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Abstract

We present and analyze a new protocol that provides a distributed ECDSA signing
service, with the following properties:

• it works in an asynchronous communication model;

• it works with n parties with up to f < n/3 Byzantine corruptions;

• it provides guaranteed output delivery;

• it provides a very efficient, non-interactive online signing phase;

• it supports additive key derivation according to the BIP32 standard.

This service is being implemented and integrated into the architecture of the Internet
Computer, enabling smart contracts running on the Internet Computer to securely hold
and spend Bitcoin and other cryptocurrencies.

1 Introduction

The ECDSA signature scheme [NIST13] is a standard, widely used signature scheme. In
recent years, mainly driven by blockchain applications, there has been a flurry of research
on distributed protocols for ECDSA signing [AHS20]. Such protocols essentially provide
a distributed ECDSA signing service, with the goal of eliminating a single point of
vulnerability. Because of the important role played by the ECDSA signature scheme in
blockchain applications and elsewhere, designing a practical distributed signing service
based on ECDSA is an important goal, despite the fact that it is much easier to design
practical distributed signing services based on other signature schemes, most notably the
BLS scheme [BLS01, Bol03].

In this paper, we present and analyze a new protocol that provides a distributed ECDSA
signing service, with the following properties:

1. It assumes an asynchronous communication model, with no a priori bound on
the time required to deliver messages between parties.

2. It assumes a network of n parties, with at most f < n/3 Byzantine corruptions.

3. It assumes a public-key infrastructure, where each party generates its own public-
key/secret-key pair, and knows the public keys of all other parties, as well as a com-
mon reference string (which consists of a group element whose discrete logarithm is
unknown), and a random oracle that is used to model a cryptographic hash function.

1



4. It makes use of a consensus subprotocol as well as a random beacon.

5. It guarantees security, meaning that the only signatures an adversary can obtain are
those that are requested by honest parties.

6. It provides guaranteed output delivery, meaning that all signing requests will
be fulfilled and the resulting signatures will be delivered to the honest parties (to
the extent that all messages between honest parties are eventually delivered, and the
consensus subprotocol provides liveness).

7. It provides a very efficient, non-interactive online signing phase, meaning
that assuming an appropriate message-independent precomputation, in response to
a signing request, each party simply broadcasts one “signature share”, and collects
sufficiently many such “signature shares” to then compute the signature; in particular,
the (more expensive) consensus subprotocol is not needed in the online signing phase.

8. It supports BIP32-style additive key derivation [Wui20], which means that many
signing keys can be easily derived from a single signing key in a hierarchical fashion.

Our protocol is being implemented and integrated into the architecture of the Internet
Computer [DFI22]. The Internet Computer is essentially a collection of communicating
replicated state machines, where each such state machine is implemented as a network of
nodes running a blockchain-based consensus protocol [CDH+21]. The consensus subprotocol
of our new distributed ECDSA signing protocol is implemented directly using the Internet
Computer’s blockchain-based consensus protocol.

A random beacon is a mechanism for obtaining public random values that remain un-
predictable until a time determined by the protocol. The Internet Computer architecture
already implements such a mechanism, and the implementation of our signing protocol
makes use of this.

We analyze the security of our protocol in the UC framework [Can00], showing that it is
equivalent to an ideal functionality that generates ECDSA signatures. This security proof
makes fairly standard cryptographic assumptions related to the discrete logarithm problem
for elliptic curves, and also models certain hash functions as random oracles (it does not rely
on any assumptions related to factoring). The unforgeability property of our distributed
signing service is thus reduced to the unforgeability property of ECDSA signatures under a
specific attack model whose security is analyzed in detail in the companion paper [GS21].

Our new protocol is, in fact, an (f + 1)-out-of-n threshold signature scheme. How-
ever, thinking of it as a distributed signing service motivates the most essential design
requirements for use in the Internet Computer — namely, that it provide security and
guaranteed output delivery in an asynchronous communication model with Byzantine cor-
ruptions. With these design requirements, a bound of f < n/3 on the number of corruptions
is unavoidable, and therefore, a reconstruction threshold higher than f+1 is not particularly
useful.

Equipping the Internet Computer with a threshold ECDSA signing service has a number
of applications. For example, with such a service, smart contracts running on the Internet
Computer will be able to securely hold and spend Bitcoin and other cryptocurrencies. While
our protocol is designed to work well on the Internet Computer, it should work quite well
in other distributed computing environments.
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1.1 More on communication models and consensus

In the design and analysis of any distributed protocol, one must specify a communication
model, which characterizes the ability of an adversary to delay the delivery of messages
between replicas. At opposite ends of the spectrum, we have the following models:

• In the synchronous model, there exists some known finite time bound δ, such that
for any message sent, it will be delivered in less than time δ.

• In the asynchronous model, for any message sent, the adversary can delay its
delivery by any finite amount of time, so that there is no bound on the time to deliver
a message.

To obtain highly decentralized and secure protocols, we are mainly interested in networks
whose nodes are distributed around the globe, and for such networks, the synchronous
communication model would be highly unrealistic. Indeed, an attacker could compromise
the correct behavior of the protocol by delaying honest nodes or the communication between
them. Such an attack is generally easier to mount than gaining control over and corrupting
an honest node.

Consensus is a basic problem that lies at the heart of many distributed protocols. In
fact, any distributed signing protocol must include as a subprotocol a distributed key
generation protocol, which itself a special case of consensus, as all parties must at least
generate and agree on a public key for the signature scheme.

There are different formulations of the consensus problem, and the one we need for our
new distributed signing protocol is called Asynchronous Common Subset (ACS). In
an ACS consensus protocol, each party contributes an input to the protocol, and obtains
as output a subset of the inputs. Importantly all honest parties must obtain the same
subset. The size of the subset is determined by a size parameter k to the protocol, where
k ≤ n − f . All honest parties should eventually obtain this subset, provided all of them
participate in the protocol, and all messages between them are eventually delivered. An
external validity condition may also be imposed, and the protocol ensures that each
input satisfies this condition.

The ACS problem was first defined and explored in [BKR94]. While this work pro-
vides a theoretical proof of concept, the resulting protocol was not practical. More recent
work [MXC+16, DRZ18, GLT+20] has made great strides in achieving much more practi-
cal ACS consensus protocols. Unfortunately, while these protocols attain quite impressive
throughput, they still do not provide very good latency.

In the integration of our new distributed signing protocol in the Internet Computer,
we use the consensus protocol already implemented in the Internet Computer to implement
ACS. Like most other practical Byzantine fault tolerant consensus protocols that do not rely
on synchronous communication (e.g., [CL99, BKM18, YMR+18]), the Internet Computer’s
consensus protocol [CDH+21] relies on a partial synchrony communication model
[DLS88]. Such partial synchrony models can be formulated in various ways. The partial
synchrony assumption used by the Internet Computer says, roughly speaking, that com-
munication is periodically synchronous for short intervals of time; moreover, the synchrony
bound δ for message delivery does not need to be known in advance.
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This partial synchrony assumption is only needed to ensure that the consensus protocol
makes progress (the so-called liveness property). It is not needed to ensure correct behavior
of consensus (the so-called “safety” property), nor is it needed anywhere else in the Internet
Computer protocol stack. Under the assumption of partial synchrony and Byzantine faults,
it is known that the bound of f < n/3 on the number of faults is optimal.

While our ECDSA signing protocol as implemented indirectly relies on a partial syn-
chrony assumption in our particular implementation of consensus, we believe that it is good
practice not to rely on such assumptions outside of consensus, for a couple of reasons. First,
building a consensus protocol that relies on partial synchrony and yet degrades gracefully
when that assumption starts to fail (perhaps intermittently) is a challenging engineering
task, and it is best to isolate this issue at the consensus level. Second, as purely asyn-
chronous consensus protocols continue to improve, it may become practical to use such a
protocol, especially since consensus is only needed in the precomputation phase, and not
the signing phase where low latency is critical.

1.1.1 Chickens and eggs

The most practical protocols for consensus in the purely asynchronous communication
model, such as [MXC+16, DRZ18, GLT+20], actually require a “special setup” to pro-
vision the keys for one or more threshold cryptographic schemes, as opposed to the
“standard setup” of a public-key infrastructure. Among other things, such threshold
schemes are used to implement a random beacon, as proposed in [CKS00] and used in
[MXC+16, DRZ18, GLT+20]. For example, a random beacon can be efficiently implemented
using a threshold BLS signature. This special setup could be done by using a one-time,
trusted, centralized key-provisioning step, but this is clearly undesirable from a security
point of view, as it creates a single point of vulnerability. We would prefer to use a dis-
tributed key generation protocol to perform this setup. As already mentioned, distributed
key generation is itself a kind of consensus problem, so we seem to have a “chicken and
egg” problem. To solve this problem, one can perform the special setup using a distributed
key generation protocol that makes stronger communication assumptions, such as partial
synchrony, and/or is less efficient. For example, [KHG12] gives a fairly practical protocol
for distributed key generation. That protocol is built on the asynchronous verifiable secret
sharing scheme of [CKLS02] and a variant of the PBFT consensus protocol [CL99], which
assumes partial synchrony for liveness, but does not require special setup. One could replace
the PBFT consensus protocol in [KHG12] with a purely asynchronous consensus protocol
without special setup, such as the one in [BKR94], but this would yield a very impractical
protocol. More recently, this “chicken and egg” problem has been much more satisfactorily
resolved in the papers [KMS20, AJM+21], which directly solve the asynchronous distributed
key generation problem without going through a separate consensus subprotocol, resulting
in the most practical protocols to date for this problem.

In addition to consensus, our ECDSA signing protocol directly makes use of a random
beacon. This random beacon is not essential for the core ECDSA signing protocol, but it al-
lows us to achieve better concrete security bounds when combining BIP32-style additive key
generation with non-interactive online signing. As already mentioned, the implementation
of our ECDSA signing protocol on the Internet Computer exploits the random beacon al-
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ready implemented on the latter. This random beacon is implemented using threshold BLS
signatures. For these threshold BLS signatures, the Internet Computer needs a distributed
key generation protocol. That key generation protocol itself uses consensus. This “chicken
and egg” problem is resolved by running the Internet Computer’s consensus protocol in a
“bootstrapping mode”, in which it runs without a random beacon, but with (potentially)
degraded performance.

1.2 Related work

The ECDSA signature scheme is very similar in structure to the earlier DSA signature
scheme [NIST13], and distributed protocols for DSA signing and related problems were
studied in [GJKR96, GJKR99, GJKR01, GJKR03]. As already mentioned, there has been
a lot of attention paid recently to distributed protocols for ECDSA signing. See the excellent
survey [AHS20]. Rather than compare our work to all of the protocols discussed in [AHS20],
we focus on four recent works [CMP20, GKSS20, DJN+20, GG20], which are representative.

Precomputations and online signing phases. Our protocol, like all of the protocols
in [CMP20, GKSS20, DJN+20, GG20], make use of input-independent “signature helpers”,
one of which is consumed per signing request. The generation of these signature helpers is
generally referred to as a “precomputation phase”, but for a long-lived distributed signing
service, it is an ongoing process. Ideally, a steady supply of signature helpers can be
generated so that when a signing request comes in, one such signature helper is available
and the signing request can be processed “online” in a very efficient fashion. In fact,
the protocols in [CMP20, DJN+20, GG20] all have a non-interactive online signing phase,
meaning that in response to a signing request, if a signature helper is available, each party
simply broadcasts one “signature share”, and given enough shares it is possible to compute
a signature. Our protocol enjoys this same property.

Corruption bounds. Our protocol assumes at most f < n/3 corrupt parties. The
protocol in [DJN+20] assumes f < n/2 corrupt parties. The protocols in [CMP20, GG20]
allow any number of corrupt parties. The protocol in [GKSS20] is somewhat more general:
it allows an arbitrary reconstruction threshold 1 ≤ t ≤ n, so at most t − 1 parties may be
corrupt, and at least t honest parties must participate in the online signing phase.

Communication models. All of the protocols in [CMP20, GKSS20, DJN+20, GG20],
and in fact all of the protocols discussed in the survey paper [AHS20], and the older pro-
tocols in [GJKR96, GJKR99, GJKR01, GJKR03], assume a synchronous communication
model. As mentioned in Section 1.1, we find this model to be quite unrealistic for highly
decentralized networks whose nodes are distributed around the globe. The paper [KHG12]
also argues why synchronous communication is unrealistic in this setting.

Guaranteed output delivery. All of these protocols in [CMP20, GKSS20, DJN+20,
GG20] lack guaranteed output delivery. In particular, they can be brought to a complete
halt if just a single node in the network loses network connectivity (or crashes) for a period
of time.
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Since the protocols in [CMP20, GG20] work with a dishonest majority, it is impossible
for them to provide guaranteed output delivery (or even fairness). Note that the protocol
in [GG20] provides a security property called “identifiable abort”, which essentially means
that if the protocol fails to generate an output to all honest parties, one corrupt party will
be reliably identified (this general concept was studied earlier in [IOZ15]). Unfortunately,
the notion of “identifiable abort” does not translate to the asynchronous communication
model, as there is no way to differentiate between a corrupt party that is unresponsive and
an honest party with a slow network connection.

While protocols in [GKSS20, DJN+20]) do provide guaranteed output delivery in the
online signing phase (for [GKSS20], this holds if there are at least t honest parties avail-
able), they do not do so in the precomputation phase. For these protocols, if just a single
node remains offline for a sufficiently long time, the supply of signature helpers will become
fully depleted and signature generation will stall. Other recent protocols for general, asyn-
chronous MPC, such as [LYK+19], which could also be used to implement a distributed
ECDSA signing service, also have this unfortunate property of guaranteed output delivery
in the online phase but not in the precomputation phase. In contrast, our protocol only
assumes an asynchronous communication model and provides guaranteed output delivery
in both the precomputation and the online signing phases.

Communication costs. For the online signing phase, as already mentioned, our protocol
takes just a single round of communication, just as the protocols in [CMP20, DJN+20,
GG20]. Also for the online signing phase, the communication complexity of our protocol
(total number of bits transmitted by all parties per signing request) is O(n2λ). Here,
λ is a security parameter that bounds the sizes of signatures, hashes, group elements,
and the like. This bound matches online communication complexity of the protocols in
[CMP20, GKSS20, DJN+20, GG20].

The price we pay for guaranteed output delivery in the asynchronous communication
model is in extra complexity in the precomputation phase. The protocol is fairly simple,
and the number of rounds of communication is constant, but the communication complexity
(per signature helper) is O(n3λ).

These bounds on rounds of communication and communication complexity exclude the
cost of the ACS consensus subprotocol (which is only used in the precomputation phase).
If one implements ACS using, for example, the Dumbo2 protocol [GLT+20], and replace
the reliable broadcast subprotocol used in Dumbo2 by one in [DXR21] or [DXR22], we get
the same communication complexity bounds (with high probability). In fact, since ACS is
only needed for generating signature helpers, where latency is not critical, using a protocol
such as Dumbo2 is maybe not too impractical. In our actual implementation, based on
the Internet Computer’s consensus protocol (and which assumes partial synchrony), these
bounds do not increase (at least on the “happy path” where parties do not misbehave).

These communication complexity bounds are essentially the same as those of some
older protocols, such as in [GJKR01], which assume synchronous communication, but are
a factor of n higher than those of [CMP20, DJN+20, GG20], which assume synchronous
communication and do not provide guaranteed output delivery. We also note that the
protocols in [CMP20, GG20] rely on Paillier encryption [Pai99], which means that the value
of λ in the communication complexity is significantly higher (typically by a factor of about
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10) than in protocols, such as ours, that do not.
The communication complexity of the precomputation phase of the protocol in [GKSS20]

depends on a number of details that are not presented in that paper, and so we do no make
a comparison.

Computational costs. The computational complexity of the overall protocol, including
the precomputation phase, may ultimately become the bottleneck on the throughput of
the protocol, especially as n becomes large. The computational complexity of our protocol
(i.e., the running time of each party) is dominated by O(n2) exponentiations per signing
request. This includes both the precomputation and online signing phases on the “happy
path” where parties do not provably misbehave in a way that would likely have them ex-
pelled. These O(n2) exponentiations are full-sized exponentiations — actually, they consist
of O(n) multi-exponentiations each of length O(n), which can be performed a bit faster than
O(n2) exponentiations; moreover, these computations can also be trivially parallelized. See
Section 8.8.2 for more details.

The computational complexity of our protocol matches that of [DJN+20] — the pre-
computation phase of the protocol in [DJN+20] performs O(n) “interpolations in the ex-
ponent”, each of which takes O(n) exponentiations (actually, one multi-exponentiation of
length O(n)). In contrast, the protocols of [CMP20, GG20] perform only O(n) exponen-
tiations per signing request. However, this includes O(n) exponentiations in the group
associated with Paillier encryption. Because of the very high cost of exponentiations in this
group, for moderately sized n, the computational cost of the protocols in [CMP20, GG20]
will be significantly higher than that of our protocol.

We also sketch an optimized version of our protocol (see Section 8.8.3) that processes
several signing requests at a time. If we process Θ(n) signing requests at a time, we can
reduce the computational complexity of our protocol to essentially O(n) exponentiations per
signing request, which is significantly faster than any of the protocols in [CMP20, DJN+20,
GG20].

The computational complexity of the protocol in [GKSS20] depends on a number of
details that are not presented in that paper, and so we do no make a comparison.

Static vs adaptive corruptions. Our protocol, as well as those in [GKSS20, DJN+20,
GG20], are analyzed assuming static corruptions. The protocol in [CMP20] is analyzed
assuming adaptive corruptions. However, we do sketch a proof of security for our protocol
assuming adaptive corruptions under a stronger (but still reasonable) assumption on the
ECDSA signature scheme.

Proactive security. The protocol [CMP20] explicitly provides proactive security, in
which parties are from time to time rebooted into a pristine state, and security holds so
long as at no point in time too many parties are corrupt, even though eventually all parties
may be corrupted. We also briefly sketch how our protocol can be deployed so as to provide
proactive security.
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1.3 Other related work

The importance of designing a distributed signing service that provides guaranteed out-
put delivery in the asynchronous communication model was also noted in [RRJ+22] (which
appeared shortly after this work was publicly available). The protocol in [RRJ+22] is a
distributed signing service for Schnorr signatures, rather than ECDSA signatures. Their
protocol is based on entirely different design principles than ours. Unlike our protocol (see
Section 2.6.4), their protocol may allow the adversary to obtain several distinct signatures
per signing request. Thus, even though the Schnorr signature scheme provides strong un-
forgeability, that property is lost in their protocol. For some applications, this property
may be important. Also unlike our protocol, their protocol does not rely on a consensus
subprotocol.

2 Overview

2.1 The ECDSA signature scheme

We recall the ECDSA signature scheme. This scheme is defined over a group G of prime
order q generated by g ∈ G. For ECDSA, the group G is defined as the group of points
on an elliptic curve, and while the group operation for an elliptic curve is traditionally
written using additive notation, in this paper we will write the group operation for G using
multiplicative notation and denote the identity element of G by 1. We define G∗ := G \ {1}.

The ECDSA signature scheme also defines a conversion function

C : G∗ → Zq

and a hash function
Hdsa : {0, 1}∗ → Zq.

The details of C and Hdsa are not important in this paper.
A secret signing key is a random α ∈ Zq and the corresponding public verification key

is u := gα.
Given a secret key α ∈ Zq and a message m ∈ {0, 1}∗, the signing algorithm runs as

follows:

φ← Hdsa(m) ∈ Zq
κ

$← Z∗q , R← gκ, ρ← C(R)

σ ← (φ+ ρα)/κ
output the signature (ρ, σ) ∈ Zq × Zq

As a technical point, the values ρ and σ should be nonzero. The probability that the signing
algorithm outputs values that are zero is negligible, and any implementation of the signing
algorithm may safely ignore this possibility. However, the signature verification algorithm
must check that ρ and σ are nonzero.

Given a public key u ∈ G, a message m, and a signature (ρ, σ) ∈ Z∗q ×Z∗q , the signature
verification algorithm runs as follows:
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φ← Hdsa(m) ∈ Zq
τ ← σ−1 ∈ Z∗q
R← gτφuτρ ∈ G
if R 6= 1 and C(R) = ρ

then output accept
else output reject

Brown [Bro02] showed that under standard intractability assumptions on Hdsa (collision
resistance and random/zero preimage resistance), ECDSA is secure in the generic group
model [Nec94, Sho97]. Here, security is the standard definition of security for signature
schemes: existential unforgeability under a chosen message attack [GMR88].

2.2 Variations on ECDSA and their application to threshold signing pro-
tocols

We outline here several variations of ECDSA. These variations are more variations on the
security definitions, in particular, what we allow the attacker to do in the forgery attack
game, than on the signature scheme itself. We will also discuss the relevance of these
variations in the design and analysis of an ECDSA threshold signing protocol.

Additive key derivation is a variation of ECDSA in which we have an additive
“tweak” ε ∈ Zq so that the secret signing key is effectively α + ε and the corresponding
public key is gα+ε. Here, we assume that the tweak ε is the output of a hash function
that is modeled as a random oracle (although it is also possible to avoid a random oracle
argument here). For example, Bitcoin employs a specific hash-based additive key derivation
called BIP32, at least for so-called “non-hardened” derived keys (see Appendix D of [GS21]
and Section A.4 for more details). In this setting, we can view each tweak as being chosen
from some set of random tweaks that are chosen before the attack begins. The relevant
notion of security is still existential unforgeability under a chosen message attack, extended
to a multi-key setting, but where the keys are derived using additive key derivation from a
single “master key” α.

Additive key derivation is desirable in an ECDSA threshold signing protocol for two
reasons. First, if the protocol is to be used to sign Bitcoin (or other cryptocurrency)
transactions, then support for BIP32 key derivation is inherently valuable. Second, if the
protocol is to sign on behalf of many entities, then instead of having one secret signing key
per entity, the protocol can host just a single master key from which individual signing keys
can be derived via additive key derivation. There is typically a significant cost to securely
maintaining a secret signing key: the key must be shared among all of the nodes of the
protocol, which requires the execution of a distributed key generation algorithm, and also
the execution of a resharing algorithm at various times (both to support proactive security
measures, and to support a change in the membership of the protocol); there may also be
protocols and mechanisms to securely backup these keys. By having just a single (or a small
number of) secret signing key(s), this cost is significantly reduced.

Presignatures is a variation in which several values of the form R := gκ may be
precomputed and given to the adversary, so that when a signing request is made, they
adversary may choose one of these precomputed R-values to be used to build the signature.
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The relevant notion of security is still existential unforgeability under a chosen message
attack, adapted to this setting.

Presignatures typically increase the performance of an ECDSA threshold signing pro-
tocol. This is because the presignature R, and possibly other data, can be computed in
advance, which allows the “online” phase to be much more efficient (this is the precomputed
“signature helper” mentioned in Section 1.2). Indeed, assuming the group element R = gκ

is precomputed and known to all nodes running the protocol, the component ρ := C(R) of
the signature has already been computed, so that when a signing request for a message m
comes in, the component σ = (φ + ρα)/κ can be much more easily computed, sometimes
with just a single flow of messages. This is especially true if, along with R, other data is
precomputed (such as “Beaver triples” [Bea91]) to facilitate the computation of σ. The
use of presignatures has been advocated in a number of papers [CMP20, DJN+20, GG20].
In fact, [DJN+20] advocates the use of the combination of presignatures and additive key
derivation. The paper [GKSS20] also uses the term “presignatures”, but this refers to a
“signature helper” that does not in fact reveal R (and explains why the signing phase in
[GKSS20] has more communication rounds than in [CMP20, DJN+20, GG20]).

Typically, the security of an ECDSA threshold signing protocol can be reduced to
the security of an appropriate variant of non-threshold ECDSA. Indeed, the papers
[DJN+20, GG20] essentially do just this, but without giving any justification for the security
of these variations (presignatures for both papers, and optionally additive key derivation
for [DJN+20]). However, the paper [CMP20] gives a reduction from the security of their
threshold scheme to the security of ECDSA with presignatures, and they give an analysis
of ECDSA with presignatures in the generic group model.

All of these ECDSA variations and their combinations are studied in [GS21]. One of
the results in [GS21] is a negative result, which says that the combination of presignatures
with additive key derivation is quantitatively less secure than either variation in isolation.
Specifically, they show that instead of a

√
q attack on the scheme, there is actually a 3

√
q

attack, based on the 4-sum problem studied by [Wag02]. We stress that this attack requires
just a single presignature and a single signature.

Because of these weaknesses, [GS21] studies another variant, called re-randomized
presignatures, in which R-values are precomputed and given to the adversary as above,
but when a signing request is made, a random value δ ∈ Zq is chosen and given to the
adversary, and to build the signature, the value κ is replaced by κ + δ, and the value R is
replaced by gκ+δ. It is essential that δ is chosen after the adversary has made his signing
request. The relevant notion of security is still existential unforgeability under a chosen
message attack, adapted to this setting.

