
Practical Decentralized Oracle Contracts for Cryptocurrencies
Varun Madathil

North Carolina State University

vrmadath@ncsu.edu

Sri AravindaKrishnan

Thyagarajan

Carnegie Mellon University

t.srikrishnan@gmail.com

Dimitrios Vasilopoulos

IMDEA Software Institute

dimitrios.vasilopoulos@imdea.org

Lloyd Fournier

Independent Researcher

lloyd.fourn@gmail.com

Giulio Malavolta

Max Planck Institute for Security and

Privacy

giulio.malavolta@hotmail.it

Pedro Moreno-Sanchez

IMDEA Software Institute

pedro.moreno@imdea.org

ABSTRACT
Smart contracts and blockchain technologies are inherently limited

as their decision cannot rely on real-world events that happen

“outside” of the blockchain environment. This has motivated the

introduction of trusted identities, the so-called “Oracles”, that attest

the information about real-world events into the blockchain. This

enables mutually distrustful parties to establish contracts based on

said events.

All known solutions to implement oracle-based contracts rely

either on Turing-complete smart contracts or on trusted hardware.

In particular, no solution comes with provable cryptographic guar-

antees that is compatible with many popular cryptocurrencies, such

as Bitcoin. In this work, we lay the foundations of oracle contracts

for cryptocurrencies. We present game-based definitions that model

the security properties of oracle contracts and we propose the first

construction with provable security guarantees. As a contribution

of independent interest and as our main technical building block,

we show an efficient construction of witness encryption for the

following class of languages:

{(vk,𝑚) ∈ L : ∃ 𝜎 s.t. Verify(vk, 𝜎,𝑚) = 1}

where 𝜎 is a BLS digital signature on𝑚. We show how this can be

extended to the threshold settings and how to efficiently prove that

the encrypted message has a certain structure. The former allows

distribution of trust among several “Oracles” and to guarantee the

latter, we develop a new batching technique for cut-and-choose,

inspired by the work of Lindell-Riva on garbled circuits.

1 INTRODUCTION
From their inception, blockchain-based cryptocurrencies have pro-

vided a means for payments governed by a consensus protocol

executed by mutually distrusting parties located worldwide. Less

than 15 years later, they have evolved and offer a complex finan-

cial architecture, the so-called Decentralized Finance (DeFi), that

includes components to support lending, decentralized exchange

of assets, or markets of derivatives, among others [23].

In principle, the most compelling applications of smart contracts

are inherently limited since they require access to data about real-

world state and events that is thus external to the blockchain. For

instance, it might be necessary for a smart contract implementing

a decentralized exchange across different currencies or tokens to

have access to information about up-to-date exchange rates to

carry out the exchanges weighted accordingly. Oracles (also known

as data feeds) aim to meet this need. In fact, many of Ethereum-

based DeFi applications rely at its core on oracle contracts [1].

Active outstanding loans from only four open lending contracts

(MakerDAO, Fulcrum, dYdX, and Compound) are worth above $200

million [20]. Moreover, there exist companies such as Chainlink

whose business model consists on offering the oracle service to

current and future smart contracts.

In a nutshell, an oracle attests the information about real-world

events into the blockchain so that other smart contracts can perform

operations accordingly. In its simplest form, there are threemutually

distrusting parties in the oracle-based contract process: Alice, Bob

and Olivia. Alice and Bob are contract counterparties, while Olivia

is the oracle. Alice and Bobmake and execute today a smart contract

whose payout is defined by the outcome of a real world event in the

future. After the event happens, Olivia attests the outcome of the

event to the smart contract and the corresponding user (either Alice

or Bob) gets paid. The realization of this vision, however, poses a

number of technical challenges, most notably, unforgeability and

verifiability.
An oracle contract that provides unforgeability must ensure that

Bob does not get the payout of the contract before Olivia provides

the corresponding attestation. Additionally, an oracle contract pro-

vides verifiability if after Alice sets up the contract with Bob, the

latter is guaranteed that he will get a payout from it if Olivia attests

the corresponding event correctly.

Existing approaches can roughly be grouped in three trends. The

first one consists on including the operation logic of Alice, Bob and

Olivia in a smart contract that controls the complete lifecycle. While

this approach is already used in practice [20, 23], it suffers from

several drawbacks: (i) it is tailored to the characteristics offered

by a restricted set of currencies (e.g., those supporting Turing-

complete scripting languages); (ii) it hinders scalability since the

complete operation logic as well as attestation data is stored on

the blockchain; (iii) it hampers fungibility since an oracle contract

is trivially distinguishable from other contracts by a blockchain

observer.

A second approach was proposed by Zhang et al. [24] where the

functionality of Olivia within the oracle contract is executed within

a trusted execution environment (TEE). This approach provides the

correctness guarantee of the data attested by Olivia. However, this

approach suffers from the same drawbacks as mentioned above as

the rest of the functionality (including the verification of the attested

data provided by the TEE) is executed within a smart contract as

1

before. Moreover, this approach adds a trust assumption on the

TEE which it is unclear to hold in practice [9, 12] and it is against

the decentralization philosophy of blockchains to start with.

A somewhat different approach was initiated by the name of

Discreet Log Contracts [15] and put forward by the Bitcoin commu-

nity [18]. A Discreet Log Contract (DLC) is a Bitcoin-compatible

oracle contract enabling transactions from Alice to Bob to be contin-

gent on signatures broadcasted by Olivia. This approach is promis-

ing because (i) it requires only an adaptor-compatible signature

scheme such as ECDSA or Schnorr and a timelock functionality

from the underlying blockchain, which is available in many cryp-

tocurrencies today; (ii) it requires to store on the blockchain only a

signed transaction from Alice to Bob (not even the signed message

from Olivia), thereby reducing the on-chain overhead as well as

associated fee cost and helping to preserve the fungibility of the

cryptocurrency.

However, none of the previous approaches provide a formal

description of the oracle contract problem along with the security

notions of interest. Proposed protocols are thus without provable

guarantees. This is the gap that we aim to fill in this work.

Our Contributions. Our contributions can be summarized as fol-

lows:

• We formally define the notion of oracle contracts for cryp-

tocurrencies. We provide a formal model with game-based

security definitions that model the properties of interest for

this new primitive. We also propose an efficient construction

and formally prove its security. Our protocol is the first one

that comes with provable guarantees, while overcoming the

interoperability and scalability issues with state-of-the-art

approaches.

• As our main cryptographic building block, we present a

new construction of verifiable witness encryption based on

threshold signatures (VweTS): VweTS allow one to (verifi-

ably) encrypt a message that can be decrypted using (any set

of) signatures on a target message. We provide a formal def-

inition of this primitive, along with an efficient construction
based on the BLS signature scheme.

• As a technical contribution of independent interest, we show

a new protocol to prove that a given encryption scheme

encrypts the discrete logarithm𝑥 of a given group element𝑔𝑥 .

Our protocol works of any encryption scheme and combines

the Camenish-Damgård approach [10] with the batching

technique of Lindell and Riva [19], originally developed to

optimize garbled circuit computations over many executions.

Concurrent and Related Work. Concurrently to this work, Döt-

tling et al. [14] proposed a witness encryption similar to ours for

the same class of languages, although in a completely different

context. Their main application is to leverage the blockchain to do

timed encryption, where if the blockchain reaches a certain height

and a committee of validators attest a block, a ciphertext can be

decrypted. In contrast to ours, their work is not concerned about

the structure of the encrypted message. The technical crux of our

paper is to efficiently prove the structure of the encrypted message

(specifically, that it consists of a valid signature on a given message),

for which we rely on new batching techniques for cut-and-choose.

A candidate solution for oracle contracts was proposed byDryja [15],

however they rely on a single oracle and it is unclear how one can

extend their protocol for the threshold setting without the ora-

cles having to interact with each other. Also, the protocol in [15]

requires a synchronous communication between the oracle and

Alice, where the oracle has to announce some value periodically

which Alice uses in her promise to Bob. Finally, in their work, the

oracle attestation is strongly tied to the signature scheme of the

transaction scheme used by Alice and Bob. On the other hand, our

solution supports the threshold setting without the oracles having

to interact with each other at any point in time, there is no com-

munication between the oracles and Alice prior to her promises

to Bob, and the oracle attestation is independent of the signature

scheme of the transaction scheme, thus making our solution more

versatile to different currencies. Finally, our solution comes with

provable security guarantees.

2 TECHNICAL OVERVIEW
Assume a setting where Alice, with a key pair (sk𝐴, vk𝐴) of a digital
signatureDS, wants to transfer 𝑣 coins to Bob in a transaction tx, if a
certain real world event represented by the message𝑚 is attested by

Olivia, with a key pair (sk𝑂 , vk𝑂) of a digital signatureDS (possibly
different to DS). For the simplicity of presentation, assume that

Olivia is honest. We will remove this assumption later. Then, Alice

could naively use the standard notion of witness encryption to

create a ciphertext that includes 𝜎 ← Sign(sk𝐴, tx) and that can

only be decrypted if Bob has a witness (i.e, 𝜎) of the NP statement

{𝜎 | Vf (vk𝑂 ,𝑚, 𝜎) = 1}. This approach would prevent Bob from

getting the 𝑣 coins if Olivia does not attest𝑚. However, Bob needs

to trust Alice that the ciphertext contains a valid signature 𝜎 . The

central challenge that our protocol needs to address is in ensuring

verifiability, that is, Alice can send a proof to Bob that the latter

can verify to convince himself that Alice honestly generated the

ciphertext.

Verifiable Witness Encryption based on Signatures (VweS).
First, we observe that we can leverage the Boneh-Franklin (BF) [6]

identity-based encryption scheme to instantiate a witness encryp-

tion scheme for any message. In their concrete construction, the

identity secret key is a BLS signature on the user’s identity. There-

fore, if we instantiate 𝐷𝑆 with the BLS signature scheme and the

user’s identity be the pair (vk𝑂 ,𝑚), Alice could encrypt any mes-

sage𝑚 with the BF encryption scheme such that the witness - 𝜎 is

the BLS signature, as needed to decrypt ciphertext encrypted under

the BF encryption scheme. While this suffices for the correctness

of a witness encryption, we are yet to tackle two points: (i) the

encryption of a digital signature; and (ii) the notion of verifiability

of the ciphertext. We discuss our techniques to alleviate these issues

next.

Remember that our goal is to let Alice encrypt a signature 𝜎

on tx using DS. To be independent of the actual instance of DS
and thus support as many cryptocurrencies as possible where tx
can be represented, we leverage adaptor signatures (AS) [3]. In

brief, AS allows Alice to generate a pre-signature �̂� on tx, which
is a verifiable encryption of a signature 𝜎 wrt. an NP statement

{𝑌 | 𝑌 := 𝑔𝑦} where 𝑦 is referred to as the witness and 𝑔 is the

generator of a cyclic group G.

2

Encryption.With these tools at hand, Alice can: (i) create a pre-

signature �̂� on tx using statement 𝑌 previously agreed with Bob;

(ii) use the BF-based witness encryption scheme mentioned above

to encrypt 𝑦 into ciphertext 𝑐 for the identity (vk𝑂 ,𝑚); (iii) send �̂�
and 𝑐 to Bob. As soon as Olivia attests the event𝑚 by publishing

a BLS signature with her key sk𝑂 , Bob can use the signature to

extract 𝑦 from 𝑐 , and then use 𝑦 to extract 𝜎 from �̂� .

Verifiability. To achieve verifiability, we adopt ideas from the cut-
and-choose technique used in the verifiable encryption scheme of

Camenisch et al. [10]. In a nutshell, Alice computes a pre-signature

on the message as before and instead of generating a single BF

ciphertext (BF-cipher), Alice generates _ (security parameter) tuples

- (BF-cipher, sym-cipher). Each BF-cipher contains a BF ciphertext
that encrypts a random integer 𝑟𝑖 for the identity (vk𝑂 ,𝑚), in
other words, Alice uses the same BF-based witness encryption as

explained before to encrypt a random integer instead of the adaptor

witness 𝑦. Each sym-cipher is set to (𝑠𝑖 = 𝑟𝑖 + 𝑦), where 𝑦 is the

witness for the statement 𝑌 of AS and 𝑟𝑖 is the random integer

encrypted in BF-cipher at index 𝑖 . Finally, apart from sending all

these values to Bob as well as the values 𝑔𝑟𝑖 and the pre-signature �̂� ,

Alice uses the Fiat-Shamir heuristic to randomly choose _/2 tuples

for which she exposes the corresponding values 𝑟𝑖 and the random

coins used to encrypt 𝑟𝑖 to Bob.

The key question left is to understand why this information

would convince Bob of the fact that he will be able to get the

signature 𝜎 after Olivia attests𝑚. To see that, Bob checks: (i) for

all 𝑖 ∈ [_], 𝑔𝑠𝑖 ?

= 𝑔𝑟𝑖 · 𝑌 , intuitively checking that all sym-cipher
are correctly encrypting the value 𝑦 using the randomness 𝑟𝑖 as

symmetric key of the one-time pad; (ii) for all 𝑗 ∈ [_/2] chosen by

the Fiat-Shamir heuristic, recompute the BF ciphertext of 𝑟 𝑗 with

random coins and check if it is the same as sent by Alice. If all these

checks pass, by the guarantees of [10], Bob is guaranteed that there

exists at least one well-formed BF ciphertext among those _/2 not

opened by Alice: meaning that it encrypts 𝑟𝑘 such that 𝑠𝑘 = 𝑟𝑘 + 𝑦
for some 𝑘 . Thus when Olivia attests𝑚, Bob can decrypt the 𝑘-th

BF ciphertext to compute 𝑟𝑘 , extract𝑦 = 𝑠𝑘 −𝑟𝑘 from it and then use

it to get 𝜎 from the pre-signature �̂� following the adaptor signature

scheme.

VerifiableWitness Encryption based onThreshold Signatures
(VweTS). At the beginning of this section, we have made the sim-

plifying assumption that Olivia is honest. In order to relax this

assumption, we intuitively distribute the task of attesting the event

𝑚 among a set of 𝑁 oracles, each of them with a key pair (sk𝑖 , vk𝑖).
Moreover, the event𝑚 is attested only when at least a threshold 𝜌

number of oracles have signed it with their respective signing keys.

Our idea to achieve this is to do a verifiable threshold secret

sharing of the adaptor witness 𝑦 into (𝑦1, . . . , 𝑦𝑁) and execute 𝑁

instances of the VweS protocol described above. While this ap-

proach is correct, the verifiability proof would be very inefficient

in terms of computation and communication cost. To this end, we

make use of the batching technique of Lindell and Riva [19] for

amortizing the costs of the cut-and-choose approach.

In more detail, to encrypt a signature 𝜎 , Alice first generates a

pre-signature �̂� as before, w.r.t. the statement 𝑌 ∈ G (with corre-

sponding witness 𝑦). This time, before proceeding with the cut-and-

choose, she creates shares of the adaptor witness𝑦 into (𝑦1, . . . , 𝑦𝑁)

shares via (𝑡-off-𝑁)-Shamir secret sharing For the verifiability of

the sharing, we additionally reveal the values (𝑌1, . . . , 𝑌𝑁) where
𝑌𝑖 := 𝑔𝑦𝑖 . It is easy to verify via Lagrange interpolation in the

exponent using (𝑌1, . . . , 𝑌𝑁) that the secret sharing is performed

correctly.

As before, we can proceed with the cut-and-choose by generat-

ing BF-cipher encrypting random integers, but this time to use the

Lindell and Riva’s batching technique, we generate 2𝑁𝐵 number of

such BF-cipher, where 𝐵 is a statistical security parameter. By the

Fiat-Shamir heuristic, Alice “opens” 𝑁𝐵 number of BF-ciphers like
in the previous case, while the rest of the “unopened” BF-ciphers
are randomly mapped into 𝑁 buckets, where each bucket consists

of 𝐵 BF-ciphers. The random mapping is chosen non-interactively

via the Fiat-Shamir heuristic. As before, each of the 𝑗-th “unopened”

BF-cipher in the 𝑖-th bucket denoted by 𝑐𝑖, 𝑗 , is also associated with

the sym-cipher value 𝑠𝑖, 𝑗 := 𝑟 𝑗 +𝑦𝑖 , where 𝑟 𝑗 is the value encrypted
in the BF-cipher 𝑐𝑖, 𝑗 and recall that 𝑦𝑖 is the 𝑖-th share of the adap-

tor witness 𝑦. The high level idea is that the 𝑖-th bucket is now

associated with the instance verification key vk𝑖 . The soundness
guarantee of Lindell and Riva’s batching technique is that with

overwhelming probability there exists a 𝑗 ′ ∈ [𝐵] in each bucket

𝑖 ∈ [𝑁], such that the BF-cipher 𝑐𝑖, 𝑗 ′ is a well-formed BF ciphertext

and the underlying message 𝑟 𝑗 ′ satisfies the check

𝑔𝑠𝑖,𝑗′ = 𝑔
𝑟 ′𝑗 · 𝑌𝑖 .

The hope now is that if we have a witness BLS signature 𝜎𝑖

on the message𝑚 that is valid wrt. key vk𝑖 , then we are able to

decrypt 𝑐𝑖, 𝑗 ′ to obtain 𝑟 𝑗 ′ and later the witness share 𝑦𝑖 . If we have

𝜌 number of witness BLS signatures (𝜎𝑖)𝑖∈𝐾 , where 𝐾 ⊂ [𝑁] and
|𝐾 | = 𝜌 , then we are guaranteed to obtain 𝜌 number of valid witness

shares (𝑦𝑖)𝑖∈𝐾 similar to above, and we can reconstruct the adaptor

witness 𝑦, and adapt the pre-signature �̂� into a valid signature 𝜎 .

