟩ H (0− 50%, 1− 50%)

|1⟩ H (0− 50%, 1− 50%)

Fig. 5: Hadamard(H) Gate
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2.2 Differential and Impossible Differential Cryptanalysis

An ideal block cipher is designed in such a way that an adversary can not
distinguish its output from a random permutation after making sufficient (q)
number of queries. In differential attack, the non-uniform relations between the
input and output pairs are searched and used as a distinguisher between the cipher
and random source [7]. The input pairs generated with a particular difference
value ∆i propagate to the output pairs related with some difference ∆o with the
high probability. These high probability differential characteristics (∆i → ∆o)
are used to distinguish the output of a block cipher from the output of a random
function. The subkeys used in the last rounds are also recovered using these
differential characteristics. The main challenge is to find out such high probability
relations in the input and output differences. The existing classical techniques
find such relations by starting with a particular difference and search through all
paths that are bounded by a probability value. The paths with optimal probability
are used as the differential characteristics. MILP is the another technique which
converts the differential characteristic search problem into an MILP model and
solve the problem with optimization problem solver like CPLEX/Gurobi [9] [14]
to get the optimal differential characteristics.

The impossible differential attack works with zero probability differential
characteristics and such differential characteristics are obtained using a miss-in-
the-middle like approach [8]. In this method, differential characteristics (∆i →
∆m) and (∆n → ∆o), probability one each, are connected to get an impossible
differential (∆i ̸→ ∆o) by proving a contradiction between the probability
one differentials. The MILP based method is also used to get the impossible
differential characteristics [28]. The impossible differential characteristics are used
as distinguisher and last round subkeys are recovered by sieving the wrong keys
that suggest the impossible differential.

2.3 SmallGIFT: 8-bit Toy Cipher

We propose a smaller version of lightweight block cipher GIFT [6] for practical
demonstration of quantum differential and impossible differential attack on block
ciphers. The smallGIFT is a block cipher with 8-bit block size and 4-bit S-box
(Table 1). The 4-bit S-box is same as used in GIFT and there are four rounds
in smallGIFT. In each round, the 4-bit S-box is used two times in parallel and
bit permutation (Table 2) is applied on the output from S-box layer. The key
expansion algorithm divides the 16-bit master key K into four 4-bit nibbles s.t.
K = K0||K1||K2||K3. The round key for round r will be K(rmod4). We describe
the encryption algorithm of 4-round smallGIFT using 4-bit S-box S and 8-bit
permutation P8 in Algorithm 1.
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x 0 1 2 3 4 5 6 7 8 9 A B C D E F

S(x) 1 a 4 c 6 f 3 9 2 d b 7 5 0 8 e

Table 1: S-Box

i 0 1 2 3 4 5 6 7

BPi 0 3 5 7 2 4 6 1

Table 2: 8-bit Permutation (BP )

Algorithm 1: Encryption Algorithm of smallGIFT

1 Input: P (= X0) = (x7, x6, · · · , x0) and RKr = (U, V )(0 ≤ r ≤ 3)
2 Output: C = X4

3 for r=0 to 3 do
4 for j=0 to 1 do

5 (y
′

3+4∗j , y
′

2+4∗j , y
′

1+4∗j , y
′

0+4∗j) = S(x3+4∗j , x2+4∗j , x1+4∗j , x0+4∗j)

6 end

7 (y7, y6, · · · , y0) = P8(y
′

7, y
′

6, · · · , y
′

0)
8 for l=0 to 1 do
9 y4l+1 = y4l+1 ⊕ ul

10 y4l = y4l ⊕ vl
11 end
12 Xr+1 = (y7, y6, · · · , y0)
13 end

3 Quantum Circuit for smallGIFT

The smallGIFT encryption algorithm has three major components S-box, per-
mutation and key addition. We need quantum circuits for each component to
design the circuit for the encryption algorithm. In this section, we describe
quantum circuits for S-box, permutation, key addition, encryption algorithm and
decryption algorithm. The quantum circuit for encryption algorithm without key
addition is used to search the differential characteristics and these characteristics
are used to mount key recovery attack using decryption circuit.

