
Practical Decentralized Oracle Contracts for Cryptocurrencies
Varun Madathil

North Carolina State University

vrmadath@ncsu.edu

Sri AravindaKrishnan

Thyagarajan

Carnegie Mellon University

t.srikrishnan@gmail.com

Dimitrios Vasilopoulos

IMDEA Software Institute

dimitrios.vasilopoulos@imdea.org

Lloyd Fournier

Independent Researcher

lloyd.fourn@gmail.com

Giulio Malavolta

Max Planck Institute for Security and

Privacy

giulio.malavolta@hotmail.it

Pedro Moreno-Sanchez

IMDEA Software Institute

pedro.moreno@imdea.org

ABSTRACT
The lack of data feeds about real-world events happening “outside”

of the blockchain environment is a critical obstacle to the devel-

opment of smart contracts. This has motivated the introduction of

trusted identities, the so-called “Oracles”, that attest the information

about real-world events into the blockchain. This enables mutually

distrustful parties to establish contracts based on said events.

Previous proposals for oracle-based contracts rely either on

Turing-complete smart contracts or on trusted hardware. While

the latter imposes an additional trust assumption, the former relies

on a Turing-complete language to write the complete data feed on-

chain, imposing thus an undesirable on-chain storage overhead and

being incompatible with many popular cryptocurrencies that do

not support Turing-complete language such as Bitcoin. Moreover,

no proposal so far comes with provable cryptographic guarantees.

In this work, we lay the foundations of oracle contracts for

cryptocurrencies. We present game-based definitions that model

the security properties of oracle contracts, and we propose the

first construction with provable security guarantees. Moreover, our

construction does not incur any additional on-chain overhead and is

compatible with all cryptocurrencies. Finally, our evaluation shows

that our construction is practical even in commodity hardware.

As a contribution of independent interest, we show an effi-

cient construction of witness encryption for the class of languages:

{(vk,𝑚) ∈ L : ∃ 𝜎 s.t. Verify(vk, 𝜎,𝑚) = 1} where 𝜎 is a BLS sig-

nature on𝑚. We show how this can be efficiently extended to the

threshold settings (allowing the distribution of trust among several

“Oracles”) and how to prove that the encrypted message has a cer-

tain structure (e.g., it is itself a valid signature on some message).

To guarantee the latter in a practically efficient manner, we develop

a new batching technique for cut-and-choose, inspired by the work

of Lindell-Riva on garbled circuits.

1 INTRODUCTION
From their inception, blockchain-based cryptocurrencies have pro-

vided a mean for payments governed by a consensus protocol exe-

cuted by mutually distrusting parties located worldwide. Less than

15 years later, they have evolved and offer a complex financial ar-

chitecture, the so-called Decentralized Finance (DeFi), that includes

components to support lending, decentralized exchange of assets,

markets of derivatives, among others [28].

In principle, the most compelling applications of smart con-

tracts are inherently limited, since they require access to data

about state of the real-world state and events that are external

to the blockchain [20]. For instance, it might be necessary for a

smart contract implementing a decentralized exchange across dif-

ferent currencies to have access to information about up-to-date

exchange rates to carry out the exchanges weighted accordingly.

Oracles (also known as data feeds) aim to meet this need. In fact,

many of Ethereum-based DeFi applications rely at its core on oracle

based contracts [1]. For example, active outstanding loans from

only four open lending contracts (MakerDAO, Fulcrum, dYdX, and

Compound) that use oracle services, are worth above $200 mil-

lion [24]. Moreover, there exist companies such as Chainlink whose

business model consists on offering the oracle service to current

and future smart contracts.

In a nutshell, the functionality of an oracle is that it attests the

information about real-world events into the blockchain so that

other smart contracts can perform operations accordingly. In the

simplest form, say there are three mutually distrusting parties in

the oracle-based contract process: Alice, and Bob, the contract

counterparties and Olivia, the oracle. Alice and Bob make and

execute today a smart contract whose payout is defined by the

outcome of a real world event in the future. After the event happens,

Olivia attests the outcome of the event to the smart contract and the

corresponding user (either Alice or Bob) gets paid. The realization

of this vision, however, poses a number of technical challenges,

most notably, unforgeability and verifiability.
An oracle contract that provides unforgeability must ensure that

Bob does not get the payout of the contract before Olivia provides

the corresponding attestation. Additionally, an oracle contract pro-

vides verifiability if after Alice sets up the contract with Bob, the

latter is guaranteed that he will get a payout from it if Olivia attests

the corresponding event correctly.

Related Work. Existing approaches can roughly be grouped in

three trends. The first one consists in including the operation logic

of Alice, Bob, and Olivia in a smart contract that controls the

complete lifecycle. While this approach is already used in prac-

tice [24, 28], it suffers from several drawbacks: (i) it is tailored to

the characteristics offered by a restricted set of currencies (e.g., those
supporting Turing-complete scripting languages); (ii) it hinders scal-
ability since the complete operation logic as well as attestation data

is stored on the blockchain; (iii) it hampers fungibility since an

oracle contract is trivially distinguishable from other contracts by

a blockchain observer.

1

A second approach was proposed by Zhang et al. [29] where the

functionality of Olivia within the oracle contract is executed within

a trusted execution environment (TEE). This approach provides the

correctness guarantee of the data attested by Olivia. However, this

approach suffers from the same drawbacks as mentioned above, as

the rest of the functionality (including the verification of the attested

data provided by the TEE) is executed within a smart contract as

before. Moreover, this approach adds a trust assumption on the

TEE which it is unclear to hold in practice [10, 13] and it is against

the decentralization philosophy of blockchains to start with.

A somewhat different approach was initiated by the name of

Discreet Log Contracts [17] and put forward by the Bitcoin commu-

nity [22]. A Discreet Log Contract (DLC) is a Bitcoin-compatible

oracle contract enabling transactions from Alice to Bob to be con-

tingent on signatures published by Olivia. This approach is promis-

ing because (i) it requires only an adaptor-compatible signature

scheme [4] such as ECDSA or Schnorr and a timelock function-

ality from the underlying blockchain, which is available in many

cryptocurrencies today; (ii) it requires storing on the blockchain

only a signed transaction from Alice to Bob (not even the signed

message from Olivia), thereby minimizing the on-chain overhead,

associated fee cost and helping to preserve the fungibility of the

cryptocurrency.

However, none of the previous approaches provide a formal

description of the oracle contract problem along with the security

notions of interest. This is the gap that we aim to bridge in this

work. We also provide practically efficient constructions that can

be used across any currency.

1.1 Our Contributions
Our contributions can be summarized as follows:

• We formally define the notion of oracle contracts for cryptocur-

rencies. We provide a formal model with game-based security

definitions that model the properties of interest for this new

primitive. We also propose an efficient construction and formally

prove its security. Our protocol is the first one that comes with

provable guarantees, while being more versatile and capturing

more application scenarios, whilst simultaneously overcoming

the compatibility and scalability issues with state-of-the-art ap-

proaches (more details in Section 1.2)

• As our main building block, we present a new cryptographic

primitive of verifiable witness encryption based on threshold signa-
tures (VweTS): VweTS allow one to (verifiably) encrypt a message

that can be decrypted using (any set of a minimum number of)

witness signatures on an instance message. Moreover, the en-

crypted message is itself a valid signature, which in the case of

oracle contracts is a valid signature on a transaction. We provide

formal definitions for VweTS, along with 2 efficient construc-
tions: (1) where the signature scheme used to sign transactions is

an adaptor-based signature scheme like Schnorr or ECDSA and

(2) where the signature scheme is the BLS signature scheme. In

both of our constructions, the witness signatures are BLS signa-

tures. For efficient verifiability, we combine techniques from the

Camenish-Damgård cut-and-choose approach [11] along with the

batching technique of Lindell and Riva [23], originally developed

to optimize garbled circuit computations over many executions.

• We provide a prototype implementation of VweTS and evaluate

how the running time and the communication overhead is af-

fected by the system parameters such as the security parameter,

the oracle threshold setting as well as the number of possible out-

comes of an event. Our evaluation shows that our construction is

practical to be executed even in commodity hardware. Moreover,

our evaluation shows that our approach is faster than current

DLC when considering an increasing number of oracles.

1.2 Concurrent Work and Comparison
Concurrent to this work, Döttling et al. [16] proposed a witness

encryption similar to ours for the same class of languages, although

in a completely different context. Their main application is to lever-

age the blockchain to do timed encryption, where if the blockchain

reaches a certain height and a committee of validators attests a

block, a ciphertext can be decrypted. In contrast to ours, their work

is not concerned about the structure of the encrypted message.

The technical crux of our paper is to efficiently prove the structure

of the encrypted message (specifically, that it consists of a valid

signature on a given message), for which we rely on new batching

techniques for cut-and-choose.

A solution for oracle contracts was proposed by Dryja [17], how-

ever it comes with a number of shortcomings: (i) It only supports

a single oracle and only a constant amount of oracle outcomes.

This leads to single point of failure, and it is unclear how one can

extend their protocol to a setting with multiple oracles and a dis-

tributed trust, without assuming some sort of coordination among

the oracles. Also, (ii) the protocol in [17] requires a synchronous

communication between the oracle and Alice, where the oracle

has to announce some secret value periodically which Alice uses

in her promises to Bob. Furthermore, (iii) the oracle attestation is

strongly tied to the signature scheme of the transaction scheme

used by Alice and Bob. Finally, (iv) their solution is not formally

analyzed and in fact a number of attacks have been subsequently

discovered [25].

On the other hand, ourVweTS-based solution supports distributed
trust using the threshold setting with many independent oracles

who need not interact with each other at any point in time. In our

framework, there is no communication between the oracles and

Alice prior to her promises to Bob. This, for example, allows for

Alice to make several promises of payments that can be scheduled

for the future, like a monthly Netflix subscription, monthly utility

payments or salaries to employees. With the solution from [17],

Alice had to wait for the communication from the oracles every

time before making a promise and therefore cannot schedule pay-

ments for the future. The oracle attestation in our oracle contracts

is independent of the authentication mechanism, i.e., the signature

scheme of the transaction scheme. This makes our solution more

versatile to different currencies.

2 TECHNICAL OVERVIEW
To establish some intuition for our problem, we consider the setting

where Alice, with a key pair (sk𝐴, vk𝐴) of a digital signature DS,
wants to transfer 𝑣 coins to Bob in a transaction tx, if a certain

real world event (represented by the message 𝑚) is attested by

Olivia, with a key pair (sk𝑂 , vk𝑂) of a digital signatureDS (possibly
2

OUTPUT TRANSACTION

O1 Tx1
… …
ON TxN

("#$%&%'($), +, ,!)

(+, ,!) = /0)12. 4#&2%5
OP
…

…

…

TX
…

…

…

, 2%5"#$%&

Owin6 = 2%5 ("$$)7$, 8'$(, σ) /0)12. :)&2%5(+, ,! , σ)

!"#!"#$% Txwin

Verify that

/0)12. /;4#&
OP

…

…

…

TX
…

…

…

+, ,! = 1

1

2

3

4

(<)=))>)

Figure 1: Overview: 1 Alice computes a signature on each transaction that corre-
sponds to a different output. These transactions are then encrypted using a verifiable wit-
ness encryption, where thewitness is a signature on the corresponding output. Alice sends
these ciphertexts to Bob. 2 Bob verifies that the encryption is computed correctly. 3 An
oracle provides a signature on the winning outcome to Bob 4 Bob decrypts the corre-
sponding ciphertext to get the signed transaction for the corresponding outcome.

!"#$%& '!, '", '#, %&) *$ = , %!
-.#$/)& 0$ = 12!. 240 56&, ./) , '$
7&) 110 = :(0!, 0", 0#, *!, *", *#)
-.#$/)& => = $?@,4 ?6',)A, B "4C D = ,(
7&) !)* = {'!, '"} "4C !+,)* = {?#= '# + B}

(?6&, 56&)

*!, *", *#, 0!, 0", 0#, D, !)*, !+,)*

ENCRYPTION (HIJKL. MNOLPQ)

VERIFICATION (HIJKL. HRMNO)
-.#$/)& 110 =

:(0!, 0", 0#, *!, *", *#)
S.' @ ∈ 1,2 0ℎ&06:

0$ = 12!. 240(56&, ./) , '$)
-ℎ&06 , -" = *#D
-ℎ&06 $XY 56, Z>, D = 1DECRYPTION WITNESS GEN

(?6, 56)

-.#$/)& >& = !@,-.#(./))
>& DECRYPTION (HIJKL.[JOLPQ)

-.#$/)& '# = 12!.\&0(>&, 0#)
-.#$/)& B = ?# − '#
-.#$/)& > = ^C"$)(=>, B)

1

2

3

4

Figure 2: Example of VweS: 1 Alice encrypts three random values, and the (non-
interactive) cut-and-choose directs Alice to open indices 1 and 2. Alice computes 𝑠3 = 𝑟3+𝑦,
where 𝑦 is the witness required to adapt 𝜎̂ to𝜎 . 2 Bob is able to verify that the encryption
in indices 1 and 2 were computed correctly. By the cut and choose guarantee, the BF-cipher
𝑐3 is also computed correctly. Moreover, the sym-sipher is also verified by checking 𝑔𝑠3 =

𝑅3𝑌 3 The oracle provides a witness - 𝜎0 . 4 Bob uses this signature and decrypts 𝑐3 to
get 𝑟3 . He can then compute 𝑦 = 𝑠3 − 𝑟3 and then uses 𝑦 to adapt 𝜎̂ to get 𝜎

different to DS). To keep things simple, we assume that Olivia is

honest (we will remove this assumption later). One trivial solution

is to resort to the notion of witness encryption [19]: Alice can create

a ciphertext that includes 𝜎 ← Sign(sk𝐴, tx) and that can only be

decrypted if Bob has a witness (i.e, 𝜎) of the NP statement:{
∃ 𝜎 s.t . Vf (vk𝑂 ,𝑚, 𝜎) = 1

}
i.e., Bob knows a valid signature on𝑚. While this solution would

work theoretically, i.e., it would prevent Bob from getting the 𝑣

coins if Olivia does not attest𝑚, there are two main issues: (i) For

starters, general purpose constructions of witness encryption are

prohibitively expensive. Second, (ii) Bob needs to trust Alice that

the ciphertext contains a valid signature 𝜎 . The central challenge of

our work is to build an efficient protocol that guarantees verifiability
of Alice’s ciphertexts. See Figure 1 for an overview of our scheme.

Efficient Witness Encryption for Signatures. Our first obser-
vation is that the Boneh-Franklin (BF) identity-based encryption [7]

can be thought of as a witness encryption scheme for a particular

language. Recall that a key for an identity id in the BF scheme

consists of a group element 𝐻 (id)𝑠 , where 𝑠 is the master secret

key. Furthermore, anyone can encrypt with respect to id, in such a

way that the ciphertext can only be decrypted using 𝐻 (id)𝑠 as the
secret key. We observe that this is exactly the same structure that

BLS [9] signatures have! Substituting identities id with messages𝑚,

we can now compute ciphertexts that can only be decrypted know-

ing a signature on𝑚 (which is exactly 𝐻 (𝑚)𝑠). This yields a very
efficient witness encryption scheme for the language of interest,

provided that 𝐷𝑆 is instantiated using the BLS signature scheme.

Recall however that our goal is to let Alice encrypt a signature 𝜎

on tx using DS, in a verifiable manner. We discuss how to address

this challenge next.

Encrypting Adaptor Signatures. To understand our solution, it

is useful to recall the notion of an adaptor signature (AS) [4]. In

brief, AS allows Alice to generate a pre-signature 𝜎̂ on tx, which
is a verifiable encryption of a signature 𝜎 wrt. an NP statement

{𝑌 | 𝑌 := 𝑔𝑦} where 𝑦 is referred to as the witness and 𝑔 is the

generator of a cyclic group G. With this tool at hand, Alice can:

(i) create a pre-signature 𝜎̂ on tx using a statement 𝑌 previously

agreed with Bob; (ii) use the BF-based witness encryption scheme

mentioned above to encrypt 𝑦 into ciphertext 𝑐 for the identity

(vk𝑂 ,𝑚); (iii) send 𝜎̂ and 𝑐 to Bob. As soon as Olivia attests the

event𝑚 by publishing a BLS signature with her key sk𝑂 , Bob can
use the signature to extract 𝑦 from 𝑐 , and then use 𝑦 to extract 𝜎

from 𝜎̂ .

VerifiableWitness Encryption.To achieve verifiability efficiently,

we adopt ideas from the cut-and-choose technique used in the verifi-

able encryption scheme of Camenisch et al. [11]. In a nutshell, Alice

computes a pre-signature on the message as before and instead

of generating a single BF ciphertext (BF-cipher), Alice generates 𝜆
(security parameter) tuples (BF-cipher, sym-cipher). Each BF-cipher
contains a BF ciphertext that encrypts a random integer 𝑟𝑖 for the

identity (vk𝑂 ,𝑚). In other words, Alice uses the same BF-based

witness encryption as explained before to encrypt a random in-

teger, instead of the adaptor witness 𝑦. Each sym-cipher is set to
(𝑠𝑖 = 𝑟𝑖 + 𝑦), where 𝑦 is the witness for the statement 𝑌 of AS and

𝑟𝑖 is the random integer encrypted in BF-cipher at index 𝑖 . Also,
for all 𝑖 , Alice computes 𝑅𝑖 = 𝑔𝑟𝑖 . At this point, Alice sends the

𝜆-many BF-cipher𝑖 , the 𝜆-many 𝑅𝑖 and the statement𝑌 of AS to Bob.

Intuitively, in this step, Alice commits to her setup of the cut-and-

choose. After receiving this information, Bob randomly samples
1

𝜆/2 pairs, for which Alice exposes the corresponding values 𝑟𝑖 and

the random coins used to encrypt 𝑟𝑖 in BF-cipher𝑖 to Bob. For the

other non-selected 𝜆/2 pairs, Alice sends sym-cipher to Bob. The

key question left, is to understand why this information would

convince Bob of the fact that he will be able to get the signature 𝜎

after Olivia attests𝑚. To see that, Bob checks:

• For all 𝑖 ∈ [𝜆/2] not selected by Bob, 𝑔𝑠𝑖 ?

= 𝑔𝑟𝑖 ·𝑌 , intuitively
checking that all sym-cipher are correctly encrypting the

value 𝑦 using the randomness 𝑟𝑖 as symmetric key of the

one-time pad;

1
This can be made non-interactive applying the Fiat-Shamir transformation.

3

• For all 𝑗 ∈ [𝜆/2] chosen by Bob, recompute the BF ciphertext

of 𝑟 𝑗 with random coins and check if it is the same as sent

by Alice.

If all these checks pass, Bob is guaranteed that there exists at least

one well-formed BF ciphertext among those 𝜆/2 not opened by

Alice: meaning that it encrypts 𝑟𝑘 such that 𝑠𝑘 = 𝑟𝑘 + 𝑦 for some 𝑘 .

Thus, when Olivia attests𝑚, Bob can decrypt the 𝑘-th BF ciphertext

to compute 𝑟𝑘 , extract 𝑦 = 𝑠𝑘 − 𝑟𝑘 from it and then use it to get 𝜎

from the pre-signature 𝜎̂ following the adaptor signature scheme.

We present an illustrative example in Fig. 2.

Distributing the Trust. At the beginning of this overview, we

have made the simplifying assumption that Olivia is honest. In

order to relax this assumption, we show how to distribute the task

of attesting the event𝑚 among a set of 𝑁 oracles, each of them

with a key pair (sk𝑖 , vk𝑖). Moreover, the event𝑚 is attested only

when at least a threshold 𝜌 number of oracles have signed it with

their respective signing keys. Importantly, the 𝑁 oracles are not

required to coordinate, nor to talk to each other. A naive solution

to this problem would be as follows: before proceeding with the

cut-and-choose, Alice creates shares of the adaptor witness 𝑦 into

(𝑦1, . . . , 𝑦𝑁) via (𝑡-off-𝑁)-Shamir secret sharing and additionally

reveals the values (𝑌1, . . . , 𝑌𝑁) where 𝑌𝑖 := 𝑔𝑦𝑖 so that one can ver-

ify the correctness of the secrete sharing via Lagrange interpolation.

Finally, Alice executes 𝑁 instances of the protocol described above.

While this approach is correct, the verifiability proof would be very

inefficient in terms of computation and communication cost. To

this end, we develop a new batching technique (inspired by the

work of Lindell and Riva [23] in the context of garbled circuit), for

amortizing the costs of the cut-and-choose.

Batching Cut-and-Choose. We proceed by recalling the high-

level idea of the Lindell-Riva cut-and-choose technique, adapted to

our settings. As before, we let Alice generate BF-cipher encrypting
random integers, but this time we generate 2𝑁𝐵 number of such

BF-cipher, where 𝐵 is a statistical security parameter. Bob then asks

Alice to “open” 𝑁𝐵 number of BF-ciphers like in the previous case,

while the rest of the “unopened” BF-ciphers are randomly mapped

into 𝑁 buckets, where each bucket consists of 𝐵 BF-ciphers. The
random mapping is also specified by Bob. As before, each of the

𝑗-th “unopened” BF-cipher in the 𝑖-th bucket denoted by 𝑐𝑖, 𝑗 , is also

associated with the sym-cipher value 𝑠𝑖, 𝑗 := 𝑟 𝑗 + 𝑦𝑖 , where 𝑟 𝑗 is
the value encrypted in the BF-cipher 𝑐𝑖, 𝑗 , and recall that 𝑦𝑖 is the

𝑖-th share of the adaptor witness 𝑦. The high level idea is that the

𝑖-th bucket is now associated with the instance verification key vk𝑖 .
The soundness guarantee of this batching technique is that, with

overwhelming probability, there exists a 𝑗 ′ ∈ [𝐵] in each bucket

𝑖 ∈ [𝑁], such that the BF-cipher 𝑐𝑖, 𝑗 ′ is a well-formed BF ciphertext

and the underlying message 𝑟 𝑗 ′ satisfies the check

𝑔𝑠𝑖,𝑗′
?

= 𝑔
𝑟 ′𝑗 · 𝑌𝑖 .

The hope now is that if we have a witness BLS signature 𝜎𝑖 on the

message𝑚 that is valid w.r.t. a key vk𝑖 , then Bob is able to decrypt

𝑐𝑖, 𝑗 ′ to obtain 𝑟 𝑗 ′ and consequently the witness share 𝑦𝑖 . If we have

𝜌 number of witness BLS signatures (𝜎𝑖)𝑖∈𝐾 , where 𝐾 ⊂ [𝑁] and
|𝐾 | = 𝜌 , then we are guaranteed to obtain 𝜌 number of valid witness

shares (𝑦𝑖)𝑖∈𝐾 , and we can reconstruct the adaptor witness 𝑦, and

adapt the pre-signature 𝜎̂ into a valid signature 𝜎 .