However, a crucial step we overlooked in the outline above is

that we cannot know which bucket a BF-cipher generated initially

will be mapped to later in the cut-and-choose step. Therefore, it

is unclear how we generate each of the BF-cipher, meaning, it is

unknown at the stage of the BF-cipher generation w.r.t. which

instance verification key do we set it to. Infact, it is necessary

for the soundness of Lindell and Riva’s cut-and-choose batching

that we do not know the random mapping during the cihpertext

generation.

To tackle this issue, during BF-cipher generation, we generate
each of 2𝑁𝐵 number of BF-ciphers (denoted by (𝑐 ′

1
, . . . , 𝑐 ′

2𝑁𝐵
)) w.r.t.

to a BLS signature on a random (public) instance message𝑚∗ and
instance verification key vk

∗
. The instances𝑚∗ and vk

∗
can even

be fixed ahead of time for the entire session. We proceed exactly as

described above with these ciphertexts, until the random bucket

mapping. Once we map an “unopened” BF-cipher 𝑐 ′
𝑖, 𝑗

to the 𝑖-th

bucket, we generate another BF-cipher 𝑐𝑖, 𝑗 w.r.t. a BLS signature on
the correct instance message𝑚 and instance verification key vk𝑖
(corresponding to the 𝑖-th bucket), which also encrypts the value

𝑟 𝑗 . We attach a Non-Interactive Zero-Knowledge (NIZK) proof to

verify that the two BF-ciphersare well-formed and encrypt the same

message. We can efficiently instantiate the above proof with a

simple NIZK proof for a discrete logarithm relation, if we use the

same random coins in both 𝑐 ′
𝑖, 𝑗

and 𝑐𝑖, 𝑗 , which was shown to not

3

compromise the security of the encryption scheme [4]. Rest of the

cut-and-choose proceeds as before.

To sum up, Alice returns the 2𝑁𝐵 BF-ciphers generated wrt.𝑚∗

and vk
∗
, the pre-signature �̂� , values 𝑔𝑟 𝑗 for all 𝑗 ∈ [2𝑁𝐵], adaptor

statement shares (𝑌1, . . . , 𝑌𝑁), the “opened” values and the “un-

opened” values similar to the simplified case above, but now addi-

tionally consists of the new BF-ciphers generated wrt. the correct

instance message and the instance verification corresponding to

the bucket, and the associated NIZK proofs as described above.

The verification by Bob is easy to see, with only additional checks

needed for the correctness of the bucket mapping and the validity

of the NIZK proofs for the “unopened” BF-ciphers. The decryption
proceeds as expected, just that given witness BLS signature 𝜎𝑖 on

the message𝑚∗ wrt. key vk𝑖 , we decrypt all the BF-cipher 𝑐𝑖, 𝑗 in the

𝑖-th bucket. We obtain shares of the adaptor witness as described

before, and provided we have 𝜌 of them, we can reconstruct 𝑦 and

later adapt �̂� into the valid signature 𝜎 .

We can extend the above techniques to the case where we have

𝑀 different messages (𝑚1, . . . ,𝑚𝑀) instead of just one. In this case,

Alice has transaction tx𝑖 paying to Bob if the message 𝑚𝑖 is at-

tested. For more details on this general case, we refer the reader

to Section 4.2. We extend our techniques even to the case where

the signature scheme for authorizing a transaction, i.e., DS is the
BLS signature scheme. Note that it was shown in [16] that it is

impossible to construct an AS scheme for BLS signatures. Thus we

resort to different techniques to achieve our goal of constructing

VWeTs. For more details on our BLS based construction we refer

the reader to Section 4.3.

Furthermore, in the protocols overviewed so far, the communi-

cation complexity grows polynomially in the number of messages

�̄�. In particular, this implies that the number of messages must

be bounded by a given polynomial (in the security parameter). In

Appendix F we outline how to modify our protocol to remove this

bound and support an event with an exponential number of out-

comes, without increasing the communication complexity of the

protocol proportionately.

3 PRELIMINARIES
We denote by _ ∈ N the security parameter and by 𝑥 ← A(in; 𝑟)
the output of the algorithm A on input in using 𝑟 ← {0, 1}∗ as its
randomness. We often omit this randomness and only mention it

explicitly when required. The notation [𝑛] denotes a set {1, . . . , 𝑛}
and [𝑖, 𝑗] denotes the set {𝑖, 𝑖 + 1, . . . , 𝑗}. We consider probabilistic
polynomial time (PPT) machines as efficient algorithms.

Digital Signatures. A digital signature scheme DS, formally, has

a key generation algorithm KGen(1_) that takes the security pa-

rameter 1
_
and outputs the verification/signing key pair (vk, sk), a

signing algorithm Sign(sk,𝑚) inputs a signing key and a message

𝑚 ∈ {0, 1}∗ and outputs a signature 𝜎 , and a verification algorithm

Vf (vk,𝑚, 𝜎) outputs 1 if 𝜎 is a valid signature on𝑚 under the veri-

fication key vk, and outputs 0 otherwise. We require unforgeability,

which guarantees that a PPT adversary cannot forge a fresh signa-

ture on a message of its choice under a given verification key while

having access to a signing oracle (that returns a valid signatures

on the queried messages).

Non-Interactive ZeroKnowledgeProofs. Let𝑅 : {0, 1}∗×{0, 1}∗
→ {0, 1} be a nNP-witness-relationwith correspondingNP-language
L := {𝑥 : ∃𝑤 s.t. 𝑅(𝑥,𝑤) = 1}. A non-interactive zero-knowledge

proof (NIZK) [13] system for the relation 𝑅 is initialized with a

setup algorithm Setup(1_) that, on input the security parameter,

outputs a common reference string crs and a trapdoor td. A prover

can show the validity of a statement 𝑥 with a witness𝑤 by invok-

ing Prove(crs, 𝑥,𝑤), which outputs a proof 𝜋 . The proof 𝜋 can be

efficiently checked by the verification algorithm Vf (crs, 𝑥, 𝜋). We

require a NIZK system to be (1) zero-knowledge, where the verifier
does not learn more than the validity of the statement 𝑥 , and (2)

simulation soundness, simulation sound, where it is hard for any

prover to convince a verifier of an invalid statement (chosen by the

prover) even after having access to polynomially many simulated

proofs for statements of his choosing.

Threshold Secret Sharing. Secret sharing is a method of creating

shares of a given secret and later reconstructing the secret itself

only if given a threshold number of shares. Shamir [22] proposed a

threshold secret sharing scheme where the sharing algorithm takes

a secret 𝑠 ∈ Z𝑞 and generates shares (𝑠1, . . . , 𝑠𝑛) each belonging

to Z𝑞 . The reconstruct algorithm takes as input at least 𝑡 shares

and outputs a secret 𝑠 via polynomial interpolation. The security

of the secret sharing scheme demands that knowing only a set of

shares smaller than the threshold size does not help in learning any

information about the choice of the secret 𝑠 .

Hard Relations. We recall the notion of a hard relation 𝑅 with

statement/witness pairs (𝑌,𝑦). We denote by L𝑅 the associated

language defined as L𝑅 := {𝑌 |∃𝑦 s.t . (𝑌,𝑦) ∈ 𝑅}. The relation is

called a hard relation if the following holds: (i) There exists a PPT

sampling algorithm GenR(1_) that outputs a statement/witness

pair (𝑌,𝑦) ∈ 𝑅; (ii) The relation is poly-time decidable; (iii) For all

PPT adversaries A the probability of A on input 𝑌 outputting a

witness 𝑦 is negligible.

Adaptor Signatures. Adaptor signatures [3] let users generate a
pre-signature on amessage𝑚which by itself is not a valid signature,

but can later be adapted into a valid signature using knowledge of

some secret value. The formal definition of adaptor signatures is

given below.

Definition 1 (Adaptor Signatures). An adaptor signature
scheme AS w.r.t. a hard relation 𝑅 and a signature scheme DS =

(KGen, Sign,Vf) consists of algorithms (pSign,Adapt, pVf, Ext) de-
fined as:

�̂� ← pSign(sk,𝑚,𝑌): The pre-sign algorithm takes as input a signing
key sk, message𝑚 ∈ {0, 1}∗ and statement 𝑌 ∈ 𝐿𝑅 , outputs a pre-
signature �̂� .

0/1← pVf (vk,𝑚,𝑌, �̂�): The pre-verify algorithm takes as input a
verification key vk, message 𝑚 ∈ {0, 1}∗, statement 𝑌 ∈ 𝐿𝑅 and
pre-signature �̂� , outputs either 1 (for valid) or 0 (for invalid).

𝜎 ← Adapt(�̂�, 𝑦): The adapt algorithm takes as input a pre-signature
�̂� and witness 𝑦, outputs a signature 𝜎 .

𝑦 ← Ext(𝜎, �̂�, 𝑌): The extract algorithm takes as input a signature 𝜎 ,
pre-signature �̂� and statement 𝑌 ∈ 𝐿𝑅 , outputs a witness 𝑦 such that
(𝑌,𝑦) ∈ 𝑅, or ⊥.

4

In addition to the standard signature correctness, an adaptor

signature scheme has to satisfy pre-signature correctness. Informally,

an honestly generated pre-signature w.r.t. a statement 𝑌 ∈ 𝐿𝑅 is a

valid pre-signature and can be adapted into a valid signature from

which a witness for 𝑌 can be extracted.

In terms of security we want standard unforgeability even when

the adversary is given access to pre-signatures with respect to the

signing key sk. We also require that, given a pre-signature and a

witness for the instance, one can always adapt the pre-signature into

a valid signature (pre-signature adaptability). Finally, we require
that, given a valid pre-signature and a signature with respect to

the same instance, one can efficiently extract the corresponding

witness (witness extractability). The formal definitions of the above

properties can be found in Appendix A.

Witness Encryption based on Signatures.We consider a special

witness encryption scheme for a language L ∈ NP defined with

respect to a signature scheme DS := (KGen, Sign,Vf), where
L := {(vk,𝑚) |∃𝜎, s.t . ,Vf (vk,𝑚, 𝜎) = 1}

where (vk, sk) ∈ KGen(1_). Here the verification key and the mes-

sage (vk,𝑚) is the instance and the signature 𝜎 is the witness. We

present the formal definitions below.

Definition 2 (Witness Encryption based on Signatures). A
witness encryption scheme based on signatures (WES) is a crypto-
graphic primitive defined with respect to a digital signature scheme
DS := (KGen, Sign,Vf), consisting of two PPT algorithms (Enc,Dec),
defined below:

𝑐 ← Enc((˜vk, �̃�),𝑚): the encryption algorithm takes as input a veri-

fication key ˜vk of the signature scheme, a message �̃� and the message
to be encrypted𝑚. It returns as output a ciphertext 𝑐 .
𝑚 ← Dec(�̃�, 𝑐): the decryption algorithm takes as input a signature
�̃� and the ciphertext 𝑐 . It returns as output a message𝑚.

The correctness of a witness encryption based on signatures is

defined below.

Definition 3 (Correctness of Witness Encryption for Sig-

natures). A witness encryption scheme for signatures denoted by
WES := (Enc,Dec) defined with respect to a signature scheme DS :=

(KGen, Sign,Vf) is said to be correct if for all _ ∈ N, all (˜vk, ˜sk) ←
KGen(_), all messages �̃� and𝑚, all 𝑐 ← Enc((˜vk, �̃�),𝑚), we have
that that Pr[Dec(�̃�, 𝑐) =𝑚] = 1, where Vf (˜vk, �̃�, �̃�) = 1.

The notion of security we want is similar to the chosen plaintext

security of a standard public key encryption, except now the ad-

versary has access to a signing oracle wrt. key
˜sk while not being

allowed to query the oracle on the message �̃�∗, where the instance
(˜vk, �̃�∗) is used to encrypt the challenge ciphertext.

Definition 4 (Security). A witness encryption scheme for sig-
natures denoted by WES := (Enc,Dec) defined with respect to a
signature scheme DS := (KGen, Sign,Vf) is said to be chosen plain-

text attack secure if for all _ ∈ N, there exists a negligible function
negl(_), such that for all PPT adversaries A, the following holds,

Pr

[
IND-CPAWES,DS,A (_) = 1

]
≤ 1

2

+ negl(_)
where IND-CPA is defined in Fig. 1.

IND-CPAWES,DS,A (_)
𝑄 := ∅

(˜vk, ˜sk) ← KGen(_)

(�̃�∗,𝑚0,𝑚1, st0) ← ASignO (˜vk)
𝑏 ← {0, 1}

𝑐𝑏 ← Enc((˜vk, �̃�∗),𝑚𝑏)

𝑏′ ← ASignO (st
0
, 𝑐𝑏)

𝑏0 := (𝑏 = 𝑏′)
𝑏1 := (�̃�∗ ∉ 𝑄)
return 𝑏0 ∧ 𝑏1

SignO(˜sk, �̃�)
�̃� ← Sign(˜sk, �̃�)
𝑄 := 𝑄 ∪ {�̃�}
return �̃�

Figure 1: Experiment for CPA security of a witness encryp-
tion scheme based on signatures.

Enc((˜vk, �̃�),𝑚): The encryption algorithm proceeds as

follows:

• Sample 𝑟1, 𝑟2 ← Z𝑞 .
• Set 𝑐1 := 𝑔

𝑟1

0

• Compute ℎ := 𝐻1 (𝑟2).
• Compute 𝑐2 := (𝑒 (˜vk, 𝐻0 (�̃�))𝑟1 · 𝑟2) and 𝑐3 := (ℎ +𝑚)
• Return 𝑐 := (𝑐1, 𝑐2, 𝑐3).
Dec(�̃�, 𝑐): The decryption algorithm proceeds as follows:

• Parse 𝑐 := (𝑐1, 𝑐2, 𝑐3).
• Compute 𝑟 := 𝑐2 · 𝑒 (𝑐1, �̃�)−1

.

• Compute ℎ := 𝐻1 (𝑟).
• Return𝑚 := 𝑐3 − ℎ.

Figure 2: Witness encryption based on BLS signatures

We give a construction for WES based on the BLS signature

scheme. Our construction described in Fig. 2 relies on efficiently

computable bilinear pairings.We have the bilinear pairing operation

𝑒 defined as 𝑒 : G0 × G1 → G𝑇 where G0,G1 and G𝑇 are groups

of prime order 𝑞. We let 𝑔0 and 𝑔1 be the generators of G0 and

G1 respectively and 𝐻0, 𝐻1 be a hash functions defined as 𝐻0 :

{0, 1}_ → G1 and 𝐻1 : Z𝑞 → {0, 1}_ .
The security of the construction follows similar to the IBE scheme

from [6] based on Bilinear Diffie-Hellman assumption, when mod-

elling the hash functions 𝐻0 and 𝐻1 as random oracles.

4 VERIFIABLE WITNESS ENCRYPTION
BASED ON THRESHOLD SIGNATURES

Consider the following language L ∈ NP defined with respect to a

signature scheme DS := (KGen, Sign,Vf), where

L :=

((vk𝑖)𝑖∈[𝑁] , (𝑚 𝑗) 𝑗 ∈[𝑀] , 𝜌)
�����∃ 𝑗 ∈ [𝑀], (𝜎𝑖)𝑖∈𝐾⊂[𝑁] , s.t . ,|𝐾 | = 𝜌 ∧
∀𝑖 ∈ 𝐾,Vf(vk𝑖 ,𝑚 𝑗 , 𝜎𝑖) = 1

where (vk1, . . . , vk𝑁) ∈ SUPP(KGen(1_)).

5

Wepresent a new primitivewhich is awitness encryption scheme

for the above language, where we additionally consider another

signature scheme DS. Moreover, the “secret” message(s) being

encrypted by the witness encryption are themselves signatures

(𝜎1, . . . , 𝜎𝑀) on messages (𝑚1, . . . ,𝑚𝑀) verifiable under a verifi-
cation key vk with respect to DS. Intuitively, the primitive lets

us encrypt signatures (𝜎1, . . . , 𝜎𝑀) such that the signature 𝜎 𝑗 can

be obtained after decryption, provided one holds a witness to the

language L as defined above.

4.1 Definitions
Definition 5 (Verifiable Witness Encryption Based on

Threshold Signatures). A verifiable witness encryption based

on threshold signatures is a cryptographic primitive parameterized
by 𝜌, 𝑁 ,𝑀 ∈ N, and is defined with respect to signature schemes
DS := (KGen, Sign,Vf) and DS := (KGen, Sign,Vf). It consists of
three PPT algorithms (EncSig,VfEnc,DecSig), that are defined below.

(𝑐, 𝜋𝑐) ← EncSig(((vk𝑖)𝑖∈[𝑁] , (𝑚 𝑗) 𝑗 ∈[𝑀]), sk, (𝑚 𝑗) 𝑗 ∈[𝑀]): the sig-
nature encryption algorithm takes as input tuples of instance verifi-
cation keys (vk𝑖)𝑖∈[𝑁] , instance messages (𝑚 𝑗) 𝑗 ∈[𝑀] , and messages
(𝑚 𝑗) 𝑗 ∈[𝑀] and a signing key sk. It outputs a ciphertext 𝑐 and a proof
𝜋𝑐 .

