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Abstract. Digital signature is an essential primitive in cryptography,
which can be used as the digital analogue of handwritten signatures but
also as a building block for more complex systems. In the latter case,
signatures with specific features are needed, so as to smoothly inter-
act with the other components of the systems, such as zero-knowledge
proofs. This has given rise to so-called signatures with efficient protocols,
a versatile tool that has been used in countless applications. Designing
such signatures is however quite difficult, in particular if one wishes to
withstand quantum computing. We are indeed aware of only one post-
quantum construction, proposed by Libert et al. at Asiacrypt’16, yielding
very large signatures and proofs.
In this paper, we propose a new construction that can be instantiated
in both standard lattices and structured ones, resulting in each case in
dramatic performance improvements. In particular, the size of a proof of
message-signature possession, which is one of the main metrics for such
schemes, can be brought down to less than 650 KB. As our construction
retains all the features expected from signatures with efficient protocols,
it can be used as a drop-in replacement in all systems using them, which
mechanically improves their own performance, and has thus an impact
on many applications.

Keywords: Lattice-Based Cryptography · Signature · Efficient Proto-
cols · Privacy

1 Introduction

Electronic authentication massively relies on digital signatures, a cryptographic
primitive that can be traced back to the Diffie-Hellman seminal paper [DH76].
The strong point of digital signatures is that they act in the digital world in
the same way as handwritten signatures do in the real world: they add a short
element S to some data m attesting that m has been validated by the signer
and that it has not been modified afterwards. By emulating handwritten signa-
tures, they position themselves as the perfect electronic counterpart and they
are indeed ubiquitous today.
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However, for several decades, cryptographers have questioned this hegemony
in some situations as these signatures may give rise to many privacy issues.
Typically, presentation of the same certificate3 S each time m needs to be au-
thenticated allows tracing S and hence its owner. Moreover, if m is a set of
elements mi, then verification of S requires knowledge of all these elements even
if they are irrelevant for the current authentication.

For example, let us consider the classical use-case of age control (e.g., to check
that a customer is an adult) where some customer owns a digital certificate (em-
bedded in some ID document) authenticating his attributes (name, birthdate,
address, etc). With standard digital signature, this customer has no other choice
than providing the full set of attributes to the controller as they are required to
run the verification algorithm. This is clearly a significant privacy issue but here
one could argue that the situation already occurs in the real world: it is indeed
quite common to present an ID document displaying many personal information
to a cashier that needs to control your age.

This apparent paradox epitomizes the differences between the real world and
the digital one. In the former, it is natural to assume that the cashier will not
memorize all the information contained in the document for further commercial
exploitation or identity theft. This does not hold true in the digital world where
the users definitely lose control of their data as soon as they reveal them and
it is very likely that the same customer will be much more reluctant to provide
the same information to a website that needs to verify that he is an adult.

1.1 Related Works

Since the problems of the two worlds are different it is actually logical that stan-
dard digital signatures are not best suited for all use-cases. In particular, the fact
that electronic data can no longer be controlled once they are revealed calls for
solutions disclosing as few information as possible during authentication. This
has given rise to countless advanced cryptographic primitives, tailored to very
specific use-cases, such as anonymous credentials [Cha85,CL01,FHS19], group
signatures [CvH91,BSZ05], Direct Anonymous Attestations (DAA) [BCC04],
EPID [BL07], etc. Far from simply being theoretical constructions, some of them
have been included in standards (e.g., [ISO13a,ISO13b]) and even embedded in
billions of devices (e.g., [TCG15,Int16]).

Surprisingly, the diversity of use-cases addressed by these privacy-preserving
authentication mechanisms contrasts with the very few mathematical settings
allowing efficient designs. A closer look at these standards indeed shows that all
of them make use of RSA moduli or cyclic groups and thus cannot withstand
the power of quantum computing. The emerging success of such systems is thus
based on foundations that will crumble as soon as a sufficiently powerful quantum
computer appears.

This unsatisfying state of affairs clearly calls for the design of post-quantum
alternatives to such systems. However, when we look at the cryptographic litera-
3 All along this paper, the words signature and certificate will be used interchangeably.
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ture on this topic, it is striking to see that the existing post-quantum solutions are
not only much less efficient than their classical4 counterparts but also extremely
rare. Typically, we are not aware of any explicit post-quantum anonymous cre-
dentials system. Even when we consider popular primitives such as group signa-
tures, we note that the most efficient solutions [dPLS18,LNPS21] depart from
the traditional model [BSZ05] as they do not achieve non-frameability, a prop-
erty implying that the certificate issuer does not know users’ secret keys and
that is thus incompatible with their construction. Although this might seem to
be a minor restriction for group signatures, this has very important consequences
on their industrial variants such as DAA and EPID. Indeed, for the latter, the
knowledge of the users’ secret keys allows one to break anonymity, which makes
the whole construction totally pointless.

To understand the contrasting situations of classical constructions and post-
quantum ones in the area of privacy-preserving authentication mechanisms, it
is important to recall that all of them require, at some point, to prove knowl-
edge of a signature on some (potentially secret) attributes. For example, in an
anonymous credential system, the user generally receives a signature on their
attributes and some secret key at the time of issuance. To show their credentials
they then reveal the requested attributes and prove knowledge of the signa-
ture, the hidden attributes and the secret key so as to remain anonymous. In
non-frameable group signatures, DAA or EPID schemes, the user first receives
a certificate C on a secret key s and then generates their own signatures by
including a zero-knowledge proof that C is valid on s. Of course, the resulting
signatures also contains additional elements that define the specificity of each
primitive but the point is that the common core is this proof of knowledge which
essentially needs two kinds of building blocks: a “signature scheme with efficient
protocols” as coined by Camenisch and Lysyanskaya [CL02] and an associated
zero-knowledge (ZK) proof system.

The latter notion is well-known and has seen several advances over the past
few years, in particular in the lattice setting, e.g., [BLS19,YAZ+19,LNP22]. The
former notion has not been properly formalized but it usually refers to a dig-
ital signature scheme with some specific features such as the ability to sign
committed (hidden) messages and to prove knowledge of a signature on such
messages. This places some restrictions on the design of the signature scheme as
it for example proscribes hash functions and hence most popular paradigms such
as Hash-and-Sign and Fiat-Shamir. Yet, several extremely efficient constructions
from number theoretic assumptions exist, in particular in bilinear (pairing) envi-
ronments [CL04,BB08,PS16]. They constitute a very powerful and simple-to-use
building block which explains the countless applications using them.

This situation stands in sharp contrast with the one of post-quantum cryptog-
raphy where we are aware of only one lattice-based construction [LLM+16] with
such features. Moreover the latter was designed with Stern’s proof of knowledge
in mind and thus does not leverage the recent advances in the area of lattice-

4 In this paper, we use “classical” to denote cryptographic constructions that rely on
computational assumptions broken by quantum algorithms.
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based zero-knowledge proofs. The original paper only provides asymptotic es-
timation but our thorough analysis (deferred in Appendix F) shows that, even
with the recent ZK protocol from [YAZ+19], a proof of knowledge of a signature
is still, at best, 550 MB large, which is far too high for practical applications.
This leaves designers of privacy-preserving systems with no other solution than
constructing the whole system from scratch, which requires skills in many dif-
ferent areas and thus limits the number of contributions.

1.2 Our Contributions

The goal of our paper is to propose the lattice counterpart of [CL04,BB08,PS16],
that is, a signature scheme with efficient protocols that is specifically designed
to smoothly and efficiently interact with the most recent lattice-based zero-
knowledge proof systems. More precisely, we provide a lattice-based signature
scheme for which we can (1) obtain signatures on potentially hidden (in a com-
mitment) messages, and (2) prove in zero-knowledge the possession of a message-
signature pair. Compared to the only such construction [LLM+16], our scheme
is not only much more efficient but also transposes well to an algebraically struc-
tured setting which leads to further performance improvements, as summarized
in Table 1.1.

Our natural starting point is [LLM+16] which consists in a Boyen signa-
ture [Boy10] on a randomly chosen tag τ ∈ {0, 1}ℓ and for a syndrome shifted
by the binary decomposition of the commitment c = D0r + D1m to a binary
message m, the commitment scheme being implicit in [Ajt96]. At first sight,
this scheme perfectly fits the recent zero-knowledge proof system proposed by
Yang et al. [YAZ+19] but yet leads to an extremely large proof of knowledge as
explained above (a thorough complexity analysis is provided in Appendix D and
Table F.1). We then undertake a complete overhaul of this scheme, pointing out
at the same time the reasons of such a high complexity.

The main novelty is that we adopt a much more global approach as we look
simultaneously at the three components of such systems, namely the commit-
ment scheme (necessary to obtain signature on hidden messages), the signature
scheme and the zero-knowledge proof systems, and the possible synergies. We,
in particular, emphasize that the design choices we made for each component
were not driven by the will to improve the latter individually but rather by their
impact on the whole system. Typically, some of the modifications we introduce
in the signature scheme itself has almost no impact on its complexity but yet
results in very significant gains when it comes to proving knowledge of a sig-
nature. More generally, our approach leads to a series of contributions that we
regroup in three main parts.
The signature scheme. One of the first consequences of having to sign com-
mitted messages is that the signature must now include the randomness added
to the commitment by the signer. In [LLM+16], this randomness has the same
dimension as the one of the Boyen signature but a much larger width (see Ta-
ble F.1) and thus represents the largest part of the signature. This is amplified
by the proof of knowledge, which explains in part the high complexity of the
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latter. One of the reasons of such a large width is that the security proof re-
quires to embed a hidden relation in the matrix D that is applied to the binary
decomposition of the Ajtai commitment c. More precisely, it defines D = AU for
the matrix A from the Boyen public key and some short matrix U. This (along
with other design choices discussed below) deteriorates the quality of the SIS
solution extracted during the security proof and thus leads to large parameters.

To address this issue, we depart from [LLM+16] by generating conjointly the
parameters of the signature scheme and the ones of the commitment scheme
and in particular by re-using parts of the former in the latter. More specifically,
in our construction, a commitment to m is c = Ar + Dm, for a Gaussian
randomness r, where A is a matrix from the signer’s public key and D is a
public random matrix. From the efficiency standpoint, this has two important
effects. First, this allows merging the randomness r with the other parts of the
signatures, as we explain below, and thus to reduce the number of elements that
we have to prove knowledge of. Second, as A is no longer hidden by a matrix U,
this significantly reduces the discrepancy between the adversary output and the
extracted SIS solution in the security proof, leading to much better parameters.

Obviously, this has important consequences on the construction as the com-
mitment matrix A is now selected by the signer, which is usually embodied by
the adversary in privacy security games. To ensure that A is random to make the
Ajtai commitment hiding, we need to generate it as a hash output. This solution
is then totally incompatible with the [LLM+16] approach where the signer needs
to generate A together with an associated trapdoor.

Instead of Boyen’s signature, we then choose to use the trapdoors of [MP12],
which interface well with the Ajtai commitment. More precisely, our public key is
composed of a random matrix A, a matrix B = AR and a random syndrome u,
and the secret key is a random ternary matrix R. In order to sign a binary
message m hidden in a commitment c = Ar+Dm, we select a random tag τ in
a tag space T ⊆ Z×q and use pre-image sampling to sample a Gaussian vector v′
such that [A|τG − B]v′ = u + c, where G is the gadget matrix from [MP12].
As A is involved in both the left hand side of the equation and in c, we can set
the signature as (τ,v = v′ − [rT |0]T ). Verification consists in checking

[A|τG−B]v = u+Dm mod q and ∥v∥∞ small. (1)

One can note that we have removed in the process the binary decomposition
of c. We indeed choose a very different approach in the security proof which
shows that this step is actually not necessary. Removing this decomposition is
also crucial in order to compact the commitment randomness r with the pre-
image v′. It avoids further intermediate steps that deteriorate the SIS solution
extracted from the forgery, as explained above, which leads to better parameters
overall. Moreover, when it comes to proving knowledge of the signature, each
intermediate step makes the whole statement harder to prove and requires to
create additional witnesses, i.e., each bit of c, that must be committed, whose
membership in {0, 1} must be proven, etc. The same holds true with the tag τ
which is an element of Zq in our case, contrarily to [LLM+16] where τ is in {0, 1}ℓ.
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setting λ |pk| (MB) |sk| (MB) |sig| (KB) |π| (KB)
[LLM+16] (exact proof) stand. 128 867 · 103 138 · 102 809 · 101 958 · 104

[LLM+16] (fast mode) stand. 128 205 · 104 326 · 102 132 · 102 566 · 103

Sec. 3 (exact proof) stand. 128 116 · 101 898 262 309 · 103

Sec. 3 (fast mode) stand. 128 299 · 101 231 · 101 420 178 · 102

Sec. 6 (exact proof) module 128 8.1 9.1 275 638

Table 1.1. Comparison of efficiency estimates of the signature schemes of [LLM+16],
of Section 3 and of Section 6 for λ = 128 bits of quantum security, with the size of zero-
knowledge proof of possession of a message-signature pair. In the setting column, stand.
stands for standard lattices, as opposed to the ring setting of our last construction. The
proofs for [LLM+16] and Section 3 are either exact proofs or approximate ones using
the fast mode of Section 5.1 and described in the technical overview. The complete
analysis and parameter sets used for these estimates can be found in Appendix F.

As ℓ < log2 q, this might look like a downside for the signature itself but this
is the exact opposite in the ZK proof. Each bit i of the tag τ in [LLM+16]
indeed constitutes a witness on its own and additionally yields a full witness
vector wi = τ [i]v2, where v2 is half of the Boyen signature, and associated
quadratic relations. Our point here is that each seemingly innocent modification
we introduce is considerably amplified when considering the full protocol and
therefore results in major gains.

So far, we have essentially discussed improvements of both the commitment
and the signature schemes. The comparison provided in Table 1.1 shows that our
resulting signature is between 30 and 40 times smaller than the one of [LLM+16]
when considering the same setting (standard lattices). However, this gain is still
not sufficient to lead to practical proofs as ZK lattice proofs are still complex,
even with the recent framework of [YAZ+19]. We now focus on the proofs of
knowledge necessary for our protocol and explain how we can modify the previous
framework for a better efficiency.

Efficient Protocols and Zero-Knowledge Arguments. A “signature scheme
with efficient protocols” requires two kinds of protocols, one to get a signature on
a committed message and one for proving possession of a message-signature pair.
Regarding the former, the problem is rather simple as the message m to sign is
already embedded in a commitment c = Ar+Dm. However, we have to slightly
modify this construction because both the user requesting the signature and the
signer must contribute to the randomness of the commitment. This leads to a
commitment c = A(r′ + r′′) +Dm where r′ is added by the user to enforce the
hiding property of c and r′′ is added by the signer to be able to handle any query
in the security proof. Only the former needs to prove knowledge of r′ and m so
as to rely on the EUF-CMA property of the signature scheme we introduced. In
all cases, the user ends up with a signature (τ,v) on a binary m verifying (1)
and needs to prove it in a zero-knowledge way.

For that, we employ the recent zero-knowledge framework proposed by Yang
et al. [YAZ+19] which can be used to prove linear relations with quadratic con-
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straints. The latter feature is very useful in our case as our verification equa-
tion (1) is quadratic in (m; (τ,v)) because of the term τGv2 (where v2 is the
bottom part of v). Moreover, this allows one to prove that an element is short
by first writing its binary decomposition and then proving that each resulting
component x is indeed binary through the quadratic equation x(x− 1) = 0.

Unfortunately, this nice feature comes at a price as this decomposition pro-
cedure entails a (log2B)-fold increase of the size of the witness v, where B is a
bound on ∥v∥∞. For a high dimensional vector v in Zm, this results in a very
large proof which has led the authors of [YAZ+19] to propose a so-called fast
mode for their protocol. In a nutshell, this variant relies on the observation that
the norm of Hv, for a random short matrix H of dimension k × m, implies
some bound on the norm of v, even when the latter is chosen by the adversary.
As Hv must be hidden, one must still use the quadratic relation above to prove
shortness but on a witness with a much smaller dimension as k is in practice
much smaller than m. The efficiency gains are very significant but we point out
several shortcomings with the solution proposed in [YAZ+19]. First, contrarily
to the claim in [YAZ+19], this fast mode cannot be used to prove that v is
positive and we provide a concrete counter-example in Section 5. This is not a
problem in our case as we only want to prove results on the infinity norm of v
but this can be a problem for specific applications such as the e-cash system
considered in [YAZ+19]. Second, the authors in [YAZ+19] make use of a binary
matrix H which significantly deteriorates the overall statement as one must set
a bound mβ on the norm of Hv, when ∥v∥∞ is bounded by β. Although this
soundness gap seems unavoidable with this mode, we show that we can do better
with a matrix H ∈ {−1, 0, 1}k×m, which allows selecting better parameters and
thus leads to more efficient protocols.

Finally, we also propose in Appendix E a series of optimizations for the Yang
et al. protocol that range from better parameters selection to compression of the
commitments, resulting in further efficiency improvements. For a fair compari-
son, the figures in Table 1.1 take into account these improvements for both our
scheme and the one from [LLM+16]. This table shows that our contributions
reduce the size of a proof of knowledge (using the fast mode) to roughly 18 MB,
which can be interpreted in two ways. On the one hand, this is a dramatic im-
provement over [LLM+16]. On the other hand, this is still large and probably
impractical for many applications. The last part of our contributions thus inves-
tigates how to instantiate our construction in another setting to further reduce
this size.

Extending to Structured Lattices. Our construction extends to the mod-
ule setting where we replace the integers by polynomials with integer coeffi-
cients. More concretely, we consider a power-of-two cyclotomic ring, i.e., R =
Z[X]/⟨Xn + 1⟩ with n a power-of-two. The additional structure yields more ef-
ficient computations, as well as more compact keys. The trapdoors of [MP12]
have already been used over such algebraic rings, e.g., [DM14,dPLS18,BEP+21],
which makes our module construction very similar to the one based on standard
lattice assumptions. All the tools required to prove the security of our scheme
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also have a ring counterpart, which therefore leads to almost no differences in the
security proofs either. The main difference comes when considering exact zero-
knowledge proofs over algebraic rings. Our verification equation, once translated
into the module setting, is

[A|τG−B]v = u+Dm mod qR and v short. (2)

Proving knowledge of (2) requires to prove that (1) τ is indeed in the specified
tag space, (2) v is a short vector, (3) m is a vector of binary polynomials, and
(4) that the quadratic equation is verified. Based on state-of-the-art proof sys-
tems, (1) constrains which tag space to choose so that we can efficiently prove
membership, while ensuring that a difference of tags is invertible in R/qR as
needed per the security proofs. Statement (2) requires to define a notion of
shortness over the ring, which is usually defined based on the size of the coeffi-
cients of the polynomials. Up until recently, exact proofs performing the latter
task [BLS19,ENS20] (which can also be used for (3)) interpreted the coefficients
of v as the NTT (Number Theoretic Transform) of another vector v′, which
are most efficient when Xn + 1 splits into low-degree irreducible factors mod-
ulo q. This splitting makes it harder to choose a proper tag space for which
differences are always invertible. Finally, (4) requires a proof system able to deal
with quadratic equations. Similar relations [dPLS18,LNPS21] were handled by
transforming the relation quadratic in the witnesses into a linear relation in
the commitment of the witnesses. Since efficient proofs of commitment opening
rely on relaxed openings, this solution introduces a soundness gap in the proven
statement, which we would like to avoid.

Instead, we use the very recent framework of Lyubashevsky et al. [LNP22]
which provides a unified method to prove all our statements. It extends the pre-
vious works of [BLS19,ENS20] and enables proving quadratic relations exactly,
as well as quadratic evaluations. The latter can be used to prove exact bounds
directly in the Euclidean norm, which leads to more efficient proofs than proving
bounds in the infinity norm.

