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Abstract. Current side-channel evaluation methodologies exhibit a gap
between inefficient tools offering strong theoretical guarantees and effi-
cient tools only offering heuristic (sometimes case-specific) guarantees.
Profiled attacks based on the empirical leakage distribution correspond
to the first category. Bronchain et al. showed at Crypto 2019 that
they allow bounding the worst-case security level of an implementation,
but the bounds become loose as the leakage dimensionality increases.
Template attacks and machine learning models are examples of the se-
cond category. In view of the increasing popularity of such parametric
tools in the literature, a natural question is whether the information they
can extract (with a given choice of set of models) can be bounded.

In this paper, we first show that a metric conjectured to be useful for
this purpose, the hypothetical information, does not offer such a general
bound. It only does when the assumptions exploited by a parametric
model match the true leakage distribution. We therefore introduce a
new metric, the training information, that provides the guarantees that
were conjectured for the hypothetical information for practically-relevant
models. We next initiate a study of the convergence rates of profiled side-
channel distinguishers which clarifies, to the best of our knowledge for the
first time, the parameters that influence the complexity of a profiling. On
the one hand, the latter has practical consequences for evaluators as it
can guide them in choosing the appropriate modeling tool depending on
the implementation (e.g., protected or not) and contexts (e.g., granting
them access to the countermeasures’ randomness or not). It also allows
anticipating the amount of measurements needed to guarantee a sufficient
model quality. On the other hand, our results connect and exhibit diff-
erences between side-channel analysis and statistical learning theory.

1 Introduction

Evaluating the security of a cryptographic implementation against side-channel
attacks is a complex problem. Since their introduction by Kocher et al. in the
late nineties [8], a broad literature has focused on analyzing physical leakage in
order to attack efficiently and to assess security on theoretically sound bases.

A first step towards such sound bases is the separation between non-profiled
and profiled attacks. While Kocher’s seminal work and early variants like Brier et



al.’s Correlation Power Analysis (CPA) exploit an a-priori leakage model [8], it
has been shown that profiling the target device (i.e., leveraging an open sample to
estimate a leakage model) can significantly improve the attacks’ efficiency. Chari
et al. introduced profiled attacks, and stated that such attacks are “the strongest
form of side-channel attack possible in an information theoretic sense” [17]. As
a result, Standaert et al. observed that profiled attacks are critical to estimate
the worst-case security of an implementation [55]. Whitnall et al. extended this
observation and proved that profiling is in general necessary for this purpose (i.e.,
there is no generic attack strategy enabling us to recover secret information from
a physically observable device’s leakage without any a priori knowledge about
the device’s leakage distribution) [62]. Heuser et al. then clarified the meaning of
an optimal adversary in the information theoretic sense as the one distinguishing
thanks to the probability distribution of the leakage conditioned on the targeted
secret [31]. These advances consolidated the now standard approach of assessing
the security level of cryptographic implementation thanks to information theo-
retic metrics such as the Mutual Information (MI), which can be used to bound
the data complexity of worst-case attacks [23,22].

A second step towards sound side-channel security evaluations is the acknow-
ledgment that even in the profiled setting, performing an optimal attack in
the sense of Heuser et al., or equivalently estimating the MI, is a highly non-
trivial task. The main reason is that the true leakage distribution of a device
is in general unknown and can be quite complex, especially in the presence of
countermeasures like masking [16]. This has led Renauld et al. to identify the
Perceived Information (PI) as a metric capturing the amount of information
that can be extracted from physical leakage thanks to the adversary/evaluator’s
model, possibly biased by estimation and assumption errors [49]. As a result,
one can summarize the evaluation problem in two questions:

1. What is the complexity of the best (ideally optimal) online attack?
2. What is the complexity of estimating its model, with profiling?

Here, both complexities are defined in terms of number of measurement traces
collected. The first question is standard in the cryptographic setting. It aims
at determining the level of security that can be guaranteed against an informed
adversary. Durvaux et al. therefore formalized the problem of leakage certification
as the one of assessing the distance between an evaluator’s best attack and
the optimal one, or equivalently the distance between the PI and the MI [25].
Bronchain et al. showed that the PI is in general a lower bound for the MI and
that an upper bound is obtained by estimating the Hypothetical Information
(HI), which is the amount of information that would be extractable from a
device if the true distribution was the model, for the empirical distribution [9].
They additionally showed that the expected value of the resulting empirical
Hypothetical Information (eHI) asymptotically converges towards the MI. Unfor-
tunately, the practical impact of these results is limited since the profiling com-
plexity of multivariate attacks quickly becomes unrealistic for the empirical
leakage model. The informal workaround proposed by Bronchain et al. is to
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use the HI estimated with a parametric model in such cases. Informally, and
while the non-empirical HI loosens the formal link with the MI, the goal is to
use the parametric HI as an upper bound for the complexity of the evaluator’s
best attack. They conjectured that this HI is an upper bound of the PI estimated
with the same model.

The second question is less standard in the cryptographic setting. It rather
aims at determining whether such a worst-case attack is somewhat “practical”.
In other words, despite the profiling of a leakage model is a one-time effort, could
it be so complex that estimating an accurate model becomes unrealistic. To the
best of our knowledge, investigations in this direction have been less formal so
far. Numerous profiling techniques have been introduced and evaluated based on
specific case studies. These include extensions of Chari et al..’s Template Attacks
(TA) [17,50,27,5,53,54,19,18] and a steadily increasing (and not exhaustive) list of
works leveraging machine (and deep) learning [33,32,36,35,37,38,13,15,65,63,64].
Recently, Masure et al. showed that these profiling strategies are not disco-
nnected: by optimizing the appropriate loss function, evaluation approaches
based on machine learning and deep learning actually target the same goal as
TA, namely maximizing the PI [40]. However, a systematic characterization of
the parameters that influence the profiling phase of a side-channel attack, which
would answer the practicality question, is still missing. For example, how does the
convergence of a statistical model depend on the physical leakage characteristics
(noise level, number of dimensions, security order), number of classes and number
of profiling traces? And are some statistical tools better suited depending on the
contexts?

Our contributions regarding these two main questions are twofold:

Regarding the first question, we falsify and fix the conjecture of Bronchain et
al. Precisely, we show that the parametric HI is not always an upper bound of the
parametric PI; it only is when the assumptions exploited by the parametric model
are met by the true leakage distribution (which was the case in the experiments
of [9]). Since our counterexample corresponds to realistic leakage distributions
(namely, mixture distributions that happen with masked implementations), we
then propose a new metric, the Training Information (TIN ), that eliminate this
limitation. While the HI can be viewed as a measure of a parametric model
tested against itself, the TIN is a measure of a parametric model tested against
(the empirical distribution of) its training samples. We show that for parametric
leakage models that optimize the appropriate loss function, the TIN upper bounds
the “learnable information” (LI) defined as the supremum of the PI over the
parametric class of models, and that for N → ∞, the PI and TIN converge
towards the LI. Like the HI, the TIN does not offer guarantees against assumption
errors when it is computed for parametric models: the LI may be smaller than
the MI. But it offers an easy way to bound estimation errors (i.e., LI − PI)
for practically relevant classes of distinguishers. Besides, it can be used for both
generative and discriminative models (while the HI was limited to the first ones).
This allows evaluators to gauge how much their attacks can be improved by
collecting more profiling traces, and to stop their measurement campaigns when
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the gain becomes small. In other words, it answers the question: how much
information can be learned with my model?

Regarding the second question, we initiate a study of the convergence rate
of the gap between TIN and PI for practically-relevant profiling techniques,
such as Gaussian template attacks [17] (denoted in this paper as gTA), their
variant with pooled covariance matrix estimation [19] (denoted by p-gTA), logistic
regression (denoted by LR1 and LRk), and deep neural networks such as Multi-
Layer Perceptron (MLP) with L layers and W weights to fit. Our results are
synthesized in Table 1. Here, Q denotes the number of profiled classes, D denotes
the dimensionality of the observed traces, and N denotes the number of traces
acquired on the profiling device, i.e., quantifying the sample complexity of prof-
iling.

Table 1: Convergence of profiling tools (the Õ(·) notation ignores log terms).
The “Fast regime” column assumes that, for some ideally chosen values of the
parameters, the model perfectly matches the true leakage distribution.

Model
Noise Attack Fast General

assumption order regime bound

MLP None any Õ
(
QWL

N

)
Õ
(√

QWL
N

)
LRk None any Õ

(
QDk

N

)
Õ

(√
Q·Dk

N

)
LR1 Exponential 1st Õ

(
QD
N

)
Õ

(√
Q·D
N

)

Template Attacks Gaussian
2nd : gTA O

(
QD2

N

)
1st : p-gTA O

(
QD
N

)
for Q = 2

On the one hand, this table positively answers our question regarding the
practicality of the profiling phase in a security evaluation. It shows that there are
profiling tools for which the estimation error is inversely proportional to

√
N for

any (even protected) implementation. It also shows that the convergence rates
of the investigated models do not depend on physical leakage characteristics
and consolidates the general intuition that side-channel security evaluations
represent a trade off between the genericity and the efficiency of the profiling. For
example, assuming that the true leakage distribution p is in the model hypothesis
class H may allow faster guaranteed convergence rates (with a modeling error
inversely proportional to N); and further leveraging a Gaussian assumption
allows performing simple TA that do not require solving an optimization problem.
The convergence rates also allow an evaluator to anticipate the number of
profiling traces needed to guarantee a certain model quality.
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On the other hand, it shows that there are statistical tools that are better
suited depending on the contexts. For example, the convergence rate of logistic
regression generalized to a security order k leads the modeling error to scale in
O(Dk). By contrast, for a circuit of complexity k (e.g., the encoding of a sensitive
variable that would leak D = k samples corresponding to the shares), it is always
possible to build an MLP whose complexity W · L scales as poly(D = k) [52,
Thm. 20.3]. So our results suggest that if an evaluator has to profile higher-
order leakages, leveraging MLPs leads to a more efficient profiling than trying
to estimate a specific moment of the leakage distribution.

To synthesize, as side-channel evaluators usually operates within a limited
time frame, anticipating and optimizing such complexity is therefore crucial, and
we hope that our work will help the practitioner to find the good trade-offs in
its decisions.

1.1 Related Works

The use of information theoretic metrics to guide/compare profiled attacks dates
back to [54]. In a work from Cosade 2021 [46], Picek et al. show that this
intuition does not only hold for the number of profiling traces but also for the
number of epochs used in the training phase of a machine learning model.

In a recent ePrint report, Ito et al. show that the direct optimization of
security metrics such as the Success Rate (SR) or Guessing Entropy (GE) [55]
can slightly improve an optimization guided by information theoretic metrics
in some contexts, at the cost of some computational overheads [34]. It follows
previous observations that security metrics and information theoretic metrics
can sometimes lead to comparatively different outcomes (e.g., for low noise
levels or small number of attack traces) [56,48]. Yet, since information theoretic
metrics are inversely proportional to the asymptotic complexity of a side-channel
attack’s online part, the concrete impact of such an observation is also limited.
For example, the experiments performed in [34] show some gains for attacks
that succeed in 400 traces, but these gains already vanish for attacks succeeding
in more than 1,000 traces. So while such results are interesting to push the
optimization of concrete attacks in specific contexts, they do not contradict
the general relevance of information theoretic metrics for side-channel security
evaluations.

Finally, the study of Cristiani et al. investigates the so-called Neural-based
MI estimation (MINE) [21]. It leverages the variational formulation of the MI
allowing to train an MLP to maximize a lower bound of the MI, similarly to
the PI [20, Eq. (8.93)]. At high level, this research follows the observation of
Mather et al. [41] that an evaluator may choose to estimate the complexity of his
best attack without having to mount it. Analyzing whether this complementary
approach could be used to upper bound the information leakage like the TIN and
assessing its convergence rate are interesting scopes for further investigation.
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2 Background

2.1 Notations

In the following, we denote random variables (respectively random vectors) by
upper-case (respectively bold upper-case) letters X (respectively X). We denote
by the same calligraphic letter X the observation domain of the corresponding
random variable (respectively random vector). We denote observations of a
random variable (respectively random vector) by the corresponding lower-case
roman letter x (respectively x). If a random variable X is discrete, we denote by
Pr(X = x) its probability mass function (pmf), for which we will use the shortcut
notation p(x). We note P(V) the set of probability distributions over a random
variable of domain V. If p and m denote two distributions over the same support,

the Kullback - Leibler (KL) divergence is denoted by DKL(p ∥ m) = E
X∼p

[
p(X)
m(X)

]
.

In this paper, we use the notation O(f(n)) to hide constant factors in n, whereas

we use the notation Õ(f(n)) to additionally hide log factors in n. For a square
matrixA, we denote by ∥A∥∗ its spectral norm (i.e., the greatest of its eigenvalues
in absolute value) and by ∥A∥F its Frobenius norm.

2.2 Information Theoretic Metrics

Let Y be a discrete uniform random variable over a domain Y, denoting the
sensitive intermediate computation targeted by the attacker/evaluator, and L be
a discrete random vector over a domain L, denoting the corresponding physical
measurement of the leakage of Y . During its attack, the adversary/evaluator, who
knows the distribution of Y , acquires a profiling set SN made of N observations
(y, l) of the joint probability distribution of (Y,L).

We consider the problem of estimating a discriminative model m(y | l) for
the conditional Probability Mass Function (PMF) Pr(Y = y | L = l), for which
we will use the shortcut notation p(y | l). In some cases, we also care about a
generative model m(l | y) for the PMF Pr(L = l | Y = y), denoted for short as
p(l | y). We note that, since the distribution of Y is known, a generative model
naturally induces a discriminative model (using Bayes’ rule).

