
Riding the Waves Towards Generic Single-Cycle
Masking in Hardware

Rishub Nagpal1,2, Barbara Gigerl2, Robert Primas2 and Stefan Mangard1,2

1 Lamarr Security Research GmbH, Graz, Austria, firstname.lastname@lamarr.at
2 Institute for Applied Information Processing and Communication (IAIK), Graz University of

Technology, Austria, firstname.lastname@iaik.tugraz.at

Abstract. Research on the design of masked cryptographic hardware circuits in the
past has mostly focused on reducing area and randomness requirements. However,
many embedded devices like smart cards and IoT nodes also need to meet certain
performance criteria, which is why the latency of masked hardware circuits also
represents an important metric for many practical applications.
The root cause of latency in masked hardware circuits is the need for additional reg-
ister stages that synchronize the propagation of shares. Otherwise, glitches would vi-
olate the basic assumptions of the used masking scheme. This issue can be addressed
to some extent, e.g., by using lightweight cryptographic algorithms with low-degree
S-boxes, however, many applications still require the usage of schemes with higher-
degree S-boxes like AES. Several recent works have already proposed solutions that
help reduce this latency yet they either come with noticeably increased area/ran-
domness requirements, limitations on masking orders, or specific assumptions on the
general architecture of the crypto core.
In this work, we introduce a generic and efficient method for designing single-cycle
glitch-resistant (higher-order) masked hardware of cryptographic S-boxes. We refer
to this technique as (generic) Self-Synchronized Masking (“SESYM”). The main
idea of our approach is to replace register stages with a partial dual-rail encoding
of masked signals that ensures synchronization within the circuit. More concretely,
we show that WDDL gates and Muller C-elements can be used in combination with
standard masking schemes to design single-cycle S-box circuits that, especially in
case of higher-degree S-boxes, have noticeably lower requirements in terms of area
and online randomness. We apply our method to DOM-based S-boxes of Ascon and
AES and compare the resulting circuits to existing latency optimized circuits based
on TI, GLM, and LMDPL. The latency of all three designs is reduced to single-cycle
operation and are dth-order secure. Compared to GLM-masked Ascon, our approach
comes with a 6.4 times reduction in online randomness for all protection orders.
Compared to 1st-order LMDPL-masked AES, our approach achieves comparable
results, while it is more generic, amongst others, by also supporting higher-order
designs. We also underline the practical protection of our constructions against
power analysis attacks via empirical and formal verification approaches.
Keywords: Masking · Low-Latency · Dual-Rail Logic, · AES, · Ascon

1 Introduction
Cryptographic devices like smart cards are exposed to active or passive implementation at-
tacks that manipulate or observe the physical properties of the device in order to learn sen-
sitive information like cryptographic keys. Among the class of passive attacks, techniques
like differential power analysis [KJJ99] or electromagnetic emanation analysis [QS01] are
the most critical threats to physically accessible cryptographic devices. One commonly
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used algorithmic countermeasure to protect a cryptographic implementation against these
kinds of attacks is the usage of masking, a secret-sharing technique that splits a crypto-
graphic computation into multiple shares such that the observation of an incomplete set of
shares does not reveal any information about the underlying value. A lot of research over
the last years has focused on reducing the overhead of masked hardware circuits either by
making the masking itself more area efficient or by reducing the amount of required online
randomness [Bil+13; GMK16; Sug19; Dae+20]. However, besides the additional costs in
terms of area and randomness, masking also results in a noticeable increase of latency as
additional register stages are usually needed to ensure synchronization of shares within a
masked hardware circuit. Otherwise, combinatorial glitching of the shares could violate
basic assumptions of the masking scheme. This increased latency is especially worrisome
for IoT devices that are physically accessible by potential attackers. One way to address
the latency problem is to use lightweight cryptographic schemes that utilize low-degree
S-boxes, and thus keep the requirement for additional register stages rather low. However,
even if such cryptographic schemes are being used, certain latency critical application
like external memory encryption will still be noticeably affected. On top of that, many
practical applications require the usage of cryptographic schemes like AES that feature
high-degree S-boxes. As a result, the search for efficient and low-latency masked S-box
circuits has gained increased attention from the research community in the recent years.

Related Work. Low-latency masking was first explored by Moradi et. al in [MS16],
where the authors considered asynchronous design methodologies to reduce the latency
of first-order threshold implementations. The first generic approach for designing low-
latency (higher-order) masked S-box circuits was presented with GLM by Gross et. al
in 2018 [GIB18]. The main idea behind GLM is to skip the share compression step af-
ter each nonlinear operation which eliminates the need for register stages at the cost of
an increased share count, especially in case of higher-degree S-boxes. Later, Sasdrich et.
al [Sas+20] applied the LUT-based masked dual-rail logic (LMDPL) technique introduced
by Leiserson et. al [LMW14] to low-latency masking. While this technique can consid-
erably outperform GLM in certain scenarios, it can only offer first-order security and
comes with concrete requirements on the architecture of the crypto core, such as explicit
precharge cycles [Sas+20]. Most recently, Arribas et. al presented a low-latency masking
technique based on threshold implementations called LLTI, that has somewhat compara-
ble area requirements to GLM but can eliminate the need of online randomness [AZN21].
Current approaches lead to unfavorable design trade-offs in terms area, latency, random-
ness requirement and design complexity. In particular, the circuit designer loses flexibility
when having to reconcile with non-ideal register placements or delay incurred by explicit
precharging cycles.

Comparison with [MS16]. Moradi et. al utilized asynchronous circuits to realize low-
latency first-order TI implementations of Prince and Midori. They built their designs
using WDDL (and extensions AWDDL, DPLnoEE) with precharging/evaluation cycles
toggled through a completion detector circuit. Indeed, there is an overlap between their
work and our proposal in the underlying concept. To clearly distinguish SESYM from the
prior work, we highlight several key differences. Firstly, we generalize the idea of applying
asynchronous design to mask circuits of arbitrary protection order. SESYM is generic
in the sense that it need not be tied to any specific masking scheme. Furthermore, we
highlight that the entire datapath of a circuit does not need to be expressed in dual-rail
logic; only select security critical components, such as S-boxes. In their study, Moradi et.
al found that their asynchronous 1st-order TI Prince implementation was not competitive
in terms of latency and area when compared to its synchronous counterpart. However, in
Section 4, we show that asynchronous designs are competitive, when compared to other
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low-latency masking techniques and d-order security, which were not available at the time
of publication of [MS16]. Finally, SESYM overcomes the design difficulties and detectable
leakage issues described in the earlier work by using formally verified secure gadgets.

Our Contributions. In this paper, we address the need for practical, flexible and fast
masking in hardware by presenting a generic method for designing (higher-order) masked
cryptographic S-box circuits that can be computed securely within a single clock cycle.
More concretely we provide the following contributions:

• We present Self-Synchronized Masking - a generalization of previous work on low-
latency masking with WDDL to achieve single cycle masked hardware applicable to
any circuit. We combine WDDL gates and Muller C-elements to achieve synchro-
nization of signals which would ordinarily require dedicated register stages. Our
method is easy to apply on top of existing masking schemes to reduce latency, and
can be extended to higher masking orders.