In the module setting, we therefore end up with a signature scheme that is
efficient on all metrics, as highlighted in Table 1.1. In particular, we manage to
keep our proofs of knowledge of a message-signature pair below 640 KB. As these
proofs are one of the main building blocks of privacy-preserving protocols, these
efficiency gains readily translate to the latter and thus should have a significant
impact on the area. More generally, our construction is designed to be used as
a black box, which should foster many applications, as was the case with the
pairing-based signatures with efficient protocols [CL04,BB08,PS16].

1.3 Organization

We provide the necessary notions and background in Section 2, before introduc-
ing our signature scheme and security in Section 3. Then, Section 4 presents the
privacy-enhancing efficient protocols that accompany our signature scheme. We
detail out the needed zero-knowledge arguments in Section 5. Finally, we present
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our signature on structured lattices along with the associated zero-knowledge ar-
guments in Section 6.

2 Preliminaries

Throughout this paper, for two integers a ≤ b, we define [a, b] = {k ∈ Z :
a ≤ k ≤ b}. When a = 1 and b ≥ 1, we simply use [b] to denote [1, b]. For
a positive integer q, we define Zq = Z/qZ. In this work, we consider q to be
an odd prime (or product of odd primes), and we sometimes identify Zq with
the set of representatives [−(q − 1)/2, (q − 1)/2]. The vectors are written in
bold lowercase letters a, while the matrices are in bold uppercase letters A.
The transpose operator is denoted with the superscript T . The identity matrix
of size n × n is denoted by In. For any a ∈ Rn, we define its Euclidean norm
as ∥a∥2 = (

∑
i∈[n]|ai|

2
)1/2 and its infinity norm as ∥a∥∞ = maxi∈[n]|ai|. For a

matrix A = [ai]i∈[m] ∈ Rn×m, we define ∥A∥max = maxi∈[m]∥ai∥∞, and ∥A∥2 =
maxx ̸=0∥Ax∥2/∥x∥2. We denote by λ the security parameter.

2.1 Lattices

A (full-rank) lattice Λ of rank n is a discrete additive subgroup of Rn. Each lattice
can be represented by a basis B = [bi]i∈[n] ∈ Rn×n as the set of all integer linear
combinations of the bi, i.e., Λ = BZn. The dual lattice of a lattice Λ is defined
by Λ∗ = {x ∈ SpanR(Λ) : ∀y ∈ Λ, ⟨x ,y⟩ ∈ Z}. In this work, we consider the
following family of q-ary lattices.

Definition 2.1. Let n,m, q be positive integers. Let A ∈ Zn×mq . We define the
lattice Λ⊥q (A) = {e ∈ Zm : Ae = 0 mod q}.

2.2 Probabilities

For a finite set S, we define |S| to be its cardinality, and U(S) to be the uniform
probability distribution over S. The action of sampling x ∈ S from a proba-
bility distribution P is denoted by x ←↩ P . We use x ∼ P to say that the
random variable x follows the distribution P . The statistical distance between
two discrete probability distributions P and Q over a countable set S is defined
as ∆(P,Q) = 1

2

∑
x∈S |P (x)−Q(x)|.

We recall here the leftover hash lemma from [HILL99] for universal hash
functions, which we write to match our context and notations. In particular,
the following shows that when A has sufficiently many columns, then AR is
statistically close to a uniform matrix where R is a uniform ternary matrix.
This is a requirement for the correct distribution of the signature keys.

Lemma 2.1 (Adapted from [HILL99,DORS08]). Let n,m, q be positive
integers such that q is an odd prime. For A ∼ U(Zn×mq ), x ∼ U({−1, 0, 1}m),
and u ∼ U(Znq ), it holds that ∆((A,Ax), (A,u)) ≤ 1

2

√
qn/3m. In particular,

whenever m log2 3 ≥ n log2 q + ω(log2 λ), the statistical distance is negligible.
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For any center vector c ∈ Rn, and Gaussian width σ > 0, we define the Gaus-
sian function ρσ,c : x ∈ Rn 7→ exp(−π∥x− c∥22/σ2). For a lattice Λ of rank n,
we define the discrete Gaussian distribution DΛ,σ,c of support Λ, width σ and
center c by DΛ,σ,c : x ∈ Λ 7→ ρσ,c(x)/ρσ,c(Λ), where ρσ,c(Λ) =

∑
x∈Λ ρσ,c(x).

When c = 0, we omit it in the notations. We then use it to define the smoothing
parameter of a lattice Λ [MR07], parameterized by a real ε > 0, by ηε(Λ) =
inf{s > 0 : ρ1/s(Λ

∗ \ {0}) ≤ ε}. If the standard deviation is wider than the
smoothing parameter, the discrete Gaussian distribution benefits from prop-
erties that are similar to the ones of the continuous Gaussian distribution. In
particular, the sum of two independent discrete Gaussians is a discrete Gaussian.

Lemma 2.2 (Adapted from [Reg05, Claim 3.9][MP13, Thm. 3.3]). Let Λ
be lattice of rank n. Let r, s > 0 and t =

√
r2 + s2 be such that rs/t ≥ ηε(Λ) for

some ε ∈ (0, 1/2]. Then, we have ∆(DΛ,r + DΛ,s,DΛ,t) ≤ 7ε/4. The condition
on r, s is satisfied for example when r, s ≥

√
2ηε(Λ).

When centered around 0, the discrete Gaussian distribution benefits from tail
bounds similar to the standard Gaussian distribution. In this work, we use tail
bounds on the Euclidean and infinity norms. We also recall the result of [Lyu12]
bounding the magnitude of ⟨x ,v⟩ for a discrete Gaussian x and an arbitrary
vector v. Although the tail bound on the infinity norm follows directly from the
latter, it was first proven in [Pei08, Cor. 5.3].

Lemma 2.3 ([Ban93, Lem. 1.5][Pei08, Cor. 5.3][Lyu12, Lem 4.3]). Let Λ
be a lattice of rank n. Let σ > 0 and v ∈ Rn. Then, for all t > 0, it holds that

1. Px∼DΛ,σ
[∥x∥2 > σ

√
n] < 2−2n,

2. Px∼DΛ,σ
[∥x∥∞ > σ log2 n] ≤ 2ne−π log2

2 n,
3. Px∼DΛ,σ

[|⟨x,v⟩| > σt∥v∥2] ≤ 2e−πt
2

.

We also use the following bound on the spectral norm of a matrix with
independent sub-Gaussian entries. We recall the definition of a sub-Gaussian
random vector.

Definition 2.2 (Sub-Gaussian Distribution). Let n be a positive integer,
and x a (discrete or continuous) random vector over Rn. We say that x is sub-
Gaussian with sub-Gaussian moment s if for all unit vector u ∈ Rn and all t ∈ R,
we have E[exp(t⟨x,u⟩)] ≤ es2t2/2.

Lemma 2.4 ([Ver12]). Let ℓ,m be two positive integers, and P a sub-Gaussian
distribution of moment s. There exists a universal constant C > 0 such that for
all t > 0, PU←↩Pℓ×m [∥U∥2 ≥ Cs(

√
ℓ+
√
m+ t)] ≤ 2e−πt

2

.

By noticing that P = U([−1, 1]) is sub-Gaussian with moment
√
2/3, we can

bound the spectral norm of ternary uniform matrix by C
√
2/3(
√
ℓ +
√
m + t)

except with probability 2e−πt
2

, for some constant C > 0 that does not depend
on the dimensions. We can verify experimentally that in this case C

√
2/3 ≤ 1,
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and we thus omit it in the rest of the paper for clarity. The security proof
of our signature requires a bound on ∥Um∥2 for an arbitrary message m ∈
{0, 1}m and uniform ternary U. When m is small, Lemma 2.4 gives a close to
optimal bound by ∥Um∥2 ≤ ∥U∥2

√
m. However, when m is large, we expect

a tighter bound. By using the fact that the square of a sub-Gaussian random
variable is sub-exponential and tail bounds on sub-exponential distributions, we
get the following lemma. The proof and associated definitions are provided in
Appendix A.

Lemma 2.5. Let ℓ,m be two positive integers and x > 0. We assume that ℓ > x·
10/ log2 e. Let m ∈ {0, 1}m. We have PU←↩U([−1,1])ℓ×m [∥Um∥2 ≥ 2

√
ℓm] ≤ 2−x.

In our situation, x = Θ(λ) with λ the security parameter, and ℓ = O(n log2 q +
ω(log2 λ)). The condition ℓ > 10x/ log2 e is then verified. Note that this condition
is necessary only to obtain the simple bound 2

√
ℓm with probability 2−x, but

one could use a different bound or different probability to avoid this condition.
Combining both lemmas gives the following

PU←↩U([−1,1]ℓ×m)[∥Um∥2 ≥ min(2
√
ℓ,
√
ℓ+
√
m+ t)

√
m] ≤ 2−2λ + 2e−πt

2

, (3)

whenever ℓ ≥ 20λ/ log2 e which is the case in our context. The spectral bound
of Lemma 2.4 is also necessary to set the correct parameters to sample Gaussian
vectors v verifying [A|τG−AR]v = u, where A is a uniform matrix, R a short
random matrix and G the gadget matrix of [MP12] used for efficient pre-image
sampling. Our signature uses the following pre-image sampling algorithm.

Lemma 2.6 ([MP12]). There exists an algorithm SampleD that takes as input
a trapdoor matrix R ∈ Zm1×n⌈log2 q⌉, a partial parity-check matrix A ∈ Zn×m1

q ,
a invertible tag matrix H ∈ Zn×nq , a syndrome u ∈ Znq and a standard de-

viation σ ≥ ηε(Z)
√
7
√
1 + ∥R∥22, and that outputs v that is statistically close

to DZm1+n⌈log2 q⌉,σ conditioned on [A|HG−AR]v = u mod q, with G = In ⊗ g

and g = [1 . . . 2⌈log2 q⌉−1].

2.3 Hardness Assumption

The security of our signature scheme relies on the Short Integer Solution (SIS)
problem [Ajt96], which we recall here.

Definition 2.3 (Short Integer Solution). Let n,m, q be positive integers,
and β2 ≥ β∞ ≥ 1. The Short Integer Solution problem SIS∞,2n,m,q,β∞,β2

consists
in finding x ∈ Λ⊥q (A) given A←↩ U(Zn×mq ) such that 0 < ∥x∥∞ ≤ β∞ and 0 <
∥x∥2 ≤ β2.

Note that the original formulation of SIS considers a single bound β on the
Euclidean norm. There is a trivial reduction from the latter to SIS∞,2n,m,q,β∞,β2

by setting β = min(β∞
√
m,β2). As discussed by Micciancio and Peikert [MP13,
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Thm. 1.1], using both norm bounds leads to more precise hardness results, and
sometimes smaller approximation factors when relating the problem to worst-
case problems on lattices. Moreover, it seems to be relevant for the concrete
hardness of the problem as well. Indeed, most lattice reduction algorithms aim at
finding vectors in the ball of radius β2 but without constraining the magnitude of
the coefficients. Finding a lattice vector in the intersection of the ball of radius β2
and the hypercube of half side β∞ is at least as hard as the same task without
the β∞ bound. When β∞ ≪ β2, it may even be substantially harder.

2.4 Signature Scheme

A signature scheme is defined by four algorithms. The Setup algorithm is a
probabilistic algorithm that, on input a security parameter λ, outputs the pub-
lic parameters pp that will be common to all users. The key generation algorithm
KeyGen is a probabilistic algorithm that, on input pp, outputs a secret signing
key sk and a public verification key pk. The signing algorithm Sign is a prob-
abilistic algorithm which, on inputs sk and a message m (and pk, pp), outputs
a signature sig. Finally, the verification algorithm Verify is a deterministic algo-
rithm that, on inputs pk,m, sig (and pp), outputs 1 if sig is a valid signature
on m under pk, and 0 otherwise. We use the Existential Unforgeability against
Chosen Message Attacks (EUF-CMA) security model, which we formally recall
in Appendix B along with the security proofs of our signature scheme.

3 A Lattice-Based Signature Scheme

We present here our signature scheme which interfaces smoothly with privacy-
enhancing protocols. It provides an alternative to the only such scheme based
on lattices due to Libert et al. [LLM+16].

One of the main differences between their construction and ours is that we
aim at optimizing the interactions between the commitment scheme implicitly
used by such kind of protocols and the signature scheme itself. In [LLM+16],
the public parameters of these two components were indeed generated indepen-
dently. We depart completely from this approach by generating these parameters
conjointly and even by using a common matrix A for these two parts. Besides the
natural reduction of the public key size, this strategy allows one to merge differ-
ent components of the signature itself. In particular, compared to [LLM+16], our
signature no longer has to include the commitment opening, which significantly
reduces its size.

Obviously, this has important consequences on the design of the scheme itself.
One of them is that it forbids to re-use the approach of [LLM+16], inherited from
the Boyen’s signature [Boy10], where A was generated together with a trapdoor,
because it would clearly break the hiding property of the commitment scheme.
We instead rely on a G-trapdoor R of size m1 ×m2 in the sense of [MP12] and
then use a matrix [A|τG − AR] where τ is a tag from Z×q . We can therefore
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generate A as a random matrix5 of size n ×m1, where m1 is the dimension of
the commitment randomness. We then use it to construct the commitment c to
a message m ∈ {0, 1}m3 as c = Ar +Dm mod q, where D is a random matrix
of size n ×m3 and m3 is the dimension of the message. The randomness r can
then be merged with the short vector v generated thanks to the trapdoor, as
mentioned above.

An interesting side effect of moving from Boyen matrix [A|A0+
∑
j∈[ℓ] τ [j]Aj ]

to the one described above is more subtle as it only appears when considering
proofs of knowledge of the signature. The fact that each bit τ [i] of the tag
appears separately in the Boyen’s matrix may indeed look harmless when we
only consider the signature because it does not increase the size of the vector v.
However, when plugged in the Yang et al. ZK framework [YAZ+19] this creates
a set of 2ℓ intermediary witnesses (wj = Ajv, τ [j]wj) and ℓn quadratic relations
that significantly increase the size of the proof. Treating τ monolithically saves
a factor ℓ in both the number of extra witness vectors and quadratic relations,
which correspondingly improves complexity.

In the same vein, the authors of [LLM+16] had to first compute a binary
decomposition c′ of the commitment c to the message before generating a short
pre-image of u+Dc′ where u (resp. D) was some public vector (resp. matrix).
Here again, the impact on the complexity might not seem obvious when only
considering the signature scheme but this is no longer true when it comes to
prove knowledge of a signature: this replaces one secret vector c by log2 q ones
and makes the overall statement to prove more complex. To remove this binary
decomposition we revisit the security proof and show how to avoid it by using an
argument based on the Rényi Divergence. Additionally, this change seems nec-
essary to extend our construction to polynomial rings, as described in Section 6.

More generally, all the modifications we introduce have a second positive ef-
fect on complexity. In both our security proof and the one of [LLM+16], it is
necessary to generate the public matrices with hidden relations, usually by mul-
tiplying one by some low-norm matrix U to generate the other one. This has an
impact on the norm of the extracted solutions, which grows with the number of
such matrices and computational steps, and therefore on the system parameters.
By reusing A for different purposes and by removing some computational steps
(e.g., multiplication by D), we manage to significantly reduce the discrepancy
between the adversary output and the resulting SIS solution, leading to much
better parameters.

3.1 Description of the Signature

We now describe the four algorithms that define our signature scheme. The
signature is designed to sign a binary message m. We present our scheme for
the more general case of a message with variable length rather than a variable
number of blocks of fixed length which may require unnecessary padding.

5 In our protocol for signing hidden messages, we will have to enforce this requirement
but this can be done easily by setting A as some hash output.
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Algorithm 1 Setup
Input: Security parameter λ.

1 Choose a positive integer n.
2 Choose a prime integer q.
3 Choose a positive integer q′ ≤ q. ▷ Bound on the tags.
4 T ← Zq′ \ {0}. ▷ Tag space
5 Choose f(λ)← ω(log2 λ).
6 m1 ← ⌈(n log2 q + f(λ))/ log2 3⌉. ▷ Commitment randomness dimension
7 m2 ← n⌈log2 q⌉.
8 m← m1 +m2. ▷ Signature dimension
9 Choose a positive integer m3. ▷ Maximum bit-size of m

10 g = [20 · · · 2⌈log2 q⌉−1] ∈ Z1×⌈log2 q⌉
q . ▷ Gadget vector

11 r ← ηε(Z). ▷ r = 5.4 leads to ε ≈ 2−131

12 Choose t > 0. ▷ Spectral norm slack
13 σ ← r

√
7
√

(
√
m1 +

√
m2 + t)2 + 1. ▷ Pre-image sampling width

14 σ2 ← max
(√

min(2
√
m1,
√
m1 +

√
m3 + t)2m3 − σ2, ω(

√
log2m1)

)
.

15 σ1 ←
√
σ2 + σ2

2.
16 D←↩ U(Zn×m3

q ). ▷ Message commitment key
Output: pp = (D;g;λ, n,m1,m2,m3, q, σ, σ2, σ1).

Algorithm 2 KeyGen
Input: Public parameters pp as in Algorithm 1.

1 A←↩ U(Zn×m1
q ).

2 R←↩ U([−1, 1]m1×m2).
3 B← AR mod q ∈ Zn×m2

q .
4 u←↩ U(Zn

q ).
Output: pk = (A,B,u), and sk = R.

Algorithm 3 Sign
Input: Signing key sk, Message m ∈ {0, 1}m3 , Public key pk, Public Parameters pp.

1 r←↩ DZm1 ,σ2 .
2 c← Ar+Dm mod q. ▷ Commitment to m
3 τ ←↩ U(T ).
4 v← SampleD(R,A, τIn,u+ c, σ)− [rT |0m2 ]

T . ▷ Aτ = [A|τ(In ⊗ g)−B]
Output: sig = (τ,v).

Algorithm 4 Verify
Input: Public key pk, Message m ∈ {0, 1}m3 , Signature sig, Public Parameters pp.

1 Aτ ← [A|τ(In ⊗ g)−B] ∈ Zn×m
q .

2 Split v into
[
vT
1 vT

2

]T
, with v1 ∈ Zm1 , v2 ∈ Zm2 .

3 if(Aτv = u+Dm mod q)∧(∥v1∥∞ ≤ σ1 log2m1)∧(∥v2∥∞ ≤ σ log2m2)∧(τ ∈ T )
4 then return 1 ▷ Valid Signature
5 else return 0 ▷ Invalid signature
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The correctness of the signature scheme simply relies on the sum of discrete
Gaussians (Lemma 2.2) and the Gaussian tail bound (Lemma 2.3). The former
guarantees that v1 is statistically close to DZm1 ,σ1 , and the latter ensures that for
an honest signature it holds that ∥v1∥∞ ≤ σ1 log2m1, and ∥v2∥∞ ≤ σ log2m2

with overwhelming probability. Note that the randomness r used to commit to
the message can be drawn from a Gaussian with any width σ2 > 0. However,
the security proofs require σ1 to be at least min(2

√
m1,
√
m1+

√
m3+ t)

√
m3 in

order to hide the shifted center of the Gaussian vector, which in turns restrict the
value of σ2. Additionally, the goal of this signature scheme being to allow signing
on committed messages, the value of σ2 must be chosen so that the commitment
scheme is statistically hiding, which is why we take it at least ω(

√
log2m1).

We present our signature scheme in the most general way, thus explaining the
multitude of dimensions mi and Gaussian widths. We make this distinction to
highlight the fact that these parameters can be set somewhat independently,
provided they verify their respective conditions. This also allows fine-tuning of
the parameters depending on the specific application. Typically, an application
requiring to sign only small messages of constant bit-size m3 would be able
to select a much smaller standard deviation σ1 and would then yield smaller
signatures.