Our threshold ECDSA signing protocol utilizes re-randomized presignatures and addi-
tive key derivation. The paper [GS21] shows that in the generic group model, the combina-
tion of re-randomized presignatures and additive key derivation is just as secure as additive
key derivation alone. They also show that additive key derivation is secure in the generic
group model. Since the re-randomization is linear, in terms of working with linear secret
sharing, the impact is negligible. However, the nodes will still need access to a source of
public randomness to generate δ. Accessing this public randomness may or may not in-
troduce some extra latency, depending on details of the system. In the Internet Computer
there is already a mechanism for accessing public, unpredictable randomness via a random
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beacon, which is implemented using a threshold BLS signature. Moreover, in the Internet
Computer architecture, when a subprotocol (such as a threshold ECDSA signing protocol)
is launched, we can access this public randomness with no additional latency.

The paper [GS21] also presents another type of key derivation called homogeneous key
derivation. Here, there are two “master” public keys u = gα and v = gβ. Given a tweak ε,
the derived public key is uvε and the derived secret key is α+ βε. As shown in [GS21], this
key derivation technique provides stronger security than additive key derivation. However,
because of the importance of compatibility with the BIP32 standard, we do not use it in
our threshold signing protocol. If desired, our threshold ECDSA signing protocol could be
easily adapted to work with homogeneous key derivation.

2.3 Assumptions and basic notation

This section states assumptions and establishes notation that will be used throughout the
paper.

• We have a network of parties P1, . . . , Pn, with at most f < n/3 corrupt (Byzantine)
parties. We assume static corruptions.

• Communication between parties is asynchronous (but with eventual delivery).

• We have group G of prime order q generated by g ∈ G.

We assume the discrete logarithm problem for G is hard.

For application to ECDSA, the group G should be the same as used for ECDSA
signatures.

2.4 Basic subprotocols

We will show how to implement an ideal functionality that supports sequences of the fol-
lowing operations.

Random: [µ]
$← Zq: generate a sharing [µ] of a random element µ ∈ Zq.

Open: Open(µ): for a sharing [µ], reveal µ ∈ Zq to all parties.

OpenPower: w ← vµ: a common input v ∈ G and a sharing [µ], reveal vµ ∈ G to all parties.

Mul: [κ]← [µ] · [ν]: for a sharing [µ] and a sharing [ν], create a sharing [κ] of κ← µν ∈ Zq.

In addition to these operations, we also want linear operations (addition of sharings and
multiplication by a constant) and affine operations (adding a constant to a sharing). As
usual, these will be done by local computations.

The sequence of operations performed will be driven by an atomic broadcast protocol
(i.e., consensus). So all parties in the network are in agreement on the sequence of operations
to be performed. Each operation creates a new sharing, computed either from scratch or
as functions of old sharings.

Note that for our application to threshold ECDSA, we will only need to use OpenPower
with the base v := g.
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2.5 ECDSA protocols

With the above subprotocols, the ECDSA key generation and signing protocols are trivial.

2.5.1 Key generation

1. [α]
$← Zq // Random

2. u← gα // OpenPower

Secret key is α ∈ Zq, public key is u ∈ G.

2.5.2 Signing

Let Hdsa : {0, 1}∗ → Zq be the hash function used for ECDSA (whose output is in Zq), and
let C : G→ Zq be the ECDSA conversion function.

We assume we having sharings

[κ], [λ], [µ] = [κλ] and [α], [λ], [ω] = [αλ],

as well as the presignature R := gκ (see Section 2.2 for a discussion of presignatures).
We assume all of these sharings and the value R are precomputed. Since α is the

signing key, the sharing [α] (along with the public key gα) is computed using the above key
generation protocol (Random followed by OpenPower). The sharing [κ] (along with R := gκ)
is also computed using the same protocol (Random followed by OpenPower). The sharing
[λ] is computed using the Random protocol, and the sharings [µ] and [ω] are computed using
the Mul protocol.

Each signing request will require a quadruple of precomputed sharings

[κ], [λ], [µ], [ω],

along with the presignature R := gκ. A mechanism will be needed to pair with each signing
request such a quadruple. It is critical that

• each quadruple is used for at most one signing request (breaking this rule would reveal
the signing key), and

• once the signing protocol is initiated with a given signing request and a given quadru-
ple, the signing protocol must be run to completion (breaking this rule would yield two
signatures for the same signing request, leading to “signature malleability” issues).

Here is the signing protocol Πecdsa. It takes as input a message m, and a quadruple
of sharings as above — note that the signing protocol only explicitly uses the sharings
[λ], [µ], [ω], and does not explicitly use the sharings [α], [κ]. We first present the protocol
without additive key derivation or re-randomized presignatures (as discussed in Section 2.2),
and then show how these variations can be incorporated. Our protocol relies on the standard
technique of [BB89] for computing inverses.

Let ρ := C(R), φ := Hdsa(m).
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1. [ν]← φ[λ] + ρ[ω] // local computation

2. Open(µ) // Open

3. Open(ν) // Open

4. σ ← νµ−1 // local computation

5. Output the signature (ρ, σ)

NOTES:

1. One sees that this computes a standard ECDSA (with overwhelming probability) as
follows. We have

ν = φλ+ ρω = φλ+ ραλ

and
µ = κλ.

Assuming that µ 6= 0 (which happens with overwhelming probability), we therefore
have

σ =
ν

µ
=
φλ+ ραλ

κλ
=
φ+ ρα

κ

Thus, (ρ, σ) is a standard ECDSA signature.

2. With additive key derivation (as discussed in Section 2.2), we will have an additional
public “tweak” ε ∈ Zq, derived as a hash of some strings that identify the signing key,
so that the signing key is effectively α+ ε. The computation in Step 1 then becomes

[ν]← (φ+ ρε)[λ] + ρ[ω],

which is still a local computation.

3. With re-randomized presignatures (as discussed in Section 2.2). we will re-randomize
R with public randomness δ ∈ Zq. That is, we will compute ρ := C(gδR) and
essentially replace κ by κ + δ. This means that in Step 1, we also perform the local
computation

[µ̂]← [µ] + δ[λ],

and replace µ by µ̂ in Steps 2 and 4.

4. To implement re-randomized presignatures, we assume an ideal functionality that acts
as a “random beacon”, which reveals a public random seed s upon request. This seed
will be generated after the signing request has been submitted and has been paired
with a quadruple. For additional robustness, we derive δ as follows:

δ ← Hdelta(s,R, ε, φ), (1)

where Hdelta is a hash function that is modeled as a random oracle mapping onto Zq.
(While modeling Hdelta as a random oracle is convenient, the analyisis in [GS21] shows
that the only property really needed is that Hdelta is sufficiently “entropy preserving”.)
See below in Section 2.6.2 for more details.
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2.6 Security model and proof sketch

We analyze security in the UC framework. We assume n parties P1, . . . , Pn, of which at
most f < n/3 are corrupt. For simplicity, we assume corruptions are static.

2.6.1 Ideal world

We first describe the ideal world. As usual, we have an environment Z, an ideal-world
adversary, i.e., simulator, S, and an ideal functionality Fecdsa. As per the UC framework,
we assume that Z, S, and Fecdsa are aware of the identities of the corrupt parties.

The environment Z may give inputs to honest parties (the environment gives inputs
only to honest parties in our model). In the ideal world, when an honest party Pi receives
an input from Z, that input is forwarded directly to the ideal functionality Fecdsa. Each
input is either an initialization request, a presignature request, or a signature request.

• An initialization request is of the form (init).

• A presignature request is of the form (presig, presigID), where presigID is an identi-
fier.

• A signature request is of the form (sig, sigID , presigID ,m, ε), where sigID and
presigID are identifiers, m is a message, and ε ∈ Zq is a “tweak” as used for ad-
ditive key derivation.

We shall assume that Z is locally consistent, which means that is it always satisfies
the following constraints.

• Each honest party is given an initialization request only once, and it is the first input
that it receives.

• Each honest party generates a presignature once before its use and uses it only
once. That is, a given honest party should receive a given presignature request
(presig, presigID) only once, and if it receives a signature request of the form
(sig, sigID , presigID ,m, ε), this must be received after the corresponding presig-
nature request, and it should never receive another signature request of the form
(sig, sigID ′, presigID ,m′, ε′)

• Each honest party should generate a signature only once. That is, if an honest party
receives an input of the form (sig, sigID , presigID ,m, ε), it should receive no other
input of the form (sig, sigID , presigID ′,m′, ε′).

These conditions can be locally checked and enforced by each party using publicly available
information, and so it is not a real constraint on Z.

We also assume that Z is globally consistent, meaning that all honest parties receive
the same requests in the same order. This assumption is justified by the fact that all
operations performed will be driven by an atomic broadcast protocol (i.e., consensus).

Here is how Fecdsa works.
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• Upon receiving an initialization request from Pi:

If Pi is the first party to receive this request, Fecdsa runs the key generation algorithm
for ECDSA to generate a public key u ∈ G and a secret key α ∈ Zq, records the tuple
(init, u, α). In any case, it gives (init, i, u) to S.

• Upon receiving a presignature request (presig, presigID) from Pi:

If Pi is the first party to receive this request, Fecdsa runs the presignature genera-
tion algorithm for ECDSA to get a presignature (R, κ) ∈ G × Zq, records the tuple
(presig, presigID , R, κ). In any case, it gives (presig, i, presigID , R) to S.

• Upon receiving a signing request (sig, sigID , presigID ,m, ε) from Pi:

If Pi is the first party to receive this request, Fecdsa fetches the cor-
responding tuple (presig, presigID , R, κ), runs the signature generation algo-
rithm for ECDSA to get a signature (ρ, σ) along with the randomizer value
δ, records the tuple (sig, sigID , presigID ,m, ε, ρ, σ, δ). In any case, it gives
(sig, i, sigID , presigID ,m, ε, ρ, σ, δ) to S.

Fecdsa also responds to “control messages” from S, which control when outputs are
delivered from honest parties to Z (the environment receives inputs only from honest parties
in our model).

• (output-pk, i): if Pi previously received an initialization request, fetch the recorded
tuple (init, u, α) and give (output-pk, u) to Pi, which forwards this directly to Z.

• (output-sig, sigID , i): if Pi previously received a signing request
(sig, sigID , presigID ,m, ε), fetch the recorded tuple (sig, sigID , presigID ,m, ε, ρ, σ, δ)
and give (output-sig, sigID , ρ, σ) to Pi, which forwards this directly to Z.

As usual in the UC framework, the environment Z and the simulator S may freely pass
messages back and forth to each other.

2.6.2 Real world

We now describe the real world. As usual, we have an environment Z and an adversary
A. As above, we assume that Z provides inputs to the honest parties of the same form as
in the ideal world, and is both locally and globally consistent, as described above. These
inputs, however, are passed to machines that are running the actual protocol, as opposed
to being forwarded directly to an ideal functionality. These machines will also produce the
outputs (output-pk, u) and (output-sig, sigID , ρ, σ) that are passed to Z. As usual in the
UC framework, the environment Z and the adversary A may freely pass messages back and
forth to each other.

Our “real world” is actually a “hybrid world”, in which the protocol machines and A
interact with three ideal functionalities.

• The first ideal functionality is a random oracle representing the hash function Hdelta.
As usual, both the protocol machines and A have direct access to this random oracle,
while Z does not have direct access (but it can access the random oracle indirectly
through A).
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• The second ideal functionality is a “random beacon” Fbeacon, which generates a
sequence of random seeds s1, s2, s3, . . . . Each honest party issues a sequence of
next-seed requests to Fbeacon. Upon receiving the jth next-seed request issued by
the honest party Pi, the functionality Fbeacon gives (next-seed, i, j, sj) to A. Later,
A may give the control message (output-seed, j, i) to Fbeacon, which responds by
giving (output-seed, j, sj) to Pi. Note that corrupt parties may not issue next-seed

requests.

In our protocol, whenever an honest party receives a signing request, it issues a
next-seed request to Fbeacon, to obtain the seed s, which will be used to generate
the randomizer δ as in (1).

One way to securely implement Fbeacon is to use an (f + 1)-out-of-n threshold BLS
signature, which is much easier to implement than threshold ECDSA, and which
provides unique signatures. We can pass the BLS signatures through a random oracle
to get the seeds.

• The third ideal functionality is Fmpc, which captures the security properties of the
basic subprotocols in Section 2.4 for operating on sharings.

There are a number of details that should be specified for these subprotocols.

– Each sharing should have a unique ID associated with it, which is used to identify
the use of that sharing as an input to other subprotocol instances.

– The only subprotocols that reveal any information toA are Open and OpenPower,
which reveal their outputs (µ and vµ, respectively) to A.

– Via control messages, the adversary also determines when the outputs of Open
and OpenPower are delivered to each honest party.

We leave the specification of these details to the reader.

We also make the same type of global consistency assumption as we did for Fecdsa,
so that each honest party initiates the same sequence of subprotocol instances in the
same order.

2.6.3 Security theorem

Theorem 1. Protocol Πecdsa securely realizes Fecdsa.

The statement of this theorem does not rely on any cryptographic assumptions. It does
rely on the fact that Πecdsa is a hybrid protocol built on the ideal functionalities outlined
above in Section 2.6.2. It also relies on the assumption that q and the seed space for Fbeacon

are large.
We sketch the proof.

• The public key u = gα obtained by S in the ideal world can be used to simulate the
corresponding object in the real world at the point in time when the corresponding
OpenPower operation is performed.
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• A presignature R = gκ obtained by S in the ideal world can be used to simulate the
corresponding object in the real world at the point in time when the corresponding
OpenPower operation is performed.

• A signature σ obtained by S in the ideal world can be used to simulate the corre-
sponding values µ and ν generated during real-world signing protocol as follows:

µ
$← Zq, ν ← σµ.

These values µ and ν can be used to simulate the corresponding Open operations.

• The simulator S is also in charge of simulating the functionality Fbeacon

and the random oracle Hdelta. Whenever S obtains the message
(sig, i, sigID , presigID ,m, ε, ρ, σ, δ) from Fecdsa for the first time, it generates a
random seed s which will be used as the value for the random beacon on input sigID ,
and “programs” the random oracle Hdelta so that Hdelta(s,R, ε, φ) = δ, where δ is
randomizer generated by the signing algorithm.

2.6.4 Consequences

The ideal function Fecdsa was designed to match exactly the attack game described in Sec-
tion 8.4 of [GS21], which analyzes the security of ECDSA with re-randomized presignatures
and additive key derivation. Indeed, in that attack game, an adversary interacts with a
challenger, making presignature and signature requests of exactly the same form as de-
scribed here. The adversary in [GS21] corresponds directly to combined entities Z and S
in our setting.

Theorem 6 in [GS21] guarantees existential unforgeability, which means that the ad-
versary cannot feasibly create a valid signature (ρ∗, σ∗) for a message/tweak pair (m∗, ε∗)
unless it made a signing request for the same message/tweak pair. This result models G
as a generic group, and makes standard assumptions on Hdsa (collision resistance, random
and zero preimage resistance). The tweaks can either be modeled as being derived from a
random oracle, or alternatively, using a nonstandard collision-resistance-type assumption.
See [GS21] for more details. Note that our simulator S treats G as a generic group, and so
assuming Z does the same, then Theorem 6 in [GS21] implies that Z cannot forge signatures
in the real world.

The discussion following Theorem 6 in [GS21] guarantees strong unforgeability up to
sign, which means that the adversary cannot feasibly create a valid signature (ρ∗, σ∗) for a
message/tweak pair (m∗, ε∗) other than one that is equivalent up to sign to the response
(ρ, σ) to some signing request on that same message/tweak pair. Here, equivalent up to
sign means (ρ∗, σ∗) = (ρ,±σ). It is well known that if (ρ, σ) is a valid ECDSA signature,
then so is (ρ,−σ), and so this form of “signature malleability” is unavoidable. What this
says is that we need not worry about any other form of “signature malleability”. Moreover,
even this small amount of malleability can be completely eliminated by forcing σ to have
a “canonical sign” (this malleability issue was identified in the Bitcoin community, along
with the “canonical sign” fix [Wui14]).
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3 Tools and techniques

The main task is to securely implement the basic subprotocols Random, Open, OpenPower,
and Mul described in Section 2.4, under the assumptions given in Section 2.3. We review
the tools and techniques that will be used.

3.1 Shamir’s secret sharing scheme

One basic tool is Shamir’s (f + 1)-out-of-n secret sharing scheme [Sha79]. Here, a secret
α ∈ Zq is shared among parties P1, . . . , Pn, as follows. Random elements α1, . . . , αf ∈ Zq
are generated, and the polynomial

ω := α0 + α1x+ · · ·+ αfx
f ∈ Zq[x]

is formed, where α0 := α. Note that ω(0) = α0 = α. Each party Pj is given the share
µj := ω(j) ∈ Zq. The key properties of this sharing are that

• any coalition of f + 1 parties can efficiently recover the secret α by polynomial inter-
polation, and

• any coalition of f or fewer parties learns nothing about the secret α.

3.2 Some convenient notation

Before going further, we introduce some useful notation. For C = (C0, . . . , Cf ) ∈ Gf+1 and
β ∈ Zq, we define

C(β) := C0C
β
1 · · ·C

βf

f .

Given two such vectors C,D ∈ Gf+1, we define their product C · D ∈ Gf+1 to be their
componentwise product.

For a polynomial ω = α0 + α1x + · · · + αfx
f ∈ Zq[x] of degree at most f , and for a

group element u ∈ G, we define

uω := (uα0 , uα1 , . . . , uαf ) ∈ Gf+1.

With these conventions, we have
(uω)(β) = uω(β).

3.3 Verifiable secret sharing (VSS)

VSS is a technique that allows P1, . . . , Pn to verify that they have received a correct deal-
ing. One well-known such scheme is Feldman’s VSS scheme [Fel87], which works as follows.
Starting with ω ∈ Zq as in Shamir’s secret sharing scheme, the “dealer” computes the “poly-
nomial commitment” C := gω ∈ Gf+1 and sends C to P1, . . . , Pn over a secure broadcast
channel. In addition, for j = 1, . . . , n, the dealer sends the secret share µj := ω(j) ∈ Zq
to party Pj over a secure point-to-point channel. Having received C and a putative share
µj ∈ Zq, party Pj checks that his share is “correct” by testing if C(j) = gµj . Even if the
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dealer is corrupt, if at least f + 1 parties have received correct shares, they can still recon-
struct the secret. The paper [Fel87] does not provide protocols that specify what actions
should actually be taken when a party Pj detects an incorrect share. Pedersen [Ped91b]
gives a protocol for dealing with incorrect shares sent by a corrupt dealer in Feldman’s
VSS scheme (see Fig. 1 in [GJKR03] for a succinct description of Pedersen’s logic for deal-
ing with a corrupt dealer). However, that protocol does not work in the asynchronous
communication model.

Another limitation with Feldman’s VSS is that it does not completely hide the secret α,
as C(0) = gα. This may be acceptable for some applications, but not for others. Pedersen’s
VSS scheme [Ped91a] is a variation of Feldman’s that information theoretically hides the
secret. It works as follows. In addition to the polynomial ω above, a random polynomial
ω′ ∈ Zq[x] of degree at most f is generated. Party Pj ’s share is now (µj , µ

′
j) := (ω(j),ω′(j)).

As in Feldman’s VSS scheme, the dealer sends a polynomial commitment C ∈ Gf+1 to
P1, . . . , Pn over a secure broadcast channel; however, C is now defined as C := gω · hω′ ,
where h ∈ G is a random generator that is given as a system parameter or as part of
a common reference string. Also, each party Pj checks that its putative share (µj , µ

′
j) is

correct by checking that C(j) = gµjhµ
′
j . Just as for Feldman’s VSS scheme, even if the dealer

is corrupt, if at least f + 1 parties have received correct shares, they can still reconstruct
the secret (this depends on the hardness of the discrete logarithm assumption). The same
protocol from [Ped91b] can be used for dealing with incorrect shares sent by a corrupt
dealer in Pedersen’s VSS scheme. Again, this protocol does not work in the asynchronous
communication model.

3.4 Asynchronous VSS (AVSS)

As mentioned above, the techniques from [Ped91b] do not work in the asynchronous com-
munication model, which is the setting we are in. The notion of Asynchronous VSS (AVSS)
was studied in [CKLS02], where a practical AVSS protocol was also presented. We make
use of a different AVSS protocol that is simpler and more efficient. Unlike the protocol in
[CKLS02], ours relies on public key cryptography and only provides computational privacy.

Our AVSS scheme can be used for both Feldman and Pedersen VSS. Roughly speaking,
it works as follows. We assume that each party Pj has a public-key/secret-key pair (pk j , sk j)
for a public-key encryption scheme, and that all parties (including the dealer) have been
provisioned with (pk1, . . . , pkn). We also assume that all parties have signing keys, and that
all parties have been provisioned with the corresponding public signature verification keys.

The dealer computes a polynomial commitment C ∈ Gf+1 as usual. The dealer also
encrypts each party Pj ’s share under pk j to obtain a ciphertext cj . It then sends the
“dealing” (C, c1, . . . , cn) to P1, . . . , Pn over a secure broadcast channel. Each party Pj can
decrypt cj using sk j to obtain its putative share. If this share is correct, it will send back
to the dealer a “dealing verification share”, which is a signature on a message that attests
to the correctness of its share. The dealer can aggregate 2f + 1 such dealing verification
shares to form a “verification certificate” for this dealing. If an appropriate signature
scheme is used, such as BLS, the verification certificate can be realized as a compact multi-
signature [BLS01, RY07]. The dealer can then broadcast this verification certificate to all
parties. Parties will only accept dealings when accompanied by a corresponding verification
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certificate.
If the dealer is honest, then at least n−f parties will generate dealing verification shares,

and the assumption that f < n/3 guarantees that the dealer will obtain 2f + 1 such shares
which can then be aggregated into a certificate.

If the dealer is corrupt but the dealing is accompanied by a verification certificate, this
guarantees that at least (2f + 1)− f = f + 1 honest parties hold correct shares. If at some
later time an honest party Pj holding an incorrect share needs to obtain its correct share,
it can issue a “complaint”. Such a complaint is a non-interactive zero-knowledge proof that
its ciphertext cj decrypts to an incorrect share. Party Pj can broadcast its complaints to all
parties. If an honest party receives a valid complaint against the dealer, it will broadcast
its share to all parties — this is safe to do, since at this point we know the dealer is corrupt.
Eventually, party Pj will obtain f + 1 correct shares and can reconstruct its own correct
share. Thus, once a certified dealing is accepted, all honest parties will eventually obtain
correct shares.

To implement the above, we need an appropriate encryption scheme as well as a corre-
sponding non-interactive zero-knowledge proof to verifiably decrypt ciphertexts. The paper
[BBS03] studies the problem of multi-recipient encryption, which is essentially the same
problem we are dealing with here, except that we have the extra complication of verifiable
decryption. Below, in Section 4, we propose a “multi-encryption gadget” as a stand-alone
cryptographic primitive that essentially provides multi-recipient encryption with verifiable
decryption. We also propose efficient instantiations that are secure under reasonable as-
sumptions (but in the random oracle model).

Using the multi-encryption gadget presented below, the above protocol can be imple-
mented so that its communication complexity is O(n2λ), where λ is the security parameter.
As it stands, our protocol does not satisfy the standard definition of AVSS (see [CKLS02]).
To transform it into a true AVSS protocol, we would have to layer on top of it a protocol
for reliable broadcast, to ensure that if one party obtains a certified dealing, then all parties
eventually obtain the same dealing. For this transformation, we could use a communication-
efficient reliable broadcast protocol, such as on in [DXR21] or [DXR22], obtaining a protocol
that essentially satisfies the standard definition of AVSS (it achieves only computational
privacy), and still has a communication complexity of O(n2λ). We do not actually apply
this transformation in our ECDSA signing protocol, as we rely on the stronger primitive of
ACS to deliver these dealings (but in an implementation of ACS such as Dumbo2 [GLT+20],
we would end up employing just such a communication-efficient reliable broadcast protocol
for essentially the same purpose). Also, our concrete protocol has additional properties not
guaranteed by the standard definition of AVSS that we will be exploiting.

We mention a few other AVSS protocols in the literature. The paper [CKLS02] gives
the first practical construction of an AVSS protocol, but is has a communication complexity
of O(n3λ). The paper [BDK12] gives an AVSS protocol with communication complexity
O(n2λ); however, it relies on compact polynomial commitments as in [KZG10]. As such, it
requires that G supports a pairing, which makes it unusable for us (ECDSA typically is used
with curves that do not support pairings). The paper [AVZ21], gives an AVSS protocol with
communication complexity O(n2 log n · λ). This protocol does not require that G supports
a pairing, but it is a bit more complicated than ours and relies on Bulletproofs [BCC+16,
BBB+18]. The paper [Gro21] also gives (among other things) an AVSS protocol that is
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essentially noninteractive, which is very appealing; however, the communication complexity
of this protocol is significantly higher than ours. We note that the AVSS protocols in both
[AVZ21] and [Gro21] allow higher reconstruction thresholds than f + 1, which is essential
for some applications, but we do not need this property in our ECDSA signing protocol.