However, a crucial step we overlooked in the outline above

is that we cannot know ahead of time which bucket a BF-cipher
will be mapped to later in the cut-and-choose step. Therefore, it

is unclear how we generate each of the BF-cipher, meaning, it is

unknown at the stage of the BF-cipher generation w.r.t. which

instance verification key do we set it to. In fact, it is necessary

for the soundness cut-and-choose batching that we do not know

the random mapping during the ciphertext generation. To tackle

this issue, during BF-cipher generation, we generate each of 2𝑁𝐵

number of BF-ciphers (denoted by (𝑐 ′
1
, . . . , 𝑐 ′

2𝑁𝐵
)) w.r.t. to a BLS

signature on a random (public) instance message𝑚∗ and a random

instance verification key vk
∗
. The instances𝑚∗ and vk

∗
can even

be fixed ahead of time for the entire session. We proceed exactly as

described above with these ciphertexts, until the random bucket

mapping. Once we map an “unopened” BF-cipher 𝑐 ′
𝑖, 𝑗

to the 𝑖-th

bucket, we generate another BF-cipher 𝑐𝑖, 𝑗 w.r.t. a BLS signature

on the correct instance message𝑚 and instance verification key

vk𝑖 (corresponding to the 𝑖-th bucket), which also encrypts the

value 𝑟 𝑗 . We attach a Non-Interactive Zero-Knowledge (NIZK) proof

to verify that the two BF-ciphersare well-formed and encrypt the

same message. It turns out that such NIZK corresponds to a simple

proof for discrete logarithm equality, provided that we use the

same random coins in both 𝑐 ′
𝑖, 𝑗

and 𝑐𝑖, 𝑗 (which was shown to not

compromise the security of the encryption scheme [5]). The rest of

the cut-and-choose proceeds as before.

To sum up, Alice returns the 2𝑁𝐵 BF-ciphers generated wrt.𝑚∗

and vk
∗
, the pre-signature 𝜎̂ , values 𝑔𝑟 𝑗 for all 𝑗 ∈ [2𝑁𝐵], adaptor

statement shares (𝑌1, . . . , 𝑌𝑁), the “opened” values and the “un-

opened” values similar to the simplified case above, but now addi-

tionally consists of the new BF-ciphers generated wrt. the correct

instance message and the instance verification corresponding to

the bucket, and the associated NIZK proofs as described above.

The verification by Bob is canonical, with only additional checks

needed for the correctness of the bucket mapping and the validity

of the NIZK proofs for the “unopened” BF-ciphers. Given witness

BLS signature 𝜎𝑖 on the message𝑚∗ w.r.t. key vk𝑖 , Bob decrypts

all the BF-cipher 𝑐𝑖, 𝑗 in the 𝑖-th bucket. He then obtains shares of 𝑦

as described before, and provided that Bob has 𝜌 of them, he can

reconstruct 𝑦 and later adapt 𝜎̂ into the valid signature 𝜎 .

Extensions.We can extend the above techniques to the case where

we have𝑀 different messages (𝑚1, . . . ,𝑚𝑀) instead of just one. In

this case, Alice has transaction tx𝑖 paying to Bob if the message𝑚𝑖
is attested. For more details on this general case, we refer the reader

to Section 4.2. We extend our techniques even to the case where the

signature scheme for authorizing a transaction, i.e., DS is the BLS

signature scheme. Note that it was shown in [18] that it is impossible

to construct an AS scheme for BLS signatures. Thus, we resort to

different techniques to achieve our goal of constructing verifiable

witness encryption based on threshold signatures (VweTS). We

include more details on our BLS based construction in Appendix E.

Furthermore, in the protocols overviewed so far, the commu-

nication complexity grows linearly in the number of messages 𝑚̄.

In particular, this implies that the number of messages must be

bounded by a given polynomial (in the security parameter). In Ap-

pendix G we outline how to modify our protocol to remove this

4

bound and support an event with an exponential number of out-

comes, without increasing the communication complexity of the

protocol proportionately.

3 PRELIMINARIES
We denote by 𝜆 ∈ N the security parameter and by 𝑥 ← A(in; 𝑟)
the output of the algorithm A on input in using 𝑟 ← {0, 1}∗ as its
randomness. We often omit this randomness and only mention it

explicitly when required. The notation [𝑛] denotes a set {1, . . . , 𝑛}
and [𝑖, 𝑗] denotes the set {𝑖, 𝑖 + 1, . . . , 𝑗}. We consider probabilistic
polynomial time (PPT) machines as efficient algorithms.

Digital Signatures. A digital signature scheme DS, formally, has

a key generation algorithm KGen(1𝜆) that takes the security pa-

rameter 1
𝜆
and outputs the verification/signing key pair (vk, sk), a

signing algorithm Sign(sk,𝑚) inputs a signing key and a message

𝑚 ∈ {0, 1}∗ and outputs a signature 𝜎 , and a verification algorithm

Vf (vk,𝑚, 𝜎) outputs 1 if 𝜎 is a valid signature on𝑚 under the veri-

fication key vk, and outputs 0 otherwise. We require unforgeability,

which guarantees that a PPT adversary cannot forge a fresh signa-

ture on a message of its choice under a given verification key while

having access to a signing oracle.

Non-Interactive ZeroKnowledgeProofs. Let𝑅 : {0, 1}∗×{0, 1}∗
→ {0, 1} be a nNP-witness-relationwith correspondingNP-language
L := {𝑥 : ∃𝑤 s.t. 𝑅(𝑥,𝑤) = 1}. A non-interactive zero-knowledge

proof (NIZK) [15] system for the relation 𝑅 is initialized with a

setup algorithm Setup(1𝜆) that, on input the security parameter,

outputs a common reference string crs and a trapdoor td. A prover

can show the validity of a statement 𝑥 with a witness𝑤 by invok-

ing Prove(crs, 𝑥,𝑤), which outputs a proof 𝜋 . The proof 𝜋 can be

efficiently checked by the verification algorithm Vf (crs, 𝑥, 𝜋). We

require a NIZK system to be (1) zero-knowledge, where the verifier
does not learn more than the validity of the statement 𝑥 , and (2)

simulation soundness, simulation sound, where it is hard for any

prover to convince a verifier of an invalid statement (chosen by the

prover) even after having access to polynomially many simulated

proofs for statements of his choosing.

Threshold Secret Sharing. Secret sharing is a method of creating

shares of a given secret and later reconstructing the secret itself

only if given a threshold number of shares. Shamir [27] proposed a

threshold secret sharing scheme where the sharing algorithm takes

a secret 𝑠 ∈ Z𝑞 and generates shares (𝑠1, . . . , 𝑠𝑛) each belonging to

Z𝑞 . The reconstruction algorithm takes as input at least 𝑡 shares

and outputs a secret 𝑠 via polynomial interpolation. The security

of the secret sharing scheme demands that knowing only a set of

shares smaller than the threshold size does not help in learning any

information about the choice of the secret 𝑠 .

Hard Relations. We recall the notion of a hard relation 𝑅 with

statement/witness pairs (𝑌,𝑦). We denote by L𝑅 the associated

language defined as L𝑅 := {𝑌 |∃𝑦 s.t . (𝑌,𝑦) ∈ 𝑅}. The relation is

called a hard relation if the following holds: (i) There exists a PPT

sampling algorithm GenR(1𝜆) that outputs a statement/witness

pair (𝑌,𝑦) ∈ 𝑅; (ii) The relation is poly-time decidable; (iii) For all

PPT adversaries, A the probability of A on input 𝑌 outputting a

witness 𝑦 is negligible.

Adaptor Signatures. Adaptor signatures [4] let users generate a
pre-signature on amessage𝑚which by itself is not a valid signature,

but can later be adapted into a valid signature using knowledge of

some secret value. The formal definition of adaptor signatures is

given below.

Definition 1 (Adaptor Signatures). An adaptor signature
scheme AS w.r.t. a hard relation 𝑅 and a signature scheme DS =

(KGen, Sign,Vf) consists of algorithms (pSign,Adapt, pVf, Ext) de-
fined as:
𝜎̂ ← pSign(sk,𝑚,𝑌): The pre-sign algorithm takes as input a signing
key sk, message𝑚 ∈ {0, 1}∗ and statement 𝑌 ∈ 𝐿𝑅 , outputs a pre-
signature 𝜎̂ .
0/1← pVf (vk,𝑚,𝑌, 𝜎̂): The pre-verify algorithm takes as input a
verification key vk, message 𝑚 ∈ {0, 1}∗, statement 𝑌 ∈ 𝐿𝑅 and
pre-signature 𝜎̂ , outputs either 1 (for valid) or 0 (for invalid).
𝜎 ← Adapt(𝜎̂, 𝑦): The adapt algorithm takes as input a pre-signature
𝜎̂ and witness 𝑦, outputs a signature 𝜎 .
𝑦 ← Ext(𝜎, 𝜎̂, 𝑌): The extract algorithm takes as input a signature 𝜎 ,
pre-signature 𝜎̂ and statement 𝑌 ∈ 𝐿𝑅 , outputs a witness 𝑦 such that
(𝑌,𝑦) ∈ 𝑅, or ⊥.

In addition to the standard signature correctness, an adaptor

signature scheme has to satisfy pre-signature correctness. Informally,

an honestly generated pre-signature w.r.t. a statement 𝑌 ∈ 𝐿𝑅 is a

valid pre-signature and can be adapted into a valid signature from

which a witness for 𝑌 can be extracted.

In terms of security, we want standard unforgeability even when

the adversary is given access to pre-signatures with respect to the

signing key sk. We also require that, given a pre-signature and a

witness for the instance, one can always adapt the pre-signature into

a valid signature (pre-signature adaptability). Finally, we require
that, given a valid pre-signature and a signature with respect to

the same instance, one can efficiently extract the corresponding

witness (witness extractability). We refer the reader to Appendix A

for the formal definitions of the properties of interest for adaptor

signatures.

Witness Encryption based on Signatures. Here we consider a
special witness encryption scheme for a language L ∈ NP defined

with respect to a digital signature scheme DS := (KGen, Sign,Vf),
where

L := {(vk,𝑚) |∃𝜎, s.t . ,Vf (vk,𝑚, 𝜎) = 1}
where (vk, sk) ∈ KGen(1𝜆). Here the verification key and the mes-

sage (vk,𝑚) is the instance and the signature 𝜎 is the witness.

We present below the formal definition of the witness encryption

based on signatures scheme, its correctness, as well as its notion of

security.

Definition 2 (Witness Encryption based on Signatures). A
witness encryption scheme based on signatures (WES) is a crypto-
graphic primitive defined with respect to a digital signature scheme
DS := (KGen, Sign,Vf), consisting of two PPT algorithms (Enc,Dec),
defined below:

𝑐 ← Enc((˜vk, 𝑚̃),𝑚): the encryption algorithm takes as input a veri-

fication key ˜vk of the signature scheme, a message 𝑚̃ and the message
to be encrypted𝑚. It returns as output a ciphertext 𝑐 .

5

IND-CPAWES,DS,A (𝜆)
𝑄 := ∅

(˜vk, ˜sk) ← KGen(𝜆)

(𝑚̃∗,𝑚0,𝑚1, st0) ← ASignO (˜vk)
𝑏 ← {0, 1}

𝑐𝑏 ← Enc((˜vk, 𝑚̃∗),𝑚𝑏)

𝑏′ ← ASignO (st
0
, 𝑐𝑏)

𝑏0 := (𝑏 = 𝑏′)
𝑏1 := (𝑚̃∗ ∉ 𝑄)
return 𝑏0 ∧ 𝑏1

SignO(˜sk, 𝑚̃)
𝜎̃ ← Sign(˜sk, 𝑚̃)
𝑄 := 𝑄 ∪ {𝑚̃}
return 𝜎̃

Figure 3: Experiment for CPA security of a witness encryp-
tion scheme based on signatures.

𝑚 ← Dec(𝜎̃, 𝑐): the decryption algorithm takes as input a signature
𝜎̃ and the ciphertext 𝑐 . It returns as output a message𝑚.

The correctness of a witness encryption based on signatures is

defined below.

Definition 3 (Correctness of Witness Encryption for Sig-

natures). A witness encryption scheme for signatures denoted by
WES := (Enc,Dec) defined with respect to a signature scheme DS :=

(KGen, Sign,Vf) is said to be correct if for all 𝜆 ∈ N, all (˜vk, ˜sk) ←
KGen(𝜆), all messages 𝑚̃ and𝑚, all 𝑐 ← Enc((˜vk, 𝑚̃),𝑚), we have
that Pr[Dec(𝜎̃, 𝑐) =𝑚] = 1, where Vf (˜vk, 𝑚̃, 𝜎̃) = 1.

The notion of security we want is similar to the chosen plaintext

security of a standard public key encryption, except now the ad-

versary has access to a signing oracle with key
˜sk while not being

allowed to query the oracle on the message 𝑚̃∗, where the instance
(˜vk, 𝑚̃∗) is used to encrypt the challenge ciphertext. The reader

familiar with the standard notion of security for witness encryp-

tion (which requires security only for false statements) will notice

that our definition is stronger, although tailored for our specific

language.

Definition 4 (Security). A witness encryption scheme for sig-
natures denoted by WES := (Enc,Dec) defined with respect to a
signature scheme DS := (KGen, Sign,Vf) is said to be chosen plain-

text attack secure if for all 𝜆 ∈ N, there exists a negligible function
negl(𝜆), such that for all PPT adversaries A, the following holds,

Pr

[
IND-CPAWES,DS,A (𝜆) = 1

]
≤ 1

2

+ negl(𝜆)

where IND-CPA is defined in Fig. 3.

We give a construction for WES based on the BLS signature

scheme. Our construction described in Fig. 4 relies on efficiently

computable bilinear pairings.We have the bilinear pairing operation

𝑒 defined as 𝑒 : G0 × G1 → G𝑇 where G0,G1 and G𝑇 are groups

of prime order 𝑞. We let 𝑔0 and 𝑔1 be the generators of G0 and

G1 respectively and 𝐻0, 𝐻1 be a hash functions defined as 𝐻0 :

{0, 1}𝜆 → G1 and 𝐻1 : Z𝑞 → {0, 1}𝜆 .

Enc((˜vk, 𝑚̃),𝑚): The encryption algorithm proceeds as

follows:

• Sample 𝑟1, 𝑟2 ← Z𝑞 .
• Set 𝑐1 := 𝑔

𝑟1

0

• Compute ℎ := 𝐻1 (𝑟2).
• Compute 𝑐2 := (𝑒 (˜vk, 𝐻0 (𝑚̃))𝑟1 · 𝑟2) and 𝑐3 := (ℎ +𝑚)
• Return 𝑐 := (𝑐1, 𝑐2, 𝑐3).
Dec(𝜎̃, 𝑐): The decryption algorithm proceeds as follows:

• Parse 𝑐 := (𝑐1, 𝑐2, 𝑐3).
• Compute 𝑟 := 𝑐2 · 𝑒 (𝑐1, 𝜎̃)−1

.

• Compute ℎ := 𝐻1 (𝑟).
• Return𝑚 := 𝑐3 − ℎ.

Figure 4: Witness encryption based on BLS signatures

The security of the construction follows similar to the IBE scheme

from [7] based on Bilinear Diffie-Hellman assumption, when mod-

elling the hash functions 𝐻0 and 𝐻1 as random oracles.

4 VERIFIABLE WITNESS ENCRYPTION
BASED ON THRESHOLD SIGNATURES

Consider the following language L ∈ NP defined with respect to a

signature scheme DS := (KGen, Sign,Vf), where

L :=

((vk𝑖)𝑖∈[𝑁] , (𝑚 𝑗) 𝑗 ∈[𝑀] , 𝜌)
�����∃ 𝑗 ∈ [𝑀], (𝜎𝑖)𝑖∈𝐾⊂[𝑁] , s.t . ,|𝐾 | = 𝜌 ∧
∀𝑖 ∈ 𝐾,Vf(vk𝑖 ,𝑚 𝑗 , 𝜎𝑖) = 1


where (vk1, . . . , vk𝑁) ∈ SUPP(KGen(1𝜆)).
We present a new primitivewhich is awitness encryption scheme

for the above language, where we additionally consider another

signature scheme DS. Moreover, the “secret” message(s) being

encrypted by the witness encryption are themselves signatures

(𝜎1, . . . , 𝜎𝑀) on messages (𝑚1, . . . ,𝑚𝑀) verifiable under a verifi-
cation key vk with respect to DS. Intuitively, the primitive lets

us encrypt signatures (𝜎1, . . . , 𝜎𝑀) such that the signature 𝜎 𝑗 can

be obtained after decryption, provided one holds a witness to the

language L as defined above.

4.1 Definitions
Definition 5 (Verifiable Witness Encryption Based on

Threshold Signatures). A verifiable witness encryption based

on threshold signatures is a cryptographic primitive parameterized
by 𝜌, 𝑁 ,𝑀 ∈ N, and is defined with respect to signature schemes
DS := (KGen, Sign,Vf) and DS := (KGen, Sign,Vf). It consists of
three PPT algorithms (EncSig,VfEnc,DecSig), that are defined below.

(𝑐, 𝜋𝑐) ← EncSig(((vk𝑖)𝑖∈[𝑁] , (𝑚 𝑗) 𝑗 ∈[𝑀]), sk, (𝑚 𝑗) 𝑗 ∈[𝑀]): the sig-
nature encryption algorithm takes as input tuples of instance verifi-
cation keys (vk𝑖)𝑖∈[𝑁] , instance messages (𝑚 𝑗) 𝑗 ∈[𝑀] , and messages
(𝑚 𝑗) 𝑗 ∈[𝑀] and a signing key sk. It outputs a ciphertext 𝑐 and a proof
𝜋𝑐 .
0/1← VfEnc(𝑐, 𝜋𝑐 , ((vk𝑖)𝑖∈[𝑁] , (𝑚 𝑗 ,𝑚 𝑗) 𝑗 ∈[𝑀] , vk)): the encryption
verification algorithm takes as input a ciphertext 𝑐 , a proof 𝜋𝑐 , tuples of

6

instance verification keys (vk𝑖)𝑖∈[𝑁] , instance messages (𝑚 𝑗) 𝑗 ∈[𝑀] ,
and messages (𝑚 𝑗) 𝑗 ∈[𝑀] , and a verification key vk. It outputs 1 (for
valid) if its a valid ciphertext and 0 (for invalid) otherwise.
𝜎 ← DecSig(𝑗, {𝜎𝑖 }𝑖∈𝐾 , 𝑐, 𝜋𝑐): the signature decryption algorithm
takes as input an index 𝑗 ∈ [𝑀], witness signatures {𝜎𝑖 }𝑖∈𝐾 for
|𝐾 | = 𝜌 and 𝐾 ⊂ [𝑁], a ciphertext 𝑐 , and proof 𝜋𝑐 . It outputs a
signature 𝜎 .

We define below the notion of correctness.

Definition 6 (Correctness). A verifiable witness encryption

based on threshold signatures scheme denoted by (𝜌, 𝑁 ,𝑀)-VweTS :=

(EncSig,VfEnc,DecSig) is parameterized by 𝜌, 𝑁 ,𝑀 ∈ N and de-
fined with respect to signature schemes DS := (KGen, Sign,Vf)
and DS := (KGen, Sign,Vf) is said to be correct if the following
holds. If for all 𝜆 ∈ N, all (vk1, . . . , vk𝑁) ∈ SUPP(KGen(𝜆)), all
(vk, sk) ∈ KGen(𝜆), all messages (𝑚 𝑗 ,𝑚 𝑗) 𝑗 ∈[𝑀] , all (𝑐, 𝜋𝑐) obtained
by running EncSig algorithm on respective inputs, we have the fol-
lowing that hold simultaneously:

(1) Pr

[
VfEnc(𝑐, 𝜋𝑐 , ((vk𝑖)𝑖∈[𝑁] , (𝑚 𝑗 ,𝑚 𝑗) 𝑗 ∈[𝑀] , vk)) = 1

]
= 1.

(2) For any 𝑗 ∈ [𝑀], 𝐾 ⊂ [𝑁] and |𝐾 | = 𝜌 , if for all 𝑖 ∈ 𝐾 we have
Vf (vk𝑖 ,𝑚 𝑗 , 𝜎𝑖) = 1, then

Pr

[
Vf

(
vk,𝑚 𝑗 ,DecSig(𝑗, {𝜎𝑖 }𝑖∈𝐾 , 𝑐, 𝜋𝑐)

)
= 1

]
= 1.

We require a notion called one-wayness for a VweTS scheme.

Intuitively, the property guarantees that an adversary cannot output

a valid signature 𝜎∗ for an index 𝑗∗ encrypted in a VweTS ciphertext
without access to 𝜌 number of valid witness signatures on the

corresponding instance message𝑚 𝑗∗ . The adversary is allowed to

choose the signing keys of 𝜌−1 number of instance verification keys

of its choice, and is also given access to signing oracles conditioned

on not allowing the adversary to trivially break the scheme. That

is, the adversary cannot query the oracles for a signature on𝑚 𝑗∗

wrt. the signing key sk and cannot query for a witness signature

on the instance message𝑚 𝑗∗ . The intuition is captured formally in

the following definition.

Definition 7 (One-wayness). A verifiable witness encryption

based on threshold signatures scheme denoted by (𝜌, 𝑁 ,𝑀)-VweTS :=

(EncSig,VfEnc,DecSig) is parameterized by 𝜌, 𝑁 ,𝑀 ∈ N and de-
fined with respect to signature schemes DS := (KGen, Sign,Vf) and
DS := (KGen, Sign,Vf) is said to be one-way if for all 𝜆 ∈ N, there
exists a negligible function negl(𝜆), such that for all PPT adversaries
A, the following holds,

Pr

[
ExpOWay𝜌,𝑁

VweTS,DS,DS,A
(𝜆) = 1

]
≤ negl(𝜆)

where ExpOWay is defined in Fig. 5.

We require another notion of security called verifiability for a

VweTS scheme. This property guarantees that it is infeasible for an

adversary to output a ciphertext 𝑐 along with a valid proof 𝜋𝑐 , and

valid witness signatures (𝜎 𝑗) 𝑗 ∈𝐾 on the instance message𝑚 𝑗∗ , such

that the signature 𝜎 we get after decryption is in fact an invalid

signature on the message𝑚 𝑗∗ under the verification key vk. The
intuition is formally captured in the definition below.