We also point out the fact that we express the shortness condition on v in
the infinity norm. This is due to the fact that the zero-knowledge argument we
consider in Section 5 to prove possession of a message-signature pair allows one
to prove bounds on the coefficients more naturally. As a result, we can base the
security of our signature scheme on SIS∞,2 which is at least as hard as SIS2 as
explained in Section 2.3.

An example parameter set, also taking into account the requirements of Sec-
tions 4 and 5, can be found in Appendix F, Table F.2. The scheme can also be
instantiated as a standalone signature, without considering the efficient proto-
cols and zero-knowledge proof systems. This would allow one to reduce the size
of q, but at the expense of increasing n to achieve the same security, which in
the end leads to similar signature and key sizes.

3.2 Security of the Signature

We distinguish two types of forgeries that an attacker can produce, which we
treat separately for the sake of clarity. More precisely we distinguish between
the cases depending on whether or not the tag τ∗ of the forgery has been re-
used from the signature queries. Combining the corresponding lemmas proves
the EUF-CMA security of the signature under the SIS assumption. It consists in
the SIS challenger tossing a coin and proceeding as in either Lemma 3.1 or 3.2
and aborting if the forgery does not match the coin toss. The proofs are provided
in Appendix B.2 and B.3 for completeness.

Lemma 3.1. An adversary produces a Type I forgery (τ∗,v∗) if the tag τ∗ does
not collide with the tags of the signing queries. If an adversary can produce a
Type I forgery with advantage δ, then we can construct an adversary B that
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solves the SIS∞,2n,m1,q,β∞,β2
problem with advantage Adv[B] ≳ δ/(|T | −Q), for

β∞ = σ1 log2m1 +m2σ log2m2 +m3 + 1

β2 =
√
1 + (

√
m1 +

√
m2 + t)2 ·

√
m1(σ1 log2m1)2 +m2(σ log2m2)2

+
√
m1 +min(2

√
m1,
√
m1 +

√
m3 + t)

√
m3.

Lemma 3.2. An adversary produces a Type II forgery (τ∗,v∗) if the tag τ∗

is re-used from some i∗-th signing query (τ (i
∗),v(i∗)), i.e., τ∗ = τ (i

∗). If an
adversary can produce a Type II forgery with advantage δ, we can construct B
solving SIS∞,2n,m1,q,β′

∞,β′
2

with advantage

Adv[B] ≳
(
1− Q2

2|T |

)
· δ

α∗/(α∗−1)e−α
∗π

Q
,

for
β′∞ = 2σ1 log2m1 +m2 · 2σ log2m2 +m3

β′2 =
√
1 + (

√
m1 +

√
m2 + t)2 ·

√
σ2
1m1(1 + log22m1) + σ2m2(1 + log22m2)

+ min(2
√
m1,
√
m1 +

√
m3 + t)

√
m3.

and where α∗ = 1 +
√
log2(1/δ)/(π log2 e).

4 Privacy-Preserving Protocols

In this section, we present two protocols that interface well with our signa-
ture scheme, following the efficient protocols from [LLM+16]. In particular, we
give a first protocol in Section 4.1 which allows a signer to obliviously sign a
message, by only knowing a commitment to the message. The second protocol,
presented in Section 4.2, enables a user to prove the possession of a message-
signature pair, where the signature has been obtained by the oblivious signing
protocol. As opposed to the protocols from [LLM+16], our protocols only fea-
ture the zero-knowledge arguments for either the commitment opening or the
message-signature pair possession. In particular, we remove the encryption of the
witnesses that can be useful for online extraction and thus to support concur-
rent protocols but that deteriorates efficiency of the ZKAoKs. We indeed recall
that the goal of our paper is to provide a very flexible tool for many different
use-cases and we therefore prefer avoiding such specific features that may be
unnecessary in some situations. Moreover, other approaches exist to achieve on-
line extraction, such as the one from [Fis05], and we therefore let designers of
privacy-preserving protocols choose the one that is the most appropriate in their
context. Throughout this section, we assume the existence of a zero-knowledge
proof system compatible with the relations induced by our protocols. We explain
in the next section how to instantiate it concretely with the recent framework
by Yang et al. [YAZ+19].
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4.1 Oblivious Signing Protocol

We present here the first protocol between a signer S and a user U . The user U
is interacting with S in order to obtain a signature (τ,v) on a message m, by
only providing S with a commitment c to the message m. We assume that
Algorithms 1 and 2 have been run prior to entering the protocol but with some
slight modifications that we detail below. First, instead of choosing σ2 as in
Algorithm 1, it first chooses σ3 = ω(

√
log2m1) ≥

√
2ηε(Zm1) and then

σ4 ≥ max

(√
min(2

√
m1,
√
m1 +

√
m3 + t)

√
m3 + σ3

√
m1)2 − σ2,

√
2ηε(Zm1)

)
.

It then re-defines σ2 =
√
σ2
3 + σ2

4 and σ1 =
√
σ2 + σ2

2 . The new widths σ3, σ4 are
also included in pp in addition to σ, σ1, σ2. We explain this change in Remark 4.1.
Second, as we use the public key matrix A as part of the commitment matrices,
we must ensure that it cannot be tempered with by the attacker. As such, we
generate A as the hash of a public string. In the random oracle model, the matrix
can be assumed to follow the prescribed uniform distribution over Zn×m1

q .

Algorithm 5 OblSign: Oblivious Signing Interactive Protocol
Input: Signer S with sk, pk, pp, and a user U with m ∈ {0, 1}m3 and pk, pp.

User U .
1 r′ ←↩ DZm1 ,σ3 . ▷ σ3 ≥

√
2ηε(Zm1)

2 c← Ar′ +Dm mod q.
3 Send c to S.

User U ↔ Signer S.
4 Interactive zero-knowledge argument between U and S, where U proves that c is

commitment to m with randomness r′. If S is not convinced, the protocol aborts.
Signer S.

5 r′′ ←↩ DZm1 ,σ4 .
6 c′ ← c+Ar′′ mod q.
7 τ ←↩ U(T ).
8 v′ ← SampleD(R,A, τIn,u+ c′, σ)− [r′′

T |0]T .
9 Send (τ,v′) to U .

User U .
10 v← v′ − [r′

T |0]T .
11 if Verify(pk;m; (τ,v); pp) = 1, then return (τ,v). ▷ Algorithm 4
12 else return ⊥

Remark 4.1. Notice that Algorithm 5 does not exactly rely on the signature
scheme of the previous section. This is due to the fact that the signer S also con-
tributes to the randomness of the commitment to the message m via r′′. If the
randomness came only from the user U , the signer, who is embodied by the SIS
adversary in the security proofs, would have no control over the randomness part
of the signing query. In the proof of Lemma 3.1 (and Lemma 3.2 for the i-th
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Algorithm 6 Prove: Message-Signature Pair Possession
Input: User U with pk, pp,m, (τ,v), and a verifier V with pk, pp.

User U ↔ Verifier V .
1 Interactive zero-knowledge argument between U and V , where U proves knowledge

of (m; (τ,v)) such that Verify(pk;m; (τ,v); pp) = 1.

query with i ̸= i+), the randomness r is legitimately sampled from DZm1 ,σ2
.

As such, it could instead be sampled as r′ + r′′ with r′ ←↩ DZm1 ,σ3
sampled by

the forger A, and r′′ ←↩ DZm1 ,σ4
sampled by the SIS adversary, thus matching

with Algorithm 5. This would restrict σ2 =
√
σ2
3 + σ2

4 . If σ3, σ4 ≥
√
2ηε(Zm1),

Lemma 2.2 guarantees that r′+r′′ is 7ε/4-close to DZm1 ,σ2
as required. However,

when dealing with the i+-th query in Lemma 3.2, the SIS adversary needs to
control part of the randomness. At this step of the proof, r0 would be distributed
according to DZm1 ,σ4 , and it would construct v′1

(i+)
= v1−(r0−Um(i+)−r′(i

+)
)

with r′
(i+) sampled from DZm1 ,σ3 by the forger A. The rest of the proof re-

mains the same, but this modification introduces the condition
√
σ2 + σ2

4 ≥
α + σ3

√
m1, where α = min(2

√
m1,
√
m1 +

√
m3 + t)

√
m3. It yields σ2 ≥√

(α+ σ3
√
m1)2 + σ2

3 − σ2, leading to σ1 =
√
σ2 + σ2

2 ≥
√
(α+ σ3

√
m1)2 + σ2

3

instead of just α before. In most applications, m3 would be much larger than σ3
and therefore it would entail only a mild increase of σ1.

4.2 Message-Signature Pair Possession Protocol

The second protocol provides a user, who obtained a certificate sig = (τ,v)
on a message m from the OblSign protocol above, with the ability to prove
possession of this valid message-signature pair. For that, they only have to prove
that Verify(pk;m; (τ,v); pp) = 1 without revealing either of m nor (τ,v). The
protocol of Algorithm 6 thus simply consists in using the ZKAoK presented in
Section 5.2.2 to prove this relation. The proof can be made non-interactive in the
random oracle model using the Fiat-Shamir transform. This also allows one to
turn it into a signature of knowledge by including the message in the challenges
of the proof.

5 Zero-Knowledge Arguments of Knowledge

We now detail out the zero-knowledge arguments of knowledge (ZKAoK) that
we use to instantiate the protocols from Section 4. We could have used Stern-
like protocols but this would only reach constant soundness error, thus imply-
ing a large number of repetitions and hence bad performance. Additionally, the
decomposition-extension methods used in the original scheme [LLM+16] make
the relation to be proven much larger. To circumvent these two shortcomings,
we instead use the more recent framework by Yang et al. [YAZ+19]. It combines
the perks of Stern-like ZKAoK and Fiat-Shamir with Aborts ZKAoK to reach
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a framework with standard soundness and inverse polynomial soundness error.
This requires fewer iterations as a result. Additionally, this framework avoids
the extensions which were used to interface well with permutations in Stern-like
ZKAoK. This limits the size of the witness. The decomposition steps are how-
ever used to prove the shortness of the witnesses. More precisely, the framework
of [YAZ+19] provides a ZKAoK for the relation

R∗ = {((A,y,M);x) ∈(Zk×Lx
q × Zkq × ([Lx]

3)LM)× ZLx
q : Ax = y mod q

∧ ∀(h, i, j) ∈M,x[h] = x[i] · x[j] mod q}.

This relation can be used to prove that the witness vector is short, which we
need for our verification equation for example. Concretely, any witness x ∈ Zq
that we need to prove smaller than some bound B is decomposed as x1, . . . , xℓ,
where ℓ = ⌈log2B⌉, which are proved binary using the quadratic relation x2i =
xi mod q. The downside of this approach is that it adds ℓ witnesses for each short
element, which quickly becomes cumbersome. To address this issue, the authors
of [YAZ+19] introduced a so-called fast mode that significantly reduces the size
of the witness. We describe such a mode in Section 5.1 but also show that its
analysis in [YAZ+19] is not entirely correct and thus provide a more thorough
one. Then, in Section 5.2 we show how to transform our relations so that they
match R∗. In particular, Section 5.2.1 is dedicated to the proof of knowledge
of a commitment opening as needed in Algorithm 5. Then, in Section 5.2.2 we
instantiate it to prove knowledge of a message-signature pair for our signature
scheme as required by Section 4.2. We also propose additional optimizations on
the framework of [YAZ+19], which we defer in Appendix E.

5.1 Zero-Knowledge Fast Mode Revisited

As explained above, the decomposition technique entails a (ℓ+1)-fold increase of
the witness, which is prohibitive for high-dimensional vectors. This has led the
authors of [YAZ+19] to sketch a so-called fast mode to obtain drastic efficiency
gains in this case. The idea is to relax the zero-knowledge argument, thus intro-
ducing a soundness gap, and prove knowledge of a solution w′ of Pw′ = v mod q
such that w′ is nB-bounded instead of B-bounded, where n is the dimension
of w. More precisely, they consider the following relation

R′short = {((P,v,H, c), (w,u, r)) ∈
(Zm×nq × Zmq × [0, 1]λ×n × C)× (Znq × [0, nB]λ × R) :

Pw = v mod q ∧Hw − u = 0 mod q ∧ c = Commit(w; r)}

The point is that the prover now only has to prove a bound on the λ elements
of u instead of the n elements from w, which is very interesting when λ ≪ n,
a condition easily met in practice. The authors argue that, if one knows a wit-
ness (w,u, r) satisfying R′short, it ensures that w is in [0, nB]n, except with
negligible probability over the randomness of H. We provide a simple counter-
example to the above. For example, assume a prover knows w = [−1, 1, . . . , 1]T
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such that Pw = v mod q. We now consider H to be a random matrix whose en-
tries are independently distributed according to U({0, 1}). We denote by hi the i-
th row of H for i ∈ [λ]. For all i ∈ [λ], we have Phi [h

T
i w ∈ [0, nB]] = 1− 2−n by

simply conditioning on the first coefficient of hi. It yields PH[Hw ∈ [0, nB]λ] =
(1−2−n)λ ≥ 1−λ2−n. Since the fast mode is only relevant when n ≥ λ, it holds
that Hw ∈ [0, nB]λ with overwhelming probability. This shows that R′short can-
not be used to prove that w has non-negative coefficients and thus for example
invalidates the use of the fast mode in the e-cash use-case in [YAZ+19].

Fortunately, a more thorough analysis shows that Hw mod q is in [0, B]λ

implies that w mod q ∈ [−2B, 2B]n with high probability, which would be suffi-
cient in our case as we only need to prove bounds on the infinity norm. However,
we have so far only discussed of soundness. When it comes to correctness, we
note that the choices made in [YAZ+19] results in an unwieldy situation.

First, because one has to set an upper bound on Hw that will be satisfied
with high probability for any w in [−B,B]n. For a binary matrix H, it seems
hard to do much better than [−nB, nB]λ since we will be close to this bound
for w = [B, . . . , B]T , hence the factor n in the soudness gap mentioned above.

Second, because one cannot start the argument with w ∈ [−B,B]n as it can
lead to having Hw with negative coefficients. One must shift all the coefficients
of w before running the protocol, but it results in a skewed statement on w.
Indeed, it would prove that w+B1n is in [−2nB, 2nB]n and therefore that w ∈
[−(2n+ 1)B, (2n− 1)B]n, where 1n = [1 . . . 1]T ∈ Zn.

For these reasons, we believe it is much more natural to sample the coefficients
of H uniformly from {−1, 0, 1}. We prove below that Hw mod q is in [−B,B]λ

still implies that w mod q ∈ [−2B, 2B]n, which avoids to shift the witness and
thus the problem mentioned above. Moreover, such distribution of H allows us
to derive much better upper bounds on Hw using for example an argument
similar to the one of lemma 2.5. However, we do not study more thoroughly this
general problem as we are able to derive sharp bounds for our specific use case
(see remark 5.1 below).

More formally, let H ∈ {−1, 0, 1}k×n, with k = λ/ log2(9/5). The following
lemma, proven in Appendix C, argues that Hw mod q ∈ [−B,B]k implies w mod
q ∈ [−2B, 2B]n with overwhelming probability over the choice of H.

Lemma 5.1. Let B ∈ Z be such that 6B < q/2. Let k be a positive integer.
Let w ∈ Zn be a vector. Assuming that ∥w mod q∥∞ > 2B, it then holds
that PH←↩U([−1,1]k×n) [∥Hw mod q∥∞ ≤ B] ≤ (5/9)k.

The fast mode that we consider now corresponds to the following relation,
where B is chosen so that ∥Hw mod q∥∞ ≤ B with overwhelming probabil-
ity for an honest witness w.

R′′short = {((P,v,H, c), (w,u, r)) ∈
(Zm×nq × Zmq × {−1, 0, 1}k×n × C)× (Znq × [−B,B]k × R) :

Pw = v mod q ∧Hw − u = 0 mod q ∧ c = Commit(w; r)}
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Remark 5.1. For our relations, the vectors that we need to prove short are
sampled from discrete Gaussian distributions. For example the vector v1 fol-
lows DZm1 ,σ1 . For a fixed H ∈ {−1, 0, 1}k×m1 , the third statement of Lemma 2.3
yields that Pv1

[|⟨v1 ,hi⟩| ≥ σ1t
√
m1] ≤ Pv1

[|⟨v1 ,hi⟩| ≥ σ1t∥hi∥2] ≤ 2e−πt
2

,
where hi is the i-th row of H and the first inequality follows by event in-
clusion as ∥hi∥2 ≤

√
m1. The union bound yields Pv1 [∥Hv∥∞ ≥ σ1t

√
m1] ≤

2ke−πt
2

, where k = λ/ log2(9/5) as per Lemma 5.1. Hence, taking t = log2 λ
gives that ∥Hv∥∞ ≤ σ1

√
m1 log2 λ with overwhelming probability. This im-

proves on the trivial bound σ1m1 log2m1. By making sure that 2σ1
√
m1 log2 λ <

(q − 1)/2, which is generally the case, we have that there is no reduction mod-
ulo q in Hv1 and therefore ∥Hv1 mod q∥∞ ≤ σ1

√
m1 log2 λ. The conditions

of Lemma 5.1 allow one to choose B = σ1
√
m1 log2 λ ≪ q/12. Then, proving

that ∥Hv1 mod q∥∞ ≤ σ1
√
m1 log2 λ implies that ∥v1 mod q∥∞ ≤ 2σ1

√
m1 log2 λ.

5.2 Instantiating the Protocols

We now give more details on how to instantiate our relations in the zero-
knowledge framework of [YAZ+19]. In practice, we introduce some optimiza-
tions, consisting in compacting the commitments of the original framework and
in better parameter selections, which leads to substantial efficiency improve-
ments. However, as their description is not required to understand the protocols
described in this section, we postpone it to Appendix E due to lack of space.

5.2.1 Proof of Commitment Opening. Consider a prover with private
input m ∈ {0, 1}m3 and r′ ∼ DZm1 ,σ3

, and public input pp, pk. Recall that by
Lemma 2.3, we have ∥r′∥∞ ≤ σ3 log2m1 with overwhelming probability. We can
thus define α3 = ⌈σ3 log2m1⌉ and assume that r′ ∈ [−α3, α3]

m1 . The prover
wishes to prove that

Ar′ +Dm = c mod q ∧ ∥r′∥∞ ≤ α3 ∧ m ∈ {0, 1}m1 .

We thus transform this relation into one that fits the Yang et al. framework.
For that, we first define a3 = α31m1

. Next, we define r′′ = r′ + a3 ∈ [0, 2α3]
m1 .

Let kα3
= ⌊log2 2α3⌋+ 1 and define6 gα3

= [⌊(2α3 + 2i−1)/2i⌋]i∈[kα3
] ∈ Z1×kα3 ,

and Gα3 = Im1 ⊗ gα3 . We then denote by r′ ∈ {0, 1}m1kα3 a binary decomposi-
tion of r′′ along gα3

, i.e., that verifies r′′ = Gα3
r′. Such a decomposition can be

efficiently computed. It now suffices to prove the following

AGα3
r′ +Dm = c+Aa3 mod q ∧ r′ ∈ {0, 1}m1kα3 ∧ m ∈ {0, 1}m3 .

By defining A = [AGα3
|D], x = [r′

T |mT ]T , y = c+Aa3 andM = {(i, i, i); i ∈
[m1kα3

+m3]}, we have ((A,y,M);x) ∈ R∗. The length of the witness is Lx =
m1kα3

+ m3, and the size of M is LM = Lx. Note that since q is prime, the
constraint x[i] = x[i]2 mod q indeed implies that x[i] ∈ {0, 1}.
6 Choosing gα3 this way ensures that for any binary vector x, gα3x ∈ [0, 2α3].
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When m3 ≫ λ, the fast mode of Section 5.1 compresses the size of the
witness and the constraint set as we now prove that Hr′ has coefficients bounded
by σ3

√
m1 log2 λ. It yields a witness of size Lx = m1+k(⌊log2(2σ3

√
m1 log2 λ)⌋+

1) +m3, with k = λ/ log2(9/5), and LM = Lx −m1.