3.5 Sketch of Random protocol

To implement Random, we use the Pedersen-based AVSS scheme above. Each party gener-
ates a dealing and sends this to all other parties. Upon receiving such a dealing, if its share
is correct, each party will send a verification share to all other parties. Using a consensus
subprotocol (specifically, an ACS protocol as discussed in Section 1.1), the parties agree on
a batch of f + 1 dealings (each accompanied by a verification certificate). Each party can
then that obtain its share of the secret by adding up its individual shares from each dealing
in the batch (using the complaint mechanism sketched above, if necessary). Since at least
one of these dealings is generated by an honest party, the secret will indeed be random.
Since we are using Pedersen’s VSS, the adversary can neither learn any information about
the secret nor influence its distribution in any way.

3.6 Using Feldman instead of Pedersen and an attack on ECDSA

As outlined in Section 2.5.1, we use the above protocol for Random, which is based on
Pedersen VSS, and then run protocol OpenPower to reveal the public key. One may be
tempted to simplify the key generation protocol by instead using a version of Random based
on Feldman VSS, which would allow us to skip the OpenPower subprotocol. While for some
discrete-log based cryptosystems this may be secure (see Section A.3.6), it turns out that
for ECDSA, this would be completely insecure. Here is an attack.

Suppose that during key generation step, there is a set S of f dealings generated by
honest parties, and that the constant terms of the polynomial commitments of these dealings
multiply out to R ∈ G. Let ρ := C(R) ∈ Zq, where C is the ECDSA conversion function.
Let φ be the hash of a message m for which the adversary would like a signature. The
adversary generates a dealing of the secret −φ/ρ, and then arranges that the batch of
dealings used to generate the signing key is the set S plus this dealing of −φ/ρ. Thus,
the public key is u := Rg−φ/ρ. The adversary may simply now output the signature (ρ, σ),
where σ := ρ. This is a valid signature on m, since

gφuρ = gφ(Rg−φ/ρ)ρ = Rρ = Rσ,

as required.
Note that a slight variation of the same attack works for the protocol in [Ped91b] based

on Feldman VSS, assuming a “rushing” adversary in the synchronous communication model.

4 MEGa: a multi-encryption gadget

As discussed in Section 3.4, we want a cryptographic primitive that essentially provides
multi-recipient encryption with verifiable decryption. We define a special multi-encryption
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gadget (MEGa), with usage and security properties that does just that. As already men-
tioned in Section 3.4, multi-recipient encryption was studied in [BBS03]. Just like [BBS03],
the goal is to make multi-recipient encryption more efficient than simply performing inde-
pendent encryptions to each recipient. Also, just like [BBS03], we allow for “rogue key” and
“insider” attacks, meaning that public encryption keys for corrupt parties may be chosen
adversarially, possibly in a way that depends on the public keys of the honest parties. In
contrast to [BBS03], we do not require parties to perform a proof of possession of their
decryption keys. Our notion of a MEGa has an important additional feature not studied
in [BBS03], namely, verifiable decryption, which allows a recipient to securely prove that a
ciphertext it receives decrypts to a certain value.

Basic syntax of a MEGa. Formally, a MEGa E = (G,E,D,DP ,DV ,DfP) consists of
the following algorithms.

• A probabilistic key generation algorithm G that is invoked as (pk , sk)
$← G(),

where pk is a public key and sk is a secret key.

• A probabilistic encryption algorithm E that is invoked as

(χ; c1, . . . , cn)
$← E(ad ; (id1, pk1,m1), . . . , (idn, pkn,mn)),

where each id j ∈ ID is an identity, each pk j ∈ PK is a public key, and each mj ∈M
is a plaintext or message; also, ad ∈ AD is associated data. We call ID the identity
space, PK the public-key space,M the message space, and AD the associated
data space. The value χ is called the common component of the ciphertext, while
each cj is called an individual component of the ciphertext.

Note that the value n is not a fixed parameter: the encryption algorithm may be
called with any number of ID/PK/message triples.

• A deterministic decryption algorithm D that is invoked as

m← D(ad , id , sk , χ, c),

where ad ∈ AD and id ∈ ID. The value sk is a secret key as output by G. The value
χ is a common component of the form output by E. The value c is an individual
component of the form output by E. Note that D returns either m ∈M or a special
symbol reject /∈M.

• A probabilistic decryption prover algorithm DP that is invoked as

π
$← DP(ad , id , sk , χ, c),

where ad ∈ AD and id ∈ ID. The value sk is a secret key as output by G. The value
χ is a common component of the form output by E. The value c is an individual
component of the form output by E.
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• A deterministic decryption verification algorithm DV that is invoked as

result ← DV (ad , id , pk , χ, c, π),

where result ∈ {accept, reject}, ad ∈ AD, and id ∈ ID. The value pk is a public
key as output by G. The value χ is a common component of the form output by E.
The value c is an individual component of the form output by E. The value π is of
the form output by DP .

• A deterministic decrypt-from-proof algorithm DfP that is invoked as

m← DfP(ad , id , pk , χ, c, π),

where m ∈ M∪ {reject}, ad ∈ AD, and id ∈ ID. The value pk is a public key as
output by G. The value χ is a common component of the form output by E. The
value c is an individual component of the form output by E. The value π is of the
form output by DP .

Essential properties of a MEGa. We next define the essential properties that any
MEGa should satsify.

Correctness: For all identities id1, . . . , idn ∈ ID, for all plaintexts m1, . . . ,mn ∈ M,
for each j∗ ∈ {1, . . . , n}, for all possible outputs (pk j∗ , sk j∗) of G(), for all pub-
lic keys {pk j}j 6=j∗ , for all ad ∈ AD, for all possible outputs (χ; c1, . . . , cn) of
E(ad ; (id1, pk1,m1), . . . , (idn, pkn,mn)) we have

D(ad , id j∗ , sk j∗ , χ, cj∗) = mj∗ .

Completeness: For all identities id ∈ ID, for all possible outputs (pk , sk) of G(), for all
ad ∈ AD, for all possible χ, c, we have

• Pr
[

DV
(
ad , id , pk , χ, c, DP(ad , id , sk , χ, c)

)
= accept

]
= 1, and

• Pr
[

DfP
(
ad , id , pk , χ, c, DP(ad , id , sk , χ, c)

)
= D(ad , id , sk , χ, c)

]
= 1.

Soundness: It is infeasible for an efficient adversary to win the following game.

• The adversary chooses id1, . . . , idn ∈ ID, pk1, . . . , pkn ∈ PK, m1, . . . ,mn ∈ M,
ad ∈ AD, and gives these values to the challenger.

• The challenger then computes

(χ; c1, . . . , cn)
$← E(ad ; (id1, pk1,m1), . . . , (idn, pkn,mn)),

and gives (χ; c1, . . . , cn) to the adversary.

• The adversary outputs j, π, and wins the game if DV (ad , id j , pk j , χ, cj , π) =
accept and DfP(ad , id j , pk j , χ, cj , π) 6= mj .
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Associated-data-only CCA (ADO-CCA) security: It is infeasible for an efficient ad-
versary to guess the hidden bit b ∈ {0, 1} in the following game, in which the adversary
makes a sequence of queries, each of the following form.

• Register honest user. Adversary gives id ∈ ID to challenger, where id has
not been previously registered to either an honest or corrupt user. Challenger

generates (pk , sk)
$← G() and gives pk to adversary.

• Register corrupt user. Adversary gives id ∈ ID, pk ∈ PK to challenger, where
id has not been previously registered to either an honest or corrupt user.

• Encryption query. Adversary gives the following to the challenger:

ad , id1,m
(0)
1 ,m

(1)
1 , . . . , idn,m

(0)
n ,m(1)

n ,

where ad ∈ AD, id1, . . . , idn ∈ ID are distinct registered identities, each

m
(0)
j ,m

(1)
j ∈M.

The challenger computes

(χ; c1, . . . , cn)
$← E(ad ; (id1, pk1,m1), . . . , (idn, pkn,mn)),

where pk j is the public key associated with id j , and

mj :=

{
m

(b)
j if id j is registered to an honest user,

m
(0)
j if id j is registered to a corrupt user,

and sends (χ; c1, . . . , cn) to the adversary.

• Decryption query. Adversary gives (ad , id , χ, c) to the challenger, where ad was
not previously submitted as part of an encryption query, and id is registered to
an honest user.

The challenger computes m ← D(ad , id , sk , χ, c), where sk is the secret key
corresponding to id , and gives m to the adversary.

• Decryption proof query. Adversary gives (ad , id , χ, c) to the challenger, where ad
was not previously submitted as part of an encryption query, and id is registered
to an honest user.

The challenger computes π
$← DP(ad , id , sk , χ, c), where sk is the secret key

corresponding to id , and gives π to the adversary.

NOTES:

1. The ADO-CCA security game corresponds to a setting where there is a PKI that
securely associates public keys to identities. As stated, it does not require a proof of
possession, or PoP, of any kind (although this can be added, it will not be necessary
for our constructions).

2. ADO-CCA security is weaker than full CCA security, in that the adversary is more
restricted in its decryption (and decryption proof) queries in the former than in the
latter. ADO-CCA security is sufficient for our applications.
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3. ADO-CCA security is analogous to the notion of tag-based CCA security studied in
[MRY04]. Indeed, one can apply the same transformation used in [MRY04], “wrap-
ping” the entire ciphertext with a strongly secure one-time signature, to transform an
ADO-CCA secure scheme into a fully CCA secure scheme.

4. While our focus here is on security in the static corruption model, in Section 10.1.1 we
consider ADO-CCA security in the adaptive corruption model, and we will see that
the scheme we present below in Section 4.1 is also secure in this model.

4.1 A MEGa implemention

We present here a concrete MEGa Edh. We assume the message spaceM of the MEGa is a
group (with the group operation written additively). We assume a group G of prime order
q generated by g ∈ G. Note that the group G does not necessarily have any relation to
the group G introduced in Section 2.3. We also assume three hash functions, which will be
modeled as random oracles:

• a hash function HM, whose output space is M;

• a hash function HG, whose output space is G;

• a hash function Hfs, which will be used implicitly in the construction of Fiat-Shamir
proofs [FS86].

Key generation. A secret key for the scheme is α ∈ Zq, and the corresponding public
key is u := gα ∈ G.

Encryption. Given identities id1, . . . , idn ∈ ID, public keys u1, . . . , un ∈ G, plaintexts
m1, . . . ,mn ∈ M, along with and associated data ad ∈ AD, the encryption algorithm first
computes

β
$← Zq, v← gβ ∈ G,

along with a PoP for the ephemeral encryption key, which is computed as

πenc ← (v′, pok enc),

where
g′ := HG(enckey-pop, ad , v) ∈ G, v′ := (g′)β ∈ G,

and
pok enc

$← PoK[x := β : v = gx, v′ = (g′)x]

is a standard proof of knowledge based on the Fiat-Shamir heuristic [FS86]. The encryption
algorithm then computes

cj ← mj +HM(derive-key, ad , id j , uj , v, u
β
j ) ∈M (j = 1, . . . , n),

and outputs the ciphertext
(v, πenc; c1, . . . , cn).

Here, χ = (v, πenc) is the common component of the ciphertext.
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Decryption. Given associated data ad ∈ AD, an identity id , a secret key α, along with
χ = (v, πenc) and c ∈ M, the decryption algorithm first validates the proof πenc. If the
proof is invalid, the decryption algorithm outputs reject. Otherwise, if the proof is valid,
the decryption algorithm outputs

m := c−HM(derive-key, ad , id , u, v, vα).

Similarly, on the same inputs, the decryption prover algorithm first validates the proof
πenc. If the proof is invalid, the decryption prover algorithm outputs reject. Otherwise, it
outputs

πdec ← (w, pokdec),

where
w := vα

and
pokdec

$← PoK[x := α : u = gx,w = vx].

The decryption verification algorithm validates the proof πdec, while the decrypt-from-proof
algorithm computes

m← c−HM(derive-key, ad , id , u, v,w),

unless πdec = reject, in which case it outputs reject.

4.2 Analysis

In this section, we analyze the MEGa Edh described in Section 4.1. The correctness, com-
pleteness, and soundness properties are easy to verify, and we leave this to the reader. We
focus here on proving the ADO-CCA security property.

The Diffie-Hellman operator. For α,β ∈ Zq, define

dh(gα, gβ) := gαβ.

A triple (u, v,w) ∈ G3 is called a DH-triple if w = dh(u, v).

The CDH, ICDH, and I2CDH assumptions.

• The CDH assumption says that given random u, v ∈ G, it is infeasible to compute
dh(u, v).

• The ICDH assumption says that given random u, v ∈ G, it is infeasible to compute
dh(u, v), even given access to an oracle that determines whether a given triple is a
DH-triple, with the restriction that one of the first two entries in the triple must be
u.

• The I2CDH assumption says that given random u, v ∈ G, it is infeasible to compute
dh(u, v), even given access to an oracle that determines whether a given triple is a
DH-triple, with the restriction that one of the first two entries in the triple must be
either u or v.
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NOTES:

1. ICDH is what is used in the security proof of ECIES [ABR01], and is a fairly standard
assumption.

2. Both ICDH and I2CDH are falsifiable assumptions [Nao03].

3. Both ICDH and I2CDH are equivalent to CDH if G supports a pairing.

Theorem 2. Under the ICDH assumption for G, and modeling HM, HG, and Hfs as
random oracles, Edh is ADO-CCA secure.

Proof. Given an adversary with non-negligible advantage, we are given random u∗, v∗ ∈ G
and we want to compute w∗ = dh(u∗, v∗) ∈ G with nearly the same advantage. We are also
given access to an oracle that determines whether a given triple is a DH-triple, but we will
only invoke this on triples of the form (·, v∗, ·), which satisfies the constraints of the ICDH
assumption.

• Whenever an honest user id is registered, we program its public key to be of the form
u := u∗ · gσ for random σ ∈ Zq.

• Whenever the adversary queries the random oracle HG at a new input
(enckey-pop, ad , v), we program HG to output g′ := u∗ ·gλ for random λ ∈ Z∗q on that
input.

• In processing an encryption query, we program the ephemeral public key as v :=
v∗ · gτ for random τ ∈ Zq. We also program the random oracle HG on input
(enckey-pop, ad , v) to output g′ := gρ, for random ρ ∈ Zq (note that with over-
whelming probability, HG will not have been already programmed at this input).
This allows us to compute the corresponding group element v′ := dh(g′, v) = vρ. We
can generate the corresponding proof pok enc using a ZK simulator.

On the one hand, when generating a ciphertext component cj corresponding to an
honest user, we simply generate cj ∈ M at random. Suppose this honest user has a
public key u = u∗·gσ as above. The adversary should never notice the difference, unless
it were to evaluate the random oracle HM at the point (derive-key, ad , id , u, v,w),
where

w = dh(u, v) = dh(u∗gσ, v∗gτ) = dh(u∗, v∗)(u∗)τ(v∗)σgστ.

This would allow us to compute dh(u∗, v∗). In fact, we can even use the DH-triple
oracle to efficiently recognize the solution, invoking it on the triple

(u∗, v∗,w/((u∗)τ(v∗)σgστ)).

On the other hand, when generating a ciphertext component cj corresponding to a
corrupt user, we also generate cj ∈M at random; however, we have to use our oracle
for recognizing DH-triples to “backpatch” the random oracle HM if and when the
adversary ever queries it at the appropriate point (derive-key, ad , id , u, v,w), where
u is the corrupt user’s public key, and where

w = dh(u, v) = dh(u, v∗gτ) = dh(u, v∗)uτ.

27



So whenever the adversary queries HM at a point (derive-key, ad , id , u, v,w) for the
given values ad , id , u, v and any w, we invoke the DH-triple oracle on the triple

(u, v∗,w/uτ).

If this is a DH-triple, we program HM to return cj −mj at that point.

• Now consider a decryption or decryption proof query. We are given associated data
ad ∈ AD, the identity id of an honest user, χ = (v, πenc), where πenc = (v′, pok enc),
and c ∈M.

We may assume that HG(enckey-pop, ad , v) has been programmed to output g′ :=
u∗ · gλ for random λ ∈ Z∗q (since ad was not used in a previous encryption query, HG

will not be programmed as in an encryption query, but rather as in an adversarial
query to HG). This, together with the soundness property of the PoK pok enc, implies
that

v′ = dh(g′, v) = dh(u∗gλ, v) = dh(u∗, v)vλ.

Suppose that the public key associated with id is u = u∗ · gσ. To decrypt or provide
a decryption proof, it suffices to compute

w = dh(u, v) = dh(u∗gσ, v) = dh(u∗, v)vσ = v′vσ−λ.

For the decryption proof, we also need to generate a PoK, but this can again be done
using a ZK simulator.

The above is not really a complete proof. Here is a more careful sequence-of-games
argument. This argument shows that for the PoKs, we only need soundness and ZK, and
do not need simulation soundness. It is best to avoid simulation soundness, because with
simulation soundness, more care must be taken to ensure that the implementation satisfies
it (this usually means that we need to make sure enough stuff is being fed into the hash
function used in Fiat-Shamir).

Game 0: the original attack game.

Game 1: program the random oracle HG and the public keys as indicated, but otherwise
use logg(u

∗) and logg(v
∗) in all computations. There is some negligible probability

that programming HG fails, but otherwise Games 0 and 1 are equivalent.

Game 2: in processing decryption proof queries, replace the generated PoKs pokdec by
simulated proofs.

The ZK property of pokdec guarantees that Games 1 and 2 are essentially equivalent.

Game 3: in processing decryption and decryption proof queries, compute w as v′vσ−λ as
indicated above.

The soundness of the PoKs pok enc guarantees that Games 2 and 3 are essentially
equivalent.
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Game 4: in processing encryption queries, replace the generated PoKs pok enc by simulated
proofs.

The ZK property of pok enc guarantees that Games 3 and 4 are essentially equivalent.

Game 5: in processing encryption queries, generate the ciphertext cj directed towards
corrupt users as indicated, backpatching the random oracle indicated. For this, we
need a DH-triple oracle for triples of the form (·, v∗, ·). We know logg(v

∗), so we can
still process these queries ourselves.

Game 6: in processing encryption queries, generate the ciphertext cj directed towards
honest users at random.

Any difference between Games 5 and 6 can be used to break ICDH, using the algorithm
outlined above.

One sees that in this game, the adversary’s advantage in guessing the hidden bit b is
0.

4.3 An even simpler MEGa implementation

It turns out that in our application, we can get by with a slightly weaker notion of security
of a MEGa, and because of that, we can simplify the MEGa implementation.

The simplification to the MEGa Edh is that we can completely drop the component πenc

from the ciphertext. This means we do not need to compute g′, v′, or the PoK pok enc, and
we do not need the hash function HG. Let us call this simplified MEGa E ′dh.

The reason we can do this is essentially because in our application, an honest party
will only generate a decryption proof if it knows that at least one other honest party has
successfully decrypted a ciphertext with the same associated data and common component.
Specifically, if an honest party needs to run DP(ad , id , sk , χ, c), it is guaranteed that some
other honest party has run D(ad , id ′, sk ′, χ, c′), with matching ad and χ components, and
that other party did not find “junk” there.

With regard to our particular implementation and the proof outline in Theorem 2, what
this means is that in processing a decryption proof query (ad , id , v, c), we know that (with
overwhelming probability) the adversary must have already evaluated HM at the point
(derive-key, ad , id ′, u′, v,w′). In the security proof, we suppose that the honest party with
identity id has public key u = u∗gσ and the other honest party with identity id ′ has public
key u′ = u∗gσ

′
, and that

w′ = dh(u′, v) = dh(u∗gσ
′
, v) = dh(u∗, v)vσ

′
,

and using an appropriate DH-triple oracle, we can identify this query to HM. Using this
information, we can compute

w = dh(u, v) = dh(u∗gσ, v) = dh(u∗, v)vσ = w′vσ−σ
′
.

Note also that to process decryption queries (as opposed to decryption proof queries),
we can use an appropriate DH-triple oracle to help us backpatch the random oracle HM
— we do not need to produce a group element, like we do in processing a decryption proof
query.
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NOTES:

1. While the inclusion of ad in HM is essential for the simpler MEGa E ′dh, it is not
needed in the original MEGa Edh; we included it there only to minimize the differences
between the two.

4.4 Formalizing a weaker security definition

To formalize this weaker security notion in a more general sense, let us suppose we have a
particular, efficiently computable sensibility predicate S(m,x), which takes as input a
message m ∈M and context x ∈ X , for some finite set X . We can also define S(reject, x)
to be false for all x ∈ X .

The assumption we will make on S is that for every x ∈ X , if m ∈ M is randomly
chosen, then S(m,x) is true with only negligible probability. In our eventual application,
M := Zq × Zq, X := G, and

S( (µ, µ′), w ) :=

{
true if gµhµ

′
= w,

false otherwise.
(2)

Here, h ∈ G is the random generator used in Pedersen’s VSS (see Section 3.3).
The attack game defining ADD-CCA security is modified as follows.

• A decryption query is now of the form (ad , id , χ, c, x), where x ∈ X . The ciphertext
is decrypted just as before to obtain m ∈ M∪ {reject}, but if S(m,x) is false, the
challenger returns reject to the adversary instead of m.

• A decryption proof query (ad , id , χ, c) is allowed only if there was a previous decryption
query of the form (ad , id ′, χ, c′, x′), that is, with matching ad and χ components, such
that the result m′ of this previous decryption query was not reject. The other
preconditions for allowing such a query remain the same.

We say that a MEGa is ADO-CCA secure with respect to a given sensibility
predicate if any efficient adversary’s advantage in guessing the hidden bit b is negligible.

Theorem 3. Consider the above simplified MEGa E ′dh, and consider any sensibility predi-
cate S with the property that for every x ∈ X , if m ∈M is chosen at random, then S(m,x)
is true with negligible probability. Under the I2CDH assumption for G, and modeling HM
and Hfs as a random oracle, E ′dh is ADO-CCA secure with respect to S.

Proof. Given an adversary with non-negligible advantage, we are given random u∗, v∗ ∈ G
and we want to compute w∗ = dh(u∗, v∗) ∈ G with nearly the same advantage. We are also
given access to an oracle that determines whether a given triple is a DH-triple, but we will
only invoke this on triples of the form (·, v∗, ·) or (u∗, ·, ·), which satisfies the constraints of
the I2CDH assumption.

• Just as in Theorem 2, whenever an honest user id is registered, we program its public
key to be of the form u := u∗ · gσ for random σ ∈ Zq.
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• Just as in Theorem 2, in processing an encryption query, we program the ephemeral
public key as v := v∗ · gτ for random τ ∈ Zq.

Ciphertext components c1, . . . , cn are generated just as in Theorem 2.

• Now consider a decryption query. We are given associated data ad ∈ AD, the identity
id of an honest user, χ = v ∈ G, and c ∈ M. We are also given a context x ∈ X for
the sensibility predicate.

Suppose that the public key associated with id is u = u∗ · gσ.

To carry out the decryption, we need to be able to recognize if and when the adversary
makes the random oracle query

HM(derive-key, ad , id , u, v,w),

where
w = dh(u, v) = dh(u∗gσ, v) = dh(u∗, v)vσ.

We can do this by using our DH-triple oracle to test whether

(u∗, v,w/vσ)

is a DH-triple.

On the one hand, if no such random oracle query has already been made, it is safe
to reply to the decryption query with reject, since the resulting plaintext would be
random and would be nonsensical with overwhelming probability.

On the other hand, if such a random oracle query has already been made, then we
decrypt as usual, computing

m← c−HM(derive-key, ad , id , u, v,w).

• Now consider a decryption proof query. We are given associated data ad ∈ AD, the
identity id of an honest user, χ = v ∈ G, and c ∈M. We also assume that there was
a previous corresponding decryption query (ad , id ′, χ, c′, x′) which yielded something
besides reject. Suppose the public key associated with id ′ is u′ = u∗gσ

′
. This means

that the adversary has already queried HM at the point

(derive-key, ad , id ′, u′, v,w′),

where
w′ = dh(u′, v) = dh(u∗gσ

′
, v) = dh(u∗, v)vσ

′
.

In fact, in processing the corresponding decryption query, such a query was already
identified. If u = u∗gσ is the public key associated with id , then we can compute the
required group element

w = dh(u, v) = dh(u∗gσ, v) = dh(u∗, v)vσ = w′vσ−σ
′
.