• We apply our method to DOM-based S-box designs of Ascon and AES, as well as
AES-128. The resulting circuits are then compared to existing latency-optimized
circuits based on TI, GLM, and LMDPL. We design single-cycle dth-order masked
implementations of the Ascon permutation, and 1st and 2nd-order masked variants
of AES. The 1st-order masked Ascon permutation has a similar area consumption
compared to GLM, but comes with a 6.4 times reduction in online randomness. Our
1st-order AES S-box implementation is comparable to the 1st-order LMDPL AES
S-box in terms of area and randomness, however, our approach is more generic since
it also supports other (higher-order) masking schemes while it does not require an
explicit precharge cycle in the crypto core. Our 1st-order masked AES-128 is 40%
smaller than its LMDPL counterpart with comparable throughput. To the best of
our knowledge, our 2nd-order AES-S-box and AES-128 implementations are the first
which can be computed securely in single-cycle and remain practical in both area
and randomness requirements.

• We underline practical protection of our constructions, both via test vector leakage
assessment and formal verification. In case of formal verification, we explain how
an existing formal verification approach for masked synchronized circuits can be
adapted to the case where register stages are replaced by self-synchronizing logic
and perform a 1st/2nd-order verification that considers effects like glitches and tran-
sitions.

Outline. In Section 2, we cover the necessary background for this paper. In Section 3, we
discuss the implementation of our scheme using the Keccak χ S-box as an example. In
Section 4 we present our Ascon and AES masked implementations. Finally, in Section 5
we experimentally and formally verify our scheme holds in practice using test vector
leakage assessment methodologies.

2 Preliminaries
In this section, we review the state-of-the-art concepts required to secure a hardware
implementation against side-channel analysis. Additionally, we discuss the primitives
and techniques from asynchronous circuit design methodologies we use throughout our
implementations.
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2.1 Boolean Masking
Masking is a commonly used algorithmic countermeasure against implementation attacks
like Differential Power Analysis [KJJ99] that splits intermediate values of a cryptographic
computation into d + 1 uniformly random shares, such that the observation of up to d
shares does not leak any information about the underlying value. In classical Boolean
masking, the sharing of a native variable s, when split into d + 1 random shares s0 . . . sd,
must satisfy s = s0 ⊕· · ·⊕sd where s0 . . . sd−1 are chosen uniformly at random while sd =
s0 ⊕· · ·⊕sd−1 ⊕s. This ensures that each share si is uniformly distributed and statistically
independent of s. When implementing masked cryptographic algorithms, dealing with
linear functions is trivial as they can simply be computed on each share individually.
However, implementing masking for non-linear functions requires computations on all
shares of a native value, which is more challenging to implement in a secure and correct
manner, and thus the main interest in literature [ISW03; GMK16; GC17; Bel+17].

The security of a masked circuit is usually analyzed in a theoretical probing model
that defines what kind of physical properties a passive attacker can observe. Here, the
defacto standard model by Ishai et. al, often also called classical probing model, says
that a masked circuit is dth-order secure, if an attacker with the ability to place probes
on up to d wires or gate of a circuit (to continuously record the signal transitions over
time) is not able to combine the recorded information to reveal any native (unshared)
values [ISW03]. This also includes unwanted hardware side-effects, like glitches, that may
arise due to different signal delays within combinatorial logic blocks or wire lengths, and
are frequently shown to be exploitable if not taken into consideration already during the
design phase of masked hardware circuits [MPG05; GMK16; GC17; GIB18; Gig+21].

In the past, many different masking schemes have been proposed to simplify the han-
dling of nonlinear operations within cryptographic S-boxes. Even though our presented
approach for achieving low-latency masked hardware implementation is not tied to a
specific masking scheme, we will primarily build upon the ideas of the domain-oriented
masking (DOM) scheme [GMK16].

2.2 Domain-Oriented Masking
Domain-oriented masking (DOM) [GMK16] is a Boolean masking technique which achieves
dth-order security by splitting a security-critical circuit into d+1 independent shares. Each
subcircuit is associated with a single Boolean share of each variable, referred to as a do-
main. Linear operations can be trivially masked with DOM; each operation is simply
duplicated across domains. However, for non-linear operations, cross-domain communi-
cation is required, which can potentially leak information [GMK16]. We briefly review
the non-linear calculation of the finite field multiplication of a · b as a motivating example
for the main idea of this work. Suppose a and b are split across d + 1 shares, the DOM
multiplier computes the product of a and b, given in Equation 1 [GMK16]. Figure 1 shows
a first-order protected variant (d = 1) with respect to the d-probing model. Note, a and
b must be independent in order for this construction to be secure.

qi = aibi ⊕
d∑

j>i

(aibj ⊕ r(i+j(j−1)/2)) ⊕
d∑

j<i

(aibj ⊕ rj+i(i−1)/2) (1)

The multiplier circuit is illustrated as a three-step process. In the calculation step,
the inner-domain products are computed across the shares of a and b. Note that the
terms a0 · b0 and a1 · b1 do not violate domain-separation rules. In the resharing step, the
cross-domain products a0 · b1 and a1 · b0 are “masked” by the XOR with the random bit
r, followed by a register. Finally, the compression step reduces the (d + 1)2 intermediate
terms to d+1 shares of the output variable, q. The re-sharing register is crucial to prevent
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Figure 1: 1st-order protected 1-bit DOM Multiplier

glitches that propagate the unmasked values of a and b to the share compression stage.
More complex calculations require more re-sharing registers, having an adverse effect on
latency.

2.3 Low-Latency Masking
At ASIACRYPT2016, Moradi et. al investigated asynchronous design methodologies to
reduce the latency overhead incurred by masking. Specifically, they compared various
asynchronous circuit designs to reduce the cycle latency of first-order threshold imple-
mentations (TI) of Prince and Midori. They concluded that asynchronous TI designs
provided little to no advantage over their synchronous counterparts in terms of both area
and latency.

In 2018, Gross et. al introduced a generalized concept to protect latency constrained
applications against side-channel analysis by means of Boolean masking [GIB18]. The
approach works by skipping the compression step and omitting the re-sharing registers
altogether at the price of increased share count. Additionally, the input and linear cir-
cuitry is duplicated to avoid variable collisions which would otherwise violate the share
independence assumption. This approach for latency reduction however does not come for
free as it introduces a significant amount of additional circuitry. For example, a first-order
masked Ascon implementation without additional latency requires about 5× the area of
an unprotected variant while second-order protection increases the area by 10× [GIB18].
Besides that, the requirement of online randomness is also noticeably increased. For
higher degree S-boxes such as AES, the area and online randomness requirements become
impractical.