5.2.2 Proof of Message-Signature Pair Possession. Here, the prover has
a private input m ∈ {0, 1}m3 and (τ,v) ∈ Zq × Zm and has to prove

Av1 −Bv2 + τGv2 −Dm = u mod q,

where v1 ∈ Zm1 and v2 ∈ Zm2 , with ∥v1∥∞ ≤ σ1 log2m1, ∥v2∥∞ ≤ σ log2m2,
τ ∈ T and m ∈ {0, 1}m3 . We define

α1 = ⌈σ1 log2m1⌉ kα1 = ⌊log2 2α1⌋+ 1 gα1 =
[⌊
(2α1 + 2i−1)/2i

⌋]
i∈[kα1 ]

α = ⌈σ log2m2⌉ kα = ⌊log2 2α⌋+ 1 gα =
[⌊
(2α+ 2i−1)/2i

⌋]
i∈[kα]

kq′ = ⌊log2 q′⌋+ 1 gq′ =
[
⌊(q′ + 2i−1)/2i⌋

]
i∈[kq′ ]

Further, we define a1 = α11m1
and a = α1m2

. Next, we set Gα1
= Im1

⊗ gα1
,

and Gα = Im2⊗gα. We define v′1 = v1+a1, and v′2 = v2+a. We then denote vj
their respective binary decomposition along gα1 ,gα, i.e., such that Gα1v1 = v′1,
and Gαv2 = v′2. We also denote by τ the binary decomposition of τ along gq′

such that τ = gq′τ . We need however to deal with the product term τv2. We use
the same idea as for subset-sums from the framework of Yang et al. [YAZ+19].
For that, we define u2 = Gv2 ∈ Zn, and u′2 = τu2. This gives an additional
linear relation, but fewer decompositions. The prover now has to prove that

AGα1
v1 −BGαv2 + u′2 −Dm = u+Aa1 −Ba mod q

GGαv2 − u2 = Ga mod q

−τ + gq′τ = 0 mod q

We thus define x = [τ |τ |v1|v2|m|u2|u′2] ∈ ZLx , where Lx = 1 + kq′ +m1kα1
+

m2kα +m3 + 2n, as well as

A =

0n×1 0n×kq′ AGα1
−BGα −D 0n×n In

0n×1 0n×kq′ 0n×m1kα1
GGα 0n×m3 −In 0n×n

−1 gq′ 0n×m1kα1
01×m2kα 01×m3

01×n 01×n


and y = [u + Aa1 − Ba|Ga′|0] mod q ∈ Z2n+1

q . Finally, we define M1 =
{(i, i, i); i ∈ [2, 1 + kq′ + m1kα1 + m2kα + m3]}, which corresponds to the co-
efficients that need to be binary. We then need to add the relations u′2 = τu2.
For that, we define

M2 = {(1 + kq′ +m1kα1
+m2kα +m3 + n+ i, 1,

1 + kq′ +m1kα1
+m2kα +m3 + i); i ∈ [n]},
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and constructM =M1∪M2. The witness has length Lx, andM is of size LM =
Lx − n − 1. Using the fast mode instead proves that H1v1,H2v2 have coeffi-
cients bounded by σ1

√
m1 log2 λ and σ

√
m2 log2 λ respectively. It yields a wit-

ness of size Lx = 1 + kq′ + m1 + m2 + m3 + 2n + k(⌊log2(2σ1
√
m1 log2 λ)⌋ +

⌊log2(2σ
√
m2 log2 λ)⌋+2), with k = λ/ log2(9/5), and LM = Lx−m1−m2−n−1.

Remark 5.2. In the case where q′ = q, the tag does not need to be decomposed
in binary form. However, when the proof system is run only a few number of
times, we need to drastically increase the size of challenges to reach a negligi-
ble soundness error. For example, to obtain a negligible soundness error in one
iteration, one needs to take challenges of size p = 2λ. Because the SIS bound
for the proof system is β∞ = poly(λ) · p2, one must take q to be polynomially
larger than p2. In Algorithm 1, choosing q′ = q then leads to a tag space T of
size at least poly(λ)22λ. As a result, the proof of Lemma 3.1 incurs an exponen-
tial reduction loss of 1/|T | = 2−2λ/poly(λ). To circumvent this limitation, one
can choose q′ = poly(λ) ≪ q to make the reduction loss acceptable. It implies
that the signature verification must ensure that τ < q′, which we consider when
proving possession of a message-signature pair.

6 Our Signature on Modules

The results of Table 1.1 show that the performances of the signature scheme from
Section 3 and associated protocols are dramatically improved over [LLM+16].
However, the complexity is still rather high and we therefore investigate in this
section a way to decrease it. Concretely, we show that the signature scheme
from Section 3 can be extended over the ring of integers of a number field.
For the zero-knowledge arguments required by the efficient protocols, we em-
ploy the recent results of Lyubashevsky, Nguyen and Plançon [LNP22]. We
use a tag space that corresponds to the identity space of their group signa-
ture construction. We also use a message space that is similar to the latter but
with no restriction on the number of non-zero coefficients. We present our con-
struction with a single power-of-two cyclotomic ring, but we note that it can
be adapted to use subrings for efficiency gains. For more details on the use of
subrings, we refer to [LNPS21,LNP22]. In what follows, we take n a power of
two and R the 2n-th cyclotomic ring, i.e., R = Z[X]/⟨Xn + 1⟩. We also de-
fine Rq = Zq[X]/⟨Xn + 1⟩ for any modulus q ≥ 2. We call θ the coefficient
embedding of R, i.e., for all r =

∑
i∈[0,n−1] riX

i ∈ R, θ(r) = [r0 . . . rn−1]
T .

We then define R2 = θ−1({0, 1}n) and R±1 = θ−1({−1, 0, 1}n). We also define
the usual norms ∥·∥p over R by ∥r∥p := ∥θ(r)∥p. Finally, we define the discrete
Gaussian distribution over R by θ−1(Dθ(R),σ), which we denote by DR,σ.

Remark 6.1. The Gaussian distributions are defined with respect to the coeffi-
cient embedding θ. Theoretical works usually define Gaussian distributions with
respect to the Minkowski embedding (or canonical embedding) σH . We refer
to [LPR13] for more details. In our specific case of power-of-two cyclotomic

23



rings, it holds that σH =
√
nPθ where P is a unitary matrix. Hence, by denot-

ing DθR,σ (resp. DσH

R,σ) the Gaussian distribution with respect to θ (resp. σH), we
can show that DσH

R,σ
√
n

is exactly the same distribution as DθR,σ.

6.1 Description of the Signature

The description of our module signature scheme is provided in Algorithms 7, 8,
9 and 10.

Algorithm 7 Setup
Input: Security parameter λ.

1 Choose a positive integer d.
2 Choose k ≤ n to be a power of two.
3 Choose a prime integer q such that q = 2k + 1 mod 4k and q ≥ (2

√
k)k.

4 Choose positive integers w, κ.
5 Tw ← {τ ∈ R2 : ∥τ∥2 =

√
w}. ▷ Tag space

6 g ← ⌈q1/κ⌋.
7 m1 ← ⌈(d log2 q + f(λ))/ log2 3⌉ ▷ f(λ) = ω(log2 λ)
8 m2 ← dκ
9 m← m1 +m2. ▷ Signature dimension

10 Choose a positive integer m3. ▷ Maximum bit-size of m is n ·m3

11 g = [1 · · · gκ−1] ∈ R1×κ
q . ▷ Gadget vector

12 r ← ηε(Z). ▷ r = 5.4 leads to ε ≈ 2−131

13 Choose t > 0. ▷ Spectral norm slack
14 σ ← r

√
g2 + 1

√
(
√
nm1 +

√
nm2 + t)2 + 1. ▷ Pre-image sampling width

15 σ2 ←
√

(
√
nm1 +

√
nm3 + t)2 · nm3 − σ2. ▷ Commitment randomness width

16 σ1 ←
√
σ2 + σ2

2.
17 D←↩ U(Rd×m3

q ). ▷ Message Commitment Key
Output: pp = (D;g;λ, n, d,m1,m2,m3, q, w, κ, σ, σ2, σ1).

Algorithm 8 KeyGen
Input: Public parameters pp as in Algorithm 7.

1 A←↩ U(Rd×m1
q ).

2 R←↩ U(Rm1×m2
±1 ).

3 B← AR mod qR ∈ Rd×m2
q .

4 u←↩ U(Rd
q).

Output: pk = (A,B,u), and sk = R.

6.2 Security of the Signature on Modules

The security of the scheme is now based on the M-SISd,m1,q,β problem. It asks
to find w ∈ Rm1 such that Aw = 0 mod qR and 0 < ∥w∥2 ≤ β given A ←↩
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Algorithm 9 Sign
Input: Signing key sk, Message m ∈ Rm3

2 , Public key pk, Public Parameters pp.
1 r←↩ DRm1 ,σ2 .
2 c← Ar+Dm mod qR. ▷ Commitment to m
3 τ ←↩ U(Tw).
4 v← SampleD(R,A, τId,u+ c, σ)− [rT |0m2 ]

T . ▷ Aτ = [A|τ(Id ⊗ g)−B]
Output: sig = (τ,v).

Algorithm 10 Verify
Input: Public key pk, Message m ∈ Rm3

2 , Signature sig, Public Parameters pp.
1 Aτ ← [A|τ(Id ⊗ g) +B] ∈ Rd×m

q .
2 if (Aτv = u+Dm mod qR) ∧ (∥v∥2 ≤

√
σ2
1nm1 + σ2nm2) ∧ (τ ∈ Tw)

3 then return 1 ▷ Valid Signature
4 else return 0 ▷ Invalid signature

U(Rd×m1
q ). The security proofs rigorously follow that of Lemma 3.1 and 3.2.

This is due to the fact that all the tools that we use have a ring counterpart.
We briefly explain what tools are needed to carry out the proofs in the module
case. We stress that the construction can also be instantiated over modules of
rank d = 1.

First, we need to ensure that a difference of distinct tags is invertible in Rq.
By [LS18, Cor. 1.2], when q = 2k+1 mod 4k, a ring element r is invertible in Rq
if 0 < ∥r∥∞ ≤ q1/k/

√
k. We chose q so that a difference of tags τ1 − τ2 has

infinity norm at most 2 ≤ q1/k/
√
k. Hence, a difference of distinct tags is in R×q .

Then, the leftover hash lemma of Lemma 2.1 has been adapted to general rings
of integer by Boudgoust et al. and further generalized in [BJRW22]. We state it
here for our specific usage in power-of-two cyclotomic rings.

Lemma 6.1 ([BJRW22, Lem. 2.7]). Let R = Z[X]/⟨Xn+1⟩ with n a power
of two. Further let d,m, q be positive integers with q prime. Then, it holds
that ∆((A,As), (A,u)) ≤ 1

2

√
(1 + qd/3m)n − 1, where A ∼ U(Rd×mq ), s ∼

U(Rd±1) and u ∼ U(Rdq).

The use of the Rényi divergence in the proof of Lemma 3.2 applies on the
discrete Gaussian distributions, which are defined by their embedding to Rn. As
such, the argument remains unchanged. We also need to argue that for A ←↩

U(Rd×m1+m2
q ) and v ←↩ DRm1+m2 ,Σ with Σ =

[
σ1Inm1

0

0 σInm2

]
, then u =

Av mod q is close to uniform. For that, we use [LPR13, Thm. 7.4] which states
that if σ, σ1 ≥ 2nq(d+2/n)/(m1+m2), then the public syndrome u is close to uni-
form in Rdq . We note that this results holds when the Gaussian over R is de-
fined with respect to the Minkowski embedding. As explained in Remark 6.1,
in the case of our Gaussian distributions, we only need σ, σ1 ≥ 2

√
nq

d+2/n
m1+m2 .

Since m1 +m2 ≥ d(log2(q)/ log2(3) + κ) + f(λ)/ log2(3), the result holds when-
ever σ, σ1 ≥ 31+2/n · 2

√
n, which is the case in our context.
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Finally, we need to bound the spectral norm of structured matrices that are of
size nm1×nm2 (or nm1×nm3). In power-of-two cyclotomic rings, the structured
matrix considered is a block matrix whose blocks are nega-circulant matrices of
size n× n. The entries are thus all distributed according to U([−1, 1]) but they
are not all independent within a block. This means we cannot apply Lemma 2.4
directly. The spectral norm of such a structured matrix of size nm1 × nm2 is
proven to be the maximal spectral norm of the n complex-embedded matrices
of size m1 ×m2 [BJRW22, Lem. 2.3], which all have i.i.d. entries that are sub-
Gaussian of moment

√
2n/3. Applying Lemma 2.4 to these embedded matrices

with the union bound (on half the complex embeddings) gives

P
R←↩Rm1×m2

±1
[∥R∥2 ≥ C

√
2n/3(

√
m1 +

√
m2 + t)] ≤ ne−πt

2

,

for an absolute constant C > 0. Although this bound is proven, we can verify
experimentally that it is not tight, and rather that the original bound (when
there is no structure) of

√
nm1 +

√
nm2 + t for a small t (typically 6 − 7) is

satisfied with overwhelming probability. Further, we use the latter bound for
setting parameters in the description of the signature.

Lemma 6.2. If an adversary can produce a Type I forgery with advantage δ,
then we can construct B that solves M-SIS2d,m1,q,β with advantage Adv[B] ≳
δ/(|Tw| −Q), for

β =
√

1 + (
√
nm1 +

√
nm2 + t)2

√
σ2
1nm1 + σ2nm2 +

√
nm1

+ (
√
nm1 +

√
nm3 + t)

√
nm3.

Lemma 6.3. If an adversary can produce a Type II forgery with advantage δ,
we can construct B that solves the M-SIS2d,m1,q,β′ problem with advantage

Adv[B] ≳
(
1− Q2

2|Tw|

)
· δ

α∗/(α∗−1)e−α
∗π

Q
,

for
β′ =

√
1 + (

√
nm1 +

√
nm2 + t)2 ·

√
2σ2

1nm1 + 2σ2nm2

+ (
√
nm1 +

√
nm3 + t)

√
nm3,

and where α∗ is defined by α∗ = 1 +
√
log2(1/δ)/(π log2 e).

6.3 Privacy-Preserving Protocols and Zero-Knowledge Proofs

The privacy-preserving protocols for signing a committed message and proving
the possession of a message-signature pair are exactly the same as those de-
scribed in Sections 4.1 and 4.2 by considering vectors and matrices in R instead
of Z. To avoid repetition, we simply refer to these sections. We instead focus on
the zero-knowledge arguments that are required by these protocols. Although the
framework of [YAZ+19] straightforwardly adapts to the ring or module setting,
it results in relations of the form Ax = y mod qR and x[h] = x[i]x[j] mod qR.
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In our case, we aim to prove that the witness is short (or binary for the mes-
sage part) with respect to the coefficient embedding of R. Taking the example
of the message, m[i] = m[i]2 mod qR does not imply that the coefficients of
the polynomial m[i] are binary, but only that the number theoretic transform
(NTT) of m[i] is a binary vector. A naive alternative would be two embed the
entire relation into Z via the coefficient embedding and applying [YAZ+19] in a
non-structured way. This would indeed prove the desired relation but it would
also ignore the underlying structure and all the optimizations that come with
it. Instead, we use the very recent framework by Lyubashevsky, Nguyen and
Plançon [LNP22], which generalizes the previous work of [BLS19] and [ENS20]
used to obtain exact proofs. The advantage of this framework is that it pro-
vides a way to prove bounds on the Euclidean norm of the witness without
resorting to bounds on the infinity norm. As explained in [LNP22], this leads
to proving tighter bound on the Euclidean norm, and in a more efficient way as
a result. We denote by σ−1 to be the automorphism of Rq that can be defined
as σ−1(

∑n−1
i=0 riX

i) = r0−
∑n−1
i=1 riX

n−i. Their proof system allows one to prove
relations of the form∀i ∈ [ρ], fi(s) = 0 mod qR ∀i ∈ [ve],

∥∥∥E(e)
i s− u

(e)
i

∥∥∥
2
≤ β(e)

i

∀i ∈ [ρeval], F̃i(s) = 0 ∀i ∈ [va],
∥∥∥E(a)

i s− u
(a)
i

∥∥∥
∞
≤ β(a)

i ,

where the fi, Fi are quadratic functions in s = [sT1 , σ−1(s1)
T ]T (s1 being the

committed vector), and F̃i(s) denotes the constant coefficient of the polyno-
mial Fi(s). The norm conditions with superscript (e) are proven exactly, while
those with superscript (a) are proven approximately. We note for completeness
that the considered automorphism is not necessarily σ−1. We present here how
our relations can be instantiated in their framework, which consists in describing
the functions fi, Fi and matrices and vectors for the norm conditions.

Let q1 < q be a prime integer such that q1 = 2k+1 mod 4k, and define qπ =
q1q as the modulus of the proof system, which is different from the modulus
of our signature. We take q1 having the same splitting as q in R to ensure the
invertibility of challenge differences in Rqπ as discussed in [LNP22, Sec. 2.3].

6.3.1 Proof of Commitment Opening. Consider the relation

q1(Ar′ +Dm) = q1c mod qπR ∧ ∥r′∥2 ≤ σ3
√
nm1 =: α3 ∧m ∈ Rm3

2 ,

where the private input is r′,m and the public input is A,D, c. We multiply the
linear equation by q1 to work with the proof system modulus. We now instantiate
this relation in the framework of [LNP22]. Using the notations of [LNP22], we
define s1 = [r′|m] ∈ Rm1+m3 and s = [s1|σ−1(s1)] ∈ R2(m1+m3).
Quadratic Equations: Define fi(s) = (eTi [q1A|q1D|0d×m1+m3

]) ·s+(−eTi q1c) for
all i ∈ [d], where ei is the zero vector with a 1 at position i. Then, proving fi(s) =
0 mod qπR for all i ∈ [d] yields q1(Ar′ +Dm) = q1c mod qπR.
Quadratic Evaluations: We define r =

∑
j∈[0,n−1]X

j . For all i ∈ [m3], de-
fine Fi(s) = sTE2m1+m3+i,m1+is + (−re2m1+m3+i)

T s = σ−1(m[i])(m[i] − r),
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where Ek,ℓ denotes the zero matrix with a 1 at position (k, ℓ). Then, prov-
ing F̃i(s) = 0 for all i ∈ [m3] implies m ∈ Rm3

2 . This relies on the fact that
for m ∈ R, the constant coefficient of σ−1(m)(m − r) is ⟨θ(m) , θ(m) − 1n⟩.
Then, proving that this inner product is 0 over Z is equivalent to proving
that θ(m) ∈ {0, 1}n, i.e., m ∈ R2.

Norm Conditions: We define E(e) = [Im1
|0m1×m1+2m3

], u(e) = 0m1
, and β(e) =

α3. Then
∥∥E(e)s− u(e)

∥∥
2
≤ β(e) is equivalent to ∥r′∥2 ≤ α3.

Remark 6.2. The above aims at proving the relation exactly. However, we note
that the commitment scheme employed in [LNP22] already contains a part A1s1+
A2s2. By setting the public matrices A1,A2 as A,D respectively, s2 = r′ which
is chosen from a Gaussian distribution, and s1 = m, we can directly use the
protocol of [LNP22, Fig. 8]. We simply have to set ∥s1∥2 ≤

√
nm3 =: α, and the

quadratic evaluations as above to prove (exactly) that s1 = m is indeed in Rm3
2 .

It then proves the desired relation exactly at the exception of a soundness gap
on the norm of r′.

