
Another Concrete Quantum Cryptanalysis of
Binary Elliptic Curves

Dedy Septono Catur Putranto1,2, Rini Wisnu Wardhani1,2, Harashta
Tatimma Larasati1,3 and Howon Kim1

1 Pusan National University, Busan, Republic of Korea
2 National Cyber and Crypto Agency, Indonesia

3 Institut Teknologi Bandung, Indonesia
{dedy.septono,rini.wisnu,harashta,howonkim}@pusan.ac.kr

Abstract. This paper presents concrete quantum cryptanalysis for binary ellip-
tic curves for a time-efficient implementation perspective (i.e., reducing the circuit
depth), complementing the previous research by Banegas et al., that focuses on the
space-efficiency perspective (i.e., reducing the circuit width). To achieve the depth
optimization, we propose an improvement to the existing circuit implementation of
the Karatsuba multiplier and FLT-based inversion, then construct and analyze the
resource in Qiskit quantum computer simulator. The proposed multiplier architec-
ture, improving the quantum Karatsuba multiplier by Van Hoof et al., reduces the
depth and yields lower number of CNOT gates that bounds to O(nlog2(3)) while
maintaining a similar number of Toffoli gates and qubits. Furthermore, our im-
proved FLT-based inversion reduces CNOT count and overall depth, with a tradeoff
of higher qubit size. Finally, we employ the proposed multiplier and FLT-based in-
version for performing quantum cryptanalysis of binary point addition as well as the
complete Shor’s algorithm for elliptic curve discrete logarithm problem (ECDLP).
As a result, apart from depth reduction, we are also able to reduce up to 90% of the
Toffoli gates required in a single-step point addition compared to prior work, leading
to significant improvements and give a new insights on quantum cryptanalysis for a
depth-optimized implementation.
Keywords: Quantum Cryptanalysis · Elliptic Curves · Point Addition · Quantum
Computing · Quantum Gates · Shor’s Algorithm · Quantum Resource Estimation

1 Introduction
The field of quantum computing is evolving rapidly, especially since Shor’s algorithm
proved the apparent value of quantum phenomena [Sho94, Sho99]. Furthermore, signif-
icant research in quantum computing and hardware contributes to the advancement of
knowledge. In recent years, scientists have been on the way to developing secure, the
fastest, most applicable, or most cryptanalytic-resistant algorithms in the cryptography
field due to the fact that quantum computer may, in the future, be able to crack the ex-
isting widely-used cryptosystem. The number of years left for asymmetric cryptographic
algorithms, i.e, ECC and RSA, is determined by quantum computing progress and im-
provements in the Shor’s algorithm optimization [BBvHL21] along with the progress in
the quantum hardware itself and on the quantum error correction. In another case, quan-
tum arithmetic circuit should be adequately optimized to compute and recursively process
a quantum algorithm. For instance, in the field arithmetic, operations such as multiplica-
tions and inversion should be optimized for certain needs (e.g., for the purpose of minimiz-
ing width or minimizing depth), because they take a significant amount of resources and

mailto:{dedy.septono, rini.wisnu, harashta, howonkim}@pusan.ac.kr

2 Another Concrete Quantum Cryptanalysis of Binary Elliptic Curves

time. In particular, for complex quantum circuits such as point addition, i.e., the under-
lying circuit of the double scalar multiplication (the most expensive part of the circuit for
cracking the existing Elliptic Curve-based Cryptosystems (ECC), using Shor’s algorithm
for Elliptic Curve Discrete Logarithm Problem (ECDLP)), these two operations should
be of top concerns since they constitute the largest resource for the whole quantum point
addition circuit. Therefore, it is beneficial to explore the improvements on these aspects.
Further, their application on the point addition circuit can further provide insights of the
estimation of resource for cracking the current ECC-based cryptosystem.

1.1 Why Another Quantum Cryptanalysis on ECC?
Elliptic-curve cryptography (ECC), one of the most prominent Diffie-Hellman versions,
has a wide range of applications. Because of its smaller key sizes, ECC, developed
by Koblitz and Miller in 1985 [KMV00], has been recognized as the key component in
the security protocol of those technologies among asymmetric cryptographic algorithms.
Curve25519 [Ber06] and Curve448 [Ham15] were suggested by The Internet Research Task
Force (IRTF) [LHT16] for a greater extent of realistic security, with 128-bit and 224-bit
security levels, and integration in Transport Layer Security (TLS) standard 1.3 [Res18].
Following that, the National Institute of Standards and Technology (NIST) [CMRR19]
adopted these curves as part of their standard.

Similar to the extensive usage of ECC, efficient construction of various arithmetic
operations in quantum arithmetic circuits become increasingly crucial as hardware and
quantum computing research evolves. Classical arithmetic computation techniques and
many variant modifications of it are applied to construct ECC not only in the hardware
area but also in the quantum area. Because of the widespread use of high-performance
ECC Processors, some research is being conducted to meet the requirement for a high-
security and efficient ECC processor architecture, and one clear example is Awaludin
et.al. [APWK22]. Awaludin et al. claimed to have developed a high-performance curve 448
ECC processor based on a novel variant Karatsuba architecture [KO62]. The traditional
Karatsuba technique has a O(n1.59) time complexity and a O(n) spatial complexity; some
variant has been presented to minimize computation complexity i.e. [PRM17] [Gid19].

A quantum arithmetic circuit is a reference model that can implement quantum com-
putation activities. Quantum arithmetic circuits become more critical and powerful as
the underlying, essential component to performing algorithm computation. Furthermore,
quantum arithmetic circuits are becoming increasingly important since they must acquire
resources estimated over the arithmetic operation in quantum processing, cryptanalysis,
and actual implementation, either in hardware implementation or quantum hardware pro-
cessing. Notably, some research attempts to implement an algorithm and analyze the
performances, but just a few in cryptanalysis or attack with a quantum approach. Even
though quantum computers are now relatively small compared to classical computers, they
will pose a threat to computer security at some point in the future [BBvHL21]. Curve 448
is a conservatively built elliptic curve that has resulted in ECC building challenges and is
perceived breakthroughs in strong cryptanalysis and classical attack [Ham15]. The chal-
lenge is not only to elaborate on ECC in the scope of the need for optimum computation
but also high requirement to suit security aspect, i.e., cryptanalysis in ECC.

Research quantum cryptanalysis observes more extensive use of the arithmetic variant
design and follow-up necessary computation in the quantum computing field. In the quan-
tum computing field, Proos and Zalka describe how to implement Shor’s efficient quantum
technique for discrete logarithms for the particular elliptic curve groups in their elliptic
curves over GF (p) implementation paper gives a comprehensive explanation of the elliptic
curve in the quantum case [PZ03]. A quantum computer has been forecasted to break a
160-bit elliptic curve cryptographic key with approximately 1000 qubits, whereas factor-
ing the 1024-bit RSA modulus, which is more secure, would take over 2000 qubits [PZ03].

Dedy Septono Catur Putranto, Rini Wisnu Wardhani, Harashta Tatimma Larasati and
Howon Kim 3

Rötteler, Naehrig, Svore, and Lauter conducted remarkable quantum cryptanalysis of el-
liptic curve encryption over prime fields [RNSL17], which is then improved in Haner et
al [HJN+20].

Recently, Banegas et al., present concrete resource estimation to perform Shor’s ECDLP
on binary elliptic curves. The focus of their work include optimizing multiplication and
division circuits, two essential arithmetic circuits which is expensive compared to the
more elementary operations such as addition. They propose to employ a space-efficient
Karatsuba multiplication from Van Hoof [VH19]. Additionally, the authors also present
inversion circuits (a component in the division circuit) in two types, i.e., based on great-
est common divisor (GCD) and based on Fermat’s Little Theorem (FLT), then compared
their performance to be them employed in the calculation of point addition’s resource
cost estimation. The focus of their research is to reduce the number of qubits [BBvHL21]
along with the number of Toffoli gates.

However, there has not been a quantum cryptanalysis in binary elliptic curve that
focuses on reducing the depth of the circuit. In fact, [BBvHL21] can be considered the
only one which have shown a concrete estimate of performing Shor’s ECDLP on Binary
ECC. To complement previous research, we propose to perform analysis from the time-
efficiency perspective (i.e., to achive optimized depth). Considering that multiplier and the
inversion are the most computationally intensive step in the field operation, we propose to
employ our modification to the existing implementation, which gives improvement in tems
of depth. In detail, we propose improving the existing Karatsuba multiplier in Hoof’s study
and modified step in Banegas et al.’s FLT-based inversion to achieve depth optimization,
then create and analyze the resource in the Qiskit quantum computer simulator. Also,
we compare our result to previous works, i.e., [MMCP09] [KS15] [VH19] for multipliers,
and other works such as [BBvHL21] [LPWK22] to FLT-based inversion. Furthermore,
referring to [BBvHL21]’s concrete implementation, we incorporate our improvement to
the analysis of point addition such as in [BBvHL21], in the quantum cryptanalysis of
Shor’s algorithm for elliptic curve discrete logarithm problem (ECDLP).