31



5 Roadmap and setup assumptions

In this and the following sections, we show how to implement the basic subprotocols in
Section 2.4. The goal is to realize an ideal functionality Fmpc that processes sequences of
operations Random, Open, OpenPower, Mul, as well as linear and affine operations. These
operations were introduced in Section 2.4, and more of the details of Fmpc were sketched in
Section 2.6.2. Section 8 describes the details for the basic subprotocols

This section reviews the setup assumptions needed to realize Fmpc. Section 6 described
the precise syntactic structure of a sharing and reviews some basic notions of polynomial
interpolations. Section 7 describes the precise syntax for dealings (and batches of dealings),
and presents the details of the AVSS-like protocol sketched in Section 3.4, making use of
the MEGa primitive described in Section 4. Section 8 describes our implementation of the
basic subprotocol Random, Open, OpenPower, Mul. It also describes protocols for resharing,
for settings where proactive security is desired. We do not explicitly describe protocols
for linear and affine operations — as will be clear, these are trivial local computations.
Section 9 provides a proof that our implementation securely realizes Fmpc. Section 10
discusses adaptive and proactive security, and in particular, shows that our protocol is
secure assuming adaptive corruptions under a stronger (but reasonable) assumption on the
ECDSA signature scheme. Section A (in the appendix) presents more detailed specifications
that are more specific to our implementation on the Internet Computer.

In addition to the assumptions made in Section 2.3, we make the following assumptions.

• We assume a MEGa E = (G,E,D,DP ,DV ,DfP) that satisfies all of the security
properties presented in Section 4. We assume the message space of E is Zq × Zq.

• We assume a secure multi-signature scheme. We will use this multi-signature scheme in
two ways: both as an ordinary signature scheme, and as a (2f+1)-threshold signature
scheme (alternatively, we could use separate signature schemes for these purposes).
For this, we can use BLS multi-signatures [BLS01, RY07]. Alternatively, instead
of BLS multi-signatures, one can just use an ordinary signature scheme, in which
case a (2f + 1)-threshold signature is just a collection of 2f + 1 ordinary signatures.
While less compact than a BLS multi-signature, this implementation may be more
computationally efficient.

• We assume a collision resistant hash function H.

• We assume a random generator h ∈ G is provided as a system parameter or com-
mon reference string.

In practice, h could be computed as the output of a hash function.

• We assume decentralized key provisioning, meaning that

– each honest party Pi generates a public-key/secret-key pair for both the MEGa
and the multi-signature scheme, and is also assigned an ID id i (chosen adversar-
ially);
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– the adversary is given all of the public keys from the honest parties, and chooses
public keys and IDs for the corrupt parties, so that the IDs id1, . . . , idn are
distinct;

– each honest party is given the public keys and IDs for all parties P1, . . . , Pn.

Note that the specific ordering of the parties P1, . . . , Pn is arbitrary, and may be
determined based in the IDs of the parties after the IDs are chosen (for example, by
lexicographic ordering of the IDs). This ordering is important in the ordering of the
ciphertexts c1, . . . , cn in the MEGa, as well as in determining the evaluation points in
Shamir secret sharing.

Although we describe here the system in terms of a single network comprising the
parties P1, . . . , Pn, we actually envision a system comprising many such networks.
IDs should be globally unique across all networks, and in each network, less than a
third of its members are corrupt.

• We assume a random oracle that is used to model a hash function as used in Fiat-
Shamir-style proofs.

• Finally, we assume a subprotocol for ACS consensus. We discussed ACS very
briefly in Section 1.1. We can describe the security properties of ACS very succinctly
by means of an ideal functionality Facs:

– Each party Pi (both honest and corrupt) inputs a message mi to Facs, and Facs

gives the message (proposal, i,mi) to the ideal-world adversary S.

– At some point after Facs has received inputs from a subset L∗ of at least k parties,
where k ≤ n − f is a size parameter, S chooses a subset L ⊆ L∗ of size k and
sends this to Facs.

– Facs outputs {m`}`∈L to each honest party, at a time determined by S.

NOTES:

1. Facs does not provide privacy.

2. The size parameter k is specific to each protocol instance.

3. All input messages may be subject to an external validity predicate. The specifics
of this predicate are application dependent, and may depend on the public keys
and IDs setup by the decentralized key provisioning.

4. Besides realizing the ideal functionality Facs, and ACS protocol should provide
liveness, which can be formulated as follows:

– the communication complexity per protocol instance is polynomial bounded
with overwhelming probability, and

– if all messages associated with a protocol instance sent by honest parties to
honest parties have been delivered, then all honest parties have terminated
that protocol instance.
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5. A protocol implementing Facs may have further setup assumptions of its own.
The current state of the art in practical ACS is Dumbo2 [GLT+20]. With over-
whelming probability, this protocol takes a constant number of rounds and has a
communication complexity of O(n2|m|+ n3λ), where |m| a bound on the length
of each input, and λ is the security parameter.

6. The most practical protocols for implementing Facs still rely on partial synchrony
[DLS88] for liveness. Examples include [CL99, BKM18, YMR+18, CDH+21].
However, the gap between the performance of purely asynchronous and partial
synchronous protocols is narrowing [GLL+22].

7. A special case of ACS, in which the size parameter k = 1, is called Multi Valued
Byzantine Agreement (MVBA). With overwhelming probability, the proto-
col in [LLTW20] takes a constant number of rounds and has a communication
complexity of O(n|m|+ n2λ).

6 Sharings and interpolation

6.1 Structure of a sharing

A sharing consists of public data (agreed upon by all parties) and private data (the
“share” held by each party). The public data consists of

• an identifier sharingID , and

• a polynomial commitment C = (C0, . . . , Cf ) ∈ Gf+1.

The private data (or share) for party Pj is (µj , µ
′
j) ∈ Zq × Zq satisfying

C(j) = gµjhµ
′
j . (3)

6.2 Interpolation

Let I ⊆ Zq, and let k := |I| > 0. Let j ∈ Zq. Then there are uniquely defined and efficiently

computable Lagrange coefficients λ
(I/j)
i ∈ Zq for i ∈ I, which satisfy the property

ω(j) =
∑
i∈I

λ
(I/j)
i ω(i)

for any polynomial ω ∈ Zq[x] of degree less than k.
Algorithm interp: this takes as input a nonempty set S of pairs of the form

(i, νi) ∈ Zq × Zq,

where the i-values are distinct. Let I be the set of all such i-values. The algorithm outputs
the value ν ∈ Zq, where

ν ←
∑
i∈I

λ
(I/j)
i νi.

Thus, if νi = f(i) for some polynomial f ∈ Zq[x] of degree less than |I|, then ν = f(j).
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Algorithm interp2 : this takes as input a nonempty set S of triples of the form

(i, νi, ν
′
i) ∈ Zq × Zq × Zq,

where the i-values are distinct. Let I be the set of all such i-values. The algorithm outputs
the pair (ν, ν ′) ∈ Zq × Zq, where

ν ←
∑
i∈I

λ
(I/j)
i νi

and
ν ′ ←

∑
i∈I

λ
(I/j)
i ν ′i.

Thus, if νi = f(i) and ν ′i = f ′(i) for some polynomials f ∈ Zq[x] and f ′ ∈ Zq[x] of degree
less than |I|, then ν = f(j) and ν ′ = f ′(j).

Algorithm interpExp: this takes as input a nonempty set S of pairs of the form

(i, vi) ∈ Zq ×G,

where the i-values are distinct. Let I be the set of all such i-values. The algorithm outputs
the value v ∈ G, where

v ←
∏
i∈I

(vi)
λ
(I/j)
i .

Thus, if vi = gf(i) ∈ G for some polynomial f ∈ Zq[x] of degree less than |I|, then v =
gf(j) ∈ G.

7 Dealings and batches of dealings

7.1 Dealings

A dealing is a tuple of the form

d = (dealing, batchID , dealerID ,C, (χ; c1, . . . , cn)), (4)

where

• batchID is an identifier that specifies the batch of dealings to which this belongs —
more on this below (note that a batchID may be associated with a sharingID),

• dealerID is the identity of a specific party Pi,

• C ∈ Gf+1,

• (χ; c1, . . . , cn) is a ciphertext of the form output by the MEGa.
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7.2 Dealing generation algorithm

The input to the dealing generation algorithm is (µ0, µ
′
0) ∈ Zq × Zq, along with a batchID

and dealerID , and it runs as follows:

α0 ← µ0, α′0 ← µ′0
α1, . . . , αf

$← Zq
α′1, . . . , α

′
f

$← Zq
ω ← α0 + α1x+ · · ·+ αfx

f ∈ Zq[x]
ω′ ← α′0 + α′1x+ · · ·+ α′fx

f ∈ Zq[x]

C← gω · hω′ ∈ Gf+1

(χ; c1, . . . , cn)
$← E( (batchID , dealerID); (id1, pk1, (ω(1),ω′(1))), . . . , (idn, pkn, (ω(n),ω′(n))) )

output (dealing, batchID , dealerID ,C, (χ; c1, . . . , cn))

If µ0 and µ′0 are chosen at random, then this is called a random dealing.

NOTES:

1. (batchID , dealerID) is used as associated data in the MEGa encryption algorithm.

2. By including dealerID in the associated data, we effectively prevent a corrupt dealer
from copying a dealing from an honest dealer, or misusing it in any other way. This
is essential, as in the security proof, for any dealing from a party P , if P is honest,
we replace all encryptions to honest parties with garbage, while if P is corrupt, we
decrypt all encryptions to honest parties. In the static corruption model, the ADO-
CCA security property of the underlying MEGa justifies this step in the security
proof.

3. Including batchID in the associated data is not strictly necessary, but it costs nothing
and supports to a certain degree proactive security measures. Assuming batchID
corresponds to a certain time frame, we effectively prevent corrupt dealer from copying
a dealing from an honest dealer, or misusing it in any other way, even if that honest
dealer is a version of itself from a previous time frame. See Section 10.2.

4. Stronger security properties could be obtained by applying the [MRY04] transforma-
tion to obtain a fully CCA secure MEGa. One could even use this technique to “wrap”
the entire dealing, including the polynomial commitment. This does not really add
any extra security, except possibly a somewhat tighter security reduction in the model
of adaptive corruption with erasures (see Section 10.1).

7.3 Dealing authenticators

A dealing authenticator for such a dealing d is a tuple of the form

(dealing-auth, batchID , dealerID , hash, contextualProof , σ),

where

• hash = H(d),
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• contextualProof is an optional NIZK whose meaning is determined by context (in-
cluding batchID , dealerID , and possibly the public data from related sharings) — this
is mainly used for the multiplication protocol, and

• σ is a valid signature under party Pi’s signature verification key on the message

(dealing-auth, batchID , dealerID , hash, contextualProof ).

Note that for a random dealing, the contextualProof is omitted.

7.4 Local verification of a dealing

A party Pj may locally verify such a dealing d by checking that
D((batchID , dealerID), sk , χ, cj) = (µj , µ

′
j) such that

C(j) = gµjhµ
′
j .

Note that (batchID , dealerID) is used as associated data in the MEGa decryption algorithm.

7.5 Dealing verification shares

Let Pj be a party and with identity verifierID . A dealing verification share from party
Pj is a tuple of the form

(dealing-verification-share, batchID , dealerID , hash, verifierID , σ), (5)

where σ is a valid signature under party Pj ’s signature verification key on the message

(dealing-verification, batchID , dealerID , hash). (6)

Such a dealing verification share is called a dealing verification share for d, if hash =
H(d) with d as in (4), with matching batchID and dealerID fields.

A quorum of dealing verification shares for a given batchID , dealerID , and hash
is a collection of 2f + 1 verification shares as in (5) with distinct verifierID fields. Such a
quorum is called a quorum of dealing verification shares for d, if hash = H(d) with d
as in (4), with matching batchID and dealerID fields.

7.6 Dealing verification certificate

A dealing verification certificate is a tuple of the form

(dealing-verification-cert, batchID , dealerID , hash, σ), (7)

where σ is a valid (2f + 1)-multi-signature (for a subset of 2f + 1 distinct parties among
P1, . . . , Pn) on the message (6). Such a dealing verification certificate is called a dealing
verification certificate for d, if hash = H(d) with d as in (4), with matching batchID
and dealerID fields.
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7.7 Dealing certification protocol

The following protocol allows a party to obtain a dealing verification certificate on its own
dealing. There will be one instance of the protocol per batchID and dealerID . If dealerID
is the ID of party Pi, such an instance runs as follows:

1. Party Pi (the designated dealer) takes as input a dealing d and a dealing authenticator
da for d. The dealing d should have been generated by Pi with the given batchID and
with dealerID := id i.

Party Pi broadcasts d and da to all parties.

2. Each party Pj : upon receiving a dealing d

• with the given batchID and dealerID ,

• along with a dealing authenticator da for d,

• such that d passes Pj ’s local verification test,

• and Pj has not already broadcast a verification share for a dealing with the given
batchID and dealerID ,

party Pj generates a dealing verification share dvs for d, and sends dvs to Pi.

Note that Pj generates at most one dealing verification share in any instance of the
protocol.

3. Party Pi (the designated dealer) waits for a quorum of dealing verification shares for
d and converts this quorum into a dealing verification certificate dvc.

NOTES:

1. If a dealing has a corresponding dealing verification certificate, it is guaranteed that
f + 1 honest parties have “good” shares, in the sense that their local verification test
passed. This means that even if some honest parties have “bad” shares, that honest
party can prove that it has a bad share (using the decryption prover algorithm of the
MEGa) and request that all parties broadcast their shares, so that all honest parties
can eventually obtain “good” shares. The exact mechanism for this will be discussed
below.

7.8 Batch agreement protocol

We will use an instance of the ACS consensus protocol (see Section 1.1 as well as Section 5)
to agree on a batch of dealings. For a given batchID , each party Pi will input to the ACS
protocol a dealing d and a dealing verification certificate dvs for d, where d is of the form
(dealing, batchID , dealerID , . . .) and dealerID = id i. The ACS protocol will ensure that
Pi’s input is of the correct form. At the end of the ACS protocol, each party will obtain
a tuple of dealings (d1, . . . , dk), where each dealing is contributed by a distinct party, and
k ≤ n− f is a parameter specific to this instance of the ACS protocol.
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8 Implementing the basic subprotocols

8.1 Protocol Random

Protocol Random works as follows:

1. Each party is initialized with a sharingID .

2. Each party generates a random dealing with batchID := sharingID .

3. Each party obtains a dealing verification certificate on its dealing using the dealing
certification protocol in Section 7.7, and then obtains a batch of k := f + 1 dealings
using the batch agreement protocol in Section 7.8.

Assume the dealings in the batch are

ds = (dealing, batchID , dealerIDs,Cs, (χs; cs1, . . . , csn)), (8)

for s = 1, . . . , k.

4. Using the dealings (8), each party Pj does the following:

(a) compute msj ← D((batchID , dealerIDs), sk j , χs, csj) for s = 1, . . . , k; note that
msj = reject or is of the form msj = (µsj , µ

′
sj).

(b) run subprotocol FixBadShares (see below);

(c) construct a sharing with the given sharingID , polynomial commitment C ∈
Gf+1, and private data (µj , µ

′
j) ∈ Zq × Zq, where

C←
k∏
s=1

Cs, µj ←
k∑
s=1

µsj , and µ′j ←
k∑
s=1

µ′sj .

8.2 The FixBadShares subprotocol

For a given batchID and a set of dealings as in (8), we define a complaint by party Pj
against the party named dealerIDs as a tuple

(complaint, batchID , dealerIDs, j, πsj),

where
DV ((batchID , dealerIDs), pk j , χs, csj , πsj) = accept

and either
DfP((batchID , dealerIDs), pk j , χs, csj , πsj) = reject

or

DfP((batchID , dealerIDs), pk j , χs, csj , πsj) = (µsj , µ
′
sj) such that gµsjhµ

′
sj 6= C(j)

s .

Recall that DV is the decryption verification algorithm of the MEGa and DfP is the decrypt-
from-proof algorithm of the MEGa.
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We also define a forced opening by party Pj against the party named dealerIDs

to be a tuple of the form

(force-open, batchID , dealerIDs, j, µsj , µ
′
sj),

where
gµsjhµ

′
sj = C(j)

s .

Subprotocol FixBadShares runs as follows. Each party Pj enters the subprotocol with a
batchID , a set of dealings as in (8), and a collection of values msj for s = 1, . . . , k, where
each msj is either reject or (µsj , µ

′
sj).

Each party Pj begins by computing

badSharesj ←
{
s = 1, . . . , k : msj = reject or gµsjhµ

′
sj 6= C(j)

s

}
Party Pj then computes, for each s ∈ badSharesj , a complaint against the party named
dealerIDs, and broadcasts this complaint to all parties. Party Pj computes each such
complaint as

(complaint, batchID , dealerIDs, j, πsj),

where
πsj

$← DP((batchID , dealerIDs), sk j , χs, csj),

using the decryption prover algorithm DP of the MEGa.
After that, the main thread of party Pj waits for the condition

badSharesj = ∅

while the following logic runs concurrently on an auxiliary separate thread:

processed j ← ∅
pointssj ← ∅ for each s ∈ badSharesj

repeat
wait for either

a valid complaint of the form (complaint, batchID , dealerID t, i, πti)
where t /∈ processed j :

add t to processed j
if t /∈ badSharesj then

broadcast (force-open, batchID , dealerID t, j, µtj , µ
′
tj) to all parties

a forced opening of the form (force-open, batchID , dealerIDs, i, µsi, µ
′
si)

where s ∈ badSharesj and pointssj does not contain a triple of the form (i, ·, ·):
add (i, µsi, µ

′
si) to pointssj

if |pointssj | = k then

(µsj , µ
′
sj)← interp2 (pointssj , j) // see Section 6.2

remove s from badSharesj
forever
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NOTES:

1. The use of an auxiliary thread is more of a conceptual convenience — how the protocol
is actually structured in terms of threads is entirely implementation dependent.

2. The auxiliary thread of subprotocol FixBadShares in principle runs “forever”. However,
the set badSharesj will eventually become empty, allowing the super-protocol Random
to terminate. When that happens, subprotocol FixBadShares must still be available
just to respond to complaints from other parties. Therefore, as presented, each party
Pj must maintain “in perpetuity” all of the dealings in (8). Indeed, the dealings
themselves are required to validate the complaints.

3. Also as presented, party Pj must maintain “in perpetuity” all of its “good” shares
(µtj , µ

′
tj). However, this is not strictly necessary, as these can be obtained from the

dealings via decryption (assuming it maintains its decryption key sk j).

8.3 Protocol Open

1. Each party is given a sharingID for a previously constructed sharing. So each party
Pj has a polynomial commitment C ∈ Gf+1 (common to all parties), and its share
(µj , µ

′
j) ∈ Zq × Zq.

2. Each party Pj broadcasts the message

(share-open, j, µj , µ
′
j).

3. Each party Pj waits for f + 1 messages of the form

(share-open, i, µi, µ
′
i),

where the i-values are distinct, and C(i) = gµihµ
′
i for each i.

Once it has such a set, Pj forms the set pointsj consisting of the corresponding pairs
(i, µi), and outputs

µ← interp(pointsj) ∈ Zq.

8.4 Protocol OpenPower

1. Each party is given a sharingID for a previously constructed sharing. So each party
Pj has a polynomial commitment C ∈ Gf+1 (common to all parties), and its share
(µj , µ

′
j) ∈ Zq × Zq. Each party is also given a group element v ∈ G (common to all

parties).

2. Each party Pj computes
wj ← vµj ∈ G

and
pok j

$← PoK[x := µj , x
′ := µ′j : C(j) = gxhx

′
, wj = vx]
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and broadcasts the message

(share-open-power, j, wj , pok j).

to all parties.

3. Each party Pj waits for f + 1 messages of the form

(share-open-power, i, wi, pok i),

where the i-values are distinct, and pok i is a valid PoK for each i.

Once it as such a set, Pj forms the set pointsj consisting of the corresponding pairs
(i, wi), and outputs

w ← interpExp(pointsj) ∈ G.

8.5 Protocol Mul

1. Each party is given sharingID1 and sharingID2 for two previously constructed shar-
ings. Each party Pj has corresponding polynomial commitments D1 ∈ Gf+1 and
D2 ∈ Gf+1 (common to all parties), and corresponding shares (ν1j , ν

′
1j) ∈ Zq × Zq

and (ν2j , ν
′
2j) ∈ Zq × Zq.

Each party is also given sharingID for a new sharing, which represents the product.

2. Each party Pj computes

κj ← ν1j · ν2j ∈ Zq, κ′j
$← Zq,

and runs the dealing generation algorithm on input (κj , κ
′
j) and with batchID :=

sharingID , dealerID := id j , to get a dealing of the form

(dealing, sharingID , id j ,Cj , · ).

Party Pj also constructs a dealing authenticator that includes a contextual proof that

shows that C
(0)
j is a Pedersen commitment to the product of Pj ’s two shares. This is

a standard PoK, which can be computed as follows:

PoK
[
x2 := ν2j , x

′
2 := ν ′2j , y := κ′j − ν ′1jν2j :

gx2hx
′
2 = D

(j)
2 ,
(
D

(j)
1

)x2hy = C
(0)
j

]
.

3. Each party obtains a dealing verification certificate on its dealing using the dealing
certification protocol in Section 7.7, and then obtains a batch of k := 2f + 1 dealings
using the batch agreement protocol in Section 7.8. Note that in Step 2 of the dealing
certification protocol, each party Pj will validate the above PoKs.

Assume the dealings in the batch are

ds = (dealing, batchID , dealerIDs,Cs, (χs; cs1, . . . , csn)), (9)

for s = 1, . . . , k.
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4. Using the dealings in (9), each party Pj does the following:

(a) compute (µsj , µ
′
sj)← D((batchID , dealerIDs), sk j , χs, csj) for s = 1, . . . , k;

(b) run subprotocol FixBadShares;

(c) construct a sharing with the given sharingID , polynomial commitment C ∈
Gf+1, and private data (µj , µ

′
j) ∈ Zq × Zq, where

C←
k∏
s=1

Cλs
s , µj ←

k∑
s=1

λsµsj , and µ′j ←
k∑
s=1

λsµ
′
sj ,

where, for s = 1, . . . , k, if idx(s) is the index of the party named dealerIDs, λs is
the Lagrange coefficient

λs := λ
(I/0)
idx(s),

where I := {idx(s) : s = 1, . . . , k}.

8.6 Resharing

We present a protocol Reshare that generates a fresh sharing of an old sharing.

1. Each party is given sharingID1 for a previously constructed sharing. Each party Pj
has a corresponding polynomial commitment D1 ∈ Gf+1 (common to all parties), and
a corresponding share (ν1j , ν

′
1j) ∈ Zq × Zq.

Each party is also given sharingID for a new sharing.

2. Each party Pj computes and runs the dealing generation algorithm on input (ν1j , ν
′
1j)

and with batchID := sharingID , dealerID := id j , to get a dealing of the form

(dealing, sharingID , id j ,Cj , · ).

3. Each party obtains a dealing verification certificate on its dealing using the dealing
certification protocol in Section 7.7, and then obtains a batch of k := f + 1 dealings
using the batch agreement protocol in Section 7.8. Note that Step 2 of the dealing
certification protocol, each party Pj will validate such a dealing from party Pi by

checking that C
(0)
i = D

(i)
1 — this ensures that this dealing corresponds to a resharing

of Pi’s share.

Assume the dealings in the batch are

ds = (dealing, batchID , dealerIDs,Cs, (χs; cs1, . . . , csn)), (10)

for s = 1, . . . , k.

4. Using the dealings in (10), each party Pj does the following:

(a) compute (µsj , µ
′
sj)← D((batchID , dealerIDs), sk j , χs, csj) for s = 1, . . . , k;

(b) run subprotocol FixBadShares;
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(c) construct a sharing with the given sharingID , polynomial commitment C ∈
Gf+1, and private data (µj , µ

′
j) ∈ Zq × Zq, where

C←
k∏
s=1

Cλs
s , µj ←

k∑
s=1

λsµsj , and µ′j ←
k∑
s=1

λsµ
′
sj ,

where, for s = 1, . . . , k, if idx(s) is the index of the party named dealerIDs, λs is
the Lagrange coefficient

λs := λ
(I/0)
idx(s),

where I := {idx(s) : s = 1, . . . , k}.

NOTES:

1. The above resharing protocol can easily be modified to support network membership
changes. Suppose that from time to time, the network decides change membership.
In this case, the set of dealers would be different from the set of receivers, but other
than that, the protocol would not change substantially. This can also be helpful in
realizing proactive security — see Section 10.2.

8.7 Cross-network resharing

In our implementation on the Internet Computer, we shall need a protocol XNetReshare for
re-sharing across networks. Suppose we have two networks. The first network has parties
P ′1, . . . , P

′
n′ and corruption bound f ′ < n′/3, identities id ′1, . . . , id

′
n′ , and public MEGa keys

pk ′1, . . . , pk ′n′ . The second network has parties P1, . . . , Pn and corruption bound f < n/3.
There are two protocols. The first protocol is run on the first network.

1. Each party P ′j is given sharingID1 for a previously constructed sharing. So each party

P ′j has a corresponding polynomial commitment D1 ∈ Gf+1 (common to all parties)
and a corresponding share (ν1j , ν

′
1j) ∈ Zq × Zq.

Each party is also given sharingID for a new sharing.