6.3.2 Proof of Message-Signature Pair Possession. Consider the relation

q1(Av1 −Bv2 + τGv2 −Dm) = q1u mod qπR

with ∥v∥2 ≤
√
σ2
1nm1 + σ2nm2 =: α ∧m ∈ Rm3

2 ∧ τ ∈ Tw,

where the private input is τ,v = [vT1 |vT2 ]T ,m and the public input is com-
posed of A,B,D,G,u. We define s1 = [v1|v2|m|τ ] ∈ Rm1+m2+m3+1 and s =
[s1|σ−1(s1)] ∈ R2(m1+m2+m3+1).
Quadratic Equations: We define A′ = q1[A| −B| −D|0d×m1+m2+m3+2], and for
all i ∈ [d], we define

Gi = q1

 0(m1+m2+m3)×2(m1+m2+m3+1)

01×m1
eTi G 01×m1+m2+2(m3+1)

0(m1+m2+m3+1)×2(m1+m2+m3+1)

 .
Then, for all i ∈ [d], define fi(s) = sTGis+(eTi A

′)s+(−q1eTi u). Proving fi(s) =
0 mod qπR for all i ∈ [d] yields q1(Av1 −Bv2 + τGv2 −Dm) = q1u mod qπR.

Quadratic Evaluations: We define r =
∑
j∈[0,n−1]X

j . For all i ∈ [m3 + 1], de-
fine Fi(s) = sTE2(m1+m2)+m3+1+i,m1+m2+is + (−re2(m1+m2)+m3+1+i)

T s. We
also define Fm3+2(s) = sTE2(m1+m2+m3+1),m1+m2+m3+1s − w = σ−1(τ)τ − w.
Proving F̃i(s) = 0 for i ∈ [m3] is equivalent to m ∈ Rm3

2 as before. Then,
showing F̃m3+1(s) = 0 proves τ ∈ R2, while F̃m3+2(s) = 0 proves that ∥τ∥22 =
⟨θ(τ),θ(τ)⟩ = w, thus giving τ ∈ Tw.

Norm Conditions: We define E(e) = [Im1+m2
|0m1+m2×m1+m2+2(m3+1)], u(e) =

0m1+m2
, and β(e) = α. Then

∥∥E(e)s− u(e)
∥∥
2
≤ β(e) proves ∥v∥2 ≤ α.
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Conclusion

In this paper, we have proposed a new signature scheme with efficient protocols
which is several orders of magnitude more efficient than the current state-of-the-
art [LLM+16]. This improvement was obtained by revisiting the latter construc-
tion in a systematic way, considering not only the signature scheme itself but
also its interactions with the other components such as the commitment scheme
and the zero-knowledge proofs. In the process, we have also rectified a problem
with the fast mode of the Yang et al zero-knowledge framework [YAZ+19] and
introduced some optimizations, which are of independent interest.

Our construction was designed to remain as generic as possible in order to be
compatible with the broadest possible spectrum of applications. In particular, it
can be instantiated in both standard lattices and structured ones so as to suit any
lattice-based system. Despite this versatility, the size of a proof of knowledge of a
message-signature pair, one of the core component of privacy-preserving systems,
can be as low as 640 KB, which should foster the development of practical post-
quantum constructions in this area.
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A Proof of Lemma 2.5

We recall here the definition of a sub-exponential random variable. We say that
a random variable X is sub-exponential with parameters (ν, α) if for all t ∈
(−1/α, 1/α), E[exp(t(X − E[X])))] ≤ exp(t2ν2/2). We have that a sum of m
independent sub-exponential random variables with the same parameters (ν, α)
is sub-exponential with parameters (ν

√
m,α). Finally, it holds that for a sub-

exponential random variable with parameter (ν, α)

∀r > 0,P[X − E[X] ≥ r] ≤

{
e−r

2/(2ν2) if 0 < r < ν2/α

eν
2/(2α2)−r/α if r ≥ ν2/α.

Proof (of Lemma 2.5). Let m ∈ {0, 1}m be an arbitrary vector, and we de-
note by k = ∥m∥1 the number of ones in the vector. We consider the random
matrix U whose entries are independent and identically distributed according
to U([−1, 1]), and we denote by uij the random variable representing the (i, j)-th
entry of U. For clarity, we also denote by uTi the i-th row of U. We know that
each uij is sub-Gaussian with parameter

√
2/3, i.e.,

∀t ∈ R,E[exp(tuij)] ≤ exp(t2/3).

By independence of the entries, we directly obtain for all i ∈ [n]

∀t ∈ R,E[exp(tuTi m)] ≤ exp(kt2/3).

Hence, each uTi m is sub-Gaussian with parameter s =
√
2k/3. We define the

random variables xi = uTi m, yi = x2i and we also define µi = E[yi]. Since xi is
sub-Gaussian with parameter s, we can prove that

∀p ≥ 1,E[|xi|p] ≤ p(
√
2s)pΓ (p/2),

where Γ is the Gamma function. In particular, we have µi ≤ 2(
√
2s)2Γ (1) =

4s2 = 8k/3. We then have

E[et(yi−µi)] = 1 + tE[yi − µi] +
∞∑
p=2

tpE[(yi − µi)p]/p!

≤ 1 +

∞∑
p=2

tpE[x2pi ]/p!

≤ 1 +

∞∑
p=2

tp(2p(
√
2s)2pΓ (p))/p!

= 1 + 2

∞∑
p=2

(2s2t)p

= 1 + 8s4t2/(1− 2s2t),
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where we used the fact that Γ (p) = (p− 1)! and that we restrict |t| < 1/(2s2β)
for some free variable β ≥ 1. It thus follows that

E[et(yi−µi)] ≤ 1 + 8βs4t2/(β − 1) ≤ exp(16βs4/(β − 1) · t2/2).

Hence, yi−µi is a centered sub-exponential with parameters ν = 4s2
√
β/(β − 1)

and α = 2s2β. We then define y =
∑
i∈[ℓ] yi and µ =

∑
i∈[ℓ] µi. It thus holds

that y − µ is a centered sub-exponential with parameters ν
√
ℓ and α. Using the

tail bound above for a sub-exponential distribution, we have that for all 0 < r <
ν2ℓ/α = 16ℓk/(3(β − 1)) then

P[y − µ ≥ r] ≤ exp(−r2/(2ℓν2)).

Since the yi are identically distributed, we have that µ = ℓµ1 ≤ 8ℓk/3. And we
also have y = ∥Um∥22. We now set the parameters β and r so that

P[∥Um∥2 ≥ 2
√
ℓm] ≤ 2−x.

In particular, we set β = 1/(1 − 8x/(ℓ log2 e)). Assuming ℓ ≥ 10x/ log2 e en-
tails β ∈ (1, 5]. Also, we set β this way to have

√
2β/((β − 1) log2 e)

√
x/ℓ = 1/2.

Then, we set r = 8k/3 ·
√
2β/((β − 1) log2 e)

√
ℓx = 4ℓk/3. We indeed have r ≤

16ℓk/(3(β − 1)) = ℓν2/α. The way we set r, we have exp(−r2/(2ν2)) = 2−x,
and r + µ ≤ 4ℓk/3 + 8ℓk/3 = 4ℓk. Hence

P[∥Um∥2 ≥ 2
√
ℓk] ≤ P[

√
y ≥
√
r + µ] ≤ exp(−r2/(2ν2)) = 2−x,

In the worst case, we have k = m which yields the claim.

B Security Proofs

B.1 Additional Preliminaries

Probabilities. We denote by Supp(P ) the support of the probability distribu-
tion P . In addition to the statistical distance, we use another measure of closeness
between two probability distributions, namely the Rényi divergence [R6́1] RD.
The Rényi divergence was thoroughly studied for its use in cryptography by
Bai et al. [BLR+18] as it shows to be a powerful alternative to the statistical
distance.

Definition B.1. Consider two discrete probability distributions P and Q over a
countable set S such that Supp(P ) ⊆ Supp(Q). We define the Rényi divergence
of order α > 1 as

RDα(P∥Q) =

 ∑
x∈Supp(P )

P (x)α

Q(x)α−1

 1
α−1

.
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The two measures enjoy a probability preservation property, which are es-
sential in proving our results.

Lemma B.1. Let P,Q be two probability distributions with Supp(P ) ⊆ Supp(Q),
and E ⊆ Supp(Q) be an arbitrary event. Then, P (E) ≤ ∆(P,Q) + Q(E),
and P (E)

α
α−1 ≤ RDα(P∥Q) ·Q(E).

In the security proofs, we need to compute the Rényi divergence between two
shifted discrete Gaussian distributions. We use the following lemma.

Lemma B.2 ([LSS14, Lem. 4.2]). Let Λ be a lattice of rank n, and c ∈ Rn.
Let α > 1. Then, for any σ > 0, it holds that

1. RDα(DΛ,σ∥DΛ,σ,c) ≤ exp(απ∥c∥22/σ2),

2. RDα(DΛ,σ,c∥DΛ,σ) ≤ exp(απ∥c∥22/σ2) ·
(

1+ε
1−ε

)α/(α−1)
, if σ ≥ ηε(Λ).

Finally, to ensure that the syndrome generated by the SIS challenger is cor-
rectly distributed, we need to argue that A′v′ is close to uniform for a Gaussian
vector v′. We thus use the result of [MP12] which argues that the smoothing
parameter of Λ⊥q (A′) is small with high probability over the choice of A′.

Lemma B.3 (Adapted from [MP12, Lem. 2.4]). Let n and q be positive
integers with q prime, and let m ≥ n log2 q + log2(2 + 2ε−1) for some ε > 0.
Let σ ≥ 2ηε(Zm). Then for any δ > 0, it holds that ∆((A,Ae mod q), (A,u)) ≤
δ + 2ε/δ, where A ∼ U(Zn×mq ), e ∼ DZm,σ, and u ∼ U(Znq ).

In particular, choosing ε = δ2/2, m > n log2 q+2−2 log2 δ, σ ≥ ω(
√
log2m)

leads to a statistical distance of at most 2δ. In our case, we apply it with m =
m1+m2 ≫ n log2 q+2λ+4, yielding a statistical distance much smaller than 2−λ.

Signature Security Model. The most widely used notion of security for a sig-
nature scheme is the Existential Unforgeability against Chosen Message Attacks
(EUF-CMA) security. This captures the fact that an attacker that can obtain
signatures on messages of its choosing is incapable of forging a signature on a
new message. We formally define it by a game between an adversary A and a
challenger C in three stages.

Setup Stage: C successively runs Setup and KeyGen to obtain pp, pk, sk. It
then gives pp, pk to A.

Query Stage: A queries signatures on at most Q messages m(1), . . . ,m(Q),
which are answered by C returning sigi ← Sign(sk;m(i); pp, pk).

Forgery Stage: A then outputs a forgery (m∗, sig∗).

The adversary wins if Verify(pk;m∗; sig∗; pp) = 1 and if for all i in [Q], it
holds m∗ ̸= m(i). The adversary’s advantage is defined as Adv[A] = P[A wins],
where the probability is over all the random coins. We say that the scheme is
EUF-CMA secure if for all probabilistic polynomial time (PPT) adversary A,
Adv[A] is negligible in λ.
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B.2 Proof of Lemma 3.1

Proof. Consider a PPT adversary A that produces Type I forgeries for the sig-
nature scheme with advantage δ. We now construct an adversary B that solves
the SIS∞,2n,m1,q,β

problem. The adversary B is given A ∈ Zn×m1
q as input and is

asked to find w ∈ Λ⊥q (A) such that 0 < ∥w∥∞ ≤ β∞ and 0 < ∥w∥2 ≤ β2.
Setup Stage: B first generates the cryptographic material to give to A. We as-
sume that the parameters g, n,m1,m2,m3, q, σ, σ2, σ1. are already set. We also
define G = In ⊗ g. The adversary B first samples τ (1), . . . , τ (Q) from U(T )
as the tags that will be used for the signing queries of A. It also makes a
guess τ ←↩ U(T \ {τ (i); i ∈ [Q]}) on the tag that we be used in the adversary’s
forgery. In particular, we assume that Q = poly(λ) is the maximum number of
signing queries that A is able to make.

Next, B samples U from U([−1, 1]m1×m3). It then randomizes A to de-
fine D = AU mod q, and sets pp = (D;g;λ, n,m1,m2,m3, q, σ, σ2, σ1).

Then, B samples R←↩ U([−1, 1]m1×m2) and defines B = AR+τG mod q. It
also samples eu from U([−1, 1]m1) and defines u = Aeu mod q. The adversary B
then forms pk = (A,B,u). From these matrices, we can define Aτ for any
tag τ ∈ Zq′ by

Aτ =
[
A|τG−B

]
=

[
A|(τ − τ)G−AR

]
, (4)

Since τ does not collide with the tags τ (1), . . . , τ (Q) that will be used to answer
the signing queries, we have τ (i)− τ ∈ Z×q as q is prime. The matrices Aτ(i) thus
have the adequate form to sample preimages using the trapdoor-based algorithms
from [MP12]. Finally, B sends (pk, pp) to A.
Query Stage: At the i-th signature query, A provides B with a message m(i) ∈
{0, 1}m3 . B can then faithfully run Algorithm 3 using the carefully crafted key
material, and the tag τ (i). More precisely, it computes Aτ(i) using Equation (4),
as well as the message commitment c = Ar(i) + Dm(i) mod q for a fresh ran-
domness r(i) ←↩ DZm1 ,σ2 . As discussed, we can still use the G-trapdoor R to
sample preimages, allowing B to compute

v(i) = SampleD(R,A, (τ (i) − τ)In,u+ c, σ)−
[
r(i)

0m2

]
.

Note that v(i) is correctly distributed and passes verification (with overwhelming
probability by Lemma 2.2 and 2.3). The signature given to A is sigi = (τ (i),v(i)).
Forgery Stage: After at most Q queries, the adversary returns a forgery sig∗ =
(τ∗,v∗) on a new message m∗ that passes verification. If A fails to produce such
a forgery, B aborts. We call this event Abort1. We now condition on ¬Abort1. At
this point, B aborts if τ∗ ̸= τ . We call this event Abort2 and further condition
on ¬Abort2. Then, the guess was correct and therefore the contribution of G
in Aτ∗ vanishes. Since the forgery passes verification we have Aτ∗v∗ = u +
Dm∗ mod q. Using the definition of the cryptographic material from the setup
stage, it can be written as[

A| −AR
]
v∗ = Aeu +AUm∗ mod q.
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This means that

w = [Im1
| −R]v∗ − eu −Um∗ ∈ Zm1

is in Λ⊥q (A). The adversary B thus returns w as a solution for SIS∞,2n,m1,q,β∞,β2
.

Advantage: We now analyze the advantage of B. We first look at the distribution
of (pk, pp). Since m1 log2 3 ≥ n log2 q + f(λ), it holds by Lemma 2.1 that

∆((A,AR mod q), U(Zn×m1
q × Zn×m2

q )) ≤ m2

2

√
qn

3m1
≤ m22

−f(λ)/2−1,

∆((A,AU mod q), U(Zn×m1
q × Zn×m3

q )) ≤ m3

2

√
qn

3m1
≤ m32

−f(λ)/2−1,

∆((A,Aeu), U(Zn×m1
q × Znq )) ≤ 1

2

√
qn

3m1
≤ 2−f(λ)/2−1)

Additionally, since A, R are independent of τG, it holds that ∆(B,AR) ≤
m22

−f(λ)/2 (by the triangle inequality). The signatures that are given to A in
the query stage are distributed according to the legitimate distribution. This
means that

P[¬Abort1] ≥ δ − negl(λ). (5)

As the guess τ is independent of A′s view, we directly have

P[¬Abort2|¬Abort1] =
1

|T | −Q
. (6)

We now analyze the solution provided by B. We have to show it is non-zero
and have infinity norm at most β. We first focus on the former. Denote e∗u =
[Im1 | −R]v∗ −Um∗. Since v∗ and m∗ are chosen by A, the forger can control
the value of e∗u. However eu is statistically hidden by u making the vector w
unpredictable. Concretely, by Lemma B.1 and 2.1, it holds

Peu [w = 0|A,Aeu mod q]

≤ Peu [eu = e∗u|A, U(Znq )] +∆((A,Aeu), U(Zn×m1
q × Znq ))

≤ Peu [eu = e∗u] + 2−f(λ)/2−1

= 3−m1 + 2−f(λ)/2−1.

Finally, by decomposing v∗ into [v∗1
T |v∗2

T ]T , with v∗1 ∈ Zm1 and v∗2 ∈ Zm2 , we
have

∥w∥∞ ≤ ∥v
∗
1∥∞ +m2∥R∥max∥v

∗
2∥∞ + ∥eu∥∞ +m3∥U∥max∥m

∗∥∞
≤ σ1 log2m1 +m2 · σ log2m2 + 1 +m3

= β∞.

Now, since v∗1,v
∗
2 correspond to the forgery that passes verification, we only

know their infinity norm. In particular, we cannot apply the Gaussian tail bound
to determine their Euclidean norm. Therefore, we can at best have ∥v∗1∥2 ≤
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σ1
√
m1 log2m1 and ∥v∗2∥2 ≤ σ

√
m2 log2m2. Also, note that the spectral norm

of [Im1
| −R] is exactly

√
1 + ∥R∥22. It follows that

∥w∥2 ≤ ∥[Im1 | −R]∥2∥v
∗∥2 + ∥eu∥2 + ∥Um∗∥2

≤
√
1 + ∥R∥22

√
m1(σ1 log2m1)2 +m2(σ log2m2)2 +

√
m1

+min(2
√
m1m3, (

√
m1 +

√
m3 + t)

√
m3)

≤
√
1 + (

√
m1 +

√
m2 + t)2

√
m1(σ1 log2m1)2 +m2(σ log2m2)2 +

√
m1

+min(2
√
m1, (

√
m1 +

√
m3 + t))

√
m3

= β2,

where the inequalities follow from Equation (3) and Lemma 2.4 except with
probability 4e−πt

2

+ 2−2λ. By defining Abort{1,2} = Abort1 ∨ Abort2, we obtain

P[w valid solution|¬Abort{1,2}] ≥ 1− 3−m1 − 2−f(λ)/2−1 − 4e−πt
2

− 2−2λ

= 1− negl(λ). (7)

Combining Equations (5), (6) and (7) by the probability chain rule, we get

Adv[B] ≥ (δ − negl(λ)) · 1

|T | −Q
· (1− negl(λ)) ≈ δ

q′ −Q
,

as claimed.

B.3 Proof of Lemma 3.2

Proof. Consider a PPT adversary A that can produce a Type II forgery for the
signature scheme with advantage δ. We now construct an adversary B that solves
the SIS∞,2n,m1,q,β′

∞,β′
2

problem. The adversary B is given A ∈ Zn×m1
q as input and

is asked to find w ∈ Λ⊥q (A) such that 0 < ∥w∥∞ ≤ β′∞ and 0 < ∥w∥2 ≤ β′2.

Setup Stage: The adversary B first samples the tags τ (1), . . . , τ (Q) from U(T )
that will be used to answer A’s signing queries. At this point, B aborts if the set
of tags contains a collision7. We call this event Col, and further condition on ¬Col.
The adversary B makes a guess i+ ←↩ U([Q]) on the index of the tag that will
be re-used by A in the forgery stage. Then, B samples R ←↩ U([−1, 1]m1×m2),
and U from U([−1, 1]m1×m3). It then defines{

B = AR+ τ (i
+)G mod q

D = AU mod q

7 We could see this stage as a preprocessing stage and make B re-draw the tags until
there is no collision. This would affect the runtime instead of the advantage.
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The adversary B samples v from DZm,σ, r0 from DZm1 ,σ2
, and defines

u = Aτ(i+)

(
v −

[
r0
0m2

])
mod q.