3.1 Quantum Circuit for S-box

Designers of GIFT have provided software and hardware optimized implemen-
tation of the S-box of GIFT-64. In-place implementation of S-box is described
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using AND, OR and NOT gates (Algorithm 2). Using this implementation the
quantum circuit of 4-bit S-box is presented in Fig. 6. The quantum circuit of
S-box uses Pauli-X, CNOT, Toffoli and Swap gates that have been described
in previous section. The order of output qubits in Algorithm 2 is different from
the order of input qubits. To correct the order, we swap first and last qubits
using swap gate. The quantum circuit of S-box is referred as QS throughout the
paper. The quantum circuit for inverse S-box is obtained by applying the gate
operations in the reverse direction. The circuit for inverse S-box (IQS) is shown
in Fig. ??.

Algorithm 2: Optimized in place implementation of S-box

Input : x = (x[3], x[2], x[1], x[0]))
Output : (x[0], x[2], x[1], x[3]))

1 x[1] = x[1]⊕ (x[0] · x[2])
2 x[0] = x[0]⊕ (x[1] · x[3])
3 x[2] = x[2]⊕ (x[0] ∥ x[1])
4 x[3] = x[3]⊕ x[2]
5 x[3] = ¬x[3]
6 x[1] = x[1]⊕ x[3]
7 x[1] = ¬x[1]
8 x[2] = x[2]⊕ (x[0] · x[1])

x[0] • X • X • × x[0]

x[1] • X • X X • x[1]

x[2] • X • x[2]

x[3] • X • × x[3]

Fig. 6: Quantum Circuit for GIFT/smallGIFT S-box (QS)

3.2 Quantum Circuit for Permutation

The bit permutation operation used in the diffusion layer of block ciphers is a
rearrangement of bits in a different order. This operation can be performed using
multiple swap operations.The equivalent swap operations for bit permutation
used in smallGIFT is described in Equation 1).The permutation described in
Table 2 can be performed using four swap operations and these operations are
implemented using swap gates on a quantum computer.

BP ≡ swap(1, 3)→ swap(1, 7)→ swap(2, 5)→ swap(2, 4) (1)
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3.3 Quantum Circuit for Key Addition

As decribed in the Algorithm 1, the round subkeys are XORed with selective
bits of the current state in the key addition layer. In quantum circuit, the key
addition operation is performed using CNOT gates and it is depicted in Fig. 7.

3.4 Quantum Circuit for Encryption and Decryption Algorithm of
smallGIFT

The encryption algorithm of smallGIFT consists of S-box, permutation and key
addition operations. Quantum circuits for these individual components have been
discussed in the previous subsections. We present quantum circuit design for the
encryption algorithm of smallGIFT by integrating individual circuits (Fig. 7).

p[0] • X • X • c[1]

p[1] • X • X X • × × × c[1]

p[2] • X • × × × c[2]

p[3] • X • × c[3]

p[4] • X • X • × c[4]

p[5] • X • X X • × × c[5]

p[6] • X • × c[6]

p[7] • X • × c[7]

k[0] •
k[1] •
k[2] •
k[3] •

S −Box Permutation KeyAddition

Fig. 7: Quantum Circuit for Encryption Algorithm of SmallGIFT

4 Quantum Circuit to Search Differential characteristics

Searching the high probability differential characteristics is a challenging problem.
Generally, the classical approach consists of two parts, minimization of number
of active S-boxes and optimization of probability of differential characteristic.
The complexity to explore all possible output difference increase exponentially.
Quantum computing allows us to explore the all possible output differences in each
round. Therefore, a quantum circuit can explore all possible paths corresponding
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to all input differences. The combined probability of these paths will be higher
than any optimal differential characteristic obtained using classical approach.
The quantum differential characteristics search is expected to provide better
results than existing methods as the complexity of exiting method increases
exponentially with each additional round. We describe the procedure to design
the quantum circuit for quantum differential characteristics search for smallGIFT
in Algorithm 3.

We require 24 qubits to search the differential charactertics for smallGIFT. In
Algorithm 3, 16 qubits (q0, ..., q15) are used to explore all possibles options of 8-bit
plaintext pairs (P, P

′
) with the difference ∆. H gate is applied on 8 qubits(∆ =

q16, ...q23) to generate all possible input differences. These differences(∆) are
transferred to P

′
using CNOT gates. H gate is applied on P to get all possible

options of 8-bit plaintext. The plaintext pairs (P, P
′
) with the difference ∆ are

obtained using CNOT gates on P and P
′
. The 4-bit QS is applied on P and P

′

and the resulting differences are stored in P
′
using CNOT gates. The permutation

BP is applied on P
′
using four swap gates. The procedure is repeated for r rounds

and the measurement of qubit corresponding to ∆(q16, ...q23) and P
′
(q8, ...q15)

provides input difference ∆i and output difference ∆o respectively.