2. Each party P ′j runs the dealing generation algorithm on input (ν1j , ν
′
1j) and with

batchID := sharingID , dealerID := id ′j , to get a dealing of the form

(dealing, sharingID , id j ,Cj , · ).

However, these dealings will be constructed with respect to the public keys
pk1, . . . , pkn from the second network. Party P ′j also construct a dealing authenti-
cator.

3. Using an instance of the ACS consensus protocol, the parties agree on a batch of
k′ := 2f ′ + 1 dealings. These dealings have not been locally verified as in Section 7.4
nor certified as in Section 7.7. However, it is verified that a dealing from party P ′i
satisfies C

(0)
i = D

(i)
1 — this ensures that this dealing corresponds to a resharing of

the original share held by P ′i

44



4. From this batch, each party P ′j can locally compute a special external batch, which
has the form

(external-batch, batchID , (i1, d
′
1), . . . , (ik′ , d

′
k′)), (11)

where each d′s is a dealing, and is is the index of the party P ′is that generated the
dealing.

In addition, this external batch is signed using a threshold signature or multi-signature
scheme that can be used to authenticate to the second network that this external batch
originated from the first network.

The external batch (11) together with an appropriate threshold signature, is then trans-
mitted to the second network and disseminated to all of the parties P1, . . . , Pn of the second
network. The second network then runs the following interactive protocol to convert this
external batch into an ordinary batch.

1. A variation of the dealing certification protocol is run, in which each party locally
verifies each dealing in the external batch and broadcasts a dealing verification share
if it passes the local verification test.

Each party Pj will then collect these shares from other parties and construct k := f ′+1
dealing verification certificates, and constructs a list Lj of k pairs, where the first entry
in the pair identifies one of the dealings in the external batch, and the second entry
is a corresponding dealing verification certificate.

2. Using an instance of an MVBA protocol (i.e., an ACS protocol with size parameter
1, see Section 5), the parties agree on one of the lists Lj constructed above.

This gives us a batch consisting of dealings

ds = (dealing, batchID , dealerIDs,Cs, (χs; cs1, . . . , csn)), (12)

for s = 1, . . . , k.

3. Using the dealings in (12), each party Pj does the following:

(a) compute (µsj , µ
′
sj)← D((batchID , dealerIDs), sk j , χs, csj) for s = 1, . . . , k;

(b) run subprotocol FixBadShares;

(c) construct a sharing with the given sharingID , polynomial commitment C ∈
Gf+1, and private data (µj , µ

′
j) ∈ Zq, where

C←
k∏
s=1

Cλs
s , µj ←

k∑
s=1

λsµsj , and µ′j ←
k∑
s=1

λsµ
′
sj ,

where, for s = 1, . . . , k, if idx(s) is the index of the party named dealerIDs in the
first network (this index can be obtained from the data in the external batch),
λs is the Lagrange coefficient

λs := λ
(I/0)
idx(s),

where I := {idx(s) : s = 1, . . . , k}.
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NOTES:

1. Setting k′ = 2f ′+ 1 ensures that at least f ′+ 1 dealings are from honest parties. This
ensures that when the second network runs its protocol, it is guaranteed to obtain a
batch of k = f ′ + 1 verified dealings.

2. We include the indices of the dealers in the external batch as the parties on the second
network may not have enough information to compute these.

8.8 Complexity estimates

We briefly summarize the communication and computational complexity of our protocols,
assuming the MEGa is implemented as in Section 4.1. Note that to process a single signature
request, our ECDSA signing protocol executes a constant number of Random, Mul, Open,
and OpenPower protocols.

8.8.1 Communication complexity

The protocols Random and Mul each have a communication complexity of O(n3λ), while
the protocols Open and OpenPower have a communication complexity of O(n2λ). Here, λ
is a security parameter that bounds the sizes of signatures, hashes, group elements, and the
like. By communication complexity, we mean the total number of bits sent by all honest
parties, i.e., the sum over all honest parties of the number of bits sent by each such party.

A related metric is message complexity, which is the total number of messages sent by
all honest parties. All of these protocols have a message complexity of O(n2), except when
a number of parties provably misbehave, in which case the message complexity may be as
large as O(n3) — the FixBadShares subprotocol may generate this many messages if a batch
contains O(n) bad dealings. Note, however, that even in this case, the communication
complexity is still bounded by O(n3λ).

These values do not include the cost of the ACS subprotocol. Each of the protocols
Random and Mul make one call to ACS, where each party submits a message of size O(nλ).
As mentioned in Section 1.2, ACS can be implemented so that its communication costs are
dominated by the communication costs of our protocols.

8.8.2 Computational complexity

We consider first the “happy path”, where no parties provably misbehave and the
FixBadShares subprotocol is not needed. The running time of a single party is dominated
by the following computations:

Combining polynomial commitments. For Mul, this cost is O(n2) exponentiations in
G. Actually, it is O(n) multi-exponentiations each of length O(n), and each such
multi-exponentiation can be implemented a bit faster than naively performing O(n)
exponentiations. Also note that these computations are trivially parallelizable.

For Random, this cost is just O(n2) multiplications in G.
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Evaluating polynomial commitments. In all of the protocols, each party has to per-
form O(n) evaluations of polynomial commitments, that is, computations of the form
C(j), where C ∈ Gf+1 is a polynomial commitment and j ∈ {1, . . . , n} is the in-
dex of a party. We can perform such a polynomial commitment evaluation using a
simple “Horner’s rule” evaluation strategy that performs f “ short exponentiations”,
each to the power j, which are much less expensive than full exponentiations. Thus,
performing all of these operations takes O(n2) short exponentiations.

Validating polynomial commitment openings. In each of the protocols Random, Mul,
and Open, each party must validate O(n) polynomial commitment openings. Each
such validation involves a computation of the form gµhµ

′
, not including the cost of

performing the corresponding polynomial commitment evaluations (which we have
already accounted for above). Thus, performing all of these operations takes O(n)
exponentiations in G.

Building polynomial commitments. In each of the protocols Random and Mul, each
party has to build one polynomial commitment, which takes O(n) exponentiations in
G.

Validating proofs. In the Mul and OpenPower protocols, each party must validate O(n)
zero knowledge proofs. Validating one such proof takes a constant number of expo-
nentiations in G, not including the cost of performing the corresponding polynomial
commitment evaluations (which we have already accounted for above). Thus, per-
forming all of these operations takes O(n) exponentiations.

Dealing verification shares and certificates. For each of the protocols Random and
Mul, each party has to validate O(n) verification shares on its own dealing, and each
party has to validate O(n) verification certificates from other parties.

If BLS multi-signatures are used, this translates into O(n) pairings. If ordinary signa-
tures are used, such as Schnorr signatures, this translates into O(n2) exponentiations
— actually, O(n) multi-exponentiations each of length O(n). For moderately sized n
(perhaps up to at least n = 100), experimental data suggests that Schnorr signatures
will be faster than BLS signatures.

MEGa encryption and decryption. In each of the protocols Random and Mul, each
party must generate one MEGa ciphertext and decrypt O(n) such ciphertexts. The
total cost for this is dominated by O(n) exponentiations in the group G.

Putting it all together. The implication for our ECDSA signing protocol is that the
computational complexity (i.e., running time per party) is dominated by O(n2) exponenti-
ations per signature.

The unhappy path. The above analysis did not take into account the computations on
the “unhappy path”, specifically, the cost of the FixBadShares subprotocol. In the worst case,
each party has to perform O(n2) polynomial commitment evaluations, what translates to
O(n3) short exponentiations, and O(n2) validations of polynomial commitment openings,
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which translates to O(n2) full exponentiations. Note that for moderately sized n, one
would expect that the cost of performing O(n2) full exponentiations still dominates the
total running time. In addition, whenever we have to perform any of these computations,
a dishonest party can be identified and effectively removed from the protocol, and so, in
terms of their effect on the throughput of the system over a long period of time, the cost of
these additional computations can effectively be ignored.

8.8.3 An optimization: vector processing of dealings

In our ECDSA signing protocol, much of the computation is a SIMD (Single Instruc-
tion/Multiple Data) computation — for each signature, the same computations are carried
out in the precomputation phase (a couple of Random computations and a couple of Mul
computations), and only the final share openings differ in a message-dependent way.

Because of this, we can organize the computation so that each party generates a vec-
tor of some number, say k, dealings at a time, and verification shares and certificates are
applied collectively to entire vectors of dealings. Certified vectors of dealings are gathered
together to form vectors of batches. This by itself reduces communication and computa-
tional complexity associated with verification shares and certificates by a factor of k per
signature request.

We can also reduce the communication and computational complexity associated with
combining and evaluating polynomial commitments by a factor of k per signature request by
committing to k polynomials at a time, using a generalization of the Pedersen commitment
scheme (see [Gro09]). Suppose we have random generators g1, . . . , gk, h ∈ G. Then to com-
mit to polynomials ω1, . . . ,ωk ∈ Zq[x] of degree at most f , we choose a random polynomial
ω′ ∈ Zq[x] of degree at most f , and compute the k-wise polynomial commitment

C := gω1
1 · · · g

ωk
k · h

ω′ ∈ Gf+1.

Party Pj ’s k-wise share is

(µj1, . . . , µjk, µ
′
j) = (ω1(j), . . . ,ωk(j),ω

′(j)),

which can be checked by testing if

C(j) = g
µj1
1 · · · gµjkk hµ

′
j .

Various modifications must be made to our protocols to accommodate these changes. In
particular, the Open protocol must be modified to use zero knowledge proofs rather than
just a direct opening.

Similarly, the public-key operations performed for the MEGa encryption and decryption
algorithms can be effectively reduced by a factor of k per signature request.

Let us examine the impact of this optimization on the computational complexity of our
protocol. As above, we start by considering only the happy path. We shall compute the
cost per vector of batches.

Combining polynomial commitments: O(n2) exponentiations in G.

Evaluating polynomial commitments: O(n2) short exponentiations in G.
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Validating polynomial commitment openings: O(nk) exponentiations in G. This in-
cludes both the cost of validating openings in the Random and Mul protocols, as well
as the cost of validating opening proofs in the modified Open protocol.

Building polynomial commitments: O(nk) exponentiations in G.

Validating proofs: O(nk) exponentiations in G.

Dealing verification shares and certificates: O(n) pairings for BLS; O(n2) exponen-
tiations for Schnorr.

MEGa encryption and decryption. O(n) exponentiations in G (as well as O(nk) hash
computations).

Putting it all together. The implication for our ECDSA signing protocol is that the
computational complexity is essentially O(n + n2/k) exponentiations per signature. So
setting k := Θ(n) yields a computational complexity of O(n) exponentiations per signature.

The unhappy path. For each vector of batches, each party has to additionally perform
O(n3k) short exponentiations and O(n2k) full exponentiations. So per signature, this trans-
lates to O(n3) short exponentiations and O(n2) full exponentiations. So on the unhappy
path, this optimization does not really help. However, as observed above, in terms of their
effect on the throughput of the system over a long period of time, the cost of these additional
computations on the unhappy path can effectively be ignored.

9 Proofs of security

The ideal functionality to be realized is Fmpc, which processes sequences of operations
Random, Open, OpenPower, Mul, as well as linear and affine operations (see Section 2.6.2
for more details on Fmpc). We also include the operation Reshare here. We do not include
XNetReshare, as doing so would require more involved modeling.

The real world is actually a hybrid model, with an ideal functionality representing the
system parameter comprising the random group element h ∈ G, an ideal functionality Fdkp

that implements decentralized key provisioning, as well a random oracle that is used to
model a hash function as used in Fiat-Shamir-style proofs, and an ideal functionality Facs

for ACS. All of these setup assumptions were discussed in Section 5. In addition, as discussed
Section 5, we are assuming a MEGa E that satisfies all of the security properties presented
in Section 4, a secure multi-signature scheme, and a collision resistant hash function H.
We may also just assume a MEGA E that satisfies the weaker ADO-CCA security property
presented in Section 4.3, with the sensibility predicate as defined in (2). As stated in
Section 2.3, we are also assuming that the discrete logarithm problem in G is hard. Let
Πmpc be the real world protocol described in Section 8.

Theorem 4. Under the assumptions stated above, Protocol Πmpc securely realizes Fmpc.

The rest of this section sketches the proof of this theorem.

49



Let C denote the set of corrupt parties and H the set of honest parties. We assume
static corruptions (in Section 10.1 we sketch how the protocol is also secure under adaptive
corruptions). As usual, we assume |C| ≤ f < n/3. For simplicity, we assume that |C| = f .
It is easy to adapt the proof to the more general case where |C| = f ′ ≤ f by choosing an
arbitrary set of f−f ′ honest parties and essentially treating them “as if” they were corrupt.
We stress, however, that this technique only works because we are working in the static
corruption model.

We develop the simulator S by looking at a sequence of games.

Game 0. The real world.

Game 1. Define a simulator that aborts the attack if any authenticity constraints are
violated. Assuming signatures are secure, this happens with negligible probability.

Game 2. Have the simulator arrange that honest parties do not decrypt dealings gener-
ated by honest parties, but rather, the simulator just copies plaintexts. Here we are relying
on the correctness property of the MEGa.

Game 3. We define a simulator that keeps track of the shares belonging to corrupt parties
as well as other data. Consider a batch of verified dealings that determine a sharing,
consisting of dealings contributed by parties H′ ⊆ H and C′ ⊆ C.

• For each dealing coming from an honest party Pi with i ∈ H′, there are corresponding
polynomials ωi,ω

′
i ∈ Zq[x].

• For each dealing coming from a corrupt party P` with ` ∈ C′, there must be f + 1
honest parties who decrypted the dealing to get a good share, and the simulator can
perform the same decryptions and then interpolate to get the corresponding polyno-
mials ω`,ω

′
` ∈ Zq[x].

We also define corresponding polynomials for the sharing as a whole:

ω =
∑
`∈C′

λ`ω` +
∑
i∈H′

λiωi, ω′ =
∑
`∈C′

λ`ω
′
` +

∑
i∈H′

λiω
′
i,

where the λ` and λi values are the appropriate coefficients used to combine dealings (either
all 1 or Lagrange coefficients). The value ω(0) is the value of the sharing and (ω(i),ω′(i))
is the share of party Pi. In particular, the simulator can track the shares (ω(j),ω′(j)) for
corrupt Pj , and can do so based solely on the polynomials ω`,ω

′
` for ` ∈ C′ and the values

ωi(j) and ω′i(j) for i ∈ H′ and j ∈ C.
The simulator also aborts whenever a corrupt party does something “inconsistent”:

• generating shares inconsistent with the polynomial ω`, ω
′
` computed above, but which

still pass the local verification,

• opening the wrong value in Open or OpenPower,

• sharing the wrong value in Mul, or
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• making a valid complaint against an honest party.

Based on the soundness property of the NIZKs (used in the OpenPower and Mul protocols),
the binding property of Pedersen commitments (i.e., the hardness of the DL problem in
G), and the soundness property of the MEGa, the simulator will abort with only negligible
probability.

Also note that to perform these consistency checks, for each batch of verified dealings,
the simulator only needs the polynomials ω`,ω

′
` for ` ∈ C′ and the values ωi(j) and ω′i(j)

for i ∈ H′ and j ∈ C

Game 4. Now we invoke the CCA security of the MEGa, and replace all encryptions from
honest parties to honest parties by encryptions of a dummy value. To see why this step is
justified, consider the following table:

C H
C decrypt

H real encrypt dummy encrypt / no decrypt

The rows represent dealers (i.e., encryptors) and the columns represent receivers (i.e., de-
cryptors). As we see, the honest receivers are decrypting dealings from corrupt dealers, but
are not decrypting dealings from the honest dealers, just as in Game 4. Also, we see that
the honest dealers are encrypting real values to the corrupt receivers, just as in Game 4.
The only change from Game 4 is that now the honest dealers are encrypting dummy values
instead of real values to the honest receivers. The ADO-CCA property justifies this change
because the associated data bound to dealings generated by honest dealers is disjoint from
the associated data bound to dealings generated by corrupt dealers, and only the latter
dealings are decrypted.

Note that in the above argument, the decryptions by honest parties of dealings sent
by corrupt parties includes the generation of decryption proofs as well. In the case where
we are using a MEGa that satisfies the weaker ADO-CCA security property presented in
Section 4.3, then we simply have to observe that a decryption proof will only be generated
for a dealing that has already been verified by at least f + 1 parties. That is, before an
honest party complains against a dealing, we can be sure that some other honest party
found a correct share for the very same dealing.

Game 5. Use the ZK property of the NIZKs (used in the OpenPower and Mul protocols),
replace real proofs by simulated proofs.

Note that because we do not need to invoke the soundness property again, we do not
require simulation soundness.

Game 6. In this game, the simulator makes use of the value ζ := logg h and computes
things in a different but entirely equivalent way. (Note that because we do not need to
invoke the DL assumption again, the simulator is free to use ζ at this point.)

For a dealing or a sharing, if ω,ω′ are the corresponding polynomials, we define the
combined polynomial ω̄ := ω + ζω′.
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Consider a dealing generated by an honest party Pi, with corresponding polynomials
ωi,ω

′
i and combined polynomial ω̄i. The only information about the polynomials ωi and ω′i

that the simulator will explicitly use is the value is ω̄i(0), along with the values ωi(j) and
ω′i(j) for j ∈ C. From this information, the simulator can also compute ω̄ via polynomial
interpolation, as well as the polynomial commitment gω̄ ∈ Gf+1 of the dealing.

For any dealing contributed to a batch of verified dealings by a corrupt party P`, we
still assume the simulator knows the corresponding polynomials ω` and ω′`, and hence the
combined polynomial ω̄`.

It follows that whenever a batch of dealings is agreed upon to form a sharing, if ω,ω′

are the corresponding polynomials, and ω̄ is the combined polynomial, the simulator knows
ω̄(0), as well as ω(j) and ω′(j) for each j ∈ C. This implies the simulator can compute ω̄
via polynomial interpolation.

We make some further observations about a dealing generated by an honest party Pi.

• The values ωi(j) and ω′i(j) for j ∈ C are uniformly and independently distributed
over Zq.

• In the Random or Mul protocols, ω̄i(0) is uniformly distributed over Zq, independent
of ωi(0).

• In the Reshare protocol, ω̄i(0) = ω̄(i), where ω̄ is the combined polynomial of the old
sharing that is being reshared.

Next consider the Open protocol on a sharing. As above, we assume that ω,ω′ ∈ Zq[x]
are the corresponding polynomials, ω̄ := ω + ζω′ is the combined polynomial, and that the
simulator knows ω̄ and ω(j) and ω′(j) for each j ∈ C. In addition, if we give the simulator
the value ω(0), it can solve the equation ω̄(0) = ω(0) + ζω′(0) for ω′(0). So now the
simulator can compute ω and ω′ by interpolation, and compute the shares (ω(i),ω′(i)) for
all i ∈ H, as needed by the protocol.

Next consider the OpenPower protocol. As above, we assume that ω,ω′ ∈ Zq[x] are
the corresponding polynomials, ω̄ := ω + ζω′ is the combined polynomial, and that the
simulator knows ω̄ and ω(j) and ω′(j) for each j ∈ C. In addition, if we give the simulator
the value vω(0), and since it knows ω(j) for each j ∈ C, it can compute via interpolation in
the exponent vω(i) for all i ∈ H, as needed by the protocol.

We observe that for the Random protocol, if ω,ω′ ∈ Zq[x] are the corresponding poly-
nomials, then ω(0) is uniformly distributed over Zq. This follows from the fact that at least
one honest party contributed to the batch.

Finally, we observe that the simulator has enough information to implement all of the
consistency checks introduced in Game 3.

The simulator S. The simulator in Game 6 is essentially the simulator S used in the
ideal world, but with the following changes.

First, when simulating a dealing generated by Pi with i ∈ H:

• The values representing ωi(j) and ω′i(j) for j ∈ C are generated at random.

• In the Random and Mul protocols, the value representing ω̄i(0) is generated at random.
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• In the Reshare protocol, the value ω̄i(0) is computed as ω̄i(0) = ω̄(i).

The computations performed by the simulator for processing Open and OpenPower pro-
tocols are the same as in Game 6.

9.1 Additional details for the analysis of Game 3

The OpenPower protocol. Let us first consider the NIZK used in the OpenPower protocol
(notation as in Section 8.4). Suppose a corrupt party Pj reveals wj and a valid proof pok j ,
but wj 6= vµj , where we are assuming that the simulator in Game 3 has (µj , µ

′
j) such that

C(j) = gµjhµ
′
j .

We show how to use such an adversary to solve the DL problem in G. By a rewinding
argument, we can then extract from the adversary x, x′ such that

C(j) = gxhx
′

and wj = vx.

Clearly, this can only happen if v 6= 1. That being the case, we must have x 6= µj , which
gives us two different representations of C(j) with respect to (g, h), which allows us to solve
the DL problem in G.

Generic group model analysis. This above rewinding argument does not give a very tight
reduction. One can also make a quantitatively more appealing argument in the Generic
Group Model (GGM). Here, we are effectively modeling the group G as the free group
generated by g and h. We are also modeling the hash function used in the NIZK as a
random oracle. Consider what the adversary must do to create an inconsistency as above.
In the NIZK, the adversary must commit to two group elements, call them Ĉ(j) and ŵj ,
receive a challenge c, and then compute x, x′ such that

gxhx
′

= Ĉ(j)
(
C(j)

)c
and vx = ŵj(wj)

c. (13)

We suppose that

C(j) = gµjhµ
′
j , v = gshs

′
, wj = gtht

′
, Ĉ(j) = gµ̂jhµ̂

′
j , ŵj = gt̂ht̂

′
. (14)

Equating the g-powers and the h-powers of the two equations in (13) gives rise to four
equations:

x = µ̂j + µjc, x′ = µ̂′j + µ′jc, sx = t̂+ ct, s′x = t̂′ + ct′. (15)

If the adversary succeeds in creating an inconsistency, then we also have

(t, t′) 6= (µjs, µjs
′).

We must have either t 6= µjs or t′ 6= µjs
′. First, suppose t 6= µjs. Multiplying the first

equation in (15) by s and combining this with the third equation in (15), we obtain

t̂+ ct = sµ̂j + c(µjs),
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and since t 6= µjs, this can hold with probability only 1/q for randomly chosen c ∈ Zq.
Second, suppose that t′ 6= µjs

′. Multiplying the first equation in (15) by s′ and combining
this with the fourth equation in (15), we obtain

t̂′ + ct′ = s′µ̂j + c(µjs
′),

and since t′ 6= µjs
′, this can hold with probability only 1/q for randomly chosen c ∈ Zq.

This shows that each attempt to form a valid proof of an inconsistent statement will
succeed with probability at most 1/q.

The Mul protocol. A similar analysis can be done for the NIZK used in the Mul protocol
(notation as in Section 8.5). Suppose that a corrupt party Pj creates a dealing with a valid
proof but shares the wrong value. More precisely, this means the following. The simulator
has (ν1j , ν

′
1j), (ν2j , ν

′
2j), and (κj , κ

′
j) such that

D
(j)
1 = gν1jhν

′
1j , D

(j)
2 = gν2jhν

′
2j , C

(0)
j = gκjhκ

′
j ,

but where κj 6= ν1j · ν2j . We show how to use such an adversary to solve the DL problem
in G. By a rewinding argument, we can extract from the adversary x2, x

′
2, y such that

gx2hx
′
2 = D

(j)
2 ,

(
D

(j)
1

)x2hy = C
(0)
j .

If (x2, x
′
2) 6= (ν2j , ν

′
2j), we would have two different representations of D

(j)
2 with respect

to (g, h), which would allow us to solve the DL problem in G. So let us assume that
(x2, x

′
2) = (ν2j , ν

′
2j). Similarly, if (ν1jν2j , ν

′
1jν2j + y) 6= (κj , κ

′
j), we solve the DL problem in

G. So we may assume that (ν1jν2j , ν
′
1jν2j + y) = (κj , κ

′
j), which finishes the proof.

Generic group model analysis. As above, we can also give an analysis in the GGM. In the

NIZK, the adversary must commit to two group elements, call them D̂
(j)
2 and Ĉ

(0)
j , receive

a challenge c, and then compute x2, x
′
2, y such that

gx2hx
′
2 = D̂

(j)
2

(
D

(j)
2

)c
and

(
D

(j)
1

)x2hy = Ĉ
(0)
j (C

(0)
j )c. (16)

We suppose that

D̂
(j)
2 = gν̂2jhν̂

′
2j , Ĉ

(0)
j = gκ̂jhκ̂

′
j . (17)

Equating the g-powers of the two equations in (16) gives rise to two equations:

x2 = ν̂2j + cν2j , ν1jx2 = κ̂j + cκj . (18)

If the adversary succeeds in creating an inconsistency, then we also have κj 6= ν1jν2j .
Multiplying the first equation in (18) by ν1j and combining this with the second equation
in (18), we obtain

ν1j ν̂2j + c(ν1jν2j) = κ̂j + cκj ,

and since κj 6= ν1jν2j , this can hold with probability only 1/q for randomly chosen c ∈ Zq.
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10 Adaptive and proactive security

While the main focus of this paper is on static corruptions, in this section, we briefly consider
the security of our protocol with respect to adaptive corruptions, as well as some aspects
of proactive security.