0/1← VfEnc(𝑐, 𝜋𝑐 , ((vk𝑖)𝑖∈[𝑁] , (𝑚 𝑗 ,𝑚 𝑗) 𝑗 ∈[𝑀] , vk)): the encryption
verification algorithm takes as input a ciphertext 𝑐 , a proof 𝜋𝑐 , tuples of
instance verification keys (vk𝑖)𝑖∈[𝑁] , instance messages (𝑚 𝑗) 𝑗 ∈[𝑀] ,
and messages (𝑚 𝑗) 𝑗 ∈[𝑀] , and a verification key vk. It outputs 1 (for
valid) if its a valid ciphertext and 0 (for invalid) otherwise.
𝜎 ← DecSig(𝑗, {𝜎𝑖 }𝑖∈𝐾 , 𝑐, 𝜋𝑐): the signature decryption algorithm
takes as input an index 𝑗 ∈ [𝑀], witness signatures {𝜎𝑖 }𝑖∈𝐾 for
|𝐾 | = 𝜌 and 𝐾 ⊂ [𝑁], a ciphertext 𝑐 , and proof 𝜋𝑐 . It outputs a
signature 𝜎 .

We define below the notion of correctness.

Definition 6 (Correctness). A verifiable witness encryption

based on threshold signatures scheme denoted by (𝜌, 𝑁 ,𝑀)-VweTS :=

(EncSig,VfEnc,DecSig) is parameterized by 𝜌, 𝑁 ,𝑀 ∈ N and de-
fined with respect to signature schemes DS := (KGen, Sign,Vf)
and DS := (KGen, Sign,Vf) is said to be correct if the following
holds. If for all _ ∈ N, all (vk1, . . . , vk𝑁) ∈ SUPP(KGen(_)), all
(vk, sk) ∈ KGen(_), all messages (𝑚 𝑗 ,𝑚 𝑗) 𝑗 ∈[𝑀] , all (𝑐, 𝜋𝑐) obtained
by running EncSig algorithm on respective inputs, we have the fol-
lowing that hold simultaneously:

(1) Pr

[
VfEnc(𝑐, 𝜋𝑐 , ((vk𝑖)𝑖∈[𝑁] , (𝑚 𝑗 ,𝑚 𝑗) 𝑗 ∈[𝑀] , vk)) = 1

]
= 1.

(2) For any 𝑗 ∈ [𝑀], 𝐾 ⊂ [𝑁] and |𝐾 | = 𝜌 , if for all 𝑖 ∈ 𝐾 we have
Vf (vk𝑖 ,𝑚 𝑗 , 𝜎𝑖) = 1, then

Pr

[
Vf

(
vk,𝑚 𝑗 ,DecSig(𝑗, {𝜎𝑖 }𝑖∈𝐾 , 𝑐, 𝜋𝑐)

)
= 1

]
= 1.

We require a notion called one-wayness for a VweTS scheme.

Intuitively, the property guarantees that an adversary cannot output

a valid signature 𝜎∗ for an index 𝑗∗ encrypted in a VweTS ciphertext
without access to 𝜌 number of valid witness signatures on the

corresponding instance message𝑚 𝑗∗ . The adversary is allowed to

choose the signing keys of 𝜌−1 number of instance verification keys

of its choice, and is also given access to signing oracles conditioned

ExpOWay𝜌,𝑁 ,𝑀
VweTS,DS,DS,A

(_)
𝑄1 := 𝑄2 := ∅, 𝑄3 := []
(vk, sk) ← KGen(1_)
(𝐶, st

0
) ← A(vk) // let𝐶 ⊂ [𝑁]

∀𝑖 ∈ [𝑁] \𝐶, (vk𝑖 , sk𝑖) ← KGen(1_)

(𝑞∗, 𝜎∗, 𝑗∗) ← ASignO,SignO,EncSigO (st
0
, {vk𝑖 }𝑖∈[𝑁]\𝐶)

(𝑐, 𝜋𝑐 , 𝑋) ← 𝑄3 [𝑞∗]
𝑋 := ((vk𝑖)𝑖∈[𝑁] , (𝑚 𝑗) 𝑗∈[𝑀]), sk, (𝑚 𝑗) 𝑗∈[𝑀]
𝑏0 := ((𝑚 𝑗∗ , 𝜎

∗) ∉ 𝑄2)
𝑏1 := (𝑚 𝑗∗ ∉ 𝑄1)
𝑏2 := (|𝐶 | ≤ 𝜌 − 1)
𝑏3 := (Vf (vk,𝑚 𝑗∗ , 𝜎

∗) = 1)
return 𝑏0 ∧ 𝑏1 ∧ 𝑏2 ∧ 𝑏3

EncSigO((𝑚 𝑗 ,𝑚 𝑗) 𝑗 ∈[𝑀] , {vk𝑖 }𝑖∈𝐶)
𝑋 := ((vk𝑖)𝑖∈[𝑁] , (𝑚 𝑗) 𝑗∈[𝑀]), sk, (𝑚 𝑗) 𝑗∈[𝑀]
(𝑐, 𝜋𝑐) ← EncSig(𝑋)
𝑄3 := 𝑄3 | | (𝑐, 𝜋𝑐 , 𝑋)
return (𝑐, 𝜋𝑐)

SignO(𝑖,𝑚)
Ensure 𝑖 ∈ [𝑁] \𝐶

𝜎 ← Sign(sk𝑖 ,𝑚)
𝑄1 := 𝑄1 ∪ {𝑚}
return 𝜎

SignO(𝑚)
𝜎 ← Sign(sk,𝑚)
𝑄2 := 𝑄2 ∪ {𝑚,𝜎 }
return 𝜎

Figure 3: Experiment for one-wayness.

on not allowing the adversary to trivially break the scheme. That

is, the adversary cannot query the oracles for a signature on𝑚 𝑗∗

wrt. the signing key sk and cannot query for a witness signature

on the instance message𝑚 𝑗∗ . The intuition is captured formally in

the following definition.

Definition 7 (One-wayness). A verifiable witness encryption

based on threshold signatures scheme denoted by (𝜌, 𝑁 ,𝑀)-VweTS :=

(EncSig,VfEnc,DecSig) is parameterized by 𝜌, 𝑁 ,𝑀 ∈ N and de-
fined with respect to signature schemes DS := (KGen, Sign,Vf) and
DS := (KGen, Sign,Vf) is said to be one-way if for all _ ∈ N, there
exists a negligible function negl(_), such that for all PPT adversaries
A, the following holds,

Pr

[
ExpOWay𝜌,𝑁

VweTS,DS,DS,A
(_) = 1

]
≤ negl(_)

where ExpOWay is defined in Fig. 3.

We require another notion of security called verifiability for a

VweTS scheme. This property guarantees that it is infeasible for

an adversary to output a ciphertext 𝑐 along with a valid proof 𝜋𝑐 ,

and valid witness signatures (𝜎 𝑗) 𝑗 ∈𝐾 on the instance message𝑚 𝑗∗ ,

such that the signature 𝜎 we get after decryption is infact an invalid

6

signature on the message𝑚 𝑗∗ under the verification key vk. The
intuition is formally captured in the definition below.

Definition 8 (Verifiability). A verifiable witness encryption

for threshold signatures scheme denoted by (𝜌, 𝑁 ,𝑀)-VweTS :=

(EncSig,VfEnc,DecSig) parameterized by 𝜌, 𝑁 ,𝑀 ∈ N and defined
with respect to signature schemes DS := (KGen, Sign,Vf) and DS :=

(KGen, Sign,Vf) is said to be verifiable if for all _ ∈ N, there exists
a negligible function negl and no PPT adversary A that outputs
((𝑚 𝑗 ,𝑚 𝑗) 𝑗 ∈[𝑀] , vk, (vk𝑖)𝑖∈[𝑁] , (𝜎 𝑗) 𝑗 ∈𝐾 , 𝑗∗, 𝑐, 𝜋𝑐) such that all the
following holds simultaneously except with probability negl(_):
(1) 𝐾 ⊂ [𝑁] and |𝐾 | = 𝜌
(2) (vk, ·) ∈ SUPP(KGen) and for all 𝑖 ∈ [𝑁] we have (vk𝑖 , ·) ∈

SUPP(KGen) where SUPP denotes to the support.
(3) ∀𝑗 ∈ 𝐾,Vf (vk 𝑗 ,𝑚 𝑗∗ , 𝜎 𝑗) = 1

(4) VfEnc(𝑐, 𝜋𝑐 , ((vk𝑖)𝑖∈[𝑁] , (𝑚 𝑗 ,𝑚 𝑗) 𝑗 ∈[𝑀] , vk)) = 1

(5) Vf (vk,𝑚 𝑗∗ , 𝜎) = 0, where 𝜎 ← DecSig(𝑗∗, {𝜎 𝑗 } 𝑗 ∈𝐾 , 𝑐, 𝜋𝑐)

4.2 Construction based on Adaptor Signatures
In this section we present a concrete construction of VweTS with
parameters 𝜌, 𝑁 and 𝑀 relying on the following cryptographic

building blocks:

(1) Signature scheme DS := (KGen, Sign,Vf) instantiated with BLS

signature scheme (see Appendix B).

(2) Signature scheme DS := (KGen, Sign,Vf) that is either Schnorr
or ECDSA signature schemes (see Appendix B), based on a

group G with generator 𝑔 and order 𝑞.

(3) Witness encryption based on signatures WES := (Enc,Dec)
scheme (see Fig. 2 for a concrete candidate).

(4) An adaptor signature scheme AS := (KGen, Sign,Vf) for the
signature scheme DS. The hard relation 𝑅 for AS is that of the

discrete log relation, where the language is defined as: L𝑅 :=

{𝑌 : ∃𝑦 ∈ Z∗𝑞, s.t . 𝑌 = 𝑔𝑦}.
(5) A NIZK proof (SetupL𝑐

, ProveL𝑐
,VfL𝑐

) for the language

L𝑐 :=

(vk1, vk2,𝑚1,𝑚2, 𝑐1, 𝑐2)

������
∃𝑟 ∈ Z𝑞, s.t .

𝑐1 = WES.Enc((vk1,𝑚1), 𝑟)∧
𝑐2 = WES.Enc((vk2,𝑚2), 𝑟)

where (vk1, ·) and (vk2, ·) are in the support of KGen.

4.2.1 High Level Overview. We present a high level overview of

our construction and the formal description is given in Fig. 4. We

assume the setup algorithm SetupL𝑐
has been executed and the

resulting crs is part of public parameters which also include the

group descriptions of groups G,G0,G1 and G2, the value 𝑞 which

is the order of the group G, a value 𝛾 := 2𝑁𝑀𝐵 where 𝐵 is a

statistical parameter, and the description of the hash function 𝐻2

that is defined in Table 1.

The signature encryption algorithm first generates 𝛾 number of

WES ciphertexts such that ciphertext 𝑐 ′
𝑖
encrypts a random integer

𝑟𝑖 from Z𝑞 wrt. the instance (vk
∗
,𝑚∗). Here vk∗ and𝑚∗ are random

verification key and message, respectively. It also encodes the inte-

ger 𝑟𝑖 in the exponent by setting 𝑅𝑖 := 𝑔𝑟𝑖 . A bucket mapping Φ (as

defined in Table 1) and 𝛾 bit values are generated by applying the

Fiat-Shamir transform using the hash 𝐻2. The algorithm generates

for each 𝑖 ∈ [𝑀] a adaptor pre-signature on the message𝑚𝑖 wrt.

Table 1: Notations used in our construction of VweTS and
their semantics.

Notation

𝐵 ∈ N Bucket size (parameter of cut-and-

choose)

Φ : [𝛾] → [𝑀] × [𝑁] Mapping with 𝛾 := 2𝑁𝑀𝐵

𝐻2 : {0, 1}∗ → 𝐼 Hash function : {0, 1}∗ to 𝐼 such that

𝐼 ∈ ([𝛾] → [𝑀] × [𝑁]) ∪ {0, 1}𝛾

an adaptor instance 𝑌𝑖 whose corresponding witness is 𝑦𝑖 . Each of

the adaptor witness 𝑦𝑖 is further secret shared to generate shares

𝑦𝑖, 𝑗 for 𝑗 ∈ [𝑁], such that the sharing can be verified with the aid

of the group elements 𝑌𝑖, 𝑗 := 𝑔𝑦𝑖,𝑗 .

Now the algorithm performs the cut-and-choose, such that for all

indices 𝑖 ∈ [𝛾] where the bit value from the Fiat-Shamir transform

equals 1, value 𝑟𝑖 and the random coins used to generate the 𝑖-th

WES ciphertext are added in plain to the set Sop. These values are
considered to be opened by the cut-and-choose. On the other hand,

for all indices 𝑖 where the bit value equals 0, the index 𝑖 is mapped

to the bucket (𝛼, 𝛽) using the map Φ. A value 𝑠𝑖 is set to be the

one-time pad of the adaptor witness share 𝑦𝛼,𝛽 and the value 𝑟𝑖 .

A newWES ciphertext 𝑐𝑖 is generated encrypting the same value

𝑟𝑖 as the WES ciphertext 𝑐 ′
𝑖
, but now wrt. the instance (vk𝛽 ,𝑚𝛼),

along with a NIZK proof that the two WES ciphertexts 𝑐𝑖 and 𝑐
′
𝑖

encrypt the same value 𝑟𝑖 . The value 𝑠𝑖 , the ciphertext 𝑐𝑖 and the

associated NIZK proof are added to the set Sunop. These values are
considered to be unopened by the cut-and-choose. The algorithm

outputs all the WES ciphertexts, the two sets Sop and Sunop, the
instance (vk∗,𝑚∗), the group elements 𝑅𝑖 and the adaptor instances

along with the group elements for verifying the witness sharing.

To verify, algorithm VfEnc first checks the correctness of the Fiat-
Shamir transform, and checks the well-formedness of the opened

values in Sop against the WES ciphertexts generated wrt. instance

(vk∗,𝑚∗). It then checks the unopened values in Sunop by applying
the mapping Φ for the corresponding index 𝑖 and checking if the

one-time pad of the value 𝑠𝑖 is consistent by checking the relation

in the exponent. It verifies the NIZK proofs and the pre-signatures

against the corresponding adaptor instances. Finally, it checks if the

adaptor witness sharing was performed correctly with Lagrange

interpolation of the group elements 𝑌𝑖, 𝑗 in the exponent.

To decrypt the 𝑗-th signature, we require at least 𝜌 valid witness

signatures on the instance message𝑚 𝑗 wrt. any 𝜌 verification keys

in (vk𝑖)𝑖∈[𝑁] . For each index 𝑖 in the unopened set Sunop, the
decrypt algorithm DecSig first applies the bucket mapping Φ to

obtain the bucket index (𝛼, 𝛽). It proceeds to decrypt the ciphertext
𝑐𝑖 using the 𝑖-th witness signature, provided the signature is valid

on the instance message𝑚𝛼 wrt. the instance verification key vk𝛽
(where 𝛼 = 𝑗). The decrypted value 𝑟 is added to a set rShare𝛽 .
Notice that it is the case that for many 𝑖 ′ ≠ 𝑖 map to the same value

𝛽 and therefore rShare𝛽 will contain more than one element in it

(more precisely, we will have |rShare𝛽 | = 𝐵).
By the cut-and-choose, we are guaranteed that at least one of

the values 𝑟𝑖,𝑎 ∈ rShare𝑖 is consistent with the check 𝑅𝑎 = 𝑔𝑟𝑖,𝑎 .

7

Public parameters: (G, 𝑔, 𝑞,G0,G1,G𝑇 , 𝛾, 𝐻2, crs)
(𝑐, 𝜋𝑐) ← EncSig(((vk𝑖)𝑖∈[𝑁] , (𝑚 𝑗) 𝑗 ∈[𝑀] , 𝜌), sk, (𝑚 𝑗) 𝑗 ∈[𝑀]):

(1) Sample random vk
∗ ∈ G0 and𝑚∗ ∈ {0, 1}_ , initialize Sop = Sunop = ∅.

(2) For 𝑖 ∈ [𝛾]:
(a) Sample 𝑟𝑖 ← Z𝑞 and compute 𝑅𝑖 := 𝑔𝑟𝑖 .

(b) Compute 𝑐 ′
𝑖

:= WES.Enc((vk∗,𝑚∗), 𝑟𝑖 ; 𝑟 ′𝑖) where 𝑟
′
𝑖
is the random coins used.

(3) Compute {Φ, (𝑏1, . . . , 𝑏𝛾)} := 𝐻2 ((𝑐 ′𝑖 , 𝑅𝑖)𝑖∈[𝛾]).
(4) For 𝑖 ∈ [𝑀]:

(a) Sample 𝑦𝑖 ← Z𝑞 and compute 𝑌𝑖 := 𝑔𝑦𝑖 .

(b) Compute �̂�𝑖 ← AS.pSign(sk,𝑚𝑖 , 𝑌𝑖).
(c) For all 𝑗 ∈ [𝜌 − 1] sample a uniform 𝑦𝑖, 𝑗 ← Z𝑞 and set 𝑌𝑖, 𝑗 := 𝑔𝑦𝑖,𝑗 .

(d) For all 𝑗 ∈ {𝜌, . . . , 𝑁 } compute 𝑦𝑖, 𝑗 =

((
𝑦𝑖 −

∑
𝑘∈[𝜌−1] 𝑦𝑖,𝑘 · ℓ𝑘 (0)

)
· ℓ𝑗 (0)−1

)
, 𝑌𝑖, 𝑗 =

(
𝑌𝑖∏

𝑘∈[𝜌−1] 𝑌
ℓ𝑘 (0)
𝑖,𝑘

)ℓ𝑗 (0)−1

. Here ℓ𝑖 is the

𝑖-th legrange polynomial.