In 2020, Sasdrich et. al introduced generalized low-latency masking using LMDPL
gates [Sas+20] and presented a masked AES implementation which computes a full round
in one cycle. While the obtained results make this implementation significantly more
practical in terms of both area and randomness requirement than the one presented by
[GIB18], the LMDPL primitives are somewhat complicated to implement and the LMDPL
gadgets are only proven to be first-order secure. Moreover, the entire circuit must be
implemented in dual-rail logic and an explicit precharging cycle is necessary prior to
evaluation.

Most recently, Arribas et. al presented a low-latency masking technique based on
threshold implementations called LLTI [AZN21] and implemented their technique on
Prince and AES. Compared to the implementation by [Sas+20] the area is worse, how-
ever, their construction does not require any online randomness.

2.4 Asynchronous Building Blocks
Following the seminal work on differential power analysis by [KJJ99], various counter-
measures were proposed which hoped to mitigate this new class of attacks. For example,
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power-hiding countermeasures based on dual-rail with precharging logic (DPL), a central
technique from both asynchronous and high-speed circuit design, were developed. DPL
uses two wires to transmit a bit: one wire for the bit itself (“true” wire) and the second
for the complimentary bit (“false” wire). For a given bit, only one of the two wires is logic
1 and it follows that the same number of bit transitions is exhibited by the circuit for any
input. Thus, the general idea behind power-hiding countermeasures is to ensure a circuit
consumes the same power for any arbitrary input.

Practically, these countermeasures were difficult to implement correctly and relied on
strict physical and timing assumptions. A dual-rail masked circuit must be properly
“balanced” to have adequate security. Namely, unmatched wire delays or large physical
separation between two rails could cause information leakage [ISU18]. Moreover, the
physical circuit area and power consumption increased dramatically due to the duplica-
tion of logic cells and the return-to-zero (RTZ) requirement of dual-rail logic. Dual-rail
countermeasures eventually fell out of favor for more generic techniques based on Boolean
masking such as threshold implementations (TI) and d + 1 masking.

Although dual-rail logic was found to be an unsuitable countermeasure on its own, it
can be effective when combined with other masking techniques as shown by [Sas+20]. In
this work, we also revisit dual-rail logic and apply it in conjunction with DOM. More
concretely, we take advantage of the RTZ protocol intrinsic to DPL (referred to as the
“handshaking” property) to synchronize data without need for a clock signal.

Dual-rail Encoding. Asynchronous circuit designs employ dual-rail encoding extensively
for its handshaking property. The two rails encode a four symbol alphabet which can
implicitly indicate to a receiver whether the data on the rails is valid or not via a return-
to-zero protocol. In 4-phase dual-rail encoding, the symbol alphabet is divided into two
sets: NULL, which is analogous to a “space”, and DATA, which contain the data words
“0” or “1”. The sender transmits a NULL spacer between each DATA word. The NULL
spacers allow the receiver to correctly absorb individual DATA words, especially in the case
of consecutive DATA0/DATA1 transmission. This implies timing for the receiver without
the need for a global clock signal. A simple state diagram for 4-phase dual-rail encoding
is given in Figure 2. In asynchronous circuit design, this powerful property enables the
construction of (quasi-)delay insensitive circuits: clock-less circuits which make (almost)
no assumptions on wire or gate delays.

The RTZ protocol also implies that dual-rail encoding can be used to create monotonic
logic gates. The general idea is, when starting from the NULL state, the computation of
a DATA0 or DATA1 causes the same number of bit transitions i.e., the power consumed
for any input is the same. To ensure all dual-rail buses and gates start from the NULL
state, the circuit must be “precharged”. During precharging, all dual-rail wires are forced
to the NULL state (zeroed). After precharging, the circuit is ready to compute and enters
the “evaluation” phase. During evaluation, the circuit is refreshed with the next DATA
state on the input wires. Precharging and evaluation typically requires two clock cycles
- one for each phase. Some proposed dual-rail logic styles, like WDDL, precharge during
the first half of the clock period (clock = 1) and evaluate during the second half (clock =
0).

We emphasize that our proposed masking scheme primarily relies on the handshaking
property of dual-rail encoding, and focus on guaranteeing handshakes without the need
for a dedicated precharging cycle.

WDDL Logic. “Wave Dynamic Differential Logic” (WDDL) [TV04] is a DPL style ini-
tially developed for creating constant power circuits. WDDL follows a 4-phase dual-rail
encoding where {(0, 1), (1, 0)} are valid codewords representing logic “0” and logic “1”
respectively, and {(0, 0)} is the NULL spacer (c.f. Figure 2). The {(1, 1)} codeword is
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DATA1
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Figure 2: 4-Phase Dual-Rail Code Words
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Figure 3: Implementation of WDDL logic gates and symbology

considered invalid in WDDL. WDDL logic gates are purely combinatorial and simple to
implement with standard cells. Precharging a WDDL gate is equally simple: when all in-
puts to a WDDL gate are NULL, then the output becomes NULL. For compound WDDL
circuits, the NULL spacers are applied to all inputs which propagates as a “precharge
wave” across the circuit. Following the precharge wave, DATA on the inputs can be eval-
uated. Most importantly, when following correct precharge/evaluate procedure, WDDL
gates are positive and monotonic. This implies that circuits composed of WDDL gates
do not glitch: Consider both the AND gate and the OR gate. By definition, neither gate
inverts their inputs i.e., a 0 → 1 (or 1 → 0) transition on the inputs of an AND/OR
gate yields a 0 → 1 (1 → 0) on the output. For different input arrival times, the output
either experiences no change, or a transition event in the same direction as the input
event. These properties extend for compound AND/OR circuits of arbitrary depth. If the
inputs to such a circuit is stable and free of glitches, such as at the output of a register,
then no glitch can occur at any point within the circuit. In the DPL setting, the logic
transitions are strictly controlled; during precharge, only 1 → 0 transitions can occur.
Similarly 0 → 1 transitions only occur during evaluation. We refer the reader to the work
by Tiri et. al for a more concrete proof [TV04].

To conclude, Figure 3 shows the standard-cell implementation of WDDL Logic gates
we used in this work. For FPGA platforms, careful consideration must be made due
to the utilization of lookup tables (LUTs) instead of typical CMOS building blocks to
implement logic functions. On Xilinx platforms, WDDL gates can be implemented with
a single LUT6_2 primitive [MI14]. Our LUT implementations are given in Appendix A.

Muller C-Elements. In synchronous circuit design, the rising edge of the clock signal
indicates that all signals have reached a valid state. This is guaranteed by setting the
clock period to the worst case delay between two registers. During the clock period, signals
exhibit transient behavior due to glitching in combinatorial logic. In clock-less circuits,
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(c) Standard-cell implementation

Figure 4: Muller C-element

it is impossible to distinguish meaningful signal transitions from transient behavior. To
solve this, Muller proposed the “C-Element” [Mul56]: a logic gate which can indicate
whether a given set of signals are synchronized. Muller C-elements are state-holding gates
akin to SR latches. For a given C-element with n inputs, the output is logic 0 when all
inputs are logic 0. Similarly, the output is logic 1 when all inputs are logic 1. For all other
input combinations, the output retains its previous value. The gate level implementation
of C-Elements have been extensively studied by Moreira et. al in [Mor+12; MC13]. The
symbol, truth table and a standard-cell implementation of the fundamental 2-input C-
element are given in Figure 4. We note that the implementation of the C-element is
purely combinatorial and easy to implement with standard CMOS cells. Moreover, some
cell libraries with C-element standard cells are readily available, such as the NCL library
by [FB97] and the ASCEnD-FreePDK45 library by [Oli+16].