10.1 Adaptive security

In the adaptive corruption model, an adversary may initially corrupt some number f ′ ≤ f
parties. Just as in the case of static corruptions, the initially honest parties then generate
public keys, and the adversary may choose the public keys of the initially corrupt parties
any way he likes (possibly based on the public keys of the initially honest parties). As the
protocol execution continues, the adversary may adaptively corrupt up to f − f ′ additional
parties. When a party is adaptively corrupted, the adversary obtains the secret key of the
party as well as other data that is stored in the party’s memory. One model of adaptive
corruption allow a party to securely erase some memory, so that such erased data is not
given to the adversary upon corruption. This is called adaptive corruption with erasures.
At the other extreme, nothing is assumed to be erased, and the adversary sees everything.
This is called adaptive corruption without erasures.

We sketch here a proof that our ECDSA signing protocol remains secure even in the
model of adaptive corruption without erasures.

10.1.1 Adaptively secure MEGa

We first claim that our MEGa Edh in Section 4.1 is adaptively secure (without erasures)
under the same assumptions as Theorem 2 — the ICDH assumption for G, and modeling
HM and HG as random oracles. Note that the impossibility result of Nielsen [Nie02] does
not apply here, as we model HM as a programmable random oracle.

To prove such a claim, we first have to formalize an appropriate security property.
To simplify things a bit, we formalize a property that is somewhat geared towards our
application (but still quite general).

A “real world” experiment. We first describe a “real world” experiment, in which an
adversary interacts with a challenger.

• Initialization. The adversary performs a series of n register honest user and register
corrupt user queries, as in the ADO-CCA attack game in Section 4. Of the n registered
users, some are initially honest while the rest are initially corrupt. As we will see, as
the experiment proceeds, initially honest users are corrupted, and the set of honest
users may shrink and the set of corrupt users may grow.

The adversary also provides the challenger with a chosen ordering (id1, . . . , idn), so
that for i = 1, . . . , n, we can now speak of a party Pi with an ID id i, public key pk i.
In the case where Pi is initially honest, it has a secret key sk i.

After initialization, the adversary makes a series of queries of the following types.
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• Encryption query. Adversary specifies an honest party Pi as the encryptor, along with
a tag t and a vector (m1, . . . ,mn) of messages. We require that the same tag is not
used twice by the same encryptor.

The challenger computes

(χ; c1, . . . , cn)
$← E((id i, t); (id1, pk1,m1), . . . , (idn, pkn,mn)),

and sends (χ; c1, . . . , cn) to the adversary.

Note that the associated data used for this encryption is ad = (id i, t).

• Decryption query. Adversary specifies a corrupt encryptor Pi and an honest decryptor
Pj , along with a tag t and (χ, cj).

The challenger computes mj ← D((id i, t), id j , sk j , χ, cj) and gives mj to the adver-
sary.

• Decryption proof query. Adversary specifies a corrupt encryptor Pi and an honest
decryptor Pj , along with a tag t and (χ, cj).

The challenger computes πj ← DP((id i, t), id j , sk j , χ, cj) and gives πj to the adver-
sary.

• Corruption query. The adversary specifies an honest party Pk to corrupt.

The challenger gives to the adversary the complete internal state of Pk, including the
secret key skk and the ephemeral secrets generated in processing encryption queries
where Pk was the encryptor.

As all of our security results will be in the random oracle model, we assume that the
challenger also manages these random oracles and responds to random oracle queries ap-
propriately.

NOTES:

1. The restriction on the form of decryption queries is justified by the correctness property
of the MEGa, and the fact that, in our application, messages sent by an honest party
Pi will be authenticated by a secure signature (whose signing key will also be leaked
if Pi is corrupted),

2. The restriction on the form of decryption proof queries is justified by the fact that, in
our application,

• messages sent by an honest party Pi will be authenticated by a secure signature,
and

• an honest encryptor will never encrypt a value that an honest decryptor will find
a need to complain about and thus generate a decryption proof.

3. The role of the tag t is useful for simplifying the “bookkeeping” in the definition. Such
a tag t, together with the ID id i of the encryptor, naturally identifies the “context”
of an encryption.
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An “ideal world” experiment. We now specify an “ideal world” in which an adversary
interacts with the challenger in exactly the same way, with the same restrictions. The only
difference is that now the challenger must make use of a simulator S as specified below.

• Initialization. The simulator S is invoked to process the register honest user and
register corrupt user queries, and is also informed of the adversary’s chosen ordering
(id1, . . . , idn).

The challenger also initializes an empty set T , which will be used to track messages
sent from honest parties to honest parties.

• Encryption query. The challenger invokes S to generate (χ; c1, . . . , cn); however, S is
only given id i, t, along with (id j ,mj) for corrupt Pj . (Crucially, S does not get to see
the messages mj for honest Pj .)

The challenger also adds to T the tuples (id i, t, id j ,mj) for all honest Pj .

• Decryption query. The challenger invokes S with id i, id j , t, and (χ, cj) to compute
the result mj .

• Decryption proof query. The challenger invokes S with id i, id j , t, and (χ, cj) to
compute the result πj .

• Corruption query. The challenger invokes S with idk as well as the subset T ′ of tuples
in T of the form (idk, ·, ·, ·) or (·, ·, idk, ·) to compute the result. In other words, the
simulator is given all messages that were either encrypted by or encrypted to Pk.

Again, as we will be working in the random oracle model, the simulator S is responsible
for managing the random oracle and is invoked by the challenger to process all random
oracle queries made by the adversary. In the ideal world, however, S is free to answer these
random oracle queries in any convenient fashion (i.e., it is allowed to “program” the random
oracle).

Definition of adaptive security. In either the real world or the ideal world, the adver-
sary outputs a bit. We say that a MEGa is adaptively secure if there exists an efficient
simulator S such that for every efficient adversary A, the quantity

|Pr[A outputs 1 in real world]− Pr[A outputs 1 in ideal world with S]|

is negligible.

Theorem 5. Under the ICDH assumption for G, and modeling HM, HG, and Hfs as
random oracles, Edh is adaptively secure.

Proof. We first specify the simulator S.

• S will generate public keys and secret keys for the initially honest parties as in the
real world.

• For an encryption query, S will run the normal encryption algorithm and encrypt mj

for corrupt Pj as usual, but will generate the ciphertext component cj for honest Pj
at random.
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• For a decryption query, S will run the normal decryption and decryption prover
algorithms using the secret key of Pj .

• For a corruption query, S will reveal the required information, which it has on hand. In
addition the adversary will “backpatch” the random oracle HM using the information
in the set T ′.

To prove that this works, we have to show that S does not get “caught”, which will happen
if the adversary directly makes a “bad” random oracle query

HM(derive-key, (ad i, t), id j , uj , v, dh(uj , v))

that it should not have been able to make, which means that in processing an encryption
query for (honest) encryptor Pi with tag t, the ephemeral public key was v, party Pj was
honest, and the adversary makes this random oracle query at a time before either Pi or Pj
is subsequently corrupted.

We argue that if an adversary A can make such a “bad” random oracle query, we can use
A to solve the ICDH problem. Our ICDH adversary B works as follows. It is given random
u∗, v∗ ∈ G and its goal is to compute w∗ = dh(u∗, v∗) ∈ G, given access to a DH-triple oracle
that accepts inputs of the form (·, v∗, ·). Our adversary B will succeed in computing w∗ with
probability roughly 1/n2 times the probability that A makes a “bad” random oracle query.
To this end, B guesses the index i∗ of the encryptor and j∗ of the decryptor corresponding
to a “bad” query, will run an alternative simulator, halting if either Pi∗ or Pj∗ are ever
corrupted. Here are the details.

• B sets uj∗ := u∗.

• For all parties Pj with j 6= j∗ that are initially honest, B generates public and secret
keys as in the real world.

• B programs the random oracle HG for adversarial queries just as in Theorem 2.

• B processes encryption queries for Pi∗ by randomizing v∗ and programming the ran-
dom oracle HG as in the proof of Theorem 2.

– For initially corrupt Pj , it generates cj at random and uses the DH-triple oracle
to backpatch HM as necessary.

– For initially honest Pj , it uses Pj ’s secret key to generate the ciphertext cj hon-
estly.

– It generates cj∗ at random.

• For all parties Pi with i 6= i∗ that are honest, B processes encryption queries as in the
real world, and programming the random oracle HG just as for adversarial queries.

• To process decryption or decryption proof queries for Pj∗ , B uses the same strategy as
in the proof of Theorem 2, relying on the PoK to compute the shared Diffie-Hellman
key w. (Note that by the rules of the game, the corresponding encryptor cannot be
Pi∗ .)
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• B processes decryption queries for honest Pj with j 6= j∗ just as in the real world.

It is easy to see that if A every makes a “bad” random oracle query with encryptor Pi∗

and decryptor Pj∗ , B will see this (using the DH-triple oracle) and output w∗.

NOTES:

1. We currently do not know how to prove that the simplified MEGa E ′dh in Section 4.3
is adaptively secure.

2. We could easily generalize our definition to allow for one set of parties acting as
encryptors and another (possibly overlapping) set of parties to act as decryptors. The
only difference in the definition would be in the way corruption queries are processed
in the ideal world: when an encryptor is corrupted, the simulator is given all of the
messages encrypted by that party, and when a decryptor is corrupted, the simulator
is given all of the messages encrypted to that party. Theorem 5 holds equally well in
this setting (instead of n2, the loss in the security reduction would be nend, where ne

is the number of encryptors, and nd is the number of decryptors.

10.1.2 Adaptively secure Fmpc and ECDSA

Assuming the adaptive security of the MEGa E used in our protocol Πmpc, it is natural to
ask if Πmpc securely realizes Fmpc in the adaptive corruption model. Unfortunately, this
seems not to be the case. Nevertheless, we will still be able to argue that our ECDSA
signing protocol Πecdsa provides strong security in the adaptive corruption model.

The problem is with OpenPower operations. To simplify matters, and since it is all we
really need, let us restrict ourselves to the case where the base of the OpenPower operation
is the generator g ∈ G. Suppose the value of a sharing is α ∈ Zq, and an OpenPower
operation on this sharing reveals u = gα. In the static corruption case, we assumed f
corrupt parties and that the simulator already knew their shares. Therefore, given u from
the ideal functionality, the simulator could combine these f shares with u and perform
interpolation in the exponent to simulate the outputs of each honest party in the protocol.
This strategy fails in the adaptive corruption case. One might be tempted to employ the
following strategy. If there are currently only f ′ < f corrupt parties, the simulator generates
random shares on behalf of f−f ′ honest parties and performs the same calculations as above.
Unfortunately, if some other party besides the f − f ′ parties is eventually corrupted, the
simulator will get stuck — it would need to know the value α itself. (Note that this strategy
does work for Open.)

What we can do, however, is modify the ideal functionality Fmpc so that it gives the
simulator more information, and then argue that this additional information does not help
the adversary too much.

Specifically, we modify Fmpc as follows. Suppose that at the time OpenPower is per-
formed, the simulator also specifies a parameter k. Suppose that value of this sharing is
α0 ∈ Zq. In addition to giving u0 = gα0 to the simulator, the ideal functionality com-

putes αi
$← Zq, ui ← gαi for i = 1, . . . , k, and gives u1, . . . , uk to the simulator. Moreover,

the simulator is allowed to make further linear discrete logarithm (LDL) queries to
the ideal functionality. Each LDL query is a vector (λ0, λ1, . . . , λk) ∈ Zk+1

q , to which the
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ideal functionality responds with
∑k

i=0 λiαi. However, the simulator is restricted: it is not
allowed to issue of LDL queries whose span includes (1, 0, . . . , 0).

Let us call this modified functionality Fldl-mpc. It is straightforward to see that Πmpc

securely realizes Fldl-mpc in the adaptive corruption model, as the extra information provided
by the ideal functionality enables us to simulate everything: we use the extra random group
elements to represent the values output by k = f − f ′ honest parties in an OpenPower
operation, and compute the rest by interpolation in the exponent; the LDL queries are used
to obtain the data needed to simulate corruptions. There are numerous details to check,
but they are all straightforward (details to be presented in a followup paper)

Now let us look at how this impacts our ECDSA signing protocol Πecdsa. What we
can say now is that Πecdsa securely realizes an ideal functionality Fldl-ecdsa in the adaptive
corruption model. The functionality Fldl-ecdsa is the same as Fecdsa except that both the
public key u ∈ G and each presignature R ∈ G are subject to LDL queries. That is, in
addition to the public key u, the simulator is given random u1, . . . , uk ∈ G and the simulator
is free to ask LDL queries as above. Note that the restriction on the LDL queries means
that the adversary cannot trivially obtain the discrete logarithm of u by asking submitting
the “right” LDL queries. Similarly, for each presignature R ∈ G, in addition to R, the
simulator is given random R1, . . . , Rk ∈ G and is free to ask LDL queries as above.

The security of our ECDSA signing protocol reduces then to an attack game on non-
threshold ECDSA in which the public key and presignatures are subject to LDL queries. If
we were analyzing the security of a threshold implementation of, say, Schnorr’s signature
scheme [Sch91], then security in the adaptive setting would be reduced to an instance of
the discrete logarithm problem with the help of LDL queries — essentially, a special case
of the “one more discrete logarithm” problem [BNPS01], which is itself has been analyzed
in the generic group model [BFP21]. However, the only proofs of security for ECDSA are
in the generic group model. So one way forward is to extend the techniques and results of
[GS21] to the setting where the public key and presignatures are subject to LDL queries.

In fact, this approach does indeed work (details to be presented in a followup paper).
The basic idea is that in the “symbolic simulator” technique used in [GS21], we will need to
introduce new variables. For example, in [GS21], the signing key is symbolically represented
by a variable U . We will also need to introduce variables U1, . . . , Uk representing the group
elements u1, . . . , uk. Whenever the adversary makes a new LDL query that is not a linear
combination of the previous LDL queries, the simulator will return a random element in
Zq, and also eliminate one of the variables U1, . . . , Uk, replacing it by an appropriate linear
combination of U and the remaining Ui’s plus an appropriate scalar. For each presignature,
the symbolic simulator will also have to introduce and manage additional variables. The
proof of Theorem 6 in [GS21] (which is the one that corresponds to our protocol) can be
modified fairly easily to deal with this. Note, however, that our symbolic simulator now
has many more variables to track, which increases the running time of the reduction to the
preimage resistance of Hdsa (but it is still polynomial time). However, if we view Hdsa as
a random oracle, the quality of the security result is the same, as the number of random
oracles queries remains the same.
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10.2 Proactive security

In the proactive security model [OY91], one considers a mobile adversary which, over
the lifetime of the system, may corrupt all parties. However, from time to time, some or all
parties are rebooted into a pristine state, with all internal state erased and set to a default
value, and provisioned with new public/secret key pairs. In this setting, security should
hold so long as no more than f parties are corrupt at any given point in time.

Although the proactive security model traditionally assumes adaptive corruptions (either
with or without the ability to securely erase ephemeral secrets), it is also possible to study
a static proactive security model. In such a model, the execution of the system is divided
into epochs, and before an epoch starts, the adversary must decide which parties shall be
corrupt for that epoch. While not as strong as the adaptive proactive security model,
the static proactive security model seems like a reasonable trade-off between theory and
practice in cases where the latter can be achieved with much more practical protocols that
the former. Our protocol can achieve either static proactive security or adaptive proactive
security (under the stronger assumptions discussed in Section 10.1.2).

The simplest and most robust way to securely realize proactive security for our protocol
is to have each node in the network periodically be securely rebooted with a fresh pub-
lic/secret key pairs and possibly a fresh identity (although this is not essential), and then
rejoin the network with these new credentials. How this change of credentials is communi-
cated to all other members of the network is outside the scope of this discussion. This node
can then continue participating in the protocol as soon as the resharing protocol in Sec-
tion 8.6 is executed, where it will initially participate only as a receiver and not as a dealer.
One disadvantage to this simple approach is that while a node is being proactively rebooted,
if it was honest at the time the reboot happened, it will effectively count as “crashed” until
it is able to fully participate in the protocol. However, in fairly large networks, this should
not be a problem. One advantage of this approach is that the network does not have to
enter a special refresh phase where no useful work can be done — nodes can be slowly
recycled one at a time over the lifetime of the system without disrupting service.
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A More detailed specs

In this section, we provide additional details on the specification of our implementation on
the Internet Computer. The reader may wish to refer to the whitepaper [DFI22] for more
details. However, the key concepts and terms that are needed for this section is as follows:

• The Internet Computer is a netwrk of interacting replicated state machines, each of
which is called a subnet.

• A special subnet hosts a key/value store called the registry. The registry keeps track
of the topology of the network and the association of public keys with parties.

• The registry may change over time, but parties may refer to the state of the registry at
a particular time by specifying a registry version, which is a counter that increases
over time.

A.1 Dealings and batches of dealings

We assume here that the MEGa is implemented as in Section 4.1. We do not use the
simplified MEGa in Section 4.3, as it does not save very much and it does not provably
provide adaptive security.

We will likely also assume that the group G used for the MEGa is secp256k1. This is
the same as the curve used for ECDSA in Bitcoin. The group size is a 256-bit number and
the cofactor is 1.

We definitely want to support ECDSA with secp256k1. We may ultimately want to
be able to support other schemes, such as EdDSA with Ed25519. The group Ed25519 has
a group size that is a 253-bit number and the cofactor is 8. This makes checking group
membership a bit more challenging, but because the cofactor is small, one can alternatively
“push” arbitrary points on the curve into the subgroup at low cost.

A.1.1 Batch specifications

To deal with the fact that the set of dealers, the set of receivers, and other aspects of dealing
that will change depending on context, we need a batch specification which will specify
all of these parameters.
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• batchID : a string that uniquely identifies a batch.

• registry version: indicates the version of the registry.

• dealers: specifies the set of dealers (and their public keys, specifically, signature veri-
fication keys).

• receivers: specifies the set of receivers (and their public keys, specifically, encryption
keys).

• num dealings: the number of verified dealings that need to be collected in a batch.

• recvr thresh: the value of f for the set of receivers.

• verify thresh: the size of a dealing verification quorum, usually 2f + 1

• relatedBatches: disjoint union:

– Mul(batchID1, batchID2)

— used in case this batch represents a multiplication resharing.

– Reshare(batchID1)

— used in case this batch represents a plain resharing.

• group spec: the specifies the underlying group G (currently, this is always secp256k1).

Such a batch specification will be used for both generating and verifying dealings.

A.1.2 Generating a dealing

The dealing generation algorithm will take as input

• a batch specification batch spec, as in Section A.1.1,

• a pair (µ0, µ
′
0) ∈ Zq, as in Section 7.2.

The algorithm will proceed as in Section 7.2, with

• f = batch spec.recvr thresh,

• dealerID is the node ID of the dealing node,

• id i’s and pk i’s of receivers are determined by batch spec.receivers and
batch spec.registry version. (Some convention is needed for ordering these val-
ues.)

We also need to check the validity of public keys; specifically, each public key is
supposed to be an element of G, and we should verify that this is the case. This
does not have to be done per dealing — it can hopefully be done “once and for all”
somewhere else, but we have to determine where. Note that if we use an elliptic curve
with cofactor 1, testing group membership is anyway a pretty lightweight operation.
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Let us look at the precise structure of a dealing. A dealing is an artifact with the
following components:

• batchID , which is an arbitrary octet string (of some reasonably bounded length).

• dealerID , which is the node ID of the dealer, also an arbitrary octet string (of some
reasonably bounded length).

• C ∈ Gf+1 is the polynomial commitment, where f = batch spec.recvr thresh.

Each group element should be prefix-free encoded, and then we concatenate these and
prepend with f + 1 encoded as a single octet (assuming f + 1 is not too big).

• v := gβ ∈ G, which is the ephemeral public key of the dealer.

• πenc := (v′, pok enc), which is the PoP for the ephemeral encryption key, which is
computed as follows.

First, the group element g′ ∈ G is computed as

g′ ← hash to curve(enckey-pop; batchID , dealerID , v) ∈ G,

where

– hash to curve is as defined in [FSS+22];

– the input enckey-pop is a domain separator;

– all other inputs to the hash should be prefix-free encoded as octet strings and
then concatenated together.

Next, the group element v′ ∈ G is computed as

v′ := (g′)β ∈ G.

Finally, pok enc = (v̂, v̂′, δ) where

ρ
$← Zq, v̂← gρ ∈ G, v̂′ ← (v′)ρ ∈ G, and δ← ρ + βγ ∈ Zq, (19)

where

γ← hash to field(enckey-pop-challenge; batchID , dealerID , v, v′, v̂, v̂′) ∈ Zq.

Such a proof is validated by checking that

gδ = v̂vγ and (g′)δ = v̂′(v′)γ.

One can replace pok enc = (v̂, v̂′, δ) by the more compact pok enc = (γ, δ), and validation
is then performed by checking that

γ = hash to field(enckey-pop-challenge; batchID , dealerID , v, v′, v̂, v̂′),

where
v̂ := gδ/vγ and v̂′ := (g′)δ/(v′)γ.

71



NOTES:

1. The value δ computed above in (19) must be reduced mod q.

• (c1, . . . , cn), which is the vector of ciphertexts, where n is determined by
batch spec.receivers. Each component ci is a pair of numbers mod q, encoded as
an octet string of size 2 len(q); here, len(q) is the number of bytes needed to encode
integers in the range {0, . . . , q − 1}, so len(q) = log256(q − 1); since each ci is a fixed
length octet string, the vector (c1, . . . , cn) can just be encoded as the concatenation
of these octet strings, prepended by an octet containing n.

Each ci is an encryption of (ω(i),ω′(i)), derived as follows:

– First, we compute the group element uβi ∈ G, where ui is the public key of the
ith receiver.

– Second, we compute

(ζ, ζ ′)← hash to field(derive-key; batchID , dealerID , id i, ui, v, u
β
i ) ∈ Zq × Zq;

here,

∗ hash to field is as defined in [FSS+22];

∗ it outputs a pair (ζ, ζ ′) ∈ Zq × Zq;
∗ the input derive-key is a domain separator;

∗ all other inputs to the hash should be prefix-free encoded as octet strings
and then concatenated together.

– Finally, we compute ci as a byte-string encoding of (ω(i),ω′(i)) + (ζ, ζ ′), where
all arithmetic is done mod q.

– Note that we are effectively using hash to field to implement HM in the MEGa.

NOTES:

1. In the above, specifications, we are treating the associated data of the MEGa as
(batchID , dealerID), as discussed in Section 7.1.

2. In our implementation, it is recommend that this associated data include

• the registry version associated with the batch,

• the height of the finalized block that initiated the construction of the batch and
fixed all of its parameters, and

• the ID of the subnet that generates the dealing.

These values can either be encoded in batchID or encoded in the associated data in
some other way. By including the registry version and height, this associates a clear
timestamp with the dealing. By including the subnet ID, this ensures that a dealer
with the same ID in one subnet is differentiated from a dealer with the same ID on
another subnet, which includes both the case where dealer IDs are not globally unique,
and the case where a dealer has actually been moved from one subnet to another.
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A.1.3 Generating a dealing authenticator

This will work exactly as in Section 7.3. The inputs are

• a batch specification batch spec,

• a dealing d generated according to batch spec,

• auxiliary inputs needed to generate contextualProof .

A.1.4 Locally verifying a dealing

This is done essentially as in Section 7.4. However, we first specify how to publicly verify
a dealing: This will be a function that takes as input a batch spec as in Section A.1.1 and
a dealing d as in Section A.1.2. We should verify that d properly encodes the components
batchID , dealerID , C, v and (c1, . . . , cn), as per the encoding conventions in Section A.1.2;
in particular, we should check that:

• dealerID is a member of the dealing committee, as determined by batch spec.dealers;

• C is of the correct length, by f := batch spec.recvr thresh;

• each component of C properly encodes an element of G, where G is determined by
batch spec.group spec;

• v properly encodes an element of G;

• πenc = (v′, pok enc) is a valid PoP for the ephemeral encryption key;

• the encoding of (c1, . . . , cn) has the correct length, where we check that the value n is
correct, (which is explicitly encoded) as determined by batch spec.receivers, and that
the length of the octet string is 2n len(q).

Now suppose that party Pj wants to locally verify a dealing that has been publicly
verified as above. This will be a function that takes as input a batch spec as in Section A.1.1
and a dealing d as in Section A.1.2.

1. Pj should determine whether it is even a member of the receiving committee for
this dealings, and if so, its index j within this committee, as well as its node ID
IDj and its public key uj ∈ G. This is determined by batch spec.receivers and
batch spec.registry version.

