
Cryptographic Oracle-Based Conditional Payments
Varun Madathil

North Carolina State University
Sri AravindaKrishnan Thyagarajan

Carnegie Mellon University
Dimitrios Vasilopoulos

IMDEA
Giulio Malavolta

Max Planck Institute for Security and Privacy
Lloyd Fournier,

Independent Researcher
Pedro Moreno-Sanchez

IMDEA

Abstract—We consider a scenario where two mutually dis-
trustful parties, Alice and Bob, want to perform a payment
conditioned on the outcome of some real-world event. A semi-
trusted oracle (or a threshold number of oracles in a distributed
trust setting) is entrusted to attest that such an outcome indeed
occurred, and only then the payment is made successfully. We
refer to such scenario as oracle-based conditional (ObC) payments
that are ubiquitous in many real-world applications, like financial
adjudication, pre-scheduled payments or trading, and are a
necessary building block to introduce information about real-
world events into blockchains.

The focus of this work is to realize such ObC payments
with provable security guarantees and efficient instantiations.
To do this, we propose a new cryptographic primitive that we
call verifiable witness encryption based on threshold signatures
(VweTS): Users can encrypt signatures on messages in a veri-
fiable manner, such that, the decryption is successful only if a
threshold number of signers (e.g., oracles) sign another message
(e.g., the description of an event outcome). We require two
security notions: (1) one-wayness that guarantees that without
the threshold number of signatures, the ciphertext hides the
encrypted signature, and (2) verifiability, that guarantees that a
ciphertext that verifies successfully can be successfully decrypted
to reveal the underlying signature.

We present provably secure and efficient instantiations of
VweTS where the encrypted signature can be some of the widely
used schemes like Schnorr, ECDSA or BLS signatures. To provide
verifiability in a practically efficient manner, we make use of a
new batching technique for cut-and-choose, inspired by the work
of Lindell-Riva on garbled circuits. Our VweTS instantiations
can be readily used to realize ObC payments on virtually all
cryptocurrencies of today in a fungible, cost-efficient, and scalable
manner. Our instantiations are the first to support ObC payments
in a distributed trust setting without requiring any form of
synchrony or coordination among the users and the oracles.
To demonstrate the practicality of our scheme, we present a
prototype implementation and our benchmarks in commodity
hardware show that the computation overhead is less than 13
seconds even for a threshold of 4 out of 7 and a payment
conditioned on up to 1000 different real-world event outcomes,
while the communication overhead is below 1.3MB. Therefore,
our approach is practical even in commodity hardware.

I. INTRODUCTION

Imagine a scenario where Alice wants to make a payment
(denoted by m) to Bob provided Olivia attests to the occurrence
of some event outcome (denoted by m). For the payment
to be successful, Bob requires a digital signature σ on this
payment message m from Alice. As parties are mutually
distrustful, a secure implementation of this scenario requires
strong cryptographic guarantees: On the one hand, Bob wants
to be ensured that if Olivia indeed attests the outcome m,
he would indeed obtain the signature σ and therefore redeem

the payment m (verifiability). On the other hand, Alice wants
to ensure that in the absence of the attestation on m, Bob
cannot obtain the signature σ (one-wayness). Furthermore,
Alice and Bob may not trust Olivia and may instead avail the
service of N different Olivia(s) with the promise that, if a
large enough fraction of Olivia(s) agrees on an outcome m,
then the payment is made. The natural requirement for this
scenario is that corrupting a small fraction of Olivia(s) does
not jeopardize the security of the overall system (threshold
security).

We refer to this type of conditional payments between Alice
and Bob as oracle-based conditional (ObC) payments. While
this may appear to be an abstract problem, it is in fact a
recurrent scenario in many real-world applications. Some-
what surprisingly, ObC payments have not been thoroughly
investigated in the literature and there is a lack of formal
models and efficient instantiations. The focus of this work is
to place ObC payments on firm cryptographic foundations and
propose practical protocols based on well-studied cryptographic
assumptions.

Applications of ObC payments. To motivate our work, we
discuss a few representative examples for applications of ObC
payments.

• Financial Adjudication: Companies and business firms often
get involved in mergers and acquisitions. In such cases
they have a clearly worded and binding terms of agreement.
Violating the agreement can result in a financial settlement
after adjudication by a designated entity like a court of
law [2]. Here the trusted entity acts as an oracle, and the
adjudication by the court acts as an attestation upon which
a financial payment is made to the grieving party from the
other one that is involved.

• Pre-scheduled Payments: Companies hire contractors for
services and schedule payments upon different stages of
project completion [3]. All payments are set at the beginning
of the contract and a third party or an oracle attests the
completion of a stage upon which the corresponding payment
is made to the contractor. Similar scenario is that of a
monthly subscription fee for Netflix or some news feed,
where subscribers can schedule payments for the entire
duration of the subscription in one shot. Here the payments
are made with an oracle attesting the start of a month as the
event outcome. Other examples are that of monthly utility
bills, salaries/bonuses to employees, shipping, etc.

• Trading: Betting on future events like a football match, trade

prices, etc., are facilitated by attestations of oracles who
attest the outcome of such events [5]. Users can avail the
services of such oracles and make bets with each other,
without even requiring the oracles to learn any information
about the users or their bet.

• Blockchain payments based on real-world events: Many
Decentralized Finance (DeFi) applications that offer a com-
plex financial architecture for scenarios like money lending,
decentralized exchange of assets, markets of derivatives,
etc [37], [29], make use of services of such oracles or
external data feeds to input information that is external to
the blockchain. Using ObCs, one can schedule blockchain
payments that depend the outcome of some real-world event,
by conditioning the payment upon the oracle certifying a
given outcome. For example, many Ethereum-based DeFi
applications [4] rely on such oracles at their core and there
exist companies such as Chainlink [1] whose business model
consists on offering the oracle service to current and future
smart contracts.
Our focus in this work is to realize cryptograpic protocols

for ObC payments (for scenarios like the ones described above)
that are provably secure and practically efficient, even with
distributed trust and large outcome spaces. We also propose
a formal model for ObC payments (definitions can be found
in Appendix F).

A. Our Contribution

Our contributions can be summarized as follows:
1) New Cryptographic Primitive. We present a new crypto-

graphic primitive, verifiable witness encryption based on
threshold signatures (VweTS). On an intuitive level, VweTS
allows a user (Alice) to encrypt signatures (σ1, . . . , σM) on
payment messages (m1, . . . ,mM), each under the public
key pk . The resultant ciphertext c can be decrypted by
anyone (Bob) to reveal the signature σi on mi, if they
possess ρ number of valid signatures (attestations) on
another message mi (i-th outcome message). Here the ρ
signatures on mi are computed under the public keys of ρ
different oracles (Olivia(s)). Our VweTS scheme satisfies
one-wayness, which guarantees that Bob cannot recover
Alice’s signatures unless he collects enough ρ valid signa-
tures from the oracles, and verifiability, which guarantees
that Bob can efficiently verify if Alice’s ciphertext c is
well-formed, and consequently contains valid signatures
(σ1, . . . , σM). We show how VweTS are the cryptographic
cornerstone to realize oracle based conditional payments,
thus enabling a host of new applications.

2) Practically Efficient Constructions. We give two prac-
tically efficient constructions for VweTS: In the first
construction, the signatures (σ1, . . . , σM) that are encrypted
are either Schnorr or ECDSA signatures, and in the second
construction the signatures that are encrypted are BLS
signatures [14]. In both constructions, the oracle attestations
are BLS signatures on outcome-encoded messages. Our
constructions support a polynomial number of oracles (N)
and a polynomial number of outcomes (M). The main

ingredient for high practical efficiency of all our VweTS
constructions is a new technique to batch cut-and-choose
proofs of well-formedness of ciphertexts, inspired by the
batching technique of Lindell and Riva [32], originally
developed to optimize garbled circuit computations over
many executions. We also present an amortized version of
our VweTS constructions, referred to as VweTS-extension,1

that can efficiently support a large outcome space. Here
the computationally intense work is performed only for a
handful of instances (logarithmic in M) while the security
for all other instances comes almost for free, with a minimal
amount of work required by both parties.

3) Implementation. We provide a prototype implementation
of VweTS and evaluate how the running time and the
communication overhead is affected by the system param-
eters such as the security parameter, the oracle threshold
setting as well as the number of possible outcomes of an
event. Our evaluation shows that our construction imposes
a computation overhead less than 13 seconds even for a
threshold of 4 out of 7 and a payment conditioned on
up to 1000 different real-world event outcomes, while the
communication overhead is below 1.3MB. Moreover, our
approach scales better with the number of oracles compared
to current solutions and is practical to be executed even in
commodity hardware.

B. ObC Payments: VweTS vs. Smart Contracts

Many blockchain-related applications of ObC payments
can alternatively be realized using smart contracts [37], [33],
[29] or scripts specific to cryptocurrencies. Compared to the
cryptographic variant that we study in this paper, a smart
contract-based solution suffers from several drawbacks: (i) it
is tailored to the characteristics offered by a restricted set of
currencies (e.g., those supporting Turing-complete scripting
languages); (ii) it hinders scalability since the complete event-
outcome information as well as attestation data is stored on the
blockchain; (iii) it hampers fungibility since tokens involved in
such an oracle-based smart contract is trivially distinguishable
from the ones of other contracts by a blockchain observer;
(iv) finally, it also results in high on-chain costs as attestation
data needs to be stored and interpreted, which requires high
transaction fees or gas cost in case of Ethereum.

On the other hand, VweTS solves all of the above issues in
the case of ObC payments over blockchains. This is because
the operational logic of attestation based payment is encoded
in the cryptographic operations of VweTS and no information
is leaked or required to be stored on the blockchain. Using
VweTS, Alice and Bob can start a ObC payment such that
the oracles can either publish their attestations on real-world
event-outcomes onto any public bulletin board (or the internet)
or communicate the attestations privately to the users. The
payment messages (m1, . . . ,mM) are now cryptocurrency
transactions for example, spending coins from an address of

1This terminology is similar in spirit to the terminology used to refer to
the amortization of Oblivious Transfer (OT) as OT-extension [27].

2

Alice to an address of Bob. Importantly all the communication
and computation between Alice and Bob also happens off
the chain. Given enough attestations on the outcome mi,
Bob can obtain a signature σi on the transaction mi, and
publish the transaction and the signature on the blockchain.
The blockchain is only ever involved in verifying the signature
σi on the transaction mi. We can view this protocol as bringing
real-world information onto the blockchain without actually
recording or needing to interpret any of that on the blockchain.

Since no information about the ObC payment is recorded
on the blockchain except the transaction mi and the signature
σi, our VweTS-based solution improves scalability. Moreover,
given its simple signature verification on a regular looking
transaction, we get better fungibility (compared to using
smart contracts) and low on-chain cost. Finally, our VweTS
constructions support the encryption of Schnorr, ECDSA or
BLS signatures which are the payment signatures used in most
major cryptocurrencies today. In short, VweTS enables ObC
payment compatibility with a wide class of cryptocurrencies
with better scalability, fungibility and on-chain cost.

C. Other Related Work

Zhang et al. [38] proposed an approach for oracle contracts
for data provenance where the functionality of the oracle
(Olivia) is executed within a trusted execution environment
(TEE). However, this approach again relies on smart contracts
and requires trust assumption on the TEE which is unclear if it
holds in practise [19], [15]. Zhang et al.[39] also present DECO,
where they replace the TEE assumption with decentralized
oracles while relying on smart contracts.

A somewhat different approach was initiated by the name
of Discreet Log Contracts [23], [31] and put forward by the
Bitcoin community [30]. A Discreet Log Contract (DLC) is a
Bitcoin-compatible oracle contract enabling transactions from
Alice to Bob to be contingent on signatures published by Olivia.
This approach is promising because (i) it requires ECDSA or
Schnorr signature verification and a timelock functionality
from the underlying blockchain, which is available in many
cryptocurrencies today; (ii) it requires storing on the blockchain
only a signed transaction from Alice to Bob (not even the
signed message from Olivia), thereby minimizing the on-chain
overhead (fee cost), and helping to preserve the fungibility of
the cryptocurrency.

However, this approach comes with a number of shortcom-
ings: (i) It only supports a single oracle and only a constant
amount of oracle outcomes. It is unclear how one can extend
their protocol to capture distributed trust, without assuming
some sort of coordination among the oracles. (ii) The protocol
in [23] assumes synchronous communication between the oracle
and Alice, where the oracle has to announce some secret value
periodically which Alice later uses in her promises to Bob. (iii)
The oracle attestation is strongly tied to the payment signature
scheme used by Alice and Bob (or the transaction scheme in
case of oracle contracts using cryptocurrencies), and finally (iv)
their solution is not formally analyzed and in fact a number
of attacks have been subsequently discovered [34].

On the other hand, our VweTS-based solution supports
distributed trust using the threshold setting with many inde-
pendent oracles who need not interact with each other at any
point in time. In our framework, there is no communication
between the oracles and Alice prior to her promises to Bob,
which for example, allows for Alice to make pre-scheduled
payment promises to Bob. With the solution from [23], Alice
had to wait for the communication from the oracles every
time before making a promise and therefore cannot schedule
payments for the future. The oracle attestation in our oracle-
based conditional payment scheme is independent of the
authentication mechanism, i.e., the signature scheme of the
transaction scheme. This makes our solution more versatile to
be used on different cryptocurrencies.

Eskandari et al [25] present a systematization of knowledge
of the oracle problem, where they present a modular workflow
for the oracle system. They show the different phases of an
oracle from getting the ground truth to presenting the truth to
a requester. The work does not propose a new concrete PbC
payment problem and therefore is orthogonal to our work.
Witness Encryption Schemes. In terms of cryptographic work,
concurrent to this work, Döttling et al. [22] proposed a witness
encryption scheme for threshold signatures which is similar
in functionality to VweTS, although in a completely different
context. Their main application is to leverage the blockchain
to do timed encryption, where if the blockchain reaches a
certain height and a committee of validators attests a block, a
ciphertext can be decrypted. In contrast to ours, their work is
not concerned about the structure of the encrypted message.
The technical crux of our paper is to efficiently prove the
structure of the encrypted message (specifically, that it consists
of a valid signature on a given message), for which we rely
on new batching techniques for cut-and-choose.

The functionality of VweTS is also close to the functionality
of multi-authority attribute-based encryption (ABE) [18]. Here
a user can encrypt a message that can be decrypted only if
the decryptor has attributes from enough number of authorities.
We can think of the attributes as attestations from the oracles
in our VweTS. Making use of multi-authority ABE potentially
generalizes the attestation mechanism, which we leave as an
interesting open problem. However, we wish to note that the
verifiability aspect of VweTS is not covered even if we just use
a multi-authority ABE. It is quite likely that to add verifiability
to the above approach, we will have to make use of the
techniques we introduce in this paper.

II. TECHNICAL OVERVIEW

To establish some intuition for our problem, we describe
our cryptographic techniques step by step with the goal of
building oracle-based conditional (ObC) payments. For this,
we consider the setting where Alice, with a key pair (sk , vk)
of a digital signature DS, wants to transfer v coins to Bob in a
payment m, if a certain outcome (represented by the message
m) of a real world event is attested by Olivia, with a key pair
(sk , vk) of a digital signature DS (possibly different to DS). To
keep things simple, we assume that Olivia is honest (we will

3

OUTPUT TRANSACTION
O1 Tx1
… …
ON TxN

(", $!)

(", $!) = '()*+. -./+01
OP

…

…

…

TX

…

…

…

, +01"#$%&

Owin2 = +01 (3'$(, σ) '()*+. 5)/+01(", $! , σ)

+01"#$%& Txwin

Verify that

'()*+. '6-./
OP

…

…

…

TX
…

…

…

(", $!) = 1

1

2

3

4

Fig. 1. Overview: 1 Alice computes a signature on each transaction
that corresponds to a different output. These transactions are then encrypted
using a verifiable witness encryption, where the witness is a signature on the
corresponding outcome. Alice sends these ciphertexts to Bob. 2 Bob verifies
that the encryption is computed correctly. 3 An oracle provides a signature
on the winning outcome to Bob 4 Bob decrypts the corresponding ciphertext
to get the signed transaction for the corresponding outcome.

remove this assumption later). One trivial solution (depicted in
Figure 1) is to resort to the notion of witness encryption [26]:
Alice can create a ciphertext that includes σ ← Sign(sk ,m)
and that can only be decrypted if Bob has a witness (i.e, σ)
of the NP statement:{

∃ σ s.t . Vf(vk ,m, σ) = 1
}

i.e., Bob knows a valid signature on m. While this solution
would work theoretically, i.e., it would prevent Bob from getting
the v coins if Olivia does not attest m, there are two main
issues: (i) For starters, general purpose constructions of witness
encryption are prohibitively expensive [26]. Second, (ii) Bob
needs to trust Alice that the ciphertext contains a valid signature
σ. The central challenge of our work is to build an efficient
protocol that guarantees verifiability of Alice’s ciphertexts.