1.2 Contributions
The contributions of this paper can be summarized as follows:

1. This study presents a concrete quantum cryptanalysis for binary elliptic curves.
Different from the previous work by Banegas et al., [BBvHL21] which focuses on
optimizing the space-efficiency (i.e., width or number of qubits), we offer the analysis
from the time-efficient implementation standpoint (i.e., overall depth).

2. We improve the existing quantum Karatsuba multiplier variant by Van Hoof et
al., [VH19]. In particular, we modify the implementation steps in [VH19], build it
in Qiskit quantum computer simulator, obtain the resource analysis, and compare
with the result by [VH19]. The improved multiplier reaches better optimization
in terms of depth and number of CNOT gates which bounds to O(nlog2(3)) while
preserving the similar number of Toffoli gates and qubits as the previous work.

3. Furthermore, for quantum inversion, we propose to utilize our Karatsuba as the
underlying multiplier block in the low-depth FLT-based inversion variant by Larasati
et al., [LPWK22], which in our simulation shows a lower CNOT count and lower
overall depth than previous works, with the tradeoff of a larger qubit size.

4. Finally, we incorporate our improved multiplier and inversion to the case for quan-
tum cryptanalysis of binary elliptic curve, yielding a depth estimate of 7n+6n log2 (3),
qubit count of 4n + 7n log(n) + 7, and Toffoli count of 4n3 + 3n log((3) + 1) +
25n2 log(n) + 2n2 + O(nlog((3)+1)). The result also shows that our lower depth im-
plementation also reduce the number of Toffoli gates, with the tradeoff of higher

4 Another Concrete Quantum Cryptanalysis of Binary Elliptic Curves

number of qubits and CNOT gates. Also, the result reduces 90% of the Toffoli gates
needed in a single-step point addition besides optimizing the depth.

1.3 Organization of the Paper

Section 2 consists of preliminaries of this paper, such as basic finite field arithmetic (addi-
tion, multiplication, and inversion), a brief explanation of binary elliptic curves, quantum
background, Shor’s algorithm, and covers detailed in binary elliptic curve quantum crypt-
analysis. The Multiplication in Section 3 provides previous work on multiplication that
inspired this research and our improved multiplier architecture. Section 4 gives FLT-based
inversion and our modification FLT-based inversion. In Section 5, besides describing the
evaluation method and setup, we put the improvement together to achieve a details re-
source count and analysis. Section 5.2.3 introduces the incorporation of the improved
multiplication and FLT-based inversion in binary elliptic curves quantum cryptanalysis
addressing point addition operation. Finally, Section 6 draws a conclusion. Along with
the paper writing, related work to this subject will be discussed.

2 Preliminaries

In general, this section briefly describes essential finite field representative and binary
elliptic curve arithmetic in quantum fundamentals related to this research. Subsection 2.1
provides basic finite field arithmetic, such as finite field arithmetic in a binary elliptic curve,
SHORs, and ECDLP in subsection 2.2. Subsection 2.4 gives a brief explanation of the
Quantum background. In addition, Subsection 2.5 will discuss addition, multiplication,
squaring, and inversion (in a division operation) in quantum implementation, which will
be used in further quantum cryptanalysis point addition. The following section (sections 3
and 4) will explain multiplication and inversion correlated to this research in more detail.

2.1 Finite Field Arithmetic

Arithmetic functions play a fundamental role in quantum computation. The primary com-
puting operation and its variety on a bit system consider a wealth of implementation in
the hardware and quantum computing field. The performance of such systems that utilize
the binary field (F2n) and prime field (Fp) is heavily influenced by the optimum imple-
mentation of the underlying field operations, such as modular addition (add), subtraction
(sub), multiplication (mult), squaring (squ), and inversion (inv).

Finite fields F(p) or Galois field GF(p) characterized by 0, 1, . . . , p− 1 finite elements,
are commonly employed in cryptographic techniques and have applications in various
domains. Notably, binary fields are more commonly employed than prime fields in hard-
ware or software implementation due to their carry-free characteristic and easier hardware
implementation. [WH11] presents a complete comparison research analysis of prime and
binary fields. The operations listed below are of significant interest: Addition is perfoming
α+β from given α, β ∈ F2n . Multiplication conducts product of α.β from given α, β ∈ F2n .
Squaring operation determine α2, for a given α ∈ F2n . Lastly, inversion operation, given
α ∈ F ∗

2n , find α−1 ∈ F2n .
Traditional arithmetic computation techniques, as well as various variants of them,

are used to build ECC not only in the hardware but also in the quantum realm, for
further information on elliptic curves, see [CFA+05]. Figure 1 gives clear implementation
hierarchy in ECC.

Dedy Septono Catur Putranto, Rini Wisnu Wardhani, Harashta Tatimma Larasati and
Howon Kim 5

Figure 1: Elliptic Curve-based cryptography (ECC) implementation hierarchy [LK21]

In curve over binary fields standardized in [KG13], an elliptic curve E, over F2n is
specified by the coefficient a, b ∈ F2n of its defining equation y2 +xy = x3 +ax2 +b, where
a ∈ F2 and b ∈ F ∗

2n . The elements are represented as polynomials with coefficients in F2
and a degree less than n in the polynomial representation for F2n . Computation use that
F2n ∼= F2[z]/m(z), where m(z) ∈ F2[z] is an irreducible polynomial of degree n, i.e., in all
computations are done modulo m(z). Tabel 2 shows a list of irreducible polynomials for
binary finite fields.

Table 1: List of irreducible polynomials for binary fields F2n used in this paper

Degree Irreducible polynomial Source
8 x8 + x4 + x3 + x + 1 [CFA+05]
16 x16 + x5 + x3 + x + 1 [CFA+05]
127 x127 + x + 1 [CFA+05]
163 z163 + z7 + z6 + x3 + 1 [KG13]
233 z233 + z74 + 1 [KG13]
283 z283 + z12 + z7 + z5 + 1 [KG13]
571 z571 + z10 + z5 + z2 + 1 [KG13]

Points on binary elliptic curve are tuples P = (x, y) ∈ F ∗
2n satisfying the curve opera-

tion along with a special point O called the "point at infinity" or the netral element. The
negative of a point P1 = (x1, y1) is−P1 = (x1, y1+x1), so that P1+(−P1) = O. Two points
P1 = (x1, y1) and P2 = (x2, y2) 6= ±P1 are added to produce P1 + P2 = P3 = (x3, y3), as
x3 = λ2 + λ + x1 + x2 + a, y3 = (x2 + x3)λ + x3 + y2 with λ = y1+y2

x1+x2
and P1 6= −P1

is doubled to produce [2]P1 = (x3, y3) as x3 = λ2 + λ + a, y3 = x2
1 + (λ + 1)x3 with

λ = x1 + y1
x1

.

2.2 Elliptic Curve Discrete Logarithm Problem
The fundamental problem that enables the establishment of elliptic curve-based cryptogra-
phy protocols and algorithms is the Elliptic Curve Discrete Logarithm Problem (ECDLP).
Examples include the elliptic Curve Diffie-Hellman (ECDH) key exchange, the Elliptic
Curve Digital Signature Algorithm (ECDSA), and the El Gamal encryption method. The
basic concept of ECDLP [Yan15] Let E be an elliptic curve over the Finite Field Fp, say,
in the short Weierstrass equation E : y2 = x3 + ax + b (mod p), with S and T the two

6 Another Concrete Quantum Cryptanalysis of Binary Elliptic Curves

points in the elliptic curve group E(Fp). The ECDLP is to find the integer k = logT S ∈ Z,
or k = logT S (mod p) such that S = kT ∈ E(Fp), or S = kT (mod p), assuming k exists.
Recovery of k without knowing S and T is traditionally regarded as a problematic issue,
with the fastest classical approach still running in exponential time. However, since Peter
Shor demonstrated that k could be acquired using a quantum computer in polynomial
time, contemporary public-key cryptosystems may be deemed insecure.