2. Pj should determine its secret key αj ∈ Zq. Again, this is determined by
batch spec.receivers.

3. Pj does the following:

(a) compute

(ζ, ζ ′)← hash to field(derive-key; batchID , dealerID , id i, ui, v, v
αj ) ∈ Zq × Zq;
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(b) parse cj as a pair (η, η′) ∈ Zq ×Zq; if this parsing step fails, return reject; note
that this is a publicly verifiable check, which could be done separately;

(c) set (µj , µ
′
j)← (η, η′)− (ζ, ζ ′), where arithmetic is done mod q;

(d) check that

C(j) = gµjhµ
′
j ;

if not, return reject;

(e) return accept.

A.1.5 Complaint generation

Here we specify complaint generation, as in Section 8.2, in more detail. This could be
implemented as a part of the local verification of a dealing function above in Section A.1.4.
Note that local verification is in principle done twice: once to conditionally generate a veri-
fication share (if successful), and once to conditionally generate a complain (if unsuccessful)
during the FixBadShares subprotocol. Note also that complaints are not broadcast right
away during the initial local verification: firstly, because there is no compelling reason to
do so, since by asynchrony, complaints can be arbitrarily delayed; secondly, because doing
so would invalidate the security proof of our MEGa implementation if the simplified MEGa
E ′dh in Section 4.3 is used. However, if we use the MEGa Edh in Section 4.1, it is safe to
broadcasts complaints right away, if it is convenient to do so.

Depending on how the software is structured, to generate a complaint, we can define
a function that takes the same inputs as the local verification of a dealing function above
in Section A.1.4, and runs the same logic, but instead of returning reject, it returns
a decryption proof πj . One could also just have single function that takes an extra
parameter, so that

• in one setting of the extra parameter, we return either accept or reject;

• in the other setting of the extra parameter, we return either (µj , µ
′
j), indicating suc-

cess, or a decryption proof πj , indicating failure.

Let wj := vαj be as computed as in the local verification of a dealing function in Sec-
tion A.1.4, and let uj := gαj be the public key of the complaining party Pj , also as in the
local verification of a dealing function in Section A.1.4.

The decryption proof πj = (wj , u
′,w′, δ), where

ρ
$← Zq, u′ ← gρ ∈ G, w′ ← vρ ∈ G, and δ← ρ + αjγ ∈ Zq, (20)

where

γ← hash to field(derive-dp-challenge; batchID , dealerID , id j , uj , v,wj , u
′,w′) ∈ Zq.

Such a proof is validated by checking that

gδ = u′uγj and vδ = v′wγ
j .
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One can replace πj = (wj , u
′,w′, δ) by the more compact πj = (wj ,γ, δ), and validation is

then performed by checking that

γ = hash to field(derive-dp-challenge; batchID , dealerID , id j , uj , v,wj , u
′,w′)

where
u′ ← gδ/uγj and v′ ← vδ/wγ

j .

NOTES:

1. The value δ computed above in (20) must be reduced mod q.

A.2 ECDSA signing protocol

We need a data structure representing a signing request, which should consist of

• height : a blockchain height associated the signing request

• requestID : a unique identifier associated with the signing request

– should be unique at least among all signing requests of a given height

– we should be able to order these, so a requestID could just be a counter

• message: the message itself

– we may decide to store just the hash of the message here

• signerID : an octet string representing the signer ID, used for key derivation

– If the master signing key is α, the derived signing key is α+ ε, where

ε := Hdsk(derive-signing-key, signerID) ∈ Zq.

The function Hdsk should be modeled as random oracle that outputs something
from Zq or a large subset of Zq. It could be (essentially) SHA256, or we could
use a more general RO implementation.

– We may decide to store just ε here rather than signerID .

As in Section 2.5.2, we assume we have precomputed sharings

[κ], [λ], [µ] = [κλ] and [α], [λ], [ω] = [αλ],

where α is the signing key, and κ and λ are random. Specifically, we assume we have
batches (aka Transcripts) for each of these sharings, and that the batches have already been
“loaded”, i.e., a party will only participate in the signing protocol if it has successfully
loaded its share.

We also assume that R := gκ has been obtained by running OpenPower. We may assume
that the value R is stored when the sharing [κ] is “loaded”. Note that we do not explicitly
need the sharings [α] or [κ] to run the signing protocol — we only need the sharings [λ],
[µ], [ω].
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We assume batch IDs batchIDκ, batchIDλ, etc. For each such batch ID, party Pj can
fetch its share (κj , κ

′
j), (λj , λ

′
j), etc, as well as the corresponding polynomial commitments

Cκ, Cλ, etc. We assume corresponding batch specifications (aka TranscriptParams) can
also be obtained. The inputs to all of these routines will include all of these batch IDs, as
well as the signing request. We assume the signing request determines height , requestID ,
the message hash φ, the signing tweak ε, and the re-randomizer value δ.

Function round0 . This takes as input all of the transcripts and the signing request data,
and performs the following computation:

1. Compute ρ← C(gδR).

2. Compute θ ← φ+ ρε ∈ Zq.

3. Compute
νj ← θλj + ρωj ∈ Zq and ν ′j ← θλ′j + ρω′j ∈ Zq.

4. Compute
µ̂j ← µj + δλj ∈ Zq and µ̂′j ← µ′j + δλ′j ∈ Zq.

5. Output the artifact

(round1, height , requestID , j, µ̂j , µ̂
′
j , νj , ν

′
j).

After computing this round1 artifact, Pj places it in its artifact pool.
We also need a function to validate a round1 artifact of the form

(round1, height , requestID , i, µ̂i, µ̂
′
i, νi, ν

′
i).

Assuming that from the height and requestID values in the artifact we can obtain all other
associated data, to validate this, we perform the following computations:

1. Compute ρ← C(gδR)

2. Compute θ ← φ+ ρε ∈ Zq.

3. Compute Cν ← Cθ
λ ·C

ρ
ω.

4. Compute Cµ̂ ← Cµ ·Cδ
λ.

5. Check that C
(i)
µ̂ = gµ̂ihµ̂

′
i and C

(i)
ν = gνihν

′
i .

Party Pj will wait for a collection of f + 1 valid round1 artifacts.
Note that we do not need any of the shares of [κ] or the corresponding commitment Cκ

during the signing protocol itself. However, we will use these values when performing the
Mul protocol to compute [µ]← [κλ]. The same goes for [α] — this is not explicitly needed
here.
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Function round1 . This function takes as input the same inputs as function round1 , plus
a collection of f + 1 valid round1 artifacts and runs as follows.

1. Compute ρ← C(gδR)

2. Interpolate the µ̂i’s to get µ̂.

3. Interpolate the νi’s to get ν.

4. Compute σ ← νµ̂−1.

5. Output the signature (ρ, σ).

A.3 Masked and unmasked dealings and sharings

As currently specified, the dealings are all based on Pedersen VSS, which completely hide
the value being shared in the dealing. Let us call such dealings and corresponding sharings
masked. This hiding property is essential for certain aspects of the protocol, but may be
relaxed in others. In this section, we introduce the notion of an unmasked dealing, which
is based on Feldman VSS, and the corresponding notion of an unmasked sharing, and
how these may be used in the key generation and signing protocols.

An unmasked dealing has the same form as in (4), except that each ci encrypts a
single element of Zq, rather than a pair.

A.3.1 Generating a dealing

The dealing generation algorithm in Section A.1.2 for masked dealings is modified for gen-
erating an unmasked dealing as follows. The algorithm takes as input µ0 ∈ Zq, along with
a batchID and dealerID , and runs as follows:

α0 ← µ0

α1, . . . , αf
$← Zq

ω ← α0 + α1x+ · · ·+ αfx
f ∈ Zq[x]

C← gω ∈ Gf+1

(χ; c1, . . . , cn)
$← E( (batchID , dealerID); (id1, pk1,ω(1)), . . . , (idn, pkn,ω(n)) )

output (dealing, batchID , dealerID ,C, (χ; c1, . . . , cn))

If µ0 is chosen at random, then this is called a random dealing (although we will not
actually be using random unmasked dealings — see Section A.3.6). The low-level details as
outlined in Section A.1.2 are the same, except that hash to field is used to generate just a
single element of Zq.

A.3.2 Protocol Mul

We modify the protocol in Section 8.5 so that it multiplies a masked dealing and an un-
masked dealing to produce a masked dealing.
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1. Each party is given sharingID1 and sharingID2 for two previously constructed shar-
ings. Here, sharingID1 is masked and sharingID2 is unmasked. Each party Pj has
corresponding polynomial commitments D1 ∈ Gf+1 and D2 ∈ Gf+1 (common to all
parties), and corresponding shares (ν1j , ν

′
1j) ∈ Zq × Zq and ν2j ∈ Zq.

Each party is also given sharingID for a new sharing, which represents the product.

2. Each party Pj computes

κj ← ν1j · ν2j ∈ Zq, κ′j
$← Zq,

and runs the dealing generation algorithm on input (κj , κ
′
j) and with batchID :=

sharingID , dealerID := id j , to get a dealing of the form

(dealing, sharingID , id j ,Cj , · ).

Party Pj also constructs a dealing authenticator that includes a contextual proof that

shows that C
(0)
j is a Pedersen commitment to the product of Pj ’s two shares. This is

a standard PoK, which can be computed as follows:

PoK
[
x2 := ν2j , y := κ′j − ν ′1jν2j :

gx2 = D
(j)
2 ,
(
D

(j)
1

)x2hy = C
(0)
j

]
.

3. Each party obtains a dealing verification certificate on its dealing using the dealing
certification protocol in Section 7.7, and then obtains a batch of k := 2f + 1 dealings
using the batch agreement protocol in Section 7.8. Note that in Step 2 of the dealing
certification protocol, each party Pj will validate the above PoKs.

Assume the dealings in the batch are

ds = (dealing, batchID , dealerIDs,Cs, (χs; cs1, . . . , csn)), (21)

for s = 1, . . . , k.

4. Using the dealings in (21), each party Pj does the following:

(a) compute (µsj , µ
′
sj)← D((batchID , dealerIDs), sk j , χs, csj) for s = 1, . . . , k;

(b) run subprotocol FixBadShares;

(c) construct a sharing with the given sharingID , polynomial commitment C ∈
Gf+1, and private data (µj , µ

′
j) ∈ Zq × Zq, where

C←
k∏
s=1

Cλs
s , µj ←

k∑
s=1

λsµsj , and µ′j ←
k∑
s=1

λsµ
′
sj ,

where, for s = 1, . . . , k, if idx(s) is the index of the party named dealerIDs, λs is
the Lagrange coefficient

λs := λ
(I/0)
idx(s),

where I := {idx(s) : s = 1, . . . , k}.
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A.3.3 Resharing

We will also need variants of the Reshare protocol in Section 8.6.
The first variant will take a masked sharing [µ] and generates a corresponding unmasked

sharing. In the ideal functionality, the value gµ is leaked to the adversary. The protocol
will work much like the resharing protocol in Section 8.6, except that

• in Step 2, the unmasked dealing generation algorithm is invoked on input ν1j ,

• the dealing authenticator includes the same PoK as used in the open OpenPower
protocol (see Section 8.4) with the base v := g (but see below for an optimization),

• the FixBadShares subprotocol is modified to work with unmasked dealings (in partic-
ular, complaints and forced openings need to be modified appropriately), and

• the other parts of Step 5 of the Reshare protocol also need to be modified to work
with unmasked dealings, as appropriate.

The second variant will simply reshare an unmasked dealing to create a new unmasked
dealing. This is essentially the same as the protocol in Section 8.6, modified appropriately
to work with unmasked dealings instead of masked dealings.

An optimization. We can actually get by with a simpler PoK for the masked to un-
masked sharing. Instead of using the same PoK as used in the open OpenPower protocol,
we can use

PoK[x′ := µ′j : D
(j)
1 /C

(0)
j = hx

′
].

Here, D1 is the polynomial commitment for the masked sharing that is being reshared, and
Cj is Pj ’s dealing in the resharing protocol (following the notation in Section 8.6).

For the security proof, we proceed as in Section 9.1. We are assuming the following.
Suppose Pj is a corrupt party. The simulator has (µj , µ

′
j) such that

D
(j)
1 = gµjhµ

′
j ,

which corresponds to the masked sharing that is being reshared. The simulator also has µ∗j
such that

C
(0)
j = gµ

∗
j ,

which corresponds to Pj ’s dealing in the resharing protocol. This holds because we are
assuming this dealing has been validated, which means the simulator can use the decryptions
of the honest parties’ shares to reconstruct all of the other shares, as well as the secret µ∗j
being shared. This is the advantage the simulator has in this setting compared to the
OpenPower protocol. Further suppose that µ∗j 6= µj .

We show how to use such an adversary to solve the DL problem in G. By a rewinding
argument, we can then extract from the adversary x′ such that

D
(j)
1 /C

(0)
j = hx

′
.

This means that
gµjhµ

′
j = D

(j)
1 = C

(0)
j · h

x′ = gµ
∗
jhx

′
.
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The assumption that µ∗j 6= µj gives us two representations of D
(j)
1 with respect to (g, h),

which allows us to solve the DL problem in G.
We can also give a GGM-based security proof. In the NIZK, the adversary must commit

to a group element R, receive a random challenge c, and then compute x′ such that

hx
′

= R · (D(j)
1 /C

(0)
j )c. (22)

We suppose that

D
(j)
1 = gµjhµ

′
j , C

(0)
j = gµ

∗
j , R = grhr

′
. (23)

Equating g-powers and h-powers in (22) gives us two equations:

0 = r + (µj − µ∗j )c, x′ = r′ + µ′jc. (24)

Since we are assuming µ∗j 6= µj , the equation 0 = r+(µj−µ∗j )c can hold only with probability
1/q.

Security implications of unmasked sharings. While all of the security proofs in the
static corruption model (which is our default assumption) go through essentially unchanged,
in the adaptive corruption model (see Section 10.1.2), things get more complicated. The
issue is that now each dealing in a sharing effectively becomes a new “LDL target”, rather
than just one “LDL target” for the entire sharing, which complicates the generic group model
analysis of ECDSA [GS21] and degrades the efficiency of the reduction to the preimage
resistance of Hdsa even further.

A.3.4 Cross-network resharing

We will also want a variant of the XNetReshare protocol in Section 8.7 that takes an un-
masked sharing on one network and re-shares it to another network. This is essentially the
same as the protocol in Section 8.7, modified appropriately to work with unmasked dealings
instead of masked dealings.

A.3.5 Key generation and signing

In this section, we will denote an unmasked sharing by J·K and an masked sharing by [·], as
before.

Key generation. We will generate a public-key/secret-key pair as follows:

1. [α]
$← Zq // Random

2. Reshare to get an unmasked sharing JαK of α.

The secret key is α ∈ Zq, and the public key is the constant term of the polynomial
commitment of JαK.

Note that it is essential to generate the masked sharing first to maintain security — see
Section 3.6.
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Signing. We assume we having sharings

JκK, [λ], [µ] = [κλ] and JαK, [λ], [ω] = [αλ],

as well as the presignature R := gκ.
We assume all of these sharings and the value R are precomputed. Here, α is the secret

key and gα is the public key, as computed above. The values κ and R = gκ can be computed
using exactly the same protocol (for the security proofs to go through, it is essential to first
generate a masked sharing of κ and then obtain an unmasked sharing). The sharing [λ] is
computed using the Random protocol, and the sharings [µ] and [ω] are computed using the
Mul protocol (using the variant masked × unmasked → unmasked of Mul).

Each signing request will require a quadruple of precomputed sharings

JκK, [λ], [µ], [ω],

along with the presignature R := gκ. A mechanism will be needed to associate with each
signing request such a quadruple. It is critical that

• each quadruple is used for at most one signing request (breaking this rule would reveal
the signing key), and

• once the signing protocol is initiated with a given signing request and a given quadru-
ple, the signing protocol must be run to completion (breaking this rule would yield two
signatures for the same signing request, leading to “signature malleability” issues).

The actual signing protocol is identical to that in Section 2.5.2. It explicitly uses the
sharings [λ], [µ], [ω], but does not explicitly use the sharings JαK, JκK.

NOTES:

1. The sharing of κ can be either a masked or unmasked sharing as convenient. For
security, it should be initially generated as a masked sharing. As described above, it
is converted to an unmasked sharing and then that unmasked sharing is used as an
input to the Mul protocol. This allows us to get by with just a single variant of the
Mul protocol (masked × unmasked → unmasked).

2. Alternatively, we could skip the step of converting the masked sharing of κ to an
unmasked sharing. This would then require another variant of the Mul protocol
(unmasked ×unmasked → unmasked). This would allow us to do the precomputation
step with less latency.

A.3.6 Random unmasked dealings

We can naturally adapt protocol Random in Section 8.1 so that it uses unmasked dealings
and creates an unmasked sharing. In this case, the ideal functionality must inherently leak
u := gµ. However, this is not sufficient: the ideal functionality must take into account the
fact that an adversary has the ability to bias the shared value in a limited way.

One can prove that this protocol emulates the following ideal functionality:
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• the ideal functionality generates µ∗
$← Zq and gives u∗ := gµ

∗
to the simulator (i.e.,

ideal-world adversary);

• the simulator chooses bias (β, γ) ∈ Z∗q ×Zq and gives (β, γ) to the ideal functionality;

• the ideal functionality sets the shared value µ := βµ∗ + γ.

The proof of this uses the random self reducibility property of the discrete logarithm, so
that given u∗, the simulator can generate a simulated dealing on behalf of an honest party
Pi so that the constant term of the polynomial commitment of such a dealing is of the form
u∗gρi for random ρi ∈ Zq. In addition, for each dealing in the batch that is contributed by
a corrupt party Pj , the simulator can extract the value σj shared by that dealing. Thus,
the constant term of the polynomial commitment of the resulting sharing is∏

i

(u∗gρi) ·
∏
j

gσj .

The simulator sets β above to the number of honest dealings in the batch, and sets γ to

γ :=
∑
i

ρi +
∑
j

σj .

A similar observation was made in [GJKR03] for the protocol in [Ped91b] based on
Feldman VSS in the synchronous communication model.

We shall not make use of this protocol in any of our constructions here. As already
observed in Section 3.6, we cannot use this protocol for ECDSA key generation. However,
it may be safe to use this protocol for key generation for other cryptosystems. Also, in the
adaptive corruption model, each dealing becomes an “LDL target” (see Section 10.1.2).

A.4 Key derivation details

Much of this section is adapted from [GS21]. In additive key derivation, we add a “tweak”
ε ∈ Zq. Here, we describe how this tweak is derived using a generalization of the BIP32
standard [Wui20] (we only consider the “non-hardened” version of BIP32). In this section,
we shall assume that the group G is subgroup of order q of an elliptic curve, but we shall
continue to use multiplicative notation.

We first review the BIP32 standard, presented with somewhat different notation and
emphasis. BIP32 makes use of the curve secp256k1 in [Cer10]. This is a curve of prime
order q, where q is of the form

q = 2256 − q′,

where
0 ≤ q′ < 2129.

Because of the special form of q, a randomly chosen integer in the range [0, 2256) will lie
outside the range [0, q) with probability at most 2−(256−129) = 2−127.

BIP32 makes use of HMAC-SHA512, which we denote here simply by HMAC. The
function HMAC takes two inputs:
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• the first input is the “key”;

• the second input is the “data”.

In general, both inputs are byte strings of arbitrary length. HMAC produces 64-byte
outputs. It is based on a Merkle-Damg̊ard design with a chaining variable 64 bytes, and a
block size of 128 bytes.

Although HMAC was initially designed as a pseudo-random function, it is often assumed
to be a random oracle (viewing both inputs as inputs to the oracle). [DRST13] show that
HMAC is indifferentiable from a random oracle provided the set of keys is mildly restricted.
Indeed, as shown in [DRST13], if an application only uses only fixed length keys of length
at most 127 bytes, then HMAC is essentially as good as a random oracle. As we will see,
BIP32 satisfies this restriction.

Some notation:

• Let B be the set of all bytes.

• Let S := B∗, the set of all byte strings.

• Let C := B32, the set of all chain codes.

• Let HMAC2 be the function that outputs (a, b), where a is the first 32 bytes of HMAC
and b is the last 32 bytes.

• For s ∈ S, let [s] denote the integer for which s is a base-256 representation, and let
[s]q denote the image of [s] in Zq.

• For an element w ∈ G, let 〈w〉 ∈ S be the compressed SEC1 encoding of w [Cer09] —
note that this is a prefix-free encoding.

For a group element u ∈ G, let us define the function

Hu : (Zq × C)× S → Zq × C
( (ε, c), s ) 7→ (ε+ [a]q, b), where (a, b) := HMAC2

(
c, 〈ugε〉 ‖ s

)
.

We then define
H∗u : S∗ → Zq × C

as follows:

H∗u(s1, . . . , s`) :=

{
(0, IV) if ` = 0,

Hu

(
H∗u(s1, . . . , s`−1), s`

)
if ` > 0.

Here, IV is an arbitrary, fixed element of C (it could be the all-zero string). Let H+
u be H∗u

restricted to the domain S+.
This is essentially the BIP32 derivation function. The main difference is that in BIP32,

the function Hu will fail if [a] ≥ q or ugε+[a]q = 1G. Modeling HMAC as a random oracle,
and because of the special form of q, this failure will occur with negligible probability, so
we can safely ignore such failures. The only other difference is that in BIP32, the byte
strings s1, . . . , s` are restricted to being exactly 4 bytes long, but this is not essential for
any security properties (since the compressed SEC1 encoding is prefix free).
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Given a master public key u ∈ G and (s1, . . . , s`) ∈ S∗, if H∗u(s1, . . . , s`) = (ε, c), then
ugε is the corresponding public key derived from u via (s1, . . . , s`). If α ∈ Zq is the master
secret key, so that u = gα, then α+ ε is the corresponding derived secret key. Observe that
any party who knows u and (s1, . . . , s`) (as well as IV) can compute the derived public key.
Note that some use cases of BIP32 consider IV to be private. One such use case is where
users want derived public keys to be unlinkable. However, our analysis here assumes it is
public, which is sufficient for analyzing the security of ECDSA against forgery using derived
public keys.

Use in the Internet Computer. The function H+
u will be used to derive keys, but in

evaluating H+
u (s1, . . . , s`), the first argument s` will be the canister ID, while arguments

s2, . . . , s` are the usual BIP32 derivation indices. Note that in the BIP32 standard, the
derivation indices are 32-bit integers with high-order bit 0, and these are encoded as byte
strings of length 4, high-order byte first. Note that this key derivation function is only
used for secp256k1. For other curves, we use the alternative construction of Hu (see
Section A.4.2).

A.4.1 Security analysis of BIP32 key derivation

It would be nice to show that H+
u is indifferentiable from a random oracle (RO), in the

sense defined in [CDMP05]. However, because of extension attacks, we cannot hope to do
this. However, we can still show that H+

u is indifferentiable from a so-called public-use
random oracle (pub-RO), a notion defined in [DRS09]. Essentially, with a pub-RO, the
adversary is allowed to ask for all queries made to the random oracle by any honest parties.
This is sufficient for analyzing the security of ECDSA with tweaks derived via H+

u , as their
are no “secret” inputs to H+

u made by the challenger in the forgery attack game.
It is shown in Theorem 7.1 in [DRS09] that the Merkle-Damg̊ard construction applied

to a pub-RO compression function is itself indifferentiable from a pub-RO. This theorem
does not require any “strengthening” (i.e., a suffix-free encoding of the input).

Since H+
u is exactly the Merkle-Damg̊ard construction applied to the compression func-

tion Hu, we could apply this result here, provided we can show that Hu is indifferentiable
from a pub-RO, where HMAC is modeled as a random oracle. Unfortunately, we cannot
do this without computing discrete logs. Indeed, given an input (c, 〈w〉 ‖ s) to HMAC, an
indifferentiabilty simulator would have to be able to determine ε ∈ Zq such that w = ugε,
and query the oracle representing Hu at the point ((ε, c), s), just in case the adversary would
later query Hu at this point.

Luckily for us, Theorem 7.1 in [DRS09] actually applies to any compression function that
is indifferentiable from what [DRS09] call a public-use guarded random oracle (pub-
GRO). Roughly speaking, in the pub-GRO indifferentiabilty game for Hu, the adversary
does not have unfettered access to the oracle representing Hu, but only to an input of the
form ((ε, c), s), where (ε, c) is an allowable pair in the following sense: either (ε, c) = (0, IV)
or (ε, c) previously output by the oracle. This restriction avoids the problem indicated above.
Indeed, given an input (c, 〈w〉 ‖ s) to HMAC, an indifferentiabilty simulator can test if there
is an allowable pair of the form (ε, c) where w = ugε; if not, we can safely assume that Hu

will never be queried at the corresponding point, and so the simulator can just respond
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with random junk.
We claim the following: assuming HMAC is modeled as a random oracle, Hu is indif-

ferentiable from a pub-GRO. To prove this, one must take into account the special form of
q, which ensures that the uniform distribution on {0, . . . , q− 1} is statistically very close to
the uniform distribution on {0, . . . , 2256 − 1}. One must also make use of the fact that the
compressed SEC1 encoding is prefix free. From this, the claim follows.