Efficient Witness Encryption for Signatures. Our first
observation is that the Boneh-Franklin (BF) identity-based
encryption [12] can be thought of as a witness encryption
scheme for a particular language. Recall that a key for an
identity id in the BF scheme consists of a group element H(id)s,
where s is the master secret key. Furthermore, anyone can
encrypt with respect to id, in such a way that the ciphertext can
only be decrypted using H(id)s as the secret key. We observe
that this is exactly the same structure that BLS [14] signatures
have! Substituting identities id with messages m, we can now
compute ciphertexts that can only be decrypted knowing a
signature on m (which is exactly H(m)s). This yields a very
efficient witness encryption scheme for the language of interest,
provided that DS is instantiated using the BLS signature
scheme. Recall however that our goal is to let Alice encrypt a
signature σ on m using DS, in a verifiable manner. We discuss
how to address this challenge next.

Encrypting Adaptor Signatures. To understand our solution,
it is useful to recall the notion of an adaptor signature (AS) [9].
In brief, AS allows Alice to generate a pre-signature σ̂ on m,

which is a verifiable encryption of a signature σ wrt. an NP
statement {Y | Y := gy} where y is referred to as the witness
and g is the generator of a cyclic group G. With this tool at
hand, Alice can: (i) create a pre-signature σ̂ on m using a
statement Y previously agreed with Bob; (ii) use the BF-based
witness encryption scheme mentioned above to encrypt y into
ciphertext c for the identity (vk ,m); (iii) send σ̂ and c to Bob.
As soon as Olivia attests the event m by publishing a BLS
signature with her key sk , Bob can use the signature to extract
y from c, and then use y to extract σ from σ̂.

Verifiable Witness Encryption. To achieve verifiability effi-
ciently, we adopt ideas from the cut-and-choose technique used
in the verifiable encryption scheme of Camenisch et al. [16].
In a nutshell, Alice computes a pre-signature on the message
as before and instead of generating a single BF ciphertext
(BF-cipher), she generates λ (security parameter) tuples (BF-
cipher, sym-cipher). Each BF-cipher contains a BF ciphertext
that encrypts a random integer ri for the identity (vk ,m). In
other words, Alice uses the same BF-based witness encryption
as explained before to encrypt a random integer, instead of
the adaptor witness y. Each sym-cipher is set to (si = ri + y),
where y is the witness for the statement Y of AS and ri is
the random integer encrypted in BF-cipher at index i. Also,
for all i, Alice computes Ri = gri . At this point, Alice sends
the λ-many BF-cipheri, the λ-many Ri and the statement Y
of AS to Bob. Intuitively, in this step, Alice commits to her
setup of the cut-and-choose.

After receiving this information, Bob randomly samples2

λ/2 pairs, for which Alice exposes the corresponding values
ri and the random coins used to encrypt ri in BF-cipheri
to Bob. For the other non-selected λ/2 pairs, Alice sends
sym-cipher to Bob. The key question left, is to understand why
this information would convince Bob of the fact that he will
be able to get the signature σ after Olivia attests m. To see
that, Bob checks:

• For all i ∈ [λ/2] not selected by Bob, gsi ?
= gri ·Y , intuitively

checking that all sym-cipher are correctly encrypting the
value y using the randomness ri as symmetric key of the
one-time pad;

• For all j ∈ [λ/2] chosen by Bob, recompute the BF ciphertext
of rj with random coins and check if grj ?

= Rj .
If all these checks pass, Bob is guaranteed that there exists
at least one well-formed BF ciphertext among those λ/2 not
opened by Alice: meaning that it encrypts rk such that sk =
rk+y for some k. Thus, when Olivia attests m, Bob can decrypt
the k-th BF ciphertext to compute rk, extract y = sk−rk from
it and then use it to get σ from the pre-signature σ̂ following
the adaptor signature scheme.

Distributing the Trust. At the beginning of this overview, we
have made the simplifying assumption that Olivia is honest. In
order to relax this assumption, we show how to distribute the
task of attesting the event m among a set of N oracles, each
of them with a key pair (sk i, vk i). Moreover, the event m is

2This can be made non-interactive applying the Fiat-Shamir transformation.

4

attested only when at least a threshold ρ number of oracles have
signed it with their respective signing keys. Importantly, the N
oracles are not required to coordinate, nor to talk to each other.
A naive solution to this problem would be as follows: before
proceeding with the cut-and-choose, Alice creates shares of the
adaptor witness y into (y1, . . . , yN) via (t-of-N)-Shamir secret
sharing and additionally reveals the values (Y1, . . . , YN) where
Yi := gyi so that one can verify the correctness of the secrete
sharing via Lagrange interpolation. Finally, Alice executes N
instances of the protocol described above. While this approach
is correct, the verifiability proof would be very inefficient in
terms of computation and communication cost. To this end,
we develop a new batching technique (inspired by the work
of Lindell and Riva [32] in the context of garbled circuit), for
amortizing the costs of the cut-and-choose.

Batching Cut-and-Choose. We proceed by recalling the high-
level idea of the Lindell-Riva cut-and-choose technique, adapted
to our settings. As before, we let Alice generate BF-cipher
encrypting random integers, but this time we generate 2NB
number of such BF-cipher, where B is a statistical security
parameter. Bob then asks Alice to “open” NB number of
BF-ciphers like in the previous case, while the rest of the
“unopened” BF-ciphers are randomly mapped into N buckets,
where each bucket consists of B BF-ciphers. By randomly
sampling the bucket assignment (in the protocol it is specified
by Bob) we are guaranteed that, with overwhelming probability,
for all buckets there exists at least one “well-formed” ciphertext
among the unopened ones. Each bucket is assigned to an
oracle public key vk i, and Bob can then use the corresponding
signature to recover the witness share yi and ultimately
reconstruct the adaptor witness y, provided that enough oracles
signed the event.

However, a crucial step we overlooked in the outline above is
that we cannot know ahead of time which bucket a BF-cipher
will be mapped to later in the cut-and-choose step. In fact, it
is necessary for the soundness of the cut-and-choose batching
that we do not know the random mapping during the ciphertext
generation. Therefore, it is unclear how we generate each of the
BF-cipher, since we do not know the verification key vk that we
want to encrypt against. To tackle this issue, during BF-cipher
generation, we generate each of 2NB number of BF-ciphers
(denoted by (c′1, . . . , c

′
2NB)) w.r.t. to a BLS signature on a

random (public) instance message m∗ and a random instance
verification key vk

∗
. The instances m∗ and vk

∗
can even be

fixed ahead of time for the entire session. We proceed exactly
as described above with these ciphertexts, until the random
bucket mapping. Once we map an “unopened” BF-cipher c′i,j
to the i-th bucket, we generate another BF-cipher ci,j w.r.t. a
BLS signature on the correct instance message m and instance
verification key vk i (corresponding to the i-th bucket), which
also encrypts the value rj . We attach a Non-Interactive Zero-
Knowledge (NIZK) proof to verify that the two BF-ciphers are
well-formed and encrypt the same message. Crucially, such
a NIZK corresponds to a simple proof for discrete logarithm
equality, provided that we use the same random coins in both

c′i,j and ci,j (which was shown to not compromise the security
of the encryption scheme [10]).

The whole procedure can be made non-interactive by using
the Fiat-Shamir heuristic, i.e., Alice generates the NB indices
to open and the random bucket mapping using a cryptographic
hash function applied to values generated prior. This concludes
the construction of he cryptographic primitive verifiable witness
encryption based on threshold signatures (VweTS).
Extensions. The protocol described above forms the backbone
of our construction, but a number of additional steps are
needed to make the protocol practical. For starters, we need
to consider the case where Alice has M different messages
(m1, . . . ,mM) instead of just one (Section IV-B). This allows
Alice to condition a transaction mi paying to Bob if the
outcome mi is attested, which allows us to consider more
realistic settings with multiple outcomes. We also consider the
case where the signature scheme for authorizing a transaction
is not an adaptor signature. In Appendix D, we show how to
construct a protocol only based on BLS signatures (which do
not imply adaptor signatures [24]).

A major bottleneck towards the practicality of the above
scheme is the linear dependency on the number of payment
messages M , which severely limits the applicability of our
scheme. To overcome this, we study the notion of VweTS-
extension where the expensive protocol (involving cut-and-
choose verification) is run only for a handful of instances,
where the number is independent of M . Nevertheless, security
extends to all M instances, using only lightweight operations
on the remaining instances. This notion is analogous to OT
extension [27] and achieves similar guarantees, although our
techniques are substantially different. We refer the curious
reader to Section IV-C for more details.

III. PRELIMINARIES

We denote by λ ∈ N the security parameter and by x ←
A(in; r) the output of the algorithm A on input in using r ←
{0, 1}∗ as its randomness. We often omit this randomness
and only mention it explicitly when required. The notation
[n] denotes a set {1, . . . , n} and [i, j] denotes the set {i, i +
1, . . . , j}. We consider probabilistic polynomial time (PPT)
machines as efficient algorithms.
Digital Signatures. A digital signature scheme DS, formally,
has a key generation algorithm KGen(1λ) that takes the security
parameter 1λ and outputs the verification/signing key pair
(vk , sk), a signing algorithm Sign(sk ,m) inputs a signing key
and a message m ∈ {0, 1}∗ and outputs a signature σ, and a
verification algorithm Vf(vk ,m, σ) outputs 1 if σ is a valid
signature on m under the verification key vk , and outputs 0
otherwise. We require unforgeability, which guarantees that a
PPT adversary cannot forge a fresh signature on a message of
its choice under a given verification key while having access
to a signing oracle.
Non-Interactive Zero Knowledge Proofs. Let R : {0, 1}∗ ×
{0, 1}∗ → {0, 1} be a n NP-witness-relation with correspond-
ing NP-language L := {x| ∃w s.t. R(x,w) = 1}. A non-
interactive zero-knowledge proof (NIZK) [21] system for the

5

relation R is initialized with a setup algorithm Setup(1λ) that,
on input the security parameter, outputs a common reference
string crs and a trapdoor td. A prover can show the validity of
a statement x with a witness w by invoking Prove(crs, x, w),
which outputs a proof π. The proof π can be efficiently checked
by the verification algorithm Vf(crs, x, π). We require a NIZK
system to be (1) zero-knowledge, where the verifier does
not learn more than the validity of the statement x, and (2)
simulation sound, where it is hard for any prover to convince
a verifier of an invalid statement (chosen by the prover) even
after having access to polynomially many simulated proofs for
statements of his choosing.
Threshold Secret Sharing. Secret sharing is a method of
creating shares of a given secret and later reconstructing
the secret itself only if given a threshold number of shares.
Shamir [36] proposed a threshold secret sharing scheme where
the sharing algorithm takes a secret s ∈ Zq and generates
shares (s1, . . . , sn) each belonging to Zq. The reconstruction
algorithm takes as input at least t shares and outputs the secret s
via polynomial interpolation. The security of the secret sharing
scheme demands that knowing only a set of shares smaller than
the threshold size does not help in learning any information
about the choice of the secret s.
Hard Relations. We recall the notion of a hard relation R with
statement/witness pairs (Y, y). We denote by LR the associated
language defined as LR := {Y | ∃y s.t . (Y, y) ∈ R}. The
relation is called a hard relation if the following holds: (i)
There exists a PPT sampling algorithm GenR(1λ) that outputs
a statement/witness pair (Y, y) ∈ R; (ii) The relation is poly-
time decidable; (iii) For all PPT adversaries A the probability
of A on input Y outputting a witness y is negligible.
Adaptor Signatures. Adaptor signatures [9] let users generate
a pre-signature on a message m which by itself is not a valid
signature, but can later be adapted into a valid signature using
knowledge of some secret value. The formal definition of
adaptor signatures is given below.

Definition 1 (Adaptor Signatures): An adaptor signa-
ture scheme AS w.r.t. a hard relation R and a signa-
ture scheme DS = (KGen,Sign,Vf) consists of algorithms
(pSign,Adapt, pVf,Ext) defined as:
σ̂ ← pSign(sk ,m, Y): the pre-sign algorithm takes as input a
signing key sk , message m ∈ {0, 1}∗ and statement Y ∈ LR,
outputs a pre-signature σ̂.
0/1← pVf(vk ,m, Y, σ̂): the pre-verify algorithm takes as
input a verification key vk , message m ∈ {0, 1}∗, statement
Y ∈ LR and pre-signature σ̂, outputs either 1 (for valid) or 0
(for invalid).
σ ← Adapt(σ̂, y): the adapt algorithm takes as input a pre-
signature σ̂ and witness y, outputs a signature σ.
y ← Ext(σ, σ̂, Y): the extract algorithm takes as input a
signature σ, pre-signature σ̂ and statement Y ∈ LR, outputs a
witness y such that (Y, y) ∈ R, or ⊥.

In addition to the standard signature correctness, an adaptor
signature scheme has to satisfy pre-signature correctness. In-
formally, an honestly generated pre-signature w.r.t. a statement

Y ∈ LR is a valid pre-signature and can be adapted into a
valid signature from which a witness for Y can be extracted.

In terms of security, we want standard unforgeability even
when the adversary is given access to pre-signatures with
respect to the signing key sk . We also require that, given a
pre-signature and a witness for the instance, one can always
adapt the pre-signature into a valid signature (pre-signature
adaptability). Finally, we require that, given a valid pre-
signature and a signature with respect to the same instance,
one can efficiently extract the corresponding witness (witness
extractability). We refer the reader to Appendix A for the formal
definitions of the properties of interest for adaptor signatures.
Witness Encryption based on Signatures. Here we consider
a special witness encryption scheme for a language L ∈ NP
defined with respect to a digital signature scheme DS :=
(KGen,Sign,Vf), where

L := {(vk ,m)| ∃σ, s.t . ,Vf(vk ,m, σ) = 1}

where (vk , sk) ∈ KGen(1λ). Here the verification key and the
message (vk ,m) is the instance and the signature σ is the
witness. We present below the formal definition of the witness
encryption based on signatures scheme, its correctness, as well
as its notion of security.

Definition 2 (Witness Encryption based on Signatures): A
witness encryption scheme based on signatures (WES) is
a cryptographic primitive defined with respect to a digital
signature scheme DS := (KGen,Sign,Vf), consisting of two
PPT algorithms (Enc,Dec), defined below:

c← Enc((ṽk , m̃),m): the encryption algorithm takes as input
a verification key ṽk of the signature scheme, a message m̃
and the message to be encrypted m. It outputs a ciphertext c.
m← Dec(σ̃, c): the decryption algorithm takes as input a
signature σ̃ and the ciphertext c. It outputs a message m.

The correctness of a witness encryption based on signatures
is defined below.

Definition 3 (Correctness of Witness Encryption for Signa-
tures): A witness encryption scheme for signatures denoted
by WES := (Enc,Dec) defined with respect to a signature
scheme DS := (KGen,Sign,Vf) is said to be correct if for all
λ ∈ N, all (ṽk , s̃k) ← KGen(λ), all messages m̃ and m, all
c ← Enc((ṽk , m̃),m), we have that Pr[Dec(σ̃, c) = m] = 1,
where Vf(ṽk , m̃, σ̃) = 1.

The notion of security we want is similar to the chosen
plaintext security of a standard public key encryption, except
now the adversary has access to a signing oracle with key s̃k
while not being allowed to query the oracle on the message m̃∗,
where the instance (ṽk , m̃∗) is used to encrypt the challenge
ciphertext. The reader familiar with the standard notion of
security for witness encryption (which requires security only
for false statements) will notice that our definition is stronger,
although tailored for our specific language.

Definition 4 (Security): A witness encryption scheme for
signatures denoted by WES := (Enc,Dec) defined with respect
to a signature scheme DS := (KGen,Sign,Vf) is said to be
chosen plaintext attack secure if for all λ ∈ N, there exists a

6

IND-CPAWES,DS,A(λ)

Q := ∅
(ṽk , s̃k)← KGen(λ)

(m̃∗,m0,m1, st0)← ASignO(ṽk)

b← {0, 1}
cb ← Enc((ṽk , m̃∗),mb)

b′ ← ASignO(st0, cb)

b0 := (b = b′)

b1 := (m̃∗ /∈ Q)

return b0 ∧ b1

SignO(s̃k , m̃)

σ̃ ← Sign(s̃k , m̃)

Q := Q ∪ {m̃}
return σ̃

Fig. 2. Experiment for CPA security of a witness encryption scheme based
on signatures.

Enc((ṽk , m̃),m): The encryption algorithm proceeds as
follows:
• Sample r1 ← Zq and r2 ← GT .
• Set c1 := gr10

• Compute h := H1(r2).
• Compute c2 := (e(ṽk , H0(m̃))r1 · r2) and
c3 := (h+m)

• Return c := (c1, c2, c3).