We further define a distance metric ∆ between two probability distributions
or models p and m:

∆m
p = H(Y ) +

∑
y∈Y,l∈L

p(y, l) · log2
(
m(y | l)

)
, (1)

where H(Y ) is the entropy of Y . We remark that this distance uses p as a
generative model, while it uses m as a discriminative model only. Thanks to
this notation, we can express the Mutual Information (MI) between the random
variables Y and L as

MI(Y ;L) = ∆p
p .

The MI is a relevant evaluation metric for side-channel attacks since the
(measurement) complexity of a worst-case side-channel attack targeting a secret
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key, e.g., y = S(x⊕k) where x denotes a plain text, k denotes a secret key chunk,
and S denotes an S-box, is inversely proportional to MI(Y ;L) [24,22]. However,
this metric cannot be computed directly since the true leakage distribution (i.e.,
p(l | y)) is in general unknown. One solution is to estimate it, which is known to
be a difficult problem [45]. Alternatively, the amount of information that can be
extracted from the leakages thanks to a model can be quantified by the Perceived
Information (PI) given by

PI(Y ;L;m) = ∆m
p .

The authors in [9] additionally considered the Hypothetical Information (HI):

HI(Y ;L;m) = ∆m
m ,

and the empirical Hypothetical Information (eHI) as

eHIN (Y ;L) = ∆
ẽSN

ẽSN
,

where ẽ denotes the operator that maps a profiling set SN to the corresponding
empirical distribution, i.e., ẽSN

(y, l) = 1
N

∑N
i=1 1(y,l)=(yi,li). Whenever there is

no ambiguity, we will replace the notation ẽSN
by ẽN .

Based on these quantities, their main result is twofold. First, the PI is always
upper bounded by the MI regardless of the tested model m, with equality if and
only if m coincides with the true leakage distribution p. Second, the eHI may be
used to bound the MI as follows:

E
ẽN−1

[eHIN−1(Y ;L)] ≥ Ẽ
eN

[eHIN (Y ;L)] ≥ MI(Y ;L) . (2)

Note that the bound is for the expectation of the HI over the model estimations.
It only holds for the empirical distribution ẽN and the authors also show that

Ẽ
eN

[eHIN (Y ;L)] −→
N→∞

MI(Y ;L) . (3)

By contrast, the PI bound is true for any model.

3 Limitations of the HI

One important question left open by Bronchain et al. is whether the properties of
the HI generalize to parametric leakage models. This question is important since,
as experimentally observed in [9], assessing the security of an implementation
with an empirical model (and the corresponding bounds) rapidly becomes too
expensive. In this section, we consolidate this HI proposal in two directions.
First, we give a counter-example confirming that the HI is in general (i.e., for
any model) an upper bound for the PI. It turns out that this conjecture only
holds when the parametric model used in the bound corresponds to the true
leakage function to a sufficient extent. This will lead us to introduce a new
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metric to fix this issue in Section 4. Second, we formalize the observation that
empirical models converge too slowly for being a practical alternative in side-
channel security evaluations. For this purpose, we reconsider the convergence
of the eHI towards the MI. Bronchain et al. proved a monotone convergence of
the expectation. However, in practice the profiling phase is usually performed
a single time by the evaluators. Accordingly, stronger notions of convergence
(e.g., in probability) are better suited to argue about the profiling phase of a
side-channel attack. We give such a stronger result in Section 3.2, while also
showing that an evaluation based on the eHI suffers from very slow convergence
rates.In particular, it suffers from a bias that grows exponentially with the trace
dimensionality.

3.1 Inconsistency with Non-Empirical Models

In [9], the authors proposed the gHI (i.e. the HI computed for a Gaussian model)
as a surrogate of the eHI enabling a faster convergence. We next show empirically
that we can actually observe all three possible cases for the convergence of the PI
and HI: either they both converge to the same value, or the HI converges strictly
above the PI, or the HI converges strictly below the PI.

We illustrate the three cases by measuring the gHI against true distributions
that are not Gaussian. In particular, we use discretized univariate Gaussian
mixture models which are relevant in the context of masked implementations.
Concretely, the leakage is the sum of a Gaussian noise and the Hamming weight
of the sharing (x⊕r, r) for the n-bit word x, masked with a uniformly random n-
bit word r. The model, for each leakage class (i.e. x = 0 and x = 1) is a Gaussian
fitted using maximum likelihood estimators. In Figure 1, we show the leakage
(continuous lines) and the models (dashed lines) for two distinct values of the
SNR, computed as the ratio between the variance of the Hamming weight of an
n-bit uniformly random variable, and the variance of the Gaussian noise [39].

(a) SNR = 0.02 (b) SNR = 2 (c) SNR = 200

Fig. 1: True distributions (continuous lines) and models (dashed lines) trained
with 20 samples for each of the 4 classes (i.e. n = 2 bits).

In Figure 2, we show the corresponding gPI, gHI and MI. In addition to the
observation of the aforementioned three cases, we can look at the relationship
between the gPI/gHI and the MI. When the true distribution is close to Gaussian
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(Figure 1a), both gPI and gHI converge to the MI, as conjectured. However, in
the other cases, the gPI and gHI are below the MI. This is explained by the
inability of the Gaussian model to accurately represent the distinctive features
of the classes, and thus to exhibit good class discrimination. Visually, the more
dissimilarity between the true leakage and the model (i.e., from left to right in
Figure 1), the wider the gap between HI and MI (from left to right in Figure 2).

102 104

−0.2

−0.1

0

0.1

PI

HI

MI

(a) SNR = 0.02

102 104

0

0.1

0.2

(b) SNR = 2

102 104

0.4

0.6

0.8

1

(c) SNR = 200

Fig. 2: gPI, gHI and MI (in bits) for 2-bit masked variable as a function of the
number of traces used to train the Gaussian model.

3.2 Slow Convergence of the Empirical Model

We now formalize the observation that empirical models converge too slowly for
being a practical alternative in side-channel security evaluations.

Convergence of the Expectation. We first state that the bias of eHI scales
exponentially with the dimensionality of the traces D and linearly with Q

N , with
Q being the number of classes and N the number of profiling traces.

Theorem 1. Consider an evaluator sampling N traces from a D-dimensional
leakage with an ω-bit resolution, related to a sensitive intermediate computation
over Q classes, assumed to be uniformly distributed. Then, the eHI satisfies the
following inequalities:

MI(Y ;L) ≤ E [eHIN ] ≤ MI(Y ;L) +
BQ

N
, (4)

where B denotes the number of bins in the empirical distribution. In particular,
here B = 2ωD. Moreover,(

E [eHIN ]−MI(Y ;L)
)
· N

BQ
−→
N→∞

1/2 . (5)
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The proof of this statement is directly inspired from Paninski’s work [45], and
is detailed in Appendix A. Note that as a consequence of Equation 5, the upper
bound of Equation 4 is asymptotically tight, thereby meaning that the lower
bound is asymptotically loose. Since there is no unbiased estimator of the MI [45,
Prop. 8], this is unavoidable (otherwise removing the right term of Equation 4
would have given an unbiased estimator of the MI). We illustrate this result
with the auxiliary source code released by Bronchain et al. with the paper [9].1

Figure 3 depicts the absolute difference between eHIN and MI with respect to
the number N of profiling traces, simulated according to a “Hamming weight +
Gaussian noise” leakage model, and according to different trace dimensionality
ranging from 1 to 4.We can see that every curve has the same slope of roughly
−1 with a constant offset between each other, which confirms the theoretical
expectations of Theorem 1.

102 103 104 105 106 107 108

10−2

10−1

100

Fig. 3: eHI−MI (y-axis) with respect to the number of profiling traces N (x-axis)
for D = 1 (blue), 2 (orange), 3 (green), and 4 (red). Here, ω = 4 and Q = 16.

Convergence in Probability. So far we provided a speed of convergence of
the expectation of the eHI towards the MI. As already mentioned, such a result
is not directly representative of an evaluation context where the profiling phase
is (ideally) performed once. For example, the results shown in Figure 3 depict
the convergence of eHI for one simulation, whereas Theorem 1 only ensures that
the shape of the curves observed in Figure 3 are the ones that are expected on
average, i.e. over several simulations. It might however be possible that by (lack
of) chance, one could observe different results for one particular eHI computation.

1 https://github.com/obronchain/Leakage_Certification_Revisited

10

https://github.com/obronchain/Leakage_Certification_Revisited


We next eliminate this limitation by discussing/proving a stronger notion of
convergence, namely the convergence in probability.

Incidentally, Bronchain et al. already proved the convergence in probability,
in the proof of [9, Lemma 2, p. 10], although not claimed as a theoretical result
in their paper. In this section, we additionally provide upper bounds on the rate
of convergence in probability. We state hereafter that the deviation between the

eHI and its expected value converges towards 0 at a speed O
(

log(N)√
N

)
.

Theorem 2. For all δ > 0, the inequality∣∣∣eHIN − E [eHIN ]
∣∣∣ ≤ log2(N)

√
8 log(4/δ)

N
(6)

holds with probability at least 1− δ, and furthermore

E
[∣∣∣eHIN − E [eHIN ]

∣∣∣] ∈ Θ

(
1√
N

)
.

The proof of Theorem 2 is provided in Appendix A and is also directly
inspired by Paninski’s work [45]. Interestingly, the convergence rate of Equation 6
does not depend on D, while the bias increases exponentially with D. When the
number of dimensions is large, the bias will therefore dominate for practical N ,
despite the faster convergence rate of the bias with respect to N . In that case,
the eHI is thus an upper-bound of the MI with high probability, although so loose
that it is of little interest.

Overall we conclude that the eHI converges too slowly for many practical
use-cases, which calls for a better solution (which is not provided by the non-
empirical HI, as discussed in Section 3.1).

4 Introducing the Training Information

The previous section showed the HI metric limitations both in terms of its
ability to bound the information that can be extracted with parametric models
and in terms of the convergence rate that its instantiation with the empirical
function leads to. In this section, we introduce a new metric to circumvent these
limitations, which we call the Training Information (TIN ). Like the eHI, it upper-
bounds the PI while also having much better quantitative convergence properties.
To explain the intuition behind the TIN , we recall that the eHI is the quantity
∆ẽN

ẽN
, where ∆ is the operator defined in Equation 1, whereas the HI, in its general

form (i.e., defined for an arbitrary model m), is given by ∆m
m, and the PI is given

by ∆m
p , where p denotes the true (unknown) leakage distribution. The main

goal of the TIN is to base the metric on a parametric model (enabling faster
convergence), while keeping an upper bound for the PI. For this purpose, the
eHI upper-bounds the MI by overfitting : it builds an ideal discriminative model
ẽN (in the superscript) based on some samples, then evaluates it on the same
samples (in the subscript). We define the TIN as ∆m

ẽN , where m is trained on the
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same sample set as the one used to compute ẽN . Since the TIN is based on a
model instead of the empirical distribution, it carries the possible biases induced
by the choice of possible models (e.g., Gaussian distributions). Hence it cannot
upper-bound the MI in general (e.g., if the true distribution is not Gaussian).
However, we can still relate the TIN and the PI to a meaningful quantity that we
name the Learnable Information (LI for short). The LI is the maximum amount
of information that can be extracted from a given leakage distribution using a
family of models, and the gap between the LI and the MI corresponds to the
“assumption error” of the evaluator/attacker’s model [25]. Informally, we have
the following inequalities: PI ≤ LI ≤ TI. We next formalize the concepts of LI
and TIN in Section 4.1, then prove the above inequalities and prove that the
expectation of the TIN converges in Equation 4.2.

4.1 Definition and Rationale

We first formalize the notion of “family of models” as follows.

Definition 1 (Hypothesis class). A hypothesis class H is a – possibly infinite
– collection of discriminative models m : L → P(Y), where L denotes the input
space of the random vector L of the trace, and Y denotes the finite set of all
hypothetical values of the target discrete random variable Y .

The output of m can be seen as a possible discrete probability distribution
of the target random variable Y . We next define the LI.

Definition 2 (Learnable Information). Let H be a hypothesis class. The
learnable information on Y from leakage L using a model from H is defined as
the following quantity:

LI(Y ;L;H) = sup
m∈H

PI(Y ;L;m) . (7)

In order to introduce the training information, we need two more definitions.

Definition 3 (Learning Algorithm). A learning algorithm A for a hypothesis
class H is a function

A :

∞⋃
N=1

(Y × L)N → H (8)

i.e., a mapping taking as an input a set SN of N acquisitions drawn from the
(unknown) joint probability distribution of (Y,L) and returning a model m =
A(SN ) from the hypothesis class H.

It is worth noticing that in a profiling attack scenario, the adversary can
be defined by its underlying learning algorithm. Hence, in this paper, we denote
interchangeably byA either an adversary, or its corresponding learning algorithm.
The following definition states how we value and compare different learning
attackers, i.e. learning algorithms.
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Definition 4 (Regret). Let A be an attacker, i.e., a learning algorithm. The
regret of A is the following quantity:

R (A) = MI(Y ;L)− PI(Y ;L;A(SN )) . (9)

By definition, the regret is always non-negative, and equals 0 if and only if
the learning algorithm outputs the exact leakage model, i.e. A(SN ) = p. We can
now give the formal definition of TIN , based on the ∆ operator.

Definition 5 (Training Information). Let SN be a set of N samples drawn
from a distribution over (Y,L). The training information by A with N traces is
defined as the following quantity:

TIN (Y ;L;A) = ∆
A(SN )
ẽSN

. (10)

Since TIN is defined for any learning algorithm, regardless of their perfor-
mances, there is no prior reason why TIN could be an upper bound of MI nor PI.
Nevertheless, this is possible by adding a few more assumptions, in particular
assuming that the learning algorithm is a TIN maximizer.