(e) Set Σ1 := (�̂�𝑖 , 𝑌𝑖 , {𝑌𝑖, 𝑗 } 𝑗 ∈[𝑁])𝑖∈[𝑀] .
(5) For 𝑖 ∈ [𝛾]:

(a) If 𝑏𝑖 = 1, then Sop := Sop ∪ {(𝑖, 𝑟𝑖 , 𝑟 ′𝑖)}.
(b) If 𝑏𝑖 = 0:

(i) Let (𝛼, 𝛽) := Φ(𝑖).
(ii) Compute 𝑠𝑖 := 𝑟𝑖 + 𝑦𝛼,𝛽 .
(iii) Compute 𝑐𝑖 := WES.Enc((vk𝛽 ,𝑚𝛼), 𝑟𝑖 ; 𝑟 ′′𝑖) with 𝑟

′′
𝑖
as the random coins and set

𝜋𝑖 ← ProveL𝑐
(crs, (vk𝛽 , vk

∗
,𝑚𝛼 ,𝑚

∗, 𝑐𝑖 , 𝑐 ′𝑖), 𝑟𝑖).
(iv) Set Sunop := Sunop ∪ {(𝑖, 𝑠𝑖 , 𝑐𝑖 , 𝜋𝑖)}.

(6) Return 𝑐 = {𝑐 ′
𝑖
}𝑖∈[𝛾] , 𝜋𝑐 = {Sop,Sunop, vk

∗
,𝑚∗, {𝑅𝑖 , }𝑖∈[𝛾] , Σ1}.

0/1← VfEnc(𝑐, 𝜋𝑐 , ((vk𝑖)𝑖∈[𝑁] , (𝑚 𝑗 ,𝑚 𝑗) 𝑗 ∈[𝑀] , vk)):

(1) Parse 𝑐 as {𝑐 ′
𝑖
}𝑖∈[𝛾] and 𝜋𝑐 as {Sop,Sunop, vk

∗
,𝑚∗, {𝑅𝑖 , }𝑖∈[𝛾] , Σ1} where Σ1 := {�̂�𝑖 , 𝑌𝑖 , {𝑌𝑖, 𝑗 } 𝑗 ∈[𝑁] }𝑖∈[𝑀] .

(2) Compute {Φ, (𝑏1, . . . , 𝑏𝛾)} := 𝐻2 ((𝑐 ′𝑖 , 𝑅𝑖)𝑖∈[𝛾])
(3) For 𝑖 ∈ [𝛾]:

(a) If 𝑏𝑖 = 1, check that (𝑖, 𝑟𝑖 , 𝑟 ′𝑖) ∈ Sop and that 𝑐 ′
𝑖

:= WES.Enc((vk∗,𝑚∗), 𝑟𝑖 ; 𝑟 ′𝑖)
(b) If 𝑏𝑖 = 0:

(i) (𝛼, 𝛽) := Φ(𝑖)
(ii) Check that (𝑖, 𝑠𝑖 , 𝑐𝑖 , 𝜋𝑖) ∈ Sunop
(iii) Check that 𝑔𝑠𝑖 = 𝑅𝑖 · 𝑌𝛼,𝛽
(iv) Check VfL𝑐

(crs, (vk𝛽 , vk
∗
,𝑚𝛼 ,𝑚

∗, 𝑐𝑖 , 𝑐 ′𝑖), 𝜋) = 1

(v) Check that AS.pVf (vk,𝑚𝛼 , 𝑌𝛼 , �̂�𝛼) = 1

(vi) Let 𝑇 be a subset of [𝑁] of size 𝜌 − 1, check that for every 𝑘 ∈ [𝑁] \𝑇 : ∏𝑗 ∈𝑇 𝑌
ℓ𝑗 (0)
𝛼,𝑗

· 𝑌 ℓ𝑘 (0)
𝛼,𝑘

= 𝑌𝛼 .

(c) If any of the checks fail output 0, else output 1.

𝜎 ← DecSig(𝑗, {𝜎𝑖 }𝑖∈[𝐾] , 𝑐, 𝜋𝑐):

(1) Parse 𝑐 as {𝑐 ′
𝑖
}𝑖∈[𝛾] and 𝜋𝑐 as {Sop,Sunop, vk

∗
,𝑚∗, {𝑅𝑖 , }𝑖∈[𝛾] , Σ1} where Σ1 := {�̂�𝑖 , 𝑌𝑖 , {𝑌𝑖, 𝑗 } 𝑗 ∈[𝑁] }𝑖∈[𝑀] .

(2) For all 𝑖 ∈ [𝐾], initialize rShare𝑖 = ∅.
(3) For each (𝑖, 𝑠, 𝑐, 𝜋) ∈ Sunop, compute (𝛼, 𝛽) = Φ(𝑖). If 𝛼 = 𝑗 and if 𝛽 ∈ [𝐾] s.t. DS.Vf (vk𝛽 ,𝑚𝛼 , 𝜎𝑖) = 1)
(a) Compute 𝑟 = WES.Dec(𝜎𝑖 , 𝑐).
(b) Set rShare𝛽 := rShare𝛽 ∪ {𝑟 }.

(4) Denote each 𝑟 in rShare𝑖 as 𝑟𝑖,𝑎 , where (𝑎, 𝑠𝑎, 𝑐𝑎, 𝜋𝑎) ∈ Sunop. We are guaranteed that there exists at least one 𝑟𝑖,𝑎 such that

𝑅𝑎 = 𝑔𝑟𝑖,𝑎 .

(5) For 𝑖 ∈ [𝐾], compute 𝑦 𝑗,𝑖 = 𝑠𝑎 − 𝑟𝑖,𝑎 .
(6) Compute 𝑦 𝑗 :=

∑
𝑖∈[𝐾] 𝑦 𝑗,𝑖 · ℓ𝑖 (0).

(7) Return 𝜎 𝑗 ← AS.Adapt(�̂� 𝑗 , 𝑦 𝑗).

Figure 4: Verifiable witness encryption based on threshold signatures from adaptor signatures.

8

Public parameters: (G0, 𝑔0,G1, 𝑔1, 𝑞,G𝑇 , 𝛾, 𝐻2, crs)
(𝑐, 𝜋𝑐) ← EncSig(((vk𝑖)𝑖∈[𝑁] , (𝑚 𝑗) 𝑗 ∈[𝑀] , 𝜌), sk, (𝑚 𝑗) 𝑗 ∈[𝑀]):

(1) Sample random vk
∗ ∈ G0 and𝑚∗ ∈ {0, 1}_ , initialize Sop = Sunop = ∅.

(2) For 𝑖 ∈ [𝛾]:
(a) Sample 𝑟𝑖 ← Z𝑞 and compute 𝑅𝑖 := 𝑔

𝑟𝑖
0
.

(b) Compute 𝑐 ′
𝑖

:= WES.Enc((vk∗,𝑚∗), 𝑟𝑖 ; 𝑟 ′𝑖) where 𝑟
′
𝑖
is the random coins used.

(3) Compute {Φ, (𝑏1, . . . , 𝑏𝛾)} := 𝐻2 ((𝑐 ′𝑖 , 𝑅𝑖)𝑖∈[𝛾]).
(4) For 𝑖 ∈ [1, 𝑀]:

(a) Compute 𝜎𝑖 = DS.Sign(sk,𝑚𝑖).
(b) For 𝑗 ∈ [𝜌 − 1], sample a uniform 𝑥𝑖, 𝑗 ← Z𝑞 and set 𝜎𝑖, 𝑗 = 𝐻0 (𝑚𝑖)𝑥𝑖,𝑗 and set ℎ𝑖, 𝑗 = 𝑔

𝑥𝑖,𝑗
0

.

(c) For all 𝑗 ∈ {𝑡, . . . , 𝑁 } compute 𝜎𝑖, 𝑗 =

(
𝜎𝑖∏

𝑗∈[𝑡−1] 𝜎
ℓ𝑗 (0)
𝑖,𝑗

)ℓ𝑖 (0)−1

, ℎ𝑖, 𝑗 =

(
vk∏

𝑗∈[𝑡−1] ℎ
ℓ𝑗 (0)
𝑖,𝑗

)ℓ𝑖 (0)−1

.

(d) Set Σ1 = {ℎ𝑖, 𝑗 }𝑖∈[𝑀], 𝑗 ∈[𝑁] .
(5) For 𝑖 ∈ [𝛾]:

(a) If 𝑏𝑖 = 1, do Sop = Sop ∪ (𝑖, 𝑟𝑖 , 𝑟 ′𝑖).
(b) If 𝑏𝑖 = 0:

(i) Let (𝛼, 𝛽) := Φ(𝑖).
(ii) Compute 𝑠𝑖 = 𝜎𝛼,𝛽 · 𝑔𝑟𝑖1 .

(iii) Compute 𝑐𝑖 := WES.Enc((vk𝛽 ,𝑚𝛼), 𝑟𝑖 ; 𝑟 ′𝑖) and 𝜋𝑖 ← ΠL𝑐
.Prove(vk𝛽 , vk

∗
,𝑚𝛼 ,𝑚

∗, 𝑐𝑖 , 𝑐 ′𝑖).
(iv) Set Sunop = Sunop ∪ (𝑖, 𝑐𝑖 , 𝜋𝑖 , 𝑠𝑖).

(6) Return 𝑐 = {𝑐 ′
𝑖
}𝑖∈[𝛾] , 𝜋𝑐 = {Sop,Sunop, vk

∗
,𝑚∗, {𝑅𝑖 }𝑖∈[𝛾] , Σ1}.

0/1← VfEnc(𝑐, 𝜋𝑐 , ((vk𝑖)𝑖∈[𝑁] , (𝑚 𝑗 ,𝑚 𝑗) 𝑗 ∈[𝑀] , vk)):

(1) Parse 𝑐 as {𝑐 ′
𝑖
}𝑖∈[𝛾] and 𝜋𝑐 as {Sop,Sunop, vk

∗
,𝑚∗, {𝑅𝑖 }𝑖∈[𝛾] , Σ1 and Σ1 = {ℎ𝑖, 𝑗 }𝑖∈[𝑀], 𝑗 ∈[𝑁] }}.

(2) Compute {Φ, (𝑏1, . . . , 𝑏𝛾)} := 𝐻2 ((𝑐 ′𝑖 , 𝑅𝑖)𝑖∈[𝛾]).
(3) For 𝑖 ∈ [𝛾]:

(a) If 𝑏𝑖 = 0, check that (𝑖, 𝑟𝑖 , 𝑟 ′𝑖) ∈ Sop and that 𝑐 ′
𝑖

:= WES.Enc((vk∗,𝑚∗), 𝑟𝑖 ; 𝑟 ′𝑖).
(b) If 𝑏𝑖 = 1:

(i) (𝛼, 𝛽) := Φ(𝑖).
(ii) Check that (𝑖, 𝑐𝑖 , 𝜋𝑖 , 𝑠𝑖) ∈ Sunop.
(iii) Check that 𝑒 (𝑔0, 𝑠𝑖) = 𝑒 (𝑅𝑖 , 𝑔1) · 𝑒 (ℎ𝛼,𝛽 , 𝐻0 (𝑚𝛼)).
(iv) Check ΠL𝑐

.Vf (vk𝛽 , vk
∗
,𝑚𝛼 ,𝑚

∗, 𝑐, 𝑐 ′
𝑖
, 𝜋𝑖) = 1.

(v) Let 𝑇 be a subset of [𝑁] of size 𝜌 − 1, check that for every 𝑘 ∈ [𝑁] \𝑇 : ∏𝑗 ∈𝑇 ℎ
ℓ𝑗 (0)
𝛼,𝑗
· ℎℓ𝑘 (0)
𝛼,𝑘

= vk.
(c) If any of the checks fail output 0, else output 1.

𝜎 ← DecSig(𝑗, {𝜎𝑖 }𝑖∈[𝐾] , 𝑐, 𝜋𝑐):

(1) Parse 𝑐 as {𝑐 ′
𝑖
}𝑖∈[𝛾] and and 𝜋𝑐 as {Sop,Sunop, vk

∗
,𝑚∗, {𝑅𝑖 }𝑖∈[𝛾] , Σ1 and Σ1 = {ℎ𝑖, 𝑗 }𝑖∈[𝑀], 𝑗 ∈[𝑁] }}.

(2) Initialize rShare𝑖 = ∅ for 𝑖 ∈ [𝐾].
(3) For each (𝑖, 𝑐𝑖 , 𝜋𝑖 , 𝑠𝑖) ∈ Sunop, compute (𝛼, 𝛽) = Φ(𝑖). If 𝛼 = 𝑗 and 𝛽 ∈ [𝐾] s.t. DS.Vf (vk𝛽 , (𝑚𝛼 , 𝜎𝑖) = 1).
(a) Compute 𝑟 = WES.Dec(𝜎𝑖 , 𝑐𝑖).
(b) rShare𝛽 := rShare𝛽 ∪ {𝑟 }.

(4) It is guaranteed that at least one 𝑟 in each rShare𝑖 is valid. Denote this as 𝑟𝑖,𝑎 , where (𝑎, 𝑐𝑎, 𝜋𝑖 , 𝑠𝑎) ∈ Sunop.
(5) For 𝑖 ∈ [𝐾], compute 𝜎 𝑗,𝑖 = 𝑠𝑎/𝑔𝑟𝑖,𝑎

1
.

(6) Return 𝜎 𝑗 =
∏
𝑖∈[𝐾] 𝜎

ℓ𝑖 (0)
𝑗,𝑖

.

Figure 5: Verifiable witness encryption based on threshold signatures from BLS signatures.

For each 𝑖 ∈ [𝐾], where 𝐾 stores the indices of the 𝜌 valid wit-

ness signatures we have, we obtain the adaptor witness share 𝑦 𝑗,𝑖
using the consistent values 𝑟𝑖,𝑎 from the previous step. We obtain

𝜌 witness shares 𝑦 𝑗,𝑖 using which we can reconstruct the adaptor

witness 𝑦 𝑗 . The signature on the message 𝑚 𝑗 can now be easily

output by adapting the 𝑗-th pre-signature using the witness 𝑦 𝑗 .

In Appendix C, we formally show that our construction satisfies

correctness according to Definition 6.

Security of our construction is formally stated in the following

theorem and the proof is deferred to Appendix D.

9

Theorem 1. Let DS and DS be signature schemes that satisfy un-
forgeability, WES be a secure witness encryption based on signatures
scheme, AS be a secure adaptor signature scheme for the signature
scheme DS and (SetupL𝑐

, ProveL𝑐
,VfL𝑐

) be NIZK proof system for
the languageL𝑐 satisfying zero-knowledge and simulation soundness.
Then the VweTS construction from Fig. 4 is one-way and verifiable
according to Definition 7 and Definition 8, respectively.

Instantiating NIZK Proof for L𝑐 . The NIZK proof essentially

proves that the two WES ciphertexts encrypt the same message. If

we re-use encryption randomness in bothWES ciphertexts [4], then
the NIZK proof essentially reduces to proving a discrete logarithm

relation over G𝑇 .

4.3 Construction based on BLS signatures
In this section we present another concrete construction of VweTS
with parameters 𝜌, 𝑁 and 𝑀 relying on the same cryptographic

building blocks as the previous construction, except that we replace

DS with BLS signature scheme the same as DS.

4.3.1 High Level Overview. We present a high level overview of our

construction and the formal description is given in Fig. 5. Similar to

the adaptor signature based construction, we assume the availability

of public parameters.

The signature generation algorithm proceeds similar to the pre-

vious construction except that instead of generating adaptor pre-

signatures on the message𝑚𝑖 , the algorithm generates BLS signa-

tures on the message𝑚𝑖 wrt. secret key sk. It then secret shares

each of the BLS signatures and for each of their verifiability, the

algorithm also generates the shares of the verification key vk. The
final point of difference is in the cut-and-choose where for the un-

opened indices 𝑖 such that (𝛼, 𝛽) := Φ(𝑖), we set the value 𝑠𝑖 to be

the aggregate of the signature share 𝜎𝛼,𝛽 and the value 𝑔
𝑟𝑖
1
. Rest of

the algorithm proceeds as the adaptor signature based construction.

To verify, the algorithm proceeds as before except now instead

of checking the correctness of adaptor witness sharing, it veri-

fies the correctness of the signature sharing with a simple pairing

check. The decryption algorithm also proceeds as before, except

the difference is obtaining the signature share from 𝑠𝑖 . Recall 𝑠𝑖 is

an aggregate of the signature share and a group element in this

case. Therefore, to obtain the signature share, we divide away the

masking group element and finally reconstruct the required signa-

ture via Lagrange interpolation. In Appendix C, we formally show

that our construction satisfies correctness according to Definition 6.

Security of our construction is formally stated in the following

theorem and the proof is deferred to Appendix E.

Theorem 2. Let BLS signature scheme be unforgeable (DS andDS),
WES be a secure witness encryption based on signatures scheme, and
(SetupL𝑐

, ProveL𝑐
,VfL𝑐

) be NIZK proof system for the language
L𝑐 satisfying zero-knowledge and simulation soundness. Then the
VweTS construction from Fig. 4 is one-way and verifiable according
to Definition 7 and Definition 8, respectively.

5 ORACLE CONTRACTS
We present the interfaces for oracle contracts and we formalize

their security properties, namely unforgeability and verifiability.

Then we present a construction based on VweTS.