Dec(σ̃, c): The decryption algorithm proceeds as follows:
• Parse c := (c1, c2, c3).
• Compute r := c2 · e(c1, σ̃)−1.
• Compute h := H1(r).
• Return m := c3 − h.

Fig. 3. Witness encryption based on BLS signatures

negligible function negl(λ), such that for all PPT adversaries
A, the following holds,

Pr[IND-CPAWES,DS,A(λ) = 1] ≤ 1

2
+ negl(λ)

where IND-CPA is defined in Figure 2.
We give a construction for WES based on the BLS signature

scheme. Our construction described in Figure 3 relies on
efficiently computable bilinear pairings. We have the bilinear
pairing operation e defined as e : G0 × G1 → GT where
G0,G1 and GT are groups of prime order q. We let g0 and
g1 be the generators of G0 and G1 respectively and H0, H1

be a hash functions defined as H0 : {0, 1}λ → G1 and
H1 : GT → {0, 1}λ.

The security of the construction follows similar to the IBE
scheme from [12] based on Bilinear Diffie-Hellman assumption,
when modelling the hash functions H0 and H1 as random
oracles.

IV. VERIFIABLE WITNESS ENCRYPTION BASED ON
THRESHOLD SIGNATURES

Consider the following language L ∈ NP defined with
respect to a signature scheme DS := (KGen,Sign,Vf), where

L :=((vk i)i∈[N], (mj)j∈[M], ρ)

∣∣∣∣∣
∃j ∈ [M], (σi)i∈K⊂[N], s.t . ,

|K| = ρ ∧
∀i ∈ K,Vf(vk i,mj , σi) = 1


where (vk1, . . . , vkN) ∈ SUPP(KGen(1λ)).
We present a new primitive which is a witness encryp-

tion scheme for the above language, where we additionally
consider another signature scheme DS. Moreover, the “secret”
message(s) being encrypted by the witness encryption are them-
selves signatures (σ1, . . . , σM) on messages (m1, . . . ,mM)
verifiable under a verification key vk with respect to DS.
Intuitively, the primitive lets us encrypt signatures (σ1, . . . , σM)
such that the signature σj can be obtained after decryption,
provided one holds a witness to the language L as defined
above.

A. Definitions

Definition 5 (Verifiable Witness Encryption Based on Thresh-
old Signatures): A verifiable witness encryption based on
threshold signatures is a cryptographic primitive parameterized
by ρ,N,M ∈ N, and is defined with respect to signature
schemes DS := (KGen,Sign,Vf) and DS := (KGen,Sign,Vf).
It consists of three PPT algorithms (EncSig,VfEnc,DecSig),
that are defined below.

(c, πc)← EncSig(((vk i)i∈[N], (mj)j∈[M]), sk , (mj)j∈[M]):
the signature encryption algorithm takes as input tuples
of instance verification keys (vk i)i∈[N], instance messages
(mj)j∈[M], and messages (mj)j∈[M] and a signing key sk . It
outputs a ciphertext c and a proof πc.

0/1← VfEnc(c, πc, ((vk i)i∈[N], (mj ,mj)j∈[M], vk)): the en-
cryption verification algorithm takes as input a ciphertext c,
a proof πc, tuples of instance verification keys (vk i)i∈[N],
instance messages (mj)j∈[M], and messages (mj)j∈[M], and
a verification key vk . It outputs 1 (for valid) if its a valid
ciphertext and 0 (for invalid) otherwise.

σ ← DecSig(j, {σi}i∈K , c, πc): the signature decryption algo-
rithm takes as input an index j ∈ [M], witness signatures
{σi}i∈K for |K| = ρ and K ⊂ [N], a ciphertext c, and proof
πc. It outputs a signature σ.

We define below the notion of correctness.
Definition 6 (Correctness): A verifiable witness encryp-

tion based on threshold signatures scheme denoted by
(ρ,N,M)-VweTS := (EncSig,VfEnc,DecSig) is parameter-
ized by ρ,N,M ∈ N and defined with respect to signature
schemes DS := (KGen,Sign,Vf) and DS := (KGen,Sign,Vf)
is said to be correct if the following holds. If for all λ ∈ N, all
(vk1, . . . , vkN) ∈ SUPP(KGen(λ)), all (vk , sk) ∈ KGen(λ),
all messages (mj ,mj)j∈[M], all (c, πc) obtained by running

7

EncSig algorithm on respective inputs, we have the following
that hold simultaneously:
1) Pr

[
VfEnc(c, πc, ((vk i)i∈[N], (mj ,mj)j∈[M], vk)) = 1

]
= 1.

2) For any j ∈ [M],K ⊂ [N] and |K| = ρ, if for all i ∈ K
we have Vf(vk i,mj , σi) = 1, then

Pr[Vf (vk ,mj ,DecSig(j, {σi}i∈K , c, πc)) = 1] = 1.

One-Wayness. We require a notion called one-wayness for a
VweTS scheme. Intuitively, the property guarantees that an
adversary cannot output a valid signature σ∗ for an index j∗

encrypted in a VweTS ciphertext without access to ρ number of
valid witness signatures on the corresponding instance message
mj∗ . The adversary is allowed to choose the signing keys
of ρ − 1 number of instance verification keys of its choice,
and is also given access to signing oracles conditioned on not
allowing the adversary to trivially break the scheme. That is, the
adversary cannot query the oracles for a signature on mj∗ wrt.
the signing key sk and cannot query for a witness signature on
the instance message mj∗ . The intuition is captured formally
in the following definition.

Definition 7 (One-wayness): A verifiable witness en-
cryption based on threshold signatures scheme denoted by
(ρ,N,M)-VweTS := (EncSig,VfEnc,DecSig) is parameter-
ized by ρ,N,M ∈ N and defined with respect to signature
schemes DS := (KGen,Sign,Vf) and DS := (KGen,Sign,Vf)
is said to be one-way if for all λ ∈ N, there exists a negligible
function negl(λ), such that for all PPT adversaries A, the
following holds,

Pr
[
ExpOWayρ,N

VweTS,DS,DS,A(λ) = 1
]
≤ negl(λ)

where ExpOWay is defined in Figure 4.
Verifiability. We require another notion of security called
verifiability for a VweTS scheme. This property guarantees that
it is infeasible for an adversary to output a ciphertext c along
with a valid proof πc, and valid witness signatures (σj)j∈K
on the instance message mj∗ , such that the signature σ we get
after decryption is in fact an invalid signature on the message
mj∗ under the verification key vk . The intuition is formally
captured in the definition below.

Definition 8 (Verifiability): A verifiable witness en-
cryption for threshold signatures scheme denoted by
(ρ,N,M)-VweTS := (EncSig,VfEnc,DecSig) parameterized
by ρ,N,M ∈ N and defined with respect to signature
schemes DS := (KGen,Sign,Vf) and DS := (KGen,Sign,Vf)
is said to be verifiable if, for all λ ∈ N, there exists a
negligible function negl and no PPT adversary A that out-
puts ((mj ,mj)j∈[M], vk , (vk i)i∈[N], (σj)j∈K , j

∗, c, πc) such
that all the following holds simultaneously except with proba-
bility negl(λ):
1) K ⊂ [N] and |K| = ρ
2) (vk , ·) ∈ SUPP(KGen) and for all i ∈ [N] we have

(vk i, ·) ∈ SUPP(KGen) where SUPP denotes to the support.
3) ∀j ∈ K,Vf(vk j ,mj∗ , σj) = 1
4) VfEnc(c, πc, ((vk i)i∈[N], (mj ,mj)j∈[M], vk)) = 1

ExpOWayρ,N,M
VweTS,DS,DS,A(λ)

Q1 := Q2 := ∅, Q3 := []

(vk , sk)← KGen(1λ)

(C, st0)← A(vk) // let C ⊂ [N]

∀i ∈ [N] \ C, (vk i, sk i)← KGen(1λ)

(q∗, σ∗, j∗)← ASignO,SignO,EncSigO(st0, {vk i}i∈[N]\C)

(c, πc, X)← Q3[q∗]

X := ((vk i)i∈[N], (mj)j∈[M]), sk , (mj)j∈[M]

b0 := ((mj∗ , σ
∗) /∈ Q2)

b1 := (mj∗ /∈ Q1)

b2 := (|C| ≤ ρ− 1)

b3 := (Vf(vk ,mj∗ , σ
∗) = 1)

return b0 ∧ b1 ∧ b2 ∧ b3

EncSigO((mj ,mj)j∈[M], {vk i}i∈C)

X := ((vk i)i∈[N], (mj)j∈[M]), sk , (mj)j∈[M]

(c, πc)← EncSig(X)

Q3 := Q3||(c, πc, X)

return (c, πc)

SignO(i,m)

Ensure i ∈ [N] \ C
σ ← Sign(sk i,m)

Q1 := Q1 ∪ {m}
return σ

SignO(m)

σ ← Sign(sk ,m)

Q2 := Q2 ∪ {m,σ}
return σ

Fig. 4. Experiment for one-wayness.

5) Vf(vk ,mj∗ , σ) = 0, where σ ← DecSig(j∗, {σj}j∈K ,
c, πc)

B. Construction Based on Adaptor Signatures

Here we present a concrete construction of VweTS with
parameters ρ,N and M relying on the following cryptographic
building blocks:
1) Signature scheme DS := (KGen,Sign,Vf) instantiated with

BLS signature scheme (see Appendix A2).
2) Signature scheme DS := (KGen,Sign,Vf) that is either

Schnorr or ECDSA signature schemes (see Appendix A2),
based on a group G with generator g and order q.

3) Witness encryption based on signatures WES := (Enc,Dec)
scheme (see Figure 3 for a concrete candidate).

4) An adaptor signature scheme AS := (KGen,Sign,Vf) for
the signature scheme DS. The hard relation R for AS is that
of the discrete log relation, where the language is defined
as: LR := {Y | ∃y ∈ Z∗q , s.t . Y = gy}.

5) A NIZK proof (SetupLc ,ProveLc ,VfLc) for the language

Lc :=(vk1, vk2,m1,m2, c1, c2)

∣∣∣∣∣∣
∃r ∈ Zq, s.t .

c1 = WES.Enc((vk1,m1), r)∧
c2 = WES.Enc((vk2,m2), r)


8

where (vk1, ·) and (vk2, ·) are in the support of KGen.

Our construction of VweTS based on BLS signatures follows
a similar outline and is therefore deferred to Appendix D due
to space constrains.

Parameters. We assume the setup algorithm SetupLc has been
executed and the resulting crs is part of public parameters
which also include the group descriptions of groups G,G0,G1

and G2, the value q which is the order of the group G, a value
γ := 2NMB where B is a statistical parameter, a mapping
function Φ : [γ] → [M] × [N] with γ := 2NMB, and the
description of the hash function H2 : {0, 1}∗ → I such that
I ∈ ([γ]→ [M]× [N])∪{0, 1}γ , modeled as a random oracle.

Overview. We present a high level overview of our construc-
tion, and the formal description is given in Figure 5. The
signature encryption algorithm first generates γ number of
WES ciphertexts such that ciphertext c′i encrypts a random
integer ri from Zq wrt. the instance (vk

∗
,m∗). Here vk

∗
and

m∗ are random verification key and message, respectively. It
also encodes the integer ri in the exponent by setting Ri := gri .
A bucket mapping Φ and γ bit values are generated by applying
the Fiat-Shamir transform using the hash H2. The algorithm
generates for each i ∈ [M] an adaptor pre-signature on the
message mi wrt. an adaptor instance Yi whose corresponding
witness is yi. Each of the adaptor witness yi is further secret
shared to generate shares yi,j for j ∈ [N], such that the sharing
can be verified with the aid of the group elements Yi,j := gyi,j .

Now the algorithm performs the cut-and-choose, such that
for all indices i ∈ [γ] where the bit value from the Fiat-Shamir
transform equals 1, the value ri and the random coins used
to generate the i-th WES ciphertext are added in plain to the
set Sop. These values are considered to be opened by the cut-
and-choose. On the other hand, for all indices i where the
bit value equals 0, the index i is mapped to the bucket (α, β)
using the map Φ. A value si is set to be the one-time pad of
the adaptor witness share yα,β and the value ri. A new WES
ciphertext ci is generated encrypting the same value ri as the
WES ciphertext c′i, but now wrt. the instance (vkβ ,mα), along
with a NIZK proof that the two WES ciphertexts ci and c′i
encrypt the same value ri. The value si, the ciphertext ci and
the associated NIZK proof are added to the set Sunop. These
values are considered to be unopened by the cut-and-choose.
The algorithm outputs all the WES ciphertexts, the two sets
Sop and Sunop, the instance (vk

∗
,m∗), the group elements Ri

and the adaptor instances along with the group elements for
verifying the witness sharing.

To verify, the algorithm VfEnc first checks the correctness of
the Fiat-Shamir transform, and checks the well-formedness of
the opened values in Sop against the WES ciphertexts generated
wrt. instance (vk

∗
,m∗). It then checks the unopened values in

Sunop by applying the mapping Φ for the corresponding index
i and checking if the one-time pad of the value si is consistent
by checking the relation in the exponent. It verifies the NIZK
proofs and the pre-signatures against the corresponding adaptor
instances. Finally, it checks if the adaptor witness sharing was

performed correctly with Lagrange interpolation of the group
elements Yi,j in the exponent.

To decrypt the j-th signature, we require at least ρ valid
witness signatures on the instance message mj wrt. any ρ
verification keys in (vk i)i∈[N]. For each index i in the unopened
set Sunop, the decrypt algorithm DecSig first applies the bucket
mapping Φ to obtain the bucket index (α, β). It proceeds
to decrypt the ciphertext ci using the i-th witness signature,
provided the signature is valid on the instance message mα

wrt. the instance verification key vkβ (where α = j). The
decrypted value r is added to a set rShareβ . Notice that it is
the case that for many i′ 6= i map to the same value β and
therefore rShareβ will contain more than one element in it
(more precisely, we will have |rShareβ | = B).

By the cut-and-choose, we are guaranteed that at least one
of the values ri,a ∈ rSharei is consistent with the check Ra =
gri,a . For each i ∈ [K], where K stores the indices of the
ρ valid witness signatures we have, we obtain the adaptor
witness share yj,i using the consistent values ri,a from the
previous step. We obtain ρ witness shares yj,i using which we
can reconstruct the adaptor witness yj . The signature on the
message mj can now be easily output by adapting the j-th
pre-signature using the witness yj .

Analysis. In Appendix B, we formally show that our construc-
tion satisfies correctness according to Definition 6. Security of
our construction is formally stated in the following theorem,
and the proof is deferred to Appendix C.

Theorem 1: Let DS and DS be signature schemes that satisfy
unforgeability, WES be a secure witness encryption based on
signatures scheme, AS be a secure adaptor signature scheme
for the signature scheme DS and (SetupLc ,ProveLc ,VfLc)
be NIZK proof system for the language Lc satisfying zero-
knowledge and simulation soundness. Then the VweTS con-
struction from Figure 5 is one-way and verifiable according
to Definition 7 and Definition 8, respectively.

Instantiating NIZK Proof for Lc. The NIZK proof essen-
tially proves that the two WES ciphertexts encrypt the same
message. If we re-use encryption randomness in both WES
ciphertexts [10], then the NIZK proof essentially reduces to
proving a discrete logarithm relation over GT . This can be
done efficiently using Schnorr sigma protocol [35].

C. VweTS Extension

In the construction described above, the communication and
computation complexity of the protocol depends substantially
on the number of messages signed in the EncSig procedure (i.e.,
the parameter M). Next, we show a modification to our protocol
that allows us to substantially reduce this dependency. In
particular, instead of executing the verifiable witness encryption
for all the M instances Yi = gyi , we will only execute this for
log(M) = µ values. In Appendix E we present the security
analysis.

1) Concretely Efficient Construction: Let M be the size of
the universe of outcomes, which we assume to be bounded by
some polynomial in the security parameter. For convenience,

9

Public parameters: (G, g, q,G0,G1,GT , γ,H2, crs)
(c, πc)← EncSig(((vk i)i∈[N], (mj)j∈[M], ρ), sk , (mj)j∈[M]):

1) Sample random vk
∗ ∈ G0 and m∗ ∈ {0, 1}λ, initialize Sop = Sunop = ∅.

2) For i ∈ [γ]:
a) Sample ri ← Zq and compute Ri := gri .
b) Compute c′i := WES.Enc((vk

∗
,m∗), ri; r

′
i) where r′i is the random coins used.