Definition 6 (TIN maximizer). Let H a hypothesis class. and let SN be the
dataset of N traces. The TIN maximizer for the hypothesis classH is the learning
algorithm AH such that AH(SN ) = m̂N , where m̂N is defined as

m̂SN
= argmax

m∈H
∆m

ẽSN
. (11)

For short, we will replace the notation m̂SN
by m̂N in the remaining of this paper.

4.2 Bound and convergence of the TIN

Provided with the TIN maximizer of a hypothesis class, it is now possible to
derive properties similar to the ones conjectured for the gHI by Bronchain et
al. [9]. The first one that we give hereafter tells that the maximum TIN over
a hypothesis class is an upper bound in expectation of the LI for the same
hypothesis class. The second one tells that, for a TIN maximizer, the expectation
of the TIN is monotonically decreasing. Together, these two results imply that
the expectation of the TIN converges to an upper bound of the LI.

Proposition 1. Let H be a hypothesis class, and N be a positive integer. Then

LI(Y ;L;H) ≤ E [TIN (Y ;L;AH)] , (12)

where the expectation is taken over the profiling set SN of size N .

Proof. According to Definition 5 and Definition 6, for any model m ∈ H, if m̂N

denotes the maximum likelihood for H, it holds that

∆m̂N

ẽN
≥ ∆m

ẽN . (13)
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Since the expectation is monotone, non-decreasing, it follows that

E [TIN (Y ;L; m̂N )] = E
[
∆m̂N

ẽN

]
≥ E

[
∆m

ẽN

]
(14)

Since the ∆b
a operator is linear with respect to a, it follows that

E
[
∆m

ẽN

]
= ∆m

p = PI(Y ;L;m) . (15)

Since the latter holds regardless the choice for m we may arbitrarily take the
model that maximizes the PI, which gives Equation 12.

Proposition 2. Let H be a hypothesis class, and N be a positive integer. Then

E [TIN−1(Y ;L;AH)] ≥ E [TIN (Y ;L;AH)] ,

where the expectation is taken over the profiling set SN of size N .

Proof. We first remark that we can extend the definition of the TIN -maximizer
to learn from an empirical distribution: let e ∈ P(Y,L), we define

m̂e = argmax
m∈H

∆m
e .

We shall show that the function γ : ẽN 7→ ∆
m̂ẽN

ẽN
is convex. The theorem then

follows from Lemma 2 of Bronchain et al. [9].
For any e, e′ ∈ P(Y,L), α ∈ [0, 1], let e′′ = αe + (1 − α)e′. We show that

γ(e′′) ≤ αγ(e) + (1− α)γ(e′). First, using the linearity of ∆m
e with respect to e,

we have
γ(e′′) = ∆

m̂e′′
e′′ = α∆m̂e′′

e +(1− α)∆
m̂e′′
e′ .

Since m̂e and m̂e′ are TIN -maximizers, ∆m̂e′′
e ≤ ∆m̂e

e and ∆
m̂e′′
e′ ≤ ∆

m̂e′
e′ , which

gives

γ(e′′) ≤ α∆m̂e
e +(1− α)∆

m̂e′
e′ = αγ(e) + (1− α)γ(e′) .

Proposition 1 and Proposition 2 together show that the TIN satisfies the
same monotone convergence of its expectation than the one satisfied by the eHI,
as previously shown by Bronchain et al. [9]. Moreover, Proposition 1 tells us that
the asymptotic TIN is an upper bound of LI. It is therefore interesting to discuss
whether, like in Bronchain et al.’s works, it is possible to get stronger notions
of convergence, and with the hope to get faster convergence rates than the one
satisfied by eHI. Section 5 will be devoted to this question.

5 Convergence rate of TI-maximizing distinguishers

In this Section, we show that under some assumptions that we give hereafter,
thereafter, the TIN converges towards the LI for some classes of TIN -maximizing
distinguishers. Furthermore, we provide bounds on the rate of this convergence.
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5.1 Definition of our Problem

For the remaining of Section 5, we consider a hypothesis classH that is the family
of concatenations of real-valued functions belonging to a given set F (that we
will describe thereafter), composed with a softmax function

σ(x) =
1∑Q

i=1 e
xi

ex1

...
exQ

 ,x ∈ RQ . (16)

We assume that each real-valued function f ∈ F can be fully described by a
parameter vector θ. In other words, each function m ∈ H can be written as

mΘ(l) = σ

f(l;θ1)
...

f(l;θQ)

 , (17)

where Θ is the concatenation of θ1, . . . ,θQ. We denote by H⊺ the space Θ
belongs to.

Remark 1. It is noticeable that the softmax function σ remains invariant by
applying the same shift to all its entries. It follows that if the elementary class
F is a group, one may fix one of the f(l;θi) to the constant function 1, without
changing the resulting hypothesis class H.

This definition covers a broad family of models, such as Logistic Regression
models with polynomial basis of degree k (LRk for short) and deep neural
networks, among which we particularly focus onMLP s (without loss of generality).

In the case of an LRk-attacker, the elementary class F is the set of all
polynomial transformations of degree at most k over the leakage space L ⊂ RD.
As an example, in the case of LR1, the mapping

l,θi 7→ f(l;θi) = B⊺
i l

′ (18)

is an affine form, where Bi ∈ RD+1 and l′ = (l, 1). Here, θi corresponds to Bi.
In the case of LR2, the mapping

l,θi 7→ f(l;θi) = l′⊺Ail
′, (19)

where Ai ∈ R(D+1)2 is a quadratic form. Here, θi = Ai.

In the case of MLP s, the mapping

l,θi 7→ f(l;θi) = ϕL

(
·;Θ(L)

i

)
◦ . . . ◦ ϕ1

(
·;Θ(1)

i

)
(l) (20)

is a composition of L layers ϕi, each being in turn the composition of a linear

mapping, defined by the weight matrix Θ
(j)
i , with an element-wise non-linear

function (a.k.a. activation) – except the L-th layer which is not composed with
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any activation function, since this role will be played by the whole softmax

function. Here, θi = (Θ
(1)
i , . . . ,Θ

(L)
i ). In the remainder of this paper, we assume

that the total number of entries in the weight matrices equals W .

Whereas MLP s are nowadays widely used for profiled side-channel analysis,
LR models have never been considered so far in the literature to the best of
our knowledge.2 However, LR models may be of great interest thanks to their
connection to Gaussian templates. Indeed, we claim that the hypothesis class
of Gaussian templates (resp. pooled Gaussian templates [19]) is included in LR2

(resp. LR1). This will be shown in the devoted Section 6. A similar correspondence
could be investigated for the inclusion of so-called side-channel attacks of order
k [51,43] in LRk. We discuss in Section 6 the main difference between LR and
Gaussian templates approaches, which is the nature of the underlying learning
algorithm A used to find the right model from H = LRk (for k = 1, 2).

5.2 Characterizing the Complexity of H: the Pseudo-Dimension

In the next section, we will present several upper bounds on the TIN towards
the LI. It is expected that those bounds will depend on the complexity – or the
richness – of the underlying hypothesis class H. Intuitively, the more parameters
in Θ to fit, the slower the convergence. It turns out that it is possible to
characterize this complexity. This characterization, named Pseudo-Dimension, is
defined in this section, and we provide some examples of pseudo-dimensions for
several classes of interest for this study. We will therefore be able to provide some
convergence rates in the next sections that depend on the pseudo-dimension.

We first need an intermediate definition of a pseudo-shattering.

Definition 7 (Pseudo-shattering [3, Def. 11.1]). Let F be a set of functions
mapping from a domain L to R and suppose that SN = {l1, . . . , lN} ⊂ L for some
positive integer N . Then, SN is pseudo-shattered by F if there are real numbers
r1, . . . , rN such that for all b ∈ {0, 1}N there is a function fb ∈ F such that for
all 1 ≤ i ≤ N ,

fb(li)

{
≤ ri if bi = 0

> ri if bi = 1
. (21)

We say that r = (r1, . . . , rN ) witnesses the shattering.

An example of pseudo-shattering is depicted in Figure 4. We consider F as
the set of affine functions in R. When SN = {l1, l2}, we can exhibit a function
from F satisfying Equation 21 for any 2-bit vector b ∈ {0, 1}2. However, we can
notice that when adding l3 to SN , the new profiling set cannot be shattered
anymore, since the binary vector b = (0, 0, 1) provides a counter-example where
Equation 21 is not satisfied. It can be verified that no matter the choice of r3, one
will always find such a binary vector b breaking the condition of Equation 21.

2 Logistic Regression models without polynomial transformation can actually be seen
as the simplest MLP model, i.e., without any hidden layer, nor activation layer,
excepted the output softmax.
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Intuitively, this states that F is not rich enough to shatter any set of 3 leakages
or more. Hence the choice of quantifying the richness of F by the maximum
amount of leakages that can be shattered by F , as formalized hereafter.

l

y

l1

r1 = r2

l3

r3

l2

•

•

•

(0, 0) (1, 0)

(0, 1)

(1, 1)

Fig. 4: Illustration of the pseudo-shattering by the set F of affine functions of
L = R. The tuples denote the different values of b. {l1, l2} is pseudo-shattered
by F , while {l1, l2, l3} is not.

Definition 8 (Pseudo-dimension [3, Def. 11.2]). Suppose that F is a set
of functions from a domain L to R. Then, F has pseudo-dimension N if N is the
largest integer such that any subset SN of L of cardinality N is pseudo-shattered
by F . If no such maximum exists, we say that F has infinite pseudo-dimension.
The pseudo-dimension of F is denoted Pdim(F).

As an example, it is known that if F is a finite dimensionality vector space
of functions from an input space L onto R, then Pdim(F) is the dimensionality
of F [3, Thm. 11.4]. We give hereafter the pseudo-dimension of the two classes
considered in this work, namely the Logistic regression and the MLP.

Theorem 3 (Pseudo-dimension of LRk [3, Thm. 11.8]). Let F be the class
of all polynomial transformations on RD of degree at most k. Then

Pdim(F) =

(
D + k

k

)
. (22)

Theorem 4 (Pseudo-dimension of MLP [6]). Let F be the class of MLP with
real-valued output with piece-wise linear activation function, W parameters and
L layers. Then, there exists two constants c > 0, C > 0 such that

cWL log(W/L) ≤ Pdim(F) ≤ CWL log(W ) . (23)
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Put in another way, this means that the pseudo-dimension of parametric
models is roughly proportional to the number of real-valued parameters to fit.3

5.3 Convergence Rate for TI Maximizers

We are now ready to present our main result for TIN maximizers.

Theorem 5. Let H be a hypothesis class to model the leakage of an intermediate
computation of Q hypothetical values, such that the corresponding elementary
class F of functions L → [−V, V ] (with V ≥ 1

2) has pseudo-dimension Pdim.
Define the following quantities:

h = log
(
e (2V + log(Q))Q3/2

)
+

log(ePdim +1)

Pdim
+

log(2)

Pdim Q

η = log

(
64 (2V + log(Q))

2

N

)
+ log

(
Pdim Qh+ log

(
1

δ

))

where N denotes the number of profiling traces. Define also the following quantity

ϵPdim,Q,V,N,δ = 8 (2V + log(Q))

√
log
(
1
δ

)
+ Pdim Q

(
h+ η

2

)
N

.

Then, for all 0 < δ ≤ 1, the inequality

sup
m∈H

∣∣∆m
ẽN −PI(Y ;L;m)

∣∣ ≤ ϵPdim,Q,V,N,δ (24)

holds with probability at least 1− δ.

We prove Theorem 5 in Section B. Corollary 1 follows from this result.

Corollary 1. Let AH be a TIN -maximizer adversary that profiles with N traces
and considers a hypothesis class H such that the corresponding elementary class
F has pseudo-dimension Pdim. The following inequalities

0 ≤ LI(Y ;L;H)− PI(Y ;L; m̂N ) ≤ 2ϵPdim,Q,V,N,δ

−3ϵPdim,Q,V,N,δ ≤TIN (Y ;L;AH)− LI(Y ;L;H) ≤ ϵPdim,Q,V,N,δ

hold with probability 1− δ (except the first one that always holds), and the slack

ϵPdim,Q,V,N,δ belongs to Õ
(
V
√

Pdim Q
N

)
.

Proof. The first inequality is a direct consequence of the definition of the LI.
The second one is a direct consequence of Theorem 5 and Theorem 12 (proven
in Appendix), while the two last ones follow from Corollary 8.

Putting the pseudo-dimensions of our models of interest in this Corollary
gives our generic convergence results (∀ p in Table 1).

3 This rule of thumb is not always true for other classes of models beyond the scope
of this study. The interested reader may find counter-examples in [60, pp. 159-160].
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5.4 Faster Rates for Well-Specified Hypothesis Classes

So far we have emphasized that the convergence rate between TIN and PI scales
with 1/

√
N . It is actually possible to emphasize faster rates – i.e., asymptotically

linear with 1/N . Until a few years ago, some particular cases were emphasized,
where fast rates could indeed hold, provided a few additional assumptions. Those
assumptions required the learner to be in a realizable case.4 Whereas in other
application fields of machine learning, e.g., in image recognition, this assumption
likely holds, such an assumption is not realistic in side-channel analysis. Indeed,
when specialized to the case of the information as a loss function, the realizable
assumption implies that the MI between the leakage L and the sensitive target
variable Y should be equal to its maximum value, namely the entropy of Y .
This means that the device under evaluation can be broken in one query with
probability one by an optimal adversary. Since the aim of a developer is to
increase the security level of the target under evaluation, such attack outcomes
are not expected. This drastically reduces the scope of profiling scenarios where
the realizability assumption may hold. Hopefully, some recent advances in stati-
stical learning theory have seen the emergence of relaxed alternative assumptions,
unified under the name of central condition [59]. We present hereafter one such
result that we will use to derive fast rates.