Definition 9 (Oracle Contracts). Oracle Contracts is a pro-
tocol parameterized by 𝜌, 𝑁 ,𝑀 ∈ N (s.t. ⌈𝑁

2
⌉ ≤ 𝜌 ≤ 𝑁) and run

among a set of entities: 𝑁 oracles {O1, . . . ,O𝑁 }, and two users Alice
A (signing party) and Bob B (verifying party). The oracle contracts
protocol is defined with respect to the signature scheme ΠBDS :=

(KGen, Sign,Vf) of the transaction scheme of chain C and consists of
five PPT algorithms (OKGen,Attest,AttestVf,Anticipate,AnticipateVf,
Redeem), that are defined below.
• (pkO , skO) ← OKGen(1_): the oracle key generation algorithm
takes as input the security parameter _ and outputs the oracle
public key pkO and the corresponding oracle secret key skO .
• att ← Attest(skO , 𝑜): the event attestation algorithm takes as in-

put oracle’s secret key skO , and the event outcome 𝑜 , and outputs
the outcome attestation att.
• {0, 1} ← AttestVf (pkO , att, 𝑜): the attestation verification algo-

rithm takes as input oracle’s public key pkO , the outcome attesta-
tion att and the outcome 𝑜 , and returns 1 if att attests to 𝑜 being
the outcome the event and 0 otherwise.
• ant ← Anticipate(sk𝐴, (pkO𝑖)𝑖∈[𝑁] , (𝑜 𝑗 , Tx𝑗) 𝑗 ∈[𝑀]): the attesta-
tion anticipation algorithm takes as input the signing party’s secret
key sk𝐴 , oracles’ public keys (pkO𝑖)𝑖∈[𝑁] , and tuples of outcomes
and transactions (𝑜 𝑗 , Tx𝑗) 𝑗 ∈[𝑀] , and outputs the anticipation ant.
• {0, 1} ← AnticipateVf (pk𝐴, ant, (pkO𝑖)𝑖∈[𝑁] , (𝑜 𝑗 , Tx𝑗) 𝑗 ∈[𝑀]): the
anticipation verification algorithm takes as inputs the signing
party’s public key pk𝐴 , the anticipation ant, oracles’ public keys
(pkO

𝑖
)𝑖∈[𝑁] , and tuples of outcomes and transactions (𝑜 𝑗 , Tx𝑗) 𝑗 ∈[𝑀] ,

and outputs 1 if ant is well formed and 0 otherwise.
• 𝜎 ← Redeem(𝑗, (att𝑖)𝑖∈[𝐾] , ant): the redeem algorithm takes as
input an index 𝑗 ∈ [𝑀], attestations (att𝑖)𝑖∈[𝐾] for |𝐾 | = 𝜌 and
𝐾 ⊂ [𝑁], and the anticipation ant. It returns as output a signature
𝜎 on the transaction Tx𝑗 .

Definition 10 (Correctness). : A Oracle Contract scheme is
correct if the following holds simultaneously:
• Honest attestations must verify correctly. If for all _ ∈ N, all
(pkO , skO) ∈ SUPP(OKGen(_)), all outcomes 𝑜 then

𝑃𝑟 [AttestVf (pkO ,Attest(skO , 𝑜), 𝑜) = 1] = 1

• Honestly generated attestation anticipations must verify cor-

rectly. If for all _ ∈ N, all (pkO
1
, . . . , pkO

𝑁
) ∈ SUPP(OKGen(_)),

all (𝐴𝑝𝑘𝑒𝑦,𝐴𝑠𝑘𝑒𝑦) ∈ SUPP(ΠBDS .KGen(_)) all pairs of the form
(𝑜 𝑗 , Tx𝑗) 𝑗 ∈[𝑀] , all ant obtained by rumming Anticipate algorithm
on respective inputs then

𝑃𝑟 [AnticipateVf (pk𝐴, ant, (pkO𝑖)𝑖∈[𝑁] , (𝑜 𝑗 , Tx𝑗) 𝑗 ∈[𝑀]) = 1] = 1

• Honest generated anticipations and attestationsmust be redeemable

by the counter-party. For all _ ∈ N, all set of public keys (pkO
1
, . . . , pkO

𝑁
) ∈

SUPP(OKGen(_)), all (pk𝐴, sk𝐴) ∈ SUPP(ΠBDS .KGen(_)), all
pairs (𝑜 𝑗 , Tx𝑗) 𝑗 ∈[𝑀] , all ant obtained by running Anticipate algo-
rithm on respective inputs, for any 𝑗 ∈ [𝑀], 𝐾 ⊂ [𝑁] and |𝐾 | = 𝜌 ,
if for all 𝑖 ∈ [𝐾] we have AttestVf (pkO

𝑖
, att𝑖 , 𝑜 𝑗) = 1 then

𝑃𝑟 [ΠBDS .Vf (pk𝐴, Tx𝑗 ,Redeem(𝑗, (att𝑖)𝑖∈[𝐾] , ant)) = 1] = 1

We now first introduce the notion of unforgeability. Unforge-

ability means that an adversary cannot redeem a contract on an

10

ExpForge𝜌,𝑁 ,𝑀OC,ΠBDS,A (_)
𝑄1 := 𝑄2 := ∅,𝑄3 := []
(pk𝐴, sk𝐴) ← ΠBDS .KGen(1_)
(𝐶, st

0
) ← A(pk𝐴) // let𝐶 ⊂ [𝑁]

∀𝑖 ∈ [𝑁] \𝐶, (pkO𝑖 , sk
O
𝑖) ← OKGen(1_)

(𝑞∗, 𝜎∗, 𝑗∗) ← AAnticipateO,AttestO,SignO (st
0
, {pkO𝑖 }𝑖∈[𝑁]\𝐶)

(ant, 𝑋) ← 𝑄3 [𝑞∗]
𝑋 := (sk𝐴, (pkO𝑖)𝑖∈[𝑁] , (𝑜 𝑗 , Tx𝑗) 𝑗∈[𝑀])
𝑏0 := ((Tx𝑗 ∗, 𝜎∗) ∉ 𝑄2)
𝑏1 := ((𝑜 𝑗 ∗) ∉ 𝑄1)
𝑏2 := (|𝐶 | ≤ 𝜌 − 1)
𝑏3 := (ΠBDS .Vf (pk𝐴, Tx𝑗 ∗, 𝜎∗) = 1)
return 𝑏0 ∧ 𝑏1 ∧ 𝑏2 ∧ 𝑏3

AnticipateO((𝑜 𝑗 , Tx𝑗) 𝑗 ∈[𝑀] , {pkO𝑖 }𝑖∈𝐶)
𝑋 := (sk𝐴, (pkO𝑖)𝑖∈[𝑁] , (𝑜 𝑗 , Tx𝑗) 𝑗∈[𝑀])
ant ← Anticipate(𝑋)
𝑄3 := 𝑄3 | | (ant, 𝑋)
return ant

AttestO(𝑖, 𝑜)
Ensure 𝑖 ∈ [𝑁] \𝐶,
att𝑖 ← Attest(sk𝑖 , 𝑜)
𝑄1 := 𝑄1 ∪ {𝑜 }
return att𝑖

SignO(Tx)
𝜎 ← ΠBDS .Sign(sk𝐴, Tx)
𝑄2 := 𝑄2 ∪ {Tx, 𝜎 }
return 𝜎

Figure 6: Experiment forUnforgeability ofOracleContracts.

outcome that is different from the winning outcome announced by

the oracles. We express this definition as a formal game between

the adversary and a challenger. The adversary has access to oracles

AnticipateO, AttestO and SignO. We capture this property with a

game in Figure 6.

Definition 11 (Unforgeability). A oracle contract scheme (𝜌 −
𝑁 −𝑀)−OC := (OKGen,Attest,AttestVf,Anticipate,AnticipateVf,
Redeem) parameterized by 𝜌, 𝑁 ,𝑀 ∈ N and defined with respect to a
signature scheme ΠBDS := (KGen, Sign,Vf) is said to be unforgeable
if for all _ ∈ N, there exists a negligible function negl(_), such that
for all PPT adversaries A, the following holds,

Pr

[
ExpForge𝜌,𝑁 ,𝑀OC,ΠBDS,A (_) = 1

]
≤ negl(_)

where ExpForge is defined in Fig. 6.

A second notion of interest in oracle contracts is verifiability.

With verifiability we aim to capture the property that if an anticipa-

tion is correctly computed and verified, a conditional payment on

this anticipation is redeemable by the counter-party except with

negligible probability.

Definition 12 (Verifiability). A oracle contract scheme (𝜌 −
𝑁 −𝑀)−OC := (OKGen, Attest, AttestVf, Anticipate, AnticipateVf,

Redeem) parameterized by 𝜌, 𝑁 ,𝑀 ∈ N and defined with respect to a
signature scheme ΠBDS := (KGen, Sign,Vf) is said to be verifiable if
for all _ ∈ N, there exists a negligible function negl(_), and no PPT ad-
versary A that outputs ((𝑜 𝑗 , Tx𝑗) 𝑗 ∈[𝑀] , pk𝐴, {pkO𝑖 }𝑖∈𝑁 , {att𝑖 }𝑖∈𝐾 ,
𝑗∗, ant) such that all the following holds simultaneously except with
probability negl(_):
(1) 𝐾 ⊂ [𝑁] and |𝐾 | = 𝜌
(2) (pk𝐴, ·) ∈ SUPP(ΠBDS .KGen) and for all 𝑖 ∈ [𝑁] we have
(pkO

𝑖
, ·) ∈ SUPP(OKGen) where SUPP denotes to the support.

(3) ∀𝑖 ∈ 𝐾,AttestVf (pkO
𝑖
, 𝑜 𝑗∗ , att𝑖) = 1

(4) AnticipateVf (pk𝐴, ant, (pkO𝑖)𝑖∈[𝑁]), (𝑜 𝑗 , Tx𝑗) 𝑗 ∈[𝑀]) = 1

(5) ΠBDS .Vf (pk𝐴, Tx𝑗∗ , 𝜎) = 0, where𝜎 ← Redeem(𝑗∗, {att𝑖 }𝑖∈𝐾 , ant)

Finally, we discuss the notion of accountability. With account-

ability we aim to capture the property that, if an oracle attests to

more than one outcome for an event, it can be detected by Alice

and Bob. In case of a dispute between Alice and Bob regarding the

correct outcome (where Alice claims outcome 𝑗 and Bob claims

outcome 𝑗 ′), they are both asked to present 𝜌 valid signatures on 𝑗

and 𝑗 ′. We then distinguish three cases:

(1) Alice fails to present valid signatures on 𝑗 : In this case Alice

is blamed, since she cannot substantiate the outcome with

signatures on behalf of the oracles.

(2) Bob fails to present valid signatures on 𝑗 ′: Analogously, in
this case Bob is blamed.

(3) Both Alice and Bob present enough signatures on both 𝑗 and

𝑗 ′. In this case, there must exist an oracle that signed two

different outcomes for a given event (since 𝜌 > 𝑀/2). In this

case the oracles are blamed. Note that Alice and Bob cannot

frame the oracles without breaking the unforgeability of the

signature scheme of the oracles.

5.1 Our Protocol
In this section we present concrete construction of oracle con-

tracts with parameters 𝜌, 𝑁 and 𝑀 relying on the VweTS crypto-

graphic building block. We set 𝜌 > 𝑁 /2. More precisely, algorithms

OKGen,Attest, and AttestVf are instantiated using the signature

schemeDS := (KGen, Sign,Vf), algorithmsAnticipate,AnticipateVf
andRedeem are instantiated using the verifiable witness encryption

based on threshold signatures schemeVweTS := (EncSig,VfEnc,DecSig)
and the signature scheme ΠBDS := (KGen, Sign,Vf) is mapped to

DS := (KGen, Sign,Vf). The formal description of our construction

is given in Fig. 7

5.2 Security Analysis
In this section, we state the formal security claims we prove in this

work and defer the formal proofs to the Appendix G.

Theorem 3 (Oracle contract unforgeability). Let (𝜌, 𝑁 ,𝑀)-VweTS
be a one-way verifiable witness encryption for threshold signatures
scheme definedwith respect to signature schemesDS := (KGen, Sign,Vf)
and DS := (KGen, Sign,Vf). Then, our protocol is an unforgeable

(𝜌, 𝑁 ,𝑀)-oracle contract protocol defined with respect to the signature
scheme ΠBDS := DS and a transaction scheme of chain C.

Theorem 4 (Oracle contract verifiablity). Let (𝜌, 𝑁 ,𝑀)-VweTS
be a verifiable witness encryption for threshold signatures scheme

11

Oracle Key Generation: Algorithm OKGen(1_) is run by

oracles O𝑖 for 𝑖 ∈ [𝑁], which does the following:

• Sample keys (vk𝑖 , sk𝑖) ← DS.KGen(1_)
• Return (pkO

𝑖
, skO

𝑖
) := (vk𝑖 , sk𝑖).

Event Attestation: Algorithm Attest(skO
𝑖
, 𝑜) is run by the

oracles O𝑖 for 𝑖 ∈ [𝑁], which does the following:

• Parse skO
𝑖

:= sk𝑖
• Generate 𝜎𝑖 ← DS.Sign(sk𝑖 , 𝑜).
• Return att𝑖 := 𝜎𝑖 .

Attestation Verification: Algorithm AttestVf (pkO , att, 𝑜)
does the following:

• Parse pkO
𝑖

:= vk𝑖 and att := 𝜎𝑖

• Check if DS.Vf (vk𝑖 , 𝑜, 𝜎𝑖) = 1

• Return 1 if the above check is successful, and 0 otherwise.

Event Anticipation: Algorithm
Anticipate(sk𝐴, (pkO𝑖)𝑖∈[𝑁] , (𝑜 𝑗 , Tx𝑗) 𝑗 ∈[𝑀]) does the
following:

• Parse sk𝐴 := sk and (pkO
𝑖
)𝑖∈[𝑁] := (vk𝑖)𝑖∈[𝑁]

• Set (𝑐, 𝜋𝑐) ←
VweTS.EncSig(((vk𝑖)𝑖∈[𝑁] , (𝑜 𝑗) 𝑗 ∈[𝑀]), sk, (Tx𝑗) 𝑗 ∈[𝑀])
• Return ant := (𝑐, 𝜋𝑐).
Anticipation Verification: Algorithm
AnticipateVf (pk𝐴, ant, (pkO𝑖)𝑖∈[𝑁] , (𝑜 𝑗 , Tx𝑗) 𝑗 ∈[𝑀]) does the
following:

• Parse ant := (𝑐, 𝜋𝑐), pk𝐴 := vk and

(pkO
𝑖
)𝑖∈[𝑁] := (vk𝑖)𝑖∈[𝑁]

• Check if

VweTS.VfEnc(𝑐, 𝜋𝑐 , ((vk𝑖)𝑖∈[𝑁] , (𝑜 𝑗 , Tx𝑗) 𝑗 ∈[𝑀] , vk)) = 1

• Return 1 if the above check is successful, and 0 otherwise.

Contract Redeem: Algorithm Redeem(𝑗, (att𝑖)𝑖∈[𝐾] , ant)
does the following:

• Parse ant := (𝑐, 𝜋𝑐) and (att𝑖)𝑖∈[𝐾] := (𝜎𝑖)𝑖∈[𝐾]
• Set 𝜎 ← VweTS.DecSig(𝑗, {𝜎𝑖 }𝑖∈[𝐾] , 𝑐, 𝜋𝑐)
• Return 𝜎

Figure 7: Oracle Contracts construction based on VweTS.

defined with respect to signature schemesDS := (KGen, Sign,Vf) and
DS := (KGen, Sign,Vf). Then, our protocol is an verifiable (𝜌, 𝑁 ,𝑀)-
oracle contract protocol defined with respect to the signature scheme
ΠBDS := DS and a transaction scheme of chain C.

6 CONCLUSIONS
In this work, we investigate the problem of oracle contracts that do

not require Turing-complete language or are based on the trusted

execution environment. In particular, we design game-based defini-

tions that model the security properties of oracle contracts and we

propose the first construction with provable security guarantees

that is compatible with many cryptocurrencies today, including

Bitcoin. As a contribution of independent interest, we design an

efficient protocol for witness encryption for the general class of

languages {(vk,𝑚) ∈ L : ∃ 𝜎 s.t. Verify(vk, 𝜎,𝑚) = 1}, where 𝜎 is

a BLS digital signature on𝑚. Moreover, we show extensions to the

threshold setting and how to efficiently prove that the encrypted

message has a certain structure.

REFERENCES
[1] [n.d.]. DeFi Pulse Website. https://www.defipulse.com/.

[2] Arash Afshar, Payman Mohassel, Benny Pinkas, and Ben Riva. 2014. Non-

Interactive Secure Computation Based on Cut-and-Choose. In EUROCRYPT 2014
(LNCS, Vol. 8441), Phong Q. Nguyen and Elisabeth Oswald (Eds.). Springer, Hei-

delberg, Germany, Copenhagen, Denmark, 387–404. https://doi.org/10.1007/978-

3-642-55220-5_22

[3] Lukas Aumayr, Oguzhan Ersoy, Andreas Erwig, Sebastian Faust, Kristina

Hostáková, Matteo Maffei, Pedro Moreno-Sanchez, and Siavash Riahi. 2021. Gen-

eralized channels from limited blockchain scripts and adaptor signatures. In

International Conference on the Theory and Application of Cryptology and Infor-
mation Security. Springer, 635–664.

[4] Mihir Bellare, Alexandra Boldyreva, and Jessica Staddon. 2003. Randomness

Re-use in Multi-recipient Encryption Schemeas. In PKC 2003 (LNCS, Vol. 2567),
Yvo Desmedt (Ed.). Springer, Heidelberg, Germany, Miami, FL, USA, 85–99. https:

//doi.org/10.1007/3-540-36288-6_7

[5] Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. 2012. Foundations of

garbled circuits. In ACM CCS 2012, Ting Yu, George Danezis, and Virgil D. Gligor
(Eds.). ACM Press, Raleigh, NC, USA, 784–796. https://doi.org/10.1145/2382196.