The C-element solves the fundamental issue of synchronization in a clock-less setting.
In asynchronous circuit design, it is most often used to implement valid/ready/acknowl-
edge protocols in hardware (called “micropipelines”). In a dual-rail setting, the C-element
can be combined with OR gates to check if every wire-pair has reached the same state.

As we discuss in more detail in the next section, we utilize the C-element with an
inverted input to convert dual-rail logic to single-rail, and take advantage of the state
holding property to preserve the DATA state during precharging.

3 Self-Synchronized Masked Circuits
In this section, we present our approach of combining concepts for signal synchroniza-
tion in typical asynchronous circuits with (synchronous) masked hardware circuits that
significantly reduces the latency of the resulting (synchronous) circuit. We refer to this
technique as Self-Synchronized Masking, or SESYM. More concretely, we show how a par-
tial dual-rail encoding of masked signals within masked non-linear components (S-boxes)
can be used to eliminate the need of additional register stages as a synchronization mea-
sure. Indeed, our approach enables arbitrary masked circuits to compute in a single clock
cycle. In contrast to previous works that study the ordinary usage of dual-rail logic alone
as a countermeasure to power analysis attacks, our resulting circuits do not have special
requirements on the physical layout. To allow for a more apples to apples comparison
with prior work, we will apply our approach to hardware circuits using domain-oriented
masking (DOM) [GIB18] as a basis, but reiterate that these techniques can be applied to
any masking scheme.

3.1 General Concept
As described in Section 2, combinatorial glitching can leak information on secret data.
Glitching itself is caused by data races from non-ideal wire and gate delays. Without
making any assumptions on physical layout or wire/gate timing, preventing glitches is
very difficult. In generic d + 1 masking, such as DOM, a register stage must be placed
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Figure 5: SESYM-masked χ S-box.

prior to share compression to prevent glitches from potentially leaking the combination
of secret shares. The register stage increases the cycle latency of the circuit and its
placement in the middle of the non-linear gadget leads a designer to devise awkward
pipelining to satisfy security requirements, rather than to maximize performance with
equal-length pipeline stages. This problem is exacerbated for higher-degree S-boxes with
deeper non-linear logic depth such as the one used in AES. Indeed, in [GIB18], the authors
identified the requirement of registers in the resharing and compression steps as a primary
cause for latency in DOM which led to them to propose Generic Low-latency Masking
(GLM). In GLM, the resharing register and share compression steps are skipped altogether.
Although GLM allows for the same cycle latency for an equivalent unmasked circuit, it
does not scale well. The number of shares after a non-linear calculation increases by
(d + 1) times. Furthermore, the online randomness requirement is increased significantly
to securely compress (d + 1)n shares back to (d + 1) for the next cipher round. For higher
protection orders or higher-degree S-boxes, GLM is completely impractical.

The general idea stems from the observation that the only purpose of registers within
a masked non-linear circuit is to prevent glitches from propagating to the share compres-
sion stage. We can safely remove these registers if we can guarantee glitch-free share
compression through other means. This then leads to one complete combinatorial circuit
and frees the designer to focus pipelining efforts on optimizing performance.

In the next section, we provide an overview of our implementation goals and present a
SESYM-masked variant of the Keccak χ-S-box [Ber+13] as a motivating example. We
further discuss implementation details of each SESYM component in a top-down manner.

3.2 Implementation
Figure 5a depicts the full SESYM-masked Keccak χ S-box configured to compute one
S-box per cycle. The goal of this circuit is to ensure a continuous, glitch-free handshake
from the generation of the dual-rail signals to the end of the S-box computation. We
achieve this by adding a single-to-dual-rail converter, a precharger circuit, a completion
detector which generates feedback and an array of C-elements as state-holding elements.
The state register is configured to act as a single-to-dual-rail converter. The precharger
is a combinatorial circuit that passes through data from the converter registers when
the precharge control signal is low, otherwise it generates the NULL codeword (zeroes
both outputs). The χ S-box is composed of SESYM secure circuits (“gadgets”) which
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themselves are composed of WDDL logic gates. On the output of the S-box, a completion
detector checks whether the S-box has finished computing by testing the dual-rail encoded
state of the output wires. If the state is DATA, then the precharge signal is generated.
At the same time, the output is forwarded to the state-holding C-elements. The inverted
input converts the dual-rail bus back to a single wire. Recall that the C-element’s output
only switches when both inputs are equal. When the precharge wave propagates to the
output, the C-element will preserve the previous value of the wires because it will observe
unequal inputs. The C-elements provide the final output which can be forward to outside
circuitry or be used in the next calculation. The precharger ensures that the entire circuit
is reset to the starting state for the next clock cycle. The combination of the precharger
and completion detector circuits enable our design to precharge in a completely self-timed
manner i.e., without a clock signal. Figure 5b illustrates an example input to the circuit.
Suppose the input 0x1A arrives at the input of the Single-to-Dual-Rail converter (A). At
the rising edge of the clock, the data is latched and converted to dual-rail (B). At the same
time, the PRE signal is driven low to indicate that the circuit is in the evaluation phase.
The data on the dual-rail bus passes through the precharger and into the S-box circuit
(C). The output of the S-box is held at 0x00 (NULL) until the computation is completed
and transitions to 0x08/0x17 (D). The C-element latches the output of the S-box and
converts it back to single rail and forwards the result to the output (E). At the same time,
the completion detector drivers the PRE signal high to precharge the S-box circuit. Note,
the PRE signal is driven from a flip-flop which is asynchronously set by the completion
detector to ensure only a single precharge/evaluation cycle occurs in one clock period. In
the next paragraphs, we describe the implementation of each component in detail.

Single-to-Dual-rail Conversion. The single-to-dual-rail component acts as the starting
point for our handshake and must be designed with care. To generate the dual-rail bus
from a single bit, an inverter must be placed at the origin. However, the delay of the
inverter causes a data race between the two wires. Moreover, a high to low transition on
the converter’s input generates a momentary (1, 1) hazard and invalidates the monotonic
property of WDDL.

To prevent this, both rails must have a register immediately following the inverter
to re-synchronize the wires. For a cryptographic circuit, the placement of this register
can replace the cipher state registers (or any other registers within the datapath). To
further reduce overhead, most standard-cell libraries have a register with both the normal
and inverted outputs. In principle, it is possible to implement a register-less converter.
However, the true and false rails must be delay-matched to compensate for the latency of
the false rail inverter. Such a design is only recommended in special cases where timing
can be tightly controlled. In this work, we focus on the generic method by implementing
the converters with registers.