Theorem 6 ([42, Thm. 1], restated). Let H = {mθ : θ ∈ H⊺} such that
θ ∈ H⊺ ⊂ RPis a convex set satisfying supθ′,θ ∥θ′ − θ∥2 ≤ T . Suppose, for all
y, l ∈ Y × L, that the mapping θ 7→ log(m(y | l)) is U -Lipschitz. Suppose that
the true leakage model p belongs to H and that for all y ∈ Y, l ∈ L,m ∈ H∣∣∣log(m(y|l)

p(y|l)

)∣∣∣ ≤ B. Then, if N ≥ 5, with probability at least 1 − δ, the TIN -

maximizer returns a model m̂N such that

MI(Y ;L)− PI(Y ;L; m̂N ) ≤ 1

N
8B

(
P log(16UTN) + log

(
1

δ

))
+

1

N
. (25)

The condition p ∈ H can be seen as a relaxation of the realizable condition,
since it is verified in the realizable case, but no longer requires any assumption
on the MI of the true leakage model. Based on Theorem 6, we derive faster rates
for the different hypothesis classes we consider in this section.

Corollary 2. Let LR1 be a TIN -maximizer attacker using logistic regression for
profiling. Suppose that

– For all l ∈ L ⊂ RD, ∥l∥2 ≤ R, for some R ∈ R.
– For all 1 ≤ i ≤ Q, ∥θi∥2 ≤ S, for some S ∈ R.

If the true leakage belongs to the hypothesis class of LR1 and N ≥ 5, then,
denoting h = log

(
32QSN

√
R2 + 1

)
, the regret can be upper bounded by

R (LR1) ≤
8

N

(
2
√
R2 + 1S + log(Q)

)(
(D + 1)Qh+ log

(
1

δ

))
+

1

N
(26)

4 The terminology differs from one book to another. The “realizable” terminology is
used by Shalev-Shwartz & Ben-David [52], whereas Vapnik uses the term “optimistic
case” [60], and Anthony & Bartlett use the term “restricted class” [52].
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In other words, the regret of an LR1 attacker is bounded by Õ
(

SDQ
N

)
.

Remark 2. The condition p ∈ H is a sufficient but not necessary condition
to establish the central condition, and thereby fast rates of convergence. This
suggests that convergence rates asymptotically linear with 1

N may be obtained
even if p ̸∈ H. Unfortunately, this may also come at the price of prohibitive
constants. As an example, for LR1 with only Q = 2 and without assuming

p ∈ H, it is not possible to derive tighter upper bounds than O
(

eRS

N

)
[44].

Corollary 3. Let LR2 be a TIN -maximizer attacker using logistic regression for
profiling. Suppose that

– For all l ∈ L ⊂ RD, ∥l∥2 ≤ R, for some R ∈ R.
– For all 1 ≤ i ≤ Q, ∥θi∥2 ≤ S, for some S ∈ R.

If the true leakage belongs to the hypothesis class of LR2 and N ≥ 5, then,
denoting h = log

(
32QSN(R2 + 1)

)
, the regret can be upper bounded by

R (LR2) ≤
8

N

(
2(R2 + 1)S + log(Q)

)(
(D + 1)2Qh+ log

(
1

δ

))
+

1

N
(27)

Corollary 4. Let A be a TIN -maximizer attacker using MLP as defined in
Equation 20 with ReLU activation function for profiling. Suppose that

– For all l ∈ L ⊂ RD, ∥l∥2 ≤ R, for some R ∈ R.
– For all 1 ≤ i ≤ L and for all 1 ≤ j ≤ Q,

∥∥∥Θ(j)
i

∥∥∥
F
≤ S, for some S ∈ R≥1.

Suppose that the true leakage belongs to the hypothesis class of MLP. Then, the
regret can be upper bounded by

R (MLP) ≤ 8B

N

(
WQ log(16BN) + log

(
1

δ

))
+

1

N
, (28)

where B = 2Q3/2RLSL+1.

Theorem 6, along with Corollaries 2, 3, and 4, are proven in Section C.

6 Gaussian Templates

The assumption p ∈ H, which is key to obtaining the fast convergence rate of the
previous section, is actually a fairly common assumption made for side-channel
security evaluations. One of the most popular models is the Gaussian template
where F is the set of multivariate Gaussian distributions. The Gaussian template
attack (gTA for short), however, is not a TIN maximizer, since the parameters
(mean and covariance) of the templates are chosen as the empirical average and
covariance.

In this section, we compute the convergence rates of gTA, first for the original
and most generic template attack [17], then in the particular case where the
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covariance matrix is diagonal (i.e. the white noise case), and finally for the
pooled gTA (i.e. the covariance is the same for all values of y) [19].

Formally, we assume in this section that the leakage distribution fy(·) for each
of the Q different classes y has a Gaussian distribution of mean µy and covariance
Σy. For each class y, the adversary estimates aD-dimensional Gaussian generative

model f̂y(·) (the template) according to the empirical mean vector µ̂y and the

empirical covariance matrix Σ̂y. Without loss of generality, we assume that for
each class, the adversary has acquired N/Q traces during the profiling phase in

order to build each template f̂y(·). The discriminative model derived from this
Gaussian model – computed thanks to the Bayes rule – is used by the attacker
to mount the key recovery.

One may then remark that LR2 covers the set of discriminative models
derived from gTA. To see this, define each elementary function f(l;θi) = − 1

2 (l−
µi)

⊺Σ−1
i (l−µi) = l′⊺Ail

′ for some Ai ∈ R(D+1)2 . Thus, the corresponding model
mΘ coincides with the Gaussian template. Likewise, if we further assume that
the covariance matrix is the same for all classes, the quadratic term − 1

2 l
⊺Σ−1

i l
is common to all functions f(l;θi) and can be subtracted without change to the
model mΘ. We deduce that the set of pooled Gaussian templates is covered by
the hypothesis class LR1.

5 In other words, despite a gTA (resp. p-gTA) adversary
differs from an LR2 (resp. LR1) adversary, since they do not use the same learning
algorithm, the hypothesis class of the former one lies in the hypothesis class of
the latter one.

It is therefore interesting to compare the convergence rates of both approaches,
e.g. by comparing their respective regrets. It follows from the Gaussian distri-
bution assumption that LI = MI. Accordingly, the regret is bounded if and only
if the gap between the LI and the PI is bounded. This is the aim of this section.

Remark 3. The Gaussian TA (resp. pooled TA) is actually identical to the
quadratic (resp. linear) discriminant analysis (QDA/LDA), which are well-known
machine learning models. However, most of the literature focuses on the success
rate metric (e.g. [26,28]), and their results are not directly adaptable to infor-
mation theoretic metrics. To the best of our knowledge, there is no existing
bound on the convergence of the LDA/QDA that can be applied to the PI.

6.1 General bound

The first theorem6 presented hereafter uniformly bounds the regret of gTA with
the regret induced by an imperfect characterization of the true distribution.

5 Actually, those inclusions of hypothesis sets are not tight, as argued by Efron who
tells that the set LR1 could coincide with the set of template attacks with exponential
family distribution sets, with common nuisance parameter [26].

6 We prove the claims of this section in Section D.
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Theorem 7. Let TA be an adversary with templates, i.e. with generative models
f̂y(·) , y ∈ Y of the distribution. Then, the following inequalities hold true.

0 ≤ R (TA) ≤ 1

Q

∑
y

DKL

(
fy(·)

∥∥∥ f̂y(·)
)
≤ max

y
DKL

(
fy(·)

∥∥∥ f̂y(·)
)

(29)

Note that Theorem 7 is not particular to Gaussian templates, and may
be applied to any generative model. Next, we remark that the KL divergence
remains invariant by affine transformation, as stated hereafter.

Lemma 1. Let A ∈ RD×D be invertible, let b ∈ RD, and X,Y ∈ RD be two
random vectors, of pdf respectively fX(·) , fY (·). Then,

DKL(fX(·) ∥ fY (·)) = DKL(fA·X+b(·) ∥ fA·Y +b(·)) . (30)

For Gaussian templates, we can therefore reduce the study of the KL diver-
gence of Theorem 7 to the particular case where the true covariance matrix Σ
is the identity using Lemma 1. Furthermore, in the case of gTA with Σ = I, the
following lemma gives an algebraic formulation of the upper bound.

Lemma 2. For a Gaussian distribution with Σ = I, the KL divergence is given
by:

2DKL

(
f (·)

∥∥∥ f̂ (·)
)
= log

(
det
(
Σ̂
))

+Tr
(
Σ̂−1

)
−D (31)

+ (µ̂− µ)
⊺
Σ̂−1 (µ̂− µ) . (32)

We prove Lemma 2 in Section D. We now bound each term of Lemma 2.

Bounding Equation 32. The term (32) is the well known Hotelling’s T 2

statistic, as recalled by the following lemma.

Lemma 3 ([2, Thm. 5.2.2]). For N/Q ≥ D, the quantity

N

QD

N/Q−D

N/Q− 1
· (µ̂− µ)⊺Σ̂−1(µ̂− µ) (33)

follows a Fisher-Snedecor law of parameters (D,N/Q−D).

Accordingly, as the Fisher distribution converges towards a χ2 distribution

with D degrees of freedom, it follows that the quantity (32) belongs to O
(

DQ
N

)
.

Bounding Equation 31. The terms of Equation 31 are upper bounded in the
following theorem, proved in Appendix D.

Theorem 8. Suppose that the leakage follows a Gaussian distribution with Σ =

I, and that
∥∥∥Σ̂ − I

∥∥∥
∗
≤ 1/2. Then the first following inequality always holds

true and there exists a constant C such that for all δ > 0 and for all N ≥
4C2 log

(
2
δ

)
D the second following inequality holds with probability at least 1− δ:

0 ≤ log
(
det
(
Σ̂
))

+Tr
(
Σ̂−1

)
−D ≤ 2C log

(
2

δ

)
QD2

N
. (34)
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Going back to practical considerations, we summarize Theorem 8 by the
following corollary.

Corollary 5. The regret R (gTA) of an attacker instantiating a Gaussian template

attack is upper-bounded by O
(

QD2

N log
(
2
δ

))
.

Proof. Comparing the bounds in Lemma 3 and Theorem 8, we can see that
Hotelling’s T 2 statistic can be neglected.

In other words, to be able to control the estimation error of the MI when
profiling with a gTA, the attacker/evaluator must ensure that the number of
profiling traces scales with the squared dimensionality of the traces times the
number of classes. So far, both parameters D and Q were controlled by the
evaluator for computational complexity reasons, since the run-time and memory
complexity of running a gTA also scales with O

(
QD3

)
. In this perspective,

Corollary 5 shows that beyond the computational complexity, controlling both
parameters is also a matter of profiling complexity.

6.2 The General Bound is Tight

So far, we have emphasized an upper bound of the regret of a gTA attacker. It
is then interesting to assess whether this upper bound is tight or not. Namely,
can we derive tighter bounds of our regret, for any actual multivariate Gaussian
leakage ? We argue that without further assumption regarding the knowledge of
the attacker, we cannot get better bounds. The convergence rate emphasized in
Corollary 5 essentially comes from the error terms due to the estimation of the

empirical covariance matrix, namely log
(
det
(
Σ̂
))

and Tr
(
Σ̂−1

)
−D. Hereafter,

we show that the sum of both error terms scale with Θ
(

QD2

N

)
in expectation.

Theorem 9 ([14, Cor. 1]). For all Σ ∈ RD×D, the log determinant of Σ̂,
estimated for N samples drawn from a multivariate Gaussian distribution of
covariance matrix Σ, satisfies

1√
2QD/N

log

det
(
Σ̂
)

det(Σ)

−QD(D + 1)/(2N)

 L−→
N→∞

N (0, 1) . (35)

Theorem 9 is an analogue of the Central-Limit Theorem for the log-det term

with a Θ
(

QD2

N

)
positive bias. The following term shows that the bias from the

trace of inverse covariance matrix is positive.

Lemma 4. The trace of the inverse empirical covariance matrix is positively
biased:

E
[
Tr
(
Σ̂−1

)
−D

]
≥ 0 . (36)
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Therefore, the latter bias cannot compensate the former one, which proves
the tightness of our bounds in the general case. Despite this negative argument,
it is still possible to obtain faster convergence, provided that the attacker has
more prior knowledge concerning the leakage, and more particularly concerning
the shape of the covariance matrix. We next emphasize two particular cases that
are often considered in side-channel analysis.

6.3 The Covariance Matrix is Diagonal: Naive Bayes.

Assuming a Gaussian multivariate distribution with diagonal covariance matrix
for the true leakage function reduces the covariance estimation to the estimation
of the variance in each dimension. As a result, the convergence is faster.

Theorem 10. Assume that Σ = I and Σ̂ is a diagonal matrix. Then, for all
δ > 0 the following inequality holds:

0 ≤ log
(
det
(
Σ̂
))

+Tr
(
Σ̂−1

)
−D ≤ C log

(
2

δ

)
DQ

N
. (37)

Sketch. Since Σ̂ is diagonal then log det
(
Σ̂
)

exactly coincides with the sum

of the empirical log-variances estimated for each of the D time samples of the

traces. Likewise, Tr
(
Σ̂−1

)
coincides with the sum of inverse empirical variances.