2.3 Shor’s Algorithm
Peter Shor addressed two challenges in his major work from 1994: factoring a big integer
into prime factors and finding discrete logarithms over finite groups [Sho94]. The first is
the issue that underpins the RSA cryptosystem’s security. Simultaneously, the latter is
the foundation of Diffie-Hellman and digital signature algorithm methods, while its en-
largement to the elliptic curve is the security foundation of ECC. Despite its importance,
Shor’s algorithm for the integer factorization problem, also known as the Quantum Factor-
ing Algorithm, appears to have received more notice than Shor’s algorithm for the ECDLP.
Shor’s example described how to break RSA using a quantum computer to factor integers
in polynomial time, as proposed by Peter Shor in 1994 to utilize quantum computers to
break traditional asymmetric encryption. Some research also demonstrated how to apply
his method to any discrete logarithm issue; for instance, in [PZ03] [RNSL17] [BBvHL21].
This study refer to [RNSL17] [BBvHL21] to utilize Shor’s methodologies in quantum crypt-
analysis elliptic curves Point addition, Figure 2 and Figure 3 show Shor’s algorithm to
calculate the discrete logarithm elliptic curve [RNSL17].

Figure 2: Shor’s algorithm to calculate the discrete logarithm elliptic curve generated by
a point P [RNSL17]

2.4 Theoretical Background
The use of arithmetic operations in the Quantum field ranges from ordinary quantum al-
gorithms to quantum cryptanalysis; hence, fast iImplementation elliptic curve and Shor’s
method for discrete logarithm problems (Shor’s ECDLP) are two examples of thriving
research in quantum computing. To conduct a variety of quantum algorithms, the quan-
tum circuit requires reversible gates that correspond to arithmetic operations like add,
subtract, multiply, divide, or invert. Quantum computing, which employs qubits as the

Dedy Septono Catur Putranto, Rini Wisnu Wardhani, Harashta Tatimma Larasati and
Howon Kim 7

Figure 3: Shor’s algorithm for finding elliptic curve logarithm with semiclassical Fourier
transform [RNSL17]

information unit, necessitates the creation of a new component since it differs physically
from conventional frequency-based computing, which uses bits as the minimal information
unit. A bit and a qubit are distinguished because a bit may be either 0 or 1, but a qubit
can be in a state of superposition. A qubit is allowed to exist in both states 0 and 1,
meaning it can be in two states simultaneously. Reversible gates are bijective in quantum
computing. Unlike typical gates, every input state corresponds to a single output state,
requiring an equal number of input and output qubits.

The basic states of a qubit are expressed in the ket notation |0〉 and |1〉. The su-
perposition is a weighted sum of these two base states, where alpha|0〉 + beta|1〉 > i
and |α2| + |β2| = 1. The probability of seeing 0 in the measurement is equal to |α2|.
In uniform superposition, a qubit with |α| = |β|, such as 1√

2 |0〉 −
1√
2 |1〉 has an equal

probability of being measured as 0 or 1. The superposition of n states is achieved by
combining n qubits :

∑2n−1
i=0 αi|(qn−1,i, qn−2,i . . . , q1,i, q0,i)2〉 with

∑2n−1
i=0 |α2| = 1, where

i = (qn−1,i, qn−2,i . . . , q1,i, q0,i)2 is the presentation of i in base 2. Measuring outputs i

with probability |α2
i |. For simplicity we write

∑2n−1
i=0 |α2| = 1 in the following.

The NOT, CNOT, and Swap gates are required for quantum circuit construction,
whereas Shor’s circuit requires the Hadamard gate (H), phase shift gate (R), and mea-
surement. The following gates are necessary for elliptic-curve computations and Shor’s
circuit: First, the NOT Gate has a single, qubit either input or output. For input |0〉,
the output is |1〉, and vice versa. In fact, it is the polar opposite. The Second, the
CNOT, or Pauli−X, is referred to as the XOR or F2− addition gates. The gate involves
two input qubits a and b and computes the addition of one input to the other qubit
input. Note that, outputs is replacing one input qubit: (a, b) → (a

⊕
b, b). Written as

a ← CNOT (a, b), It has its inverse: (a
⊕

b
⊕

b, b) = (a, b) if applied twice. Stated as
c ← TOF (a, b, c) in algorithms, the Toffoli (TOF) gate, the third gate, is identical to
AND or F2−multiplication. (a, b, c)→ (a, b, c

⊕
(a.b)) takes three qubits as inputs, adds

the result of the first two qubits’ multiplication to the third qubit, and outputs the re-
maining qubits as themselves. It is also the polar opposite of itself. Fourth, the swap
operation, switches two quantum bits a and b; after the swap, qubit a becomes b, and
qubit b becomes a. Lastly, is Hadamard and Phase gate. The following operation spec-
ifies the Hadamard transformation: H|0〉 = 1√

2 (|0〉 + |1〉) and H|1〉 = 1√
2 (|0〉 − |1〉). A

phase gate, often known as a phase shift, is a device that considers the following unitary
operation: |0〉 → |0〉, |1〉 → exp(iϕ)|1〉. As a result, |0〉 remains unaltered while exp(iϕ)
alters the phase of |1〉.

Quantum algorithms are made up of operations on qubit registers. Input qubits, out-
put qubits, and auxiliary qubits are the three types of qubits. The three types of qubits are
input qubits, output qubits, and ancillary qubits. The input and output qubits hold the
input and will have the output when the algorithm is completed, but the ancilla qubits are
employed by the algorithm but do not hold the input or output. To preserve reversibility,
inversion circuits, for example, require a high number of ancilla qubits. Following that,
ancilla qubits should be left uncomputed, lowering the cost (i.e., depth, total gate).

8 Another Concrete Quantum Cryptanalysis of Binary Elliptic Curves

2.5 Quantum Arithmetic Operations
As the research in quantum computers faces rapid advancements, methods to realize vari-
ous quantum arithmetic operations become increasingly important, including performing
those elliptic curve related operations. This section introduces numerous quantum arith-
metic operations relevant to the subject; further study related to implementation see
i.e. [VH19], [BBvHL21].

2.5.1 Addition and Binary Shift

Fast addition formulae for points on an elliptic curve over a finite binary field F2n aim at
reducing the number of (expensive) F2n -operations. In the quantum field, for additional
research instance [CDKM04,Tak09,TMCK21], prior to the present time, study for a faster
addition is still underway.

To achieve | α〉 | β〉 | 0〉 7→| α〉 | β〉 | α + β〉, where the sum is saved in a different
register, we can first add | α〉 to | 0〉, then add | β〉, i.e., 2n CNOT gates and depth 2
sufficient. The Addition of two polynomials in F2 of degree at most n− 1 uses n CNOT
gates with depth 1 with operation without ancillary qubits, and the addition result replaces
either of the inputs since each Addition. Addition for polynomials over F2 is the same as
Addition for the element of the field F2n since it is coefficient-wise. For polynomials in
F2[z], multiplication by z is a shift of the coefficient vector. This requires no quantum
computation by doing a series of swaps. To multiply a polynomial g(z) of degree at most
n−1 by z, a finite field needs to be followed by a modular reduction by a fixed irreducible
weight-ω degree-n polynomial m(z). ω will always be 3 or 5 for our needs.

2.5.2 Multiplication

The classical way of multiplication is known as the schoolbook algorithm, and it has
O(n2) space and O(n1.59) time complexity. The conventional Karatsuba algorithm for
multiplying polynomial and multi-precision integers, for example, has seen significant
improvements. The Karatsuba algorithm has an O(n1.59) time complexity and an O(n)
spatial complexity. Multiplication related to this study will be described in more detail
in section 3.

2.5.3 Schoolbook Multiplication

The simplest technique is to multiply in a Schoolbook. The first and second polynomials
that take n2 Toffoli gates for two polynomials of degree at most n−1 are used to calculate
the number of pairs of qubits. The result must be stored independently from the input
in 2n − 1 qubits; unlike the previous circuits, we cannot replace any of the inputs with
the result since the Toffoli gate demands a separate output. Let’s say we wish to use a
weight-k and degree-n odd polynomial to conduct modular reduction steps. In such a
situation, we may use (n− 1)(k − 2) CNOT gates with no auxiliary qubits (by using the
modular shift approach after every n multiplication). To store the result, n qubits are
utilized.