Definition 8 (Verifiability). A verifiable witness encryption

for threshold signatures scheme denoted by (𝜌, 𝑁 ,𝑀)-VweTS :=

ExpOWay𝜌,𝑁 ,𝑀
VweTS,DS,DS,A

(𝜆)
𝑄1 := 𝑄2 := ∅, 𝑄3 := []
(vk, sk) ← KGen(1𝜆)
(𝐶, st

0
) ← A(vk) // let𝐶 ⊂ [𝑁]

∀𝑖 ∈ [𝑁] \𝐶, (vk𝑖 , sk𝑖) ← KGen(1𝜆)

(𝑞∗, 𝜎∗, 𝑗∗) ← ASignO,SignO,EncSigO (st
0
, {vk𝑖 }𝑖∈[𝑁]\𝐶)

(𝑐, 𝜋𝑐 , 𝑋) ← 𝑄3 [𝑞∗]
𝑋 := ((vk𝑖)𝑖∈[𝑁] , (𝑚 𝑗) 𝑗∈[𝑀]), sk, (𝑚 𝑗) 𝑗∈[𝑀]
𝑏0 := ((𝑚 𝑗∗ , 𝜎

∗) ∉ 𝑄2)
𝑏1 := (𝑚 𝑗∗ ∉ 𝑄1)
𝑏2 := (|𝐶 | ≤ 𝜌 − 1)
𝑏3 := (Vf (vk,𝑚 𝑗∗ , 𝜎

∗) = 1)
return 𝑏0 ∧ 𝑏1 ∧ 𝑏2 ∧ 𝑏3

EncSigO((𝑚 𝑗 ,𝑚 𝑗) 𝑗 ∈[𝑀] , {vk𝑖 }𝑖∈𝐶)
𝑋 := ((vk𝑖)𝑖∈[𝑁] , (𝑚 𝑗) 𝑗∈[𝑀]), sk, (𝑚 𝑗) 𝑗∈[𝑀]
(𝑐, 𝜋𝑐) ← EncSig(𝑋)
𝑄3 := 𝑄3 | | (𝑐, 𝜋𝑐 , 𝑋)
return (𝑐, 𝜋𝑐)

SignO(𝑖,𝑚)
Ensure 𝑖 ∈ [𝑁] \𝐶

𝜎 ← Sign(sk𝑖 ,𝑚)
𝑄1 := 𝑄1 ∪ {𝑚}
return 𝜎

SignO(𝑚)
𝜎 ← Sign(sk,𝑚)
𝑄2 := 𝑄2 ∪ {𝑚,𝜎 }
return 𝜎

Figure 5: Experiment for one-wayness.

(EncSig,VfEnc,DecSig) parameterized by 𝜌, 𝑁 ,𝑀 ∈ N and defined
with respect to signature schemes DS := (KGen, Sign,Vf) and DS :=

(KGen, Sign,Vf) is said to be verifiable if, for all 𝜆 ∈ N, there exists
a negligible function negl and no PPT adversary A that outputs
((𝑚 𝑗 ,𝑚 𝑗) 𝑗 ∈[𝑀] , vk, (vk𝑖)𝑖∈[𝑁] , (𝜎 𝑗) 𝑗 ∈𝐾 , 𝑗∗, 𝑐, 𝜋𝑐) such that all the
following holds simultaneously except with probability negl(𝜆):
(1) 𝐾 ⊂ [𝑁] and |𝐾 | = 𝜌
(2) (vk, ·) ∈ SUPP(KGen) and for all 𝑖 ∈ [𝑁] we have (vk𝑖 , ·) ∈

SUPP(KGen) where SUPP denotes to the support.
(3) ∀𝑗 ∈ 𝐾,Vf (vk 𝑗 ,𝑚 𝑗∗ , 𝜎 𝑗) = 1

(4) VfEnc(𝑐, 𝜋𝑐 , ((vk𝑖)𝑖∈[𝑁] , (𝑚 𝑗 ,𝑚 𝑗) 𝑗 ∈[𝑀] , vk)) = 1

(5) Vf (vk,𝑚 𝑗∗ , 𝜎) = 0, where 𝜎 ← DecSig(𝑗∗, {𝜎 𝑗 } 𝑗 ∈𝐾 , 𝑐, 𝜋𝑐)

4.2 Construction Based on Adaptor Signatures
Here we present a concrete construction of VweTSwith parameters

𝜌, 𝑁 and𝑀 relying on the following cryptographic building blocks:

(1) Signature scheme DS := (KGen, Sign,Vf) instantiated with BLS

signature scheme (see Appendix B).

(2) Signature scheme DS := (KGen, Sign,Vf) that is either Schnorr
or ECDSA signature schemes (see Appendix B), based on a

group G with generator 𝑔 and order 𝑞.

7

(3) Witness encryption based on signatures WES := (Enc,Dec)
scheme (see Fig. 4 for a concrete candidate).

(4) An adaptor signature scheme AS := (KGen, Sign,Vf) for the
signature scheme DS. The hard relation 𝑅 for AS is that of the

discrete log relation, where the language is defined as: L𝑅 :=

{𝑌 : ∃𝑦 ∈ Z∗𝑞, s.t . 𝑌 = 𝑔𝑦}.
(5) A NIZK proof (SetupL𝑐

, ProveL𝑐
,VfL𝑐

) for the language

L𝑐 :=

(vk1, vk2,𝑚1,𝑚2, 𝑐1, 𝑐2)

������
∃𝑟 ∈ Z𝑞, s.t .

𝑐1 = WES.Enc((vk1,𝑚1), 𝑟)∧
𝑐2 = WES.Enc((vk2,𝑚2), 𝑟)


where (vk1, ·) and (vk2, ·) are in the support of KGen.

Our construction of VweTS based on BLS signatures follows a sim-

ilar outline and is therefore deferred to Appendix E due to space

constrains.

8

Public parameters: (G, 𝑔, 𝑞,G0,G1,G𝑇 , 𝛾, 𝐻2, crs)
(𝑐, 𝜋𝑐) ← EncSig(((vk𝑖)𝑖∈[𝑁] , (𝑚 𝑗) 𝑗 ∈[𝑀] , 𝜌), sk, (𝑚 𝑗) 𝑗 ∈[𝑀]):

(1) Sample random vk
∗ ∈ G0 and𝑚∗ ∈ {0, 1}𝜆 , initialize Sop = Sunop = ∅.

(2) For 𝑖 ∈ [𝛾]:
(a) Sample 𝑟𝑖 ← Z𝑞 and compute 𝑅𝑖 := 𝑔𝑟𝑖 .

(b) Compute 𝑐 ′
𝑖

:= WES.Enc((vk∗,𝑚∗), 𝑟𝑖 ; 𝑟 ′𝑖) where 𝑟
′
𝑖
is the random coins used.

(3) Compute {Φ, (𝑏1, . . . , 𝑏𝛾)} := 𝐻2 ((𝑐 ′𝑖 , 𝑅𝑖)𝑖∈[𝛾]).
(4) For 𝑖 ∈ [𝑀]:

(a) Sample 𝑦𝑖 ← Z𝑞 and compute 𝑌𝑖 := 𝑔𝑦𝑖 .

(b) Compute 𝜎̂𝑖 ← AS.pSign(sk,𝑚𝑖 , 𝑌𝑖).
(c) For all 𝑗 ∈ [𝜌 − 1] sample a uniform 𝑦𝑖, 𝑗 ← Z𝑞 and set 𝑌𝑖, 𝑗 := 𝑔𝑦𝑖,𝑗 .

(d) For all 𝑗 ∈ {𝜌, . . . , 𝑁 } compute 𝑦𝑖, 𝑗 =

((
𝑦𝑖 −

∑
𝑘∈[𝜌−1] 𝑦𝑖,𝑘 · ℓ𝑘 (0)

)
· ℓ𝑗 (0)−1

)
, 𝑌𝑖, 𝑗 =

(
𝑌𝑖∏

𝑘∈[𝜌−1] 𝑌
ℓ𝑘 (0)
𝑖,𝑘

)ℓ𝑗 (0)−1

. Here ℓ𝑖 is the

𝑖-th Lagrange polynomial.

(5) Set Σ1 := (𝜎̂𝑖 , 𝑌𝑖 , {𝑌𝑖, 𝑗 } 𝑗 ∈[𝑁])𝑖∈[𝑀] .
(6) For 𝑖 ∈ [𝛾]:

(a) If 𝑏𝑖 = 1, then Sop := Sop ∪ {(𝑖, 𝑟𝑖 , 𝑟 ′𝑖)}.
(b) If 𝑏𝑖 = 0:

(i) Let (𝛼, 𝛽) := Φ(𝑖).
(ii) Compute 𝑠𝑖 := 𝑟𝑖 + 𝑦𝛼,𝛽 .
(iii) Compute 𝑐𝑖 := WES.Enc((vk𝛽 ,𝑚𝛼), 𝑟𝑖 ; 𝑟 ′′𝑖) with 𝑟

′′
𝑖
as the random coins and set

𝜋𝑖 ← ProveL𝑐
(crs, (vk𝛽 , vk

∗
,𝑚𝛼 ,𝑚

∗, 𝑐𝑖 , 𝑐 ′𝑖), 𝑟𝑖).
(iv) Set Sunop := Sunop ∪ {(𝑖, 𝑠𝑖 , 𝑐𝑖 , 𝜋𝑖)}.

(7) Return 𝑐 = {𝑐 ′
𝑖
}𝑖∈[𝛾] , 𝜋𝑐 = {Sop,Sunop, vk

∗
,𝑚∗, {𝑅𝑖 , }𝑖∈[𝛾] , Σ1}.

0/1← VfEnc(𝑐, 𝜋𝑐 , ((vk𝑖)𝑖∈[𝑁] , (𝑚 𝑗 ,𝑚 𝑗) 𝑗 ∈[𝑀] , vk)):

(1) Parse 𝑐 as {𝑐 ′
𝑖
}𝑖∈[𝛾] and 𝜋𝑐 as {Sop,Sunop, vk

∗
,𝑚∗, {𝑅𝑖 , }𝑖∈[𝛾] , Σ1} where Σ1 := {𝜎̂𝑖 , 𝑌𝑖 , {𝑌𝑖, 𝑗 } 𝑗 ∈[𝑁] }𝑖∈[𝑀] .

(2) Compute {Φ, (𝑏1, . . . , 𝑏𝛾)} := 𝐻2 ((𝑐 ′𝑖 , 𝑅𝑖)𝑖∈[𝛾])
(3) For 𝑖 ∈ [𝛾]:

(a) If 𝑏𝑖 = 1, check that (𝑖, 𝑟𝑖 , 𝑟 ′𝑖) ∈ Sop and that 𝑐 ′
𝑖

:= WES.Enc((vk∗,𝑚∗), 𝑟𝑖 ; 𝑟 ′𝑖)
(b) If 𝑏𝑖 = 0:

(i) (𝛼, 𝛽) := Φ(𝑖)
(ii) Check that (𝑖, 𝑠𝑖 , 𝑐𝑖 , 𝜋𝑖) ∈ Sunop
(iii) Check that 𝑔𝑠𝑖 = 𝑅𝑖 · 𝑌𝛼,𝛽
(iv) Check VfL𝑐

(crs, (vk𝛽 , vk
∗
,𝑚𝛼 ,𝑚

∗, 𝑐𝑖 , 𝑐 ′𝑖), 𝜋) = 1

(v) Check that AS.pVf (vk,𝑚𝛼 , 𝑌𝛼 , 𝜎̂𝛼) = 1

(vi) Let 𝑇 be a subset of [𝑁] of size 𝜌 − 1, check that for every 𝑘 ∈ [𝑁] \𝑇 : ∏𝑗 ∈𝑇 𝑌
ℓ𝑗 (0)
𝛼,𝑗

· 𝑌 ℓ𝑘 (0)
𝛼,𝑘

= 𝑌𝛼 .

(c) If any of the checks fail output 0, else output 1.

𝜎 ← DecSig(𝑗, {𝜎𝑖 }𝑖∈[𝐾] , 𝑐, 𝜋𝑐):

(1) Parse 𝑐 as {𝑐 ′
𝑖
}𝑖∈[𝛾] and 𝜋𝑐 as {Sop,Sunop, vk

∗
,𝑚∗, {𝑅𝑖 , }𝑖∈[𝛾] , Σ1} where Σ1 := {𝜎̂𝑖 , 𝑌𝑖 , {𝑌𝑖, 𝑗 } 𝑗 ∈[𝑁] }𝑖∈[𝑀] .

(2) For all 𝑖 ∈ [𝐾], initialize rShare𝑖 = ∅.
(3) For each (𝑖, 𝑠, 𝑐, 𝜋) ∈ Sunop, compute (𝛼, 𝛽) = Φ(𝑖). If 𝛼 = 𝑗 and if 𝛽 ∈ [𝐾] s.t. DS.Vf (vk𝛽 ,𝑚𝛼 , 𝜎𝑖) = 1)
(a) Compute 𝑟 = WES.Dec(𝜎𝑖 , 𝑐).
(b) Set rShare𝛽 := rShare𝛽 ∪ {𝑟 }.

(4) Denote each 𝑟 in rShare𝑖 as 𝑟𝑖,𝑎 , where (𝑎, 𝑠𝑎, 𝑐𝑎, 𝜋𝑎) ∈ Sunop. We are guaranteed that there exists at least one 𝑟𝑖,𝑎 such that

𝑅𝑎 = 𝑔𝑟𝑖,𝑎 .

(5) For 𝑖 ∈ [𝐾], compute 𝑦 𝑗,𝑖 = 𝑠𝑎 − 𝑟𝑖,𝑎 .
(6) Compute 𝑦 𝑗 :=

∑
𝑖∈[𝐾] 𝑦 𝑗,𝑖 · ℓ𝑖 (0).

(7) Return 𝜎 𝑗 ← AS.Adapt(𝜎̂ 𝑗 , 𝑦 𝑗).

Figure 6: Verifiable witness encryption based on threshold signatures from adaptor signatures.

9

Parameters. We assume the setup algorithm SetupL𝑐
has been

executed and the resulting crs is part of public parameters which

also include the group descriptions of groups G,G0,G1 and G2,

the value 𝑞 which is the order of the group G, a value 𝛾 := 2𝑁𝑀𝐵

where 𝐵 is a statistical parameter, a mapping function Φ : [𝛾] →
[𝑀]×[𝑁] with𝛾 := 2𝑁𝑀𝐵, and the description of the hash function

𝐻2 : {0, 1}∗ → 𝐼 such that 𝐼 ∈ ([𝛾] → [𝑀]×[𝑁])∪{0, 1}𝛾 , modeled

as a random oracle.

Overview.We present a high level overview of our construction,

and the formal description is given in Fig. 6. The signature encryp-

tion algorithm first generates 𝛾 number ofWES ciphertexts such
that ciphertext 𝑐 ′

𝑖
encrypts a random integer 𝑟𝑖 from Z𝑞 wrt. the in-

stance (vk∗,𝑚∗). Here vk∗ and𝑚∗ are random verification key and

message, respectively. It also encodes the integer 𝑟𝑖 in the exponent

by setting 𝑅𝑖 := 𝑔𝑟𝑖 . A bucket mapping Φ and 𝛾 bit values are gener-

ated by applying the Fiat-Shamir transform using the hash 𝐻2. The

algorithm generates for each 𝑖 ∈ [𝑀] a adaptor pre-signature on
the message𝑚𝑖 wrt. an adaptor instance 𝑌𝑖 whose corresponding

witness is 𝑦𝑖 . Each of the adaptor witness 𝑦𝑖 is further secret shared

to generate shares 𝑦𝑖, 𝑗 for 𝑗 ∈ [𝑁], such that the sharing can be

verified with the aid of the group elements 𝑌𝑖, 𝑗 := 𝑔𝑦𝑖,𝑗 .

Now the algorithm performs the cut-and-choose, such that for all

indices 𝑖 ∈ [𝛾] where the bit value from the Fiat-Shamir transform

equals 1, the value 𝑟𝑖 and the random coins used to generate the

𝑖-th WES ciphertext are added in plain to the set Sop. These values
are considered to be opened by the cut-and-choose. On the other

hand, for all indices 𝑖 where the bit value equals 0, the index 𝑖 is

mapped to the bucket (𝛼, 𝛽) using the map Φ. A value 𝑠𝑖 is set to be

the one-time pad of the adaptor witness share 𝑦𝛼,𝛽 and the value 𝑟𝑖 .

A newWES ciphertext 𝑐𝑖 is generated encrypting the same value

𝑟𝑖 as the WES ciphertext 𝑐 ′
𝑖
, but now wrt. the instance (vk𝛽 ,𝑚𝛼),

along with a NIZK proof that the two WES ciphertexts 𝑐𝑖 and 𝑐
′
𝑖

encrypt the same value 𝑟𝑖 . The value 𝑠𝑖 , the ciphertext 𝑐𝑖 and the

associated NIZK proof are added to the set Sunop. These values are
considered to be unopened by the cut-and-choose. The algorithm

outputs all the WES ciphertexts, the two sets Sop and Sunop, the
instance (vk∗,𝑚∗), the group elements 𝑅𝑖 and the adaptor instances

along with the group elements for verifying the witness sharing.

To verify, the algorithm VfEnc first checks the correctness of
the Fiat-Shamir transform, and checks the well-formedness of the

opened values in Sop against theWES ciphertexts generated wrt.

instance (vk∗,𝑚∗). It then checks the unopened values in Sunop by

applying the mapping Φ for the corresponding index 𝑖 and checking

if the one-time pad of the value 𝑠𝑖 is consistent by checking the

relation in the exponent. It verifies the NIZK proofs and the pre-

signatures against the corresponding adaptor instances. Finally, it

checks if the adaptor witness sharing was performed correctly with

Lagrange interpolation of the group elements 𝑌𝑖, 𝑗 in the exponent.

To decrypt the 𝑗-th signature, we require at least 𝜌 valid witness

signatures on the instance message𝑚 𝑗 wrt. any 𝜌 verification keys

in (vk𝑖)𝑖∈[𝑁] . For each index 𝑖 in the unopened set Sunop, the
decrypt algorithm DecSig first applies the bucket mapping Φ to

obtain the bucket index (𝛼, 𝛽). It proceeds to decrypt the ciphertext
𝑐𝑖 using the 𝑖-th witness signature, provided the signature is valid

on the instance message𝑚𝛼 wrt. the instance verification key vk𝛽

(where 𝛼 = 𝑗). The decrypted value 𝑟 is added to a set rShare𝛽 .
Notice that it is the case that for many 𝑖 ′ ≠ 𝑖 map to the same value

𝛽 and therefore rShare𝛽 will contain more than one element in it

(more precisely, we will have |rShare𝛽 | = 𝐵).
By the cut-and-choose, we are guaranteed that at least one of

the values 𝑟𝑖,𝑎 ∈ rShare𝑖 is consistent with the check 𝑅𝑎 = 𝑔𝑟𝑖,𝑎 . For

each 𝑖 ∈ [𝐾], where 𝐾 stores the indices of the 𝜌 valid witness sig-

natures we have, we obtain the adaptor witness share 𝑦 𝑗,𝑖 using the

consistent values 𝑟𝑖,𝑎 from the previous step. We obtain 𝜌 witness

shares 𝑦 𝑗,𝑖 using which we can reconstruct the adaptor witness

𝑦 𝑗 . The signature on the message𝑚 𝑗 can now be easily output by

adapting the 𝑗-th pre-signature using the witness 𝑦 𝑗 .

Analysis. In Appendix C, we formally show that our construction

satisfies correctness according to Definition 6. Security of our con-

struction is formally stated in the following theorem, and the proof

is deferred to Appendix D.

Theorem 1. Let DS and DS be signature schemes that satisfy un-
forgeability, WES be a secure witness encryption based on signatures
scheme, AS be a secure adaptor signature scheme for the signature
scheme DS and (SetupL𝑐

, ProveL𝑐
,VfL𝑐

) be NIZK proof system for
the languageL𝑐 satisfying zero-knowledge and simulation soundness.
Then the VweTS construction from Fig. 6 is one-way and verifiable
according to Definition 7 and Definition 8, respectively.

Instantiating NIZK Proof for L𝑐 . The NIZK proof essentially

proves that the two WES ciphertexts encrypt the same message. If

we re-use encryption randomness in bothWES ciphertexts [5], then
the NIZK proof essentially reduces to proving a discrete logarithm

relation over G𝑇 . This can be done efficiently using Schnorr sigma

protocol [26].

4.3 Large Universe of Outcomes
In the construction described above, the communication and com-

putation complexity of the protocol depends substantially on the

number of messages signed in the EncSig procedure (i.e., the pa-

rameter 𝑀). Next, we outline a modification to our protocol that

allows us to substantially reduce this dependency. In particular,

instead of executing the verifiable witness encryption for all the

𝑀 instances 𝑌𝑖 = 𝑔𝑦𝑖 , we will only execute this for log(𝑀) = 𝜇

values. In Appendix G we present a more detailed description of

the construction along with the security analysis. We also show a

different scheme, which is asymptotically optimal, but concretely

less efficient.

In the modified EncSig algorithm, we additionally compute[
𝑍0,1 . . . 𝑍0,𝜇

𝑍1,1 . . . 𝑍1,𝜇

]
=

[
𝑔𝑧0,1 . . . 𝑔𝑧0,𝜇

𝑔𝑧1,1 . . . 𝑔𝑧1,𝜇

]
where 𝑧𝑏,𝑖 ← Z𝑞 , along with

𝑒 𝑗 = 𝑦 𝑗 +
∑
𝑖

𝑧 𝑗 [𝑖],𝑖

for all 𝑗 = {1, . . . , 𝑀}, where 𝑗 [𝑖] denotes the i-𝑡ℎ bit of 𝑗 . Instead of
witness encrypting (𝑦1, . . . , 𝑦𝑀), we witness encrypt

{
𝑧𝑏,𝑖

}
, each

conditioned on knowing the signatures of a large enough fraction of

oracles that attest that the 𝑖-th bit of the message equals 𝑏. The ver-

ification procedure is unchanged, except that we add the following

10

check

𝑔𝑒 𝑗
?

= 𝑌𝑗 ·
𝜇∏
𝑖=1

𝑍 𝑗 [𝑖],𝑖

for all 𝑗 = {1, . . . , 𝑀}. Assuming that the signatures of DS are on a

suitable encoding of the bits of the messages
2
, then it is not hard to

see that obtaining a large enough fraction of signatures, allows one

to successfully decrypt. In particular, obtaining enough signatures

on 𝑗 = (𝑗 [1], . . . , 𝑗 [𝜇]), allows one to witness-decrypt the corre-

sponding ciphertexts, thereby recovering the scalars (𝑧 𝑗 [1],1, . . . ,
𝑧 𝑗 [𝜇],𝜇). Then, computing

𝑦 𝑗 = 𝑒 𝑗 −
𝜇∑
𝑖=1

𝑧 𝑗 [𝑖],𝑖

allows one to unmask 𝑦 𝑗 and consequently to recover 𝜎 𝑗 calling

the AS.Adapt algorithm.

5 ORACLE CONTRACTS
We present the interfaces for oracle contracts and we formalize

their security properties, namely unforgeability, verifiability and

attestation unforgeability. Then we present a construction based

on VweTS.