3) Compute {Φ, (b1, . . . , bγ)} := H2((c′i, Ri)i∈[γ]).
4) For i ∈ [M]:

a) Sample yi ← Zq and compute Yi := gyi .
b) Compute σ̂i ← AS.pSign(sk ,mi, Yi).
c) For all j ∈ [ρ− 1] sample a uniform yi,j ← Zq and set Yi,j := gyi,j .
d) For all j ∈ {ρ, . . . , N} compute

yi,j =
((
yi −

∑
k∈[ρ−1] yi,k · `k(0)

)
· `j(0)−1

)
, Yi,j =

(
Yi∏

k∈[ρ−1] Y
`k(0)

i,k

)`j(0)−1

. Here `i is the i-th Lagrange

polynomial.
5) Set Σ1 := (σ̂i, Yi, {Yi,j}j∈[N])i∈[M].
6) For i ∈ [γ]:

a) If bi = 1, then Sop := Sop ∪ {(i, ri, r′i)}.
b) If bi = 0:

i) Let (α, β) := Φ(i).
ii) Compute si := ri + yα,β .

iii) Compute ci := WES.Enc((vkβ ,mα), ri; r
′′
i) with r′′i as the random coins and set

πi ← ProveLc(crs, (vkβ , vk
∗
,mα,m

∗, ci, c
′
i), ri).

iv) Set Sunop := Sunop ∪ {(i, si, ci, πi)}.
7) Return c = {c′i}i∈[γ], πc = {Sop,Sunop, vk

∗
,m∗, {Ri, }i∈[γ],Σ1}.

0/1← VfEnc(c, πc, ((vk i)i∈[N], (mj ,mj)j∈[M], vk)):

1) Parse c as {c′i}i∈[γ] and πc as {Sop,Sunop, vk
∗
,m∗, {Ri, }i∈[γ],Σ1} where Σ1 := {σ̂i, Yi, {Yi,j}j∈[N]}i∈[M].

2) Compute {Φ, (b1, . . . , bγ)} := H2((c′i, Ri)i∈[γ])
3) For i ∈ [γ]:

a) If bi = 1, check that (i, ri, r
′
i) ∈ Sop and that c′i := WES.Enc((vk

∗
,m∗), ri; r

′
i)

b) If bi = 0:
i) (α, β) := Φ(i)

ii) Check that (i, si, ci, πi) ∈ Sunop
iii) Check that gsi = Ri · Yα,β
iv) Check VfLc(crs, (vkβ , vk

∗
,mα,m

∗, ci, c
′
i), π) = 1

v) Check that AS.pVf(vk ,mα, Yα, σ̂α) = 1

vi) Let T be a subset of [N] of size ρ− 1, check that for every k ∈ [N] \ T :
∏
j∈T Y

`j(0)
α,j · Y `k(0)

α,k = Yα.
c) If any of the checks fail output 0, else output 1.

σ ← DecSig(j, {σi}i∈[K], c, πc):

1) Parse c as {c′i}i∈[γ] and πc as {Sop,Sunop, vk
∗
,m∗, {Ri, }i∈[γ],Σ1} where Σ1 := {σ̂i, Yi, {Yi,j}j∈[N]}i∈[M].

2) For all i ∈ [K], initialize rSharei = ∅.
3) For each (i, s, c, π) ∈ Sunop, compute (α, β) = Φ(i). If α = j and if β ∈ [K] s.t. DS.Vf(vkβ ,mα, σi) = 1)

a) Compute r = WES.Dec(σi, c).
b) Set rShareβ := rShareβ ∪ {r}.

4) Denote each r in rSharei as ri,a, where (a, sa, ca, πa) ∈ Sunop. We are guaranteed that there exists at least one ri,a
such that Ra = gri,a .

5) For i ∈ [K], compute yj,i = sa − ri,a.
6) Compute yj :=

∑
i∈[K] yj,i · `i(0).

7) Return σj ← AS.Adapt(σ̂j , yj).

Fig. 5. Verifiable witness encryption based on threshold signatures from adaptor signatures.

10

we assume that M is a power of 2 and we denote M = 2µ,
where µ = O(log(λ)). We present the formal construction in
Figure 6.

Construction. For all j = {1, . . . ,M}, Alice samples uni-
formly a Yj = gyj to be the instance of the hard relation for
the adaptor signature (refer to Section IV-B for more details).
Instead of computing the witness encryption of the yj , Alice
additionally samples[

Z0,1 . . . Z0,µ

Z1,1 . . . Z1,µ

]
=

[
gz0,1 . . . gz0,µ

gz1,1 . . . gz1,µ

]
where zb,i ← Zq . Alice also computes

ej = yj +
∑
i

zj[i],i

for all j = {1, . . . ,M}, where j[i] denotes the i-th bit of j.
Alice proceeds as in Section IV-B, except that she computes
the witness encryption of all {zb,i}b∈{0,1},i∈{1,...,µ}, each
conditioned on knowing the signatures of a large enough
fraction of oracles that attests that the i-th bit of the outcome
equals b. The cut-and-choose proceeds in a similar fashion in
proving that about the witness encryption ciphertexts and the
associated group elements {Zb,i}b∈{0,1},i∈{1,...,µ}. Note that
in Section IV-B we had the above cut-and-choose run for M
such ciphertexts, but only have 2µ now. The bucket mapping
Φ is similar to the previous protocol except that the bucket
index now also includes a position pos ∈ [µ]. The verification
procedures is unchanged, except that Bob additionally checks
whether

gej
?
= Yj ·

µ∏
i=1

Zj[i],i

for all j = {1, . . . ,M}. The attestation is also unchanged,
except that the oracles now provide one signature per bit of
the outcome. I.e., each signature attests that the i-th bit of the
outcome is equal to some bit b. Note that there are exactly µ
signatures per oracle.

Correctness and Efficiency. In terms of correctness, obtaining
enough attestations for an outcome j = (j[1], . . . , j[µ]) allows
one to witness-decrypt the corresponding ciphertexts, thereby
recovering the scalars (zj[1],1, . . . , zj[µ],µ). Then, computing

yj = ej −
µ∑
i=1

zj[i],i

allows Bob to unmask yj and consequently to recover the
signature on the transaction corresponding to outcome j. In
terms of efficiency, the overall protocol complexity is still
linear in the size of M (since Alice still needs to send M
adaptor signatures to Bob), but now the “expensive” verifiable
(threshold) witness encryption procedure is only run for 2µ
values, resulting in substantial savings.

2) Asymptotically Optimal Construction: We sketch here
a different construction that is asymptotically optimal but
concretely inefficient compared to the previous constructions.
The main ingredient used in this protocol are garbled circuits

(see [11] for a formal treatment of garbled circuits). Instead of
computing signatures for each outcome and encrypting sepa-
rately, Alice now garbles a circuit that does the following: On
input an outcome j, it outputs a signature (using Alice’s secret
key) of the corresponding message mj . Let {`i,0, `i,1}i∈log(M)

be the labels of the garbled circuits, where M is the size of
the universe of outcomes (e.g., setting M = 2λ gives us an
exponential size universe of outcomes). Alice then uses the
scheme described in the previous section to encrypt each label
`i,b, conditioned on the oracle signing a message encoding the
position i and the bit b. The output of this algorithm consists
of the encryptions of the labels, and the garbled circuit.

For the oracles, the scheme is defined identically, except that,
on input an event j ∈M , each oracle signs separately each bit
of j = (j1, . . . , jlog(M)) along with an identifier for the posi-
tion, e.g., it signs the messages (j1, 1), . . . , (jlog(M), log(M)).
To decrypt, Bob can then use the signatures of the oracles to
recover the set of labels {`i,ji}i∈log(M) and use such labels to
evaluate the garbled circuit, which returns a signature on mj

under Alice’s key.
Note that in the description above we did not consider the

verifiability of the encryptions. We require two guarantees
of verifiability: (i) The encryptions are computed correctly
and (ii) the garbled circuits are computed correctly. The first
guarantee comes for free using the scheme described in our
previous section. To achieve the latter, one can resort to known
techniques in the literature, such as cut-and-choose protocols
presented in [8], [17]. We leave this extension as ground for
future work.

V. PERFORMANCE ANALYSIS

In this section, we describe the implementation and evaluate
the practicality of our protocol for VweTS.

A. Implementation

We have developed a prototypical Rust implementation [7]
to demonstrate the feasibility of our VweTS construction. The
implementation encompasses the EncSig, VfEnc and DecSig
algorithms. We omit the operations regarding attestations by the
oracles, since they are simple signature creation and verification
of a digital signature scheme.

Implementation-level Optimizations. Alice can pre-compute
several of the operations required in the VweTS.EncSig
algorithm (see Figure 5), concretely bullet points 1, 2, 3, 4
(except for the sub-step b) and 5 (except for the complete
sub-step b). The intuition behind this is that these steps use
random values that are not linked to the inputs of the algorithm.

B. Performance

We conducted our experiments on a machine with a quad-
core Intel Core i7 2,3 GHz and 16 GB of RAM. For our
experiments, we run Alice and Bob’s operations within the same
machine, therefore they are communicated through localhost.

We evaluate the impact of three system parameters: (i) the
security parameter of the cut-and-choose; (ii) the number of
oracles; and (iii) the number of outcomes. For each parameter

11

Public parameters: (G, g, q,G0,G1,GT , γ,H2, crs)
(c, πc)← EncSig(((vk i)i∈[N], (mj)j∈[M], ρ), sk , (mj)j∈[M]):

1) Sample random vk
∗ ∈ G0 and m∗ ∈ {0, 1}λ, initialize Sop = Sunop = ∅.

2) For i ∈ [γ]: where γ is 2NB(2µ) and µ = logM .
a) Sample ri ← Zq and compute Ri := gri .
b) Compute c′i := WES.Enc((vk

∗
,m∗), ri; r

′
i) where r′i is the random coins used.

3) Compute {Φ, (b1, . . . , bγ)} := H2((c′i, Ri)i∈[γ]).
4) For i ∈ [µ] and b ∈ {0, 1}

a) Compute zi,b ← Zq and Zi,b = gzi,b

b) For all j ∈ [ρ− 1] sample a uniform zi,b,j ← Zq and set Zi,b,j := gzi,b,j .
c) For all j ∈ {ρ, . . . , N} compute

zi,b,j =
((
zi,b −

∑
k∈[ρ−1] zi,b,k · `k(0)

)
· `j(0)−1

)
, Zi,b,j =

(
Zi,b∏

k∈[ρ−1] Z
`k(0)

i,b,k

)`j(0)−1

. Here `i is the i-th

Lagrange polynomial.
5) For i ∈ [M]:

a) Sample yi ← Zq and compute Yi := gyi . Compute σ̂i ← AS.pSign(sk ,mi, Yi).
b) Compute ei = yi +

∑
j zj,i[j]

6) Set Σ1 = {(σ̂i, ei)i∈[M], {Zi,b}i∈[µ],b∈{0,1}}, {Zi,b,j}i∈[µ],j∈[N],b∈{0,1}}
7) For i ∈ [γ]:

a) If bi = 1, then Sop := Sop ∪ {(i, ri, r′i)}.
b) If bi = 0:

i) Let (α, β, pos) := Φ(i). Compute ci := WES.Enc((vkβ ,mα), ri; r
′′
i) with r′′i as the random coins and set

πi ← ProveLc(crs, (vkβ , vk
∗
,mα,m

∗, ci, c
′
i), ri).

ii) Compute si = zpos,α[pos],β + ri
iii) Set Sunop := Sunop ∪ {(i, ci, si, πi)}.

8) Return c = {c′i}i∈[γ], πc = {Sop,Sunop, vk
∗
,m∗, {Ri, }i∈[γ],Σ1}.

0/1← VfEnc(c, πc, ((vk i)i∈[N], (mj ,mj)j∈[M], vk)):

1) Parse c as {c′i}i∈[γ] and πc as {Sop,Sunop, vk
∗
,m∗, {Ri, }i∈[γ],Σ1} where

Σ1 := {(σ̂i, ei)i∈[M], {Zi,b}i∈[µ],b∈{0,1}, {Zi,b,j}i∈[µ],j∈[N],b∈{0,1}}}.
2) Compute {Φ, (b1, . . . , bγ)} := H2((c′i, Ri)i∈[γ])
3) For i ∈ [γ]:

a) If bi = 1, check that (i, ri, r
′
i) ∈ Sop and that c′i := WES.Enc((vk

∗
,m∗), ri; r

′
i)

b) If bi = 0:
i) (α, β, pos) := Φ(i). Check that (i, ci, si, πi) ∈ Sunop

ii) Check that gsi = Ri · Zpos,α[pos],β

iii) Check VfLc(crs, (vkβ , vk
∗
,mα,m

∗, ci, c
′
i), π) = 1

iv) Check that AS.pVf(vk ,mα, Yα, σ̂α) = 1
v) Let T be a subset of [N] of size ρ− 1, check that for every k ∈ [N] \ T :∏

j∈T Z
`j(0)

pos,α[pos],j · Z
`k(0)
pos,α[pos],k = Zpos,α[pos].

c) For i ∈ [M] Check that gei = Yi ·
∏
i Zj,i[j]

d) If any of the checks fail output 0, else output 1.
σ ← DecSig(j, {σi}i∈[K], c, πc):

1) Parse c as {c′i}i∈[γ] and πc as {Sop,Sunop, vk
∗
,m∗, {Ri, }i∈[γ],Σ1} where

Σ1 := {(σ̂i, ei)i∈[M], {Zi,b}i∈[µ],b∈{0,1}, {Zi,b,j}i∈[µ],j∈[N],b∈{0,1}}}.
2) For all (i, j) ∈ [K]× [µ], initialize rSharei,j = ∅.
3) For each (i, c, s, π) ∈ Sunop, compute (α, β, pos) = Φ(i). If α = j and if β ∈ [K] s.t. DS.Vf(vkβ , α[pos], σi) = 1)

a) Compute r = WES.Dec(σi, c).
b) Set rShareβ,pos := rShareβ,pos ∪ {r}.

4) Denote each r in rSharei,j as ri,a, where (a, sa, ca, πa) ∈ Sunop. We are guaranteed that there exists at least one ri,a
such that Ra = gri,a .

5) For k ∈ [K] and i ∈ [µ], compute zi,j[i],k = sa − ri,a
6) Compute zi,j[i] =

∑
k∈[K] zi,j[i],k · `k(0)

7) Compute yj = ej −
∑
i zi,j[i]

8) Return σj ← AS.Adapt(σ̂j , yj).

Fig. 6. Concretely efficient construction of Verifiable witness encryption based on threshold signatures from adaptor signatures

12

20 30 40 50
0

2

4

6

8

10

Security parameter

R
un

ni
ng

tim
e

(s
)

0

200

400

600

800

C
om

m
un

ic
at

io
n

ov
er

he
ad

(K
B

)

Communication
Time

(1,1) (2,3) (3,5) (4,7)
0

2

4

6

8

10

Oracle setting (t,n)

R
un

ni
ng

tim
e

(s
)

0

200

400

600

800

C
om

m
un

ic
at

io
n

ov
er

he
ad

(K
B

)

Communication
Time

10 100 500 1000
0

2

4

6

8

10

Number of outcomes

R
un

ni
ng

tim
e

(s
)

0

200

400

600

800

C
om

m
un

ic
at

io
n

ov
er

he
ad

(K
B

)

Communication
Time

Fig. 7. Impact of the security parameter (left), oracle setting (middle) and number of outcomes (right) on running time (red) and communication overhead
(blue). We set: Left: 1 oracle, 100 outcomes; Middle: security parameter 40, 100 outcomes; Right: 1 oracle, security parameter 40.

(1,1)
(2,3)

(3,5)
(4,7)10

100

500
1000

5

10

Oracle setting (t,n)
Num

be
r of

ou
tco

mes

R
un

ni
ng

tim
e

(s
)

(1,1)
(2,3)

(3,5)
(4,7)10

100

500
1000

0

500

1,000

Oracle setting (t,n)
Num

be
r of

ou
tco

mes

C
om

m
un

ic
at

io
n

ov
er

he
ad

(K
B

)

Fig. 8. Impact of oracle setting and number of outcomes in the running time
(left) and communication (right) of VweTS. Security parameter is 40.

we study, we vary this parameter while we fix a value for the
other two. We thereby compute the impact of such parameter
in the overall process, that is, the execution of EncSig, VfEnc
and DecSig. The results are shown in Figure 7.

We make the following observations. First, augmenting the
security parameter of the cut-and-choose used within VweTS
has the least impact on both running time and communication
time. Second, augmenting the number of oracles, as well as the
threshold, has a moderate impact in both running and commu-
nication time. They both seem to grow linearly on the number
of oracles participating in the protocol. Third, the number of
outcomes is the most impactful system parameter, since both
running time and communication overhead grow worse than
linearly on the number of outcomes. Yet, even considering
1000 outcomes, the running time and communication overhead
are well within reach of commodity hardware.