Estimating the error term in Equation 37 can be reduced to estimate the sum
of D error terms, each for one-dimensional covariance matrices. Therefore, using
Equation 34 in the particular case where D = 1, and multiplying by the true
dimensionality D gives the result.

Corollary 6. The regret R (diag-gTA) of an attacker instantiating a Gaussian
template attack knowing that the covariance matrices are all diagonal is upper-

bounded by O
(

QD
N log

(
2
δ

))
.

6.4 Choudary and Kuhn’s Pooled Template Attacks.

For gTA-based side-channel attacks, the bottleneck task is the estimation of the
covariance matrices. In particular, Choudary and Kuhn considered this problem
at Cardis’13 and emphasized that if N/Q ≤ D, the empirical covariance
matrices admit some zero singular values, so they are not invertible [19]. To
circumvent this numerical issue, they proposed to pool all the covariance matrices
into one common matrix for all the classes, leading to the pooled Gaussian
templates attack (p-gTA). This assumption is also known under the name of
homoscedasticity and it leads to mounting a Linear Discriminant Analysis (LDA)
classification under the statistical learning terminology.

Despite its popular success in SCA [10,37,11,12], less has been done regarding
the analysis of this approach, since Choudary and Kuhn’s paper. Yet, using a
p-gTA addresses the necessary condition emphasized by Choudary and Kuhn so

24



that the attack works, but does not ensure any sufficient condition. Therefore,
can we find another explanation to the success of p-gTA? Intuitively, using Q
times more traces to estimate the pooled covariance matrix would induce a

O
(

D2

N

)
bound in Theorem 8, and thereby aO

(
Dmax{D,Q}

N

)
bound in Corollary 5

for the ultimate regret of pooled template attacks.
However, we conjecture that the latter upper bound can be even tightened

to O
(

QD
N

)
, becoming fully linear in the trace dimensionality, despite the D2

matrix coefficients to estimate. Our conjecture is grounded on a proof in the
particular case where Q = 2.

Theorem 11. Let µ0, µ1, Σ be respectively the D-dimensional centroids of the
two classes, and the pooled covariance matrix. Let p-gTA be an attacker outputting
estimates µ̂0, µ̂1, Σ̂ from the profiling phase. Let

β = Σ̂−1 (µ̂1 − µ̂0) −Σ−1 (µ1 − µ0) , (38)

γ = − 1
2

(
µ̂1Σ̂

−1µ̂1 − µ̂0Σ̂
−1µ̂0

)
+
1

2

(
µ1Σ

−1µ1 − µ0Σ
−1µ0

)
. (39)

Then, the regret of p-gTA satisfies

R (p-gTA) ≤
(
γ2 + ∥β∥22 + |γβ1|

)
+O

((
γ2 + ∥β∥22

)3/2)
(40)

where β1 is the first element of β.

Corollary 7. The regret of an attacker instantiating p-gTA for Q = 2, is upper
bounded by O

((
∆2 + 1

)
D+1
N

)
where ∆2 = (µ1 − µ0)

⊺
Σ−1 (µ1 − µ0) denotes the

Mahalanobis distance between the two centroids.

7 Case study and practical use

Let us now illustrate the properties of the TIN and discuss its practical usage in
a side-channel evaluation context. For this purpose, we consider the Hamming
Weight leakage of an 8-bit secret in two simulation settings: the first one (HW)
corresponds to a typical hardware implementation: no masking and high SNR,
while the second one (SW) corresponds to a protected software implementation:
2-shares Boolean masking and high SNR (each share leaking its HammingWeight
independently). In the HW setting, we evaluate the linear models: LR1 and
p-gTA, as well as an MLP (single hidden layer with 100 neurons). In the SW
setting, since the leakage model is non-linear, we evaluate the following models:
LR2, gTA and MLP (with the same meta-parameters as in the HW setting). The
TIN and PI of these models for varying number of training traces are shown in
Figure 5 (the training is repeated for 5 different training sets). Since the true
distribution is known, the MI is also shown.

In the upper part of the figure, we can see that the variance of the TIN is quite
small compared to its bias (w.r.t. the LI). This is a consequence of Theorems 5
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Fig. 5: Convergence of information metrics. In the upper part of the figure, the
dotted lines represent the TI while the solid lines represent the PI.

and 6, and Corollary 5.7 Since moreover the expectation of the TIN is an upper
bound for the LI, the TIN is unlikely to be smaller than the LI, and even if it
were to happen, the gap would be practically insignificant. This leads to our first
practical conclusion:

At any point in the training, the TIN can be considered as an upper bound for
the LI, it also bounds any PI achievable by the considered model.

As a result, training can be stopped before convergence, as soon as the evaluator
is satisfied by the bound provided by the TIN . The non-tightness of this evaluation
method (hereafter named training gap, also known as regret or generalization
error) can be quantified: it is bounded by the difference between the TIN and
the PI. Next, we consider the lower part of Figure 5 which depicts the training
gap. The slope in the logarithmic plot is close to −1, which means that the gap
is inversely proportional to N , as proven in Theorem 6 and Corollary 5.8 We
observe that the slope is close to −1 even when the models do not converge, and
over a wide range of training set sizes (more than two decades). This leads to
our second practical conclusion:

7 The hypothesis p ∈ H is not satisfied for the gTA hence Corollary 5 does not apply,
but its conclusion seems to nevertheless hold in our case-study.

8 For the gTA and LR2, p ∈ H does not hold, but convergence is still in 1/N .
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The training gap is inversely proportional to N . Therefore, after
a small and fast training, the evaluator can extrapolate the number

of traces required to reach a target training gap.

We finally remark that the MLP model has a higher LI than the LR2 and
gTA models, which means that it is able to better model the true distribution.
This increased versatility comes however at a cost: training it requires at least
two orders of magnitude more traces than the simpler models (we note that is
roughly matches the bounds given in Table 1).

8 Concluding Remarks

This paper provides new information theoretic metrics and bounds together
with a study of the convergence rates for practically-relevant profiled attacks.
Besides their impact for guiding side-channel security evaluators, these results
highlight the connections and differences between statistical learning theory
and side-channel analysis. For example, in order to obtain convergence rates,
we observed that the evaluator’s goal, namely maximizing the PI in order to
estimate the highest lower bound onMI, could be rephrased as a machine learning
problem, using information theoretic metrics as loss functions. Accordingly, the
TIN metric is nothing but the empirical risk studied in learning theory, and
the TIN -maximizer in the profiling SCA view coincides with the Empirical Risk
Minimizer (ERM), one of the most studied algorithms in machine learning. Yet,
and somewhat surprisingly, the IT metrics that are most relevant for side-channel
security evaluations are less investigated optimization goals than security metrics
(like the accuracy) in the machine learning literature. So our results put forward
both the interest of leveraging the broad scope of theoretical results established
in statistical learning theory over the past few years, and the need to adapt them
to needs that are somewhat specific to security evaluations.
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A Proofs of Section 3

Proof of Theorem 1. It is worth reminding that the left inequality of Equation 4
has already been shown by Bronchain et al. [9, Thm. 5]. Nevertheless, we provide
here a simpler alternative proof, by taking inspiration from the work of Pa-
ninski [45, Prop. 1] with slight modifications adapted to our context, thereby
showing the right inequality. First, we note that the eHI can be restated as
follows:

eHIN (Y ;L) = MI(Y ;L) (41)

+
∑
y,l

(ẽN (y, l)− p(y, l)) log2(p(y | l)) (42)

+
∑
l

ẽN (l)DKL(ẽN (·|l) ∥ p(· | l)) , (43)

where DKL(· ∥ ·) denotes the KL divergence. This re-statement is of great interest,
since the first sum is unbiased – since ẽN (y, l) admits p(y, l) as expected value
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– whereas the second sum is positively biased – because each of its term are
positive thanks to the KL divergence. Hence the first inequality of Equation 4.

It now remains to upper bound the second sum in expectation in order to get
the upper bound on the bias of eHI. To this end, as suggested by Paninski [45,
Proposition 1], we use the fact that

0 ≤ Ẽ
eN

[DKL(ẽN (·|l) ∥ p(· | l))] ≤ log

(
1 +

Q− 1

N

)
. (44)

Finally, we have

E [eHIN −MI] =
∑
l

Ẽ
eN

[ẽN (l) · DKL(ẽN (·|l) ∥ p(· | l))]

≤
∑
l

Ẽ
eN

[DKL(ẽN (·|l) ∥ p(· | l))]

≤ |L| log
(
1 +

Q− 1

N

)
≤ |L| Q− 1

N
.

We conclude the proof by observing that |L| is the number of bins. In addition,
Equation 5 is a direct consequence of [45, Thm. 5].

Proof of Theorem 2. Notice that

eHIN = H(Y ) + Ĥ(L)− Ĥ(Y,L) , (45)

where Ĥ(L) = −
∑

l∈L ẽN (l) log(ẽN (l)), and likewise for Ĥ(Y,L). Subtracting
the expected value of the eHI, we get∣∣∣eHIN − E [eHIN ]

∣∣∣ ≤ ∣∣∣Ĥ(L)− E
[
Ĥ(L)

]∣∣∣+ ∣∣∣Ĥ(Y,L)− E
[
Ĥ(Y,L)

]∣∣∣ . (46)

Now, using McDiarmid’s inequality [4, Thm. 1], we have that for all ϵ > 0

Pr
(∣∣∣Ĥ(L)− E

[
Ĥ(L)

]∣∣∣ > ϵ

2

)
≤ 2 exp

(
− ϵ2N

8 log2(N)
2

)
. (47)

Likewise, the very same inequality holds to upper bound
∣∣∣Ĥ(Y,L)− E

[
Ĥ(Y,L)

]∣∣∣.
Hence, for all ϵ > 0

Pr
(∣∣∣eHIN − E [eHIN ]

∣∣∣ > ϵ
)
≤ 4 exp

(
− ϵ2N

8 log2(N)
2

)
. (48)

Denoting by δ the right hand-side of Equation 48, we get the main result.
Finally, the property ∣∣∣eHIN − E [eHIN ]

∣∣∣ ∈ Θ

(
1√
N

)
is proven in [4] (Section 4.1).
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On the Effect of Discretization. It is worth emphasizing that the latter
analysis has been done assuming discrete probability distributions for the leakage.
Thereby, one may wonder whether those results extend to the case where the
leakage is modeled by continuous probability distributions. At first sight, the
latter result would become useless, as it would imply the oscilloscope resolution
ω to tend towards infinity. Unfortunately, it is hardly likely to obtain tight
convergence bounds in this case, because of the so-called curse of dimensionality,
which – informally – states that the convergence rate of non-parametric density
estimation methods would slow down at least exponentially with D [57,58].
Moreover, with nonparametric density estimation methods, there is a risk that,
depending on the choice of the kernel, the HI no longer upper-bound the MI.

B Proofs of Section 5.3

In this section, we prove Theorem 5. The proof is done in several steps that we
briefly describe hereafter before diving into the details.

1. We bound the gap between TIN (Y ;L; m̂N ) and PI(Y ;L; m̂N ) with a uniform
bound, i.e., not specific to any m ∈ H. We are now reduced to show that
the gap uniformly converges towards 0.

2. We invoke a theorem stating that the uniform convergence rate is upper
bounded by a quantity depending on the so-called covering numbers that we
will define.

3. We will then introduce some properties of covering numbers in order to
reduce the problem to bounding the covering number of the different Fi.

4. The covering numbers can actually be bounded by the pseudo-dimension
introduced in Section 5.2.

5. We now have all the ingredients to state the theorem and its corollary.

B.1 Uniform Convergence

Definition 9 (Uniform Convergence). Let H be a hypothesis class. We say
that H has the uniform convergence property if for any probability distribution
over (Y,L), and for any ϵ, δ > 0, the following inequality is satisfied:

Pr

(
sup
m∈H

∣∣∆m
ẽN −PI(Y ;L;m)

∣∣ ≥ ϵ

)
≤ δ . (49)

Theorem 12 (Uniform Convergence implies Learnability). With the same
notations as in Definition 9, the inequality

LI(Y ;L;H)− PI(Y ;L; m̂N ) ≤ 2 sup
m∈H

∣∣PI(Y ;L;m)−∆m
ẽN

∣∣ (50)

is satisfied.
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Proof. Let m ∈ H be fixed, and let us denote m̂N = AH(ẽN ). By Definition 5,

we have TIN (Y ;L;AH) = ∆m̂N

ẽN
≥ ∆m

ẽN , therefore

∆m
p −∆m̂N

p =
(
∆m

p −∆m̂N

ẽN

)
+
(
∆m̂N

ẽN
−∆m̂N

p

)
≤
(
∆m

p −∆m
ẽN

)
+
(
∆m̂N

ẽN
−∆m̂N

p

)
≤
∣∣∆m

p −∆m
ẽN

∣∣+ ∣∣∣∆m̂N
p −∆m̂N

ẽN

∣∣∣
≤ 2 sup

m′∈H

∣∣∣∆m′

p −∆m′

ẽN

∣∣∣ .

Since the right hand-side does not depend on the fixed m, taking the supremum
of the left hand side with respect to m, concludes the proof.

In other words, it suffices to prove the uniform convergence for our hypothesis
class H to show that the PI converges towards its supremum. Interestingly, the
uniform convergence of H is also a necessary condition [1, Thm. 4.2].9

Corollary 8. Let ϵ = supm∈H
∣∣PI(Y ;L;m)−∆m

ẽN

∣∣, the following inequalities
hold

− 3ϵ ≤ TIN (Y ;L;AH)− LI(Y ;L;H) ≤ ϵ (51)

Proof. We first prove the first inequality:

LI(Y ;L;H)− TIN (Y ;L;AH) = LI(Y ;L;H)− PI(Y ;L; m̂N )

+PI(Y ;L; m̂N )− TIN (Y ;L;AH)

≤ 2 sup
m∈H

∣∣PI(Y ;L;m)−∆m
ẽN

∣∣
+ sup

m∈H

∣∣PI(Y ;L;m)−∆m
ẽN

∣∣
where the bound on the first term comes from Theorem 12 and the bound on
the second term follows from the definition of TIN (Y ;L;AH).