Definition 9 (Oracle Contracts). Oracle Contracts is a pro-
tocol parameterized by 𝜌, 𝑁 ,𝑀 ∈ N (s.t. ⌈𝑁

2
⌉ ≤ 𝜌 ≤ 𝑁) and run

among a set of entities: 𝑁 oracles {O1, . . . ,O𝑁 }, and two users, Alice
A (signing party) and Bob B (verifying party). The oracle contracts
protocol is defined with respect to a digital signature scheme ΠBDS :=

(KGen, Sign,Vf) and consists of five PPT algorithms (OKGen, Attest,
AttestVf, Anticipate, AnticipateVf, Redeem), that are defined below.
• (pk𝑂 , sk𝑂) ← OKGen(1𝜆): the oracle key generation algorithm
takes as input the security parameter 𝜆 and outputs the oracle
public key pk𝑂 and the corresponding oracle secret key sk𝑂 .
• att ← Attest(sk𝑂 , 𝑜): the event attestation algorithm takes as input
oracle’s secret key sk𝑂 , and the event outcome 𝑜 , and outputs the
outcome attestation att.
• {0, 1} ← AttestVf (pk𝑂 , att, 𝑜): the attestation verification algo-

rithm takes as input oracle’s public key pk𝑂 , the outcome attestation
att and the outcome 𝑜 , and returns 1 if att attests to 𝑜 being the
outcome of the event and 0 otherwise.
• ant ← Anticipate(sk𝐴, (pk𝑂𝑖)𝑖∈[𝑁] , (𝑜 𝑗 , Tx𝑗) 𝑗 ∈[𝑀]): the attesta-
tion anticipation algorithm takes as input the signing party’s secret
key sk𝐴 , oracles’ public keys (pk𝑂𝑖)𝑖∈[𝑁] , and tuples of outcomes
and transactions (𝑜 𝑗 , Tx𝑗) 𝑗 ∈[𝑀] , and outputs the anticipation ant.
• {0, 1} ← AnticipateVf (pk𝐴, ant, (pk𝑂𝑖)𝑖∈[𝑁] , (𝑜 𝑗 , Tx𝑗) 𝑗 ∈[𝑀]): the
anticipation verification algorithm takes as inputs the signing
party’s public key pk𝐴 , the anticipation ant, oracles’ public keys
(pk𝑂𝑖)𝑖∈[𝑁] , and tuples of outcomes and transactions (𝑜 𝑗 , Tx𝑗) 𝑗 ∈[𝑀] ,
and outputs 1 if ant is well-formed and 0 otherwise.
• 𝜎 ← Redeem(𝑗, (att𝑖)𝑖∈[𝐾] , ant): the redeem algorithm takes as
input an index 𝑗 ∈ [𝑀], attestations (att𝑖)𝑖∈[𝐾] for |𝐾 | = 𝜌 and
𝐾 ⊂ [𝑁], and the anticipation ant. It returns as output a signature
𝜎 on the transaction Tx𝑗 .

2
E.g., each bit should also be signed together with its position, to avoid mix-and-match

attacks

An oracle contract scheme is correct if (i) honestly created attes-

tations verify correctly; (ii) honestly generated attestation anticipa-

tions verify correctly; and (iii) honestly generated anticipations and

attestations are redeemable. We defer a formal definition to Appen-

dix H. We additionally introduce the security notions of interest for

oracle contracts. We give here their intuition and refer the reader

to Appendix H for the formal details.

We first introduce the notion of unforgeability. Unforgeability

means that an adversary cannot redeem a contract on an outcome

that is different from the winning outcome announced by the ora-

cles. A second notion of interest in oracle contracts is verifiability.

With verifiability, we aim to capture the property that if an antici-

pation is correctly computed and verified, a conditional payment

on this anticipation is redeemable by the counter-party except with

negligible probability.

Another notion of interest in oracle contracts is attestation un-

forgeability. Attestation unforgeability means that an adversary

cannot counterfeit an attestation from an oracle. We note that the

notion of attestation unforgeability is important to ensure that

the scheme achieves accountability. With accountability, we aim

to capture the property that, if an oracle attests to more than one

outcome for an event, it can be detected by Alice and Bob. In case

of a dispute between Alice and Bob regarding the correct outcome

(where Alice claims outcome 𝑗 and Bob claims outcome 𝑗 ′), they
are both asked to present 𝜌 valid signatures on 𝑗 and 𝑗 ′. We then

distinguish three cases:

(1) Alice fails to present valid signatures on 𝑗 : In this case, Alice

is blamed, since she cannot substantiate the outcome with signa-

tures on behalf of the oracles.

(2) Bob fails to present valid signatures on 𝑗 ′: Analogously, in
this case, Bob is blamed.

(3) Both Alice and Bob present enough signatures on both 𝑗

and 𝑗 ′. Then, there must exist an oracle that signed two different

outcomes for a given event (since 𝜌 > 𝑁 /2), which is blamed. Note

that Alice and Bob cannot frame the oracles without breaking the

attestation unforgeability of the signature scheme of the oracles.

5.1 Our Protocol
In this section, we present a concrete construction of oracle con-

tracts with parameters 𝜌, 𝑁 and 𝑀 relying on the VweTS crypto-

graphic building block. We set 𝜌 > 𝑁 /2. More precisely, algorithms

OKGen,Attest, and AttestVf are instantiated using the signature

schemeDS := (KGen, Sign,Vf), algorithmsAnticipate,AnticipateVf
andRedeem are instantiated using the verifiable witness encryption

based on threshold signatures scheme VweTS := (EncSig,VfEnc,
DecSig) and the signature scheme ΠBDS := (KGen, Sign,Vf) is
mapped to DS := (KGen, Sign,Vf). The formal description of our

construction is given in Fig. 7. Moreover, we state below our formal

security claim and defer the formal proofs to the Appendix J.

Theorem 2 (Oracle contract security). Let (𝜌, 𝑁 ,𝑀)-VweTS
be a one-way verifiable witness encryption for threshold signatures
scheme defined with respect to DS := (KGen, Sign,Vf) and DS :=

(KGen, Sign,Vf). Let DS := (KGen, Sign,Vf) be an EUF-CMA secure
digital signature scheme. Then, our protocol is an unforgeable, verifi-
able and attestation unforgeable (𝜌, 𝑁 ,𝑀)-oracle contract protocol
defined with respect to the signature scheme ΠBDS := DS.

11

Oracle Key Generation: Algorithm OKGen(1𝜆) is run by

oracles O𝑖 for 𝑖 ∈ [𝑁], which does the following:

• Sample keys (vk𝑖 , sk𝑖) ← DS.KGen(1𝜆)
• Return (pk𝑂𝑖 , sk

𝑂
𝑖) := (vk𝑖 , sk𝑖).

Event Attestation: Algorithm Attest(sk𝑂𝑖 , 𝑜) is run by the

oracles O𝑖 for 𝑖 ∈ [𝑁], which does the following:

• Parse sk𝑂𝑖 := sk𝑖
• Generate 𝜎𝑖 ← DS.Sign(sk𝑖 , 𝑜).
• Return att𝑖 := 𝜎𝑖 .

Attestation Verification: Algorithm AttestVf (pk𝑂 , att, 𝑜)
does the following:

• Parse pk𝑂𝑖 := vk𝑖 and att := 𝜎𝑖

• Check if DS.Vf (vk𝑖 , 𝑜, 𝜎𝑖) = 1

• Return 1 if the above check is successful, and 0 otherwise.

Event Anticipation: Algorithm
Anticipate(sk𝐴, (pk𝑂𝑖)𝑖∈[𝑁] , (𝑜 𝑗 , Tx𝑗) 𝑗 ∈[𝑀]) does the
following:

• Parse sk𝐴 := sk and (pk𝑂𝑖)𝑖∈[𝑁] := (vk𝑖)𝑖∈[𝑁]
• Set (𝑐, 𝜋𝑐) ←
VweTS.EncSig(((vk𝑖)𝑖∈[𝑁] , (𝑜 𝑗) 𝑗 ∈[𝑀]), sk, (Tx𝑗) 𝑗 ∈[𝑀])
• Return ant := (𝑐, 𝜋𝑐).
Anticipation Verification: Algorithm
AnticipateVf (pk𝐴, ant, (pk𝑂𝑖)𝑖∈[𝑁] , (𝑜 𝑗 , Tx𝑗) 𝑗 ∈[𝑀]) does the
following:

• Parse ant := (𝑐, 𝜋𝑐), pk𝐴 := vk and

(pk𝑂𝑖)𝑖∈[𝑁] := (vk𝑖)𝑖∈[𝑁]
• Check if

VweTS.VfEnc(𝑐, 𝜋𝑐 , ((vk𝑖)𝑖∈[𝑁] , (𝑜 𝑗 , Tx𝑗) 𝑗 ∈[𝑀] , vk)) = 1

• Return 1 if the above check is successful, and 0 otherwise.

Contract Redeem: Algorithm Redeem(𝑗, (att𝑖)𝑖∈[𝐾] , ant)
does the following:

• Parse ant := (𝑐, 𝜋𝑐) and (att𝑖)𝑖∈[𝐾] := (𝜎𝑖)𝑖∈[𝐾]
• Set 𝜎 ← VweTS.DecSig(𝑗, {𝜎𝑖 }𝑖∈[𝐾] , 𝑐, 𝜋𝑐)
• Return 𝜎

Figure 7: Oracle Contracts construction based on VweTS.

6 PERFORMANCE ANALYSIS
In this section, we describe the implementation and evaluate the

practicality of our protocol for oracle contracts. We also suggest

some implementation-level optimizations for VweTS.

6.1 Implementation
Wehave developed a prototypical Rust implementation [2] to demon-

strate the feasibility of our construction. The implementation en-

compasses the event anticipation (i.e., Anticipate algorithm), the an-
ticipation verification (i.e., AnticipateVF algorithm) and the contract
redeem (i.e., Redeem algorithm), thus simulating the functionality

that would be performed by Alice and Bob in the protocol. We

omit the operations regarding attestations since they are simple

signature creation and verification of a digital signature scheme.

Implementation-level Optimizations. Alice can pre-compute

several of the operations required in the VweTS.EncSig algorithm
(see Fig. 6), concretely bullet points 1, 2, 3, 4 (except for the sub-step

b) and 5 (except for the complete sub-step b). The intuition behind

this is that these steps use random values that are not linked to the

inputs of the algorithm.

6.2 Performance
We conducted our experiments on a machine with a quad-core Intel

Core i7 2,3 GHz and 16 GB of RAM. For our experiments, we run

Alice and Bob’s operations within the same machine, therefore they

are communicated through localhost.

We evaluate the impact of three system parameters: (i) the secu-

rity parameter of the cut-and-choose; (ii) the number of oracles; and

(iii) the number of outcomes. For each parameter we study, we vary

this parameter while we fix a value for the other two. We thereby

compute the impact of such parameter in the overall process, that is,

the execution of Anticipate, AnticipateVF and Redeem. The results

are shown in Figure 8.

In the view of these results, we make the following observations.

First, augmenting the security parameter of the cut-and-choose

used within VweTS has the least impact on both running time and

communication time. Second, augmenting the number of oracles,

as well as the threshold, has a moderate impact in both running

and communication time. They both seem to grow linearly on the

number of oracles participating in the protocol. Third, the number

of outcomes seems to be the most impactful system parameter, since

both running time and communication overhead seem to grow

worse than linearly on the number of outcomes. In any case, even

in the possibly unrealistic setting of considering 1000 outcomes, the

running time and communication overhead are well within reach

of commodity hardware.

6.3 Further Optimizations and Comparison
Runtime and Communication Overhead. After further inspec-
tion of our implementation, we have observed that one of the main

bottlenecks is the handle of the pairing operations appearing dur-

ing the VweTS. Intuitively, they appear since we require a witness

encryption where the witness is a BLS signature from the oracles.

We have thus observed that we can improve the performance if

we change the digital signature of the oracle attestations to be one

in the DLog setting (e.g., Schnorr) and adapt VweTS accordingly.

In this modified implementation, available at [2], we have used

ristretto to implement the elliptic curve. To illustrate the perfor-

mance gain, we have tested the same parameters set as described in

the previous section with this modified implementation, with the

results shown in Figure 9. We make two main observations. First,

in all the tested setting, the optimization shows a tremendous gain

in both running time and communication overhead. Second, the

impact of the different settings is maintained, that is, the number

of outcomes keeps having the highest impact in both running time

and communication overhead, while the security parameter has

the lowest.

Increasing the Number of Oracles. In this experiment, we want

to compare the performance of our design with that of DLC when

increasing the number of oracles. For that, we have obtained a

12

20 30 40 50

0

20

40

60

80

100

Security parameter

R
u
n
n
i
n
g
t
i
m
e
(
s
)

0

1,000

2,000

3,000

4,000

C
o
m
m
u
n
i
c
a
t
i
o
n
o
v
e
r
h
e
a
d
(
K
B
)

Communication

Time

(1,1) (2,3) (3,5) (4,7)

0

20

40

60

80

100

Oracle setting (t,n)

R
u
n
n
i
n
g
t
i
m
e
(
s
)

0

1,000

2,000

3,000

4,000

C
o
m
m
u
n
i
c
a
t
i
o
n
o
v
e
r
h
e
a
d
(
K
B
)

Communication

Time

10 100 500 1000

0

20

40

60

80

100

Number of outcomes

R
u
n
n
i
n
g
t
i
m
e
(
s
)

0

1,000

2,000

3,000

4,000

C
o
m
m
u
n
i
c
a
t
i
o
n
o
v
e
r
h
e
a
d
(
K
B
)

Communication

Time

Figure 8: Impact of the security parameter (left), oracle setting (middle) and number of outcomes (right) on running time (red)
and communication overhead (blue). For this evaluation, we have set up the parameters as follows: Left: 1 oracle, 100 outcomes;
Middle: security parameter 40, 100 outcomes; Right: 1 oracle, security parameter 40.

20 30 40 50

0

0.5

1

1.5

2

Security parameter

R
u
n
n
i
n
g
t
i
m
e
(
s
)

0

500

1,000

1,500

C
o
m
m
u
n
i
c
a
t
i
o
n
o
v
e
r
h
e
a
d
(
K
B
)

Communication

Time

(1,1) (2,3) (3,5) (4,7)

0

0.5

1

1.5

2

Oracle setting (t,n)

R
u
n
n
i
n
g
t
i
m
e
(
s
)

0

500

1,000

1,500

C
o
m
m
u
n
i
c
a
t
i
o
n
o
v
e
r
h
e
a
d
(
K
B
)

Communication

Time

10 100 500 1000

0

0.5

1

1.5

2

Number of outcomes

R
u
n
n
i
n
g
t
i
m
e
(
s
)

0

500

1,000

1,500

C
o
m
m
u
n
i
c
a
t
i
o
n
o
v
e
r
h
e
a
d
(
K
B
)

Communication

Time

Figure 9: Impact of the security parameter (left), oracle setting (middle) and number of outcomes (right) on running time (red)
and communication overhead (blue). For this evaluation, we have set up the parameters as follows: Left: 1 oracle, 100 outcomes;
Middle: security parameter 40, 100 outcomes; Right: 1 oracle, security parameter 40.

prototype implementation of the DLC design [2] where we have

tested it for an increasing number of oracles. The results are shown

in Figure 10. We observe that running time of the DLC approach is

the one scaling the worst when we increase the number of oracles.

While our approach requires a number of operations linear on the

total number of oracles, the DLC approach requires a number of

operations exponential in the (threshold) number of oracles since

to construct a DLC for an outcome event using some threshold t-

of-n oracles, they construct adaptor signatures for all outcomes for

all possible combinations of t-of-t oracles [14]. Therefore, starting

from a small setting of 5 oracles and a threshold of 𝑡 = 3, their

approach is less efficient and the different keeps growing as we

increment the values of 𝑛 and 𝑡 .

7 CONCLUSIONS
In this work, we investigate the problem of oracle contracts that do

not require Turing-complete language or are based on the trusted

execution environment. In particular, we design game-based defini-

tions that model the security properties of oracle contracts, and we

propose the first construction with provable security guarantees

that is compatible with many cryptocurrencies today, including

Bitcoin. As a contribution of independent interest, we design an

efficient protocol for witness encryption for the general class of

languages {(vk,𝑚) ∈ L : ∃ 𝜎 s.t. Verify(vk, 𝜎,𝑚) = 1}, where 𝜎 is

a BLS digital signature on𝑚. Moreover, we show extensions to (i)

(2,3) (3,5) (4,7) (5,9)

10
−1

10
0

10
1

Oracle setting (t,n)

R
u
n
n
i
n
g
t
i
m
e
(
s
)

Ours (optimized)

Ours (not optimized)

DLC

Figure 10: Running time of our approach and DLC with an
increasing number of oracles. We fix security parameter to
40 and number of outcomes to 100. The y-axis is in log scale.

the threshold setting; (ii) how to efficiently prove that the encrypted

message has a certain structure; and (iii) how to support an event

with an exponential number of outcomes without increasing the

communication complexity of the protocol proportionally. Finally,

we provide a prototypical implementation and evaluated, showing

that not only our construction is practical even in commodity hard-

ware but also copes better with a growing number of oracles than

the currently proposed Discreet Log Contracts approach.

13

REFERENCES
[1] [n.d.]. DeFi Pulse Website. https://www.defipulse.com/.

[2] [n.d.]. Source code for this project. https://sites.google.com/view/

ccs343implementation/home.

[3] Arash Afshar, Payman Mohassel, Benny Pinkas, and Ben Riva. 2014. Non-

Interactive Secure Computation Based on Cut-and-Choose. In EUROCRYPT 2014
(LNCS, Vol. 8441), Phong Q. Nguyen and Elisabeth Oswald (Eds.). Springer, Hei-

delberg, Germany, Copenhagen, Denmark, 387–404. https://doi.org/10.1007/978-

3-642-55220-5_22

[4] Lukas Aumayr, Oguzhan Ersoy, Andreas Erwig, Sebastian Faust, Kristina

Hostáková, Matteo Maffei, Pedro Moreno-Sanchez, and Siavash Riahi. 2021. Gen-

eralized channels from limited blockchain scripts and adaptor signatures. In

International Conference on the Theory and Application of Cryptology and Infor-
mation Security. Springer, 635–664.

[5] Mihir Bellare, Alexandra Boldyreva, and Jessica Staddon. 2003. Randomness

Re-use in Multi-recipient Encryption Schemeas. In PKC 2003 (LNCS, Vol. 2567),
Yvo Desmedt (Ed.). Springer, Heidelberg, Germany, Miami, FL, USA, 85–99. https:

//doi.org/10.1007/3-540-36288-6_7

[6] Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. 2012. Foundations of

garbled circuits. In ACM CCS 2012, Ting Yu, George Danezis, and Virgil D. Gligor
(Eds.). ACM Press, Raleigh, NC, USA, 784–796. https://doi.org/10.1145/2382196.

2382279

[7] Dan Boneh and Matthew K. Franklin. 2001. Identity-Based Encryption from

the Weil Pairing. In CRYPTO 2001 (LNCS, Vol. 2139), Joe Kilian (Ed.). Springer,

Heidelberg, Germany, Santa Barbara, CA, USA, 213–229. https://doi.org/10.1007/

3-540-44647-8_13

[8] Dan Boneh, Craig Gentry, Ben Lynn, and Hovav Shacham. 2003. Aggregate

and Verifiably Encrypted Signatures from Bilinear Maps. In EUROCRYPT 2003
(LNCS, Vol. 2656), Eli Biham (Ed.). Springer, Heidelberg, Germany,Warsaw, Poland,

416–432. https://doi.org/10.1007/3-540-39200-9_26

[9] Dan Boneh, Ben Lynn, and Hovav Shacham. 2001. Short Signatures from the

Weil Pairing. In ASIACRYPT 2001 (LNCS, Vol. 2248), Colin Boyd (Ed.). Springer,

Heidelberg, Germany, Gold Coast, Australia, 514–532. https://doi.org/10.1007/3-

540-45682-1_30

[10] Jo Van Bulck, David F. Oswald, Eduard Marin, Abdulla Aldoseri, Flavio D. Garcia,

and Frank Piessens. 2019. A Tale of Two Worlds: Assessing the Vulnerability of

Enclave Shielding Runtimes. In Proceedings of the 2019 ACM SIGSAC Conference
on Computer and Communications Security, CCS 2019, London, UK, November
11-15, 2019, Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang, and Jonathan

Katz (Eds.). ACM, 1741–1758. https://doi.org/10.1145/3319535.3363206

[11] Jan Camenisch and Ivan Damgård. 2000. Verifiable Encryption, Group Encryption,

and Their Applications to Separable Group Signatures and Signature Sharing

Schemes. In ASIACRYPT 2000 (LNCS, Vol. 1976), Tatsuaki Okamoto (Ed.). Springer,

Heidelberg, Germany, Kyoto, Japan, 331–345. https://doi.org/10.1007/3-540-

44448-3_25

[12] Ran Canetti, Abhishek Jain, and Alessandra Scafuro. 2014. Practical UC security

with a Global Random Oracle. In ACM CCS 2014, Gail-Joon Ahn, Moti Yung, and

Ninghui Li (Eds.). ACM Press, Scottsdale, AZ, USA, 597–608. https://doi.org/10.

1145/2660267.2660374

[13] Guoxing Chen, Sanchuan Chen, Yuan Xiao, Yinqian Zhang, Zhiqiang Lin, and

Ten-Hwang Lai. 2020. SgxPectre: Stealing Intel Secrets From SGX Enclaves via

Speculative Execution. IEEE Secur. Priv. 18, 3 (2020), 28–37. https://doi.org/10.

1109/MSEC.2019.2963021

[14] DLC community. [n.d.]. Specification for Discreet Log Contracts. https://github.

com/discreetlogcontracts/dlcspecs.

[15] Alfredo De Santis, Silvio Micali, and Giuseppe Persiano. 1987. Non-interactive

zero-knowledge proof systems. In Conference on the Theory and Application of
Cryptographic Techniques. Springer, 52–72.

[16] Nico Döttling, Lucjan Hanzlik, Bernardo Magri, and Stella Wohnig. 2022. McFly:

Verifiable Encryption to the Future Made Practical. Cryptology ePrint Archive
(2022).

[17] Thaddeus Dryja. [n.d.]. Discreet Log Contracts. https://adiabat.github.io/dlc.pdf.

[18] Andreas Erwig, Sebastian Faust, Kristina Hostáková, Monosij Maitra, and Siavash

Riahi. 2021. Two-Party Adaptor Signatures from Identification Schemes. In

PKC 2021, Part I (LNCS, Vol. 12710), Juan Garay (Ed.). Springer, Heidelberg, Ger-

many, Virtual Event, 451–480. https://doi.org/10.1007/978-3-030-75245-3_17

[19] Sanjam Garg, Craig Gentry, Amit Sahai, and Brent Waters. 2013. Witness en-

cryption and its applications. In 45th ACM STOC, Dan Boneh, Tim Roughgar-

den, and Joan Feigenbaum (Eds.). ACM Press, Palo Alto, CA, USA, 467–476.

https://doi.org/10.1145/2488608.2488667

[20] Gideon Greenspan. [n.d.]. Why Many Smart Contract Use Cases Are Simply

Impossible. https://www.coindesk.com/markets/2016/04/17/why-many-smart-

contract-use-cases-are-simply-impossible/.