Impact of Increasing Oracles and Outcomes. We evaluate
the impact in running time and communication overhead of
increasing the threshold (i.e., the number of oracles) and the
number of outcomes. The results are shown in Figure 8. As
expected from previous experiments, both the running time
and communication overhead increase linearly in both number
of oracles and outcomes. Yet, even in the (possibly unrealistic)
scenario of a threshold of 4 out of 7 oracles and a payment
conditioned on up to 1000 different real-world event outcomes,
the computation overhead is less than 13 seconds while the
communication overhead is below 1.3MB.

Comparison with DLC. DLC is the proposal for oracle based
conditional payments put forward by the community [20] and

(2,3) (3,5) (4,7) (5,9)
0

5

10

Oracle setting (t,n)

R
un

ni
ng

tim
e

(s
)

Our Approach
DLC

Fig. 9. Running time of our approach and DLC with an increasing number
of oracles. We fix security parameter to 40 and number of outcomes to 100.

it is the closest in goals to our work here. We want to compare
our approach with that of DLC when increasing the number of
oracles. For that, we have obtained a prototype implementation
of the DLC design [6] where we have tested it for an increasing
number of oracles. The results are shown in Figure 9. We
observe that running time of the DLC approach is the one
scaling the worst. While our approach requires a number of
operations linear on the total number of oracles, the DLC
approach requires a number of operations exponential in the
(threshold) number of oracles since to construct a DLC for
an outcome event using some threshold t-of-n oracles, they
construct adaptor signatures for all outcomes for all possible
combinations of t-of-t oracles [20]. Therefore, their approach
is less efficient than our implementation starting from a small
setting of (t = 5, n = 9), and the different keeps asymptotically
growing as the values n and t increase.

VI. CONCLUSIONS

In this work, we investigate the problem of oracle-based
conditional payment that do not require Turing-complete
language or are based on trusted execution environment. In
particular, we present a new cryptographic primitive, verifiable
witness encryption based on threshold signatures (VweTS). We
give two practically efficient constructions: (i) the encrypted
signatures are either Schnorr or ECDSA signatures; and (ii) the
encrypted signatures are BLS signatures. In this manner, our
constructions are compatible with many cryptocurrencies today,
including Bitcoin. Moreover, we formally prove the security
guarantees of our constructions. Finally, we have provided a

13

prototype implementation and our benchmarks show that our
construction is practical to be executed even in commodity
hardware, and it scales better with the number of oracles
compared to alternative solutions.

REFERENCES

[1] “Chainlink,” https://chain.link/use-cases.
[2] “Clear and unambiguous terms of merger agree-

ment,” https://corpgov.law.harvard.edu/2019/10/09/
clear-and-unambiguous-terms-of-merger-agreement/.

[3] “Contractor payment schedules,” https://www.levelset.com/blog/
contractor-payment-schedule/.

[4] “Defi pulse website,” https://www.defipulse.com/.
[5] “The oracle of truth: Where do blockchain betting

projects get their event’s results?” https://hackernoon.com/
the-oracle-of-truth-where-do-blockchain-betting-projects-get-their-event-results-r44b2c99.

[6] “Source code for the dlc project.” https://anonymous.4open.science/r/
rust-dlc/README.md.

[7] “Source code for this project. implementation of bls-based attes-
tations,” https://anonymous.4open.science/r/bls-based-implementation/
README.md.

[8] A. Afshar, P. Mohassel, B. Pinkas, and B. Riva, “Non-interactive secure
computation based on cut-and-choose,” in EUROCRYPT 2014, ser. LNCS,
P. Q. Nguyen and E. Oswald, Eds., vol. 8441. Copenhagen, Denmark:
Springer, Heidelberg, Germany, May 11–15, 2014, pp. 387–404.

[9] L. Aumayr, O. Ersoy, A. Erwig, S. Faust, K. Hostáková, M. Maffei,
P. Moreno-Sanchez, and S. Riahi, “Generalized channels from limited
blockchain scripts and adaptor signatures,” in International Conference
on the Theory and Application of Cryptology and Information Security.
Springer, 2021, pp. 635–664.

[10] M. Bellare, A. Boldyreva, and J. Staddon, “Randomness re-use in multi-
recipient encryption schemeas,” in PKC 2003, ser. LNCS, Y. Desmedt,
Ed., vol. 2567. Miami, FL, USA: Springer, Heidelberg, Germany,
Jan. 6–8, 2003, pp. 85–99.

[11] M. Bellare, V. T. Hoang, and P. Rogaway, “Foundations of garbled
circuits,” in ACM CCS 2012, T. Yu, G. Danezis, and V. D. Gligor, Eds.
Raleigh, NC, USA: ACM Press, Oct. 16–18, 2012, pp. 784–796.

[12] D. Boneh and M. K. Franklin, “Identity-based encryption from the Weil
pairing,” in CRYPTO 2001, ser. LNCS, J. Kilian, Ed., vol. 2139. Santa
Barbara, CA, USA: Springer, Heidelberg, Germany, Aug. 19–23, 2001,
pp. 213–229.

[13] D. Boneh, C. Gentry, B. Lynn, and H. Shacham, “Aggregate and verifiably
encrypted signatures from bilinear maps,” in EUROCRYPT 2003, ser.
LNCS, E. Biham, Ed., vol. 2656. Warsaw, Poland: Springer, Heidelberg,
Germany, May 4–8, 2003, pp. 416–432.

[14] D. Boneh, B. Lynn, and H. Shacham, “Short signatures from the Weil
pairing,” in ASIACRYPT 2001, ser. LNCS, C. Boyd, Ed., vol. 2248.
Gold Coast, Australia: Springer, Heidelberg, Germany, Dec. 9–13, 2001,
pp. 514–532.

[15] J. V. Bulck, D. F. Oswald, E. Marin, A. Aldoseri, F. D. Garcia, and
F. Piessens, “A tale of two worlds: Assessing the vulnerability of
enclave shielding runtimes,” in Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security, CCS 2019,
London, UK, November 11-15, 2019, L. Cavallaro, J. Kinder, X. Wang,
and J. Katz, Eds. ACM, 2019, pp. 1741–1758. [Online]. Available:
https://doi.org/10.1145/3319535.3363206

[16] J. Camenisch and I. Damgård, “Verifiable encryption, group encryption,
and their applications to separable group signatures and signature sharing
schemes,” in ASIACRYPT 2000, ser. LNCS, T. Okamoto, Ed., vol. 1976.
Kyoto, Japan: Springer, Heidelberg, Germany, Dec. 3–7, 2000, pp. 331–
345.

[17] R. Canetti, A. Jain, and A. Scafuro, “Practical UC security with a global
random oracle,” in ACM CCS 2014, G.-J. Ahn, M. Yung, and N. Li, Eds.
Scottsdale, AZ, USA: ACM Press, Nov. 3–7, 2014, pp. 597–608.

[18] M. Chase, “Multi-authority attribute based encryption,” in TCC 2007,
ser. LNCS, S. P. Vadhan, Ed., vol. 4392. Amsterdam, The Netherlands:
Springer, Heidelberg, Germany, Feb. 21–24, 2007, pp. 515–534.

[19] G. Chen, S. Chen, Y. Xiao, Y. Zhang, Z. Lin, and T. Lai, “Sgxpectre:
Stealing intel secrets from SGX enclaves via speculative execution,”
IEEE Secur. Priv., vol. 18, no. 3, pp. 28–37, 2020. [Online]. Available:
https://doi.org/10.1109/MSEC.2019.2963021

[20] D. community, “Specification for discreet log contracts,” https://github.
com/discreetlogcontracts/dlcspecs.

[21] A. De Santis, S. Micali, and G. Persiano, “Non-interactive zero-
knowledge proof systems,” in Conference on the Theory and Application
of Cryptographic Techniques. Springer, 1987, pp. 52–72.

[22] N. Döttling, L. Hanzlik, B. Magri, and S. Wohnig, “Mcfly: Verifiable
encryption to the future made practical,” Cryptology ePrint Archive,
2022.

[23] T. Dryja, “Discreet log contracts,” https://adiabat.github.io/dlc.pdf.
[24] A. Erwig, S. Faust, K. Hostáková, M. Maitra, and S. Riahi, “Two-party

adaptor signatures from identification schemes,” in PKC 2021, Part I, ser.
LNCS, J. Garay, Ed., vol. 12710. Virtual Event: Springer, Heidelberg,
Germany, May 10–13, 2021, pp. 451–480.

[25] S. Eskandari, M. Salehi, W. C. Gu, and J. Clark, “Sok: Oracles from the
ground truth to market manipulation,” in Proceedings of the 3rd ACM
Conference on Advances in Financial Technologies, 2021, pp. 127–141.

[26] S. Garg, C. Gentry, A. Sahai, and B. Waters, “Witness encryption and
its applications,” in 45th ACM STOC, D. Boneh, T. Roughgarden, and
J. Feigenbaum, Eds. Palo Alto, CA, USA: ACM Press, Jun. 1–4, 2013,
pp. 467–476.

[27] Y. Ishai, J. Kilian, K. Nissim, and E. Petrank, “Extending oblivious
transfers efficiently,” in CRYPTO 2003, ser. LNCS, D. Boneh, Ed.,
vol. 2729. Santa Barbara, CA, USA: Springer, Heidelberg, Germany,
Aug. 17–21, 2003, pp. 145–161.

[28] D. Johnson, A. Menezes, and S. Vanstone, “The elliptic curve digital
signature algorithm (ecdsa),” International Journal of Information
Security, vol. 1, no. 1, pp. 36–63, Aug 2001. [Online]. Available:
https://doi.org/10.1007/s102070100002

[29] A. Juels, L. Breidenbach, A. Coventry, S. Nazarov, S. Ellis, and
B. Magauran, “Mixicles: Simple private decentralized finance,” 2019.

[30] N. Koheh, “Update on dlcs (new mailing list),” https://lists.
linuxfoundation.org/pipermail/bitcoin-dev/2021-January/018372.html.

[31] T. Le Guilly, N. Kohen, and I. Kuwahara, “Bitcoin oracle contracts:
Discreet log contracts in practice,” in 2022 IEEE International Conference
on Blockchain and Cryptocurrency (ICBC), 2022, pp. 1–8.

[32] Y. Lindell and B. Riva, “Cut-and-choose Yao-based secure computation
in the online/offline and batch settings,” in CRYPTO 2014, Part II, ser.
LNCS, J. A. Garay and R. Gennaro, Eds., vol. 8617. Santa Barbara, CA,
USA: Springer, Heidelberg, Germany, Aug. 17–21, 2014, pp. 476–494.

[33] B. Liu, P. Szalachowski, and J. Zhou, “A first look into
defi oracles,” in IEEE International Conference on Decentralized
Applications and Infrastructures, DAPPS 2021, Online Event,
August 23-26, 2021. IEEE, 2021, pp. 39–48. [Online]. Available:
https://doi.org/10.1109/DAPPS52256.2021.00010

[34] L. (pseudonym), “Secure dlcs,” https://bitcoinproblems.org/problems/
secure-dlcs.html.

[35] C.-P. Schnorr, “Efficient identification and signatures for smart cards,” in
CRYPTO’89, ser. LNCS, G. Brassard, Ed., vol. 435. Santa Barbara, CA,
USA: Springer, Heidelberg, Germany, Aug. 20–24, 1990, pp. 239–252.

[36] A. Shamir, “How to share a secret,” Communications of the ACM, vol. 22,
no. 11, pp. 612–613, 1979.

[37] S. M. Werner, D. Perez, L. Gudgeon, A. Klages-Mundt, D. Harz,
and W. J. Knottenbelt, “Sok: Decentralized finance (defi),” CoRR, vol.
abs/2101.08778, 2021. [Online]. Available: https://arxiv.org/abs/2101.
08778

[38] F. Zhang, E. Cecchetti, K. Croman, A. Juels, and E. Shi, “Town crier: An
authenticated data feed for smart contracts,” in Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security,
Vienna, Austria, October 24-28, 2016, E. R. Weippl, S. Katzenbeisser,
C. Kruegel, A. C. Myers, and S. Halevi, Eds. ACM, 2016, pp. 270–282.
[Online]. Available: https://doi.org/10.1145/2976749.2978326

[39] F. Zhang, D. Maram, H. Malvai, S. Goldfeder, and A. Juels, “Deco:
Liberating web data using decentralized oracles for tls,” in Proceedings
of the 2020 ACM SIGSAC Conference on Computer and Communications
Security, 2020, pp. 1919–1938.

14

https://chain.link/use-cases
https://corpgov.law.harvard.edu/2019/10/09/clear-and-unambiguous-terms-of-merger-agreement/
https://corpgov.law.harvard.edu/2019/10/09/clear-and-unambiguous-terms-of-merger-agreement/
https://www.levelset.com/blog/contractor-payment-schedule/
https://www.levelset.com/blog/contractor-payment-schedule/
https://www.defipulse.com/
https://hackernoon.com/the-oracle-of-truth-where-do-blockchain-betting-projects-get-their-event-results-r44b2c99
https://hackernoon.com/the-oracle-of-truth-where-do-blockchain-betting-projects-get-their-event-results-r44b2c99
https://anonymous.4open.science/r/rust-dlc/README.md
https://anonymous.4open.science/r/rust-dlc/README.md
https://anonymous.4open.science/r/bls-based-implementation/README.md
https://anonymous.4open.science/r/bls-based-implementation/README.md
https://doi.org/10.1145/3319535.3363206
https://doi.org/10.1109/MSEC.2019.2963021
https://github.com/discreetlogcontracts/dlcspecs
https://github.com/discreetlogcontracts/dlcspecs
https://adiabat.github.io/dlc.pdf
https://doi.org/10.1007/s102070100002
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2021-January/018372.html
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2021-January/018372.html
https://doi.org/10.1109/DAPPS52256.2021.00010
https://bitcoinproblems.org/problems/secure-dlcs.html
https://bitcoinproblems.org/problems/secure-dlcs.html
https://arxiv.org/abs/2101.08778
https://arxiv.org/abs/2101.08778
https://doi.org/10.1145/2976749.2978326

aSigForgeA,AS(λ)

Q := ∅
(sk , vk)← KGen(1λ)

m← ASignO(·),pSignO(·,·)(vk)

(Y, y)← GenR(1λ)

σ̂ ← pSign(sk ,m, Y)

σ ← ASignO(·),pSignO(·,·)(σ̂, Y)

return (m 6∈ Q ∧ Vf(vk ,m, σ))

SignO(m)

σ ← Sign(sk ,m)

Q := Q∪ {m}
return σ

pSignO(m,Y)

σ̂ ← pSign(sk ,m, Y)

Q := Q∪ {m}
return σ̂

Fig. 10. Unforgeabiltiy experiment of adaptor signatures

APPENDIX

A. More Preliminaries

1) Adaptor Signatures:
Definition 9 (Pre-signature Correctness): An adaptor signa-

ture scheme AS satisfies pre-signature correctness if for every
λ ∈ N, every message m ∈ {0, 1}∗ and every statement/witness
pair (Y, y) ∈ R, the following holds:

Pr


pVf(vk ,m, Y, σ̂) = 1

∧
Vf(vk ,m, σ) = 1

∧
(Y, y′) ∈ R

∣∣∣∣∣∣∣∣∣∣
(sk , vk)← KGen(1λ)
σ̂ ← pSign(sk ,m, Y)
σ := Adapt(σ̂, y)
y′ := Ext(σ, σ̂, Y)

 = 1.

Next, we formally define the security properties of an adaptor
signature scheme.

Definition 10 (Unforgeability): An adaptor signature scheme
AS is aEUF-CMA secure if for every PPT adversary A there
exists a negligible function negl such that:

Pr
[
aSigForgeA,AS(λ) = 1

]
≤ negl(λ)

where the experiment aSigForgeA,AS is defined as follows:
Definition 11 (Pre-signature Adaptability): An adaptor

signature scheme AS satisfies pre-signature adaptability if for
any λ ∈ N, any message m ∈ {0, 1}∗, any statement/witness
pair (Y, y) ∈ R, any key pair (sk , vk) ← KGen(1λ) and any
pre-signature σ̂ ← {0, 1}∗ with pVf(vk ,m, Y, σ̂) = 1 we have:

Pr[Vf(vk ,m,Adapt(σ̂, y)) = 1] = 1

Definition 12 (Witness Extractability): An adaptor signature
scheme AS is witness extractable if for every PPT adversary A,
there exists a negligible function negl such that the following
holds:

Pr[aWitExtA,AS(λ) = 1] ≤ negl(λ)

where the experiment aWitExtA,AS is defined as follows
2) Signature schemes:

BLS Signatures. We briefly recall here the BLS signature
scheme [14]. Let (G0,G1,Gt) be a bilinear group of prime
order q, where q is a λ bit prime. Let e be an efficiently
computable bilinear pairing e : G0 ×G1 → GT , where g0 and
g1 are generators of G0 and G1 respectively. Let H be a hash
function H : {0, 1}∗ → G1.

aWitExtA,AS(λ)

Q := ∅
(sk , vk)← KGen(1λ)

(m,Y)← ASignO(·),pSignO(·,·)(vk)

σ̂ ← pSign(sk ,m, Y)

σ ← ASignO(·),pSignO(·,·)(σ̂)

y′ := Ext(vk , σ, σ̂, Y)

return (m 6∈ Q ∧ (Y, y′) 6∈ R
∧ Vf(vk ,m, σ))

SignO(m)

σ ← Sign(sk ,m)

Q := Q∪ {m}
return σ

pSignO(m,Y)

σ̂ ← pSign(sk ,m, Y)

Q := Q∪ {m}
return σ̂

Fig. 11. Witness extractability experiment for adaptor signatures

• (vk , sk) ← KGen(1λ): choose α ← Zq, set h ← gα0 ∈ G0

and output vk := h and sk := α.
• σ ← Sign(sk ,m): output σ := H(m)sk ∈ G1.
• 0/1 ← Vf(vk ,m, σ): if e(g0, σ) = e(vk , H(m)), then

output 1 and otherwise output 0.