2382279

[6] Dan Boneh and Matthew K. Franklin. 2001. Identity-Based Encryption from

the Weil Pairing. In CRYPTO 2001 (LNCS, Vol. 2139), Joe Kilian (Ed.). Springer,

Heidelberg, Germany, Santa Barbara, CA, USA, 213–229. https://doi.org/10.1007/

3-540-44647-8_13

[7] Dan Boneh, Craig Gentry, Ben Lynn, and Hovav Shacham. 2003. Aggregate

and Verifiably Encrypted Signatures from Bilinear Maps. In EUROCRYPT 2003
(LNCS, Vol. 2656), Eli Biham (Ed.). Springer, Heidelberg, Germany,Warsaw, Poland,

416–432. https://doi.org/10.1007/3-540-39200-9_26

[8] Dan Boneh, Ben Lynn, and Hovav Shacham. 2001. Short Signatures from the

Weil Pairing. In ASIACRYPT 2001 (LNCS, Vol. 2248), Colin Boyd (Ed.). Springer,

Heidelberg, Germany, Gold Coast, Australia, 514–532. https://doi.org/10.1007/3-

540-45682-1_30

[9] Jo Van Bulck, David F. Oswald, Eduard Marin, Abdulla Aldoseri, Flavio D. Garcia,

and Frank Piessens. 2019. A Tale of Two Worlds: Assessing the Vulnerability of

Enclave Shielding Runtimes. In Proceedings of the 2019 ACM SIGSAC Conference
on Computer and Communications Security, CCS 2019, London, UK, November
11-15, 2019, Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang, and Jonathan

Katz (Eds.). ACM, 1741–1758. https://doi.org/10.1145/3319535.3363206

[10] Jan Camenisch and Ivan Damgård. 2000. Verifiable Encryption, Group Encryption,

and Their Applications to Separable Group Signatures and Signature Sharing

Schemes. In ASIACRYPT 2000 (LNCS, Vol. 1976), Tatsuaki Okamoto (Ed.). Springer,

Heidelberg, Germany, Kyoto, Japan, 331–345. https://doi.org/10.1007/3-540-

44448-3_25

[11] Ran Canetti, Abhishek Jain, and Alessandra Scafuro. 2014. Practical UC security

with a Global Random Oracle. In ACM CCS 2014, Gail-Joon Ahn, Moti Yung, and

Ninghui Li (Eds.). ACM Press, Scottsdale, AZ, USA, 597–608. https://doi.org/10.

1145/2660267.2660374

[12] Guoxing Chen, Sanchuan Chen, Yuan Xiao, Yinqian Zhang, Zhiqiang Lin, and

Ten-Hwang Lai. 2020. SgxPectre: Stealing Intel Secrets From SGX Enclaves via

Speculative Execution. IEEE Secur. Priv. 18, 3 (2020), 28–37. https://doi.org/10.

1109/MSEC.2019.2963021

[13] Alfredo De Santis, Silvio Micali, and Giuseppe Persiano. 1987. Non-interactive

zero-knowledge proof systems. In Conference on the Theory and Application of
Cryptographic Techniques. Springer, 52–72.

[14] Nico Döttling, Lucjan Hanzlik, Bernardo Magri, and Stella Wohnig. 2022. McFly:

Verifiable Encryption to the Future Made Practical. Cryptology ePrint Archive
(2022).

[15] Thaddeus Dryja. [n.d.]. Discreet Log Contracts. https://adiabat.github.io/dlc.pdf.

[16] Andreas Erwig, Sebastian Faust, Kristina Hostáková, Monosij Maitra, and Siavash

Riahi. 2021. Two-Party Adaptor Signatures from Identification Schemes. In

PKC 2021, Part I (LNCS, Vol. 12710), Juan Garay (Ed.). Springer, Heidelberg, Ger-

many, Virtual Event, 451–480. https://doi.org/10.1007/978-3-030-75245-3_17

[17] Don Johnson, Alfred Menezes, and Scott Vanstone. 2001. The Elliptic Curve Dig-

ital Signature Algorithm (ECDSA). International Journal of Information Security
1, 1 (01 Aug 2001), 36–63. https://doi.org/10.1007/s102070100002

[18] Nadav Koheh. [n.d.]. Update on DLCs (new mailing list). https://lists.

linuxfoundation.org/pipermail/bitcoin-dev/2021-January/018372.html.

[19] Yehuda Lindell and Ben Riva. 2014. Cut-and-Choose Yao-Based Secure Compu-

tation in the Online/Offline and Batch Settings. In CRYPTO 2014, Part II (LNCS,

12

https://www.defipulse.com/
https://doi.org/10.1007/978-3-642-55220-5_22
https://doi.org/10.1007/978-3-642-55220-5_22
https://doi.org/10.1007/3-540-36288-6_7
https://doi.org/10.1007/3-540-36288-6_7
https://doi.org/10.1145/2382196.2382279
https://doi.org/10.1145/2382196.2382279
https://doi.org/10.1007/3-540-44647-8_13
https://doi.org/10.1007/3-540-44647-8_13
https://doi.org/10.1007/3-540-39200-9_26
https://doi.org/10.1007/3-540-45682-1_30
https://doi.org/10.1007/3-540-45682-1_30
https://doi.org/10.1145/3319535.3363206
https://doi.org/10.1007/3-540-44448-3_25
https://doi.org/10.1007/3-540-44448-3_25
https://doi.org/10.1145/2660267.2660374
https://doi.org/10.1145/2660267.2660374
https://doi.org/10.1109/MSEC.2019.2963021
https://doi.org/10.1109/MSEC.2019.2963021
https://adiabat.github.io/dlc.pdf
https://doi.org/10.1007/978-3-030-75245-3_17
https://doi.org/10.1007/s102070100002
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2021-January/018372.html
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2021-January/018372.html

Vol. 8617), Juan A. Garay and Rosario Gennaro (Eds.). Springer, Heidelberg, Ger-

many, Santa Barbara, CA, USA, 476–494. https://doi.org/10.1007/978-3-662-

44381-1_27

[20] Bowen Liu, Pawel Szalachowski, and Jianying Zhou. 2021. A First Look into

DeFi Oracles. In IEEE International Conference on Decentralized Applications
and Infrastructures, DAPPS 2021, Online Event, August 23-26, 2021. IEEE, 39–48.
https://doi.org/10.1109/DAPPS52256.2021.00010

[21] Claus-Peter Schnorr. 1990. Efficient Identification and Signatures for Smart

Cards. In CRYPTO’89 (LNCS, Vol. 435), Gilles Brassard (Ed.). Springer, Heidelberg,

Germany, Santa Barbara, CA, USA, 239–252. https://doi.org/10.1007/0-387-

34805-0_22

[22] Adi Shamir. 1979. How to share a secret. Commun. ACM 22, 11 (1979), 612–613.

[23] Sam M. Werner, Daniel Perez, Lewis Gudgeon, Ariah Klages-Mundt, Dominik

Harz, and William J. Knottenbelt. 2021. SoK: Decentralized Finance (DeFi). CoRR
abs/2101.08778 (2021). arXiv:2101.08778 https://arxiv.org/abs/2101.08778

[24] Fan Zhang, Ethan Cecchetti, Kyle Croman, Ari Juels, and Elaine Shi. 2016. Town

Crier: An Authenticated Data Feed for Smart Contracts. In Proceedings of the
2016 ACM SIGSAC Conference on Computer and Communications Security, Vienna,
Austria, October 24-28, 2016, Edgar R. Weippl, Stefan Katzenbeisser, Christopher

Kruegel, Andrew C. Myers, and Shai Halevi (Eds.). ACM, 270–282. https://doi.

org/10.1145/2976749.2978326

A MORE PRELIMINARIES
A.1 Adaptor Signatures

Definition 13 (Pre-signature Correctness). An adaptor sig-
nature scheme AS satisfies pre-signature correctness if for every _ ∈ N,
every message𝑚 ∈ {0, 1}∗ and every statement/witness pair (𝑌,𝑦) ∈
𝑅, the following holds:

Pr

pVf (vk,𝑚,𝑌, �̂�) = 1

∧
Vf (vk,𝑚, 𝜎) = 1

∧
(𝑌,𝑦′) ∈ 𝑅

����������
(sk, vk) ← KGen(1_)
�̂� ← pSign(sk,𝑚,𝑌)
𝜎 := Adapt(�̂�, 𝑦)
𝑦′ := Ext(𝜎, �̂�, 𝑌)

= 1.

Next, we formally define the security properties of an adaptor

signature scheme.

Definition 14 (Unforgeability). An adaptor signature scheme
AS is aEUF-CMA secure if for every PPT adversary A there exists a
negligible function negl such that:

Pr

[
aSigForgeA,AS (_) = 1

]
≤ negl(_)

where the experiment aSigForgeA,AS is defined as follows:

Definition 15 (Pre-signature Adaptability). An adaptor sig-
nature scheme AS satisfies pre-signature adaptability if for any _ ∈ N,
any message𝑚 ∈ {0, 1}∗, any statement/witness pair (𝑌,𝑦) ∈ 𝑅, any
key pair (sk, vk) ← KGen(1_) and any pre-signature �̂� ← {0, 1}∗

aSigForgeA,AS (_)
Q := ∅

(sk, vk) ← KGen(1_)

𝑚 ← ASignO(·),pSignO(·,·) (vk)

(𝑌, 𝑦) ← GenR(1_)
�̂� ← pSign(sk,𝑚,𝑌)

𝜎 ← ASignO(·),pSignO(·,·) (�̂�, 𝑌)
return (𝑚 ∉ Q ∧ Vf (vk,𝑚, 𝜎))

SignO(𝑚)
𝜎 ← Sign(sk,𝑚)
Q := Q ∪ {𝑚}
return 𝜎

pSignO(𝑚,𝑌)
�̂� ← pSign(sk,𝑚,𝑌)
Q := Q ∪ {𝑚}
return �̂�

Figure 8: Unforgeabiltiy experiment of adaptor signatures

aWitExtA,AS (_)
Q := ∅

(sk, vk) ← KGen(1_)

(𝑚,𝑌) ← ASignO(·),pSignO(·,·) (vk)
�̂� ← pSign(sk,𝑚,𝑌)

𝜎 ← ASignO(·),pSignO(·,·) (�̂�)
𝑦′ := Ext(vk, 𝜎, �̂�, 𝑌)
return (𝑚 ∉ Q ∧ (𝑌, 𝑦′) ∉ 𝑅
∧ Vf (vk,𝑚, 𝜎))

SignO(𝑚)
𝜎 ← Sign(sk,𝑚)
Q := Q ∪ {𝑚}
return 𝜎

pSignO(𝑚,𝑌)
�̂� ← pSign(sk,𝑚,𝑌)
Q := Q ∪ {𝑚}
return �̂�

Figure 9: Witness extractability experiment for adaptor sig-
natures

with pVf (vk,𝑚,𝑌, �̂�) = 1 we have:

Pr[Vf(vk,𝑚,Adapt(�̂�, 𝑦)) = 1] = 1

Definition 16 (Witness Extractability). An adaptor signa-
ture scheme AS is witness extractable if for every PPT adversary A,
there exists a negligible function negl such that the following holds:

Pr

[
aWitExtA,AS (_) = 1

]
≤ negl(_)

where the experiment aWitExtA,AS is defined as follows

B SIGNATURE SCHEMES
BLS Signatures.Webriefly recall here the BLS signature scheme [8].

Let (G0,G1,G𝑡) be a bilinear group of prime order 𝑞, where 𝑞 is

a _ bit prime. Let 𝑒 be an efficiently computable bilinear pairing

𝑒 : G0 × G1 → G𝑇 , where 𝑔0 and 𝑔1 are generators of G0 and G1

respectively. Let 𝐻 be a hash function 𝐻 : {0, 1}∗ → G1.

• (vk, sk) ← KGen(1_): Choose 𝛼 ← Z𝑞 , set ℎ ← 𝑔𝛼
0
∈ G0 and

output vk := ℎ and sk := 𝛼 .

• 𝜎 ← Sign(sk,𝑚): Output 𝜎 := 𝐻 (𝑚)sk ∈ G1.

• 0/1← Vf (vk,𝑚, 𝜎): If 𝑒 (𝑔0, 𝜎) = 𝑒 (vk, 𝐻 (𝑚)), then output 1 and

otherwise output 0.

Schnorr Signatures.Webriefly recall the Schnorr signature scheme [21],

that is defined over a cyclic groupG of prime order 𝑞 with generator

𝑔, and use a hash function 𝐻 : {0, 1}∗ → Z𝑞 .
• (vk, sk) ← KGen(1_): Choose 𝑥 ← Z𝑞 and set sk := 𝑥 and

vk := 𝑔𝑥 .

• 𝜎 ← Sign(sk,𝑚; 𝑟): Sample a randomness 𝑟 ← Z𝑞 to compute

𝑅 := 𝑔𝑟 , 𝑐 := 𝐻 (𝑔𝑥 , 𝑅,𝑚), 𝑠 := 𝑟 + 𝑐𝑥 and output 𝜎 := (𝑅, 𝑠).
• 0/1 ← Vf(vk,𝑚, 𝜎): Parse 𝜎 := (𝑅, 𝑠) and then compute 𝑐 :=

𝐻 (vk, 𝑅,𝑚) and if 𝑔𝑠 = 𝑅 · vk𝑐 output 1, otherwise output 0.

ECDSA Signatures. The ECDSA signature scheme [17] is defined

over an elliptic curve group G of prime order 𝑞 with base point

(generator) 𝑔. The construction assumes the existence of a hash

function 𝐻 : {0, 1}∗ → Z𝑞 and is given in the following.

• (vk, sk) ← KGen(1_): Choose 𝑥 ← Z𝑞 and set sk := 𝑥 and

vk := 𝑔𝑥 .

• 𝜎 ← Sign(sk,𝑚; 𝑟): Sample an integer 𝑘 ← Z𝑞 and compute

𝑐 ← 𝐻 (𝑚). Let (𝑟𝑥 , 𝑟𝑦) := 𝑅 = 𝑔𝑘 , then set 𝑟 := 𝑟𝑥 mod 𝑞 and

𝑠 := (𝑐 + 𝑟𝑥)/𝑘 mod 𝑞. Output 𝜎 := (𝑟, 𝑠).
13

https://doi.org/10.1007/978-3-662-44381-1_27
https://doi.org/10.1007/978-3-662-44381-1_27
https://doi.org/10.1109/DAPPS52256.2021.00010
https://doi.org/10.1007/0-387-34805-0_22
https://doi.org/10.1007/0-387-34805-0_22
https://arxiv.org/abs/2101.08778
https://doi.org/10.1145/2976749.2978326
https://doi.org/10.1145/2976749.2978326

• 0/1 ← Vf (vk,𝑚, 𝜎): Parse 𝜎 := (𝑟, 𝑠) and compute 𝑐 := 𝐻 (𝑚)
and return 1 if and only if (𝑥,𝑦) = (𝑔𝑐 · ℎ𝑟)𝑠−1

and 𝑥 = 𝑟 mod 𝑞.

Otherwise output 0.

C PROOFS OF CORRECTNESS OF VweTS
Theorem 5. Our VweTS construction from Fig. 4 is correct accord-

ing to Definition 6.

Proof. Let (𝑐, 𝜋𝑐) ← EncSig(((vk𝑖)𝑖∈[𝑁] , (𝑚 𝑗) 𝑗 ∈[𝑀]), sk, (𝑚 𝑗) 𝑗 ∈[𝑀]).
To prove correctness we first need to show that

Pr

[
VfEnc(𝑐, 𝜋𝑐 , ((vk𝑖)𝑖∈[𝑁] , (𝑚 𝑗 ,𝑚 𝑗) 𝑗 ∈[𝑀] , vk)) = 1

]
= 1.

Note that VfEnc will output 0 if one of the following occurs:

(1) If 𝑏𝑖 = 0 and 𝑐 ′
𝑖
≠ WES.Enc((vk∗,𝑚∗), 𝑟𝑖 ; 𝑟 ′𝑖). Provided the

encryption is done correctly, this occurs with zero probabil-

ity.

(2) If 𝑏𝑖 = 1 and 𝑔𝑠𝑖 ≠ 𝑅𝑖 · 𝑌𝛼,𝛽 . Note that by construction we

have 𝑠𝑖 = 𝑟𝑖 + 𝑦𝛼,𝛽 . This implies 𝑔𝑠𝑖 = 𝑔𝑟𝑖 · 𝑔𝑦𝛼,𝛽 = 𝑅𝑖 · 𝑌𝛼,𝛽
and therefore this case never occurs.

(3) If 𝑏𝑖 = 1 and VfL𝑐
(vk𝛽 , vk

∗
,𝑚𝛼 ,𝑚

∗, 𝑐, 𝑐 ′
𝑖
, 𝜋) = 0. By the

completeness of the zero-knowledge protocol this occurs

with zero probability.

(4) If 𝑏𝑖 = 1 and AS.pVf (vk,𝑚𝛼 , 𝑌𝛼 , �̂�𝛼) ≠ 1. Since �̂�𝑖 is com-

puted using𝑚𝑖 and 𝑌𝑖 , by the correctness property of pSign,
it is guaranteed pVf outputs 0 with zero probability.

(5) If 𝑏𝑖 = 1 and

∏
𝑗 ∈𝑇 𝑌

ℓ𝑗 (0)
𝛼,𝑗

·𝑌 ℓ𝑘 (0)
𝛼,𝑘

≠ 𝑌𝛼 for some 𝑘 ∈ [𝑁] \𝑇 .
This case is impossible by construction of the shares 𝑌𝛼,𝑘 for

𝛼 ∈ [𝑀] and 𝑘 ∈ [𝑁].
Thus we have shown that if EncSig is computed correctly, VfEnc

outputs 1 with probability 1.