X

Precharge

2 2 Y

S
D

Q

1

1

Figure 6: Single cycle precharging/evaluation logic. X and Y are dual-rail buses, where
one bit is the “true” wire and the other is the “false” wire.
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Single-cycle Precharging and Evaluation. As stated in Subsection 2.4, the handshaking
property is crucial for the operation of WDDL and security of SESYM gadgets. This
property is only guaranteed when the circuit is precharged. Typically, the precharging
and evaluation phases are controlled by an oscillating control signal. In the simplest case
this signal is the clock, where the gates are precharged when the clock = 1 and compute
when the clock = 0. However, this has a number of disadvantages. Effectively, the clock
period for the evaluation of the entire circuit is halved and the forward circuitry is idle
during the precharging phase. This can have an adverse effect on the critical path and
makes the circuit more susceptible to setup and hold time violations. The clock period
could be increased to compensate at the cost of throughput, which is obviously not ideal.

To avoid these issues and to completely decouple from the clock, some additional
circuitry can be added to dynamically generate the precharge control signal and still
ensure single cycle operation. To achieve this, we place a precharger circuit at the output
of the single-to-dual-rail converter. The precharger is composed of a pair of NOR gates and
a flip-flop with an asynchronous set (Figure 6). The output of the precharger is connected
to the dual-rail input of the χ S-box. At the rising edge of the clock, the flip-flop outputs
a logic 0 and the NOR gates propagate x. The circuit then evaluates and generates a
“precharge” signal once it has completed. The precharge signal triggers the asynchronous
set of the flip-flop, which causes the NOR gates to generate the NULL codeword. The
NULL codeword propagates on all inputs and precharges the WDDL gates, until the next
clock cycle when the flip-flop clears the stored logic 1.

Completion Detector and C-elements. The precharge signal which triggers the flip-flop
is generated from a completion detector circuit at the output of the circuit. The completion
detector is implemented as a product-of-sums circuit which tests if every dual-rail bus
at the output holds DATA. If all buses hold DATA, the precharge signal is generated
and is held high until the NULL wave arrives. In order to preserve the results of the
computation, Muller C-elements with one inverted input are placed at the output. Recall
that C-elements are state-holding gates. In our case, this means that the C-elements
will retain the DATA value of the dual-rail logic, even after all gates are precharged.
Conveniently, the C-elements also act as synchronized dual-to-single-rail converters. The
C-elements additionally allow us to limit the dual-rail circuitry to only the critical non-
linear computations and save on area overhead. One caveat is that the C-element must
react quickly enough before the NULL wave reaches its input. For the standard-cell
implementation, the logical depth of the C-element is much less than the depth of the
SESYM-masked AND gate, so this issue is avoided.

Building Secure Circuits with SESYM. We now shift focus to the implementation of
the 1st-order masked χ S-box. In general, secure circuits can easily be constructed with
SESYM in a systematic manner. Starting from the AND-XOR representation of the S-
box, the first step is to apply domain-oriented masking: create domains by sharing all
input variables and duplicating all linear operations to each domain. Next, all AND gates
are replaced with the DOM equivalent gadget, in this case the 1-bit DOM multiplier.
The naïve implementation of the d-domain DOM AND gate requires d(d+1)

2 bits of online
randomness. From the DOM circuit, SESYM-masking is as simple as replacing all XOR
and DOM AND gates with the respective SESYM-gadgets.

SESYM Gadgets. SESYM linear and non-linear gadgets are derived from WDDL logic
gates (Figure 3). For the linear gadget, the WDDL XOR gate (Figure 3c) is sufficient
because it is glitch-free and can be applied to compute linear operations independently
across shares.
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To construct the non-linear gadget, we applied WDDL logic to the DOM multiplier to
construct the SESYM variant. Figure 7 shows the 1-bit SESYM multiplier (SESYM AND
gate). Structurally, this gate is similar to its DOM with the re-sharing registers removed.
It is safe to remove this register because there is no glitch propagation within the entire
construction. Furthermore, this property ensures there is no risk of two unmasked shared
variables combining during the compression phase of the multiplier. The masked n-bit
multiplier is constructed in the exact same fashion as the corresponding DOM multiplier,
with the omission of the re-sharing registers. Most importantly, SESYM gadgets propagate
the continuous handshake without disruption.

a0 b0 b1 a1

r

q0 q1

22

2 2

2

22

2 2

2
2

2 2
22

2 2

Figure 7: 1st-order SESYM-masked AND gate.

Compositional Security of SESYM Gadgets. Linear operations on shares can introduce
dependencies which could cause leakage when a non-linear operation follows. To fix this
issue, the dependent shares must be reshared with fresh random bits. As SESYM is
generic in the sense that it can be applied on top of any underlying masking scheme, the
techniques used by the masking scheme to solve this issue can be translated directly to a
SESYM analogue. In the case of DOM, a dependent share is XOR’d with a random bit
and registered. This would translate to a WDDL XOR under SESYM. Note, the register
is not required if this WDDL XOR gate is precharged correctly. This particular case is
discussed and verified in Subsection 4.3 and Section 5

Implementation Caveats. We conclude this section with important points to consider
when implementing SESYM-masked circuits. The continuous handshake must be ensured
through all components between the single-to-dual-rail converter and the C-elements. If
the state registers are selected to act as the converters, every operation up to and includ-
ing the S-box must be converted to dual-rail and use WDDL gates. However, after the
C-elements the handshake is completed and the remainder of the circuit can be (masked)
single-rail. We show this in the next section with our SESYM-masked Ascon implemen-
tation.

4 Masked Implementations with SESYM
In this section, we discuss the SESYM-masked implementation of the Ascon and AES
S-boxes. These ciphers were chosen in particular to demonstrate how SESYM scales for
increasing algebraic degree. We provide insights to the design caveats and draw compar-
isons of each implementation to the state-of-the-art. Each of the implementations were
synthesized with Cadence Genus 19.11 for a UMC 65-nm Low-K process with 1.2V supply.
Our area results are reported in Gate Equivalents (GE) normalized for the 2-input NAND
with size of 1.44 µm2
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4.1 SESYM Masked Ascon Permutation
The Ascon permutation is a lightweight SPN-based round transformation used in the
Ascon cipher [Dob+21]. It operates on a 320-bit state that is further divided into five
64-bit lanes. Each permutation round applies three operations: round constant addition,
pC , a 5-bit non-linear substitution across each column of the state, pS , and a linear per-
mutation of each lane, pL. Figure 8 shows our implementation of the full permutation.
The state registers are built from standard-cell flip-flops which include the inverted output
for single-to-dual-rail conversion. Additionally, precharger circuits are required for each
S-box and are triggered individually from the completion detector. The round constant
addition operation is converted to dual-rail to propagate the continuous handshake that
must occur from the dual-rail source to the last non-linear gadget. One possible optimiza-
tion is to place the state registers between the round constant addition and the S-box at
the cost of slightly increased design complexity. We opted not to do this for clarity of
illustration.