[21] Don Johnson, Alfred Menezes, and Scott Vanstone. 2001. The Elliptic Curve Dig-

ital Signature Algorithm (ECDSA). International Journal of Information Security
1, 1 (01 Aug 2001), 36–63. https://doi.org/10.1007/s102070100002

[22] Nadav Koheh. [n.d.]. Update on DLCs (new mailing list). https://lists.

linuxfoundation.org/pipermail/bitcoin-dev/2021-January/018372.html.

[23] Yehuda Lindell and Ben Riva. 2014. Cut-and-Choose Yao-Based Secure Compu-

tation in the Online/Offline and Batch Settings. In CRYPTO 2014, Part II (LNCS,
Vol. 8617), Juan A. Garay and Rosario Gennaro (Eds.). Springer, Heidelberg, Ger-

many, Santa Barbara, CA, USA, 476–494. https://doi.org/10.1007/978-3-662-

44381-1_27

[24] Bowen Liu, Pawel Szalachowski, and Jianying Zhou. 2021. A First Look into

DeFi Oracles. In IEEE International Conference on Decentralized Applications
and Infrastructures, DAPPS 2021, Online Event, August 23-26, 2021. IEEE, 39–48.
https://doi.org/10.1109/DAPPS52256.2021.00010

[25] LLFourn (pseudonym). [n.d.]. Secure DLCs. https://bitcoinproblems.org/

problems/secure-dlcs.html.

[26] Claus-Peter Schnorr. 1990. Efficient Identification and Signatures for Smart

Cards. In CRYPTO’89 (LNCS, Vol. 435), Gilles Brassard (Ed.). Springer, Heidelberg,

Germany, Santa Barbara, CA, USA, 239–252. https://doi.org/10.1007/0-387-

34805-0_22

[27] Adi Shamir. 1979. How to share a secret. Commun. ACM 22, 11 (1979), 612–613.

[28] Sam M. Werner, Daniel Perez, Lewis Gudgeon, Ariah Klages-Mundt, Dominik

Harz, and William J. Knottenbelt. 2021. SoK: Decentralized Finance (DeFi). CoRR
abs/2101.08778 (2021). arXiv:2101.08778 https://arxiv.org/abs/2101.08778

[29] Fan Zhang, Ethan Cecchetti, Kyle Croman, Ari Juels, and Elaine Shi. 2016. Town

Crier: An Authenticated Data Feed for Smart Contracts. In Proceedings of the
2016 ACM SIGSAC Conference on Computer and Communications Security, Vienna,
Austria, October 24-28, 2016, Edgar R. Weippl, Stefan Katzenbeisser, Christopher

Kruegel, Andrew C. Myers, and Shai Halevi (Eds.). ACM, 270–282. https://doi.

org/10.1145/2976749.2978326

14

https://www.defipulse.com/
https://sites.google.com/view/ccs343implementation/home
https://sites.google.com/view/ccs343implementation/home
https://doi.org/10.1007/978-3-642-55220-5_22
https://doi.org/10.1007/978-3-642-55220-5_22
https://doi.org/10.1007/3-540-36288-6_7
https://doi.org/10.1007/3-540-36288-6_7
https://doi.org/10.1145/2382196.2382279
https://doi.org/10.1145/2382196.2382279
https://doi.org/10.1007/3-540-44647-8_13
https://doi.org/10.1007/3-540-44647-8_13
https://doi.org/10.1007/3-540-39200-9_26
https://doi.org/10.1007/3-540-45682-1_30
https://doi.org/10.1007/3-540-45682-1_30
https://doi.org/10.1145/3319535.3363206
https://doi.org/10.1007/3-540-44448-3_25
https://doi.org/10.1007/3-540-44448-3_25
https://doi.org/10.1145/2660267.2660374
https://doi.org/10.1145/2660267.2660374
https://doi.org/10.1109/MSEC.2019.2963021
https://doi.org/10.1109/MSEC.2019.2963021
https://github.com/discreetlogcontracts/dlcspecs
https://github.com/discreetlogcontracts/dlcspecs
https://adiabat.github.io/dlc.pdf
https://doi.org/10.1007/978-3-030-75245-3_17
https://doi.org/10.1145/2488608.2488667
https://www.coindesk.com/markets/2016/04/17/why-many-smart-contract-use-cases-are-simply-impossible/
https://www.coindesk.com/markets/2016/04/17/why-many-smart-contract-use-cases-are-simply-impossible/
https://doi.org/10.1007/s102070100002
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2021-January/018372.html
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2021-January/018372.html
https://doi.org/10.1007/978-3-662-44381-1_27
https://doi.org/10.1007/978-3-662-44381-1_27
https://doi.org/10.1109/DAPPS52256.2021.00010
https://bitcoinproblems.org/problems/secure-dlcs.html
https://bitcoinproblems.org/problems/secure-dlcs.html
https://doi.org/10.1007/0-387-34805-0_22
https://doi.org/10.1007/0-387-34805-0_22
https://arxiv.org/abs/2101.08778
https://doi.org/10.1145/2976749.2978326
https://doi.org/10.1145/2976749.2978326

aSigForgeA,AS (𝜆)
Q := ∅

(sk, vk) ← KGen(1𝜆)

𝑚 ← ASignO(·),pSignO(·,·) (vk)

(𝑌, 𝑦) ← GenR(1𝜆)
𝜎̂ ← pSign(sk,𝑚,𝑌)

𝜎 ← ASignO(·),pSignO(·,·) (𝜎̂, 𝑌)
return (𝑚 ∉ Q ∧ Vf (vk,𝑚, 𝜎))

SignO(𝑚)
𝜎 ← Sign(sk,𝑚)
Q := Q ∪ {𝑚}
return 𝜎

pSignO(𝑚,𝑌)
𝜎̂ ← pSign(sk,𝑚,𝑌)
Q := Q ∪ {𝑚}
return 𝜎̂

Figure 11: Unforgeabiltiy experiment of adaptor signatures

A MORE PRELIMINARIES
A.1 Adaptor Signatures

Definition 10 (Pre-signature Correctness). An adaptor sig-
nature scheme AS satisfies pre-signature correctness if for every 𝜆 ∈ N,
every message𝑚 ∈ {0, 1}∗ and every statement/witness pair (𝑌,𝑦) ∈
𝑅, the following holds:

Pr


pVf (vk,𝑚,𝑌, 𝜎̂) = 1

∧
Vf (vk,𝑚, 𝜎) = 1

∧
(𝑌,𝑦′) ∈ 𝑅

����������
(sk, vk) ← KGen(1𝜆)
𝜎̂ ← pSign(sk,𝑚,𝑌)
𝜎 := Adapt(𝜎̂, 𝑦)
𝑦′ := Ext(𝜎, 𝜎̂, 𝑌)


= 1.

Next, we formally define the security properties of an adaptor

signature scheme.

Definition 11 (Unforgeability). An adaptor signature scheme
AS is aEUF-CMA secure if for every PPT adversary A there exists a
negligible function negl such that:

Pr

[
aSigForgeA,AS (𝜆) = 1

]
≤ negl(𝜆)

where the experiment aSigForgeA,AS is defined as follows:

Definition 12 (Pre-signature Adaptability). An adaptor sig-
nature scheme AS satisfies pre-signature adaptability if for any 𝜆 ∈ N,
any message𝑚 ∈ {0, 1}∗, any statement/witness pair (𝑌,𝑦) ∈ 𝑅, any
key pair (sk, vk) ← KGen(1𝜆) and any pre-signature 𝜎̂ ← {0, 1}∗
with pVf (vk,𝑚,𝑌, 𝜎̂) = 1 we have:

Pr[Vf (vk,𝑚,Adapt(𝜎̂, 𝑦)) = 1] = 1

Definition 13 (Witness Extractability). An adaptor signa-
ture scheme AS is witness extractable if for every PPT adversary A,
there exists a negligible function negl such that the following holds:

Pr

[
aWitExtA,AS (𝜆) = 1

]
≤ negl(𝜆)

where the experiment aWitExtA,AS is defined as follows

B SIGNATURE SCHEMES
BLS Signatures.Webriefly recall here the BLS signature scheme [9].

Let (G0,G1,G𝑡) be a bilinear group of prime order 𝑞, where 𝑞 is

a 𝜆 bit prime. Let 𝑒 be an efficiently computable bilinear pairing

𝑒 : G0 × G1 → G𝑇 , where 𝑔0 and 𝑔1 are generators of G0 and G1

respectively. Let 𝐻 be a hash function 𝐻 : {0, 1}∗ → G1.

aWitExtA,AS (𝜆)
Q := ∅

(sk, vk) ← KGen(1𝜆)

(𝑚,𝑌) ← ASignO(·),pSignO(·,·) (vk)
𝜎̂ ← pSign(sk,𝑚,𝑌)

𝜎 ← ASignO(·),pSignO(·,·) (𝜎̂)
𝑦′ := Ext(vk, 𝜎, 𝜎̂, 𝑌)
return (𝑚 ∉ Q ∧ (𝑌, 𝑦′) ∉ 𝑅
∧ Vf (vk,𝑚, 𝜎))

SignO(𝑚)
𝜎 ← Sign(sk,𝑚)
Q := Q ∪ {𝑚}
return 𝜎

pSignO(𝑚,𝑌)
𝜎̂ ← pSign(sk,𝑚,𝑌)
Q := Q ∪ {𝑚}
return 𝜎̂

Figure 12:Witness extractability experiment for adaptor sig-
natures

• (vk, sk) ← KGen(1𝜆): Choose 𝛼 ← Z𝑞 , set ℎ ← 𝑔𝛼
0
∈ G0 and

output vk := ℎ and sk := 𝛼 .

• 𝜎 ← Sign(sk,𝑚): Output 𝜎 := 𝐻 (𝑚)sk ∈ G1.

• 0/1← Vf (vk,𝑚, 𝜎): If 𝑒 (𝑔0, 𝜎) = 𝑒 (vk, 𝐻 (𝑚)), then output 1 and

otherwise output 0.

Schnorr Signatures.Webriefly recall the Schnorr signature scheme [26],

that is defined over a cyclic groupG of prime order 𝑞 with generator

𝑔, and use a hash function 𝐻 : {0, 1}∗ → Z𝑞 .
• (vk, sk) ← KGen(1𝜆): Choose 𝑥 ← Z𝑞 and set sk := 𝑥 and

vk := 𝑔𝑥 .

• 𝜎 ← Sign(sk,𝑚; 𝑟): Sample a randomness 𝑟 ← Z𝑞 to compute

𝑅 := 𝑔𝑟 , 𝑐 := 𝐻 (𝑔𝑥 , 𝑅,𝑚), 𝑠 := 𝑟 + 𝑐𝑥 and output 𝜎 := (𝑅, 𝑠).
• 0/1 ← Vf(vk,𝑚, 𝜎): Parse 𝜎 := (𝑅, 𝑠) and then compute 𝑐 :=

𝐻 (vk, 𝑅,𝑚) and if 𝑔𝑠 = 𝑅 · vk𝑐 output 1, otherwise output 0.

ECDSA Signatures. The ECDSA signature scheme [21] is defined

over an elliptic curve group G of prime order 𝑞 with base point

(generator) 𝑔. The construction assumes the existence of a hash

function 𝐻 : {0, 1}∗ → Z𝑞 and is given in the following.

• (vk, sk) ← KGen(1𝜆): Choose 𝑥 ← Z𝑞 and set sk := 𝑥 and

vk := 𝑔𝑥 .

• 𝜎 ← Sign(sk,𝑚; 𝑟): Sample an integer 𝑘 ← Z𝑞 and compute

𝑐 ← 𝐻 (𝑚). Let (𝑟𝑥 , 𝑟𝑦) := 𝑅 = 𝑔𝑘 , then set 𝑟 := 𝑟𝑥 mod 𝑞 and

𝑠 := (𝑐 + 𝑟𝑥)/𝑘 mod 𝑞. Output 𝜎 := (𝑟, 𝑠).
• 0/1 ← Vf (vk,𝑚, 𝜎): Parse 𝜎 := (𝑟, 𝑠) and compute 𝑐 := 𝐻 (𝑚)
and return 1 if and only if (𝑥,𝑦) = (𝑔𝑐 · ℎ𝑟)𝑠−1

and 𝑥 = 𝑟 mod 𝑞.

Otherwise output 0.

C PROOFS OF CORRECTNESS OF ADAPTOR
BASED VweTS

Theorem 3. Our VweTS construction from Fig. 6 is correct accord-
ing to Definition 6.

Proof. Let (𝑐, 𝜋𝑐) ← EncSig(((vk𝑖)𝑖∈[𝑁] , (𝑚 𝑗) 𝑗 ∈[𝑀]), sk, (𝑚 𝑗) 𝑗 ∈[𝑀]).
To prove correctness we first need to show that

Pr

[
VfEnc(𝑐, 𝜋𝑐 , ((vk𝑖)𝑖∈[𝑁] , (𝑚 𝑗 ,𝑚 𝑗) 𝑗 ∈[𝑀] , vk)) = 1

]
= 1.

Note that VfEnc will output 0 if one of the following occurs:

15

(1) If 𝑏𝑖 = 0 and 𝑐 ′
𝑖
≠ WES.Enc((vk∗,𝑚∗), 𝑟𝑖 ; 𝑟 ′𝑖). Provided the

encryption is done correctly, this occurs with zero probabil-

ity.

(2) If 𝑏𝑖 = 1 and 𝑔𝑠𝑖 ≠ 𝑅𝑖 · 𝑌𝛼,𝛽 . Note that by construction we

have 𝑠𝑖 = 𝑟𝑖 + 𝑦𝛼,𝛽 . This implies 𝑔𝑠𝑖 = 𝑔𝑟𝑖 · 𝑔𝑦𝛼,𝛽 = 𝑅𝑖 · 𝑌𝛼,𝛽
and therefore this case never occurs.

(3) If 𝑏𝑖 = 1 and VfL𝑐
(vk𝛽 , vk

∗
,𝑚𝛼 ,𝑚

∗, 𝑐, 𝑐 ′
𝑖
, 𝜋) = 0. By the

completeness of the zero-knowledge protocol this occurs

with zero probability.

(4) If 𝑏𝑖 = 1 and AS.pVf (vk,𝑚𝛼 , 𝑌𝛼 , 𝜎̂𝛼) ≠ 1. Since 𝜎̂𝑖 is com-

puted using𝑚𝑖 and 𝑌𝑖 , by the correctness property of pSign,
it is guaranteed pVf outputs 0 with zero probability.

(5) If 𝑏𝑖 = 1 and

∏
𝑗 ∈𝑇 𝑌

ℓ𝑗 (0)
𝛼,𝑗

·𝑌 ℓ𝑘 (0)
𝛼,𝑘

≠ 𝑌𝛼 for some 𝑘 ∈ [𝑁] \𝑇 .
This case is impossible by construction of the shares 𝑌𝛼,𝑘 for

𝛼 ∈ [𝑀] and 𝑘 ∈ [𝑁].
Thus we have shown that if EncSig is computed correctly, VfEnc

outputs 1 with probability 1.

Next we need to show that for any 𝑗 ∈ [𝑀], 𝐾 ⊂ [𝑁] and |𝐾 | = 𝜌 ,
if for all 𝑖 ∈ 𝐾 we have Vf (vk𝑖 ,𝑚 𝑗 , 𝜎𝑖) = 1, then

Pr

[
Vf

(
vk,𝑚 𝑗 ,DecSig(𝑗, {𝜎𝑖 }𝑖∈𝐾 , 𝑐, 𝜋𝑐)

)
= 1

]
= 1.

We are given that for all 𝑖 ∈ 𝐾 , Vf (vk𝑖 ,𝑚 𝑗 , 𝜎𝑖) = 1. By construc-

tion, we have 𝑁 buckets of size 𝐵 that correspond to the message

𝑚 𝑗 . Denote these buckets as bckt𝑗,1, . . . , bckt𝑗,𝑁 . W.l.o.g. let 𝐾 cor-

respond to the first |𝐾 | of these 𝑁 buckets. And let each bckt𝑗,𝑖
contain ciphertexts 𝑐1, . . . 𝑐𝐵 . For 𝑖 ∈ 𝐾 :

(1) Let rShare𝑖 denote the set of values that are decrypted from

bckt𝑗,𝑖 .
(2) For each 𝑐𝑘 ∈ bckt𝑗,𝑖
(a) Compute 𝑟 = WES.Dec(𝜎𝑖 , 𝑐𝑘)
(b) Update rShare𝑖 = rShare𝑖 ∪ {𝑟 }. By the correctness prop-

erty ofWES we can correctly compute a 𝑟 .

Let each 𝑟 in rShare𝑖 be denoted as 𝑟𝑖,𝑎 for each bckt𝑗,𝑖 . To
each 𝑟𝑖,𝑎 is associated an (𝑎, 𝑠𝑎, 𝑐𝑎, 𝜋𝑎). By construction it is guar-

anteed that 𝑅𝑎 = 𝑔𝑟𝑖,𝑎 . Pick any 𝑟𝑖,𝑎 from the rShare𝑖 . Since by

construction, 𝑠𝑎 = 𝑟𝑖,𝑎 + 𝑦 𝑗,𝑖 (𝑗 is the message number and 𝑖 is

the server number), one can compute 𝑦 𝑗,𝑖 = 𝑠𝑎 − 𝑟𝑖,𝑎 . Since 𝑦 𝑗,𝑖 =((
𝑦 𝑗 −

∑
𝑘∈[𝜌−1] 𝑦 𝑗,𝑘 · ℓ𝑘 (0)

)
· ℓ𝑖 (0)−1

)
by construction, we can com-

pute 𝑦 𝑗 =
∑
𝑖∈𝐾 𝑦 𝑗,𝑖 · ℓ𝑖 (0). Finally, we can adapt the signature 𝜎̂ 𝑗

using 𝑦 𝑗 to get 𝜎 𝑗 , and by the correctness of the adaptor signature

AS, the validity of the signature 𝜎 𝑗 is guaranteed. □

D SECURITY ANALYSIS OF VweTS
CONSTRUCTION FROM ADAPTOR
SIGNATURES

Proof of Theorem 1. We first show that the protocol described

in Figure 6 satisfies one-wayness as defined in Definition 7. To

this end, we present a sequence of hybrids starting from the one-

wayness experiment defined in Figure 5.

Hyb
0
: This is the experiment defined in Figure 5.

Hyb
1
: This hybrid is the same as Hyb

0
except that the challenger

guesses 𝑞∗ and 𝑗∗ that are output by the adversary. For the ora-

cle query EncSigO corresponding to 𝑞∗ the random oracle 𝐻2 is

simulated by lazy sampling. A random bit string 𝑏1, . . . , 𝑏𝛾 and

the mapping Φ is sampled and the output of the random oracle

on the ciphertexts 𝑐 ′
𝑖
and 𝑅𝑖 for 𝑖 ∈ [𝛾] is set to (Φ, (𝑏1, . . . , 𝑏𝛾)).

The challenger guesses that the query 𝑞∗ correctly with probability

1

|𝑄3 | .

Hyb
2
: This hybrid is the same asHyb

1
except that in the𝑞∗-th query

to the EncSigO the zero knowledge proofs 𝜋𝑖 are replaced by simu-

lated zero knowledge proofs. By the zero knowledge property of

the underlying NIZK scheme the two hybrids are indistinguishable.

Hyb
3
: This hybrid is the same as Hyb

2
, except that the encryptions

𝑐 ′
𝑖
for which 𝑏𝑖 = 1 are replaced by encryptions of 0. By the IND-

CPA security of the witness encryption scheme (Definition 3) the

two hybrids are indistinguishable. Note that the adversary cannot

know the witness 𝜎 which is a signature on a randomly sampled

message𝑚∗ that can be verified by a randomly sampled key vk
∗
.

Since an adversary cannot efficiently compute sk∗ from vk
∗
the

adversary cannot compute a valid witness.

Hyb
4
: This hybrid is the same as Hyb

3
, except that the encryptions

𝑐𝑖 which are encrypted under vk𝛽 and𝑚𝛼 such that 𝛽 ∈ [𝑁] \𝐶 and

𝛼 = 𝑗∗, are replaced by encryptions of 0. If𝑚∗𝑗 ∈ 𝑄1, then abort. Note

that since the experiment aborts if𝑚∗𝑗 ∈ 𝑄1, the adversary cannot

receive a valid witness (a signature on𝑚∗𝑗 under vk𝛽) to decrypt the
ciphertext 𝑐𝑖 . By the IND-CPA security of the witness encryption

scheme (Definition 3) the two hybrids are indistinguishable. Note

that the challenger correctly guesses the message index 𝑗∗ with
probability

1

|𝑀 | .

Hyb
5
: This hybrid is the same as Hyb

4
, except that 𝜎̂∗

𝑗
is computed

as 𝜎̂∗
𝑗
= AS.pSign(sk,𝑚∗

𝑗
, 𝑌 ∗
𝑗
) where 𝑌 ∗

𝑗
← G0. The shares of 𝑌

∗
𝑗

are computed by randomly sampling 𝑌𝑗∗,𝑘 for 𝑘 ∈ [1, 𝜌 − 1]. For

𝑘 ∈ [𝑝, 𝑁], compute 𝑌𝑗∗,𝑘 =

(
𝑌 ∗𝑗∏

𝑟∈[𝜌−1] 𝑌
ℓ𝑟 (0)
𝑗∗,𝑟

)ℓ𝑘 (0)−1

where ℓ𝑖 is the

𝑖-th lagrange polynomial. The two hybrids are indistinguishable

since the changes are syntactical and the distribution induced is

identical in the two hybrids.

Hyb
6
: This hybrid is the same as Hyb

5
, except that for all 𝑖 such

that Φ(𝑖) = (𝛼, 𝛽) where 𝛼 = 𝑗∗ and 𝛽 ∈ [𝑁] \ 𝐶 the variable 𝑠𝑖

is randomly sampled as 𝑠𝑖 ← Z𝑞 and 𝑅𝑖 is computed as 𝑅𝑖 =
𝑔𝑠𝑖

𝑌𝛼,𝛽
.

The distribution of 𝑅𝑖 and 𝑠𝑖 are identical to the previous hybrid

and therefore they are indistinguishable.

Now we show that one-wayness holds in Hyb
6
. In particular we

show that an adversary that wins the one-wayness experiment can

be used to break the unforgeability property (Definition 11) of the

underlying adaptor signature.

Consider an adversaryA that wins the one-wayness experiment

with non-negligble probability. We now describe another adver-

sary B that uses A to win the unforgeability game of the adaptor

signatures.

Adversary B:

16

(1) InitializeA and simulate the experiment ExpOWay towards
A.