2.5.4 Karatsuba Multiplication

Required to multiply two polynomials in a finite field, the multiplication method has a
wealth of variations. A for classical computers, often based around Karatsuba’s multipli-
cation method, finding preceded by Gauss. Gauss showed that multiplying two distinct
variables (a + bi) and (c + di) in R using just three multiplications as follows:

(a + bi)(c + di) = ac− bd + ((a + b)(c + d)− ac− bd)i (1)

Dedy Septono Catur Putranto, Rini Wisnu Wardhani, Harashta Tatimma Larasati and
Howon Kim 9

Karatsuba and Ofman construct long integer multiplication as demonstrated in equa-
tion 2, building on a previous idea by Gauss equation (equation 1). Karatsuba divides
each input polynomial into high- and low-degree portions for polynomials f, g in R[x] with
degrees less than 2k: f = f0 + f1xk , g = g0 + g1xk, where f0, f1, g0, g1 are polynomials
in R[x] of degree less than k.The three intermediate products are calculated as follows:
α = f0.g0, β = f0.f1, γ = (f0.f1).(g0.g1). Finally, these products are combined to produce
the Karatsuba multiplier, which is the product of f and g [?]:

f.g = α + (γ − α− β)xk + βx2k (2)

2.5.5 Squaring

Squaring in F2n based on following equation :

(
n−1∑
i=0

aiz
i)

)2

=
n−1∑
i=0

aiz
2i mod m(z) (3)

This would be no cost operation if the mod operation were not considered, as we only
need to shuffle zeroes across our registers. In F2n , there are two approaches: a circuit that
saves the result of squaring a polynomial of degree at most n− 1 in n independent qubits,
or a circuit that substitutes the input with the result. Because squaring is bijective, the
second technique is only practicable for finite fields with 2n members. We exploit the
fact that squaring is a linear map, which we can write as a n by n matrix to square and
replace the input. We produce a lower triangular, upper triangular, and permutation
matrix using an LUP decomposition, which can be translated into a circuit with at most
n2 − n CNOT gates and several swaps.

2.5.6 Inversion

As a crucial process in a quantum circuit, the division stage is the most computationally
intensive. Hence, it must be thoroughly investigated as part of finite field division. Some
approaches have been proven to solve inversion and division in binary fields, such as
extended Greatest Common Divisor (extended GCD), Fermat’s Little Theorem (FLT),
Euclid’s algorithm, and Kaliski’s binary inversion algorithm. Inversion operations can be
performed using a variety of approaches; GCD and FLT are two of the most prevalent.
Banegas et al. approach division by a field element as multiplication by the inverse of
that element, which is similar to Itoh-approach Tsujii’s to the FLT method. The FLT-
based inverses described in section 4 are based on altering numerous stages in Banegas
et al. [BBvHL21] to minimize the depth, which we compare in the last section. The
Modification step attempts to give an alternate and effective method of reducing gate
quantum circuit consumption while addressing the lowest time complexity.

3 Karatsuba Multiplication
This part introduces multiplication as it relates to the research, the preceding subsection
briefly describes Schoolbook (sec 2.5.3) and Karatsuba (sec 2.5.4) multiplication. Fol-
lowing that, in sections 3.1 and 3.2, we introduce multiplication in a quantum circuit
corresponding to Karatsuba derived by Van Hoof Study and Banegas et al. [BBvHL21].
Section 3.2 gives derived multiplication as a modification from [VH19]. Finally, Section
5.2.1 will present a comparison of all multiplication operations.

10 Another Concrete Quantum Cryptanalysis of Binary Elliptic Curves

3.1 Related Work on Space-efficient Karatsuba Multiplication
Classic Karatsuba in-place multiplication in binary polynomial rings is describe below.
For given input polynomials f(x) size up to n, g(x) size up to n and h(x) in 2n, output
is h + f.g. For k, such that n

2 ≤ k < n, we can split each polynomial as follows: f =
f0 + f1xk, g = g0 + g1xk and h = h0 + h1xk + h2x2k + h3x3k for chosen k = n

2 . Compute
α = f0.g0, β = f1.g1 and γ = (f0 +f1) to add those in Karatsuba multiplication h+f.g =
h + α + (γ + α + β)xk + β2k. α, β, γ can be separated as f and g to get non overlap result,
which is useful for checking correctness: h + f.g = (h0 + α0)+(h1 + α0 + α1 + β0 + γ0)xk +
(h2 + α1 + β0 + β1 + γ1)x2k + (h3 + β1)x3k. Following Equation 4 is rewrite the proving
equation.

h + f.g = h + (1 + xk)α + xkγ + xk(1 + xk)β (4)

In quantum computing, integer multiplication is required to conduct the Shors method
for factoring integers, and it is at the core of the process [PRM17]. They were yielding an
asymptotic reduction of the amount of space required from O(n1.585) to O(n1.427); parent
et al. improved reversible and quantum circuits for Karatsuba-based integer multiplication
in their research. In [Gid19], the space Karatsuba multiplication on a quantum computer
complexity improves by Gidney’s research to obtain O(nlog3) gate complexity. Futhermore,
on Karatsuba in quantum, Roche suggested multiplication of polynomials, an improved
technique with the same O(n1.59) but a substantially lower O(log n) space complexity
[Roc09].

Besides Roche in [Roc09], Hoof’s study [VH19] claimed as space-efficient and ran
the algorithm recursively to the KMULT algorithm rather than a modular multiplier.
Being space-efficient variants of karatsuba multiplication methods, Hoof’s research split
Karatsuba into two parts. First part is for given f(x), g(x), h(x) calculate h+f.g. Second,
given k, f(x), g(x), h(x) with k > max (deg(f), deg(g)) compute h + (1 + xk)f.g. Deriving
from Karatsuba calculation, Hoof’s steps modular multiplication approach reaches fewer
Toffoli-count and fulfills in space required.

Rather than using schoolbook multiplication, approaches such as Karatsuba multipli-
cation can be used to speed up large number multiplication. Algorithm modular multi-
plication from [VH19] is a sub-quadratic Toffoli gate count multiplication technique for
binary polynomials in finite fields that yield only O(nlog2(3)) Toffoli Gate usage. Hoof’s
study uses O(n2) CNOT Gates, O(nlog2(3)) Toffoli Gates, and 3n total qubits. Both 2n
qubits for the input, f, g and n separate qubits for the output,h. Hoof clearly uses the
Karatsuba approach to building base algorithm, such as KMULTn (algorithm 3), KMULT
((algorithm 4), CONSTMODMULT (algorithm 5), MODSHIFT (algorithm 6) [VH19]. As
the basis of this research, the algorithm in Hoof’s study is provided in the appendix. Hoof’s
research implements it in space-efficient quantum polynomial multiplication for binary fi-
nite fields with sub-quadratic Toffoli gate count. Banegas et al. utilizes space-efficient
variants of Karatsuba introduced by Van hoof which use CNOT gates O(n2), Onlog2(3) Tof-
foli Gates and 3n total qubit [BBvHL21]. Still, field multiplications, in particular, should
be thoroughly optimized because they consume a considerable amount of resources and
time.

3.2 Proposed Improvement on Space-efficient Karatsuba Multiplica-
tion

This study complements considered prior research and compares the quantum multiplica-
tion inspired by prior work (such as [Roc09, RNSL17, VH19, HJN+20, BBvHL21]). This
subsection shows the improvement quantum circuit from previous Karatsuba research,
utilizing space-efficient multiplication form by Van Hoof. The space-efficient multiplier is
a base for Banegas et al.’s research in their notable concrete implementation.

Dedy Septono Catur Putranto, Rini Wisnu Wardhani, Harashta Tatimma Larasati and
Howon Kim 11

Table 2: Improved Modular Multiplier (Algorithm ModMult_Imp)

Line H in ModMultImp
1 α

2-3 (xk)−1α mod m(x)
4 ((xk)−1α + β) mod m(x)
5 ((xk)−1α + β)(1 + xk) mod m(x)

6-10 ((xk)−1α(1 + xk) + β(1 + xk) + γ mod m(x)
11 (((xk)−1α(1 + xk) + β(1 + xk) + γ)(xk) mod m(x)
12 α(1 + xk) + xkβ(1 + xk) + xkγ mod m

Figure 4: Improvement Quantum Circuit Karatsuba Multiplication

Furthermore, provide a new extension for improving quantum circuit by refining the
implementation of multiplication in quantum circuit. As shown in table 2, this study
offers modified steps in modular multiplier over 12 steps from Hoof [VH19] or 13 steps
Banegas et al. [BBvHL21] with analysis the needs of gate of each function on algorithm
with consideration of space efficient with reversible algorithm. As shown in tabel 2 the final
result for modular multiplication is α(1 + xk) + xkβ(1 + xk) + xkγ mod m. With similar
basis algorithm in reversible quantum circuit [BBvHL21], such as KMULTn, KMULTxk, k,
CONSTMODMULTf (x), m(x), MODSHIFTm(x), the improved modular multiplication
algorithm works as follows: The algorithm step chases the α value in the first line of
array H. Instead of computing (1 + xk)β mod m, the improved multiplier algorithm’s in
2− 3 lines calculate (xk)−1α mod m(x). Next, ((xk)−1α + β)(1 + xk) mod m(x) will be
processed and added to the result in stages 5. The step 6-10 is to get multiply (1 + xk) as
a polynomial constant to α, β, yielding α(1+xk)+xkβ(1+xk)+xkγ mod m. In contrast,
we do not recursively call CONSTMODMULTf (x), m(x) inverse as needed in Tabel hoof,
which seeks to erase the constant (1+xk). To maintain the quantum circuit space-efficient,
this strategy reduces CNOT used and quantum circuit depth without modifying the best
Toffoli result from previous work. For improvement of the Hoof Karatsuba to the better
optimization, we consider overall the Toffoli, CNOT gate, and Depth, quantum circuit
yielded modular multiplication is based on the following Algorithm 1 in Table 2.