The measurements are affected by errors and may not accurate. To get the
accurate results, the experiment needs to be repeated sufficient number of times.
Therefore, to get the high probability input and output differences, we need
to repeat Algorithm 3 many times. The repeated executions give histogram
corresponding to each input and output difference. The difference pair with
maximum probability will be the optimal differential characteristics for r rounds.
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Algorithm 3: Quantum Differential Characteristics Search for small-
GIFT
Input : 24 qubits (q0 to q23), no. of rounds (r)
Output : Input and Output difference after r rounds

1 P = (P [0], P [1], ..., P [7]) = (q0, q1, ..., q7)

2 P
′
= (P

′
[0], P

′
[1], ..., P

′
[7]) = (q8, q9, ..., q15)

3 ∆ = (∆[0], ∆[1], ...,∆[7]) = (q16, q17, ..., q23)
4 ∆ = H(∆)

5 P
′
= CNOT (∆,P

′
)

6 round = 1
7 repeat ▷ r times
8 P = H(P )

9 P
′
= CNOT (P, P

′
)

10 P
′
[0, 1, 2, 3] = CNOT (QS(P [0, 1, 2, 3]), QS(P

′
[0, 1, 2, 3])

11 P
′
[4, 5, 6, 7] = CNOT (QS(P [4, 5, 6, 7]), QS(P

′
[4, 5, 6, 7])

12 SWAP (P
′
[1], P

′
[3])

13 SWAP (P
′
[1], P

′
[7])

14 SWAP (P
′
[2], P

′
[5])

15 SWAP (P
′
[2], P

′
[4])

16 round = round+ 1

17 until round ≤ r;
18 ∆i ←Measure(q16, q17, ..., q23)
19 ∆o ←Measure(q8, q9, ..., q15)

5 Results

We apply the Algorithm 3 on 3 rounds of smallGIFT and search 3-round high
probability differential characteristic for the input difference 0x01 (∆). For a fix
input difference, extra 8 qubits (q16, ..., q23) are not required and the difference
can be fixed in P

′
itself. The qubit state corresponding to P

′
[0] is set as “1” using

Pauli-X gate. We present the quantum circuit1-round differential characteristic
of small GIFT(Fig. 8). The circuit for 3 rounds of smallGIFT is executed 10000
times on qasm simulator1 to get the probability distribution of output differences.
The output difference with highest probability and zero probability are obtained
in the histogram. Top 5 high probability output differences listed and compared
with branch and bound approach in Table 3. The impossible output differences
corresponding to zero probability points in histogram are described in Table 4.

6 Conclusion

In this paper, we presented an approach for differential and impossible differential
cryptanalysis of block ciphers using quantum computers. The proposed quantum

1 https://qiskit.org/
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Branch and Bound Approach Algorithm 4 on Quantum Simulator

Output Difference Probability Output Difference Probability

1 41(00101001) 0.0137 41(00101001) 0.0150

2 09(00001001) 0.0098 09(00001001) 0.0109

3 86(01010110) 0.0098 33(00100001) 0.0100

4 127(01111111) 0.0089 127(01111111) 0.0094

5 95(01011111) 0.0089 95(01011111) 0.0088

Table 3: Top 5 high probability output differences for input difference
0x01(00000001)

Impossible Differential Characteristics

1 1(00000001) → 20(00010100)

2 1(00000001) → 40(00101000)

3 1(00000001) → 80(01010000)

4 1(00000001) → 84(01010100)

Table 4: Impossible output differences for input difference 0x01

differential characteristics search is used to search high probability and zero
probability differential characteristics for a toy cipher smallGIFT. We utilized
the superposition in qubits to try all possible input and outputs differences. The
results are compared and validated using existing methods. After the advent of a
quantum computer with sufficient qubits the proposed approach can be used to
mount the differential and impossible differential attack on block ciphers.

References

1. Augot, D., Batina, L., Bernstein, D.J., Bos, J.W., Buchmann, J.A., Castryck, W.,
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