(2) While simulating EncSigO for query 𝑞∗ and message 𝑚∗,
send𝑚 to the challenger.

(3) Receive 𝜎̂ and 𝑌 from the challenger. Simulate the rest of

the protocol as in Hyb
6
where 𝑌 is used instead of randomly

sampling 𝑌 ∗
𝑗
in computing 𝜎̂ = AS.pSign(sk,𝑚∗

𝑗
, 𝑌).

(4) Upon receiving any SignO calls forward the calls to the

challenger and return the response to the adversary.

(5) Upon receiving 𝜎 from A, output 𝜎 to the challenger.

It is clear that the

Pr

[
aSigForgeB,AS (𝜆)

]
=

1

|𝑄3 |
1

|𝑀 | Pr

[
ExpOWay𝜌,𝑁

VweTS,DS,DS,A
(𝜆) = 1

]
This implies that Pr

[
ExpOWay𝜌,𝑁

VweTS,DS,DS,A
(𝜆) = 1

]
≤ negl(𝜆)

since we assume that the adaptor signature scheme is EUF-CMA
secure and |𝑄3 | and |𝑀 | are polynomial in the security parameter

𝜆. This concludes our proof of security of one-wayness.

We now prove that the scheme is verifiable according to Defini-

tion 8.We analyze the protocol in the interactive version and the ver-

ifiability must follow from the Fiat-Shamir transformation. Assume

that an adversary A breaks the verifiability of the protocol. This

implies that the adversary outputs ((𝑚 𝑗 ,𝑚 𝑗) 𝑗 ∈[𝑀] , vk, (vk𝑖)𝑖∈[𝑁] ,
(𝜎 𝑗) 𝑗 ∈𝐾 , 𝑗∗, 𝑐, 𝜋𝑐) such that

(1) ∀𝑗 ∈ 𝐾,Vf (vk 𝑗 ,𝑚 𝑗∗ , 𝜎 𝑗) = 1

(2) VfEnc(𝑐, 𝜋𝑐 , ((vk𝑖)𝑖∈[𝑁] , (𝑚 𝑗 ,𝑚 𝑗) 𝑗 ∈[𝑀] , vk)) = 1

(3) Vf (vk,𝑚 𝑗∗ , 𝜎) = 0, where 𝜎 ← DecSig(𝑗∗, {𝜎 𝑗 } 𝑗 ∈𝐾 , 𝑐, 𝜋𝑐)

Now since ∀𝑗 ∈ 𝐾,Vf (vk 𝑗 ,𝑚 𝑗∗ , 𝜎 𝑗) = 1, the adversary is able

to compute some 𝑟 = WES.Dec(𝜎 𝑗 , 𝑐) for every (𝑖, 𝑠, 𝑐, 𝜋) ∈ Sunop
such that Φ(𝑖) = (𝑗∗, 𝑗). This 𝑟 is then added to rShare𝑗 .

Now following Corollary 4.2 of [23] we pick parameters such

that the probability of all 𝑟 in any rShare𝑗 to be invalid is negligible.
More specifically, if the total number of ciphertexts is set to 2𝑀𝑁𝐵,

where 𝐵 = |bckt| and 𝐵 ≥ 𝜆
log𝑀𝑁+1 + 1 then the probability of all 𝑟

in any rShare being invalid is negligible.

Since VfEnc outputs 1, this implies that 𝑔𝑠𝑖 = 𝑅𝑖 ·𝑌𝛼,𝛽 . Moreover,

the ciphertexts are well formed except with negligible probability

by the soundness of the NIZK scheme. This implies that the secret

shares 𝑦 𝑗,𝑖 can be computed as 𝑠𝑎 − 𝑟𝑖,𝑎 . Given 𝐾 shares the party is

able to reconstruct to compute𝑦 𝑗 . Finally sinceAS.pVf (vk,𝑚𝛼 , 𝑌𝛼 , 𝜎̂𝛼) =
1 by the pre-signature adaptibility property of AS the party is able

to compute the signature 𝜎 with high probability. □

E CONSTRUCTION BASED ON BLS
SIGNATURES

In this section, we present another concrete construction of VweTS
with parameters 𝜌, 𝑁 and 𝑀 relying on the same cryptographic

building blocks as the previous construction, except that we replace

DS with BLS signature scheme the same as DS.

E.0.1 High Level Overview. We present a high level overview of

our construction, and the formal description is given in Fig. 13.

Similar to the adaptor signature based construction, we assume the

availability of public parameters.

The signature generation algorithm proceeds similar to the pre-

vious construction, except that instead of generating adaptor pre-

signatures on the message𝑚𝑖 , the algorithm generates BLS signa-

tures on the message𝑚𝑖 wrt. secret key sk. It then secret shares

each of the BLS signatures and for each of their verifiability, the

algorithm also generates the shares of the verification key vk. The
final point of difference is in the cut-and-choose where, for the

unopened indices 𝑖 such that (𝛼, 𝛽) := Φ(𝑖), we set the value 𝑠𝑖
to be the aggregate of the signature share 𝜎𝛼,𝛽 and the value 𝑔

𝑟𝑖
1
.

The rest of the algorithm proceeds as the adaptor signature based

construction.

To verify, the algorithm proceeds as before except now instead

of checking the correctness of adaptor witness sharing, it veri-

fies the correctness of the signature sharing with a simple pairing

check. The decryption algorithm also proceeds as before, except

the difference is obtaining the signature share from 𝑠𝑖 . Recall 𝑠𝑖 is

an aggregate of the signature share and a group element in this

case. Therefore, to obtain the signature share, we divide away the

masking group element and finally reconstruct the required signa-

ture via Lagrange interpolation. In Appendix C, we formally show

that our construction satisfies correctness according to Definition 6.

Security of our construction is formally stated in the following

theorem, and the proof is deferred to Appendix F.

Theorem 4. Let BLS signature scheme be unforgeable (DS andDS),
WES be a secure witness encryption based on signatures scheme, and
(SetupL𝑐

, ProveL𝑐
,VfL𝑐

) be NIZK proof system for the language
L𝑐 satisfying zero-knowledge and simulation soundness. Then the
VweTS construction from Fig. 6 is one-way and verifiable according
to Definition 7 and Definition 8, respectively.

Theorem 5. Our VweTS construction from Fig. 13 is correct ac-
cording to Definition 6.

Proof. We let (𝑐, 𝜋𝑐) ← EncSig(((vk𝑖)𝑖∈[𝑁] , (𝑚 𝑗) 𝑗 ∈[𝑀] , 𝜌), sk,
(𝑚 𝑗) 𝑗 ∈[𝑀]). To prove correctness we first need to show that

Pr

[
VfEnc(𝑐, 𝜋𝑐 , ((vk𝑖)𝑖∈[𝑁] , (𝑚 𝑗 ,𝑚 𝑗) 𝑗 ∈[𝑀] , vk)) = 1

]
= 1.

Note that VfEnc will output 0 if one of the following occurs:

(1) If 𝑏𝑖 = 0 and 𝑐 ′
𝑖
≠ WES.Enc((vk∗,𝑚∗), 𝑟𝑖 ; 𝑟 ′𝑖). Provided the

encryption is done correctly, this occurs with zero probabil-

ity.

(2) If 𝑏𝑖 = 1 and 𝑒 (𝑔0, 𝑠𝑖) ≠ 𝑒 (𝑅𝑖 , 𝑔1) · 𝑒 (ℎ𝛼,𝛽 , 𝐻 (𝑚𝛼)). Note that
by construction we have 𝑠𝑖 = 𝜎𝛼,𝛽 · 𝑔𝑟𝑖1 . This implies

𝑒 (𝑔0, 𝑠𝑖) = 𝑒 (𝑔0, 𝜎𝛼,𝛽 · 𝑔𝑟𝑖1)
= 𝑒 (𝑔0, 𝐻0 (𝑚𝛼)𝑥𝛼,𝛽 · 𝑔𝑟𝑖

1
)

= 𝑒 (𝑔0, 𝐻0 (𝑚𝛼)𝑥𝛼,𝛽) · 𝑒 (𝑔0, 𝑔
𝑟𝑖
1
)

= 𝑒 (𝑔𝑥𝛼,𝛽
0

, 𝐻0 (𝑚𝛼)) · 𝑒 (𝑔𝑟𝑖
0
, 𝑔1)

= 𝑒 (ℎ𝛼,𝛽 , 𝐻0 (𝑚𝛼)) · 𝑒 (𝑅𝑖 , 𝑔1)

and therefore this case never occurs.

(3) If 𝑏𝑖 = 1 and ΠL𝑐
.Vf(vk𝛽 , vk

∗
,𝑚𝛼 ,𝑚

∗, 𝑐, 𝑐 ′
𝑖
, 𝜋) = 0. By the

completeness of the zero-knowledge protocol this occurs

with zero probability.

17

Public parameters: (G0, 𝑔0,G1, 𝑔1, 𝑞,G𝑇 , 𝛾, 𝐻2, crs)
(𝑐, 𝜋𝑐) ← EncSig(((vk𝑖)𝑖∈[𝑁] , (𝑚 𝑗) 𝑗 ∈[𝑀] , 𝜌), sk, (𝑚 𝑗) 𝑗 ∈[𝑀]):

(1) Sample random vk
∗ ∈ G0 and𝑚∗ ∈ {0, 1}𝜆 , initialize Sop = Sunop = ∅.

(2) For 𝑖 ∈ [𝛾]:
(a) Sample 𝑟𝑖 ← Z𝑞 and compute 𝑅𝑖 := 𝑔

𝑟𝑖
0
.

(b) Compute 𝑐 ′
𝑖

:= WES.Enc((vk∗,𝑚∗), 𝑟𝑖 ; 𝑟 ′𝑖) where 𝑟
′
𝑖
is the random coins used.

(3) Compute {Φ, (𝑏1, . . . , 𝑏𝛾)} := 𝐻2 ((𝑐 ′𝑖 , 𝑅𝑖)𝑖∈[𝛾]).
(4) For 𝑖 ∈ [1, 𝑀]:

(a) Compute 𝜎𝑖 = DS.Sign(sk,𝑚𝑖).
(b) For 𝑗 ∈ [𝜌 − 1], sample a uniform 𝑥𝑖, 𝑗 ← Z𝑞 and set 𝜎𝑖, 𝑗 = 𝐻0 (𝑚𝑖)𝑥𝑖,𝑗 and set ℎ𝑖, 𝑗 = 𝑔

𝑥𝑖,𝑗
0

.

(c) For all 𝑗 ∈ {𝑡, . . . , 𝑁 } compute 𝜎𝑖, 𝑗 =

(
𝜎𝑖∏

𝑗∈[𝑡−1] 𝜎
ℓ𝑗 (0)
𝑖,𝑗

)ℓ𝑖 (0)−1

, ℎ𝑖, 𝑗 =

(
vk∏

𝑗∈[𝑡−1] ℎ
ℓ𝑗 (0)
𝑖,𝑗

)ℓ𝑖 (0)−1

.

(5) Set Σ1 = {ℎ𝑖, 𝑗 }𝑖∈[𝑀], 𝑗 ∈[𝑁] .
(6) For 𝑖 ∈ [𝛾]:

(a) If 𝑏𝑖 = 1, do Sop = Sop ∪ (𝑖, 𝑟𝑖 , 𝑟 ′𝑖).
(b) If 𝑏𝑖 = 0:

(i) Let (𝛼, 𝛽) := Φ(𝑖).
(ii) Compute 𝑠𝑖 = 𝜎𝛼,𝛽 · 𝑔𝑟𝑖1 .

(iii) Compute 𝑐𝑖 := WES.Enc((vk𝛽 ,𝑚𝛼), 𝑟𝑖 ; 𝑟 ′𝑖) and 𝜋𝑖 ← ΠL𝑐
.Prove(vk𝛽 , vk

∗
,𝑚𝛼 ,𝑚

∗, 𝑐𝑖 , 𝑐 ′𝑖).
(iv) Set Sunop = Sunop ∪ (𝑖, 𝑐𝑖 , 𝜋𝑖 , 𝑠𝑖).

(7) Return 𝑐 = {𝑐 ′
𝑖
}𝑖∈[𝛾] , 𝜋𝑐 = {Sop,Sunop, vk

∗
,𝑚∗, {𝑅𝑖 }𝑖∈[𝛾] , Σ1}.

0/1← VfEnc(𝑐, 𝜋𝑐 , ((vk𝑖)𝑖∈[𝑁] , (𝑚 𝑗 ,𝑚 𝑗) 𝑗 ∈[𝑀] , vk)):

(1) Parse 𝑐 as {𝑐 ′
𝑖
}𝑖∈[𝛾] and 𝜋𝑐 as {Sop,Sunop, vk

∗
,𝑚∗, {𝑅𝑖 }𝑖∈[𝛾] , Σ1 and Σ1 = {ℎ𝑖, 𝑗 }𝑖∈[𝑀], 𝑗 ∈[𝑁] }}.

(2) Compute {Φ, (𝑏1, . . . , 𝑏𝛾)} := 𝐻2 ((𝑐 ′𝑖 , 𝑅𝑖)𝑖∈[𝛾]).
(3) For 𝑖 ∈ [𝛾]:

(a) If 𝑏𝑖 = 0, check that (𝑖, 𝑟𝑖 , 𝑟 ′𝑖) ∈ Sop and that 𝑐 ′
𝑖

:= WES.Enc((vk∗,𝑚∗), 𝑟𝑖 ; 𝑟 ′𝑖).
(b) If 𝑏𝑖 = 1:

(i) (𝛼, 𝛽) := Φ(𝑖).
(ii) Check that (𝑖, 𝑐𝑖 , 𝜋𝑖 , 𝑠𝑖) ∈ Sunop.
(iii) Check that 𝑒 (𝑔0, 𝑠𝑖) = 𝑒 (𝑅𝑖 , 𝑔1) · 𝑒 (ℎ𝛼,𝛽 , 𝐻0 (𝑚𝛼)).
(iv) Check ΠL𝑐

.Vf (vk𝛽 , vk
∗
,𝑚𝛼 ,𝑚

∗, 𝑐, 𝑐 ′
𝑖
, 𝜋𝑖) = 1.

(v) Let 𝑇 be a subset of [𝑁] of size 𝜌 − 1, check that for every 𝑘 ∈ [𝑁] \𝑇 : ∏𝑗 ∈𝑇 ℎ
ℓ𝑗 (0)
𝛼,𝑗
· ℎℓ𝑘 (0)
𝛼,𝑘

= vk.
(c) If any of the checks fail output 0, else output 1.

𝜎 ← DecSig(𝑗, {𝜎𝑖 }𝑖∈[𝐾] , 𝑐, 𝜋𝑐):

(1) Parse 𝑐 as {𝑐 ′
𝑖
}𝑖∈[𝛾] and and 𝜋𝑐 as {Sop,Sunop, vk

∗
,𝑚∗, {𝑅𝑖 }𝑖∈[𝛾] , Σ1 and Σ1 = {ℎ𝑖, 𝑗 }𝑖∈[𝑀], 𝑗 ∈[𝑁] }}.

(2) Initialize rShare𝑖 = ∅ for 𝑖 ∈ [𝐾].
(3) For each (𝑖, 𝑐𝑖 , 𝜋𝑖 , 𝑠𝑖) ∈ Sunop, compute (𝛼, 𝛽) = Φ(𝑖). If 𝛼 = 𝑗 and 𝛽 ∈ [𝐾] s.t. DS.Vf (vk𝛽 , (𝑚𝛼 , 𝜎𝑖) = 1).
(a) Compute 𝑟 = WES.Dec(𝜎𝑖 , 𝑐𝑖).
(b) rShare𝛽 := rShare𝛽 ∪ {𝑟 }.

(4) It is guaranteed that at least one 𝑟 in each rShare𝑖 is valid. Denote this as 𝑟𝑖,𝑎 , where (𝑎, 𝑐𝑎, 𝜋𝑖 , 𝑠𝑎) ∈ Sunop.
(5) For 𝑖 ∈ [𝐾], compute 𝜎 𝑗,𝑖 = 𝑠𝑎/𝑔𝑟𝑖,𝑎

1
.

(6) Return 𝜎 𝑗 =
∏
𝑖∈[𝐾] 𝜎

ℓ𝑖 (0)
𝑗,𝑖

.

Figure 13: Verifiable witness encryption based on threshold signatures from BLS signatures.

(4) If𝑏𝑖 = 1 and

∏
𝑗 ∈𝑇 ℎ

ℓ𝑗 (0)
𝛼,𝑗
·ℎℓ𝑘 (0)
𝛼,𝑘

= vk. This case is impossible

by construction of the shares of vk for 𝛼 ∈ [𝑀] and 𝑘 ∈ [𝑁].

Thus we have shown that if EncSig is computed correctly, VfEnc
outputs 1 with probability 1.

Next we need to show that for any 𝑗 ∈ [𝑀], 𝐾 ⊂ [𝑁] and |𝐾 | = 𝜌 ,
if for all 𝑖 ∈ 𝐾 we have Vf (vk𝑖 ,𝑚 𝑗 , 𝜎𝑖) = 1, then

Pr

[
Vf

(
vk,𝑚 𝑗 ,DecSig(𝑗, {𝜎𝑖 }𝑖∈𝐾 , 𝑐, 𝜋𝑐)

)
= 1

]
= 1.

18

We are given that for all 𝑖 ∈ 𝐾 , Vf (vk𝑖 ,𝑚 𝑗 , 𝜎𝑖) = 1. By construc-

tion, we have 𝑁 buckets of size 𝐵 that correspond to the message

𝑚 𝑗 . Let these buckets be denoted as bckt𝑗,1, . . . , bckt𝑗,𝑁 . W.l.o.g.

let 𝐾 correspond to the first |𝐾 | of these 𝑁 buckets. And let each

bucket bckt𝑗,𝑖 contain ciphertexts 𝑐1, . . . 𝑐𝐵 For 𝑖 ∈ 𝐾 :
(1) Let rShare𝑖 denote the set of values that are decrypted from

bckt𝑗,𝑖
(2) For each 𝑐𝑘 ∈ bckt𝑗,𝑖
(a) Compute 𝑟 = WES.Dec(𝜎𝑖 , 𝑐𝑘)
(b) Update rShare𝑖 = rShare𝑖 ∪ 𝑟 . By the correctness property

ofWES we can correctly compute a 𝑟 .

Let each 𝑟 in rShare𝑖 be denoted as 𝑟𝑖,𝑎 for each bckt𝑗,𝑖 . To each

𝑟𝑖,𝑎 is associated an (𝑎, 𝑠𝑎, 𝑐𝑎, 𝜋𝑎). By construction it is guaranteed

that 𝑅𝑎 = 𝑔
𝑟𝑖,𝑎
0

. Pick any 𝑟𝑖,𝑎 from the rShare𝑖 . Since by construction,
𝑠𝑎 = 𝜎 𝑗,𝛽 ·𝑔

𝑟𝑖,𝑎
1

(𝑗 is the message number and 𝛽 is the server number),

one can compute 𝜎 𝑗,𝛽 = 𝑠𝑎/𝑔𝑟𝑖,𝑎
1

.

Since 𝜎 𝑗,𝛽 =

(
𝜎 𝑗∏

𝑖∈[𝑡−1] 𝜎
ℓ𝑗 (0)
𝑗,𝑖

)ℓ𝑖 (0)−1

by construction, one can com-

pute 𝜎 𝑗 =
∏
𝑖∈𝐾 𝜎 𝑗,𝑖 · ℓ𝑖 (0). □

F SECURITY ANALYSIS OF VweTS
CONSTRUCTION FROM BLS SIGNATURES

Before proceeding with the proof of the theorem we recall the

aggregate extraction problem, as defined in [8]. For a uniformly

sampled bilinear group (G0,G1,G𝑇) with uniformly sampled gen-

erators (𝑔0, 𝑔1), the aggregate extraction problem gives the attacker

the following information

(𝑔0, 𝑔1, 𝑔
𝑟
0
, 𝑔𝑠

0
, 𝑔𝑟+𝑠

1
)

where 𝑟, 𝑠 ←
$
Z𝑞 . The adversary wins if it outputs 𝑔

𝑠
1
. It is not hard

to see that this variant of the problem is as hard as the computa-

tional Diffie-Hellman (CDH) problem. On input (𝑔0, 𝑔1, 𝑋 = 𝑔𝑥
0
),

the reduction samples 𝑦 and set 𝑌 = 𝑔
𝑦

1
. Then it feeds the adver-

sary with (𝑔0, 𝑔1, 𝑋, 𝑔
𝑦

0
/𝑋,𝑌) and returns whatever the adversary

returns. It can be verified that the tuple is identically distributed as

the challenge for the aggregate extraction problem and a solution

immediately yields a solution for the CDH problem.

Proof of Theorem 4. We first show that the protocol described

in Figure 13 satisfies one-wayness as defined in Definition 7. To

this end, we present a sequence of hybrids starting from the one-

wayness experiment defined in Figure 5.

Hyb
0
− Hyb

4
: Defined as in the proof of Theorem 1.

Hyb
5
: This hybrid is the same as Hyb

4
except that for 𝑗∗

(1) For 𝑖 ∈ 𝐶:
(a) Sample a uniform 𝑥𝑖, 𝑗∗ ← Z𝑞
(b) Set 𝜎𝑖, 𝑗∗ = 𝐻0 (𝑚 𝑗∗)𝑥𝑖,𝑗∗

(c) Set ℎ𝑖, 𝑗∗ = 𝑔
𝑥𝑖,𝑗∗
0

(2) For 𝑖 ∈ [𝑁] \𝐶:

(a) Compute ℎ𝑖, 𝑗∗ =

(
vk∏

𝑘∈𝐶 ℎ
ℓ𝑘 (0)
𝑖,𝑘

)ℓ𝑖 (0)−1

(b) Sample 𝑟 ←
$
Z𝑞

(c) Let𝑎 be s.t.Φ(𝑎) = (𝑖, 𝑗∗) compute 𝑠𝑎 = 𝑔𝑟
1
·
(

𝜎𝑖∏
𝑘∈𝐶 𝜎

ℓ𝑘 (0)
𝑖,𝑘

)ℓ𝑖 (0)−1

(d) Set 𝑅𝑎 = 𝑔𝑟
0
.

For the malicious parties (𝑖 ∈ 𝐶) the variables 𝜎𝑖, 𝑗∗ , ℎ𝑖, 𝑗∗ and 𝑠𝑖, 𝑗∗
are computed exactly as in Hyb

4
.

For the honest parties (𝑖 ∈ [𝑁] \𝐶), the variables are computed

such that the distribution of 𝑅𝑖 , 𝑠𝑖 are indistinguishable from the

previous hybrid and ℎ𝑖, 𝑗∗ is computed as in the previous hybrid.

Therefore the two hybrids are indistinguishable.