12 Another Concrete Quantum Cryptanalysis of Binary Elliptic Curves

Algorithm 1 MODMULT_Imp. As inspired from [VH19] [BBvHL21], we propose a
reversible algorithm for multiplying two polynomials in F2[x]/m(x) with an irreducible
polynomial m(x).

Fixed input : A constant integer n to indicate field size, k = bn
2 c. m(x) of degree

n as a field polynomial. The LUP -decomposition precomputed for
multiplication by 1 + xk modulo m(x).

Quantum input : Three binary polynomials f(x), g(x), h(x) of degree up to n− 1
store in array F, G, H respectively of size n.

Result: F and G as input, H as h + f · g mod m.
1: H[0..n− 1]←KMULTk(F [0..k − 1], G[0..k − 1], H[0..n− 1])
2: for i = 0, ..., k − 1do
3: H[0..n− 1]←MODSHIFT−1

m(x)(H[0..n− 1])
4: H[0..n− 1]←KMULTn−k(F [k..n− 1], G[k..n− 1], H[0..n− 1])
5: H[0..n− 1]←CONSTMODMULT1+xk,m(x)(H[0..n− 1])
6: F [0..n− k − 1]←CNOT(F [0..n− k − 1], F [k..n− 1])
7: G[0..n− k − 1]←CNOT(G[0..n− k − 1], G[k..n− 1])
8: H[0..n− 1]←KMULTk(F [0..k − 1], G[0..k − 1], H[0..n− 1])
9: G[0..n− k − 1]←CNOT(G[0..n− k − 1], G[k..n− 1])
10: F [0..n− k − 1]←CNOT(F [0..n− k − 1], F [k..n− 1])
11: for i = 0, , k − 1 do
12: H[0..n− 1]←MODSHIFTm(x)(H[0..n− 1])

4 FLT-based Inversion
In an elliptic curve point addition operation, inversion circuit is essential due to its use as
the component to perform a division operation [HJN+20]. The division itself, for the use
of the finite field, will consist of multiplication and an inversion and circuit (as opposed
to the case for the standard case, which generally comprises additions and its variants, as
in [TMCVH19,TVMC16]), which can be considered as the most computationally intensive
operation [RNSL17]. Therefore, it should be thoroughly investigated to obtain improve-
ments, which can reduce the overall cost of point addition circuit. Several approaches have
been proposed for quantum inversion in general: standard Euclidean algorithm [PZ03],
(Kaliski’s) binary GCD algorithm [RNSL17] and its improvement [HJN+20], all of which
are proposed for the prime field use. For the binary field, extended GCD and Fermat’s
Little Theorem (FLT) has recently been proposed by [BBvHL21]. In this section, we
focus on discussing the previous work on quantum FLT-based inversion, then present our
improvement. In particular, we employ the approach of FLT-based inversion proposed
in [LPWK22], the incorporate our improved Karatsuba multiplication instead of the stan-
dard Schoolbook or the other Karatsuba in [BBvHL21], which in our simulation, yields
lower depth and width compared to the previous works.

4.1 Related Work on FLT-based Inversion
Proposing and comparing two different inversion algorithms (i.e., extended GCD and
FLT), previous work [BBvHL21] have discussed Itoh-Tsujii’s approach to the FLT algo-
rithm, which is well-known for cryptography in classical computing to reduce the number
of multiplications in the FLT inversion. For a prime number p and integer x, the basic
FLT in modular arithmetic asserts that xp = x mod p. The Fermat primality test is
based on FLT, first stated in 1640, as one of the most fundamental findings of basic num-
ber theory. For binary fields, FLT may be extended to f2n−2 = f−1 mod m(x), where
m(x) have n as the degree. Then the inversion can be performed by n multiplications

Dedy Septono Catur Putranto, Rini Wisnu Wardhani, Harashta Tatimma Larasati and
Howon Kim 13

Figure 5: High-level scheme of a three-stage inversion inferred from [BBvHL21]; algorithm
modifications and register placement follows [LPWK22].

and n − 1 squarings by equation f2n−2 = f21
f22

f23
. . . f2n−1 . For the quantum circuit

implementation, Banegas et al [BBvHL21] have described the derivation by adhering to
the Itoh-Tsujii [IT88]’s two observations as shown in Equations 5 and 6, to reduce the
cost below 2 log (n) multiplications and to n− 1 squarings.

f2n−2 = (f2n−1−1)
2

(5)

(f22t
−1 = f22t

−1)
22t−1

(f22t
−1) (6)

By the condition that: n− 1 is denoted as k1 . . . kt with
∑t

s=1 2ks = n− 1 and k1 > k2 >
k3 > . . . kt ≥ 0, with t the Hamming weight of n− 1 in binary, t ≤ blog (n− 1)c+ 1, and
k1 = blog (n− 1)c, the FLT-based quantum inversion circuit can be constructed in three
steps as follows [BBvHL21]:

1. Calculate f22k1 −1 with k1 multiplications by utilizing Equation 6, save the interme-
diate result f22kt −1 , f22kt−1 −1 , . . . , f22k1 −1 .

2. Calculate
{

. . .
{

(f22k1 −1)22k2
(f22k2 −1)}22k3

. . . }22kt

(f22kt −1)} using t− 1 multiplications.

3. Square output of the above steps to obtain the inverse, i.e., f−1.

Using the above steps, Banegas et al [BBvHL21] derived an inversion circuit comprising
a series of squarings, multiplications, and inverse squarings to accomplish an inversion
operation. For a detailed description of their FLT-based inversion, their algorithm and
quantum circuit example can be found on Section 6.2 of their paper: on Algorithm 2 (line
1-16) and Circuit 6, respectively.

Subsequently, Larasati et al [LPWK22] proposed to modify the steps in from [BB-
vHL21] to minimize the overall depth of the circuit. Specifically, they propose to re-
move the inverse squaring to create a more streamlined construction in a waterfall ap-
proach [LPWK22], and postponing the uncomputation to the end. This results in the
reduction of the CNOT count without increasing the depth of the T-gate (i.e., T-depth),
which contributes to a lower overall depth. Their approach comes with a tradeoff of a
larger qubit size (i.e., circuit width), but overall depth is minimized, which is advanta-
geous for time-efficient implementation, as discussed in the Section IV-B of their paper.
Additionally, they also compared their result with [BBvHL21] via simulation in Qiskit.
Note that since they focus on evaluating the inversion algorithm, their Qiskit simulation
utilize a standard Schoolbook as the multiplication method for both scenarios (i.e., theirs
and Banegas et al’s).

14 Another Concrete Quantum Cryptanalysis of Binary Elliptic Curves

4.2 Proposed Improvement on FLT-based Inversion
For achieving a lower depth implementation, the FLT-based inversion algorithm in [LPWK22]
can be taken into consideration. However, it comes with a tradeoff of a larger qubit size,
as shown in their simulation. In this paper, we propose to incorporate our improved mul-
tiplication circuit MODMULT_Imp to the FLT−based inversion algorithm in [LPWK22].
Instead of employing a standard Schoolbook multiplication or the Karatsuba multiplica-
tion in [BBvHL21], we substitute the multiplier with our MODMULT_Imp. Considering
the fact that multiplication is used repeatedly and, in fact, is one of the core components
of the inversion circuit, the depth reduction using our method is manyfold. The method
of our approach is presented in Algorithm 2.

Algorithm 2 INV_Imp. Our proposed algorithm for FLT-based inversion, which mod-
ifies [BBvHL21,LPWK22]. For simplicity, we follow the notation style of [BBvHL21]
.

Fixed input : A constant field polynomial m(x) of degree n > 0.k1 > k2 > . . . kt ≥ 0

such that
3∑

s=1
2ks = n− 1.kmax = 2 ∗ k1 + t.