Next we need to show that for any 𝑗 ∈ [𝑀], 𝐾 ⊂ [𝑁] and |𝐾 | = 𝜌 ,
if for all 𝑖 ∈ 𝐾 we have Vf (vk𝑖 ,𝑚 𝑗 , 𝜎𝑖) = 1, then

Pr

[
Vf

(
vk,𝑚 𝑗 ,DecSig(𝑗, {𝜎𝑖 }𝑖∈𝐾 , 𝑐, 𝜋𝑐)

)
= 1

]
= 1.

We are given that for all 𝑖 ∈ 𝐾 , Vf (vk𝑖 ,𝑚 𝑗 , 𝜎𝑖) = 1. By construc-

tion, we have 𝑁 buckets of size 𝐵 that correspond to the message

𝑚 𝑗 . Denote these buckets as bckt𝑗,1, . . . , bckt𝑗,𝑁 . W.l.o.g. let 𝐾 cor-

respond to the first |𝐾 | of these 𝑁 buckets. And let each bckt𝑗,𝑖
contain ciphertexts 𝑐1, . . . 𝑐𝐵 . For 𝑖 ∈ 𝐾 :

(1) Let rShare𝑖 denote the set of values that are decrypted from

bckt𝑗,𝑖 .
(2) For each 𝑐𝑘 ∈ bckt𝑗,𝑖
(a) Compute 𝑟 = WES.Dec(𝜎𝑖 , 𝑐𝑘)
(b) Update rShare𝑖 = rShare𝑖 ∪ {𝑟 }. By the correctness prop-

erty ofWES we can correctly compute a 𝑟 .

Let each 𝑟 in rShare𝑖 be denoted as 𝑟𝑖,𝑎 for each bckt𝑗,𝑖 . To
each 𝑟𝑖,𝑎 is associated an (𝑎, 𝑠𝑎, 𝑐𝑎, 𝜋𝑎). By construction it is guar-

anteed that 𝑅𝑎 = 𝑔𝑟𝑖,𝑎 . Pick any 𝑟𝑖,𝑎 from the rShare𝑖 . Since by

construction, 𝑠𝑎 = 𝑟𝑖,𝑎 + 𝑦 𝑗,𝑖 (𝑗 is the message number and 𝑖 is

the server number), one can compute 𝑦 𝑗,𝑖 = 𝑠𝑎 − 𝑟𝑖,𝑎 . Since 𝑦 𝑗,𝑖 =((
𝑦 𝑗 −

∑
𝑘∈[𝜌−1] 𝑦 𝑗,𝑘 · ℓ𝑘 (0)

)
· ℓ𝑖 (0)−1

)
by construction, we can com-

pute 𝑦 𝑗 =
∑
𝑖∈𝐾 𝑦 𝑗,𝑖 · ℓ𝑖 (0). Finally, we can adapt the signature �̂� 𝑗

using 𝑦 𝑗 to get 𝜎 𝑗 , and by the correctness of the adaptor signature

AS, the validity of the signature 𝜎 𝑗 is guaranteed. □

Theorem 6. Our VweTS construction from Fig. 5 is correct accord-
ing to Definition 6.

Proof. Let (𝑐, 𝜋𝑐) ← EncSig(((vk𝑖)𝑖∈[𝑁] , (𝑚 𝑗) 𝑗 ∈[𝑀] , 𝜌), sk, (𝑚 𝑗) 𝑗 ∈[𝑀]).
To prove correctness we first need to show that

Pr

[
VfEnc(𝑐, 𝜋𝑐 , ((vk𝑖)𝑖∈[𝑁] , (𝑚 𝑗 ,𝑚 𝑗) 𝑗 ∈[𝑀] , vk)) = 1

]
= 1.

Note that VfEnc will output 0 if one of the following occurs:

(1) If 𝑏𝑖 = 0 and 𝑐 ′
𝑖
≠ WES.Enc((vk∗,𝑚∗), 𝑟𝑖 ; 𝑟 ′𝑖). Provided the

encryption is done correctly, this occurs with zero probabil-

ity.

(2) If 𝑏𝑖 = 1 and 𝑒 (𝑔0, 𝑠𝑖) ≠ 𝑒 (𝑅𝑖 , 𝑔1) · 𝑒 (ℎ𝛼,𝛽 , 𝐻 (𝑚𝛼)). Note that
by construction we have 𝑠𝑖 = 𝜎𝛼,𝛽 · 𝑔𝑟𝑖1 . This implies

𝑒 (𝑔0, 𝑠𝑖) = 𝑒 (𝑔0, 𝜎𝛼,𝛽 · 𝑔𝑟𝑖1)
= 𝑒 (𝑔0, 𝐻0 (𝑚𝛼)𝑥𝛼,𝛽 · 𝑔𝑟𝑖

1
)

= 𝑒 (𝑔0, 𝐻0 (𝑚𝛼)𝑥𝛼,𝛽) · 𝑒 (𝑔0, 𝑔
𝑟𝑖
1
)

= 𝑒 (𝑔𝑥𝛼,𝛽
0

, 𝐻0 (𝑚𝛼)) · 𝑒 (𝑔𝑟𝑖
0
, 𝑔1)

= 𝑒 (ℎ𝛼,𝛽 , 𝐻0 (𝑚𝛼)) · 𝑒 (𝑅𝑖 , 𝑔1)

and therefore this case never occurs.

(3) If 𝑏𝑖 = 1 and ΠL𝑐
.Vf(vk𝛽 , vk

∗
,𝑚𝛼 ,𝑚

∗, 𝑐, 𝑐 ′
𝑖
, 𝜋) = 0. By the

completeness of the zero-knowledge protocol this occurs

with zero probability.

(4) If𝑏𝑖 = 1 and

∏
𝑗 ∈𝑇 ℎ

ℓ𝑗 (0)
𝛼,𝑗
·ℎℓ𝑘 (0)
𝛼,𝑘

= vk. This case is impossible

by construction of the shares of vk for 𝛼 ∈ [𝑀] and 𝑘 ∈ [𝑁].
Thus we have shown that if EncSig is computed correctly, VfEnc

outputs 1 with probability 1.

Next we need to show that for any 𝑗 ∈ [𝑀], 𝐾 ⊂ [𝑁] and |𝐾 | = 𝜌 ,
if for all 𝑖 ∈ 𝐾 we have Vf (vk𝑖 ,𝑚 𝑗 , 𝜎𝑖) = 1, then

Pr

[
Vf

(
vk,𝑚 𝑗 ,DecSig(𝑗, {𝜎𝑖 }𝑖∈𝐾 , 𝑐, 𝜋𝑐)

)
= 1

]
= 1.

We are given that for all 𝑖 ∈ 𝐾 , Vf (vk𝑖 ,𝑚 𝑗 , 𝜎𝑖) = 1. By construc-

tion, we have 𝑁 buckets of size 𝐵 that correspond to the message

𝑚 𝑗 . Let these buckets be denoted as bckt𝑗,1, . . . , bckt𝑗,𝑁 . W.l.o.g.

let 𝐾 correspond to the first |𝐾 | of these 𝑁 buckets. And let each

bucket bckt𝑗,𝑖 contain ciphertexts 𝑐1, . . . 𝑐𝐵 For 𝑖 ∈ 𝐾 :
(1) Let rShare𝑖 denote the set of values that are decrypted from

bckt𝑗,𝑖
(2) For each 𝑐𝑘 ∈ bckt𝑗,𝑖
(a) Compute 𝑟 = WES.Dec(𝜎𝑖 , 𝑐𝑘)
(b) Update rShare𝑖 = rShare𝑖 ∪ 𝑟 . By the correctness property

ofWES we can correctly compute a 𝑟 .

Let each 𝑟 in rShare𝑖 be denoted as 𝑟𝑖,𝑎 for each bckt𝑗,𝑖 . To each

𝑟𝑖,𝑎 is associated an (𝑎, 𝑠𝑎, 𝑐𝑎, 𝜋𝑎). By construction it is guaranteed

that 𝑅𝑎 = 𝑔
𝑟𝑖,𝑎
0

. Pick any 𝑟𝑖,𝑎 from the rShare𝑖 . Since by construction,
𝑠𝑎 = 𝜎 𝑗,𝛽 ·𝑔

𝑟𝑖,𝑎
1

(𝑗 is the message number and 𝛽 is the server number),

one can compute 𝜎 𝑗,𝛽 = 𝑠𝑎/𝑔𝑟𝑖,𝑎
1

.

Since 𝜎 𝑗,𝛽 =

(
𝜎 𝑗∏

𝑖∈[𝑡−1] 𝜎
ℓ𝑗 (0)
𝑗,𝑖

)ℓ𝑖 (0)−1

by construction, one can com-

pute 𝜎 𝑗 =
∏
𝑖∈𝐾 𝜎 𝑗,𝑖 · ℓ𝑖 (0). □

14

D SECURITY ANALYSIS OF VweTS
CONSTRUCTION FROM ADAPTOR
SIGNATURES

Proof of Theorem 1. We first show that the protocol described

in Figure 4 satisfies one-wayness as defined in Definition 7. To

this end, we present a sequence of hybrids starting from the one-

wayness experiment defined in Figure 3.

Hyb
0
: This is the experiment defined in Figure 3.

Hyb
1
: This hybrid is the same as Hyb

0
except that the challenger

guesses 𝑞∗ and 𝑗∗ that are output by the adversary. For the ora-

cle query EncSigO corresponding to 𝑞∗ the random oracle 𝐻2 is

simulated by lazy sampling. A random bit string 𝑏1, . . . , 𝑏𝛾 and

the mapping Φ is sampled and the output of the random oracle

on the ciphertexts 𝑐 ′
𝑖
and 𝑅𝑖 for 𝑖 ∈ [𝛾] is set to (Φ, (𝑏1, . . . , 𝑏𝛾)).

The challenger guesses that the query 𝑞∗ correctly with probability

1

|𝑄3 | .

Hyb
2
: This hybrid is the same asHyb

1
except that in the𝑞∗-th query

to the EncSigO the zero knowledge proofs 𝜋𝑖 are replaced by simu-

lated zero knowledge proofs. By the zero knowledge property of

the underlying NIZK scheme the two hybrids are indistinguishable.

Hyb
3
: This hybrid is the same as Hyb

2
, except that the encryptions

𝑐 ′
𝑖
for which 𝑏𝑖 = 1 are replaced by encryptions of 0. By the IND-

CPA security of the witness encryption scheme (Definition 1) the

two hybrids are indistinguishable. Note that the adversary cannot

know the witness 𝜎 which is a signature on a randomly sampled

message𝑚∗ that can be verified by a randomly sampled key vk
∗
.

Since an adversary cannot efficiently compute sk∗ from vk
∗
the

adversary cannot compute a valid witness.

Hyb
4
: This hybrid is the same as Hyb

3
, except that the encryptions

𝑐𝑖 which are encrypted under vk𝛽 and𝑚𝛼 such that 𝛽 ∈ [𝑁] \𝐶 and

𝛼 = 𝑗∗, are replaced by encryptions of 0. If𝑚∗𝑗 ∈ 𝑄1, then abort. Note

that since the experiment aborts if𝑚∗𝑗 ∈ 𝑄1, the adversary cannot

receive a valid witness (a signature on𝑚∗𝑗 under vk𝛽) to decrypt the
ciphertext 𝑐𝑖 . By the IND-CPA security of the witness encryption

scheme (Definition 1) the two hybrids are indistinguishable. Note

that the challenger correctly guesses the message index 𝑗∗ with
probability

1

|𝑀 | .

Hyb
5
: This hybrid is the same as Hyb

4
, except that �̂�∗

𝑗
is computed

as �̂�∗
𝑗
= AS.pSign(sk,𝑚∗

𝑗
, 𝑌 ∗
𝑗
) where 𝑌 ∗

𝑗
← G0. The shares of 𝑌

∗
𝑗

are computed by randomly sampling 𝑌𝑗∗,𝑘 for 𝑘 ∈ [1, 𝜌 − 1]. For

𝑘 ∈ [𝑝, 𝑁], compute 𝑌𝑗∗,𝑘 =

(
𝑌 ∗𝑗∏

𝑟∈[𝜌−1] 𝑌
ℓ𝑟 (0)
𝑗∗,𝑟

)ℓ𝑘 (0)−1

where ℓ𝑖 is the

𝑖-th lagrange polynomial. The two hybrids are indistinguishable

since the changes are syntactical and the distribution induced is

identical in the two hybrids.

Hyb
6
: This hybrid is the same as Hyb

5
, except that for all 𝑖 such

that Φ(𝑖) = (𝛼, 𝛽) where 𝛼 = 𝑗∗ and 𝛽 ∈ [𝑁] \ 𝐶 the variable 𝑠𝑖

is randomly sampled as 𝑠𝑖 ← Z𝑞 and 𝑅𝑖 is computed as 𝑅𝑖 =
𝑔𝑠𝑖

𝑌𝛼,𝛽
.

The distribution of 𝑅𝑖 and 𝑠𝑖 are identical to the previous hybrid

and therefore they are indistinguishable.

Now we show that one-wayness holds in Hyb
6
. In particular we

show that an adversary that wins the one-wayness experiment can

be used to break the unforgeability property (Definition 14) of the

underlying adaptor signature.

Consider an adversaryA that wins the one-wayness experiment

with non-negligble probability. We now describe another adver-

sary B that uses A to win the unforgeability game of the adaptor

signatures.

Adversary B:
(1) InitializeA and simulate the experiment ExpOWay towards
A.

(2) While simulating EncSigO for query 𝑞∗ and message 𝑚∗,
send𝑚 to the challenger.

(3) Receive �̂� and 𝑌 from the challenger. Simulate the rest of

the protocol as in Hyb
6
where 𝑌 is used instead of randomly

sampling 𝑌 ∗
𝑗
in computing �̂� = AS.pSign(sk,𝑚∗

𝑗
, 𝑌).

(4) Upon receiving any SignO calls forward the calls to the

challenger and return the response to the adversary.

(5) Upon receiving 𝜎 from A, output 𝜎 to the challenger.

It is clear that the

Pr

[
aSigForgeB,AS (_)

]
=

1

|𝑄3 |
1

|𝑀 | Pr

[
ExpOWay𝜌,𝑁

VweTS,DS,DS,A
(_) = 1

]
This implies that Pr

[
ExpOWay𝜌,𝑁

VweTS,DS,DS,A
(_) = 1

]
≤ negl(_)

since we assume that the adaptor signature scheme is EUF-CMA
secure and |𝑄3 | and |𝑀 | are polynomial in the security parameter

_. This concludes our proof of security of one-wayness.

We now prove that the scheme is verifiable according to Defini-

tion 8.We analyze the protocol in the interactive version and the ver-

ifiability must follow from the Fiat-Shamir transformation. Assume

that an adversary A breaks the verifiability of the protocol. This

implies that the adversary outputs ((𝑚 𝑗 ,𝑚 𝑗) 𝑗 ∈[𝑀] , vk, (vk𝑖)𝑖∈[𝑁] ,
(𝜎 𝑗) 𝑗 ∈𝐾 , 𝑗∗, 𝑐, 𝜋𝑐) such that

(1) ∀𝑗 ∈ 𝐾,Vf(vk 𝑗 ,𝑚 𝑗∗ , 𝜎 𝑗) = 1

(2) VfEnc(𝑐, 𝜋𝑐 , ((vk𝑖)𝑖∈[𝑁] , (𝑚 𝑗 ,𝑚 𝑗) 𝑗 ∈[𝑀] , vk)) = 1

(3) Vf(vk,𝑚 𝑗∗ , 𝜎) = 0, where 𝜎 ← DecSig(𝑗∗, {𝜎 𝑗 } 𝑗 ∈𝐾 , 𝑐, 𝜋𝑐)
Now since ∀𝑗 ∈ 𝐾,Vf (vk 𝑗 ,𝑚 𝑗∗ , 𝜎 𝑗) = 1, the adversary is able

to compute some 𝑟 = WES.Dec(𝜎 𝑗 , 𝑐) for every (𝑖, 𝑠, 𝑐, 𝜋) ∈ Sunop
such that Φ(𝑖) = (𝑗∗, 𝑗). This 𝑟 is then added to rShare𝑗 .

Now following Corollary 4.2 of [19] we pick parameters such

that the probability of all 𝑟 in any rShare𝑗 to be invalid is negligible.
More specifically, if the total number of ciphertexts is set to 2𝑀𝑁𝐵,

where 𝐵 = |bckt| and 𝐵 ≥ _
log𝑀𝑁+1 + 1 then the probability of all 𝑟

in any rShare being invalid is negligible.

Since VfEnc outputs 1, this implies that 𝑔𝑠𝑖 = 𝑅𝑖 ·𝑌𝛼,𝛽 . Moreover,

the ciphertexts are well formed except with negligible probability

by the soundness of the NIZK scheme. This implies that the secret

shares 𝑦 𝑗,𝑖 can be computed as 𝑠𝑎 − 𝑟𝑖,𝑎 . Given 𝐾 shares the party is

able to reconstruct to compute𝑦 𝑗 . Finally sinceAS.pVf (vk,𝑚𝛼 , 𝑌𝛼 , �̂�𝛼) =
1 by the pre-signature adaptibility property of AS the party is able

to compute the signature 𝜎 with high probability.