Now we show that one-wayness holds in Hyb
5
. In particular

we show that an adversary that wins the one-wayness experiment

can be used to solve the aggregate extraction problem. Consider

an adversary A that wins the one-wayness experiment with non-

negligible probability. We now describe another adversary B that

uses A to win the aggregate extraction problem.

Adversary B:
(1) InitializeA and simulate the experiment ExpOWay towards

the adversary as in Hyb
5
.

(2) Upon receiving a challenge (𝐺,𝐻, 𝜎, 𝑔0, 𝑔1) do the following.
For 𝑖 ∈ 𝐶 , do as in Hyb

5
. For 𝑖 ∈ [𝑁] \𝐶:

(a) Sample 𝛼 ← Z𝑞
(b) replace 𝑠𝑎 with 𝜎 · 𝑔𝛼

1

(c) replace ℎ𝑖, 𝑗∗ with 𝐻

(d) replace 𝑅𝑎 with 𝐺 · 𝑔𝛼
0
.

(3) Upon receiving SignO calls simulate the signature by pro-

gramming the random oracle appropriately.

(4) Upon receiving𝜎∗ fromA, compute𝜎 ′ =

(
𝜎∗∏

𝑖∈𝐶 𝜎
𝑙 𝑗∗ (0)
𝑖,𝑗∗

) (𝑙 𝑗∗ (0))−1

and output 𝜎 ′.

Observe that if 𝜎∗ is a valid signature then 𝜎∗ =
∏
𝑖∈[𝐾] 𝜎

ℓ𝑖 (0)
𝑗,𝑖

.

This implies atleast one of the 𝜎 𝑗,𝑖 corresponds to an 𝑖 ∈ [𝑁] \𝐶 .

Now, 𝜎 ′ =

(
𝜎∗∏

𝑖∈𝐶 𝜎
𝑙 𝑗∗ (0)
𝑖,𝑗∗

) (𝑙 𝑗∗ (0))−1

returns 𝜎 ′ = 𝜎 𝑗,𝑖 that corre-

sponds to an 𝑖 ∈ [𝑁] \𝐶
This implies 𝜎 ′ = 𝑠𝑎/𝑔𝑟𝑎

1
for some 𝑎. The reduction playing the

AggExt experiment sets 𝑠𝑎 = 𝑔𝑟+𝑠
1
· 𝑔𝛼

1
and 𝑅𝑎 = 𝑔𝑟

0
· 𝑔𝛼

0
. The latter

implies 𝑟𝑎 = 𝑟 + 𝛼 and therefore 𝜎 ′ = 𝑠𝑎/𝑔𝑟𝑎
1

=
𝑔𝑟+𝑠

1
·𝑔𝛼

1

𝑔𝑟+𝛼
1

= 𝑔𝑠
1

Thus, Pr

[
AggExtA,G0,G1,G𝑇

(𝜆) = 1]
]
= Pr

[
Hyb

5

𝜌,𝑁

VweTS,DS,DS,A
(𝜆) = 1

]
= 1

|𝑄3 |
1

𝑀
Pr

[
ExpOWay𝜌,𝑁

VweTS,DS,DS,A
(𝜆) = 1

]
We now prove that the scheme is verifiable according to Defini-

tion 8.We analyze the protocol in the interactive version and the ver-

ifiability must follow from the Fiat-Shamir transformation. Assume

that an adversary A breaks the verifiability of the protocol. This

implies that the adversary outputs ((𝑚 𝑗 ,𝑚 𝑗) 𝑗 ∈[𝑀] , vk, (vk𝑖)𝑖∈[𝑁] ,
(𝜎 𝑗) 𝑗 ∈𝐾 , 𝑗∗, 𝑐, 𝜋𝑐) such that

(1) ∀𝑗 ∈ 𝐾,Vf(vk 𝑗 ,𝑚 𝑗∗ , 𝜎 𝑗) = 1

(2) VfEnc(𝑐, 𝜋𝑐 , ((vk𝑖)𝑖∈[𝑁] , (𝑚 𝑗 ,𝑚 𝑗) 𝑗 ∈[𝑀] , vk)) = 1

(3) Vf(vk,𝑚 𝑗∗ , 𝜎) = 0, where 𝜎 ← DecSig(𝑗∗, {𝜎 𝑗 } 𝑗 ∈𝐾 , 𝑐, 𝜋𝑐)
Now since ∀𝑗 ∈ 𝐾,Vf (vk 𝑗 ,𝑚 𝑗∗ , 𝜎 𝑗) = 1, the adversary is able

to compute some 𝑟 = WES.Dec(𝜎 𝑗 , 𝑐) for every (𝑖, 𝑠, 𝑐, 𝜋) ∈ Sunop
such that Φ(𝑖) = (𝑗∗, 𝑗). This 𝑟 is then added to rShare𝑗 .

19

Now following Corollary 4.2 of [23] we pick parameters such

that the probability of all 𝑟 in any rShare𝑗 to be invalid is negligible.
More specifically, if the total number of ciphertexts is set to 2𝑀𝑁𝐵,

where 𝐵 = |bckt| and 𝐵 ≥ 𝜆
log𝑀𝑁+1 + 1 then the probability of all 𝑟

in any rShare being invalid is negligible.

Since VfEnc outputs 1, this implies that 𝑒 (𝑔0, 𝑠𝑖) = 𝑒 (𝑅𝑖 , 𝑔1) ·
𝑒 (ℎ𝛼,𝛽 , 𝐻0 (𝑚𝛼)). Moreover, the ciphertexts are well formed except

with negligible probability by the soundness of the NIZK scheme.

This implies that the secret shares 𝜎𝑖, 𝑗∗ can be computed as 𝑠𝑎/𝑔𝑟𝑖,𝑎
1

.

Given 𝐾 shares the party is able to reconstruct to compute 𝜎 𝑗∗ . □

G CONSTRUCTIONS FOR LARGE UNIVERSE
OF OUTCOMES

In the protocols described previously, the communication complex-

ity grows linearly in the number of outcomes. In particular, this

implies that the number of outcomes of a given event must be

bounded by a given polynomial (in the security parameter). In what

follows we outline two modifications to decrease the dependency

of the computation and communication complexity in the number

of outputs. The first is practically more efficient, but asymptotically

still linear in the number of outcomes. The second is concretely

less efficient, by asymptotically logarithmic in the size of the out-

put space. In particular, this means that we can even support an

exponential-size universe of outcomes using the latter construction.

G.1 Concretely Efficient Construction
Let 𝑀 be the size of the universe of outcomes, which we assume

to be bounded by some polynomial in the security parameter. For

convenience, we assume that 𝑀 is a power of 2 and we denote

𝑀 = 2
𝜇
, where 𝜇 = 𝑂 (log(𝜆)). We present the formal construction

in Fig. 14.

Construction. For all 𝑗 = {1, . . . , 𝑀}, Alice samples uniformly a

𝑌𝑗 = 𝑔
𝑦 𝑗

to be the instance of the hard relation for the adaptor sig-

nature (refer to Section 4.2 for more details). Instead of computing

the witness encryption of the 𝑦 𝑗 , Alice additionally samples[
𝑍0,1 . . . 𝑍0,𝜇

𝑍1,1 . . . 𝑍1,𝜇

]
=

[
𝑔𝑧0,1 . . . 𝑔𝑧0,𝜇

𝑔𝑧1,1 . . . 𝑔𝑧1,𝜇

]
where 𝑧𝑏,𝑖 ← Z𝑞 . Alice also computes

𝑒 𝑗 = 𝑦 𝑗 +
∑
𝑖

𝑧 𝑗 [𝑖],𝑖

for all 𝑗 = {1, . . . , 𝑀}, where 𝑗 [𝑖] denotes the i-𝑡ℎ bit of 𝑗 . Alice

proceeds as in Section 4.2, except that she computes the witness en-

cryption of all

{
𝑧𝑏,𝑖

}
𝑏∈{0,1},𝑖∈{1,...,𝜇 } , each conditioned on knowing

the signatures of a large enough fraction of oracles that attests that

the 𝑖-th bit of the outcome equals 𝑏. The cut-and-choose proceeds

in a similar fashion in proving that about the witness encryption ci-

phertexts and the associated group elements

{
𝑍𝑏,𝑖

}
𝑏∈{0,1},𝑖∈{1,...,𝜇 } .

Note that in Section 4.2 we had the above cut-and-choose run for𝑀

such ciphertexts, but only have 2𝜇 now. The verification procedures

is unchanged, except that Bob additionally checks whether

𝑔𝑒 𝑗
?

= 𝑌𝑗 ·
𝜇∏
𝑖=1

𝑍 𝑗 [𝑖],𝑖

for all 𝑗 = {1, . . . , 𝑀}. The attestation is also unchanged, except

that the oracles now provide one signature per bit of the outcome.

I.e., each signature attests that the 𝑖-th bit of the outcome is equal

to some bit 𝑏. Note that there are exactly 𝜇 signatures per oracle.

Correctness and Efficiency. In terms of correctness, obtaining

enough attestations for an outcome 𝑗 = (𝑗 [1], . . . , 𝑗 [𝜇]) allows one
to witness-decrypt the corresponding ciphertexts, thereby recover-

ing the scalars (𝑧 𝑗 [1],1, . . . , 𝑧 𝑗 [𝜇],𝜇). Then, computing

𝑦 𝑗 = 𝑒 𝑗 −
𝜇∑
𝑖=1

𝑧 𝑗 [𝑖],𝑖

allows Bob to unmask 𝑦 𝑗 and consequently to recover the signa-

ture on the transaction corresponding to outcome 𝑗 . In terms of

efficiency, the overall protocol complexity is still linear in the size

of𝑀 (since Alice still needs to send𝑀 adaptor signatures to Bob),

but now the “expensive” verifiable (threshold) witness encryption

procedure is only run for 2𝜇 values, resulting in substantial savings.

Security Analysis.We now argue that the scheme is secure. Fix

an outcome 𝑗 . Observe that the security of the witness encryption

scheme allows us to argue that the values (𝑧 𝑗 [1] ⊕1,1, . . . , 𝑧 𝑗 [𝜇] ⊕1,𝜇)
are hidden, provided that the majority of the oracles is honest (this

assumption is also necessary for the security of our main protocol

in Section 4.2). Thus, all we need to argue is that, revealing the

values (𝑧 𝑗 [1],1, . . . , 𝑧 𝑗 [𝜇],𝜇) does not allow the adversary to recover

any signature beyond the one on𝑚 𝑗 . We are going to show this via

a reduction to the discrete logarithm problem.

Let 𝑌 ∗ be the challenge group element. The reduction guesses

an index 𝑖∗ ∈ {1, . . . , 𝜇} and a bit 𝑏∗ ∈ {0, 1} and sets 𝑍𝑏∗,𝑖∗ = 𝑌
∗
.

All other values of {𝑍𝑏,𝑖 } are sampled as in the original game (i.e.,

the reduction knows the corresponding discrete logarithm 𝑧𝑏,𝑖). For

all 𝑗 ∈ {1 . . . , 𝑀}, the reduction proceeds as follows. For all 𝑗 such

that 𝑗 [𝑖∗] ≠ 𝑏∗, the reduction sets 𝑒 𝑗 and 𝑌𝑗 as in the original game

(since it knows the discrete logarithm of the corresponding group

elements). On the other hand, for all 𝑗 such that 𝑗 [𝑖∗] = 𝑏∗, the
reduction computes

𝑒 𝑗 = 𝑟 𝑗 +
∑
𝑖≠𝑖∗

𝑧 𝑗 [𝑖],𝑖 and 𝑌𝑗 = 𝑔
𝑟 𝑗 ·

(
𝑌 ∗

)−1

where 𝑟 𝑗 ← Z𝑞 . Observe that all values up to this point are dis-

tributed identically as in the original game. The reduction proceeds

as in the original game, except that it witness encrypts 0 instead of

the discrete logarithm of 𝑍𝑏∗,𝑖∗ . Let 𝑗 be the outcome of the event,

and assume that the adversary is able to recover a signature on some

message corresponding to the outcome 𝑗∗ ≠ 𝑗 . If 𝑗∗ [𝑖∗] ≠ 𝑏∗ and
𝑗 [𝑖∗] ≠ 𝑏∗ ⊕ 1 the reduction aborts, otherwise it uses the signature

on 𝑗∗ to extract the discrete logarithm of 𝑌𝑗∗ . Since

DLog(𝑌𝑗∗) = DLog(𝑔𝑟 𝑗∗ ·
(
𝑌 ∗

)−1) = 𝑟 𝑗∗ − 𝑦∗

the reduction can output 𝑦∗ = DLog(𝑌 ∗).
It is clear that the reduction is efficient and, assuming that it

completes the execution, it solves the discrete logarithm problem

or breaks the witness extractability of the adaptor signature. We

now argue that the view of the adversary induced by the reduction

is computationally indistinguishable from the one of the original

game. Note that the only difference is the computation of the wit-

ness encryption for the discrete logarithm of 𝑍𝑏∗,𝑖∗ is substituted

20

with a witness encryption of 0. Since 𝑗 [𝑖∗] = 𝑏∗ ⊕ 1, it follows by

the security of witness encryption that the two views are compu-

tationally indistinguishable. Finally, note that the reduction does

not abort if 𝑗∗ [𝑖∗] = 𝑏∗ and 𝑗 [𝑖∗] = 𝑏∗ ⊕ 1, which is an event that

happens with non-negligible probability. This concludes our proof.

G.2 Asymptotically Optimal Construction
The main ingredient used in this protocol are garbled circuits (see

[6] for a formal treatment of garbled circuits). Instead of computing

signatures for each outcome and encrypting separately, Alice now

garbles a circuit that does the following: On input an outcome 𝑗 , it

outputs a signature (using Alice’s secret key) of the corresponding

message𝑚 𝑗 . Let {ℓ𝑖,0, ℓ𝑖,1}𝑖∈log(𝑀) be the labels of the garbled cir-

cuits, where𝑀 is the size of the universe of outcomes.
3
Alice then

uses the scheme described in the previous section to encrypt each

label ℓ𝑖,𝑏 , conditioned on the oracle signing a message encoding the

position 𝑖 and the bit 𝑏. The output of this algorithm consists of the

encryptions of the labels, and the garbled circuit.

For the oracles, the scheme is defined identically, except that,

on input an event 𝑗 ∈ 𝑀 , each oracle signs separately each bit of

𝑗 = (𝑗1, . . . , 𝑗log(𝑀)) along with an identifier for the position, e.g.,

it signs the messages (𝑗1, 1), . . . , (𝑗log(𝑀) , log(𝑀)). To decrypt, Bob
can then use the signatures of the oracles to recover the set of labels

{ℓ𝑖, 𝑗𝑖 }𝑖∈log(𝑀) and use such labels to evaluate the garbled circuit,

which returns a signature on𝑚 𝑗 under Alice’s key.

Note that in the description above we did not consider the verifia-

bility of the encryptions. We require two guarantees of verifiability:

(i) The encryptions are computed correctly and (ii) the garbled cir-

cuits are computed correctly. The first guarantee comes for free

using the scheme described in our previous section. To achieve

the latter, one can resort to known techniques in the literature,

such as cut-and-choose protocols presented in [3, 12]. We leave this

extension as ground for future work.

H FORMAL DEFINITIONS FOR ORACLE
CONTRACTS

Definition 14 (Correctness). An Oracle Contract scheme is
correct if the following holds simultaneously:

• Honest attestations must verify correctly. For all 𝜆 ∈ N, all
(pk𝑂 , sk𝑂) ∈ SUPP(OKGen(𝜆)), all outcomes 𝑜 , it must hold
that:

𝑃𝑟 [AttestVf (pk𝑂 ,Attest(sk𝑂 , 𝑜), 𝑜) = 1] = 1

• Honestly generated attestation anticipations must verify cor-

rectly. For all 𝜆 ∈ N, all (pk𝑂
1
, . . . , pk𝑂

𝑁
) ∈ SUPP(OKGen(𝜆)),

all (pk𝐴, sk𝐴) ∈ SUPP(ΠBDS .KGen(𝜆)) all pairs of the form
(𝑜 𝑗 , Tx𝑗) 𝑗 ∈[𝑀] , it must hold that:

𝑃𝑟 [AnticipateVf (pk𝐴, ant, (pk𝑂𝑖)𝑖∈[𝑁] , (𝑜 𝑗 , Tx𝑗) 𝑗 ∈[𝑀]) = 1] = 1

where ant ← Anticipate(sk𝐴, (pk𝑂𝑖)𝑖∈[𝑁] , (𝑜 𝑗 , Tx𝑗) 𝑗 ∈[𝑀]).
• Honest generated anticipations and attestationsmust be redeemable

by the counter-party. For all 𝜆 ∈ N, all set of public keys (pk𝑂
1
, . . . ,

pk𝑂
𝑁
) ∈ SUPP(OKGen(𝜆)), all (pk𝐴, sk𝐴) ∈ SUPP(ΠBDS .KGen(𝜆)),

3
E.g., setting𝑀 = 2

𝜆
gives us an exponential size universe of outcomes.

all pairs (𝑜 𝑗 , Tx𝑗) 𝑗 ∈[𝑀] , any 𝑗 ∈ [𝑀] and any 𝐾 ⊂ [𝑁], where
|𝐾 | = 𝜌 , it must hold that:

𝑃𝑟 [ΠBDS .Vf(pk𝐴, Tx𝑗 ,Redeem(𝑗, (att𝑖)𝑖∈[𝐾] , ant)) = 1] = 1

where ant ← Anticipate(sk𝐴, (pk𝑂𝑖)𝑖∈[𝑁] , (𝑜 𝑗 , Tx𝑗) 𝑗 ∈[𝑀]) and
∀𝑖 ∈ [𝐾] : att𝑖 ← Attest(sk𝑂𝑖 , 𝑜 𝑗).

Definition 15 (Unforgeability). A oracle contract scheme (𝜌 −
𝑁 −𝑀)−OC := (OKGen,Attest,AttestVf,Anticipate,AnticipateVf,
Redeem) parameterized by 𝜌, 𝑁 ,𝑀 ∈ N and defined with respect to a
signature scheme ΠBDS := (KGen, Sign,Vf) is said to be unforgeable
if for all 𝜆 ∈ N, there exists a negligible function negl(𝜆), such that
for all PPT adversaries A, the following holds,

Pr

[
ExpForge𝜌,𝑁 ,𝑀OC,ΠBDS,A (𝜆) = 1

]
≤ negl(𝜆)

where ExpForge is defined in Fig. 15.

Definition 16 (Verifiability). A oracle contract scheme (𝜌 −
𝑁 −𝑀)−OC := (OKGen, Attest, AttestVf, Anticipate, AnticipateVf,
Redeem) parameterized by 𝜌, 𝑁 ,𝑀 ∈ N and defined with respect to a
signature scheme ΠBDS := (KGen, Sign,Vf) is said to be verifiable if
for all 𝜆 ∈ N, there exists a negligible function negl(𝜆), and no PPT ad-
versary A that outputs ((𝑜 𝑗 , Tx𝑗) 𝑗 ∈[𝑀] , pk𝐴, {pk𝑂𝑖 }𝑖∈𝑁 , {att𝑖 }𝑖∈𝐾 ,
𝑗∗, ant) such that all the following holds simultaneously except with
probability negl(𝜆):
(1) 𝐾 ⊂ [𝑁] and |𝐾 | = 𝜌
(2) (pk𝐴, ·) ∈ SUPP(ΠBDS .KGen) and for all 𝑖 ∈ [𝑁] we have
(pk𝑂𝑖 , ·) ∈ SUPP(OKGen) where SUPP denotes to the support.

(3) ∀𝑖 ∈ 𝐾,AttestVf (pk𝑂𝑖 , 𝑜 𝑗∗ , att𝑖) = 1

(4) AnticipateVf (pk𝐴, ant, (pk𝑂𝑖)𝑖∈[𝑁]), (𝑜 𝑗 , Tx𝑗) 𝑗 ∈[𝑀]) = 1

(5) ΠBDS .Vf (pk𝐴, Tx𝑗∗ , 𝜎) = 0, where𝜎 ← Redeem(𝑗∗, {att𝑖 }𝑖∈𝐾 , ant)

Definition 17 (Attestation Unforgeability). A oracle con-
tract scheme (𝜌−𝑁−𝑀)−OC := (OKGen,Attest,AttestVf,Anticipate,
AnticipateVf,Redeem) parameterized by 𝜌, 𝑁 ,𝑀 ∈ N is said to be
attestation unforgeable if for all 𝜆 ∈ N, there exists a negligible
function negl(𝜆), such that for all PPT adversaries A, the following
holds,

Pr

[
ExpAttestForge𝜌,𝑁 ,𝑀OC,ΠBDS,A (𝜆) = 1

]
≤ negl(𝜆)

where ExpAttestForge is defined in Fig. 16.

I PROOFS OF CORRECTNESS OF ORACLE
CONTRACTS

Theorem 6. Our oracle contracts contraction from Fig. 7 is correct
according to Definition 14.

Proof. To prove correctness we first need to show that

𝑃𝑟 [AttestVf (pk𝑂 ,Attest(sk𝑂 , 𝑜), 𝑜) = 1] = 1.

Note that AttestVf will output 0 if DS.Vf (vk, 𝑜, 𝜎) ≠ 1. Since 𝜎 is

computed using 𝑜 , by the correctness property of DS.Sign, it is
guaranteed that DS.Vf outputs 0 with zero probability. Thus, if

Attest is computed correctly, AttestVf outputs 1 with probability 1.

Next we need to show that

𝑃𝑟 [AnticipateVf (pk𝐴, ant, (pk𝑂𝑖)𝑖∈[𝑁] , (𝑜 𝑗 , Tx𝑗) 𝑗 ∈[𝑀]) = 1] = 1.

21

Note thatAnticipateVfwill output 0 ifVweTS.VfEnc(𝑐, 𝜋𝑐 , ((vk𝑖)𝑖∈[𝑁] ,
(𝑜 𝑗 , Tx𝑗) 𝑗 ∈[𝑀] , vk)) ≠ 1. Since att := (𝑐, 𝜋𝑐) is computed using

(𝑜 𝑗 , Tx𝑗) 𝑗 ∈[𝑀] , by the correctness property of VweTS.EncSig, it
is guaranteed that VweTS.VfEnc outputs 𝑜 with zero probability.

Thus, if Anticipate is computed correctly, AnticipateVf outputs 1
with probability 1.

Finally, we need to show that for any 𝑗 ∈ [𝑀], 𝐾 ⊂ [𝑁] and
|𝐾 | = 𝜌 , if for all 𝑖 ∈ [𝐾] we have AttestVf (pk𝑂𝑖 , att𝑖 , 𝑜 𝑗) = 1 then

𝑃𝑟 [ΠBDS .Vf (pk𝐴, Tx𝑗 ,Redeem(𝑗, (att𝑖)𝑖∈[𝐾] , ant)) = 1] = 1.