Quantum input :
- A non-zero binary polynomials of degree up to n− 1 stored in array (register)

f0 of size n to invert.
- k zero arrays of size n initialized to an all-|0〉 state: f1, . . . , fk.
Result : inverse of the input, stored in fk

1: for i = 1, , k1 do //stage 1
2: CNOT(f2∗(i−1)+1, f2∗(i−1))
3: for i = 1, , t− 1 do
4: SQUARE(f2∗(i−1)+1)
5: MODMULT_Imp(f2∗(i−1)+2, f2∗(i−1)+1,f2∗(i−1))
6: for s = 1, , t− 1 do //stage2
8: for k = 1, , 2ks+1 do
9: SQUARE(f2∗(i−1)+1)
10: MODMULT_Imp(f2∗(i−1)+2, f2∗(i−1)+1,f2∗(i−1))
11: if t = 1 then
12: swap (fk1 , fk)
13: SQUARE(fk) //stage 3

5 Evaluation
This section provides the information about our evaluation method and setup, along with
the rationale behind our evaluation approach, then presents the result.

5.1 Evaluation Method & Setup
To evaluate our proposed Karatsuba multiplication and FLT-based inversion, we build
each circuit in Qiskit based on our algorithms (i.e., Algorithms 1 and 2), then obtain the
resource analysis. Note that due to a large number of qubits, we can not perform full
simulation, i.e., we do not perform simulation on the quantum hardware or the Qiskit
simulator. Rather, we construct the corresponding circuits and then utilize the built-
in function in Qiskit to count the resource requirement. Then, to further evaluate our
method, we compare our result with the previous works.

For multiplication, we compare our technique (Table 3) to the quantum Karatsuba
variation presented by Van Hoof et al., [VH19], which may be regarded as the most recent

Dedy Septono Catur Putranto, Rini Wisnu Wardhani, Harashta Tatimma Larasati and
Howon Kim 15

space-efficient quantum multiplier for the binary fields. That multiplication method is
the base for the underlying multiplier in Banegas et al., [BBvHL21], the most recent work
on quantum cryptanalysis for binary elliptic curves. In detail, we refer to the result of
Van Hoof’s multiplier directly from the result presented in Table 5 of their paper [VH19],
whereas our method’s result is derived from our Qiskit implementation. Additionally, for
Table 3, we employ the exactly same performance metrics as in [VH19]. Due to limited
time and resources, we run the quantum circuit for n of 8, 16, 127, 163, 233, 283, and 571
with their respective irreducible polynomials follow [BBvHL21], whereas the rest of the val-
ues are derived from interpolation. Additionally, Schoolbook multiplication is also taken
from [BBvHL21] as a comparison to the baseline multiplication method. Furthermore,
we then compare our result with two other works on quantum binary multiplications,
i.e., [KS15] and [MMCP09] following the previous comparison in [VH19], presented on
Table 4.

In terms of inversion, we also build our variant of the FLT-based algorithm circuit in
Qiskit, then compare our inversion algorithm with two of the latest FLT-based inversion
for binary fields, i.e., Banegas et al., [BBvHL21] and Larasati et al., [LPWK22]. In [BB-
vHL21], their presented result (i.e., Table 2 of their paper) is already for division instead
of inversion; thus, we can not directly use the result. So in this paper, for inversion evalu-
ation, we make a slightly different approach from the multiplication evaluation explained
above. Particularly, we recreate the Banegas’ FLT algorithms (Algorithm 2 lines 1-16
of [BBvHL21]) in Qiskit, still we replace their original multiplication (i.e., Van Hoof’s
Karatsuba [VH19]) to our proposed multiplication, in which at the result in Table 5 de-
noted as BAN*. Nevertheless, for [LPWK22], we can rebuild their circuit in Qiskit and
run it according to their original setting (i.e., using Schoolbook multiplication)), referred
in the table as LAR*. Instead of directly acquiring the result from their paper, we need
to rerun to obtain their Toffoli resource count, which is not provided in their result.

Lastly, we incorporate our result for the quantum cryptanalysis in binary elliptic curves
and discuss the relevant aspects of our study.

5.2 Evaluation Result
5.2.1 Result & Comparison of Karatsuba Multiplications

As shown in Table 3, our proposed improvement of Karatsuba multiplication yields a lower
CNOT than that of Van Hoof’s space-efficient Karatsuba algorithm [VH19] while main-
taining the same number of Toffoli gates. Our construction also results in a lower overall
depth. Further looking into Table 4, Van Hoof’s [VH19] bounds quadratically to O(n2)
CNOT gates, O(nlog2(3)) Toffoli gates and 3n total qubits. With our improved multipli-
cation, we reach better optimization for CNOT count, which bounds to O(nlog2(3)), while
maintaining the similar Toffoli count and qubit count. In other words, the result shows
that our construction enhances the current quantum space-efficient Karatsuba multiplier
for the aforementioned evaluation metrics. Note that there are instances where our Toffoli
count is even slightly lower for some degrees, i.e., for n of 127, 163, 233, 283, 571, which
we save 2, 32, 16, 32, and 42 Toffoli gates, respectively. We are uncertain about the cause
of this difference, but it might have a relation to the different environments that we use
(ours in Qiskit while Van Hoof’s in on Microsoft QDK). Additionally, compared to the
schoolbook multiplication, both Karatsuba multipliers enormously reduce the number of
Toffoli gates.

Further, presented in Table 4 is the additional comparison with other quantum binary
multipliers: those of Kepley and Steinwandt [KS15] and Maslov et al., [MMCP09] taken
example for several n. In terms of the gate count (Toffoli and CNOT counts), our work
and [MMCP09] bounds to O(nlog2(3)), but we obtain lower qubit count of 3n as opposed
to O(nlog2(3)). Additionally, among others, the work of [MMCP09] gives the lowest cost

16 Another Concrete Quantum Cryptanalysis of Binary Elliptic Curves

Table 3: Detailed Multiplication Comparison with Previous Work. For several
instances of our proposed algorithm, TOF gate count for Schoolbook multiplication, and
Karatsuba version of hoof’s paper, we used CNOT, TOF gate, and Depth upper limits
with field polynomials in Table 1, and the lowest CNOT count irreducible polynomial.

Degree Schoolbook
TOF

This Work
TOF CNOT Depth

Previous Work [VH19]
TOF CNOT Depth

2 4 3 10 3 3 11 10
4 16 9 32 9 9 49 36
8 64 27 102 82 27 220 139
16 256 81 376 226 81 725 396
32 1,024 243 1,194 246 243 2,371 1,204
64 4,096 729 3,973 754 729 7,160 3,312
127 16,129 2,183 12,659 3,151 2,185 21,028 9,063
128 16,384 2,187 13,223 3,311 2,187 21,898 9,586
163 26,569 4,355 22,080 6,976 4,387 38,143 18,647
233 54,289 6,307 36,238 25,225 6,323 66,974 32,505
256 65,536 6,561 36,005 17,080 6,561 66,107 27,756
283 80,089 10,241 54,099 23,225 10,273 91,737 43,249
571 326,041 31,139 166,982 45,979 31,171 274,967 124,999
1024 1,048,576 59,049 487,345 66,470 59,049 600,089 240,678

Table 4: Multiplication Comparison of Resource Analysis with Several Litera-
tures. In both Toffoli and CNOT gates, and qubit count, this study is comparable with
those of Kepley and Steinwandt [KS15], and Maslov et al. [MMCP09].

n
Toffoli Count

Ours [VH19] [KS15] [MMCP09]
CNOT Count

Ours [VH19] [KS15] [MMCP09]
Qubit Count

Ours [VH19] [KS15] [MMCP09]
4 9 9 9 16 32 49 22 3 12 12 17 12
16 81 81 81 256 334 725 376 45 48 48 113 48
127 2183 2185 2185 16129 12597 21028 13046 126 381 381 2433 381
256 6561 6561 6561 65536 44005 66107 57008 765 768 768 7073 768
n O(nlog23)O(nlog23) O(nlog23) n2 O(nlog23)O(n2) O(nlog23) O(n) 3n 3n O(nlog23) 3n

for CNOT, still, it comes with a quadratically bounded Toffoli count —, which is only as
efficient as schoolbook multiplication [PRM17] —while others are bound to O(nlog2(3)).
By this information, our proposed multiplier is considerably beneficial for use in quantum
arithmetic operations, and quantum cryptanalysis.