15

□

E SECURITY ANALYSIS OF VweTS
CONSTRUCTION FROM BLS SIGNATURES

Before proceeding with the proof of the theorem we recall the

aggregate extraction problem, as defined in [7]. For a uniformly

sampled bilinear group (G0,G1,G𝑇) with uniformly sampled gen-

erators (𝑔0, 𝑔1), the aggregate extraction problem gives the attacker

the following information

(𝑔0, 𝑔1, 𝑔
𝑟
0
, 𝑔𝑠

0
, 𝑔𝑟+𝑠

1
)

where 𝑟, 𝑠 ←
$
Z𝑞 . The adversary wins if it outputs 𝑔

𝑠
1
. It is not hard

to see that this variant of the problem is as hard as the computa-

tional Diffie-Hellman (CDH) problem. On input (𝑔0, 𝑔1, 𝑋 = 𝑔𝑥
0
),

the reduction samples 𝑦 and set 𝑌 = 𝑔
𝑦

1
. Then it feeds the adver-

sary with (𝑔0, 𝑔1, 𝑋, 𝑔
𝑦

0
/𝑋,𝑌) and returns whatever the adversary

returns. It can be verified that the tuple is identically distributed as

the challenge for the aggregate extraction problem and a solution

immediately yields a solution for the CDH problem.

Proof of Theorem 2. We first show that the protocol described

in Figure 5 satisfies one-wayness as defined in Definition 7. To

this end, we present a sequence of hybrids starting from the one-

wayness experiment defined in Figure 3.

Hyb
0
− Hyb

4
: Defined as in the proof of Theorem 1.

Hyb
5
: This hybrid is the same as Hyb

4
except that for 𝑗∗

(1) For 𝑖 ∈ 𝐶:
(a) Sample a uniform 𝑥𝑖, 𝑗∗ ← Z𝑞
(b) Set 𝜎𝑖, 𝑗∗ = 𝐻0 (𝑚 𝑗∗)𝑥𝑖,𝑗∗

(c) Set ℎ𝑖, 𝑗∗ = 𝑔
𝑥𝑖,𝑗∗
0

(2) For 𝑖 ∈ [𝑁] \𝐶:

(a) Compute ℎ𝑖, 𝑗∗ =

(
vk∏

𝑘∈𝐶 ℎ
ℓ𝑘 (0)
𝑖,𝑘

)ℓ𝑖 (0)−1

(b) Sample 𝑟 ←
$
Z𝑞

(c) Let𝑎 be s.t.Φ(𝑎) = (𝑖, 𝑗∗) compute 𝑠𝑎 = 𝑔𝑟
1
·
(

𝜎𝑖∏
𝑘∈𝐶 𝜎

ℓ𝑘 (0)
𝑖,𝑘

)ℓ𝑖 (0)−1

(d) Set 𝑅𝑎 = 𝑔𝑟
0
.

For the malicious parties (𝑖 ∈ 𝐶) the variables 𝜎𝑖, 𝑗∗ , ℎ𝑖, 𝑗∗ and 𝑠𝑖, 𝑗∗
are computed exactly as in Hyb

4
.

For the honest parties (𝑖 ∈ [𝑁] \𝐶), the variables are computed

such that the distribution of 𝑅𝑖 , 𝑠𝑖 are indistinguishable from the

previous hybrid and ℎ𝑖, 𝑗∗ is computed as in the previous hybrid.

Therefore the two hybrids are indistinguishable.

Now we show that one-wayness holds in Hyb
5
. In particular

we show that an adversary that wins the one-wayness experiment

can be used to solve the aggregate extraction problem. Consider

an adversary A that wins the one-wayness experiment with non-

negligible probability. We now describe another adversary B that

uses A to win the aggregate extraction problem.

Adversary B:
(1) InitializeA and simulate the experiment ExpOWay towards

the adversary as in Hyb
5
.

(2) Upon receiving a challenge (𝐺,𝐻, 𝜎, 𝑔0, 𝑔1) do the following.
For 𝑖 ∈ 𝐶 , do as in Hyb

5
. For 𝑖 ∈ [𝑁] \𝐶:

(a) Sample 𝛼 ← Z𝑞
(b) replace 𝑠𝑎 with 𝜎 · 𝑔𝛼

1

(c) replace ℎ𝑖, 𝑗∗ with 𝐻

(d) replace 𝑅𝑎 with 𝐺 · 𝑔𝛼
0
.

(3) Upon receiving SignO calls simulate the signature by pro-

gramming the random oracle appropriately.

(4) Upon receiving𝜎∗ fromA, compute𝜎 ′ =

(
𝜎∗∏

𝑖∈𝐶 𝜎
𝑙 𝑗∗ (0)
𝑖,𝑗∗

) (𝑙 𝑗∗ (0))−1

and output 𝜎 ′.

Observe that if 𝜎∗ is a valid signature then 𝜎∗ =
∏
𝑖∈[𝐾] 𝜎

ℓ𝑖 (0)
𝑗,𝑖

.

This implies atleast one of the 𝜎 𝑗,𝑖 corresponds to an 𝑖 ∈ [𝑁] \𝐶 .

Now, 𝜎 ′ =

(
𝜎∗∏

𝑖∈𝐶 𝜎
𝑙 𝑗∗ (0)
𝑖,𝑗∗

) (𝑙 𝑗∗ (0))−1

returns 𝜎 ′ = 𝜎 𝑗,𝑖 that corre-

sponds to an 𝑖 ∈ [𝑁] \𝐶
This implies 𝜎 ′ = 𝑠𝑎/𝑔𝑟𝑎

1
for some 𝑎. The reduction playing the

AggExt experiment sets 𝑠𝑎 = 𝑔𝑟+𝑠
1
· 𝑔𝛼

1
and 𝑅𝑎 = 𝑔𝑟

0
· 𝑔𝛼

0
. The latter

implies 𝑟𝑎 = 𝑟 + 𝛼 and therefore 𝜎 ′ = 𝑠𝑎/𝑔𝑟𝑎
1

=
𝑔𝑟+𝑠

1
·𝑔𝛼

1

𝑔𝑟+𝛼
1

= 𝑔𝑠
1

Thus, Pr

[
AggExtA,G0,G1,G𝑇

(_) = 1]
]
= Pr

[
Hyb

5

𝜌,𝑁

VweTS,DS,DS,A
(_) = 1

]
= 1

|𝑄3 |
1

𝑀
Pr

[
ExpOWay𝜌,𝑁

VweTS,DS,DS,A
(_) = 1

]
We now prove that the scheme is verifiable according to Defini-

tion 8.We analyze the protocol in the interactive version and the ver-

ifiability must follow from the Fiat-Shamir transformation. Assume

that an adversary A breaks the verifiability of the protocol. This

implies that the adversary outputs ((𝑚 𝑗 ,𝑚 𝑗) 𝑗 ∈[𝑀] , vk, (vk𝑖)𝑖∈[𝑁] ,
(𝜎 𝑗) 𝑗 ∈𝐾 , 𝑗∗, 𝑐, 𝜋𝑐) such that

(1) ∀𝑗 ∈ 𝐾,Vf(vk 𝑗 ,𝑚 𝑗∗ , 𝜎 𝑗) = 1

(2) VfEnc(𝑐, 𝜋𝑐 , ((vk𝑖)𝑖∈[𝑁] , (𝑚 𝑗 ,𝑚 𝑗) 𝑗 ∈[𝑀] , vk)) = 1

(3) Vf(vk,𝑚 𝑗∗ , 𝜎) = 0, where 𝜎 ← DecSig(𝑗∗, {𝜎 𝑗 } 𝑗 ∈𝐾 , 𝑐, 𝜋𝑐)
Now since ∀𝑗 ∈ 𝐾,Vf (vk 𝑗 ,𝑚 𝑗∗ , 𝜎 𝑗) = 1, the adversary is able

to compute some 𝑟 = WES.Dec(𝜎 𝑗 , 𝑐) for every (𝑖, 𝑠, 𝑐, 𝜋) ∈ Sunop
such that Φ(𝑖) = (𝑗∗, 𝑗). This 𝑟 is then added to rShare𝑗 .

Now following Corollary 4.2 of [19] we pick parameters such

that the probability of all 𝑟 in any rShare𝑗 to be invalid is negligible.
More specifically, if the total number of ciphertexts is set to 2𝑀𝑁𝐵,

where 𝐵 = |bckt| and 𝐵 ≥ _
log𝑀𝑁+1 + 1 then the probability of all 𝑟

in any rShare being invalid is negligible.

Since VfEnc outputs 1, this implies that 𝑒 (𝑔0, 𝑠𝑖) = 𝑒 (𝑅𝑖 , 𝑔1) ·
𝑒 (ℎ𝛼,𝛽 , 𝐻0 (𝑚𝛼)). Moreover, the ciphertexts are well formed except

with negligible probability by the soundness of the NIZK scheme.

This implies that the secret shares 𝜎𝑖, 𝑗∗ can be computed as 𝑠𝑎/𝑔𝑟𝑖,𝑎
1

.

Given 𝐾 shares the party is able to reconstruct to compute 𝜎 𝑗∗ . □

F CONSTRUCTION FOR UNBOUNDED
OUTCOMES

In the protocols described previously, the communication complex-

ity grows polynomially in the number of outcomes. In particular,

this implies that the number of outcomes of a given event must

be bounded by a given polynomial (in the security parameter). In

what follows we outline how to modify our protocol to remove

16

this bound and support an event with an exponential number of

outcomes, without increasing the communication complexity of the

protocol proportionately. The main building block used in the pro-

tocol are garbled circuits (see [5] for a formal treatment of garbled

circuits).

Instead of computing signatures for each outcome and encrypt-

ing separately, Alice now garbles a circuit that does the following:

On input an outcome 𝑗 , it outputs a signature (using Alice’s secret

key) of the corresponding message𝑚 𝑗 . Let {ℓ𝑖,0, ℓ𝑖,1}𝑖∈log(𝐽) be the
labels of the garbled circuits, where 𝐽 is the size of the universe of

outcomes.
1
Alice then uses the scheme described in the previous

section to encrypt each label ℓ𝑖,𝑏 , conditioned on the oracle signing

a message encoding the position 𝑖 and the bit 𝑏. The output of this

algorithm consists of the encryptions of the labels, and the garbled

circuit.

For the oracles, the scheme is defined identically, except that,

on input an event 𝑗 ∈ 𝐽 , each oracle signs separately each bit of

𝑗 = (𝑗1, . . . , 𝑗log(𝐽)) along with an identifier for the position, e.g., it

signs the messages (𝑗1, 1), . . . , (𝑗log(𝐽) , log(𝐽)). To decrypt, Bob can
then use the signatures of the oracles to recover the set of labels

{ℓ𝑖, 𝑗𝑖 }𝑖∈log(𝐽) and use such labels to evaluate the garbled circuit,

which returns a signature on𝑚 𝑗 under Alice’s key.

Note that in the description above we did not consider the verifia-

bility of the encryptions. We require two guarantees of verifiability:

(i) The encryptions are computed correctly and (ii) the garbled cir-

cuits are computed correctly. The first guarantee comes for free

using the scheme described in our previous section. To achieve

the latter, one can resort to known techniques in the literature,

such as cut-and-choose protocols presented in [2, 11]. We leave this

extension as ground for future work.

G SECURITY ANALYSIS OF ORACLE
CONTRACTS

Theorem 7 (Oracle contract unforgeability). Let (𝜌, 𝑁 ,𝑀)-VweTS
be a one-way verifiable witness encryption for threshold signatures
scheme definedwith respect to signature schemesDS := (KGen, Sign,Vf)
and DS := (KGen, Sign,Vf). Then, our protocol is an unforgeable

(𝜌, 𝑁 ,𝑀)-oracle contract protocol defined with respect to the signature
scheme ΠBDS := DS and a transaction scheme of chain C.

Proof. We give a proof by reduction. Let A be a PPT adver-

sary with non-negligible advantage in the ExpForge𝜌,𝑁 ,𝑀OC,ΠBDS,A (_)
game. We now construct and adversary R which usesA to win the

ExpOWay𝜌,𝑁 ,𝑀
VweTS,DS,DS,A

(_) game.

R is given a verification key vk by the ExpOWay𝜌,𝑁 ,𝑀
VweTS,DS,DS,A

(_)
game. It then runs A on input pk𝐴 := vk to get as output a pair

(𝐶, st
0
). R forwards the same pair to the challenger.

On input st
0
, {vk𝑖 }𝑖∈[𝑁]\𝐶 ,R sets {pkO

𝑖
}𝑖∈[𝑁]\𝐶 := {vk𝑖 }𝑖∈[𝑁]\𝐶

and invokes A get the tuple (𝑞∗, 𝑗∗, 𝜎∗). The reduction R simply

forwards this tuple to the challenger as the output of the game.

Additionally, R must simulateA’s oracle access to AnticipateO,
AttestO and SignO. This can be trivially done as follows. Every time

that A queries AnticipateO on input (𝑜 𝑗 , Tx𝑗) 𝑗 ∈ [𝑀], {pkO𝑖 }𝑖∈𝐶 ,
R queries its own oracle EncSigO on the same input and forwards

1
E.g., setting 𝐽 = 2

_
gives us an exponential size universe of outcomes.

the output. Every time that A queries AttestO on input 𝑖, 𝑜 , R
queries SignO on input the same input 𝑖, 𝑜 and return the attestation

att𝑖 to A. Finally, every time that A queries SignO, R forwards

the query to its own SignO and returns the output signature 𝜎 to

A.

After A returns the tuple (𝑞∗, 𝑗∗, 𝜎∗) as the forgery for the un-

forgeability game of oracle contracts, R outputs (𝑞∗, 𝑗∗, 𝜎∗) as the
output of its own game. It is easy to see that R is an efficient al-

gorithm and that faithfully simulates the view of A. It is left to

show that R wins its game with the same probability asA wins its

corresponding game. For that, we observe the following:

• 𝑏0: Q2 is updated in the same way in both games. Moreover

R simply forwards calls from A to its own oracle, therefore

if 𝑏0 holds for A, it holds in R
• 𝑏1: It holds in R by the same argument as before but applied

to the oracle SignO.
• 𝑏2: This is exactly the same condition in both games. More-

over, 𝐶 is a value received from A and unmodified by R.
Therefore, it must hold for R if it holds for A.

• 𝑏3: Our R maps pk𝐴 to vk and Tx𝑗∗ to𝑚 𝑗∗ during the reduc-

tion. Therefore, the condition is the same in both games and

must hold in both.

Therefore, by assumption,A succeeds with non-negligible prob-

ability, and thus R also wins with non-negligible probability. This

violates the assumption that (𝜌, 𝑁 ,𝑀)-VweTS be a one-way verifi-

able witness encryption for threshold signatures scheme, implying

that no such adversary A can exist. □

Theorem 8 (Oracle contract verifiablity). Let (𝜌, 𝑁 ,𝑀)-VweTS
be a verifiable witness encryption for threshold signatures scheme
defined with respect to signature schemesDS := (KGen, Sign,Vf) and
DS := (KGen, Sign,Vf). Then, our protocol is an verifiable (𝜌, 𝑁 ,𝑀)-
oracle contract protocol defined with respect to the signature scheme
ΠBDS := DS and a transaction scheme of chain C.

Proof. We give a proof by reduction. LetA be a PPT adversary

that can break the verifiablity of our (𝜌, 𝑁 ,𝑀)-oracle contract pro-
tocol non-negligible probility. We now construct and adversary R
which uses A to break the verifiablity of (𝜌, 𝑁 ,𝑀)-VweTS.

Our reduction R maps (𝑚 𝑗 ,𝑚 𝑗) 𝑗 ∈[𝑀] to (𝑜 𝑗 , Tx𝑗) 𝑗 ∈[𝑀] , vk to

pk𝐴 , (vk𝑖)𝑖∈[𝑁] to {pkO𝑖 }𝑖∈[𝑁] , (𝜎 𝑗) 𝑗 ∈𝐾 to {att𝑖 }𝑖∈𝐾 , 𝑗∗ to 𝑗∗ and
(𝑐, 𝜋𝑐) to ant.

AfterA returns the tuple ((𝑜 𝑗 , Tx𝑗) 𝑗 ∈[𝑀] , pk𝐴, {pkO𝑖 }𝑖∈𝑁 , {att𝑖 }𝑖∈𝐾 ,
𝑗∗, ant) that breaks the verifiability of oracle contracts, R outputs

((𝑚 𝑗 ,𝑚 𝑗) 𝑗 ∈[𝑀] , vk, (vk𝑖)𝑖∈[𝑁] , (𝜎 𝑗) 𝑗 ∈𝐾 , 𝑗∗, 𝑐, 𝜋𝑐) as the output of
its own game. It is easy to see that R is an efficient algorithm and

that faithfully simulates the view of A. Finally, we see that the

conditions in both definitions are exactly the same and as a conse-

quence they all must hold for R if they hold for A. Hence, R wins

with the same probability as A.

Therefore, by assumption,A succeeds with non-negligible prob-

ability, and thus R also wins with non-negligible probability. This

violates the assumption that (𝜌, 𝑁 ,𝑀)-VweTS be a verifiable wit-
ness encryption for threshold signatures scheme, implying that no

such adversary A can exist. □

17

	Abstract
	1 Introduction
	2 Technical Overview
	3 Preliminaries
	4 Verifiable Witness Encryption Based on Threshold Signatures
	4.1 Definitions
	4.2 Construction based on Adaptor Signatures
	4.3 Construction based on BLS signatures

	5 Oracle Contracts
	5.1 Our Protocol
	5.2 Security Analysis

	6 Conclusions
	References
	A More Preliminaries
	A.1 Adaptor Signatures

	B Signature schemes
	C Proofs Of Correctness of VweTS
	D Security Analysis of VweTS Construction from Adaptor Signatures
	E Security Analysis of VweTS Construction From BLS Signatures
	F Construction for unbounded outcomes
	G Security Analysis of Oracle Contracts