Ascon State

Precharger

Round 
Constant

S-Box

Completion 
Detector

C-Elements

Linear 
Layer

Figure 8: Ascon permutation implementation

Masking the S-Box. The Ascon S-box is a 5-bit S-box with an algebraic degree of 2. It
is similar to χ-layer in Keccak, except for two affine transformations at input and output.
The similarity allows us to directly insert the SESYM-masked χ implementation defined
in the previous section into the Ascon S-box. Our implementation is shown in Figure 9.
We omit the completion detector circuitry before the C-elements for readability, but point
out that it is necessary for single-cycle operation and is included in our post-synthesis
results. Another important point is the need for WDDL XOR gates at the input affine
transformation. They are needed to guarantee handshaking from the single-to-dual-rail
converter source. There are only linear computations after the χ-layer and therefore no
risk of glitching causing the unmasked combination of shared secrets, so we can insert the
C-elements directly before the affine output transformation.
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Figure 9: SESYM low-latency S-box
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Results and Comparison. Our post-synthesis results are given in Table 1. Compared
to the area requirements of GLM [GIB18], our approach results in comparable area for
all protection orders. Like GLM, the number of registers grows quadratically with the
protection order. The increase in area for our implementation is due to the addition of
the precharging logic, C-elements, completion detector and WDDL gadgets. The area
cost of the WDDL XOR is particularly expensive since it requires 3 AND and 3 OR
gates. Moreover, the completion detector is relatively expensive compared to the other
components.

On the other hand, our solution holds a number of other advantages over GLM, the
most important of which is the reduction of online randomness requirement by a factor of
6.4. Indeed, SESYM-masking requires the same amount of online randomness as DOM -
d(d+1)

2 bits per SESYM AND gate. Besides that, since our approach is not strictly tied
to a specific masking scheme, a designer might also opt for choosing a different baseline
masking scheme that does not require any online randomness, e.g., following the ideas
of [Dae17] or [Dae+20]. Another caveat of GLM is the rapid expansion of variable shares
after each non-linear gate. In the context of Ascon, the growth from (d + 1) → (d + 1)2

shares is not significant, however as we will show later for AES, the growth for S-boxes
with high algebraic degree makes the GLM approach unsuitable for practical applications.
The reported maximum clock frequencies are not directly comparable due to the different
cell libraries used to generate results.

Table 1: Ascon Permuation Synthesis Results

Protection Order Area
[kGE]

Cycle/round
[cycle]

Randomness
[bits/cycle]

Max Clock Freq.
MHz

This Work
Unprotected 6.38 1 - 890.5

1 50.40 1 320 408.3
2 102.39 1 960 377.1
3 172.05 1 1 920 358.4
4 257.13 1 3 200 334.2
5 357.65 1 4 800 312.9

GLM [GIB18]
1 42.59 1 2 048 260.0
2 90.78 1 4 608 -
3 153.76 1 8 192 -
4 238.15 1 12 800 -
5 339.67 1 18 432 -

4.2 SESYM-masked AES S-box

Masking the AES S-box is a notoriously difficult problem due to its high algebraic degree
that further complicates its use for applications that are latency sensitive. Many imple-
mentations of the AES S-box exist with different optimization targets. We investigated
both the Boyar-Peralta [BP12] and the Canright [Can05] designs.

The SESYM-masked implementation follows the same procedure as the Ascon and
Keccak designs: a DOM implementation is created first and then all AND and XOR
gates are replaced with SESYM counterparts. We placed single-to-dual-rail converters
(dual output registers) and precharging circuits at each input, and C-elements at each
output. A completion detector prior to the C-elements controls the precharge signal.
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Results and Comparison. The post-synthesis results for the 1st and 2nd-order SESYM-
masked AES S-boxes are given in Table 2, as well as a summary of related work on
the low-latency masked AES S-box. Both designs compute in one clock-cycle and include
prechargers, registers for both input and random bits, completion detector and C-elements.
The 1st-order protected BP design takes 3.98 kGE and requires 34 online random bits. The
1st-order Canright design is larger at 7.59 kGE but requires half the online randomness
as the BP version. This is due to the fact that the Canright design is built with only
independent multipliers. In Section 5, we show this construction is secure. For the BP
design, the circuitry around the S-box consumes 16% additional area. For typical hardware
designs, the Canright design ought to be the most area efficient. Interestingly, this is not
the case with our designs. This is due to the difference in the number of WDDL XORs.
In fact, the BP design requires 324 WDDL XORs whereas the Canright design requires
565. The large amount of XORs is due to the linear basis transformations at the input
and output of the S-box. A single WDDL XOR takes 10.36 GEs, constituting a major
component of the total area consumption.

The body of work which report on masked implementations with single-cycle compu-
tation is comparatively small. Compared to the best performing work in this category by
[Sas+20], the full SESYM-BP implementation requires 12.7% more area and 34 instead
of 36 bits of randomness. Compared to GLM, SESYM scales very well both in terms
of randomness requirement and in S-box algebraic degree and lends itself to a practical
design in the single-cycle category. Our main advantage over the work done by [Sas+20] is
the generic approach, flexibility in the baseline masking that allows for various trade-offs,
and out-of-the-box support for higher masking orders. In the second-order protection
category, SESYM is the only implementation with single-cycle computation. The GLM
implementation is able to compute in two cycles, but requires 6.1 times more area and
over 4kb of online randomness. Compared to the DOM implementation, we require twice
the area and randomness, but improve the latency by a factor of 8. Our implementations
could be further optimized to reduce the overall area consumption. Furthermore, SESYM
scales to arbitrary protection order and the impact on area, randomness requirement and
throughput for dth-order protection remain unclear. Like our Ascon implementation, the
online randomness requirement can be further reduced with existing randomness reduction
techniques. We leave these areas open for future work.

4.3 SESYM-masked AES-128

To more easily compare our work with LMDPL, we implemented a 1st and 2nd-order
SESYM-masked AES-128 (encryption only, masked key-schedule). For these designs, we
chose the BP S-box due to the lower area overhead. Our results are given in Table 3.
Compared to LMDPL, our implementation uses roughly 34% less area, but has a lower
maximum frequency (although this is not directly comparable due to different process
technologies). The throughput of both designs is expected to be equal since SESYM does
not require explicit precharging cycles. SESYM does impact the critical path of the circuit;
all WDDL XORs have double the logical depth than their single rail counterparts. The
critical path increases proportionally to the number of XORs in the deepest combinatorial
path.. A designer may choose to add one or two register stages in case the desired clock
frequency of the overall design is otherwise impacted by the AES S-box. A more direct
comparison with LMDPL and SESYM synthesized with the same manufacturing process
remains as future work.
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Table 2: Summary of related results on 1st and 2nd-order protected AES S-Boxes. Our
designs are synthesized for a 100-MHz clock frequency

Implementation Method Area
[kGE]

Latency
[cycles]

Randomness
[bits/cycle]