Schnorr Signatures. We briefly recall the Schnorr signature
scheme [35], that is defined over a cyclic group G of prime
order q with generator g, and use a hash function H : {0, 1}∗ →
Zq .
• (vk , sk)← KGen(1λ): choose x← Zq and set sk := x and
vk := gx.

• σ ← Sign(sk ,m; r): sample a randomness r ← Zq to
compute R := gr, c := H(gx, R,m), s := r+cx and output
σ := (R, s).

• 0/1 ← Vf(vk ,m, σ): parse σ := (R, s) and then compute
c := H(vk , R,m) and if gs = R · vk c output 1, otherwise
output 0.

ECDSA Signatures. The ECDSA signature scheme [28] is
defined over an elliptic curve group G of prime order q with
base point (generator) g. The construction assumes the existence
of a hash function H : {0, 1}∗ → Zq and is given in the
following.
• (vk , sk)← KGen(1λ): choose x← Zq and set sk := x and
vk := gx.

• σ ← Sign(sk ,m; r): sample an integer k ← Zq and compute
c ← H(m). Let (rx, ry) := R = gk, then set r := rx
mod q and s := (c+ rx)/k mod q. Output σ := (r, s).

• 0/1 ← Vf(vk ,m, σ): parse σ := (r, s) and compute c :=
H(m) and return 1 if and only if (x, y) = (gc · hr)s−1

and
x = r mod q. Otherwise output 0.

B. Proofs Of Correctness of Adaptor based VweTS

Theorem 2: Our VweTS construction from Figure 5 is correct
according to Definition 6.

Proof 1:
Let (c, πc)← EncSig(((vk i)i∈[N], (mj)j∈[M]), sk , (mj)j∈[M]).

To prove correctness we first need to show that

Pr
[
VfEnc(c, πc, ((vk i)i∈[N], (mj ,mj)j∈[M], vk)) = 1

]
= 1.

15

Note that VfEnc will output 0 if one of the following occurs:
1) If bi = 0 and c′i 6= WES.Enc((vk

∗
,m∗), ri; r

′
i). Provided

the encryption is done correctly, this occurs with zero
probability.

2) If bi = 1 and gsi 6= Ri · Yα,β . Note that by construction
we have si = ri + yα,β . This implies gsi = gri · gyα,β =
Ri · Yα,β and therefore this case never occurs.

3) If bi = 1 and VfLc(vkβ , vk
∗
,mα,m

∗, c, c′i, π) = 0. By the
completeness of the zero-knowledge protocol this occurs
with zero probability.

4) If bi = 1 and AS.pVf(vk ,mα, Yα, σ̂α) 6= 1. Since σ̂i is
computed using mi and Yi, by the correctness property of
pSign, it is guaranteed pVf outputs 0 with zero probability.

5) If bi = 1 and
∏
j∈T Y

`j(0)
α,j · Y `k(0)

α,k 6= Yα for some k ∈
[N] \ T . This case is impossible by construction of the
shares Yα,k for α ∈ [M] and k ∈ [N].

Thus we have shown that if EncSig is computed correctly,
VfEnc outputs 1 with probability 1.

Next we need to show that for any j ∈ [M],K ⊂ [N] and
|K| = ρ, if for all i ∈ K we have Vf(vk i,mj , σi) = 1, then

Pr[Vf (vk ,mj ,DecSig(j, {σi}i∈K , c, πc)) = 1] = 1.

We are given that for all i ∈ K, Vf(vk i,mj , σi) = 1. By
construction, we have N buckets of size B that correspond to
the message mj . Denote these buckets as bcktj,1, . . . , bcktj,N .
W.l.o.g. let K correspond to the first |K| of these N buckets.
And let each bcktj,i contain ciphertexts c1, . . . cB . For i ∈ K:
1) Let rSharei denote the set of values that are decrypted from

bcktj,i.
2) For each ck ∈ bcktj,i

a) Compute r = WES.Dec(σi, ck)
b) Update rSharei = rSharei ∪ {r}. By the correctness

property of WES we can correctly compute a r.
Let each r in rSharei be denoted as ri,a for each bcktj,i.

To each ri,a is associated an (a, sa, ca, πa). By construction it
is guaranteed that Ra = gri,a . Pick any ri,a from the rSharei.
Since by construction, sa = ri,a+yj,i (j is the message number
and i is the server number), one can compute yj,i = sa −
ri,a. Since yj,i =

((
yj −

∑
k∈[ρ−1] yj,k · `k(0)

)
· `i(0)−1

)
by

construction, we can compute yj =
∑
i∈K yj,i · `i(0). Finally,

we can adapt the signature σ̂j using yj to get σj , and by the
correctness of the adaptor signature AS, the validity of the
signature σj is guaranteed.

C. Security Analysis of VweTS Construction from Adaptor
Signatures

Proof 2 (Proof of Theorem 1): We first show that the protocol
described in Figure 5 satisfies one-wayness as defined in
Definition 7. To this end, we present a sequence of hybrids
starting from the one-wayness experiment defined in Figure 4.

Hyb0: This is the experiment defined in Figure 4.

Hyb1: This hybrid is the same as Hyb0 except that the
challenger guesses q∗ and j∗ that are output by the adversary.

For the oracle query EncSigO corresponding to q∗ the random
oracle H2 is simulated by lazy sampling. A random bit string
b1, . . . , bγ and the mapping Φ is sampled and the output of
the random oracle on the ciphertexts c′i and Ri for i ∈ [γ] is
set to (Φ, (b1, . . . , bγ)). The challenger guesses that the query
q∗ correctly with probability 1

|Q3| .

Hyb2: This hybrid is the same as Hyb1 except that in the
q∗-th query to the EncSigO the zero knowledge proofs πi are
replaced by simulated zero knowledge proofs. By the zero
knowledge property of the underlying NIZK scheme the two
hybrids are indistinguishable.

Hyb3: This hybrid is the same as Hyb2, except that the
encryptions c′i for which bi = 1 are replaced by encryptions
of 0. By the IND-CPA security of the witness encryption
scheme (Definition 2) the two hybrids are indistinguishable.
Note that the adversary cannot know the witness σ which is
a signature on a randomly sampled message m∗ that can be
verified by a randomly sampled key vk

∗
. Since an adversary

cannot efficiently compute sk∗ from vk
∗

the adversary cannot
compute a valid witness.

Hyb4: This hybrid is the same as Hyb3, except that the
encryptions ci which are encrypted under vkβ and mα such
that β ∈ [N] \ C and α = j∗, are replaced by encryptions
of 0. If m∗j ∈ Q1, then abort. Note that since the experiment
aborts if m∗j ∈ Q1, the adversary cannot receive a valid witness
(a signature on m∗j under vkβ) to decrypt the ciphertext ci.
By the IND-CPA security of the witness encryption scheme
(Definition 2) the two hybrids are indistinguishable. Note that
the challenger correctly guesses the message index j∗ with
probability 1

|M | .

Hyb5: This hybrid is the same as Hyb4, except that σ̂∗j is
computed as σ̂∗j = AS.pSign(sk ,m∗j , Y

∗
j) where Y ∗j ← G0.

The shares of Y ∗j are computed by randomly sampling Yj∗,k
for k ∈ [1, ρ − 1]. For k ∈ [p,N], compute Yj∗,k =(

Y ∗j∏
r∈[ρ−1] Y

`r(0)

j∗,r

)`k(0)−1

where `i is the i-th lagrange polyno-

mial. The two hybrids are indistinguishable since the changes
are syntactical and the distribution induced is identical in the
two hybrids.

Hyb6: This hybrid is the same as Hyb5, except that for all i such
that Φ(i) = (α, β) where α = j∗ and β ∈ [N]\C the variable
si is randomly sampled as si ← Zq and Ri is computed as
Ri = gsi

Yα,β
. The distribution of Ri and si are identical to the

previous hybrid and therefore they are indistinguishable.

Now we show that one-wayness holds in Hyb6. In partic-
ular we show that an adversary that wins the one-wayness
experiment can be used to break the unforgeability property
(Definition 10) of the underlying adaptor signature.

Consider an adversary A that wins the one-wayness experi-
ment with non-negligble probability. We now describe another

16

adversary B that uses A to win the unforgeability game of the
adaptor signatures.

Adversary B:
1) Initialize A and simulate the experiment ExpOWay towards
A.

2) While simulating EncSigO for query q∗ and message m∗,
send m to the challenger.

3) Receive σ̂ and Y from the challenger. Simulate the rest of
the protocol as in Hyb6 where Y is used instead of randomly
sampling Y ∗j in computing σ̂ = AS.pSign(sk ,m∗j , Y).

4) Upon receiving any SignO calls forward the calls to the
challenger and return the response to the adversary.

5) Upon receiving σ from A, output σ to the challenger.
It is clear that the

Pr
[
aSigForgeB,AS(λ)

]
=

1

|Q3|
1

|M |
Pr
[
ExpOWayρ,N

VweTS,DS,DS,A
(λ) = 1

]

This implies that Pr
[
ExpOWayρ,N

VweTS,DS,DS,A(λ) = 1
]
≤

negl(λ) since we assume that the adaptor signature scheme
is EUF-CMA secure and |Q3| and |M | are polynomial in the
security parameter λ. This concludes our proof of security of
one-wayness.

We now prove that the scheme is verifiable according
to Definition 8. We analyze the protocol in the interactive
version and the verifiability must follow from the Fiat-Shamir
transformation. Assume that an adversary A breaks the verifi-
ability of the protocol. This implies that the adversary outputs
((mj ,mj)j∈[M], vk , (vk i)i∈[N], (σj)j∈K , j

∗, c, πc) such that
1) ∀j ∈ K,Vf(vk j ,mj∗ , σj) = 1
2) VfEnc(c, πc, ((vk i)i∈[N], (mj ,mj)j∈[M], vk)) = 1
3) Vf(vk ,mj∗ , σ) = 0, where σ ← DecSig(j∗, {σj}j∈K ,

c, πc)

Now since ∀j ∈ K,Vf(vk j ,mj∗ , σj) = 1, the adversary
is able to compute some r = WES.Dec(σj , c) for every
(i, s, c, π) ∈ Sunop such that Φ(i) = (j∗, j). This r is then
added to rSharej .

Now following Corollary 4.2 of [32] we pick parameters
such that the probability of all r in any rSharej to be invalid is
negligible. More specifically, if the total number of ciphertexts
is set to 2MNB, where B = |bckt| and B ≥ λ

logMN+1 + 1
then the probability of all r in any rShare being invalid is
negligible.

Since VfEnc outputs 1, this implies that gsi = Ri · Yα,β .
Moreover, the ciphertexts are well formed except with negligi-
ble probability by the soundness of the NIZK scheme. This
implies that the secret shares yj,i can be computed as sa−ri,a.
Given K shares the party is able to reconstruct to compute yj .
Finally since AS.pVf(vk ,mα, Yα, σ̂α) = 1 by the pre-signature
adaptibility property of AS the party is able to compute the
signature σ with high probability.

D. Construction based on BLS signatures

In this section, we present another concrete construction
of VweTS with parameters ρ,N and M relying on the same
cryptographic building blocks as the previous construction,

except that we replace DS with BLS signature scheme the
same as DS.

1) High Level Overview: We present a high level overview
of our construction, and the formal description is given
in Figure 12. Similar to the adaptor signature based construction,
we assume the availability of public parameters.

The signature generation algorithm proceeds similar to the
previous construction, except that instead of generating adaptor
pre-signatures on the message mi, the algorithm generates
BLS signatures on the message mi wrt. secret key sk . It then
secret shares each of the BLS signatures and for each of their
verifiability, the algorithm also generates the shares of the
verification key vk . The final point of difference is in the
cut-and-choose where, for the unopened indices i such that
(α, β) := Φ(i), we set the value si to be the aggregate of
the signature share σα,β and the value gri1 . The rest of the
algorithm proceeds as the adaptor signature based construction.

To verify, the algorithm proceeds as before except now
instead of checking the correctness of adaptor witness sharing,
it verifies the correctness of the signature sharing with a simple
pairing check. The decryption algorithm also proceeds as before,
except the difference is obtaining the signature share from si.
Recall si is an aggregate of the signature share and a group
element in this case. Therefore, to obtain the signature share, we
divide away the masking group element and finally reconstruct
the required signature via Lagrange interpolation.

2) Proofs Of Correctness of BLS based VweTS:
Theorem 3: Our VweTS construction from Figure 12 is

correct according to Definition 6.
Proof 3:
We let (c, πc) ← EncSig(((vk i)i∈[N], (mj)j∈[M], ρ), sk ,

(mj)j∈[M]). To prove correctness we first need to show that

Pr
[
VfEnc(c, πc, ((vk i)i∈[N], (mj ,mj)j∈[M], vk)) = 1

]
= 1.

Note that VfEnc will output 0 if one of the following occurs:
1) If bi = 0 and c′i 6= WES.Enc((vk

∗
,m∗), ri; r

′
i). Provided

the encryption is done correctly, this occurs with zero
probability.

2) If bi = 1 and e(g0, si) 6= e(Ri, g1) · e(hα,β , H(mα)). Note
that by construction we have si = σα,β · gri1 . This implies

e(g0, si) = e(g0, σα,β · gri1)

= e(g0, H0(mα)xα,β · gri1)

= e(g0, H0(mα)xα,β) · e(g0, g
ri
1)

= e(g
xα,β
0 , H0(mα)) · e(gri0 , g1)

= e(hα,β , H0(mα)) · e(Ri, g1)

and therefore this case never occurs.
3) If bi = 1 and ΠLc .Vf(vkβ , vk

∗
,mα,m

∗, c, c′i, π) = 0. By
the completeness of the zero-knowledge protocol this occurs
with zero probability.

4) If bi = 1 and
∏
j∈T h

`j(0)
α,j · h

`k(0)
α,k = vk . This case is

impossible by construction of the shares of vk for α ∈ [M]
and k ∈ [N].

17

Public parameters: (G0, g0,G1, g1, q,GT , γ,H2, crs)
(c, πc)← EncSig(((vk i)i∈[N], (mj)j∈[M], ρ), sk , (mj)j∈[M]):

1) Sample random vk
∗ ∈ G0 and m∗ ∈ {0, 1}λ, initialize Sop = Sunop = ∅.

2) For i ∈ [γ]:
a) Sample ri ← Zq and compute Ri := gri0 .
b) Compute c′i := WES.Enc((vk

∗
,m∗), ri; r

′
i) where r′i is the random coins used.

3) Compute {Φ, (b1, . . . , bγ)} := H2((c′i, Ri)i∈[γ]).
4) For i ∈ [1,M]:

a) Compute σi = DS.Sign(sk ,mi).
b) For j ∈ [ρ− 1], sample a uniform xi,j ← Zq and set σi,j = H0(mi)

xi,j and set hi,j = g
xi,j
0 .

c) For all j ∈ {t, . . . , N} compute σi,j =

(
σi∏

j∈[t−1] σ
`j(0)

i,j

)`i(0)−1

, hi,j =

(
vk∏

j∈[t−1] h
`j(0)

i,j

)`i(0)−1

.

5) Set Σ1 = {hi,j}i∈[M],j∈[N].
6) For i ∈ [γ]:

a) If bi = 1, do Sop = Sop ∪ (i, ri, r
′
i).

b) If bi = 0:
i) Let (α, β) := Φ(i).

ii) Compute si = σα,β · gri1 .
iii) Compute ci := WES.Enc((vkβ ,mα), ri; r

′
i) and πi ← ΠLc .Prove(vkβ , vk

∗
,mα,m

∗, ci, c
′
i).

iv) Set Sunop = Sunop ∪ (i, ci, πi, si).
7) Return c = {c′i}i∈[γ], πc = {Sop,Sunop, vk

∗
,m∗, {Ri}i∈[γ],Σ1}.