Note that for all i ∈ [Q], we have

Aτ(i) = [A|(τ (i) − τ (i
+))G−AR],

where the contribution in G vanishes only for i = i+, as there is no collision.
The adversary B thus forms pp = (D;g;λ, n,m1,m2,m3,m, q, σ, σ2, σ1) and the
public key pk = (A,B,u), and sends both to A.
Query Stage: We distinguish the queries for i ̸= i+ from the i+-th query. First,
consider the i-th query, for i ̸= i+, on the message m(i). B samples a fresh
randomness r(i) from DZm1 ,σ2

and computes the commitment c = Ar(i) +

Dm(i) mod q. Since τ (i) − τ (i+) ∈ Z×q , B computes

v(i) = SampleD(R,A, (τ (i) − τ (i
+))In,u+ c, σ)−

[
r(i)

0m2

]
.

Note that v(i) is correctly distributed and passes verification (with overwhelming
probability by Lemma 2.2 and 2.3). The signature given to A is sigi = (τ (i),v(i)).

Now consider the i+-th query. In this case, B simply computes v(i+) = v −[
r0 −Um(i+)

0m2

]
and gives sigi+ = (τ (i

+),v(i+)) to A. We analyze later the dis-

tribution of v(i+), but notice that the verification equation is verified because of
the definition of u.

Aτ(i+)v
(i+) = u+Aτ(i+)

[
Um(i+)

0m2

]
mod q

= u+AUm(i+) mod q

= u+Dm(i+) mod q.

Forgery Stage: After at most Q queries, A outputs a Type II forgery (τ∗,v∗)
on a new message m∗. If A fails to output a valid forgery, event that we denote
by Abort1, then B aborts. We now condition on ¬Abort1. At this point, B checks
its guess on i+ and aborts if τ∗ ̸= τ (i

+). We denote this event Abort2, and further
condition on ¬Abort2. It holds that

Aτ(i+)v
(i+) −Dm(i+) = u mod q = Aτ∗v∗ −Dm∗ mod q.

Since Aτ∗ = Aτ(i+) = A[Im1
| −R], it holds that

A
(
[Im1 | −R](v(i+) − v∗)−U(m(i+) −m∗)

)
= 0 mod q.
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As a result, B forms the vector

w = [Im1
| −R](v(i+) − v∗)−U(m(i+) −m∗) ∈ Zm1 ,

which is in Λ⊥q (A), and returns it as a solution for SIS.

Advantage: We now analyze the advantage of B. First, a standard calculation
allows one to bound P[Col]. Since the tags are independent and uniform, we have

P[Col] = 1− P[∀i ̸= j, τ (i) ̸= τ (j)]

= 1−
∏

i∈[Q−1]

(1− i/|T |)

= −
∑

i∈[Q−1]

−i/|T | ·
∏

i<j≤Q−1

(1− j/|T |)

≤ Q(Q− 1)/(2|T |). (8)

We now focus on the distribution of (pk, pp). Since m1 log2 3 ≥ n log2 q + f(λ),
Lemma 2.1 yields∆((A,AR mod q, U(Zn×m1

q × Zn×m2
q )) ≤ m2

2

√
qn

3m1
≤ m22

−f(λ)/2−1,

∆((A,AU mod q, U(Zn×m1
q × Zn×m3

q )) ≤ m3

2

√
qn

3m1
≤ m32

−f(λ)/2−1.

As A,R are independent of τ (i
+)G, it holds that ∆(B,AR) ≤ m22

−f(λ)/2 (by
the triangle inequality). Then, let us analyze the distribution of u. Define A′ =
[A| − AR] mod q. By construction, we have u = A′[(v1 − r0)

T |vT2 ]T mod q.
Fix f(m) = ω(

√
log2m) such that σ, σ1 ≥ f(m). Lemma B.3 thus yields that u is

within negligible statistical distance of U(Znq ), conditioning on A′ being uniform
and v1 − r0 being Gaussian. Lemma 2.2 yields that v1 − r0 is within statistical
distance 7ε/4 of DZm1 ,σ1

. Without loss of generality, we can take the same ε as
in Lemma B.3. Changing A′ back to [A| −AR] gives

∆(u, U(Znq )) ≤ negl(λ) +m22
−f(λ)/2−1 = negl(λ).

As a result, (pk, pp) is correctly distributed up to a negligible statistical distance.
We now analyze the distribution of the signature that are produced by B. For
the i-th query with i ̸= i+, the signature is distributed exactly as in the legitimate
algorithm. At the i+-th signing query, the vector v

(i+)
1 = v1 − r0 + Um(i+) is

within statistical distance 7ε/4 of DZm1 ,σ1,z+ , where z+ = Um(i+). As before,
by Equation (3) obtained by combining Lemma 2.4 and 2.5, we have∥∥z+∥∥

2
=

∥∥∥Um(i+)
∥∥∥
2
≤ min(2

√
m1,
√
m1 +

√
m3 + t)

√
m3,

except with probability 2e−πt
2

+ 2−2λ. We now measure the closeness of v(i+)

to the real distribution by using the Rényi divergence of order α for a free
parameter α > 1. By Lemma B.2 it holds that

RDα(DZm1 ,σ1
∥DZm1 ,σ1,z+) ≤ exp

(
απ

σ2
1

∥∥z+∥∥2
2

)
≤ eαπ,
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as σ1 ≥ min(2
√
m1,
√
m1 +

√
m3 + t)

√
m3. Combining the probabilities for the

distribution of the keys and the signatures, and by the probability preservation
properties of the statistical distance and Rényi divergence of Lemma B.1, we
have

P[¬Abort1|¬Col] ≥ e−απ(δ − negl(λ))α/(α−1) ≥ e−απδα/(α−1) − negl(λ). (9)

We then optimize over α. The maximum value of the right-hand side is attained
for α∗ = 1 +

√
log2(1/δ)/(π log2 e). Further, since the guess i+ is independent

of A’s view it holds that

P[¬Abort2|¬Abort1 ∧ ¬Col] =
1

Q
. (10)

We now analyze the solution constructed by B. We have to show it is non-zero and
have norm at most β′. We first focus on the former. Define u∗ = [Im1 |−R](v(i+)−
v∗) which can be controlled by A. In particular, we do not exclude the fact
that A chooses v∗2 = v

(i+)
2 . Hence we cannot rely on the unpredictability of R.

However, since m∗ ̸= m(i+), the vector w features at least one column of U. We
show that this is enough to argue that w ̸= 0 except with negligible probability.
Let S ⊆ [m3] the set of indices at which m∗ and m(i+) differ. Note that since U is
centered, we can write w = u∗−

∑
i∈S ui where ui are independently distributed

according to U([−1, 1]m1) (they are the columns of U up to a ±1 factor). For
clarity we write uS =

∑
i∈S ui. It holds that

PU[w = 0|A,AU mod q,v1 − r0 +Um(i+)]

=PU[uS = u∗|A,AU mod q,v1 − r0 +Um(i+)]

≤
√
PU[uS = u∗|A,AU mod q,DZm1 ,σ1

] · RD2(DZm1 ,σ1,Um(i+)∥DZm1 ,σ1
)

+ 7ε/4

≤
√

PU[uS = u∗|A,AU mod q] · exp(2π
∥∥Um(i+)

∥∥2
2
/σ2

1) · (1 + ε)2/(1− ε)2

+ 7ε/4 (11)

≤1 + ε

1− ε
eπ

√
PU[uS = u∗|A, U(Zn×m3

q )] +∆((A,AU mod q), (A, U(Zn×m3
q ))

+ 7ε/4 (12)

≤1 + ε

1− ε
eπ

√
PU[uS = u∗] +m32−f(λ)/2−1 + 7ε/4,

where (11) stems from Lemma B.2 as σ1 ≥ σ ≥ ηε(Zm1)8, and (12) follows
from Lemma 2.1. Since the (ui)i∈S are independent and uniformly distributed
in [−1, 1]m1 , it follows (by induction of |S|) that

PU[uS = u∗] ≤ 3−m1 . (13)
8 Note that the Rényi divergence is taken in the opposite direction than before, hence

the presence of the factor (1 + ε)/(1− ε).
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Assuming without loss of generality that ε ≤ 1/2, we obtain that w ̸= 0 except
with probability 3eπ

√
3−m1 +m3 · 2−f(λ)/2−1 + 7ε/4 = negl(λ).

Finally, note that by definition of v(i+)
1 we can rewrite w as

w = [Im1
| −R]

[
(v1 − r0)− v∗1

v2 − v∗2

]
+Um∗

Then, it holds that

∥w∥∞ ≤ ∥(v1 − r0)− v∗1∥∞ +m2∥R∥max∥v2 − v∗2∥∞ +m3∥U∥max∥m
∗∥∞

≤ 2σ1 log2m1 +m2 · 2σ log2m2 +m3

= β′∞.

The inequality is valid if v1 − r0 follows DZm1 ,σ1
(Lemma 2.2) and that the

Gaussian tail bound of Lemma 2.3 is verified for v1 − r0,v2. By the union
bound, this happens with probability at least 1 − (2m1e

−π log2
2m1 + 7ε/4) −

2m2e
−π log2

2m2 = 1 − negl(λ). As in the proof of Lemma 3.1, we cannot use the
Gaussian tail bound in Euclidean norm for v∗. Hence, we have the following

∥w∥2 ≤
√
1 + ∥R∥22

√
(σ2m1 + σ2

2m1 +m1σ2
1 log

2
2m1) + (σ2m2 +m2σ2 log22m2)

+ ∥Um∗∥2

≤
√
1 + (

√
m1 +

√
m2 + t)2

√
σ2
1m1(1 + log22m1) + σ2m2(1 + log22m2)

+ min(2
√
m1,
√
m1 +

√
m3 + t)

√
m3

= β′2,

where the first inequality follows from Lemma 2.3 except with probability 2 ·
2−2m1 + 2−2m2 , and the second inequality stems from Lemma 2.4 except with
probability 4e−πt

2

+ 2−2λ. This yields

P[w valid solution|¬Abort{1,2} ∧ ¬Col] = 1− negl(λ). (14)

Combining Equations (8), (9), (10) and (14) by the probability chain rule, we
get

Adv[B] ≥ (1−Q2/(2(q′ − 1)))(δα
∗/(α∗−1)e−α

∗π − negl(λ)) · 1
Q
· (1− negl(λ)),

as desired. Note that the parameters and the behavior of B do not depend on the
order α that is used to compute the advantage bound. As such, α∗ can indeed
depend on the forger’s advantage δ.

Proof (of (13)). For completeness, we detail out the proof of Equation (13) even
though it is a standard calculation from probability theory. Let (ui)i∈[m3] be
independent random vectors distributed according to [−1, 1]m1 . For any set S ⊆
[m3], we define uS =

∑
i∈S ui. For any k ∈ [m3], we define the statement

P(k) : ∀S ⊆ [m3], |S| = k ⇒ ∀u∗ ∈ [−k, k]m1 ,P(ui)i∈S
[uS = u∗] ≤ 3−m1 .
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Initialization: Let S ⊆ [m3] such that |S| = 1. Denote by i0 the only element
of S. Then, it directly holds that

∀u∗ ∈ [−1, 1]m1 ,Pui0
[ui0 = u∗] = 3−m1 ≤ 3−m1 .

Induction: Assume that P(k) is verified for some k ∈ [m3]. Let S ⊆ [m3] such
that |S| = k + 1. Let i0 be in S (exists because S is non-empty). Let u∗ be
in [−(k + 1), k + 1]m1 . It holds that

P(ui)i∈S
[uS = u∗] =

∑
u′

i0
∈[−1,1]m1

Pui0
[ui0 = u′i0 ] · P(ui)i∈S

[
uS = u∗|ui0 = u′i0

]
=

∑
u′

i0
∈[−1,1]m1

3−m1 · P(ui)i∈S\{i0}

[
uS\{i0} = u∗ − u′i0

]
.

Yet, by P(k), we have that

P(ui)i∈S\{i0} [uS\{i0} = u∗ − u′i0 ]

= 1(u∗ − ui0 ∈ [−k, k]m1) · P(ui)i∈S\{i0}

[
uS\{i0} = u∗ − u′i0

]
≤ 3−m1 .

Hence, we obtain

P(ui)i∈S
[uS = u∗] ≤

∑
u′

i0
∈[−1,1]m1

3−m1 · 3−m1 = 3−m1 ,

thus proving P(k + 1). By induction, P(k) is true for all k ∈ [m3].

C Proof of Lemma 5.1

Proof. For clarity, we denote by x = x mod q the vector of representatives
in [−q/2, q/2] of a vector x. With such representatives, we have C = C for
any integer C in [−q/2, q/2], which simplifies the notations in what follows. We
assume that there exists i in [n] such that wi /∈ [−2B, 2B]. Let h be a random
vector distributed according to U([−1, 1]n). For clarity, we define S = [n] \ {i}.
We now have

Ph[hTw ∈ [−B,B]]

=
∑

C∈[−q/2,q/2]

Ph[
∑
j∈S

hjwj = C] · Ph[
∑
i∈[n]

hjwj ∈ [−B,B]|
∑
j∈S

hjwj = C]

=
∑

C∈[−q/2,q/2]

Ph[
∑
j∈S

hjwj = C] · Phi
[hiwi + C ∈ [−B,B]]

=
∑

C∈[−q/2,q/2]

Ph[
∑
j∈S

hjwj = C] ·
∣∣{hi : hiwi + C ∈ [−B,B]}

∣∣
3

,
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where the second equality is a consequence of hi being uniform in [−1, 1]. We
now split the sum indexed by C into two complementary parts Σ1 and Σ2 as
follows.

Σ1 =
∑

C∈]− q
2+2B, q2−2B[

Ph[
∑
j∈S

hjwj = C] ·
∣∣{hi : hiwi + C ∈ [−B,B]}

∣∣
3

Σ2 =
∑

C∈[− q
2 ,−

q
2+2B]∪[ q2−2B,

q
2 ]

Ph[
∑
j∈S

hjwj = C] ·
∣∣{hi : hiwi + C ∈ [−B,B]}

∣∣
3

We can now focus on bounding the set {hi : hiwi + C ∈ [−B,B]} in each
case. First note that for all hi ∈ [−1, 1], if{

hiwi + C ∈ [−B,B]

(hi + 1)wi + C ∈ [−B,B],

are both satisfied, then there exist r1, r2 ∈ [−B,B] and k1, k2 ∈ Z, such that

hiwi + C = r1 + k1q ∧ (hi + 1)wi + C = r2 + k2q.

Note that the above equations are now over Z, not Zq. Combining these two
equations gives us wi = r2 − r1 + (k2 − k1)q, which implies that the represen-
tative wi is necessarily in [−2B, 2B]. This contradicts the original assumption
of wi /∈ [−2B, 2B]. In other words, we have shown that the set {hi : hiwi + C ∈
[−B,B]} cannot contain two consecutive numbers.

Now let us consider the situation where both hi and hi + 2 would be in this
set. As hi ∈ [−1, 1], this can only occur when hi = −1. This means that:{

−wi + C ∈ [−B,B]

wi + C ∈ [−B,B],

and hence there exist r1, r2 ∈ [−B,B] and k1, k2 ∈ Z, such that

−wi + C = r1 + k1q (15)
wi + C = r2 + k2q. (16)

This implies that 2wi = r2 − r1 + (k2 − k1)q. As wi /∈ [−2B, 2B], these equa-
tions can be satisfied only when wi =

r2−r1±q
2 with r2 − r1 ∈ [−2B, 2B]. The

latter interval implies that wi ∈ [− q2 ,−
q
2 + B] ∪ [ q2 − B,

q
2 ]. But in that case,

Equation (15) implies that C = wi + r1 ∈ [− q2 ,−
q
2 + 2B] ∪ [ q2 − 2B, q2 ]. In

other words, {hi : hiwi + C ∈ [−B,B]} contains at most 1 element if C /∈
[− q2 ,−

q
2 + 2B] ∪ [ q2 − 2B, q2 ] and at most two elements otherwise. We thus get

the following bounds on Σ1 and Σ2.

Σ1 ≤
1

3

∑
C∈]− q

2+2B, q2−2B[

Ph[
∑
j∈S

hjwj = C]

Σ2 ≤
2

3

∑
C∈[− q

2 ,−
q
2+2B]∪[ q2−2B,

q
2 ]

Ph[
∑
j∈S

hjwj = C]
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Let x denote
∑

C∈[− q
2 ,−

q
2+2B]∪[ q2−2B,

q
2 ]

Ph[
∑
j∈S hjwj = C]. Then, we have that 1−

x is
∑

C∈]− q
2+2B, q2−2B[

Ph[
∑
j∈S hjwj = C] which yields

Ph[hTw ∈ [−B,B]] ≤ 1

3
+
x

3
.

Our last task is then to find a suitable upper bound on x. More concretely,
we want to prove that x ≤ 2

3 . To this end, we will show that, for any vector u
uniformly sampled from {−1, 0, 1}n−1 and any vector w ∈ Zn−1q , the probability
(over the choice of u) that

∑
j ujwj ∈]−

q
2 ,−

q
2 + 2B] ∪ [ q2 − 2B, q2 ] is at most 2

3
when the requirements of our lemma are fulfilled.

In our case, we first recall that the elements of the sets {hj}j∈S are uniformly
sampled from {−1, 0, 1}n−1 that we identify to Z3 seen as an additive group.
Let t = [1, . . . , 1]T ∈ Zn−13 and let T = Zn−13 /⟨t⟩. Any element u ∈ T then
has exactly 3 representatives in Zn−13 that we note u,u′,u′′ ∈ {−1, 0, 1}n−1. We
then have exactly

u+ u′ + u′′ = 0

where the previous equation holds in Zn−1 because, for any j ∈ [n − 1], it
holds {uj , u′j , u′′j } = {−1, 0, 1}. For all w ∈ Zn−1q , we define

Σu =

n−1∑
j=1

ujwj , Σu′ =

n−1∑
j=1

u′jwj , Σu′′ =

n−1∑
j=1

u′′jwj .

We then know that Σu + Σu′ + Σu′′ = 0 in Z and hence that Σu + Σu′ +
Σu′′ = 0. What remains to prove is that this implies that at least one of these
representatives is not in ] − q

2 ,−
q
2 + 2B] ∪ [ q2 − 2B, q2 ]. Let us assume, without

loss of generality that both Σu and Σu′ are in this set (else, we are done). This
means (over Z) that

Σu +Σu′ = r + kq

for some integer k and some r ∈ [−4B, 4B]. Therefore Σu′′ = −r − kq and,
as it is an element of ] − q

2 ,
q
2 [ (as any representative), this means that Σu′′ =

−r ∈ [−4B, 4B]. Since the lemma assumes q
2 > 6B, this means that Σu′′ /∈

] − q
2 ,−

q
2 + 2B] ∪ [ q2 − 2B, q2 ]. In other words, for all w ∈ Zn−1q , among the 3

representatives of any element of T , at least one is such that
∑
j ujwj is not in

this set, which proves that x ≤ 2
3 and hence our lemma.