First-Order Implementations
[Sas+20] LMDPL 3.48 1 36
This work SESYM-BP 3.98 1 34
This work SESYM-Canright 7.59 1 18
[GIB18] GLM 60.73 1 2 048

[LMW14] LMDPL 2.83 2 36
[GIB18] GLM 6.74 2 416
[AZN21] 4-share LLTI 25.78 2 0
[AZN21] 4-share TI 58.41 2 0
[MRB18] Multiplicative Masking 1.69 2+3 19

[GC17] 3-share TI Boyar-Peralta 2.91 3 20
[GC17] 3-share TI Canright 2.84 3 32
[Bil+15] 4-share TI 3.71 3 44
[Bil+15] 3-share TI 2.84 3 32

Second-Order Implementations
This work SESYM-BP 9.34 1 102
This work SESYM-Canright 14.78 1 51
[GIB18] GLM 57.11 2 4 446
[Cnu+16] (d + 1)-share TI 3.66 6 54
[GMK17] DOM 4.50 8 54

5 Side-Channel Evaluation
To further underline the practical protection of SESYM gadgets, we conduct a side-channel
analysis of the Ascon permutation and AES-128 using contemporary Test Vector Leak-
age Assessment (TVLA) methodologies [Goo+11]. For both algorithms, we analyze the
designs under a univariate attack setting. We recorded the first and second-order statis-
tical moments of a 1st-order protected Ascon permutation over 10 million traces. We
then extended our measurements for a 2nd-order protected AES and recorded the first,
second and third statistical moments over 100 million traces. Moreover, we provide a
formal analysis of first and second order SESYM gadgets, targeting the proposed Ascon
and AES S-boxes using the verification tool Coco.

Experiment Setup and Measurements. The main purpose of our SESYM approach is
to construct ASIC designs of masked S-box circuits that can be securely evaluated within
a single clock cycle. For the purpose of an empirical analysis, the fabrication of such ASIC
designs is clearly out of scope. However, in order to show that our approach can indeed
lead to secure implementations in practice, we map our approach to an FPGA design flow
as closely as possible. Several things need to be considered when doing this mapping.

The Ascon and AES implementations were modified such that the precharging and
evaluation of the WDDL gates occur over two clock cycles. This was necessary due to the
difficulty of implementing C-elements on FPGAs as well as the completion detector loop,
which infers a combinatorial loop. On FPGAs, C-elements are typically implemented
within a single LUT with the output wire as feedback, or with a latch. When attempting
both designs, we found that the synthesizer was unable to reconcile either implementation
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Table 3: AES-128, encryption only with protected key-schedule. Note, the clock frequency
numbers are not directly comparable between SESYM and LMDPL due to different pro-
cess technologies.

Protection Order Area
[kGE]

Cycle/round
[cycle]

Randomness
[bits/cycle]

Max Clock Freq.
[MHz]

This Work
1 104.86 1 680 192.3
2 203.90 1 2040 169.2

LMDPL [Sas+20]
1 157.50 1 976 400

and produced circuits with unstable output. In conventional FPGA design, un-clocked
state-holding logic is considered undesirable so synthesis tools are not designed with such
cases in mind. This is not an issue when considering the ASIC flow used in Section 4.
While asynchronous and clock-less circuits have been implemented on FPGAs, the design
flow is underdeveloped and beyond the scope of our work. Aside from this, the FPGA
implementation is designed to be as close to our ASIC one. These differences do not
fundamentally affect our security claims, as the evaluation of the S-box circuits still occur
in one clock cycle. The WDDL gates are implemented in single LUT6_2 primitives
described in Appendix A. We then analyzed the power side-channel leakage of our Ascon
and AES implementations using the CW305 board from NewAE [Tec]. The CW305 hosts
an Artix-7 xc7a100t FPGA target and SAM3U microcontroller which provides a software
interface to the target via USB. The implementation is placed onto the FPGA within a
wrapper which provides an interface for the SAM3U and we included a 1024-bit LFSR to
provide the online randomness. The random bits are computed before each measurements
to avoid additional noise. The FPGA operates with a 1-MHz clock and we measure the
input voltage Vcc with PicoScope6000-series oscilloscope which provides 8-bit samples at
2-GS/s. For our evaluation, the input data is generated and split into Boolean shares from
a host computer then sent to the device via USB. The input data is randomized between
fixed message and random message test batteries. To verify our setup, we employed the
technique used by [Sas+20], where a physical switch is tied to the enable pin of the PRNG
and an LED. We observed information leakage (as expected) when we applied Welch’s
t-test to measurements taken with the switch in the “off” position.

5.1 Results and Discussion
Ascon. We perform Welch’s t-test with 10-million traces by encrypting either fixed or
random plaintexts and observing the power trace of 12 Ascon permutation rounds. The
null hypothesis is that the implementation is considered secure if the means of the power
traces are identical. If the absolute t-value exceeds 4.5, we can reject the null hypothesis
and claim the implementation leaks information. Figure 10 shows the results of the
evaluation. The absolute value of the first-order t-statistic remains within the 4.5 bound
and demonstrates that our implementation is first-order secure for up-to 10 million traces.
The second-order t-statistic does break the ±4.5 bound and there is information leakage
in the second-order scenario. This is expected considering that the implementation is
only first-order masked. Aside from the secure construction of the SESYM gadgets, the
dual-rail logic additionally provides some power-hiding benefit that is additive, but not
necessary for the security of our constructions. The precharging action adds additional
noise to the circuit and tends to a “balanced” power consumption for arbitrary input. We
emphasize this phenomenon is not required for the practical security of our constructions,
albeit it is a helpful a side-effect of DPL circuits.
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(a) 1st order t-test (b) 2nd order t-test

Figure 10: SCA results for the SESYM-masked 1st-order Ascon FPGA implementation.
(10 Million Traces)

(a) Average Power trace. The first peak indi-
cates the transition from precharge to evalua-
tion. The second peak indicates the transition
from evaluation to precharge

(b) 1st order t-test

(c) 2nd order t-test (d) 3rd order t-test

Figure 11: SCA results for the SESYM-masked 2nd-order AES FPGA implementation.
(100 Million Traces)

AES-128. Following the Ascon experiments, we extended our univariate t-tests to 100
million encryptions. Specifically, we measured one full AES round from precharge →
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Figure 12: Bivariate analysis of our 2nd-order AES-128 implementation. The lower tri-
angle shows the results of 10 million traces with the RNG enabled. The upper triangle
shows the result of 100k traces with the RNG disabled

evaluation → precharge. Our AES implementation is second-order secure and uses the
Canright S-box with only DOM-independent multipliers. Figure 11 shows the results of
the experiments. For all t-tests, the the t-statistics is with the ±4.5 bound. Interesting,
the design does not show any leakage in the 3rd-order. This is most likely due to the dual-
rail “hiding” effect. A similar observation was made by Sasdrich et. al in their 1st-order
secure LMDPL implementation of AES [Sas+20].