Next, we prove the second inequality

TIN (Y ;L;AH)− LI(Y ;L;H) = (TIN (Y ;L;AH)− PI(Y ;L; m̂N ))

− (LI(Y ;L;H)− PI(Y ;L; m̂N ))

≤ sup
m∈H

∣∣PI(Y ;L;m)−∆m
ẽN

∣∣− 0

where the bound on the second term follows from the definition of the LI.

9 For more general learning problem, the uniform convergence may be not necessary
(see counter-example in [60, Sec. 3.12]). Nevertheless, a relaxed form of uniform
convergence, called one-sided convergence, becomes the necessary and sufficient
condition for a learning algorithm to be consistent [60, Thm. 3.2].
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B.2 Bounding Uniform Convergence with Covering Numbers

We now turn to emphasize uniform bounds, which, thanks to Corollary 8, will
enable us to draw bounds on the gap between TIN and LI. The main idea of the
results that we will present in this section is to reduce the uniform convergence
for infinite hypothesis classes to the uniform convergence for finite hypothesis
classes, provided further assumptions. To this end, we need to introduce the
concept of covering numbers.

Definition 10 (Covering of a set [52, Def. 27.1]). Let A be a normed vector
space with respect to the ∥·∥1 norm, and ϵ > 0. We say that A is ϵ-covered by
a set A′, with respect to the ∥·∥1 norm, if for all a ∈ A, there exists a vector
a′ ∈ A′ such that ∥a − a′∥1 ≤ ϵ. We define by N1(ϵ,A) the cardinality of the
smallest A′ that ϵ-covers A.

In a nutshell, an ϵ-covering of a set A can be seen as a representative finite
sample of A, in the sense that any point from A is ϵ-close from at least one
element from the covering. Therefore, any analysis that is done over the covering
is likely to still hold (up to an error margin depending on at most ϵ) over the
whole set A.

Beyond metric spaces, covering numbers can also be defined for functional
spaces, such as the ones we consider here. The following definition formally states
this idea.

Definition 11 (Covering number of a hypothesis class [3, Sec. 10.4]).
Let H be a set of functions from an input space L to a subset of RQ. Given a
sequence SN = (l1, . . . , lN ) ∈ LN of input data, we let HSN

be the following set:

HSN
=
{
(f(l1), . . . , f(lN )) ∈ RN×Q : f ∈ H

}
For a positive number ϵ, we define the covering number of H for accuracy ϵ and
number of data N as the quantity

N1(ϵ,H, N) = max
SN∈LN

N1(ϵ,HSN
) . (52)

Covering numbers are crucial in statistical learning theory. This is formally
stated by Theorem 13 hereafter.

Theorem 13 ([29, Thm. 3]). Let H be a permissible10 hypothesis class of
functions from L to P(Y), such that for all m ∈ H, and y, l ∈ Y × L, 0 ≤
− log(m[y]) ≤ B. Assume N ≥ 1. Suppose that SN is generated by N independent
random draws according to any joint probability distribution on Y × L. Then

Pr

(
sup
m∈H

∣∣PI(Y ;L;m)−∆m
ẽN

∣∣ > ϵ

)
≤ 2N1(ϵ, log ◦H, 2N) e−

ϵ2N
64B2 , (53)

where log ◦H denotes the set of functions {y, l 7→ − log(m[y]) : m ∈ H}.
10 A very loose condition, see [29, Footnote 11].
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It now remains to see when Theorem 13 provides non-trivial bounds. Indeed,
assuming that (log ◦H)SN

is a subset of [0, B]N , for some B > 0, then the

covering number N1(ϵ, log ◦H, N) can itself be trivially bounded by
(
BN
ϵ

)N
.

Unfortunately, in that case, the right hand-side of Equation 53 tends to infinity
with N → ∞, if ϵ is small enough. In other words, without further assumption,
Theorem 13 is a rather tautological result, and further conditions on H must be
set for sound bounds.

Hopefully, we will see in Section B.4 that for some classes of functions, we
can get tighter bounds for covering numbers, yielding non-trivial worst-case of
uniform convergence rates. Before going further through our reasoning, we need
a few technical lemmas concerning covering numbers. Those technical results
will be helpful to derive the aimed bounds.

B.3 A Few Properties about Covering Numbers

In this section, we introduce some technical lemmas that will be helpful for
bounding the covering numbers. We start with the contraction lemma that
leverages the Lipschitz property of a function.

Lemma 5 (Contraction). Let A,B be two sets, and ϕ : A → B be a ρ-Lipschitz
function for a given norm ∥·∥ respectively induced on A,B. That is, for a, b ∈ A,
the following inequality holds:

∥ϕ(a)− ϕ(b)∥B ≤ ρ∥a− b∥A . (54)

Then, if N denotes the covering number with respect to the considered norm, the
inequality

N1(ρϵ, ϕ ◦ A) ≤ N1(ϵ,A) (55)

is valid.

Lemma 5 is inspired by the proof given by Shalev-Shwartz and Ben-David [52,
Lemma 27.2] who showed the result for the ∥·∥2 norm. We observe however that
the result can be generalized to any norm.

Proof. By definition, there exists a minimal ϵ-covering of A of size N1(ϵ,A).
Then, for any a ∈ A, there exists a′ from the covering A′ such that the following
inequality holds:

∥a− a′∥ ≤ ϵ . (56)

Define B = ϕ ◦ A and B′ = ϕ ◦ A′. It follows from the Lipschitz property of ϕ
that:

∥ϕ(a)− ϕ(a′)∥ ≤ ρ∥a− a′∥ ≤ ρϵ . (57)

Hence, B′ is a (ρϵ)-cover of B.

Corollary 9 (Contraction). Using the same notations as in Lemma 5, if ϕ
is a ρ-Lipschitz function (with respect to a given norm), then for any set of
functions F , one can bound the covering numbers of ϕ ◦ F as follows:

N1(ρϵ, ϕ ◦ F , N) ≤ N1(ϵ,F , N) . (58)

36



Proof. Recalling thatN1(ϵ,F , N) is by definition the maximum value ofN1(ϵ,A)
over all the sets A of size N in the image set of F , the result straightforwardly
follows from Lemma 5.

Informally, Corollary 9 tells us that the smoother the function ϕ – in the
sense that the lower its Lipschitz constant ρ – the less are needed to get an
ϵ-cover of the image set by considering the image of the ϵ-cover of the input
space. Therefore, it is useful to reduce the covering numbers computation of an
hypothesis class if the latter one is a set of composed smooth functions. The
direct application of Corollary 9 is to bound the covering number of log ◦H with
the covering number of FQ defined as the set {h : L → RQ : σ ◦h ∈ H}, i.e.,
such that σ ◦FQ = H. Let us first observe that the Lipschitz constant of the
composed function log ◦σ is bounded by the square root of the number of its
entries, as stated by Lemma 6.

Lemma 6. For all 1 ≤ i ≤ Q, the function x ∈ RQ 7→ log(σ(x)i) is
√
Q-

Lipschitz in the ∥·∥1 and ∥·∥2 norms.

Proof. Denote by ϕ the considered function. Since ∥x∥2 ≤ ∥x∥1, it suffices to
show that ϕ is

√
Q-Lipschitz in the ∥·∥2 norm. Moreover, it is known that the

Lipschitz constant in the latter norm is bounded by the supremum over the range
of x of the ∥·∥2 norm of the gradient of ϕ. For 1 ≤ j ≤ Q, the partial derivative
of ϕ with respect to xj is δi,j −σ(x)j , where δi,j denotes the Kronecker symbol.
Since both δi,j and σ(x)j are bounded in [0, 1], it implies that the Lipschitz

constant is bounded by
√
Q.

Corollary 10. For all ϵ > 0, and for all N ≥ 1, the following inequality holds:11

N1(ϵ, log ◦H, N) ≤ N1

(
ϵ√
Q
,FQ, N

)
. (59)

Thanks to Corollary 10, we are now reduced to bound the covering number
of the set FQ, which we now address. We start by defining the set of functions
FQ previously introduced as a free product of Q elementary sets of functions.

Definition 12 (Free product). Let A = A1 × . . . × AQ be the Cartesian
product of Q metric spaces (for the L1 distance). Let Fi be a family of functions
from L into Ai. The free product of the Fi is the class of functions

FQ = {f = (f1, . . . , fQ) : fi ∈ F} ,

where f = (f1, . . . , fQ) : L → A is the function defined by

(f1, . . . , fQ)(l) =

f1(l)
...

fQ(l)

 .

11 A similar result can be found in [3, Lemma 17.6]
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We may now properly bound the covering number of FQ in terms of covering
numbers of the Fi, thanks to Lemma 7.

Lemma 7 ([29, Lemma 7]). If F1, . . . ,FQ are defined as above, then

N1

(
ϵ,FQ, N

)
≤

k∏
i=1

N1

(
ϵ

Q
,Fi, N

)
. (60)

Proof. For each 1 ≤ i ≤ Q, let Ui be an ϵ
Q -cover for Fi. Let

U = {(f1, . . . , fQ) : fi ∈ Ui, 1 ≤ i ≤ Q} . (61)

Let us show that U is an ϵ-cover for F . That is, let g = (g1, . . . , gQ) ∈ H, and let
us show that there exists f ∈ U such that ∥g− f∥1 ≤ ϵ. For all 1 ≤ i ≤ Q, since
Ui is an

ϵ
Q -cover of Fi, we know that there exists fi ∈ Ui such that ∥gi−fi∥1 ≤ ϵ

Q .

Let us consider then h = (h1, . . . , hk). Notice that

∥g − f∥1 =

Q∑
i=1

∥gi − fi∥1 ≤ Q · ϵ

Q
≤ ϵ . (62)

Hence, U is an ϵ-cover for FQ. It now remains to notice that the cardinality of
U is the product of cardinalities for Ui, 1 ≤ i ≤ Q.

B.4 Bounding the Covering Numbers of F with Pdim(F)

We finally come to the link between covering numbers and pseudo-dimensions,
thanks to the following results.

Theorem 14 ([30, Thm. 1]). Let F be a non-empty set of real functions
mapping from a domain L to the real interval [0, 1] and suppose that F has
finite pseudo-dimension Pdim(F). Then

N1(ϵ,F , N) ≤ e(Pdim(F) + 1)

(
2e

ϵ

)Pdim(F)

(63)

for all ϵ > 0.

Corollary 11. Let F be a non-empty set of real functions mapping from a
domain L to the real interval [0, B] and suppose that F has finite pseudo-
dimension Pdim(F). Then

N1(ϵ,F , N) ≤ e(Pdim(F) + 1)

(
2eB

ϵ

)Pdim(F)

(64)

for all ϵ > 0.

Proof. Straightforward, by applying Corollary 9 to F and ϕ ◦ F , where ϕ(x) =
1
Bx.
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Comparing with the trivial bound
(
BN
ϵ

)N
discussed before, Corollary 11

provides a much tighter bound since it no longer depends on the amount N of
profiling data. This noticeable property is the cornerstone of statistical learning
theory, in the sense that it makes the results from Theorem 13 much more useful
now.

B.5 Putting all Together

Now we have characterized every element in the upper bound of Theorem 13 in
terms of pseudo-dimension of F , we may gather all those results to come back
to a concrete bound. Let us denote P = Pr

(
supm∈H

∣∣PI(Y ;L;m)−∆m
ẽN

∣∣ > ϵ
)
.

Applying Theorem 13, it comes that

P · e
ϵ2N
64B2

(53)

≤ 2N1(2ϵ, log ◦H, 2N)

(59)

≤ 2N1

(
2

ϵ√
Q
,FQ, 2N

)
(60)

≤ 2N1

(
2

ϵ

Q3/2
,F , 2N

)Q

(64)

≤ 2

(
(ePdim(F) + 1)

(
eBQ3/2

ϵ

)Pdim(F)
)Q

.

Let

α =
N

64B2

β =
1

2
Pdim(F)Q

γ = Pdim(F)Q log
(
eBQ3/2

)
+Q log(ePdim(F) + 1) + log(2) ,

the latter inequality can be rephrased as

P ≤ exp
(
−αϵ2 − β log

(
ϵ2
)
+ γ
)

. (65)

Let δ > 0. We would like to find a sufficient condition such that P ≤ δ. It suffices
to find a sufficient condition such that

αϵ2 + β log
(
ϵ2
)
≥ γ + log

(
1

δ

)
. (66)

Let

ϵ20 = max

(
γ + log

(
1
δ

)
α

, 0

)

ϵ2 = ϵ20 +max

(
−β

α
log
(
ϵ20
)
, 0

)
,
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we shall show that Equation 66 is satisfied. Using the above definitions, we have

ϵ2 ≥ ϵ20 −
β

α
log
(
ϵ20
)
≥

γ + log
(
1
δ

)
α

− β

α
log
(
ϵ20
)

.

Moreover, since ϵ2 ≥ ϵ20, it holds that β
α log

(
ϵ2
)
≥ β

α log
(
ϵ20
)
. Finally, summing

the two above equations gives Equation 66.
It now remains to replace the bound B of the loss function by a more practical

bound on the output range of each elementary class F . This is stated by the
following lemma.