5.2.2 Result & Comparison of FLT-based Inversions

Table 5 presents the relevant FLT-based inversion result. Compared to BAN* (i.e., FLT
algorithm by Banegas et al., [BBvHL21] but with multiplier changed to ours), we obtain
lower CNOT count and lower overall depth, with the tradeoff of larger qubit size. There-
fore, for a time-efficient implementation, our method is more suitable. Additionally, in
comparison to Larasati et al., [LPWK22] (denoted as LAR in the table), the utilization of
our proposed multiplier greatly reduces the high Toffoli count and qubit count that exist
in [LPWK22] due to their use of schoolbook multiplication. Therefore, our approach can
be thought of as an alternative solution to obtain the advantage of breaking down multi-
plication (using the Karatsuba approach) to give a lower Toffoli count while maintaining
the lower depth inherent in [LPWK22].

Inversion is a generic arithmetic operation that may be employed repeatedly in a
calculation, such as in the well-known Shor’s algorithm, notably in its variation for the

Dedy Septono Catur Putranto, Rini Wisnu Wardhani, Harashta Tatimma Larasati and
Howon Kim 17

Table 5: Comparison of Resource Analysis with Previous Work FLT Based
inversion. In both Toffoli and CNOT gates, qubit and Depth, This Work Based on
Qiskit Simulation Result. Note that, BAN* (FLT algorithm by Banegas et al. with
multiplier changed to ours) while LAR* (FLT algorithm by ours, multiplier schoolbook
and result rerun with transpile method).

n
Toffoli Count CNOT Count Qubit Count Overall Depth

Ours LAR* BAN* Ours LAR* BAN* Ours LAR* BAN* Ours LAR* BAN*
8 108 256 108 1012 268 1064 57 89 41 13 13 12
16 486 1536 486 6534 750 6792 161 257 113 24 24 23
127 24013 177419 24013 663541 8920 668272 2287 3684 1525 143 143 142
163 39195 239121 39195 946681 48499 984652 2772 4339 1631 178 178 270
233 63070 542890 63070 2010283 47303 2034266 4195 6525 2564 249 249 270
283 112651 880979 112651 3343751 143444 3473260 5661 8774 3397 301 301 528
571 404807 4238533 404807 15138845 341985 15445474 9408 20557 7995 592 592 1042

ECDLP. The bigger the circuit, the more significant depth savings are possible. It is
very beneficial since lowering the overall depth, not only the T-depth, is very important
to reduce computational time in a quantum computer. In addition, considering that
maintaining long decoherence has still been a crucial issue, whereas expanding qubit size
has seen significant advancement in the past years, it will be advantageous to reduce the
depth and gate count of an inverse operation. Note that in both the prior work (FLT
inversion by Banegas et al.) and our method, the uncomputation of ancilla registers is to
be done. As a result, both the ancilla qubits/registers and the depth will be emptied at
the conclusion. In our instance, the cost of saving on depth is likely to be more prominent
as described in Table 5.

In particular, both the earlier work (FLT inversion by Banegas et al.) and our
technique should be used to uncomputation ancilla registers. As a result, the ancilla
qubits/registers will be cleared at the conclusion, but the depth will be doubled. In our
instance, the cost of saving on depth is likely to be more significant. Inversion is a generic
arithmetic operation that may be employed repeatedly in a calculation, such as in the well-
known Shor’s algorithm, notably in its variation for the ECDLP. The bigger the circuit,
the more significant depth savings are possible.

5.2.3 Result of Binary ECC Point Addition with Improved Multipliers and Inversions

Now that we have obtained the resource count for our improved Karatsuba multiplications
and FLT-based inversions, we can estimate the cost of a point addition in the binary case
via numerical calculation. To do this, we refer to the point addition steps described in
Algorithm 3 of [BBvHL21] and evaluate the exact same metrics. The result of a single
point addition is as presented in Table 6. In summary, our approach yields significantly
lower depth compared to Banegas et al., [BBvHL21]. For instance, for the highest degree
(i.e., n = 571), our depth is below a hundred thousand, whereas the previous work is
already above ten million. Furthermore, it is worth noting that our implementation also
significantly reduces the total number of Toffoli gates, up to tenfold for the highest degree.
Nevertheless, as stated in [BBvHL21] that their Toffoli gate count is based on their utiliza-
tion of GCD-based rather than their FLT-based inversion due to the lower qubit size in
their GCD. Additionally, note that our approach comes with a tradeoff of higher qubit size
and CNOT gates. Similarly to [BBvHL21], we then analyze our result of point addition
with a windowing approach, with the evaluation as shown in Table 7. With windowing,
the depth is minimized even further. Take the highest degree for example; the previously
one billion Toffolis required in a standard point addition, with windowing, it can be re-
duced to around 125 million (In [BBvHL21], windowing technique reduces their Toffoli
gates from ten billion to approximately one million). Due to our advantages in terms

18 Another Concrete Quantum Cryptanalysis of Binary Elliptic Curves

Table 6: Comparison of Resource Analysis of Single Step Point Addition with
Previous Work. In both Toffoli and CNOT gates, qubit and Depth, This Work Based
on Qiskit Simulation Result. Note that, BAN (Point Addition algorithm by Banegas et
al. [BBvHL21]).

n
Ours

qubits
BAN
qubits Toffoli

Ours
CNOT depth Toffoli

BAN
CNOT depth

Ours
Toffoli

BAN
Toffoli

8 74 68 348 2,734 210 7,360 3,522 8,562 6,264 132,480
16 194 125 1,344 15,924 623 21,016 11,686 25,205 45,696 714,544
127 2,320 904 52,773 1,352,497 7,010 559,141 497,957 776,234 13,509,888 143,140,096
163 2,805 1,157 96,299 2,137,063 14,632 893,585 827,623 1,262,280 31,586,072 293,095,880
233 4,228 1,647 152,067 4,480,745 46,702 1,669,299 1,615,287 2,406,230 71,167,356 781,231,932
283 5,694 1,998 267,115 7,376,571 34,792 2,427,369 2,359,187 3,503,964 151,721,320 1,378,745,592
571 13,167 4,015 935,883 32,888,178 93,142 8,987,401 9,081,061 13,238,554 1,070,650,152 10,281,586,744

of depth (and Toffoli count as well), our approach can be an option for a reduced-depth
implementation that gives a significant advantage.

Table 7: Our TOF estimates for various field sizes using 2(2l − 1) TOF gates per lookup.
l is optimized for this. Field polynomials from Tabel 1.

n l Toffoli gate Lookups Total Toffoli gates pre-computed points
8 7 1,387 24 6,991 512
16 8 8,046 36 24,072 1,536
127 13 1,107,478 120 3,005,062 163,840
163 13 2,598,650 156 4,985,290 212,992
233 14 5,320,116 204 11,767,647 557,056
283 14 11,214,906 252 19,094,269 688,128
571 16 68,306,437 432 124,928,677 4,718,592

For a complete Shor’s algorithm, the complexity is described as follows. As described
in [BBvHL21], the required number of point additions (i.e., to perform a complete double
scalar multiplications, is 2n + 2, in which each step comprising two divisions, four (in-
cluding the two in the division), and three controlled additions. By this requirement, the
approximate number of Toffoli gates for our approach is

4n3 + 3n log((3) + 1) + 25n2 log(n) + 2n2 + O(nlog((3)+1))

In terms of qubit, the approximate number of qubit required by utilizing our proposed
Karatsuba and FLT-based inversion as the subcircuits is

4n + 7n log(n) + 7

Regarding depth, we perform extrapolation from our result in Table 6, which approximates
to

7n + 6n log2 (3)

Dedy Septono Catur Putranto, Rini Wisnu Wardhani, Harashta Tatimma Larasati and
Howon Kim 19

6 Conclusions
In this paper, we present a quantum cryptanalysis for binary elliptic curve. Different from
previous work by Banegas et al., [BBvHL21] that focus on optimizing the number of qubits,
our aim here is to reduce the overall depth of the circuit to obtain the resource estimates
from a time-efficient implementation perspective. To achieve a reduced depth, we propose
a new, lower-depth implementation variant of Karatsuba multiplication and FLT-based
inversion, then build and analyze the resource cost in Qiskit. In summary, our Karatsuba
multiplication achieves lower the CNOT count than the previous work [VH19], in which
ours bounds to O(nlog2(3)) while preserving the similar number of Toffoli gates and qubits,
and results in a lower circuit depth. Furthermore, we then employ our proposed multiplier
to the FLT-based inversion of [LPWK22], obtaining lower CNOT count and lower overall
depth, with a larger qubit size tradeoff. Finally, we incorporate our result for quantum
cryptanalysis of binary elliptic curve, yielding a depth estimate of 7n + 6n log2 (3), qubit
count of 4n+7n log(n)+7, and Toffoli count of 4n3 +3n log((3)+1)+25n2 log(n)+2n2 +
O(nlog((3)+1)). The result also shows that our lower depth implementation also reduce the
number of Toffoli gates, with the tradeoff of higher number of qubits and CNOT gates. In
the future, we plan to investigate on the optimal time-space tradeoff to achieve a balanced
implementation.