Bivariate analysis. We performed a bivariate analysis of our 2nd-order AES-128 imple-
mentation. We reduced the sample count to 500 points to alleviate the computational
overhead. We then normalized each trace by the mean and performed a pairwise multipli-
cation of each sample point. Then, we performed a second-order t-test of the larger (fixed
vs random) trace sets. The upper triangle shows the results of 100k traces with online
randomness disabled i.e., SESYM-masking disabled. The lower triangle shows the result
of masking enabled. In the lower triangle, there is no observable leakage, however there
is leakage in the upper triangle as expected.

5.2 Formal Verification
In addition to empirical measurements, we apply the formal verification tool Coco [Gig+21]
to verify that the addition of WDDL circuitry does not introduce problems in the context
of masking. Coco’s initial purpose was the verification of masked software executed by a
specific CPU [Gig+21; GPM21], but was recently also applied to masked hardware circuits
[HB21]. Coco considers the time-constrained probing model, which allows an attacker
to distribute d probes in the CPU netlist, in arbitrary execution cycles of the masked
software. In this work, we verify first-order single-cycle hardware implementations, for
which the time-constrained probing model corresponds to the d-probing model [ISW03].
Therefore, our results are valid in the d-probing model, and we can effectively detect leaks
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which are caused by hardware side-effects like glitches and transitions.
As a first step in the verification process, the circuit inputs are labeled in order to

express their purpose in the masking scheme. Labels are either shares of a native value,
fresh randomness in case of a fresh independent random variable, or public, which includes
constants and control signals like the clock signal. Coco operates on the netlist of a
masked hardware circuit, consisting of gates connected by wires. During the verification,
each gate is assigned a correlation set, which is used to determine whether the gate output
correlates with a native value. In a nutshell, the correlation set contains the labels of all
values which might be visible to the attacker on the gate output during a clock cycle. The
correlation sets of the circuit inputs contain the initially assigned labels, which are then
further propagated through the remaining gates, for which the gate type determines the
labels in the correlation set. For example, an XOR gate which takes a 1-bit share a, and a
1-bit random value r, will generate the correlation set {0, a, r, a ⊕ r} on the output. This
means, an attacker can either observe an arbitrary independent constant (denoted by 0),
the share a (if r is delayed), the randomness r (if a is delayed), or the value a ⊕ r once
the circuit has stabilized. The whole correlation set assigned to the output of the gate
is propagated to the input of the following gate according to the netlist. Coco reports
a leak if there exists a correlation set in the circuit which contains a term which directly
depends on the unshared native value.

The original version of Coco implements a standard set of ASIC gates. In order to
support WDDL gates, we add a new gate type to the verification tool which represents
a WDDL XOR gate. We integrate the respective rules into the tool to compute its
correlation set and describe its leakage behavior. Tiri et. al [TV04] derive a proof that the
WDDL XOR gate is glitch-free, i.e. either outputs 0 or the complete XOR of the inputs, if
used correctly. Following the example above, a WDDL XOR gate with the inputs (a, ¬a)
and (r, ¬r), will either output 0 (an arbitrary independent constant), or a ⊕ r. Compared
to a standard XOR gate, we can omit the single terms a and r because we know the gate
will not glitch. Finally, we derive the complete correlation set of a WDDL XOR gate as
{0, a ⊕ r}, which is assigned to the gate’s output and will then further propagate through
the circuit. We then apply Coco and can successfully verify the correctness of first-order
implementation of the SESYM multiplier as well as a SESYM-variant of the Keccak
S-box. Additoinally, we successfully verify a first- and second-order implementation of
the SESYM-AES-BP S-box. Ultimately, this means that (1) our additional circuitry does
not introduce any unintended combinations of shares (assuming WDDL XORs are glitch-
free), (2) all components that are not designed to be glitch-free do indeed not cause any
glitch-related problems.

6 Conclusions
In this work, we have presented a generic and efficient method for designing single-cycle
glitch-resistant (higher-order) masked hardware designs of any cryptographic S-box. We
reexamined the role of asynchronous circuit design in the context of low-latency masking
and show that it can produce competitive results. More concretely, we showed that WDDL
logic gates and Muller C-elements, that are easy to implement with standard CMOS
cells, can be used to design cryptographic hardware circuits that, especially in case of
higher-degree S-boxes, have noticeably lower requirements in terms of area and online
randomness than existing solutions. In the case of low-degree S-boxes our constructions
mostly match the best existing solutions but are more flexible in the choice of masking
scheme and order, which allows for better trade-off potentials for concrete applications.
We have applied our method to DOM-based S-boxes of Ascon and AES and compare
the resulting circuits to existing TI, GLM, and LMDPL masking schemes in terms of
area, latency, and randomness requirements. For Ascon, we obtained area and latency
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results similar to GLM and improved on the randomness requirement by 6.4 times. We
also provided results for the 1st and 2nd-order protected AES S-box. Here, the 1st-order
variant is similar in terms of area and randomness requirements to the state-of-the-art
LMDPL variant. To the best of our knowledge, our higher-order AES S-box and AES-
128 designs are the first in literature. We also further underline the practical protection
of our constructions against power analysis attacks via empirical and formal verification
approaches.
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A LUT Implementations of WDDL Gates.

Below we present the Verilog instantiations for implementing the WDDL AND and WDDL
XOR gates with Xilinx LUT6_2 primitives inspired by similar implementations done
by [MI14] for AWDDL gates. The key difference is the LUT .INIT() mask.

Listing 1: WDDL XOR Implementation
‘define T 0
‘define F 1
module WDDL_XOR(

// Outputs
c ,
// Inputs
a , b , pre
) ;

input [ 1 : 0 ] a ;
input [ 1 : 0 ] b ;
input pre ; // precharge
output [ 1 : 0 ] c ;

LUT6_2 #(
. INIT (64 ’ h00300C00000C3000 )

) LUT6_2_inst (
. O6( c [ ‘F ] ) ,
. O5( c [ ‘T ] ) ,
. I0 ( a [ ‘T ] ) ,
. I1 ( a [ ‘F ] ) ,
. I2 (b [ ‘T ] ) ,
. I3 (b [ ‘F ] ) ,
. I4 ( pre ) ,
. I5 (1 ’ b1 )

) ;
endmodule // WDDL_XOR
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Listing 2: WDDL AND Implementation
‘define T 0
‘define F 1
module WDDL_AND(

// Outputs
c ,
// Inputs
a , b , pre
) ;

input [ 1 : 0 ] a ;
input [ 1 : 0 ] b ;
input pre ; // precharge
output [ 1 : 0 ] c ;

LUT6_2 #(
. INIT (64 ’ h000C3C0000300000 )

) LUT6_2_inst (
. O6( c [ ‘F ] ) ,
. O5( c [ ‘T ] ) ,
. I0 ( a [ ‘T ] ) ,
. I1 ( a [ ‘F ] ) ,
. I2 (b [ ‘T ] ) ,
. I3 (b [ ‘F ] ) ,
. I4 ( pre ) ,
. I5 (1 ’ b1 )

) ;

endmodule // WDDL_AND
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