Lemma 8. Let x ∈ RQ such that for all i, |xi| ≤ V . Then,

0 ≤ − log(σ(x)) ≤ 2V + log(Q) . (67)

Proof.

− log(σ(x)) = log

1 +
∑
j ̸=i

exj−xi

 ≤ log
(
1 + (Q− 1) e2V

)
≤ log

(
Qe2V

)
= 2V + log(Q) .

This result allows us to replace B with 2V + log(Q) in the definitions of α
and β, which, along with the hypothesis V ≥ 1

2 , allows us to observe that γ ≥ 1,
hence we can remove the max in the definition of ϵ0: ϵ

2
0 =

(
γ + log

(
1
δ

))
/α.

Finally, taking the complement probability in Equation 65, and expliciting
the expression of ϵ gives Theorem 5.

C Proofs of fast rate

We introduce hereafter a few technical lemmas that will be useful to derive the
proofs.

Lemma 9. Let l ∈ L be such that ∥l∥2 ≤ R. Let Θ be a parameter vector such
that mΘ ∈ H, where H denotes the hypothesis class of an LR2 attacker. Then,

for all y ∈ Y and for all l ∈ L, the mapping Θ 7→ log
(
σ(mΘ(l))y

)
is ρ-Lipschitz

for the norm ∥·∥2 with ρ ≤
√
Q(R2 + 1).

Proof. Using Lemma 6, we get that for all (y, l),

∣∣∣log(σ(mΘ(l))y

)
− log

(
σ(mΘ′(l))y

)∣∣∣ ≤√Q

√√√√ Q∑
i=1

(mΘ(l)i −mΘ′(l)i)
2
. (68)
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Since m is an LR2 model, mΘ(l)i = l′⊺Ail
′ where l′ = (l, 1). Therefore, using

Cauchy-Schwartz’ inequality, we get

|mΘ(l)i −mΘ′(l)i| = |l′⊺(Ai −A′
i)l

′|

≤ ∥l′∥22 ∥Ai −A′
i∥∗

≤ (R2 + 1) ∥Ai −A′
i∥F

= (R2 + 1) ∥θi − θ′
i∥2

Injecting this bound into Equation 68 gives the desired result.

Lemma 10. With the same notations has before, if now we are considering an
LR1 attacker, then the resulting mapping becomes ρ-Lipschitz with

ρ ≤
√

Q(R2 + 1) .

Proof. We now have mΘ(l)i = Bil
′ (still with l′ = (l, 1)), and thus

|mΘ(l)i −mΘ′(l)i| ≤ ∥l′∥2 ∥Bi −B′
i∥2 ≤

√
R2 + 1 ∥θi − θ′

i∥2 .

Injecting this bound into Equation 68 concludes the proof.

Restatement of Theorem 6. The original version of Mehta’s theorem [42, Thm. 1]
required the loss function to be exp-concave,12 instead of the true leakage model
p belonging to H. Nevertheless, Mehta’s proof relies on another more general
assumption, the so-called η-central condition. This central condition is implied
either by assuming the loss function to be η-exp-concave, or in the particular
case where the loss function is the log-loss, by assuming that the true leakage
distribution p belongs to H [59, Example 2.2]. In the latter case, the parameter
η is set to 1. Beside, the supremum of PI can be replaced by MI, since we assume
p ∈ H. The remaining of Mehta’s proof remains unchanged.

Proof of Corollary 2. This is a direct application of Theorem 6, by properly
setting the parameters of the theorem. First, observe that H⊺ ⊂ R(D+1)×Q so
P = (D + 1)Q, and taking T = 2S

√
Q satisfies supΘ′,Θ ∥Θ′ −Θ∥2 ≤ T .

Next, the condition
∣∣∣log(m(y|l)

p(y|l)

)∣∣∣ ≤ B is satisfied if both log(m(y | l)) −
log(p(y | l)) ≤ B and log(p(y | l)) − log(m(y | l)) ≤ B. Since p(y | l) ≤ 1 and
m(y | l) ≤ 1 the condition reduces to − log(p(y | l)) ≤ B and − log(m(y | l)) ≤
B. Furthermore, p ∈ H, it only remains to find B such that − log(m(y | l)) ≤ B
for all m ∈ H. Using Lemma 8 and the observation that |Bil

′| ≤
√
R2 + 1S

(where l′ = (l, 1)), we get that B = 2
√
R2 + 1S + log(Q) satisfies the condition.

Finally, using Lemma 10, we get that the Lipschitz constant L is upper
bounded by

√
Q(R2 + 1). Putting all together into Equation 25 gives the desired

result.

12 A function φ is said to be η-exp-concave if the mapping z 7→ e−ηf(z) is concave.
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Proof of Corollary 3. This is a direct application of Theorem 6, by properly
setting the parameters of the theorem. As previously, we have P = (D + 1)Q
and T = 2S

√
Q. Furthermore, using the same reasoning as before, but using

the bound |Bil
′| ≤ (R2 + 1)S, we get B = 2(R2 + 1)S + log(Q). Finally, using

Lemma 9, we get that L ≤
√
Q(R2 + 1). Putting all together into Equation 25

gives the desired result.

Proof of Corollary 4. This is a direct application of Theorem 6, by properly
setting the parameters of the theorem to fit the different assumptions.

First, recal from Section 5.1 that our class of models is composed of Q MLPs,
each being made of W real parameters by assumption. Hence, H⊺ ⊂ RW×Q so
P = WQ.

Second, we bound supθ,θ′ ∥θ′ − θ∥. Notice that for each MLP ϕy plugged to
the entries of the softmax, ∥θi∥ ≤ LS (we use l2 norms in this proof), so using
the triangle inequality, we get that for all θ,θ′,

∥θ′ − θ∥ ≤ T = 2SQL . (69)

Third, we show the Lipschitzness of MLPs. Using Lemma 6, we get that for
all (y, l),

∣∣∣log(σ(mθ(l))y

)
− log

(
σ(mθ′(l))y

)∣∣∣ ≤√Q

√√√√ Q∑
i=1

(mθ(l)i −mθ′(l)i)
2
. (70)

We are now reduced to bound the Lipschitz constant of each entry model mθ(l)i
of the softmax. Then, we may notice that since the ReLU activation function is

1-Lipschitz, each layer ϕ
(
x(j),Θ

(j)
i

)
is
∥∥x(j)

∥∥-Lipschitz (resp. ∥∥∥Θ(j)
i

∥∥∥-Lipschitz)
in its input Θ

(j)
i (resp.

∥∥x(j)
∥∥), hence∥∥∥ϕ(x(j),Θ

(j)
i

)
− ϕ

(
x′(j),Θ

′(j)
i

)∥∥∥ ≤
∥∥∥Θ′(j)

i

∥∥∥∥∥∥x(j) − x′(j)
∥∥∥+∥∥∥x(j)

∥∥∥∥∥∥Θ(j)
i −Θ

′(j)
i

∥∥∥ .
(71)

Let us now prove by induction that

∥∥∥x(j) − x′(j)
∥∥∥ ≤ RSj

j∑
k=0

∥∥∥Θ(k)
i −Θ

′(k)
i

∥∥∥ , (72)

where x(j+1) = ϕ
(
x(j),Θ

(j)
i

)
, x′(j+1) = ϕ

(
x′(j),Θ

′(j)
i

)
and x(0) = x′(0) = l.

The base case j = 1 is a direct consequence of Equation 71, since ∥l∥ ≤ R and

S ≥ 1. For j ̸= 1, we observe that
∥∥x(j+1)

∥∥ ≤
∥∥∥Θ(j)

i

∥∥∥∥∥x(j)
∥∥ ≤ Sj ∥l∥ ≤ SjR.

Then, injecting this observation in the second term of Equation 71 and using the
induction hypothesis in the first term gives the desired result. Finally, we apply
Equation 72 to the full MLP, giving

|mθ(l)i −mθ′(l)i| ≤ R · SL ∥θ′
i − θi∥ . (73)
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Injecting the right hand-side of Equation 73 into the one of Equation 70, we get
that the Lipschitz constant is upper bounded by U =

√
QRSL. Finally, since

p ∈ H⊺, we may combine Equation 69, Equation 70, Equation 73 to get that∣∣∣log(m(y|l)
p(y|l)

)∣∣∣ ≤ B = 2Q3/2RLSL+1. Putting all together into Equation 25 gives

the desired result.

D Proofs of Section 6

Proof of Theorem 7. By definition, the MI is expressed computed as follows:

MI(Y ;L) = H(Y ) +
1

Q

∑
y

E
L∼fy

[
log

(
fy(L)∑
y′ fy′(L)

)]
.

Likewise, the PI is similar to the MI, by turning true pdfs into estimated pdfs
inside the log:

PI(Y ;L; gTA) = H(Y ) +
1

Q

∑
y

E
L∼fy

[
log

(
f̂y(L)∑
y′ f̂y′(L)

)]
.

So the regret is expessed as follows:

R (gTA) =
1

Q

∑
y

E
L∼fy

[
log

(
fy(L)

f̂y(L)

)
− log

(∑
y′ fy′(L)∑
y′ f̂y′(L)

)]
.

Remark that

E
L∼fy

[
log

(
fy(L)

f̂y(L)

)]
= DKL

(
fy(·)

∥∥∥ f̂y(·)
)

and that by linearity of the expectation,

1

Q

∑
y

E
L∼fy

[
log

(∑
y′ fy′(L)∑
y′ f̂y′(L)

)]
= E

L∼ 1
Q

∑
y fy

[
log

(∑
y′ fy′(L)∑
y′ f̂y′(L)

)]

= DKL

(∑
y fy(·)
Q

∥∥∥∥∥
∑

y f̂y(·)
Q

)

Thus, we end up with the following equality

R (gTA) =
1

Q

∑
y

DKL

(
fy(·)

∥∥∥ f̂y(·)
)
− DKL

(∑
y fy(·)
Q

∥∥∥∥∥
∑

y f̂y(·)
Q

)
.

Since the KL divergence is always non-negative, we get the desired result.
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Proof of Lemma 1. Let X′ = AX + b, then the pdf of X′ is

fX′(x) = |A|−1 fX
(
A−1x− b

)
.

By applying the change of variable x′ = Ax+b in the definition of KL divergence,
it follows that

DKL(fX(·) ∥ fY (·)) = E
X∼|A|−1 fX(A−1(·−b))

[
log

(
|A|−1 fX

(
A−1(X − b)

)
|A|−1 fY (A−1(X − b))

)]

= E
X′∼fX′

[
log

(
fX′(X′)

fY ′(X′)

)]
Hence, we identify the right hand-side of Equation 30.

Proof of Lemma 2. By definition,

DKL

(
f (·)

∥∥∥ f̂ (·)
)
= E

L∼f

[
log

(
f (L)

f̂ (L)

)]
.

Substituting both f (·) and f̂ (·) with their respective density, it follows that

DKL

(
f (·)

∥∥∥ f̂ (·)
)
=

1

2
log

det
(
Σ̂
)

det(Σ)


+

1

2
E

L∼f

[
(L− µ̂)

⊺
Σ̂−1 (L− µ̂)− (L− µ)

⊺
Σ−1 (L− µ)

]
Using [47, Lemma 8.2.2], it follows that the second term inside the brackets has
D as expected value, whereas the first term inside the brackets has

(µ− µ̂)
⊺
Σ̂−1 (µ− µ̂) + Tr

(
Σ̂−1Σ

)
as expected value. Hence the result.

D.1 Proof of Theorem 8

This paragraph is devoted to prove Theorem 8. We begin by recalling a few
technical lemmas useful for the proofs in this section.

Lemma 11. Let A,B ∈ RD×D be symmetric matrices with real coefficients.
Then,

– det(AB) = det(A) det(B),

– det(A) =
∏D

i=1 λi, where λ1, . . . , λD are its eigenvalues,
– Tr(AB) = Tr(BA),

– Tr(A) =
∑D

i=1 λi,
– If λ is an eigenvalue of A, then 1

λ is an eigenvalue of A−1.
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Lemma 12. For all x ∈ (−1, 1), we have

0 ≤ x− log(1 + x) ≤ x2

1 + x
. (74)

Proof. It is widely known that x
1+x ≤ log(1 + x) ≤ x. Multiplying by −1 and

adding x, we get

0 ≤ x− log(1 + x) ≤ x

(
1− 1

1 + x

)
=

x2

1 + x
.

We are now ready to demonstrate the desired result. The whole proof comes
into two parts. First, in Lemma 13 we upper bound the quantity of interest in
terms of spectral norms of the estimation error of the covariance matrix. Then,
we invoke Theorem 15 to upper bound the latter spectral norm in terms of the
parameters N/Q,D of our problem.

Lemma 13. Let Σ̂ be an empirical covariance matrix estimated from samples
following the D-dimensional normal distribution with zero mean and the identity

I as a covariance matrix. Then, if
∥∥∥Σ̂ − I

∥∥∥
∗
≤ 1/2,

0 ≤ log
(
det
(
Σ̂
))

+Tr
(
Σ̂−1

)
−D ≤ 2D

∥∥∥Σ̂ − I
∥∥∥2
∗

.

Proof. First, we rephrase the first two terms of the KL divergence in terms of
eigenvalues λ1 ≥ . . . ≥ λD of Σ̂. Since Σ̂ is a positive symmetric matrix, we
know that λD is non-negative. Moreover, by assuming that N/Q ≥ D, we know
that λD > 0 with high probability. Furthermore,

log
(
det
(
Σ̂
))

= log

(
D∏
i=1

λi

)
=

D∑
i=1

log(λi) .

Besides, using Lemma 11,

Tr
(
Σ̂−1

)
−D =

D∑
i=1

(
1

λi
− 1

)
.