From the claim, we may conclude that H+
u is indifferentiable from a pub-RO.

Now consider the function

π1 : Zq × C → Zq
(ε, c) 7→ ε,

which projects onto its first argument. The function we are ultimately interested in is
Hash ′u := π1 ◦H∗u. This function maps a variable length tuple (s1, . . . , s`) ∈ S∗ to a tweak
ε ∈ Zq. By the above observations, Hash ′u restricted to S+ is indifferentiable from a pub-RO
(and Hash ′u() = 0).

It is also easy to show that Hash ′u is collision resistant, assuming that the function π1◦Hu

is collision resistant and that it is hard to find a preimage of 0 under π1 ◦ Hu (the latter
condition is needed, since we are not using any “strengthening” in the Merkle-Damg̊ard
construction).

A.4.2 An alternative construction for Hu

For a group element u ∈ G, let us define the function

Hu : (Zq × C)× S → Zq × C
( (ε, c), s ) 7→ (ε+ [a]q, b), where (a, b) := HMAC′2

(
c, 〈ugε〉 ‖ s

)
.

The function HMAC′2 is defined in terms of the function expand message xmd from [FSS+22]
(which is also used to define the function hash to field , used elsewhere in this document).
We define

HMAC′2(c, s) := (a, b),

where
a ‖ b = expand message xmd(c ‖ s, ecdsa-derive-tweak, len).

Here,

• c ∈ C,

• s ∈ S,

• ecdsa-derive-tweak is a domain separator,

• len is the length (in bytes) of the output of expand message xmd ,

• b ∈ C,

• a ∈ S is a byte string of length len − 32.
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The parameter len should be chosen so that

q

256len−32

is negligible. For example, we could choose len to be the byte length of q plus 64.

Security analysis. In the terminology introduced in Section A.4.1, one can show that
assuming expand message xmd is a random oracle and the parameters are chosen as above,
then Hu is indifferentiable from a pub-GRO, and the security analysis in Section A.4.1
goes through to establish that the resulting function H+

u is indifferentiable from a pub-RO.
Unlike the analysis in Section A.4.1, this analysis does not require that q is of a special
form, which is why this construction should be used for curves other than secp256k1.

A.5 Some bookkeeping details

At a high level, our implementation works as follows.
We process a sequence of signing records

SR1,SR2, . . . .

Each signing record consists of

• a message m (but see Section A.5.2);

• a derivation path path that will be used to derive an additive tweak ε via BIP32 key
derivation, as described in Section A.4 (we actually implement the generalization of
BIP32 analyzed in Section A.4, which allows arbitrary by strings as components of
path);

• a seed s — this will be used to derive a randomizer δ ∈ Zq as in (1).

We generate a sequence of quadruples

Q1, Q2, . . . .

Each quadruple consists of sharings

JκK, [λ], [µ] = [κλ], [λ], [ω] = [αλ],

as described in Section A.3.5. Since JκK is an unmasked sharing, it determines the presig-
nature value R = gκ as well.

Finally, we have a sharing JαK of the signing key. Since JαK is an unmasked sharing, it
determines the public key u (the public key is needed to compute the BIP32 derivation).

The signature generation module will pair signing record SRi with quadruple Qi
to generate a signature. If SRi = (m, path, s) and Qi determines the presignature R, the
additive tweak ε ∈ Zq is derived from the public key u and path using BIP32 key derivation,
and the randomizer δ ∈ Zq is derived as in (1) from the values s,R, ε, φ, where φ = Hdsa(m).
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The overall design of Internet Computer is that of a replicated state machine. A
blockchain-based consensus protocol is used to deliver blocks to an execution layer, which
updates the replicated state.

The values m and path of a signing record are generated by an “asynchronous system
call” from the execution layer, which itself is generated in response to the finalization of
a particular block on the blockchain (as a deterministic function of the current replicated
state and the contents of the block). The seed value s of the signing record is derived from
a random beacon that is generated only after this block has been finalized (the random
beacon is implemented using an (f + 1)-out-of-n threshold BLS signature, shares of which
are only broadcast after this block has been finalized). This is a crucial aspect of the design,
as it guarantees that in the signature attack game, the random seed s is revealed to the
adversary only after the adversary effectively presents the values m and path to the signing
oracle. This random beacon is already built into the Internet Computer architecture, and
is used for supplying unpredictable, pseudorandom bits to the execution layer. Given the
current design of the Internet Computer architecture, even though the random beacon is
generated only after the block that generates the asynchronous system call is finalized, this
does not create any additional delay in passing the signing record to the signature generation
module.

The construction of the quadruples Q1, Q2, . . . happens concurrently with the construc-
tion of the signing records SR1,SR2, . . . (using the blockchain to implement the consensus
subprotocol used in implementing the subprotocols used to construct these sharings). Even
though SRi is paired with Qi, the quadruple Qi may be constructed either before or after the
signing record SRi is constructed. In particular, the presignature corresponding to Qi may
be revealed to the adversary before the adversary commits to the message and path values
of SRi. This is fine from a security point of view, since our attack model allows precisely for
this. It is also possible that presignature corresponding to Qi is revealed to the adversary
after the adversary commits to the message and path values of SRi. This is also fine from
a security point of view, since this only makes the adversary’s attack more difficult, as the
adversary must choose the message and path before seeing the presignature. However, for
this argument to remain valid, it is important that the adversary cannot influence in any
way the value of this presignature. This is the case in our implementation, where Q1 is the
first quadruple initiated, Q2 is the second quadruple initiated, and so on. So even if we have
only a single signing record SR1, and if quadruple Q2 happens to complete before quadruple
Q1 completes, we wait for Q1 to complete before it is paired with SR1 and the signature is
generated. Note, however, in another situation where we have two signing records SR1 and
SR2, if quadruple Q2 happens to complete before Q1 completes, we can proceed to generate
the signature for SR2 while SR1 is still waiting for Q1 to complete. This is safe because the
attacker cannot influence the choice of which quadruple SR1 gets paired with.

For example, it would not be acceptable to initiate the generation of several quadruples
which may complete in different orders (based on the order in which protocol messages are
delivered), and then call the first quadruple to complete Q1, the second to complete Q2,
and so on. This is because an adversary can influence the order in which these quadruples
complete, and this can happen after the adversary has made several signing records and
has already seen the corresponding random beacons. Although we know of no particular
attack, this type of attack would fall outside of our formal attack model, as the adversary
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could adaptively choose which presignatures to pair with which signing records after the
corresponding random beacons have been revealed (but also after the messages and paths
have be committed to, which still constrains the adversary quite a bit). Indeed, our analysis
assumes that the random beacon and hence the derived randomizer δ is only revealed to
the adversary after the adversary commits to message, the path, and the presignature.

A.5.1 A wrinkle: quadruple disposal

From time to time, our implementation will dispose some quadruples that have already
been constructed. This may happen, for example, when the network membership changes.
In this case, the secret signing key needs to be reshared among the new members. We
could also reshare the sharings comprising any already constructed quadruples. Instead,
our implementation will simply dispose any unused quadruples. However, to avoid the
undesirable situation where the adversary may get two independent signatures on the same
signing record, our implementation ensures that if the signature generation module may
have already released a share of a signature for a signing record, then the corresponding
quadruple is not disposed and the signing record is completed using that quadruple. We
call such a quadruple unequivocally paired with a signing record. This may require that
members of the previously configured network participate in the protocol until all such
extant signing records are complete.

There still may be other quadruples that are not yet complete or not yet unequivocally
paired with a signing record, but for which the corresponding presignature has already been
revealed, and these will be disposed. Moreover, we assume the adversary has enough power
to influence the timing of events that determine when such quadruples will be disposed.

We model this as follows. At a given point in time, we have initiated construction of
quadruples

Q1, . . . , Qk

where quadruples {Qi}i∈I have been unequivocally paired with signing records. The quadru-
plesQj for j ∈ J := {1, . . . , k}\I have not yet been unequivocally paired with signing records
— they may or may not have been fully completed. At this point in time, the adversary
may choose to dispose some of the quadruples Qj for j ∈ J . When this happens, all of
these disposed quadruples will be replaced by fresh quadruples Q′j for j ∈ J .

Note that when the adversary disposes Qj for j ∈ J , some of the corresponding presigna-
tures may have already been revealed to the adversary, and some of the seeds corresponding
to SRj for j ∈ J may have already been revealed to the adversary. Consider such a signing
record SRj = (m, path, s), where s has already been revealed to the adversary at the point
in time when Qj is disposed. Let ε be the tweak derived from path and φ = Hdsa(m).
Suppose that the presignature associated with Qj is R, which may or may not have already
been revealed to the adversary. Since Qj gets replaced by a fresh Q′j , the corresponding
presignature R is also replaced by new random presignature R′, and the old randomizer
δ = Hdelta(s,R, ε, φ) is replaced by the new randomizer δ′ = Hdelta(s,R′, ε, φ). Since we are
modeling Hdelta as a random oracle, and since R′ is generated freshly, the value δ′ can also
be modeled as a fresh random value.

With these observations, we can model quadruple disposal by slightly modifying the
ideal functionality Fecdsa in Section 2.6 to obtain the new functionality F ′ecdsa, defined as
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follows. Initialization and presignature requests are the same as in Fecdsa. A signature
request is the same as in Fecdsa, except that instead of giving ρ, σ, δ to S it only gives δ to S.
For the given sigID , a sequence of corresponding signature reset requests may then be issued,
each one has the effect of generating a new presignature R and a new randomizer δ — these
values replace the old values and are also given to S. After this sequence of signature reset
requests, a single signature generate request may be issued, which gives the signature (ρ, σ)
to S. The only other change necessary is that for the control message (output-sig, sigID , i)
that specifies when a party Pi should output a signature, the requirement is that Pi should
have already received a corresponding signature generate request.

We can modify the attack game in Section 8.4 of [GS21] accordingly, so that the adver-
sary interacts with a challenger by issuing a series of presignature, signature, and signature
reset, and signature generate requests corresponding to analogous requests in F ′ecdsa. We
also define corresponding notions of existential unforgeability and strong unforgeability up
to sign (analogous to the definitions reviewed in Section 2.6.4:

• By existential unforgeability with resets, we mean that the adversary cannot feasibly
create a valid signature (ρ∗, σ∗) for a message/tweak pair (m∗, ε∗) unless it made a
signature request for the same message/tweak pair.

• By strong unforgeability up to sign with resets, we mean that the adversary cannot
feasibly create a valid signature (ρ∗, σ∗) for a message/tweak pair (m∗, ε∗) other than
one that is equivalent up to sign to the response (ρ, σ) to some signature generate
request on that same message/tweak pair.

Note the distinction: for existential unforgeability we look at signature requests, while for
strong unforgeability up to sign, we look at signature generate requests.

We first observe that existential unforgeability implies existential unforgeability with
resets. Suppose an adversary breaks existential unforgeability with resets. Then we modify
the reset attack game so that the challenger immediately generates all signatures arising
from signature requests and signature reset requests. This gives us an adversary that breaks
existential unforgeability with the same advantage.

We next argue that strong unforgeability up to sign implies strong unforgeability up to
sign with resets. Suppose an adversary breaks strong unforgeability up to sign with resets.
This means he outputs a valid signature (ρ∗, σ∗) for a message/tweak pair (m∗, ε∗) that is
not equivalent up to sign to the response to any signature generate request on that same
message/tweak pair. Let u∗ := ugε

∗
be the derived public key and let φ∗ := Hdsa(m∗) be

the message hash. Let
τ∗ := (σ∗)−1, R∗ := gτ

∗φ∗(u∗)τ
∗ρ∗

as in the signature verification algorithm, so that ρ∗ = C(R∗).
For each signature request on a message/tweak pair (m, ε) and presignature R, a ran-

domizer value δ is returned, which determines the re-randomized presignature R̂ := Rgδ.
Each subsequent corresponding signature reset request generates a new presignature and
a new randomizer, which determines a new re-randomized presignature. We call such a
signature or signature reset request unfulfilled if it was not converted to a signature via a
corresponding signature generation request. Otherwise, we call it fulfilled.

We consider two cases:
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Case 1: for some unfulfilled signature or signature reset request on a message/tweak pair
(m, ε) and with re-randomized presignature R̂, we have (m∗, ε∗) = (m, ε) and R∗ =
R̂±1.

Case 2: otherwise.

Consider Case 2 first. In this case, just as we did above for existential unforgeability, we
modify the reset attack game so that the challenger immediately generates all signatures
arising from signature requests and signature reset requests. For those requests that ulti-
mately remain unfulfilled, let us call these extra signatures. The key observation is that, by
assumption, (ρ∗, σ∗) is not equivalent up to sign to any of the extra signatures produced for
the same message/tweak pair. This gives us an adversary that breaks strong unforgeability
up to sign with the same advantage.

For Case 1, we can convert the given adversary into one that breaks the discrete loga-
rithm. This new adversary will run the attack game knowing the secret key α corresponding
to the public key u = gα. Given a discrete logarithm challenge X, it will guess which presig-
nature will ultimately be the one that corresponds to the unfulfilled request defining Case 1,
and set that presignature to R := X. If the discrete logarithm of R is needed to fulfill a
request, then our adversary’s request was wrong and gives up. The original adversary’s
forgery (ρ∗, σ∗) satisfies

(Xgδ)±1 = R∗ = gτ
∗φ∗(u∗)τ

∗ρ∗ = gτ
∗φ∗(gα+ε∗)τ

∗ρ∗ ,

where δ is the randomizer associated with the unfulfilled request. From this, we can compute
the discrete logarithm of X. Note that the security in this reduction degrades linearly with
the number of presignatures.

So we have shown that an adversary that breaks strong unforgeability up to sign with
resets can be used to either (a) break strong unforgeability up to sign, or (b) breaks the
discrete logarithm.

A.5.2 Another wrinkle: raw signing queries

In our implementation, the API for signing requests actually consists of a message hash
φ ∈ Zq, rather than a message m, along with a derivation path path. The first entry in path
is a entityID that specifies the entity who controls the path and (by extension) the signing
key derived by path via (generalized) BIP32 derivation. An access control mechanism is
implemented that ensures that signing requests made with respect to path are authorized
by the controlling entity.

An entity is called honest if it always computes φ as φ← Hdsa(m) for some message m.
A corrupt entity may compute φ arbitrarily, not necessarily as the output of Hdsa.

It was deemed convenient to include φ rather than m in the signing API, as this would
allow us to implement remote signing requests that did not require the transmission of
potentially long messages across the network. All of our protocols are easily adapted to
work with message hashes instead of messages, and the security proofs for these protocols
go through essentially unchanged, so security is reduced to the security of non-threshold
ECDSA with the same type of signing queries, which was analyzed in [GS21].
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As discussed after Theorem 6 in [GS21], the unforgeability properties of ECDSA remain
unchanged even if we allow “raw signing” queries, where the inputs φ and ε are uncon-
strained. In this setting, (strong) unforgeability (up to sign) means that if the adversary
can compute a signature on a message m∗ and a path path∗, which define φ∗ := Hrsa(m∗)
and the tweak ε∗ is derived from path∗, there must have been a raw signing query (φ∗, ε∗)
(which output a signature equivalent up to sign to the adversary’s output signature). For
our system, the implication is this: assuming the collision resistance of Hdsa, the collision
resistance of the tweak derivation function, and the security of our access control mecha-
nism, this raw signing request was in fact made by the honest entity controlling path∗, and
this honest entity computed φ∗ as φ∗ ← Hrsa(m∗).

In our system, while the ε inputs to the signing queries are constrained, the φ inputs
are unconstrained. By allowing unconstrained φ inputs, the main concern is as follows.
Suppose an adversary wants to make it look like an honest entity who controls path∗ signs
the message m∗. Let ε∗ be the tweak derived from path∗ and let φ∗ be the hash of m∗.
Suppose the adversary controls a corrupt entity who controls path. Let ε be the tweak
derived from path. The adversary’s goal now would be to find a value φ such that obtaining
a signature on (φ, ε), which it is authorized to obtain, can be converted into a signature on
(φ∗, ε∗), which it is not authorized to obtain. Without re-randomization of presignatures,
this could easily be done as follows. Given a presignature R with ρ := C(R), the adversary
first solves the equation

φ∗ + ρε∗ = φ+ ρε

for φ. Next, the adversary obtains the signature (ρ, σ) on (φ, ε) using presignature R. We
have

Rσ = gφ(ugε)ρ = gφ+ρεu = gφ
∗+ρε∗u = gφ

∗
(ugε

∗
)ρ

which means that (ρ, σ) is also a signature on (φ∗, ε∗). Re-randomization of presignatures
stops this attack, and, as shown in [GS21], all other attacks as well, which justifies the use
of unconstrained φ inputs.

A.6 Some random oracle details

In our current implementation, SHA-256 is used both to implement Hdsa (the 256-bit out-
put of SHA-256 is reduced modulo the 256-bit prime q) and the random oracles used in
the threshold ECDSA signing protocol. The random oracles are all implemented via the
expand message xmd using appropriate domain separators. However, the messages hashed
by Hdsa are not domain separated at all. This potentially creates a problem, as our simu-
lator in the proof of UC security of our threshold ECDSA signing protocol “programs” the
random oracle, and this programming could conceivably interfere with the reductions to
collision resistance (CR), random preimage resistance (RPR), and zero preimage resistance
(ZPR) of SHA-256 given in [GS21]. Nevertheless, we argue that at least in the case of static
corruptions, these reductions still hold.

In the simulator given in Section 9, the only programming of the random oracle that is
done is “benign”, in the sense defined in [Gro21]. More precisely, the programming done
by the simulator is in service to the ZK simulators for the Fiat-Shamir-based proofs used
in the OpenPower and Mul protocols (other programming is done indirectly to prove that
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the simulator is faithful, such is in the analysis of the MEGa, but this programming is
not relevant). For these ZK simulations, our simulator only needs the following “benign”
programming ability: given a random output y from the random oracle, at some later time
select an input x to the random oracle that outputs y (with the restriction, of course, that
the value of the random oracle at x has not already been determined). As is easily seen,
this type of “benign” programmability does not make CR, RPR, or ZPR any easier.

This is not quite a complete argument. One really has to take into account that
SHA-256 is a Merkle-Damg̊ard hash function, and take into account the specific design
of expand message xmd . In this setting, we have a compression function C(cv , text) that
takes a chaining-variable input cv and a text input text . Benign programmability in this
setting means that given a random output y of C, the simulator is allowed to later choose
an input (cv , text) and set C(cv , text) := y. (In fact, for our simulator, the programmed
value cv is itself the output of a Merkle-Damg̊ard hash chain starting at the fixed IV of
the hash function, and only text is freely chosen by the simulator, but this is not essential.)
For SHA-256, C is built from a symmetric cipher using the Davies-Meyer construction. To
complete the proof, one must model the underlying symmetric cipher as an ideal cipher,
and then derive CR, RPR, and ZPR properties of C assuming “benign” programming as
above. This is straightforward.

Note that in the Fiat-Shamir-based proofs, we use expand message xmd to imple-
ment hash to field , and the latter is used directly to derive a challenge. The function
expand message xmd comprises two calls to SHA-256: an “inner” call that performs “ex-
traction”, and an “outer” call that performs “expansion”. The output from the outer call
is reinterpreted as an integer and reduced mod q. For Fiat-Shamir-based proofs, it suffices
to program the output on the inner call to SHA-256.

As presented, our simulator should also program the random oracle Hdelta, which is
used to derive the re-randomization value δ as in (1). However, as already noted in the
discussion following (1), the analysis in [GS21] shows that is only required that Hdelta is
sufficiently “entropy preserving”. This will hold even ifHdelta is implemented using SHA-256
via hash to field , again, modeling SHA-256 as constructed from a benignly programmable
idealized compression function.

Adaptive corruptions. In the adaptive corruption setting studied in Section 10.1, our
simulator has to perform more aggressive random oracle programming, and so the above
analysis does not apply. Nevertheless, we can still adapt the argument to this setting.
Besides Fiat-Shamir ZK simulations, the simulator also has to program the random oracle
to ensure that the relation h + m = c holds. Here, h is an output of the random oracle,
m is a plaintext, and c is the ciphertext. Recall that for encryptions from honest parties
to honest parties, the simulator would generate c at random, and then when either sender
or receiver was corrupted, it would “backpatch” the random oracle, setting h := c − m.
However, by construction, m is independent of c, and all of these h values are actually
random, independent values — it is just that they are not physically generated by the
oracle as in the above “benign” programming setting. Because of this, one can adapt the
above arguments to prove security — the same arguments that establish CR, RPR, and
ZPR properties of C assuming “benign” programming also hold in this somewhat less benign
setting.
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Connections to globally programmable random oracles and indifferentiability.
In the above discussion, we are essentially working in the “global random oracle” model.
That model was introduced in [CJS14], while programmable variants of that model were
introduced in [CDG+18]. None of these papers considered the notion of benign programma-
bility used here — this notion was introduced in [Gro21], although not explicitly in the UC
framework. Moreover, none of the papers [CJS14, CDG+18, Gro21] address the fact that
hash functions like SHA-256 are not “monolithic” random oracles, but are best modeled
as being constructed from an idealized compression via Merkle-Damg̊ard. One might think
that the right way to deal with this fact is to make use of the indifferentiability framework,
as in [CDMP05]. However, while this framework makes sense for “local” random oracles,
where the indifferentiability simulator is absorbed into the ideal-world simulator in the UC
framework, it is not at all clear how this theory can be applied to “global” random oracles.
For precisely these reasons, we approached the problem as above in a different way, making
the global object a benignly programmable idealized compression function, not relying on
the indifferentiability theory. Note, however, that we may still use indifferentiability theory
to analyze a fully programmable random oracle in order to prove that the UC simulator in
the ideal world is a faithful simulation. This is done indirectly in the analysis of the MEGa,
which makes use of fully programmable random oracles.

93


	1 Introduction
	1.1 More on communication models and consensus
	1.1.1 Chickens and eggs

	1.2 Related work
	1.3 Other related work

	2 Overview
	2.1 The ECDSA signature scheme
	2.2 Variations on ECDSA and their application to threshold signing protocols
	2.3 Assumptions and basic notation
	2.4 Basic subprotocols
	2.5 ECDSA protocols
	2.5.1 Key generation
	2.5.2 Signing

	2.6 Security model and proof sketch
	2.6.1 Ideal world
	2.6.2 Real world
	2.6.3 Security theorem
	2.6.4 Consequences


	3 Tools and techniques
	3.1 Shamir's secret sharing scheme
	3.2 Some convenient notation
	3.3 Verifiable secret sharing (VSS)
	3.4 Asynchronous VSS (AVSS)
	3.5 Sketch of Random protocol
	3.6 Using Feldman instead of Pedersen and an attack on ECDSA

	4 MEGa: a multi-encryption gadget
	4.1 A MEGa implemention
	4.2 Analysis
	4.3 An even simpler MEGa implementation
	4.4 Formalizing a weaker security definition

	5 Roadmap and setup assumptions
	6 Sharings and interpolation
	6.1 Structure of a sharing
	6.2 Interpolation

	7 Dealings and batches of dealings
	7.1 Dealings
	7.2 Dealing generation algorithm
	7.3 Dealing authenticators
	7.4 Local verification of a dealing
	7.5 Dealing verification shares
	7.6 Dealing verification certificate
	7.7 Dealing certification protocol
	7.8 Batch agreement protocol

	8 Implementing the basic subprotocols
	8.1 Protocol Random
	8.2 The FixBadShares subprotocol
	8.3 Protocol Open
	8.4 Protocol OpenPower
	8.5 Protocol Mul
	8.6 Resharing
	8.7 Cross-network resharing
	8.8 Complexity estimates
	8.8.1 Communication complexity
	8.8.2 Computational complexity
	8.8.3 An optimization: vector processing of dealings


	9 Proofs of security
	9.1 Additional details for the analysis of Game 3

	10 Adaptive and proactive security
	10.1 Adaptive security
	10.1.1 Adaptively secure MEGa
	10.1.2 Adaptively secure Fmpc and ECDSA

	10.2 Proactive security

	Acknowledgements
	References
	A More detailed specs
	A.1 Dealings and batches of dealings
	A.1.1 Batch specifications
	A.1.2 Generating a dealing
	A.1.3 Generating a dealing authenticator
	A.1.4 Locally verifying a dealing
	A.1.5 Complaint generation

	A.2 ECDSA signing protocol
	A.3 Masked and unmasked dealings and sharings
	A.3.1 Generating a dealing
	A.3.2 Protocol Mul
	A.3.3 Resharing
	A.3.4 Cross-network resharing
	A.3.5 Key generation and signing
	A.3.6 Random unmasked dealings

	A.4 Key derivation details
	A.4.1 Security analysis of BIP32 key derivation
	A.4.2 An alternative construction for H_u

	A.5 Some bookkeeping details
	A.5.1 A wrinkle: quadruple disposal
	A.5.2 Another wrinkle: raw signing queries

	A.6 Some random oracle details