D Instantiating [LLM+16] with R∗

The original construction by Libert et al. [LLM+16] uses the binary decom-
position of the commitment c instead of using the commitment itself. It ad-
ditionally bases itself on the Boyen signature scheme, and involves an extra
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matrix D ∈ Zn×2nkq , where k = ⌈log2 q⌉. We analyze here the impact the con-
struction of [LLM+16] using the Yang et al. framework from [YAZ+19] for a fair
comparison. For this section only, we set the parameters differently according
to [LLM+16]. We thus have m = 2nk, σ1 = σ

√
1 + 8(N + 1)2m3. Also, prior to

being signed, the message blocks are encoded using b 7→ (1 − b, b). This means
that although the relevant message information is of mN bits, it is treated as a
message of 2mN bits. To be thorough, one would need to prove that the message
is properly encoded in addition to proving that the message is binary. This can
be done by proving the additional relation (ImN ⊗ [1 1])m = 1mN which proves
that the consecutive bits b, 1 − b indeed sum to 1. Since the relation is proven
modulo q, one must make sure that the coefficients are m are also proven binary.
For simplicity, we do not take this into account in the estimations of Table F.1.
The matrices Ai are uniform in Zn×mq , but the commitment key matrices Di are
uniform in Z2n×2m

q . We define H = I2n ⊗ [20 . . . 2k−1]. Since the binary decom-
position operator is non-linear, the verification equation has to be splitted into
two equations as follows.{

Av1 +A0v2 +
∑
i∈[ℓ] Ai(τ [i]v2)−Dw = u mod q,

Hw = D0r−
∑
i∈[N ] Dimi mod q,

with ∥v1∥∞, ∥v2∥∞ ≤ σ log2m, ∥r∥∞ ≤ σ1 log2 2m as well as τ ∈ {0, 1}ℓ,m ∈
{0, 1}2mN , and w ∈ {0, 1}2nk. We define α, α1, kα, kα1

,gα,gα1
in a similar way

as Section 5.2. We then define a = α1m, a1 = α112m and set Gα = Im ⊗ gα
and Gα1

= I2m ⊗ gα1
. Then, we define ui = Aiv2 ∈ Zn, as well as u′i = τ [i]ui.

The verification equations thus become


AGαv1 +A0Gαv2 +

∑
i∈[ℓ] u

′
i −Dw = u+ (A+A0)a mod q,

D0Gα1r+
∑
i∈[N ] Dimi −Hw = D0a1 mod q,

AiGαv2 − ui = Aia for all i ∈ [ℓ],

We thus define x = [τ |v1|v2|u1| . . . |uℓ|u′1| . . . |u′ℓ|w|r|m1| . . . |mN ] ∈ ZLx , where
Lx = ℓ+ 2mkα + 2ℓn+m+ 2mkα1

+ 2mN . We then define

A =


0 AGα A0Gα 0 · · · 0 In · · · In −D 0 · · · · · · 0

−H D0Gα1 D1 · · · DN

A1Gα −In
...

. . .
AℓGα −In

 ,

and

y =


u+ (A+A0)a

D0a1
A1a

...
Aℓa

 .
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Finally, we defineM1 = {(i, i, i); i ∈ [ℓ+2mkα]∪ [ℓ+2mkα+2ℓn+1, L]}, which
corresponds to having all the coefficients of x to be binary, except for the ui,u

′
i.

We then need to add the relations u′i = τ [i]ui for i ∈ [ℓ]. For that, we define

M2 = {(ℓ+2mkα+ ℓn+n(i−1)+ j, i, ℓ+2mkα+n(i−1)+ j); (i, j) ∈ [ℓ]× [n]},

and constructM =M1∪M2. The witness has length Lx, andM is of size Lx−
ℓn as well. The fast mode of Section 5.1 reduces the witness and relation set sizes
to 

Lx = ℓ(2n+ 1) +m(5 + 2N) + k(2⌊log2(2σ
√
m log2 λ)⌋

+⌊log2(2σ1
√
2m log2 λ)⌋+ 3)

LM = Lx − ℓn− 4m,

where k = λ/ log2(9/5) according to Lemma 5.1.

E Optimizing the Zero-Knowledge Framework

We detail here three independent optimizations of the framework from [YAZ+19].
We note that the first two optimizations apply as is to the original framework,
while the third involves further changes.
Concrete Hardness Assumptions. The first one consists in changing the
underlying hardness assumptions. Instead of using worst-case to average-case
connections to standard lattice problems, we use slightly overstretched param-
eters for which the hardness of LWE is only based on concrete hardness argu-
ments. The goal is to change the distribution of the randomness used to commit
to the witness x in the original proof so that it leads to smaller elements. More
precisely, we sample the randomness from a ternary distribution instead of a dis-
crete Gaussian. Additionally, we add an extra verification step in order to rely on
the HNF-SIS problem with two norm bounds β∞, β2 on the infinity norm and L2

norm respectively (Definition 2.3). Again, now relying on concrete hardness ar-
guments, we obtain an improved condition on q only depending on β∞, which is
usually much smaller than β2. Moreover, as discussed after Definition 2.3, con-
straining the magnitude of the solution’s coefficients seems to be beneficial for
both theoretical and concrete hardness.
Rejection Sampling. The second modification we make is to better leverage
the rejection sampling result from Lemma E.2 adapted from [Lyu12]. This step
ensures that a discrete Gaussian sample shifted by a small enough vector is
statistically close to the original discrete Gaussian distribution, thus masking the
shift. However, this fact is not used to its full potential in the proof of [YAZ+19].
Doing so leads to smaller bounds in the verification equations and SIS norm
bounds as a result. Additionally, we note when computing the size of the proof
(in the non-interactive version), the authors treat the discrete Gaussian vectors
as mere vectors over Zq. We can thus reduce the amount of storage needed
as they have small coefficients with overwhelming probability, which results in
smaller proofs by up to 20%.
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Compacted Commitments. The final optimization regards the case when the
proof system is run only once. It is sometimes better to increase the size p of
the challenges rather than re-iterate the proof several times in order to achieve
negligible soundness error. When running it once, we can compact the commit-
ments thus limiting the number of elements to send and the size of the proof as
a consequence. We note that compacting the commitments may not be desirable
when the proof system is run multiple times as it would involve committing to
the witness x multiple times.

E.1 Preliminaries

In what follows we sample the commitment randomness from a small distribu-
tion in order to optimize the parameters and the efficiency. For that, we employ
the following ternary distribution which we denote by ψ1, instead of Gaussian
distributions. It outputs 0 with probability 6/16 and −1, 1 both with probabil-
ity 5/16. This distribution has the advantage of being very efficiently sampleable
as it only requires the sampling of 4 uniformly random bits to output a sample
of ψ1. For x sampled from ψn1 , it holds that ∥x∥22 is distributed according to a
binomial distribution with parameter (n, 5/8). As such, Hoeffding’s inequality
gives the following.

Lemma E.1. Let n be a positive integer. Then for all δ > 0 it holds

Px←↩ψn
1

[
∥x∥2 ≥

√
(1 + δ)

5

8
n

]
≤ exp

(
−25

32
δ2n

)
.

The above probability becomes 0 when δ > 3/5.

Proof. Let x be a random vector whose coefficient are independent and identi-
cally distributed according to ψ1. Therefore, for all i ∈ [n], x2i follows a Bernoulli
distribution with parameter 5/8. Then, define the random variable X = ∥x∥22 =∑
i∈[n] x

2
i . Hence, since X follows a binomial distribution B(n, 5/8). By Hoeffd-

ing’s inequality, for all t > 0, we have

P[X − E[X] ≥ t] ≤ e−2t
2/n.

Since E[X] = 5n/8, then it holds that for all δ > 0, setting t = 5nδ/8 > 0 gives

P[X ≥ (1 + δ)5n/8] ≤ e−25δ
2n/32.

Therefore, it holds

∀δ > 0,Px←↩ψn
1

[
∥x∥2 ≥

√
(1 + δ)

5

8
n

]
≤ exp(−25

32
δ2n).
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We also recall the rejection sampling result from [Lyu12], which we adapt
to our modified definition of Gaussian distributions. We reformulate it to give
the freedom to choose the repetition rate M and the tail bound error. Note
that in [Lyu12], M is determined by T , σ and the tail bound error. We instead
choose M and the tail bound error, and then determine the minimal σ needed.
Although it is a direct application of [Lyu12, Lem. 4.7], we provide the proof for
completeness.

Lemma E.2 (Adapted from [Lyu12, Thm. 4.6]). Let n be a positive integer
and Λ a lattice of rank n. Let V be a subset of Rn and define T = maxv∈V ∥v∥2.
Let h be a probability distribution over V . Let M > 1 and t > 0. Then, de-
fine σmin = (−t +

√
t2 + ln(M)/π)−1 · T . Let σ ≥ σmin. We now define two

distributions

P1: Sample v ←↩ h and y ←↩ DΛ,σ. Define z = y + v. Output (v, z) with
probability min(1,

DΛ,σ(z)
M ·DΛ,σ(z−v) ).

P2: Sample v←↩ h and z←↩ DΛ,σ. Output (v, z) with probability 1/M .

Then, it holds that P1 outputs something with probability at least (1−2e−πt2)/M ,
and that ∆(P1,P2) ≤ 2e−πt

2

/M .

Proof. The proof is a direct application of [Lyu12, Lem. 4.7] with f = DΛ,σ
and (gv)v∈V = (DΛ,σ,v)v∈V . We simply have to verify that:

∀v ∈ V,Pz←↩DΛ,σ
[MDΛ,σ(z− v) ≥ DΛ,σ(z)] ≥ 1− 2e−πt

2

. (17)

Let v ∈ V , and z←↩ DΛ,σ. Then, we have

DΛ,σ(z)
DΛ,σ(z− v)

= exp
( π

σ2
(∥v∥22 − 2⟨v,z⟩)

)
.

Except with probability at most 2e−πt
2

, it holds that −⟨v , z⟩ ≤ σt∥v∥2 by
Lemma 2.3. We now condition on −⟨v,z⟩ ≤ σt∥v∥2. It yields

DΛ,σ(z)
DΛ,σ(z− v)

≤ exp
( π

σ2
(∥v∥22 + 2σt∥v∥2)

)
≤ exp

(
π((T/σ)2 + 2t(T/σ))

)
.

The way we defined σmin, we have that T/σmin is the only positive solution
to x2 + 2tx − ln(M)/π = 0. Since, we have σ ≥ σmin, we have that T/σ is
between the two solution of the equation and as such we have that (T/σ)2 +
2t(T/σ)− ln(M)/π ≤ 0. It can be re-written as

exp
(
π((T/σ)2 + 2t(T/σ))

)
≤M,

thus proving Equation (17) as required.
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The security properties of the zero-knowledge argument rely on the Short
Integer Solution (SIS) problem [Ajt96] and the Learning With Errors (LWE)
problem [Reg05] in Hermite Normal Form (HNF).

Definition E.1 ((HNF) Short Integer Solution). Let n,m, q be positive
integers, and β2 ≥ β∞ ≥ 1. The Hermite Normal Form Short Integer Solution
problem, denoted by HNF-SIS∞,2n,m,q,β∞,β2

, consists in finding x ∈ Λ⊥q ([In|A′])
given A′ ←↩ U(Zn×(m−n)q ) such that 0 < ∥x∥∞ ≤ β∞ and 0 < ∥x∥2 ≤ β2.

We say that HNF-SIS is δ-hard if for any probabilistic polynomial-time (PPT)
adversary A, the probability of A finding such a vector is at most δ over the
randomness of A′.

Definition E.2 ((HNF) Learning With Errors). Let n,m, q be positive in-
tegers, and ψ a probability distribution over Z. The Hermite Normal Form Learn-
ing With Errors problem, denoted by HNF-LWEn,m,q,ψ, asks to distinguish be-
tween the following two distributions: (1) (A,As+e mod q) with A←↩ U(Zm×nq ),
s←↩ ψn and e←↩ ψm; (2) (A,b) with A←↩ U(Zm×nq ) and b←↩ U(Zmq ).

We say that HNF-LWE is δ-hard if for any PPT adversary A, the advantage
of A in distinguishing both distributions is at most δ.

Finally, we briefly recall the security properties of a commitment scheme
aCommit(m; ρ) which commits to a message m under randomness ρ. We say
that aCommit is δ-hiding if a PPT adversary A has advantage at most δ in the fol-
lowing game: A chooses m0 ̸= m1, receives aCommit(mb; ρ) where b is a random
bit, and outputs b′ ∈ {0, 1}. A wins if b′ = b. We say that aCommit is δ-binding
if a PPT adversary has advantage at most δ in outputting (m0, ρ0), (m1, ρ1) such
that m0 ̸= m1 and aCommit(m0; ρ0) = aCommit(m1; ρ1).

E.2 The Optimized Protocol.

We now present the main protocol with the optimizations we presented. Let ℓ1, ℓ2
be two positive integers. We denote by Lx the size of the witness vector, and LM
the size of the quadratic constraints set. We also define L = ℓ1 + ℓ2 + Lx +
LM. As is done in [YAZ+19], we employ the homomorphic commitment scheme
from [BDL+18] over the integers. More precisely, we define

C =

[
Iℓ1 C1

0Lx+LM×ℓ1 ILx+LM C2

]
∈ Z(ℓ1+Lx+LM)×L

q ,

with C1 ←↩ U(Zℓ1×(Lx+LM+ℓ2)
q ), C2 ←↩ U(Z(Lx+LM)×ℓ2

q ). We then set δ =√
32

25 log2 e
· λL . By Lemma E.1, it holds that for s ←↩ ψL1 , ∥s∥2 ≤

√
(1 + δ) 58L

except with probability 2−λ. Let M > 1 defining the repetition rate of the
rejection sampling procedure. Then, let t =

√
(λ+ 1)/(π log2 e) so that the tail

bound needed in the rejection sampling verifies 2e−πt
2

= 2−λ. Let p = 2λ be the
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maximal magnitude of the challenges. We define s2 = (−t+
√
t2 + ln(M)/π)−1·p·√

5(1 + δ)/(8L). For any v, z ∈ ZL, we define the rejection sampling probability
function by p(v, z) = min(1,DZL,s2(z)/(M ·DZL,s2(z−v))). Finally, let aCommit
be an auxiliary commitment scheme with randomness space {0, 1}κ and message
space Zk+2(ℓ1+Lx+LM)

q , and that is binding and hiding. The following interactive
protocol involves a prover P with public input A ∈ Zk×Lx

q , y ∈ Zkq , and M ⊆
[Lx]

3 with |M| = LM and private input x ∈ ZLx
q . The verifier V is only given

the public input. In the protocol, P must convince V in zero-knowledge that
they know x verifying{

Ax = y mod q

∀(h, i, j) ∈M,x[h] = x[i]x[j] mod q
(18)

Theorem E.1. The protocol described in Figure E.1 is complete with complete-
ness error at most δc = 1− 1/M + negl(λ).

We define β∞ = 8ps2 log2 L and β2 = 8ps2
√
L. Assume HNF-SISℓ1,L,q,β∞,β2

is δSIS-hard and that aCommit is δab -binding. Then, there exists an extractor E
that for any A,y,M and any PPT cheating prover P̂, if P̂ can convince a
verifier V without knowing a witness with probability at least 2/(2p+ 1) + ε for
a non-negligible ε, then E can extract an x that verifies (18) in polynomial time,
except with probability δSIS.

Finally, assume that HNF-LWEℓ2,ℓ1+Lx+LM,q,ψ1
is δLWE-hard, and that the

commitment aCommit is δah-hiding. Then, there exists a simulator S that with
input A,y,M outputs a transcript that is (δah+2−λ/M+δLWE)-indistinguishable
from the transcript of an honest execution of the protocol with a prover knowing
a witness x satisfying (18).

Although the proof of Theorem E.1 follows naturally from that of [YAZ+19],
we give it in Section E.3. The above protocol can be turned into a non-interactive
zero-knowledge arugument of knowledge via the Fiat-Shamir heuristic in the
random oracle model. In this case, the resulting proof does not contain the
whole transcript as some elements are uniquely determined by the others for
the proof to be correct. More precisely, the proof is π = (α, ρ, c1, z0, z1) where
the challenge α = H(A,y,M, Caux;AUX) with AUX an auxiliary input. The
verification algorithm then re-computes t from the verification equation (4), c2
from equation (5) and Caux from equation (1). We end up with a proof of size

|π| = ⌈log2(2p+ 1)⌉+ κ+ (ℓ1 + Lx + LM)⌈log2 q⌉+ Lx⌈log2 q⌉
+ L⌈log2(s2 log2 L)⌉ (19)

= ⌈log2(2p+ 1)⌉+ κ+ (ℓ1 + 2Lx + LM)⌈log2 q⌉+ L⌈log2(s2 log2 L)⌉ (20)

The last term in (19) does not appear in the proof size of [YAZ+19] as they
treat z1 (and z2 in their case) as vectors in Zq. However, due to the rejection
sampling, one has that they are Gaussian vectors and we can therefore reduce
the amount of storage needed. Depending on the chosen parameters, this simple
observation reduces the proof size by up to 20%.
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Prover P[A,y,M;x] Verifier V[A,y,M]

r←↩ U(ZLx
q )

t← Ar mod q
s1 ←↩ ψL

1
s2 ←↩ DZL,s2

Let a,b be LM-dimensional vectors
For e ∈ [LM], let (h, i, j) be the e-th element of M
a[e]← r[h]− r[i]x[j]− r[j]x[i]
b[e]← −r[i]r[j]

c1 ← Cs1 +

0ℓ1

x

a

 mod q

c2 ← Cs2 +

0ℓ1

r

b

 mod q

ρ←↩ U({0, 1}κ)
Caux ← aCommit(t∥c1∥c2; ρ)

Caux

α←↩ U([−p, p])
α

z0 ← αx+ r
z1 ← αs1 + s2
Abort with probability 1− p(αs1, z1)

t, c1, c2, ρ, z0, z1

Let d be an LM-dimensional vector
For e ∈ [LM], let (h, i, j) be the e-th element of M
d[e]← αz0[h]− z0[i]z0[j]

Accept if:
(1) Caux = aCommit(t∥c1∥c2; ρ)
(2) ∥z1∥∞ ≤ s2 log2 L
(3) ∥z1∥2 ≤ s2

√
L

(4) Az0 = αy + t mod q

(5) Cz1 +

0ℓ1

z0
d

 = αc1 + c2 mod q

Fig. E.1. Zero-knowledge Argument of Knowledge for Equation (18) with compacted
commitments.

E.3 Proof of Theorem E.1

Proof. Completeness: Consider an honest execution of the protocol, i.e., be-
tween a prover P[A,y,M;x] with x satisfying (18), and a verifier V[A,y,M].
Since the execution is honest and since aCommit does not use any internal
randomness other than ρ, (1) is trivially verified. Next, due to the rejection
sampling, P respond in the third move only with probability p(αs1, z1). Yet it
holds that ∥αs1∥2 ≤ p

√
5(1 + δ)/(8L) except with probability at most 2−λ by

Lemma E.1. Because of how we set s2, Lemma E.2 yields that the prover does not
abort with probability at least (1 − 2−λ+1)/M and that z1 is within statistical
distance 2−λ/M of DZL,s2 . We further condition on a non-aborting transcript.
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Lemma 2.3 combined with the union bound gives

P[∥z1∥∞ ≤ s2 log2 L ∧ ∥z1∥2 ≤ s2
√
L] ≥ 1− (2−λ/M + 2−2L + 2Le−π log2

2 L).

Equation (4) is easily verified as Az0 = A(αx+r) = α(Ax)+Ar = αy+t mod q.
Now, let e ∈ [LM] and let (h, i, j) be the e-th element ofM. We have

d[e] = αz0[h]− z0[i]z0[j]

= α(αx[h] + r[h])− (αx[i] + r[i])(αx[j] + r[j])

= α2(x[h]− x[i]x[j]) + α(r[h]− r[i]x[j]− r[j]x[i]) + (−r[i]r[j])
= αa[e] + b[e] mod q.

As a result, it holds that d = αa+ b mod q. It thus yields

Cz1 +

0ℓ1z0
d

 = C(αs1 + s2) +

 0ℓ1
αx+ r

αa+ b

 mod q

= α

Cs1 +

0ℓ1x
a

+

Cs2 +

0ℓ1r
b

 mod q

= αc1 + c2 mod q,

proving (5). Combining it all yields

P[⟨P[A,y,M;x],V[A,y,M]⟩ ≠ 1] ≤ 1− 1/M + negl(λ).