7 Appendix
These algorithms are exactly from [VH19], used as a subcircuit of our Karatsuba multi-
plication.

20 Another Concrete Quantum Cryptanalysis of Binary Elliptic Curves

Dedy Septono Catur Putranto, Rini Wisnu Wardhani, Harashta Tatimma Larasati and
Howon Kim 21

References
[APWK22] Asep Muhamad Awaludin, Jonguk Park, Rini Wisnu Wardhani, and Howon

Kim. A high-performance ecc processor over curve448 based on a novel
variant of the karatsuba formula for asymmetric digit multiplier. Cryptology
ePrint Archive, Report 2022/371, 2022. https://ia.cr/2022/371.

[BBvHL21] Gustavo Banegas, Daniel J Bernstein, Iggy van Hoof, and Tanja Lange. Con-
crete quantum cryptanalysis of binary elliptic curves. IACR Transactions
on Cryptographic Hardware and Embedded Systems, pages 451–472, 2021.

[Ber06] Daniel J Bernstein. Curve25519: new diffie-hellman speed records. In In-
ternational Workshop on Public Key Cryptography, pages 207–228. Springer,
2006.

[CDKM04] Steven A Cuccaro, Thomas G Draper, Samuel A Kutin, and David Petrie
Moulton. A new quantum ripple-carry addition circuit. arXiv preprint quant-
ph/0410184, 2004.

[CFA+05] Henri Cohen, Gerhard Frey, Roberto Avanzi, Christophe Doche, Tanja
Lange, Kim Nguyen, and Frederik Vercauteren. Handbook of elliptic and
hyperelliptic curve cryptography. CRC press, 2005.

[CMRR19] Lily Chen, Dustin Moody, Andrew Regenscheid, and Karen Randall. Rec-
ommendations for discrete logarithm-based cryptography: Elliptic curve do-
main parameters. Technical report, National Institute of Standards and
Technology, 2019.

[Gid19] Craig Gidney. Asymptotically efficient quantum karatsuba multiplication.
arXiv preprint arXiv:1904.07356, 2019.

[Ham15] Mike Hamburg. Ed448-goldilocks, a new elliptic curve. IACR Cryptol. ePrint
Arch., 2015:625, 2015.

[HJN+20] Thomas Häner, Samuel Jaques, Michael Naehrig, Martin Roetteler, and
Mathias Soeken. Improved quantum circuits for elliptic curve discrete loga-
rithms. In International Conference on Post-Quantum Cryptography, pages
425–444. Springer, 2020.

[IT88] Toshiya Itoh and Shigeo Tsujii. A fast algorithm for computing multiplica-
tive inverses in gf (2m) using normal bases. Information and computation,
78(3):171–177, 1988.

[KG13] Cameron F Kerry and Patrick D Gallagher. Digital signature standard (dss).
FIPS PUB, pages 186–4, 2013.

[KMV00] Neal Koblitz, Alfred Menezes, and Scott Vanstone. The state of elliptic
curve cryptography. Designs, codes and cryptography, 19(2):173–193, 2000.

[KO62] Anatolii Alekseevich Karatsuba and Yu P Ofman. Multiplication of many-
digital numbers by automatic computers. In Doklady Akademii Nauk, vol-
ume 145, pages 293–294. Russian Academy of Sciences, 1962.

[KS15] Shane Kepley and Rainer Steinwandt. Quantum circuits for
f2n−multiplication with subquadratic gate count. Quantum Informa-
tion Processing, 14(7):2373–2386, 2015.

https://ia.cr/2022/371

22 Another Concrete Quantum Cryptanalysis of Binary Elliptic Curves

[LHT16] Adam Langley, Mike Hamburg, and Sean Turner. Rfc 7748: Elliptic curves
for security. Internet Research Task Force (IRTF), 2016.

[LK21] Harashta Tatimma Larasati and Howon Kim. Quantum cryptanalysis land-
scape of shors algorithm for elliptic curve discrete logarithm problem. In
International Conference on Information Security Applications, pages 91–
104. Springer, 2021.

[LPWK22] Harashta Tatimma Larasati, Dedy Septono Catur Putranto, Rini Wisnu
Wardhani, and Howon Kim. Reducing the depth of quantum flt-based inver-
sion circuit. Cryptology ePrint Archive, 2022. https://ia.cr/2022/463.

[MMCP09] Dmitri Maslov, Jimson Mathew, Donny Cheung, and Dhiraj K Pradhan. An
o (m2)-depth quantum algorithm for the elliptic curve discrete logarithm
problem over gf (2m) a. Quantum Information & Computation, 9(7):610–
621, 2009.

[PRM17] Alex Parent, Martin Roetteler, and Michele Mosca. Improved reversible and
quantum circuits for karatsuba-based integer multiplication. arXiv preprint
arXiv:1706.03419, 2017.

[PZ03] John Proos and Christof Zalka. Shor’s discrete logarithm quantum algorithm
for elliptic curves. arXiv preprint quant-ph/0301141, 2003.

[Res18] E. Rescorla. The transport layer security (tls) protocol version 1.3. RFC
8446, RFC Editor, August 2018.

[RNSL17] Martin Roetteler, Michael Naehrig, Krysta M Svore, and Kristin Lauter.
Quantum resource estimates for computing elliptic curve discrete logarithms.
In International Conference on the Theory and Application of Cryptology
and Information Security, pages 241–270. Springer, 2017.

[Roc09] Daniel S Roche. Space-and time-efficient polynomial multiplication. In Pro-
ceedings of the 2009 international symposium on Symbolic and algebraic com-
putation, pages 295–302, 2009.

[Sho94] Peter W Shor. Algorithms for quantum computation: discrete logarithms
and factoring. In Proceedings 35th annual symposium on foundations of
computer science, pages 124–134. Ieee, 1994.

[Sho99] Peter W Shor. Polynomial-time algorithms for prime factorization and dis-
crete logarithms on a quantum computer. SIAM review, 41(2):303–332, 1999.

[Tak09] Yasuhiro Takahashi. Quantum arithmetic circuits: a survey. IEICE Transac-
tions on Fundamentals of Electronics, Communications and Computer Sci-
ences, 92(5):1276–1283, 2009.

[TMCK21] Himanshu Thapliyal, Edgard Muñoz-Coreas, and Vladislav Khalus. Quan-
tum circuit designs of carry lookahead adder optimized for t-count t-depth
and qubits. Sustainable Computing: Informatics and Systems, 29:100457,
2021.

[TMCVH19] Himanshu Thapliyal, Edgard Munoz-Coreas, TSS Varun, and Travis Hum-
ble. Quantum circuit designs of integer division optimizing t-count and
t-depth. IEEE Transactions on Emerging Topics in Computing, 2019.

https://ia.cr/2022/463

Dedy Septono Catur Putranto, Rini Wisnu Wardhani, Harashta Tatimma Larasati and
Howon Kim 23

[TVMC16] Himanshu Thapliyal, TSS Varun, and Edgard Munoz-Coreas. Quantum
circuit design of integer division optimizing ancillary qubits and t-count.
arXiv preprint arXiv:1609.01241, 2016.

[VH19] Iggy Van Hoof. Space-efficient quantum multiplication of polynomials for
binary finite fields with sub-quadratic toffoli gate count. arXiv preprint
arXiv:1910.02849, 2019.

[WH11] Erich Wenger and Michael Hutter. Exploring the design space of prime
field vs. binary field ecc-hardware implementations. In Nordic Conference
on Secure IT Systems, pages 256–271. Springer, 2011.

[Yan15] Song Y Yan. Quantum computing for elliptic curve discrete logarithms. In
Quantum Computational Number Theory, pages 173–228. Springer, 2015.

	Introduction
	Why Another Quantum Cryptanalysis on ECC?
	Contributions
	Organization of the Paper

	Preliminaries
	Finite Field Arithmetic
	Elliptic Curve Discrete Logarithm Problem
	Shor's Algorithm
	Theoretical Background
	Quantum Arithmetic Operations

	Karatsuba Multiplication
	Related Work on Space-efficient Karatsuba Multiplication
	Proposed Improvement on Space-efficient Karatsuba Multiplication

	FLT-based Inversion
	Related Work on FLT-based Inversion
	Proposed Improvement on FLT-based Inversion

	Evaluation
	Evaluation Method & Setup
	Evaluation Result

	Conclusions
	Appendix