Hence, we may rephrase the quantity to upper bound as follows:

log
(
det
(
Σ̂
))

+Tr
(
Σ̂−1

)
−D =

D∑
i=1

(
1

λi
− 1− log

(
1

λi

))
Using Lemma 12, the right hand-side of the latter equation is upper-bounded as
follows:

log
(
det
(
Σ̂
))

+Tr
(
Σ̂−1

)
−D ≤

D∑
i=1

λi

(
1

λi
− 1

)2

=

D∑
i=1

(λi − 1)2

λi
. (75)
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We then remark that if λi is an eigenvalue of Σ̂, then λi − 1 is an eigenvalue of
Σ̂ − I, where I ∈ RD×D denotes the identity matrix. As a consequence, for all
1 ≤ i ≤ D,

|λi − 1| ≤ max
i

|λi − 1| =
∥∥∥Σ̂ − I

∥∥∥
∗

.

Therefore, since by assumption
∥∥∥Σ̂ − I

∥∥∥
∗
≤ 1/2 we have for all i

0 ≤ (λi − 1)2

λi
≤

∥∥∥Σ̂ − I
∥∥∥2
∗

1−
∥∥∥Σ̂ − I

∥∥∥
∗

≤ 2
∥∥∥Σ̂ − I

∥∥∥2
∗

. (76)

Finally, combining Equation 76 with Equation 75 gives the result.

We are now reduced to bound
∥∥∥Σ̂ − I

∥∥∥
∗
, which is the purpose of the following

theorem.

Theorem 15 (Prop. 2.1 [61]). For all Σ, there exists a constant C such that
for all δ > 0, the inequality

∥∥∥Σ̂ −Σ
∥∥∥
∗
≤ C ∥Σ∥∗ ·

√
log

(
2

δ

)
D

N
(77)

holds with probability at least 1− δ.

By combining Theorem 15 and Lemma 13, we conclude the proof of Theorem 8.

D.2 Proof of Tightness

Proof of Lemma 4. For any symmetric positive matrix such as Σ̂, the mapping

Σ̂ 7→ Tr
(
Σ̂−1

)
is convex [7, Ex. 3.18]. Using Jensen’s inequality, we get

E
[
Tr
(
Σ̂−1

)]
≥ Tr

(
E
[
Σ̂
]−1
)

≥ Tr(ID) = D .

Hence, the left hand-side of Equation 36 is non-negative.

D.3 Proof for the p-gTA

For two classes, we may use a change of variable such that the true covariance
matrix is the identity, and the two true centroids are situated respectively at
∓∆

2 e1 (where e1 = (1, 0, . . . , 0)). In that case, β = Σ̂−1(µ̂1 − µ̂0) − ∆e1 and

γ = 1
2

(
µ̂⊺
0Σ̂

−1µ̂0 − µ̂⊺
1Σ̂

−1µ̂1

)
. It also follows:
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Lemma 14. The regret for two classes can be rephrased as follows

2R (p-gTA) = E
L∼f0

[
log
(
1 + eλ̂(L)

)]
+ E

L∼f1

[
log
(
1 + e−λ̂(L)

)]
− 2 E

L∼f0

[
log
(
1 + e∆e⊺

1L
)]

, (78)

where λ̂(L) = (∆e1 + β)⊺L+ γ.

Proof. First, denoting l1 = e⊺1l (and L1 = e⊺1L), we observe that

p(0 | l) = f0(l)

f0(l) + f1(l)
=

e−
1
2 (l1+

∆
2 )2

e−
1
2 (l1+

∆
2 )2 + e−

1
2 (l1−

∆
2 )2

=
1

1 + e∆l1

and, since f1(−l) = f0(l), we have p(1 | l) = p(0 | −l). Furthermore,

m(0 | l) = e−
1
2 (l−µ̂0)

⊺Σ̂−1(l−µ̂0)

e−
1
2 (l−µ̂0)⊺Σ̂−1(l−µ̂0) + e−

1
2 (l−µ̂1)⊺Σ̂−1(l−µ̂1)

=
1

1 + eλ̂(l)
,

m(1 | l) = e−
1
2 (l−µ̂1)

⊺Σ̂−1(l−µ̂1)

e−
1
2 (l−µ̂0)⊺Σ̂−1(l−µ̂0) + e−

1
2 (l−µ̂1)⊺Σ̂−1(l−µ̂1)

=
1

1 + e−λ̂(l)
.

Then, we have

2R (p-gTA) = E
L∼f0

[
log

(
p(0 | L)

m(0 | L)

)]
+ E

L∼f1

[
log

(
p(1 | L)

m(1 | L)

)]
= E

L∼f0

[
log

(
1

m(0 | L)

)]
+ E

L∼f1

[
log

(
1

m(1 | L)

)]
−
(

E
L∼f0

[
log

(
1

p(0 | L)

)]
+ E

L∼f1

[
log

(
1

p(1 | L)

)])
and, by making the change of variable L′ = −L in the last term, we remark that
the two last terms are equal. Finally, injecting our values of p(0 | l), m(0 | l) and
m(1 | l) into this expression gives the expected result.

Lemma 15. The regret satisfies the following inequality:

R (β, γ) ≤ γ2 + ∥β∥22 + |γβ1|+O
((

γ2 + ∥β∥2
)3/2)

. (79)

Proof. Using the expression of the regret given in Lemma 14 and taking the
Taylor expansion, we have

R (β, γ) =

R (0, 0)

+
∂

∂γ
R (0, 0) · γ +∇βR (0, 0)

⊺
β

+
1

2

(
∂2

∂γ2
R (0, 0) γ2 +

∂

∂γ
∇βR (0, 0)

⊺
β · γ + β⊺∇2

βR (0, 0)β

)
+O

((
γ2 + ∥β∥2

)3/2)
.

(80)
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We shall prove that

1. All zero-th and first-order terms are zero and,
2. The second-order terms are bounded by constant independent of D.

All first-order terms are zero. First, observe that for β = 0, γ = 0, the model
corresponds to the true distribution: m(y | l) = p(y | l) and thus R (0, 0) = 0.
Second, let us express ∂

∂γR (0, 0):

∂

∂γ
R (0, 0) =

1

2
E

L∼f0

[
∂

∂γ

{
log
(
1 + eλ̂(L)

)}
(0, 0)

]
+

1

2
E

L∼f1

[
∂

∂γ

{
log
(
1 + e−λ̂(L)

)}
(0, 0)

]

=
1

2
E

L∼f0

 ∂
∂γ

{
eλ̂(L)

}
(0, 0)

1 + e∆e⊺
1L

+
1

2
E

L∼f1

 ∂
∂γ

{
e−λ̂(L)

}
(0, 0)

1 + e−∆e⊺
1L


=

1

2
E

L∼f0

[
e∆e⊺

1L

1 + e∆e⊺
1L

]
− 1

2
E

L∼f1

[
e−∆e⊺

1L

1 + e−∆e⊺
1L

]

=
1

2
E

L∼f0

[
e∆e⊺

1L

1 + e∆e⊺
1L

]
− 1

2
E

L∼f0

[
e∆e⊺

1L

1 + e∆e⊺
1L

]
= 0,

where we used the same change of variable as in the proof of Lemma 14 in the
last line.

Now, let us express ∇βR (0, 0)
⊺
β. Similarly to the derivation of ∂

∂γR (0, 0),
we get that

∂

∂βi
R (0, 0) =

1

2
E

L∼f0

[
Lie

∆e⊺
1L

1 + e∆e⊺
1L

]
+

1

2
E

L∼f1

[
−Lie

−∆e⊺
1L

1 + e−∆e⊺
1L

]
(81)

Applying the same change of variable as previously, we get that

∂

∂βi
R (0, 0) = E

L∼f0

[
Lie

∆e⊺
1L

1 + e∆e⊺
1L

]
.

Since f0 is a multivariate Gaussian with diagonal covariance matrix,Li is independent
of L1 for all 1 < i ≤ D, and furthermore the mean of Li is zero. Therefore, for
such i ̸= 1,

∂

∂βi
R (0, 0) = E

L∼f0
[Li] E

L∼f0

[
e∆e⊺

1L

1 + e∆e⊺
1L

]
= 0 .

For the remaining case where i = 1, observe that

E
L∼f0

[
L1

e∆L1

1 + e∆L1

]
= K

∫ ∞

−∞
e−

1
2 (x+∆/2)2x

1

1 + e−∆x
dx

= Ke−∆2/8

∫ ∞

−∞
x

e−x2/2

e∆x/2 + e−∆x/2
dx

for some constant K. Since the latter integrand is an even function of R, the
integral equals 0.
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Bounds for Second-Order Terms. Finally, it remains to bound the second-order

terms. For 1 ≤ i, j,≤ D, the (i, j)-coefficient of the Hessian matrix of log
(
1 + eλ̂(L)

)
is given by

∂2

∂βi∂βj
log
(
1 + eλ̂(L)

)
=

∂

∂βi

{
Lj

eλ̂(L)

1 + eλ̂(L)

}
= LiLj

eλ̂(L)(
1 + eλ̂(L)

)2 .

Likewise, we have

∂2

∂βi∂βj
log
(
1 + e−λ̂(L)

)
= − ∂

∂βi

{
Lj

e−λ̂(L)

1 + e−λ̂(L)

}
= LiLj

eλ̂(L)(
1 + eλ̂(L)

)2 .

Using the change of variable f1(l) = f0(−l), this gives

∂2

∂βi∂βj
R (0, 0) =

1

2
E

L∼f0

[
LiLje

∆L1

(1 + e∆L1)
2

]
+

1

2
E

L∼f1

[
LiLje

∆L1

(1 + e∆L1)
2

]

= E
L∼f0

[
LiLj

e∆L1

(1 + e∆L1)
2

]
.

(82)

For 1 ≤ i < j ≤ D, the right hand-side of Equation 82 is zero since Lj is
independent of Li and L1, and furthermore the mean of Lj is zero. For 1 < i =
j ≤ D the right hand-side is positive and can be upper bounded by E

L∼f0

[
L2

i

]
= 1.

In the last case i = j = 1, the second derivative of the regret is also positive and
reduces to∫ ∞

−∞

e−
1
2 (L1+∆/2)2

√
2π

L2
1

e∆L1

(1 + e∆L1)
2 dL1 =

∫ ∞

−∞

e−
∆2

8

(1 + e∆L1)
2L

2
1

e−
L2

1
2

√
2π

dL1

≤
∫ ∞

−∞
L2

1

e−
1
2L

2
1

√
2π

dL1

(83)

where the last integral is equal to 1 (it is the variance of a standard normal
distribution). Therefore, the following bounds hold:

0 ≤ β⊺∇2
βR (0, 0)β ≤ ∥β∥22 .

Similarly to Equation 82, it can be shown that for 1 ≤ j ≤ D we have

∂2

∂γ∂βj
R (0, 0) = E

L∼f0

[
Lje

∆L1

(1 + e∆L1)
2

]
. (84)

For j > 1 the latter partial derivative equals zero since Lj is independent of L1

and has zero mean. For j = 1, using a reasonning similar to Equation 83, we get
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that ∂2

∂γ∂β1
R (0, 0) ≤ 0. Let us now look for a lower bound:

∂2

∂γ∂β1
R (0, 0) =

∫ ∞

−∞

e−
1
2 (L1+∆/2)2

√
2π

L1
e∆L1

(1 + e∆L1)
2 dL1

=

∫ ∞

−∞

e−
∆2

8

(1 + e∆L1)
2L1

e−
L2

1
2

√
2π

dL1

≥
∫ 0

−∞

e−
∆2

8

(1 + e∆L1)
2L1

e−
L2

1
2

√
2π

dL1

= −
∫ ∞

0

e−
∆2

8

(1 + e−∆L1)
2L1

e−
L2

1
2

√
2π

dL1

≥ −
∫ ∞

0

L1e
− 1

2L
2
1dL1 = −1 .

Finally, we have that

∂2

∂γ2
R (0, 0) =

1

2
E

L∼f0

[
e∆L1

(1 + e∆L1)
2

]
+

1

2
E

L∼f1

[
e−∆L1

(1 + e−∆L1)
2

]
. (85)

We deduce from Equation 85 that ∂2

∂γ2R (0, 0) ≤ 1.

Putting All Together. Going back to Equation 80, we may now bound the regret
as follows:

R (β, γ) ≤ γ2 + ∥β∥22 + |γβ1|+O
((

γ2 + ∥β∥2
)3/2)

.

Next, we use the following lemma to prove Corollary 7.

Lemma 16 ([26, Lemma 2]). The estimation error of β, γ satisfies the following
convergence in law:

√
N

(
γ
β

)
L−→

N→∞
N (O, Σ) , (86)

where N denotes the normal distribution centered in the origin, and a diagonal

covariance matrix with coefficients
(
1 + ∆2

4 , 1 + ∆2

2 , 1 + ∆2

4 , . . . , 1 + ∆2

4

)
.

Proof of Corollary 7. Using Lemma 16, we know that for any δ such that 0 <
δ < 1, there exists αδ > 0 and Nδ such that

Pr

(
∀0 ≤ i ≤ D : |βi| ≤ αδ

√
∆2 + 1

N

)
≥ δ
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for all N ≥ Nδ and for any true distribution parameters µ0, µ1 and Σ. It follows
that, with probability at least δ,

γ2 + ∥β∥22 + |γβ1| ≤ α2
δ

(
∆2 + 1

) D + 1

N

and

O
((

γ2 + ∥β∥22
)3/2)

⊂ O
(
α2
δ

(
1 +

∆2

4

)
D + 1

N

)
.

Considering a constant δ gives the final result.
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