Extractor: Now, assume that a cheating prover P̂ can convince the verifier that
they possess a witness for (A,y,M) with probability 2/(2p + 1) + ε for some
non-negligible ε. We construct the extractor E that uses P̂ via black-box access.
First, E runs P̂ until it obtains an accepting transcript (t, c1, c2, α, z0, z1). Be-
tween each run, E rewinds the inner randomness of P̂ to have the same first move
response. This first transcript is obtained in expected time T1 = (2/(2p + 1) +

ε)−1. Then, E re-iterates the same process but sends challenges α′ ̸= α to P̂. As-
suming aCommit is δab -binding and since the first move always uses the same ran-
domness, E can therefore obtain another accepting transcript (t, c1, c2, α′, z′0, z′1)
in expected time T2 = (1/(2p+1)+ ε− δab )−1. It then continues running P̂ with
challenges α′′ /∈ {α, α′} to get a third accepting transcript (t, c1, c2, α

′′, z′′0 , z
′′
1)

in expected time T3 = (ε − δab )
−1. The total expected time is therefore T =

T1 + T2 + T3 ≤ poly(λ). Finally, the extractor E outputs the witness x =
(α′ − α)−1(z′0 − z0) mod q. We now analyze the correctness of E . We further
define ∆1 = α′ − α and ∆2 = α′′ − α. First, we have

Ax = ∆−11 (Az′0 −Az0) mod q

= ∆−11 (α′y + t− (αy + t)) mod q (by (4))

= ∆−11 (α′ − α)y mod q

= y mod q.
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We now prove that x verifies the quadratic constraints except with probabil-
ity δSIS. For that, we define e′ = z′1−z1, e′′ = z′′1−z1, f ′ = z′0−z0, f ′′ = z′′0−z0,
and g′ = d′ − d, g′′ = d′′ − d. The verification equation (5) gives

Ce′ +

0ℓ1f ′
g′

 = ∆1c1 mod q

Ce′′ +

0ℓ1f ′′

g′′

 = ∆2c1 mod q.

Cancelling the right-hand side provides us with

C(∆2e
′ −∆1e

′′) +

 0ℓ1
(∆2f

′ −∆1f
′′)

(∆2g
′ −∆1g

′′)

 = 0 mod q.

The first block then gives [Iℓ1 |C1](∆2e
′ −∆1e

′′) = 0 mod q. Yet, we can bound
the norms of ∆2e

′ − ∆1e
′′ using the verification equations (2) and (3) and

get ∥∆2e
′ −∆1e

′′∥∞ ≤ 8ps2 log2 L = β∞ and ∥∆2e
′ −∆1e

′′∥2 ≤ 8ps2
√
L = β2.

Since we assume that HNF-SISℓ1,L,q,β∞,β2
is δSIS-hard, then no PPT adversary

can solve it with advantage more than δSIS. Hence, we get that ∆2e
′−∆1e

′′ = 0
except with probability at most δSIS. We now condition on ∆2e

′ − ∆1e
′′ = 0.

The second and third blocks in the above yields ∆2f
′ = ∆1f

′′ mod q and ∆2g
′ =

∆1g
′′ mod q. We now define r = z0 − αx mod q. Then

z′0 − α′x = z′0 −∆1x− αx = z′0 − f ′ − αx mod q = r mod q (21)

z′′0 − α′′x = z′′0 −∆2x− αx = z′′0 −∆2∆
−1
1 f ′ − αx

= z′′0 −∆2∆
−1
2 f ′′ − αx mod q

= r mod q. (22)

Now let e ∈ [LM] and (h, i, j) be the e-th element ofM. We have

d[e] = αz0[h]− z0[i]z0[j]

= α(αx[h] + r[h])− (αx[i] + r[i])(αx[j] + r[j])

= α2(x[h]− x[i]x[j]) + α(r[h]− r[i]x[j]− r[j]x[i]) + (−r[i]r[j])
= c[e]α2 + a[e]α+ b[e].

Due to Equations (21) and (22), we also have d′ = α′
2
c + α′a + b and d′′ =

α′′
2
c+ α′′a+ b. Hence, since ∆−11 g′ = ∆−12 g′′ mod q, we obtain

(α′ + α)c+ a = (α′′ + α)c+ a mod q

which leads to (α′′−α)c = 0 mod q. Since α′′ ̸= α′ and q is prime, then α′′−α′ ∈
Z×q and therefore c = 0 mod q. This proves that for all (h, i, j) ∈ M, x[h] =
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x[i]x[j] mod q. As a result, the output of E is correct except with probability at
most δSIS.
Simulator: We construct the following simulator S that simulates the distribution
of an honest transcript but only using the public inputs. It proceeds as follows

1. α←↩ U([−p, p])
2. z0 ←↩ U(ZLx

q )

3. t← Az0 − αy mod q
4. For e ∈ [LM], let (h, i, j) be the e-the element ofM. Then, d[e]← αz0[h]−

z0[i]z0[j]
5. z1 ←↩ DZL,s2

6. c1 ←↩ U(Zℓ1+Lx+LM
q )

7. c2 ← Cz1 +

0ℓ1z0
d

− αc1 mod q

8. ρ←↩ U({0, 1}κ)
9. Caux ← aCommit(t∥c1∥c2; ρ)

10. C ′aux ← aCommit(0; ρ)
11. Output (Caux, α, t, c1, c2, ρ, z0, z1) with probability 1/M and (C ′aux, α,⊥)

otherwise.

We now prove that the output of S is computationally indistinguishable from the
transcript of an honest execution of the protocol. We proceed by game hopping.
Game G0: This corresponds to an honest execution.
Game G1: Here, the prover P retrieves the challenge α from the honest verifier
by sending aCommit(0; ρ) for some ρ←↩ U({0, 1}κ). It then rewinds the verifier
to its initial state including its inner randomness. It then proceeds as follows:

1. r←↩ U(ZLx
q )

2. t← Ar mod q
3. s1 ←↩ ψL1
4. s2 ←↩ DZL,s2

5. For e ∈ [LM], let (h, i, j) be the e-the element of M. Then, a[e] ← r[h] −
r[i]x[j]− r[j]x[i] and b[e]← −r[i]r[j]

6. c1 ← Cs1 +

0ℓ1x
a

 mod q

7. c2 ← Cs2 +

0ℓ1r
b

 mod q

8. z0 ← αx+ r
9. z1 ← αs1 + s2

10. Set the binary variable abort to 1 with probability 1− p(αs1, z1)
11. ρ←↩ U({0, 1}κ)
12. Caux ← aCommit(t∥c1∥c2; ρ) and it sends Caux to the verifier
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13. When receiving α′ from the verifier, the prover aborts if abort = 1 and
otherwise sends (t, c1, c2, ρ, z0, z1).

Game G2: It is identical to G1 except in the computation of t and c2. They are
instead computed to verify equations (4) and (5) in the verification:

1. t← Az0 − αy mod q
2. For e ∈ [LM], let (h, i, j) be the e-the element ofM. Then, d[e]← αz0[h]−

z0[i]z0[j]

3. c2 ← Cz1 +

0ℓ1z0
d

− αc1 mod q

Game G3: It is identical to G2 except for the computation of Caux.

1. Caux ← aCommit(0; ρ) if abort = 1 and Caux ← aCommit(t∥c1∥c2; ρ) other-
wise.

Game G4: It is identical to G3 except in the computation of z1 and abort.

1. z1 ←↩ DZL,s2

2. Set abort = 1 with probability 1− 1/M and 0 otherwise

Game G5: It is identical to G4 except in the computation of c1.

1. c1 ←↩ U(Zℓ1+Lx+LM
q )

Game G6: It is identical to G5 except in the computation of z0

1. z0 ←↩ U(ZLx
q )

We now prove that each game is indistinguishable from the next. First, since
the verifier V is honest, the challenge α′ is fully determined by its inner random-
ness. As it is rewinded, we always have α′ = α. All other variables are identically
distributed, which gives

∆(ViewG0
(V),ViewG1

(V)) = 0. (23)

By the completeness of the protocol, t and c2 are uniquely determined by the
other variables and the verification equations (4) and (5). Thus

∆(ViewG1(V),ViewG2(V)) = 0. (24)

Since aCommit is δah-hiding, it holds that a PPT adversary A can distinguish
between games G2 and G3 with advantage at most δah.

|P[A(ViewG2(V)) = 1]− P[A(ViewG3(V)) = 1]| ≤ δah. (25)

Then, by Lemma E.2, it directly holds that the computation of z1 and abort
in G4 is within statistical distance 2−λ/M of that of game G3. Hence

∆(ViewG3(V),ViewG4(V)) ≤ 2−λ/M. (26)

55



We then use the hiding property of the commitment scheme from [BDL+18]
to argue that G4 and G5 are indistinguishable under the LWE assumption.
The details are already provided in [YAZ+19]. More precisely, since we assume
that HNF-LWEℓ2,ℓ1+Lx+LM,q,ψ1 is δLWE-hard, then for any PPT adversary A
we get

|P[A(ViewG4(V)) = 1]− P[A(ViewG5(V)) = 1]| ≤ δLWE. (27)

In G5, z0 = αx+ r where r is uniform in ZLx
q and independent of αx. Hence, z0

is also uniform in ZLx
q . Thus:

∆(ViewG5(V),ViewG6(V)) = 0. (28)

Then, the distribution of the transcript in G6 no longer depends on the witness x
and is exactly the same as the output of S. Combining Equations (23), (24), (25),
(26), (27) and (28) yields∣∣P[A(ViewG0

(V)) = 1]− P[A(S(A,y,M)) = 1]
∣∣ ≤ δah + 2−λ/M + δLWE,

as desired.

F Parameters and Efficiency

In this section, we instantiate the two versions of our signature scheme with
concrete parameters in order to reach λ = 128 bits of quantum security. All the
concrete hardness estimates for the SIS,LWE,M-SIS,M-LWE problems are done
using the BKZ cost model with sieving SVP oracle. In this model, the classical
security is given by λc = 0.292b [BDGL16] and the quantum security by λq =
0.265b [Laa15], where b is the BKZ blocksize. We explain our choice of parameters
for both the standard and module version by encompassing the zero-knowledge
arguments of message-signature possession. We however note that for a standard
use of the signature schemes, one could choose different parameters. We choose to
instantiate it for Q = 230 signature queries, representing the number of signature
issuance. We believe this choice is reasonable for most applications.

F.1 Instantiating the Standard Signature

We provide in Table F.2 an example parameter set along with the size of the
keys, signature, and proof of possession for the signature of Section 3. It makes
use of the zero-knowledge framework of [YAZ+19] improved with the enhanced
fast mode from Section 5.1 and the optimizations of Appendix E (except the
compacted commitments, as explained below) that we have introduced.

As explained in Remark 5.2, in order to have as few iterations of the proof
system as possible, we need to choose large enough challenges, which in turns re-
quire to take a sufficiently large modulus. We then start by choosing the number
of iterationsN and the challenge size p, which imply we must take q ≥ poly(λ)·p2.
To avoid an exponential reduction loss, we set q′ ≈ Q2. We then fix n so that
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when the other parameters are set using Algorithm 1, we obtain a quantum
security of λ. Since the proofs of Lemma 3.1 and 3.2 both have a reduction
loss between the advantage of a signature forger (δ = 2−λ) and the advantage
against SIS (Adv[B]) which can be substantial, we need to take it into account.
More precisely, we compute the required SIS security λI, λII so that the SIS
problem stays hard even with the relations of Lemma 3.1 and 3.2. For our pa-
rameter, we need λI = 189 and λII = 181 for the respective SIS problems which
only slightly differ by their bounds. Hence, we must reach for a root Hermite
factor of δ0 = 1.0026. We also account for key recovery attacks, consisting of
recovering R from A,B. This attack is however much more costly than forgeries
as R is statistically hidden in (A,B) by the leftover hash lemma. We then set the
other parameters of the zero-knowledge argument as described in our optimized
framework in Appendix E and taking ℓ1, ℓ2 to reach 128 bits of quantum security
for the HNF-SIS and HNF-LWE problems. The security estimates of HNF-LWE
are performed using the estimator of Albrecht et al. [APS15]. We note that al-
though we take the secret and error ternary from distribution ψ1, we are never in
the regime of polynomial algebraic attacks [AG11]. Such attacks for ternary error
would require roughly ℓ32 samples. In our cases, we have ℓ1+max(Lx, LM)≪ ℓ22.

We also instantiate the scheme of [LLM+16]. For a fair comparison, we aim
for the same security and make use of the same improvements of the zero-
knowledge argument. The relation of [LLM+16] is instantiated in the framework
of [YAZ+19] in Appendix D.

For both our scheme and the one from [LLM+16], the ZKAoK are instantiated
to be run twice, and thus do not include the compacted commitments discussed in
Appendix E. Table 1.1 shows the construction of [LLM+16] leads to intractable
parameters and key sizes. We note that one could reduce the value of q at
the expense of increasing the number of proof iterations to achieve negligible
soundness. However, not only does this approach still leads to intractable key
sizes, but it also yields substantially larger proofs. Our results also summarized
in Table 1.1 shows the feasibility of signature with efficient protocols based on
lattice assumptions, as we gain several orders of magnitude in the size of key
materials and proof size, while maintaining the same security. The complete
parameter sets used to obtained these results can be found in Tables F.1 and F.2.

Remark F.1. We recall that, although the fast mode reduces the size of the wit-
ness vector, it also introduces a soundness gap, which is the object of Lemma 5.1.
As a result, the bounds on v∗1,v

∗
2 used in Lemma 3.1 and 3.2 are larger as dis-

cussed in Remark 5.1. We thus take this increase of the SIS bounds into account
when estimating the SIS security, which entails an increase of the dimension n.

F.2 Instantiating the Module Signature

We now rely on the framework of [LNP22] for the zero-knowledge argument. The
module construction no longer suffers from the requirement of a large modulus.
Indeed, in the module case, we can choose an exponentially large challenge space
while keeping the size of the challenges constant. The same thing occurs for our
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tag space. Before, we needed to take q ≥ q′ where q′ was both the bound on
the tags and the size of the tag space. In the module case, we can take binary
tags while adjusting the value of w in order to have a sufficiently large tag
space. Additionally, because the modulus of the signature q is different from the
modulus of the proof system qπ = q1q, we can first adjust the parameters of our
signature before setting the parameters of the proof system. We proceed as in
the previous section, accounting for the reduction loss of Lemma 6.2 and 6.3. To
choose the parameters of the proof system, we proceed as prescribed in [LNP22,
Sec. 6.1], with the challenge space of [LNP22, Fig. 3]. For simplicity, we choose
parameters close to those provided in their group signature instantiation. We give
the detailed parameter set in Table F.3 with security and efficiency estimates.
To avoid collision between our notations and the proof system parameters, we
specify the notations used in [LNP22] in the description column.

This construction based on structured lattices leads to drastic efficiency gains
in both key and proof sizes as summarized in Table 1.1, which further reinforce
the concrete feasibility of efficient privacy-enhancing post-quantum signatures.
In particular, it shows that a proof of knowledge of a signature issued on a
committed (secret value), one of the main building blocks of privacy-preserving
primitives, can represent less than 700 KB, which is a considerable improvement
over [LLM+16] and may have many applications.

F.3 Parameter Sets
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Parameters Description Exact Proof Fast Mode
Signature

λ Security parameter 128 128

n SIS dimension 1540 2400

q Modulus 2155 + 15 2155 + 15

ℓ Tag bit-size 61 61

m Trapdoor dimension 480480 748800

Nmsg Number of message blocks 1 1

σ Pre-image sampling width 23354 30918

σ1 Commitment randomness width 44001388284877 113328266566679

λI/λ
∗
I Required/Reached SIS security (I) 164/164 164/164

λII/λ
∗
II Required/Reached SIS security (II) 159/161 159/166

λIII/λ
∗
III Required/Reached SIS security (III) 128/568 128/540

|pk| Public key size (MB) 8670 · 102 2053 · 103

|sk| Secret key size (MB) 1376 · 101 3259 · 101

|sig| Signature size (KB) 8094 13162

|pp| Public parameters size (MB) 1482 · 101 3510 · 101

Proof
ℓ1 HNF-SIS dimension 8350 8000

ℓ2 HNF-LWE dimension 7900 7900

p Size of challenges 2λ/2 2λ/2

N Number of proof iterations 2 2

M Rejection sampling repetition rate 27 27

Lx Witness length 69857541 5483250

LM Relation set length 69763601 2380920

δs Soundness error 2−λ 2−λ

λ∗
SIS,π Reached HNF-SIS security 128 129

λ∗
LWE,π Reached HNF-LWE security 130 130

|π| Proof size (KB) 9580555 566318

Table F.1. Selected parameters, security and efficiency estimates of the signature
scheme of [LLM+16].
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Parameters Description Exact Proof Fast Mode
Signature

λ Security parameter 128 128

n SIS dimension 495 795

q Modulus 2155 + 15 2155 + 15

q′ Tag bound 261 261

m1 First trapdoor dimension 48732 78070

m2 Second trapdoor dimension 77220 124020

m3 Message bit-size 128 128

t Spectral norm slack 7.5 7.5

σ Pre-image sampling width 6026.03 7608.76

σ1

√
σ2 + σ2

2 6026.05 7608.77

σ2 Commitment randomness width 12.73 12.73

λI/λ
∗
I Required/Reached SIS security (I) 189/190 189/189

λII/λ
∗
II Required/Reached SIS security (II) 182/190 182/189

|pk| Public key size (MB) 1160 2988

|sk| Secret Key size (MB) 898 2308

|sig| Signature size (KB) 262 420

|pp| Public parameters size (MB) 1.2 1.9

Proof
ℓ1 HNF-SIS dimension 7850 7500

ℓ2 HNF-LWE dimension 7850 7850

p Size of challenges 2λ/2 2λ/2

N Number of proof iterations 2 2

M Rejection sampling repetition rate 27 27

Lx Witness length 2268317 211572

LM Relation set length 2267821 8686

δs Soundness error 2−λ 2−λ

λ∗
SIS,π Reached HNF-SIS security 128 129

λ∗
LWE,π Reached HNF-LWE security 129 129

|π| Proof size (KB) 308963 17809

Table F.2. Selected parameters, security and efficiency estimates of the signature
scheme of Section 3.
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Parameters Description Value
Signature

λ Security parameter 128

n Ring degree 128

d M-SIS module rank 10

q Modulus 247 + 9

k Number of splitting factors 4

w Tag norm bound 14(
n
w

)
Size of tag space ≈ 260.6

κ Gadget matrix term ⌈log2 q⌉
m1 First trapdoor rank 620

m2 Second trapdoor rank 480

m3 Number of message polynomials 1

t Spectral norm slack 7.5

σ Pre-image sampling width 5404

σ1

√
σ2 + σ2

2 5935

σ2 Commitment randomness width 2454

λI/λ
∗
I Required/Reached M-SIS security (I) 189/192

λII/λ
∗
II Required/Reached M-SIS security (II) 182/183

|pk| Public key size (MB) 8.06

|sk| Secret Key size (MB) 9.08

|sig| Signature size (KB) 275

|pp| Public parameters size (MB) 0.007

Proof
d′ Height of commitment matrices A1,A2 (n) 12

q1 Slack Modulus (q1) 228 + 105

qπ Proof modulus (q) ≈ 275

- Bound on challenges (κ) 2

|C| Size of challenge space (|C|) ≈ 2147

σ−1 Proof automorphism (σ) σ−1

η Second bound on challenges (η) 72

ν Randomness s2 bound (ν) 1

- Number of garbage terms (λ) 5

- Length of s1 (m1) 1102

- Length of m (ℓ) 0

- Length of s2 (m2) 41

γ1 Rejection sampling constant for cs1 (γ1) 5

γ2 Rejection sampling constant for cs2 (γ2) 3

γ(e) Rejection sampling constant for exact ARP (γ(e)) 2

δs Soundness error ≈ 2−131

λ∗
M-SIS,π Reached M-SIS security 131

λ∗
M-LWE,π Reached ext-M-LWE security 149

|π| Proof size (KB) 638.1

Table F.3. Selected parameters, security and efficiency estimates of the signature
scheme of Section 6.
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