0/1← VfEnc(c, πc, ((vk i)i∈[N], (mj ,mj)j∈[M], vk)):

1) Parse c as {c′i}i∈[γ] and πc as {Sop,Sunop, vk
∗
,m∗, {Ri}i∈[γ],Σ1 and Σ1 = {hi,j}i∈[M],j∈[N]}}.

2) Compute {Φ, (b1, . . . , bγ)} := H2((c′i, Ri)i∈[γ]).
3) For i ∈ [γ]:

a) If bi = 0, check that (i, ri, r
′
i) ∈ Sop and that c′i := WES.Enc((vk

∗
,m∗), ri; r

′
i).

b) If bi = 1:
i) (α, β) := Φ(i).

ii) Check that (i, ci, πi, si) ∈ Sunop.
iii) Check that e(g0, si) = e(Ri, g1) · e(hα,β , H0(mα)).
iv) Check ΠLc .Vf(vkβ , vk

∗
,mα,m

∗, c, c′i, πi) = 1.
v) Let T be a subset of [N] of size ρ− 1, check that for every k ∈ [N] \ T :

∏
j∈T h

`j(0)
α,j · h

`k(0)
α,k = vk .

c) If any of the checks fail output 0, else output 1.
σ ← DecSig(j, {σi}i∈[K], c, πc):

1) Parse c as {c′i}i∈[γ] and and πc as {Sop,Sunop, vk
∗
,m∗, {Ri}i∈[γ],Σ1 and Σ1 = {hi,j}i∈[M],j∈[N]}}.

2) Initialize rSharei = ∅ for i ∈ [K].
3) For each (i, ci, πi, si) ∈ Sunop, compute (α, β) = Φ(i). If α = j and β ∈ [K] s.t. DS.Vf(vkβ , (mα, σi) = 1).

a) Compute r = WES.Dec(σi, ci).
b) rShareβ := rShareβ ∪ {r}.

4) It is guaranteed that at least one r in each rSharei is valid. Denote this as ri,a, where (a, ca, πi, sa) ∈ Sunop.
5) For i ∈ [K], compute σj,i = sa/g

ri,a
1 .

6) Return σj =
∏
i∈[K] σ

`i(0)
j,i .

Fig. 12. Verifiable witness encryption based on threshold signatures from BLS signatures.

18

Thus we have shown that if EncSig is computed correctly,
VfEnc outputs 1 with probability 1.

Next we need to show that for any j ∈ [M],K ⊂ [N] and
|K| = ρ, if for all i ∈ K we have Vf(vk i,mj , σi) = 1, then

Pr[Vf (vk ,mj ,DecSig(j, {σi}i∈K , c, πc)) = 1] = 1.

We are given that for all i ∈ K, Vf(vk i,mj , σi) = 1.
By construction, we have N buckets of size B that corre-
spond to the message mj . Let these buckets be denoted as
bcktj,1, . . . , bcktj,N . W.l.o.g. let K correspond to the first
|K| of these N buckets. And let each bucket bcktj,i contain
ciphertexts c1, . . . cB For i ∈ K:
1) Let rSharei denote the set of values that are decrypted from

bcktj,i
2) For each ck ∈ bcktj,i

a) Compute r = WES.Dec(σi, ck)
b) Update rSharei = rSharei∪r. By the correctness property

of WES we can correctly compute a r.
Let each r in rSharei be denoted as ri,a for each bcktj,i.

To each ri,a is associated an (a, sa, ca, πa). By construction it
is guaranteed that Ra = g

ri,a
0 . Pick any ri,a from the rSharei.

Since by construction, sa = σj,β ·g
ri,a
1 (j is the message number

and β is the server number), one can compute σj,β = sa/g
ri,a
1 .

Since σj,β =

(
σj∏

i∈[t−1] σ
`j(0)

j,i

)`i(0)−1

by construction, one

can compute σj =
∏
i∈K σj,i · `i(0).

3) Security Analysis of VweTS Construction From BLS
Signatures:

Theorem 4: Let BLS signature scheme be unforgeable
(DS and DS), WES be a secure witness encryption based
on signatures scheme, and (SetupLc ,ProveLc ,VfLc) be NIZK
proof system for the language Lc satisfying zero-knowledge and
simulation soundness. Then the VweTS construction from Fig-
ure 5 is one-way and verifiable according to Definition 7
and Definition 8, respectively.

Before proceeding with the proof of the theorem we recall
the aggregate extraction problem, as defined in [13]. For a
uniformly sampled bilinear group (G0,G1,GT) with uniformly
sampled generators (g0, g1), the aggregate extraction problem
gives the attacker the following information

(g0, g1, g
r
0, g

s
0, g

r+s
1)

where r, s ←$ Zq. The adversary wins if it outputs gs1. It is
not hard to see that this variant of the problem is as hard as
the computational Diffie-Hellman (CDH) problem. On input
(g0, g1, X = gx0), the reduction samples y and set Y = gy1 .
Then it feeds the adversary with (g0, g1, X, g

y
0/X, Y) and

returns whatever the adversary returns. It can be verified that the
tuple is identically distributed as the challenge for the aggregate
extraction problem and a solution immediately yields a solution
for the CDH problem.

Proof 4 (Proof of Theorem 4): We first show that the protocol
described in Figure 12 satisfies one-wayness as defined in
Definition 7. To this end, we present a sequence of hybrids
starting from the one-wayness experiment defined in Figure 4.

Hyb0 − Hyb4: Defined as in the proof of Theorem 1.

Hyb5: This hybrid is the same as Hyb4 except that for j∗

1) For i ∈ C:
a) Sample a uniform xi,j∗ ← Zq
b) Set σi,j∗ = H0(mj∗)

xi,j∗

c) Set hi,j∗ = g
xi,j∗
0

2) For i ∈ [N] \ C:

a) Compute hi,j∗ =

(
vk∏

k∈C h
`k(0)

i,k

)`i(0)−1

b) Sample r ←$ Zq
c) Let a be s.t. Φ(a) = (i, j∗) compute sa = gr1 ·(

σi∏
k∈C σ

`k(0)

i,k

)`i(0)−1

d) Set Ra = gr0 .
For the malicious parties (i ∈ C) the variables σi,j∗ , hi,j∗

and si,j∗ are computed exactly as in Hyb4.
For the honest parties (i ∈ [N] \ C), the variables are

computed such that the distribution of Ri, si are indistin-
guishable from the previous hybrid and hi,j∗ is computed
as in the previous hybrid. Therefore the two hybrids are
indistinguishable.

Now we show that one-wayness holds in Hyb5. In partic-
ular we show that an adversary that wins the one-wayness
experiment can be used to solve the aggregate extraction
problem. Consider an adversary A that wins the one-wayness
experiment with non-negligible probability. We now describe
another adversary B that uses A to win the aggregate extraction
problem.
Adversary B:
1) Initialize A and simulate the experiment ExpOWay towards

the adversary as in Hyb5.
2) Upon receiving a challenge (G,H, σ, g0, g1) do the follow-

ing. For i ∈ C, do as in Hyb5. For i ∈ [N] \ C:
a) Sample α← Zq
b) replace sa with σ · gα1
c) replace hi,j∗ with H
d) replace Ra with G · gα0 .

3) Upon receiving SignO calls simulate the signature by
programming the random oracle appropriately.

4) Upon receiving σ∗ from A, compute σ′ =(
σ∗∏

i∈C σ
lj∗ (0)
i,j∗

)(lj∗ (0))−1

and output σ′.

Observe that if σ∗ is a valid signature then σ∗ =∏
i∈[K] σ

`i(0)
j,i . This implies atleast one of the σj,i corresponds

to an i ∈ [N]\C. Now, σ′ =

(
σ∗∏

i∈C σ
lj∗ (0)
i,j∗

)(lj∗ (0))−1

returns

σ′ = σj,i that corresponds to an i ∈ [N] \ C
This implies σ′ = sa/g

ra
1 for some a. The reduction playing

the AggExt experiment sets sa = gr+s1 · gα1 and Ra = gr0 · gα0 .
The latter implies ra = r + α and therefore σ′ = sa/g

ra
1 =

gr+s1 ·gα1
gr+α1

= gs1

19

Thus, Pr
[
AggExtA,G0,G1,GT (λ) = 1]

]
= Pr

[
Hyb5

ρ,N

VweTS,DS,DS,A(λ) = 1
]

= 1
|Q3|

1
M Pr

[
ExpOWayρ,N

VweTS,DS,DS,A(λ) = 1
]

We now prove that the scheme is verifiable according
to Definition 8. We analyze the protocol in the interactive
version and the verifiability must follow from the Fiat-Shamir
transformation. Assume that an adversary A breaks the verifi-
ability of the protocol. This implies that the adversary outputs
((mj ,mj)j∈[M], vk , (vk i)i∈[N], (σj)j∈K , j

∗, c, πc) such that
1) ∀j ∈ K,Vf(vk j ,mj∗ , σj) = 1
2) VfEnc(c, πc, ((vk i)i∈[N], (mj ,mj)j∈[M], vk)) = 1
3) Vf(vk ,mj∗ , σ) = 0, where σ ← DecSig(j∗, {σj}j∈K ,

c, πc)

Now since ∀j ∈ K,Vf(vk j ,mj∗ , σj) = 1, the adversary
is able to compute some r = WES.Dec(σj , c) for every
(i, s, c, π) ∈ Sunop such that Φ(i) = (j∗, j). This r is then
added to rSharej .

Now following Corollary 4.2 of [32] we pick parameters
such that the probability of all r in any rSharej to be invalid is
negligible. More specifically, if the total number of ciphertexts
is set to 2MNB, where B = |bckt| and B ≥ λ

logMN+1 + 1
then the probability of all r in any rShare being invalid is
negligible.

Since VfEnc outputs 1, this implies that e(g0, si) =
e(Ri, g1)·e(hα,β , H0(mα)). Moreover, the ciphertexts are well
formed except with negligible probability by the soundness of
the NIZK scheme. This implies that the secret shares σi,j∗ can
be computed as sa/g

ri,a
1 . Given K shares the party is able to

reconstruct to compute σj∗ .

E. Security Analysis for Concretely Efficient Construction For
Large Universe of Outcomes

Security Analysis. We now argue that the scheme is se-
cure. Fix an outcome j̃. Observe that the security of the
witness encryption scheme allows us to argue that the values
(zj̃[1]⊕1,1, . . . , zj̃[µ]⊕1,µ) are hidden, provided that the majority
of the oracles is honest (this assumption is also necessary for
the security of our main protocol in Section IV-B). Thus, all we
need to argue is that, revealing the values (zj̃[1],1, . . . , zj̃[µ],µ)
does not allow the adversary to recover any signature beyond
the one on mj̃ . We are going to show this via a reduction to
the discrete logarithm problem.

Let Y ∗ be the challenge group element. The reduction
guesses an index i∗ ∈ {1, . . . , µ} and a bit b∗ ∈ {0, 1} and
sets Zb∗,i∗ = Y ∗. All other values of {Zb,i} are sampled as in
the original game (i.e., the reduction knows the corresponding
discrete logarithm zb,i). For all j ∈ {1 . . . ,M}, the reduction
proceeds as follows. For all j such that j[i∗] 6= b∗, the reduction
sets ej and Yj as in the original game (since it knows the
discrete logarithm of the corresponding group elements). On
the other hand, for all j such that j[i∗] = b∗, the reduction
computes

ej = rj +
∑
i 6=i∗

zj[i],i and Yj = grj · (Y ∗)−1

where rj ← Zq. Observe that all values up to this point are
distributed identically as in the original game. The reduction
proceeds as in the original game, except that it witness encrypts
0 instead of the discrete logarithm of Zb∗,i∗ . Let j̃ be the
outcome of the event, and assume that the adversary is able
to recover a signature on some message corresponding to
the outcome j∗ 6= j̃. If j∗[i∗] 6= b∗ and j̃[i∗] 6= b∗ ⊕ 1 the
reduction aborts, otherwise it uses the signature on j∗ to extract
the discrete logarithm of Yj∗ . Since

DLog(Yj∗) = DLog(grj∗ · (Y ∗)−1
) = rj∗ − y∗

the reduction can output y∗ = DLog(Y ∗).
It is clear that the reduction is efficient and, assuming that

it completes the execution, it solves the discrete logarithm
problem or breaks the witness extractability of the adaptor
signature. We now argue that the view of the adversary induced
by the reduction is computationally indistinguishable from the
one of the original game. Note that the only difference is
the computation of the witness encryption for the discrete
logarithm of Zb∗,i∗ is substituted with a witness encryption
of 0. Since j̃[i∗] = b∗ ⊕ 1, it follows by the security of
witness encryption that the two views are computationally
indistinguishable. Finally, note that the reduction does not
abort if j∗[i∗] = b∗ and j̃[i∗] = b∗ ⊕ 1, which is an event that
happens with non-negligible probability. This concludes our
proof.

F. Oracle-based Conditional Payments

Definition 13 (Oracle-based Conditional Payments): Oracle-
based conditional payments is a protocol parameterized by
ρ,N,M ∈ N (s.t. dN2 e ≤ ρ ≤ N) and run among a set
of entities: N oracles {O1, . . . ,ON}, a signing party (Alice)
and a verifying party (Bob). The Oracle-based conditional
(Ocb) payment protocol is defined with respect to a digital
signature scheme ΠDS := (KGen,Sign,Vf) and consists of
five PPT algorithms (OKGen, Attest, AttestVf, Anticipate,
AnticipateVf, Redeem), that are defined below.
• (vk , sk)← OKGen(1λ): the oracle key generation algorithm

takes as input the security parameter λ and outputs the oracle
public key vk and the corresponding oracle secret key sk .

• σ ← Attest(sk ,m): the event attestation algorithm takes as
input oracle’s secret key sk , and the event outcome m, and
outputs the outcome attestation σ.

• {0, 1} ← AttestVf(vk , σ,m): the attestation verification al-
gorithm takes as input oracle’s public key vk , the outcome
attestation σ and the outcome m, and returns 1 if σ attests
to m being the outcome of the event and 0 otherwise.

• (c, πc)← Anticipate(sk , (vk i)i∈[N], (mj ,mj)j∈[M]): the at-
testation anticipation algorithm takes as input the signing
party’s secret key sk , oracles’ public keys (vk i)i∈[N], and
tuples of outcomes and transactions (mj ,mj)j∈[M], and
outputs the anticipation (c, πc).

• {0, 1} ← AnticipateVf(vk , (c, πc), (vk i∈[N], (mj ,mj)j∈[M]):
the anticipation verification algorithm takes as inputs the
signing party’s public key vk , the anticipation (c, πc),

20

oracles’ public keys (vk i)i∈[N], and tuples of outcomes
and transactions (mj ,mj)j∈[M], and outputs 1 if (c, πc) is
well-formed and 0 otherwise.

• σ ← Redeem(j, (σi)i∈[K], (c, πc)): the redeem algorithm
takes as input an index j ∈ [M], attestations (σi)i∈[K] for
|K| = ρ and K ⊂ [N], and the anticipation (c, πc). It returns
as output a signature σ on the transaction mj .

Correctness. An ObC payment scheme is correct if (i) honestly
created attestations verify correctly; (ii) honestly generated
attestation anticipations verify correctly; and (iii) honestly
generated anticipations and attestations are redeemable.

Definition 14 (Correctness): An Oracle-based conditional
payment scheme is correct if the following holds simultane-
ously:
• Honest attestations must verify correctly. For all λ ∈ N, all

(vk , sk) ∈ SUPP(OKGen(λ)), all outcomes m, it must hold
that:

Pr[AttestVf(vk ,Attest(sk ,m),m) = 1] = 1

• Honestly generated attestation anticipations must ver-
ify correctly. For all λ ∈ N, all (vk1, . . . , vkN) ∈
SUPP(OKGen(λ)), all (vk , sk) ∈ SUPP(ΠDS.KGen(λ)) all
pairs of the form (mj ,mj)j∈[M], it must hold that:

Pr[AnticipateVf(vk , (c, πc), (vk i)i∈[N], (mj ,mj)j∈[M]) = 1] = 1

where (c, πc)← Anticipate(sk , (vk i)i∈[N], (mj ,mj)j∈[M]).
• Honest generated anticipations and attestations must be

redeemable by the counter-party. For all λ ∈ N, all set
of public keys (vk1, . . . , vkN) ∈ SUPP(OKGen(λ)), all
(vk , sk) ∈ SUPP(ΠDS.KGen(λ)), all pairs (mj ,mj)j∈[M],
any j ∈ [M] and any K ⊂ [N], where |K| = ρ, it must
hold that:

Pr[DS.Vf(vk ,mj ,Redeem(j, (σi)i∈[K], (c, πc))) = 1] = 1

where (c, πc) ← Anticipate(sk , (vk i)i∈[N], (mj ,mj)j∈[M])

and ∀i ∈ [K] : σi ← Attest(sk i,mj).