We are given that for all 𝑖 ∈ 𝐾 , DS.Vf (vk, 𝑜, 𝜎) = 1. By construc-

tion, we have 𝜎 ← VweTS.DecSig(𝑗, {𝜎𝑖 }𝑖∈[𝐾] , 𝑐, 𝜋𝑐), thus by the

correctness of the verifiable witness encryption based on thresh-

old signatures scheme VweTS, the validity of the signature 𝜎 is

guaranteed. □

J SECURITY ANALYSIS OF ORACLE
CONTRACTS

Theorem 7 (Oracle contract security). Let (𝜌, 𝑁 ,𝑀)-VweTS
be a one-way verifiable witness encryption for threshold signatures
scheme definedwith respect to signature schemesDS := (KGen, Sign,Vf)
and DS := (KGen, Sign,Vf). Let DS := (KGen, Sign,Vf) be an
an EUF-CMA secure digital signature scheme. Then, our protocol
is an unforgeable, verifiable and attestation unforgeable (𝜌, 𝑁 ,𝑀)-
oracle contract protocol defined with respect to the signature scheme
ΠBDS := DS.

Proof. We give a proof by reduction for three adversaries play-

ing the games of unforgeability, verifiablity and attestation unforge-

ability, respectively.

Unforgeability. LetA be a PPT adversary with non-negligible ad-

vantage in the ExpForge𝜌,𝑁 ,𝑀OC,ΠBDS,A (𝜆) game. We now construct and

adversary R which uses A to win the ExpOWay𝜌,𝑁 ,𝑀
VweTS,DS,DS,A

(𝜆)
game.

R is given a verification key vk by the ExpOWay𝜌,𝑁 ,𝑀
VweTS,DS,DS,A

(𝜆)
game. It then runs A on input pk𝐴 := vk to get as output a pair

(𝐶, st
0
). R forwards the same pair to the challenger.

On input st
0
, {vk𝑖 }𝑖∈[𝑁]\𝐶 ,R sets {pk𝑂𝑖 }𝑖∈[𝑁]\𝐶 := {vk𝑖 }𝑖∈[𝑁]\𝐶

and invokes A get the tuple (𝑞∗, 𝑗∗, 𝜎∗). The reduction R simply

forwards this tuple to the challenger as the output of the game.

Additionally, R must simulateA’s oracle access to AnticipateO,
AttestO and SignO. This can be trivially done as follows. Every time

that A queries AnticipateO on input (𝑜 𝑗 , Tx𝑗) 𝑗 ∈ [𝑀], {pk𝑂𝑖 }𝑖∈𝐶 ,
R queries its own oracle EncSigO on the same input and forwards

the output. Every time that A queries AttestO on input 𝑖, 𝑜 , R
queries SignO on input the same input 𝑖, 𝑜 and return the attestation

att𝑖 to A. Finally, every time that A queries SignO, R forwards

the query to its own SignO and returns the output signature 𝜎 to

A.

After A returns the tuple (𝑞∗, 𝑗∗, 𝜎∗) as the forgery for the un-

forgeability game of oracle contracts, R outputs (𝑞∗, 𝑗∗, 𝜎∗) as the
output of its own game. It is easy to see that R is an efficient al-

gorithm and that faithfully simulates the view of A. It is left to

show that R wins its game with the same probability asA wins its

corresponding game. For that, we observe the following:

• 𝑏0: Q2 is updated in the same way in both games. Moreover

R simply forwards calls from A to its own oracle, therefore

if 𝑏0 holds for A, it holds in R
• 𝑏1: It holds in R by the same argument as before but applied

to the oracle SignO.
• 𝑏2: This is exactly the same condition in both games. More-

over, 𝐶 is a value received from A and unmodified by R.
Therefore, it must hold for R if it holds for A.

• 𝑏3: Our R maps pk𝐴 to vk and Tx𝑗∗ to𝑚 𝑗∗ during the reduc-

tion. Therefore, the condition is the same in both games and

must hold in both.

Therefore, by assumption,A succeeds with non-negligible prob-

ability, and thus R also wins with non-negligible probability. This

violates the assumption that (𝜌, 𝑁 ,𝑀)-VweTS be a one-way verifi-

able witness encryption for threshold signatures scheme, implying

that no such adversary A can exist.

Verifiability. Let A be a PPT adversary that can break the ver-

ifiablity of our (𝜌, 𝑁 ,𝑀)-oracle contract protocol non-negligible
probility. We now construct and adversaryR which usesA to break

the verifiablity of (𝜌, 𝑁 ,𝑀)-VweTS.
Our reduction R maps (𝑚 𝑗 ,𝑚 𝑗) 𝑗 ∈[𝑀] to (𝑜 𝑗 , Tx𝑗) 𝑗 ∈[𝑀] , vk to

pk𝐴 , (vk𝑖)𝑖∈[𝑁] to {pk𝑂𝑖 }𝑖∈[𝑁] , (𝜎 𝑗) 𝑗 ∈𝐾 to {att𝑖 }𝑖∈𝐾 , 𝑗∗ to 𝑗∗ and
(𝑐, 𝜋𝑐) to ant.

AfterA returns the tuple ((𝑜 𝑗 , Tx𝑗) 𝑗 ∈[𝑀] , pk𝐴, {pk𝑂𝑖 }𝑖∈𝑁 , {att𝑖 }𝑖∈𝐾 ,
𝑗∗, ant) that breaks the verifiability of oracle contracts, R outputs

((𝑚 𝑗 ,𝑚 𝑗) 𝑗 ∈[𝑀] , vk, (vk𝑖)𝑖∈[𝑁] , (𝜎 𝑗) 𝑗 ∈𝐾 , 𝑗∗, 𝑐, 𝜋𝑐) as the output of
its own game. It is easy to see that R is an efficient algorithm and

that faithfully simulates the view of A. Finally, we see that the

conditions in both definitions are exactly the same and as a conse-

quence they all must hold for R if they hold for A. Hence, R wins

with the same probability as A.

Therefore, by assumption,A succeeds with non-negligible prob-

ability, and thus R also wins with non-negligible probability. This

violates the assumption that (𝜌, 𝑁 ,𝑀)-VweTS be a verifiable wit-
ness encryption for threshold signatures scheme, implying that no

such adversary A can exist.

Attestation unforgeability. Let A be a PPT adversary with non-

negligible advantage in the ExpAttestForge𝜌,𝑁 ,𝑀OC,A (𝜆) game. We now

construct and adversaryR which usesA towin the SigForgeA,DS (𝜆)
game.

R is given a verification key vk by the SigForgeA,DS (𝜆) game.

It then runsA on input pk𝑂 := vk to get as output a pair (𝑜∗, att∗).
R forwards the pair (𝑚∗ := 𝑜∗, 𝜎 := att∗) to the challenger as the

output of the game.

Additionally, R must simulateA’s oracle access to AttestO. This
can be trivially done as follows. Every time thatA queries AttestO
on input 𝑜 , R queries SignO on input the same input𝑚 := 𝑜 and

return the attestation 𝜎 := att to A.

After A returns the pair (𝑜∗, att∗) as the forgery for the attes-

tation unforgeability game of oracle contracts, R outputs (𝑚∗ :=

𝑜∗, 𝜎 := att∗) as the output of its own game. It is easy to see that R
is an efficient algorithm and that faithfully simulates the view ofA.

It is left to show that R wins its game with the same probability as

A wins its corresponding game. For that, we observe the following:

22

• 𝑏0: Q is updated in the same way in both games. Moreover

R simply forwards calls from A to its own oracle, therefore

if 𝑏0 holds for A, it holds in R
• 𝑏1: Our R maps pk𝑂 to vk and 𝑜∗ to𝑚∗ during the reduction.
Therefore, the condition is the same in both games and must

hold in both.

Therefore, by assumption,A succeeds with non-negligible prob-

ability, and thusR also wins with non-negligible probability. This vi-

olates the assumption that DS := (KGen, Sign,Vf) be an EUF-CMA

secure digital signatures scheme, implying that no such adversary

A can exist. □

23

Public parameters: (G, 𝑔, 𝑞,G0,G1,G𝑇 , 𝛾, 𝐻2, crs)
(𝑐, 𝜋𝑐) ← EncSig(((vk𝑖)𝑖∈[𝑁] , (𝑚 𝑗) 𝑗 ∈[𝑀] , 𝜌), sk, (𝑚 𝑗) 𝑗 ∈[𝑀]):

(1) Sample random vk
∗ ∈ G0 and𝑚∗ ∈ {0, 1}𝜆 , initialize Sop = Sunop = ∅.

(2) For 𝑖 ∈ [𝛾]: where 𝛾 is 2𝑁𝐵(2 log𝑀).
(a) Sample 𝑟𝑖 ← Z𝑞 and compute 𝑅𝑖 := 𝑔𝑟𝑖 .

(b) Compute 𝑐 ′
𝑖

:= WES.Enc((vk∗,𝑚∗), 𝑟𝑖 ; 𝑟 ′𝑖) where 𝑟
′
𝑖
is the random coins used.

(3) Compute {Φ, (𝑏1, . . . , 𝑏𝛾)} := 𝐻2 ((𝑐 ′𝑖 , 𝑅𝑖)𝑖∈[𝛾]).
(4) For 𝑖 ∈ [log𝑀] and 𝑏 ∈ {0, 1}
(a) Compute 𝑧𝑖,𝑏 ← Z𝑞 and 𝑍𝑖,𝑏 = 𝑔𝑧𝑖,𝑏

(b) For all 𝑗 ∈ [𝜌 − 1] sample a uniform 𝑧𝑖,𝑏,𝑗 ← Z𝑞 and set 𝑍𝑖,𝑏, 𝑗 := 𝑔𝑧𝑖,𝑏,𝑗 .

(c) For all 𝑗 ∈ {𝜌, . . . , 𝑁 } compute 𝑧𝑖,𝑏, 𝑗 =

((
𝑧𝑖,𝑏 −

∑
𝑘∈[𝜌−1] 𝑧𝑖,𝑏,𝑘 · ℓ𝑘 (0)

)
· ℓ𝑗 (0)−1

)
, 𝑍𝑖,𝑏, 𝑗 =

(
𝑍𝑖,𝑏∏

𝑘∈[𝜌−1] 𝑍
ℓ𝑘 (0)
𝑖,𝑏,𝑘

)ℓ𝑗 (0)−1

. Here ℓ𝑖 is

the 𝑖-th Lagrange polynomial.

(5) For 𝑖 ∈ [𝑀]:
(a) Sample 𝑦𝑖 ← Z𝑞 and compute 𝑌𝑖 := 𝑔𝑦𝑖 .

(b) Compute 𝜎̂𝑖 ← AS.pSign(sk,𝑚𝑖 , 𝑌𝑖).
(c) Compute 𝑒𝑖 = 𝑦𝑖 +

∑
𝑗 𝑧 𝑗,𝑖 [𝑗]

(6) Set Σ1 = {(𝜎̂𝑖 , 𝑒𝑖)𝑖∈[𝑀] , {𝑍𝑖,𝑏 }𝑖∈[log𝑀],𝑏∈{0,1}}, {𝑍𝑖,𝑏,𝑗 }𝑖∈[log𝑀], 𝑗 ∈[𝑁],𝑏∈{0,1}}
(7) For 𝑖 ∈ [𝛾]:

(a) If 𝑏𝑖 = 1, then Sop := Sop ∪ {(𝑖, 𝑟𝑖 , 𝑟 ′𝑖)}.
(b) If 𝑏𝑖 = 0:

(i) Let (𝛼, 𝛽, 𝑝𝑜𝑠) := Φ(𝑖).
(ii) Compute 𝑐𝑖 := WES.Enc((vk𝛽 ,𝑚𝛼), 𝑟𝑖 ; 𝑟 ′′𝑖) with 𝑟

′′
𝑖
as the random coins and set

𝜋𝑖 ← ProveL𝑐
(crs, (vk𝛽 , vk

∗
,𝑚𝛼 ,𝑚

∗, 𝑐𝑖 , 𝑐 ′𝑖), 𝑟𝑖).
(iii) Compute 𝑠𝑖 = 𝑧𝑝𝑜𝑠,𝛼 [𝑝𝑜𝑠],𝛽 + 𝑟𝑖
(iv) Set Sunop := Sunop ∪ {(𝑖, 𝑐𝑖 , 𝑠𝑖 , 𝜋𝑖)}.

(8) Return 𝑐 = {𝑐 ′
𝑖
}𝑖∈[𝛾] , 𝜋𝑐 = {Sop,Sunop, vk

∗
,𝑚∗, {𝑅𝑖 , }𝑖∈[𝛾] , Σ1}.

0/1← VfEnc(𝑐, 𝜋𝑐 , ((vk𝑖)𝑖∈[𝑁] , (𝑚 𝑗 ,𝑚 𝑗) 𝑗 ∈[𝑀] , vk)):

(1) Parse 𝑐 as {𝑐 ′
𝑖
}𝑖∈[𝛾] and 𝜋𝑐 as {Sop,Sunop, vk

∗
,𝑚∗, {𝑅𝑖 , }𝑖∈[𝛾] , Σ1} where

Σ1 := {(𝜎̂𝑖 , 𝑒𝑖)𝑖∈[𝑀] , {𝑍𝑖,𝑏 }𝑖∈[log𝑀],𝑏∈{0,1}, {𝑍𝑖,𝑏,𝑗 }𝑖∈[log𝑀], 𝑗 ∈[𝑁],𝑏∈{0,1}}}.
(2) Compute {Φ, (𝑏1, . . . , 𝑏𝛾)} := 𝐻2 ((𝑐 ′𝑖 , 𝑅𝑖)𝑖∈[𝛾])
(3) For 𝑖 ∈ [𝛾]:

(a) If 𝑏𝑖 = 1, check that (𝑖, 𝑟𝑖 , 𝑟 ′𝑖) ∈ Sop and that 𝑐 ′
𝑖

:= WES.Enc((vk∗,𝑚∗), 𝑟𝑖 ; 𝑟 ′𝑖)
(b) If 𝑏𝑖 = 0:

(i) (𝛼, 𝛽, 𝑝𝑜𝑠) := Φ(𝑖)
(ii) Check that (𝑖, 𝑐𝑖 , 𝑠𝑖 , 𝜋𝑖) ∈ Sunop
(iii) Check that 𝑔𝑠𝑖 = 𝑅𝑖 · 𝑍𝑝𝑜𝑠,𝛼 [𝑝𝑜𝑠],𝛽
(iv) Check VfL𝑐

(crs, (vk𝛽 , vk
∗
,𝑚𝛼 ,𝑚

∗, 𝑐𝑖 , 𝑐 ′𝑖), 𝜋) = 1

(v) Check that AS.pVf (vk,𝑚𝛼 , 𝑌𝛼 , 𝜎̂𝛼) = 1

(vi) Let 𝑇 be a subset of [𝑁] of size 𝜌 − 1, check that for every 𝑘 ∈ [𝑁] \𝑇 : ∏𝑗 ∈𝑇 𝑍
ℓ𝑗 (0)
𝑝𝑜𝑠,𝛼 [𝑝𝑜𝑠], 𝑗 · 𝑍

ℓ𝑘 (0)
𝑝𝑜𝑠,𝛼 [𝑝𝑜𝑠],𝑘 = 𝑍𝑝𝑜𝑠,𝛼 [𝑝𝑜𝑠] .

(c) For 𝑖 ∈ [𝑀] Check that 𝑔𝑒𝑖 = 𝑌𝑖 ·
∏
𝑖 𝑍 𝑗,𝑖 [𝑗]

(d) If any of the checks fail output 0, else output 1.

𝜎 ← DecSig(𝑗, {𝜎𝑖 }𝑖∈[𝐾] , 𝑐, 𝜋𝑐):

(1) Parse 𝑐 as {𝑐 ′
𝑖
}𝑖∈[𝛾] and 𝜋𝑐 as {Sop,Sunop, vk

∗
,𝑚∗, {𝑅𝑖 , }𝑖∈[𝛾] , Σ1} where

Σ1 := {(𝜎̂𝑖 , 𝑒𝑖)𝑖∈[𝑀] , {𝑍𝑖,𝑏 }𝑖∈[log𝑀],𝑏∈{0,1}, {𝑍𝑖,𝑏,𝑗 }𝑖∈[log𝑀], 𝑗 ∈[𝑁],𝑏∈{0,1}}}.
(2) For all (𝑖, 𝑗) ∈ [𝐾] × [log𝑀], initialize rShare𝑖, 𝑗 = ∅.
(3) For each (𝑖, 𝑐, 𝑠, 𝜋) ∈ Sunop, compute (𝛼, 𝛽, 𝑝𝑜𝑠) = Φ(𝑖). If 𝛼 = 𝑗 and if 𝛽 ∈ [𝐾] s.t. DS.Vf(vk𝛽 , 𝛼 [𝑝𝑜𝑠], 𝜎𝑖) = 1)
(a) Compute 𝑟 = WES.Dec(𝜎𝑖 , 𝑐).
(b) Set rShare𝛽,𝑝𝑜𝑠 := rShare𝛽,𝑝𝑜𝑠 ∪ {𝑟 }.

(4) Denote each 𝑟 in rShare𝑖, 𝑗 as 𝑟𝑖,𝑎 , where (𝑎, 𝑠𝑎, 𝑐𝑎, 𝜋𝑎) ∈ Sunop. We are guaranteed that there exists at least one 𝑟𝑖,𝑎 such that

𝑅𝑎 = 𝑔𝑟𝑖,𝑎 .

(5) For 𝑘 ∈ [𝐾] and 𝑖 ∈ [log𝑀], compute 𝑧𝑖, 𝑗 [𝑖],𝑘 = 𝑠𝑎 − 𝑟𝑖,𝑎
(6) Compute 𝑧𝑖, 𝑗 [𝑖] =

∑
𝑘∈[𝐾] 𝑧𝑖, 𝑗 [𝑖],𝑘 · ℓ𝑘 (0)

(7) Compute 𝑦 𝑗 = 𝑒 𝑗 −
∑
𝑖 𝑧𝑖, 𝑗 [𝑖]

(8) Return 𝜎 𝑗 ← AS.Adapt(𝜎̂ 𝑗 , 𝑦 𝑗).

Figure 14: Verifiable witness encryption based on threshold signatures from adaptor signatures for exponential outcomes

24

ExpForge𝜌,𝑁 ,𝑀OC,ΠBDS,A (𝜆)
𝑄1 := 𝑄2 := ∅,𝑄3 := []
(pk𝐴, sk𝐴) ← ΠBDS .KGen(1𝜆)
(𝐶, st

0
) ← A(pk𝐴) // let𝐶 ⊂ [𝑁]

∀𝑖 ∈ [𝑁] \𝐶, (pk𝑂𝑖 , sk𝑂𝑖) ← OKGen(1𝜆)
(𝑞∗, 𝜎∗, 𝑗∗) ← AAnticipateO,AttestO,SignO (st

0
, {pk𝑂𝑖 }𝑖∈[𝑁]\𝐶)

(ant, 𝑋) ← 𝑄3 [𝑞∗]
𝑋 := (sk𝐴, (pk𝑂𝑖)𝑖∈[𝑁] , (𝑜 𝑗 , Tx𝑗) 𝑗∈[𝑀])
𝑏0 := ((Tx𝑗 ∗, 𝜎∗) ∉ 𝑄2)
𝑏1 := ((𝑜 𝑗 ∗) ∉ 𝑄1)
𝑏2 := (|𝐶 | ≤ 𝜌 − 1)
𝑏3 := (ΠBDS .Vf (pk𝐴, Tx𝑗 ∗, 𝜎∗) = 1)
return 𝑏0 ∧ 𝑏1 ∧ 𝑏2 ∧ 𝑏3

AnticipateO((𝑜 𝑗 , Tx𝑗) 𝑗 ∈[𝑀] , {pk𝑂𝑖 }𝑖∈𝐶)
𝑋 := (sk𝐴, (pk𝑂𝑖)𝑖∈[𝑁] , (𝑜 𝑗 , Tx𝑗) 𝑗∈[𝑀])
ant ← Anticipate(𝑋)
𝑄3 := 𝑄3 | | (ant, 𝑋)
return ant

AttestO(𝑖, 𝑜)
Ensure 𝑖 ∈ [𝑁] \𝐶,
att𝑖 ← Attest(sk𝑖 , 𝑜)
𝑄1 := 𝑄1 ∪ {𝑜 }
return att𝑖

SignO(Tx)
𝜎 ← ΠBDS .Sign(sk𝐴, Tx)
𝑄2 := 𝑄2 ∪ {Tx, 𝜎 }
return 𝜎

Figure 15: Experiment for Unforgeability of Oracle Contracts.

ExpAttestForge𝜌,𝑁 ,𝑀OC,A (𝜆)
𝑄 := ∅

(pk𝑂 , sk𝑂) ← OKGen(1𝜆)

(𝑜∗, att∗) ← AAttestO(·) (pk𝑂)
𝑏0 := (𝑜 ∉ 𝑄)

𝑏1 := (AttestVf (pk𝑂 , 𝑜∗, att∗) = 1)
return 𝑏0 ∧ 𝑏1

AttestO(𝑜)
att ← Attest(sk𝑂 , 𝑜)
𝑄 := 𝑄 ∪ {𝑜 }
return att

Figure 16: Experiment for Attestation Unforgeability of Oracle Contracts.

25

SigForgeA,DS (𝜆)
𝑄 := ∅

(vk, sk) ← KGen(1𝜆)

(𝑚∗, 𝜎∗) ← ASignO(·) (vk)
𝑏0 := (𝑚 ∉ 𝑄)
𝑏1 := (Vf (vk,𝑚∗, 𝜎∗) = 1)
return 𝑏0 ∧ 𝑏1

SignO(𝑚)
𝜎 ← Sign(sk,𝑚)
𝑄 := 𝑄 ∪ {𝑚}
return 𝜎

Figure 17: Experiment for EUF-CMA of Digital Signatures.

26

	Abstract
	1 Introduction
	1.1 Our Contributions
	1.2 Concurrent Work and Comparison

	2 Technical Overview
	3 Preliminaries
	4 Verifiable Witness Encryption Based on Threshold Signatures
	4.1 Definitions
	4.2 Construction Based on Adaptor Signatures
	4.3 Large Universe of Outcomes

	5 Oracle Contracts
	5.1 Our Protocol

	6 Performance Analysis
	6.1 Implementation
	6.2 Performance
	6.3 Further Optimizations and Comparison

	7 Conclusions
	References
	A More Preliminaries
	A.1 Adaptor Signatures

	B Signature schemes
	C Proofs Of Correctness of Adaptor based VweTS
	D Security Analysis of VweTS Construction from Adaptor Signatures
	E Construction based on BLS signatures
	F Security Analysis of VweTS Construction From BLS Signatures
	G Constructions for Large Universe of Outcomes
	G.1 Concretely Efficient Construction
	G.2 Asymptotically Optimal Construction

	H Formal Definitions for Oracle Contracts
	I Proofs of Correctness of Oracle Contracts
	J Security Analysis of Oracle Contracts