Security definitions. We first introduce the notion of unforge-
ability. Unforgeability means that an adversary cannot redeem
an ObC payment on an outcome that is different from the
winning outcome announced by the oracles.

Definition 15 (Unforgeability): An Oracle-based
conditional payment scheme (ρ,N,M) − ObC :=
(OKGen,Attest,AttestVf,Anticipate,AnticipateVf,Redeem)
parameterized by ρ,N,M ∈ N and defined with respect to
a signature scheme ΠDS := (KGen,Sign,Vf) is said to be
unforgeable if for all λ ∈ N, there exists a negligible function
negl(λ), such that for all PPT adversaries A, the following
holds,

Pr
[
ExpForgeρ,N,MObC,ΠBDS,A(λ) = 1

]
≤ negl(λ)

where ExpForge is defined in Figure 13.
A second notion of interest in ObC payments is verifiability.

With verifiability, we aim to capture the property that if an
anticipation is correctly computed and verified, a conditional

ExpForgeρ,N,MObC,ΠBDS,A(λ)

Q1 := Q2 := ∅, Q3 := []

(vk , sk)← ΠDS.KGen(1λ)

(C, st0)← A(vk) // let C ⊂ [N]

∀i ∈ [N] \ C, (vk i, sk i)← OKGen(1λ)

(q∗, σ∗, j∗)← AAnticipateO,AttestO,SignO(st0, {vk i}i∈[N]\C)

((c, πc), X)← Q3[q∗]

X := (sk , (vk i)i∈[N], (mj ,mj)j∈[M])

b0 := ((mj
∗, σ∗) /∈ Q2)

b1 := ((mj
∗) /∈ Q1)

b2 := (|C| ≤ ρ− 1)

b3 := (ΠDS.Vf(vk ,mj
∗, σ∗) = 1)

return b0 ∧ b1 ∧ b2 ∧ b3

AnticipateO((mj ,mj)j∈[M], {vk i}i∈C)

X := (sk , (vk i)i∈[N], (mj ,mj)j∈[M])

(c, πc)← Anticipate(X)

Q3 := Q3||((c, πc), X)

return (c, πc)

AttestO(i,m)

Ensure i ∈ [N] \ C,
σi ← Attest(sk i,m)

Q1 := Q1 ∪ {m}
return σi

SignO(m)

σ ← ΠBDS.Sign(sk ,m)

Q2 := Q2 ∪ {m,σ}
return σ

Fig. 13. Experiment for Unforgeability of Oracle-based Conditional Payments.

payment on this anticipation is redeemable by the counter-party
except with negligible probability.

Definition 16 (Verifiability): An Oracle-based conditional
payment scheme (ρ,N,M) − ObC := (OKGen, Attest,
AttestVf, Anticipate, AnticipateVf, Redeem) parameterized
by ρ,N,M ∈ N and defined with respect to a signature scheme
ΠDS := (KGen,Sign,Vf) is said to be verifiable if for all λ ∈
N, there exists a negligible function negl(λ), and no PPT adver-
sary A that outputs ((mj ,mj)j∈[M], vk , {vk i}i∈N , {σi}i∈K ,
j∗, (c, πc)) such that all the following holds simultaneously
except with probability negl(λ):

1) K ⊂ [N] and |K| = ρ
2) (vk , ·) ∈ SUPP(ΠDS.KGen) and for all i ∈ [N] we have

(vk i, ·) ∈ SUPP(OKGen) where SUPP denotes to the
support.

3) ∀i ∈ K,AttestVf(vk i,mj∗ , σi) = 1
4) AnticipateVf(vk , (c, πc), (vk i)i∈[N]), (mj ,mj)j∈[M]) = 1
5) ΠDS.Vf(vk ,mj∗ , σ) = 0, where σ ← Redeem(j∗,
{σi}i∈K , (c, πc))

Another notion of interest in ObC payments is attestation un-
forgeability. Attestation unforgeability means that an adversary
cannot counterfeit an attestation from an oracle. We note that
the notion of attestation unforgeability is important to ensure

21

ExpAttestForgeρ,N,MObC,A (λ)

Q := ∅
(vk , sk)← OKGen(1λ)

(m∗, σ∗)← AAttestO(·)(vk)

b0 := (m /∈ Q)

b1 := (AttestVf(vk ,m∗, σ∗) = 1)

return b0 ∧ b1

AttestO(m)

σ ← Attest(sk ,m)

Q := Q ∪ {m}
return σ

Fig. 14. Experiment for Attestation Unforgeability of Oracle-based Conditional
Payments.

that the scheme achieves accountability. With accountability,
we aim to capture the property that, if an oracle attests to more
than one outcome for an event, it can be detected by Alice and
Bob. In case of a dispute between Alice and Bob regarding
the correct outcome (where Alice claims outcome j and Bob
claims outcome j′), they are both asked to present ρ valid
signatures on j and j′. We then distinguish three cases:

1) Alice fails to present valid signatures on j: In this case,
Alice is blamed, since she cannot substantiate the outcome
with signatures on behalf of the oracles.

2) Bob fails to present valid signatures on j′: Analogously,
in this case, Bob is blamed.

3) Both Alice and Bob present enough signatures on both
j and j′. Then, there must exist an oracle that signed two
different outcomes for a given event (since ρ > N/2), which
is blamed. Note that Alice and Bob cannot frame the oracles
without breaking the attestation unforgeability of the signature
scheme of the oracles.

Definition 17 (Attestation Unforgeability): An Oracle-
based conditional payment scheme (ρ,N,M) − ObC :=
(OKGen,Attest,AttestVf,Anticipate,AnticipateVf,Redeem)
parameterized by ρ,N,M ∈ N is said to be attestation
unforgeable if for all λ ∈ N, there exists a negligible function
negl(λ), such that for all PPT adversaries A, the following
holds,

Pr
[
ExpAttestForgeρ,N,MObC,ΠDS,A(λ) = 1

]
≤ negl(λ)

where ExpAttestForge is defined in Figure 14.

G. Oracle-based Conditional Payments based on VweTS

In this section, we present a concrete contruction of Oracle-
based conditional payments with parameters ρ, N and M
relying on the VweTScryptographic primitive.“‘ We set the
threshold ρ > N/2. Algorithms OKGen,Attest, and AttestVf
are instantiated using the signature scheme DS := (KGen,Sign,
Vf). Algorithms Anticipate,AnticipateVf and Redeem are
instantiated using the verifiable witness encryption based
on threshold signatures scheme VweTS := (EncSig,VfEnc,
DecSig) and the signature scheme ΠDS := (KGen,Sign,Vf) is
mapped to signature scheme DS := (KGen,Sign,Vf) used in
VweTS. The formal description of our construction is given in
Figure 15.

Oracle Key Generation: Algorithm OKGen(1λ) is run
by oracles Oi for i ∈ [N], which does the following:
• Sample keys (vk i, sk i)← KGen(1λ).
• Return (vk i, sk i).
Event Attestation: Algorithm Attest(sk i,m) is run by
the oracles Oi for i ∈ [N], which does the following:
• Generate σi ← Sign(sk i,m).
• Return σi.
Attestation Verification: Algorithm AttestVf(vk , σ,m)
does the following:
• Check if Vf(vk i,m, σi) = 1
• Return 1 if the above check is successful, and 0

otherwise.
Event Anticipation: Algorithm
Anticipate(sk , (vk i)i∈[N], (mj ,mj)j∈[M]) does the
following:
• Set (c, πc)←
EncSig(((vk i)i∈[N], (mj)j∈[M]), sk , (mj)j∈[M])

• Return (c, πc).
Anticipation Verification: Algorithm
AnticipateVf(vk , (c, πc), (vk i)i∈[N], (mj ,mj)j∈[M])
does the following:
• Check if
VfEnc(c, πc, ((vk i)i∈[N], (mj ,mj)j∈[M], vk)) = 1

• Return 1 if the above check is successful, and 0
otherwise.

Contract Redeem: Algorithm
Redeem(j, (σi)i∈[K], (c, πc)) does the following:
• Set σ ← DecSig(j, {σi}i∈[K], c, πc)
• Return σ

Fig. 15. Oracle-based Conditional Payment construction based on VweTS.

1) Proof of Correctness:
Theorem 5: Our Oracle-based conditional payment contrac-

tion from Figure 15 is correct according to Definition 14.
Proof 5: To prove correctness we first need to show that

Pr[AttestVf(vk ,Attest(sk ,m),m) = 1] = 1.

Note that AttestVf will output 0 if DS.Vf(vk ,m, σ) 6= 1. Since
σ is computed using m, by the correctness property of DS.Sign,
it is guaranteed that DS.Vf outputs 0 with zero probability.
Thus, if Attest is computed correctly, AttestVf outputs 1 with
probability 1.

Next we need to show that

Pr[AnticipateVf(pkA, (c, πc), (vk i)i∈[N], (mj ,mj)j∈[M]) = 1] = 1.

Note that AnticipateVf will output 0 if
VweTS.VfEnc(c, πc, ((vk i)i∈[N], (mj ,mj)j∈[M], vk)) 6= 1.
Since (c, πc) is computed using (mj ,mj)j∈[M], by the
correctness property of VweTS.EncSig, it is guaranteed that
VweTS.VfEnc outputs m with zero probability. Thus, if

22

Anticipate is computed correctly, AnticipateVf outputs 1 with
probability 1.

Finally, we need to show that for any j ∈ [M],K ⊂ [N] and
|K| = ρ, if for all i ∈ [K] we have AttestVf(vk i, σi,mj) = 1
then

Pr[ΠDS.Vf(vk ,mj ,Redeem(j, (σi)i∈[K], (c, πc))) = 1] = 1.

We are given that for all i ∈ K, DS.Vf(vk ,m, σ) = 1. By
construction, we have σ ← VweTS.DecSig(j, {σi}i∈[K], c, πc),
thus by the correctness of the verifiable witness encryption
based on threshold signatures scheme VweTS, the validity of
the signature σ is guaranteed.

2) Security Analysis:
Theorem 6 (Oracle-based conditional payment security):

Let (ρ,N,M)-VweTS be a one-way verifiable witness en-
cryption for threshold signatures scheme defined with respect
to signature schemes DS := (KGen,Sign,Vf) and DS :=
(KGen,Sign,Vf). Let DS := (KGen,Sign,Vf) be an an EUF-
CMA secure digital signature scheme. Then, our protocol is an
unforgeable, verifiable and attestation unforgeable (ρ,N,M)-
oracle-based conditional payment protocol defined with respect
to the signature scheme ΠDS := DS.

Proof 6: We give a proof by reduction for three adversaries
playing the games of unforgeability, verifiablity and attestation
unforgeability, respectively.
Unforgeability. Let A be a PPT adversary with non-
negligible advantage in the ExpForgeρ,N,MObC,ΠDS,A(λ) game. We
now construct and adversary R which uses A to win the
ExpOWayρ,N,M

VweTS,DS,DS,A(λ) game.
R is given a verification key vk by the

ExpOWayρ,N,M
VweTS,DS,DS,A(λ) game. It then runs A on

input vk to get as output a pair (C, st0). R forwards the same
pair to the challenger.

On input st0, {vk i}i∈[N]\C , R invokes A to get the tuple
(q∗, j∗, σ∗). The reduction R simply forwards this tuple to the
challenger as the output of the game.

Additionally, R must simulate A’s oracle access to
AnticipateO, AttestO and SignO. This can be trivially done
as follows. Every time that A queries AnticipateO on in-
put (mj ,mj)j ∈ [M], {vk i}i∈C , R queries its own oracle
EncSigO on the same input and forwards the output. Every
time that A queries AttestO on input i,m, R queries SignO
on input the same input i,m and return the attestation σi to
A. Finally, every time that A queries SignO, R forwards the
query to its own SignO and returns the output signature σ to
A.

After A returns the tuple (q∗, j∗, σ∗) as the forgery for the
unforgeability game of oracle contracts, R outputs (q∗, j∗, σ∗)
as the output of its own game. It is easy to see that R is
an efficient algorithm and that faithfully simulates the view
of A. It is left to show that R wins its game with the same
probability as A wins its corresponding game. For that, we
observe the following:
• b0: Q2 is updated in the same way in both games. Moreover
R simply forwards calls from A to its own oracle, therefore
if b0 holds for A, it holds in R

• b1: It holds in R by the same argument as before but applied
to the oracle SignO.

• b2: This is exactly the same condition in both games.
Moreover, C is a value received from A and unmodified by
R. Therefore, it must hold for R if it holds for A.

• b3: The condition is the same in both games, hence it must
hold in both.
Therefore, by assumption, A succeeds with non-negligible

probability, and thus R also wins with non-negligible probabil-
ity. This violates the assumption that (ρ,N,M)-VweTS be a
one-way verifiable witness encryption for threshold signatures
scheme, implying that no such adversary A can exist.

Verifiability. Let A be a PPT adversary that can break the
verifiablity of our (ρ,N,M)-oracle-based conditional payment
non-negligible probility. We now construct and adversary R
which uses A to break the verifiablity of (ρ,N,M)-VweTS.

After A returns the tuple
((mj ,mj)j∈[M], vk , {vk i}i∈N , {σi}i∈K , j∗, (c, πc)) that
breaks the verifiability of oracle contracts, R outputs
((mj ,mj)j∈[M], vk , (vk i)i∈[N], (σj)j∈K , j

∗, c, πc) as the
output of its own game. It is easy to see that R is an efficient
algorithm and that faithfully simulates the view of A. Finally,
we see that the conditions in both definitions are exactly the
same and as a consequence they all must hold for R if they
hold for A. Hence, R wins with the same probability as A.

Therefore, by assumption, A succeeds with non-negligible
probability, and thus R also wins with non-negligible probabil-
ity. This violates the assumption that (ρ,N,M)-VweTS be a
verifiable witness encryption for threshold signatures scheme,
implying that no such adversary A can exist.

Attestation unforgeability. Let A be a PPT adversary with
non-negligible advantage in the ExpAttestForgeρ,N,MObC,A (λ) game.
We now construct and adversary R which uses A to win the
SigForgeA,DS(λ) game.
R is given a verification key vk by the SigForgeA,DS(λ)

game. It then runs A on input vk := vk to get as output a
pair (o∗, σ∗). R forwards the pair (m∗ := o∗, σ := σ∗) to the
challenger as the output of the game.

Additionally, R must simulate A’s oracle access to AttestO.
This can be trivially done as follows. Every time that A queries
AttestO on input o, R queries SignO on input the same input
m := o and return the attestation σ := σ to A.

After A returns the pair (m∗, σ∗) as the forgery for the
attestation unforgeability game of oracle contracts, R outputs
(m∗ := m∗, σ∗ := σ∗) as the output of its own game. It is
easy to see that R is an efficient algorithm and that faithfully
simulates the view of A. It is left to show that R wins its
game with the same probability as A wins its corresponding
game. For that, we observe the following:
• b0: Q is updated in the same way in both games. Moreover
R simply forwards calls from A to its own oracle, therefore
if b0 holds for A, it holds in R

• b1: Our R maps vk to vk and m∗ to m∗ during the reduction.
Therefore, the condition is the same in both games and must
hold in both.

23

SigForgeA,DS(λ)

Q := ∅
(vk , sk)← KGen(1λ)

(m∗, σ∗)← ASignO(·)(vk)

b0 := (m /∈ Q)

b1 := (Vf(vk ,m∗, σ∗) = 1)

return b0 ∧ b1

SignO(m)

σ ← Sign(sk ,m)

Q := Q ∪ {m}
return σ

Fig. 16. Experiment for EUF-CMA of Digital Signatures.

Therefore, by assumption, A succeeds with non-negligible
probability, and thus R also wins with non-negligible probabil-
ity. This violates the assumption that DS := (KGen,Sign,Vf)
be an EUF-CMA secure digital signatures scheme, implying
that no such adversary A can exist.

24

	Introduction
	Our Contribution
	ObC Payments: VweTS vs. Smart Contracts
	Other Related Work

	Technical Overview
	Preliminaries
	Verifiable Witness Encryption Based on Threshold Signatures
	Definitions
	Construction Based on Adaptor Signatures
	VweTS Extension
	Concretely Efficient Construction
	Asymptotically Optimal Construction

	Performance Analysis
	Implementation
	Performance

	Conclusions
	References
	Appendix
	More Preliminaries
	Adaptor Signatures
	Signature schemes

	Proofs Of Correctness of Adaptor based VweTS
	Security Analysis of VweTS Construction from Adaptor Signatures
	Construction based on BLS signatures
	High Level Overview
	Proofs Of Correctness of BLS based VweTS
	Security Analysis of VweTS Construction From BLS Signatures

	Security Analysis for Concretely Efficient Construction For Large Universe of Outcomes
	Oracle-based Conditional Payments
	Oracle-based Conditional Payments based on VweTS
	Proof of Correctness
	Security Analysis

