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Abstract. Digital signature is an essential primitive in cryptography,
which can be used as the digital analogue of handwritten signatures but
also as a building block for more complex systems. In the latter case,
signatures with specific features are needed, so as to smoothly inter-
act with the other components of the systems, such as zero-knowledge
proofs. This has given rise to so-called signatures with efficient protocols,
a versatile tool that has been used in countless applications. Designing
such signatures is however quite difficult, in particular if one wishes to
withstand quantum computing. We are indeed aware of only one post-
quantum construction, proposed by Libert et al. at Asiacrypt’16, yielding
very large signatures and proofs.
In this paper, we propose a new construction that can be instantiated
in both standard lattices and structured ones, resulting in each case in
dramatic performance improvements. In particular, the size of a proof
of message-signature possession, which is one of the main metrics for
such schemes, can be brought down to less than 650 KB. As our con-
struction retains all the features expected from signatures with efficient
protocols, it can be used as a drop-in replacement in all systems using
them, which mechanically improves their own performance, and has thus
a direct impact on many applications. It can also be used to easily design
new privacy-preserving mechanisms. As an example, we provide the first
lattice-based anonymous credentials system.

Keywords: Lattice-Based Cryptography · Signature · Efficient Proto-
cols · Privacy · Anonymous Credentials

1 Introduction

Electronic authentication massively relies on digital signatures, a cryptographic
primitive that can be traced back to the Diffie-Hellman seminal paper [DH76].
The strong point of digital signatures is that they act in the digital world in
the same way as handwritten signatures do in the real world: they add a short
element S to some data m attesting that m has been validated by the signer and
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that it has not been modified afterwards. By emulating handwritten signatures,
they represent the perfect electronic counterpart and are indeed ubiquitous to-
day.

However, for several decades, cryptographers have questioned this hegemony
in some situations as these signatures may give rise to many privacy issues.
Typically, presentation of the same certificate4 S each time m needs to be au-
thenticated allows tracing S and hence its owner. Moreover, if m is a set of
elements mi, then verification of S requires knowledge of all these elements even
if they are irrelevant for the current authentication.

For example, let us consider the classical use-case of age control (e.g., to check
that a customer is an adult) where some customer owns a digital certificate (em-
bedded in some ID document) authenticating his attributes (name, birthdate,
address, etc). With standard digital signature, this customer has no other choice
than providing the full set of attributes to the controller as they are required to
run the verification algorithm. This is clearly a significant privacy issue but here
one could argue that the situation already occurs in the real world: it is indeed
quite common to present an ID document displaying many personal information
to a cashier that needs to control your age.

This apparent paradox epitomizes the differences between the real world and
the digital one. In the former, it is natural to assume that the cashier will not
memorize all the information contained in the document for further commercial
exploitation or identity theft. This does not hold true in the digital world where
the users definitely lose control of their data as soon as they reveal them and
it is very likely that the same customer will be much more reluctant to provide
the same information to a website that needs to verify that he is an adult.

1.1 Related Works

Since the problems of the two worlds are different it is actually logical that stan-
dard digital signatures are not best suited for all use-cases. In particular, the fact
that electronic data can no longer be controlled once they are revealed calls for
solutions disclosing as few information as possible during authentication. This
has given rise to countless advanced cryptographic primitives, tailored to very
specific use-cases, such as anonymous credentials [Cha85,CL01,FHS19], group
signatures [CvH91,BSZ05], Direct Anonymous Attestations (DAA) [BCC04],
EPID [BL07], etc. Far from simply being theoretical constructions, some of them
have been included in standards (e.g., [ISO13a,ISO13b]) and even embedded in
billions of devices (e.g., [TCG15,Int16]).

Surprisingly, the diversity of use-cases addressed by these privacy-preserving
authentication mechanisms contrasts with the very few mathematical settings
allowing efficient designs. A closer look at these standards indeed shows that all
of them make use of RSA moduli or cyclic groups and thus cannot withstand
the power of quantum computing. The emerging success of such systems is thus

4 All along this paper, the words signature and certificate will be used interchangeably.
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based on foundations that will crumble as soon as a sufficiently powerful quantum
computer appears.

This unsatisfying state of affairs clearly calls for the design of post-quantum
alternatives to such systems. However, when we look at the cryptographic litera-
ture on this topic, it is striking to see that the existing post-quantum solutions are
not only much less efficient than their classical5 counterparts but also extremely
rare. Typically, we are not aware of any explicit post-quantum anonymous cre-
dentials system. Even when we consider popular primitives such as group signa-
tures, we note that the most efficient solutions [dPLS18,LNPS21] depart from
the traditional model [BSZ05] as they do not achieve non-frameability, a prop-
erty implying that the certificate issuer does not know users’ secret keys and
that is thus incompatible with their construction. Although this might seem to
be a minor restriction for group signatures, this has very important consequences
on their industrial variants such as DAA and EPID. Indeed, for the latter, the
knowledge of the users’ secret keys allows one to break anonymity, which makes
the whole construction totally pointless.

To understand the contrasting situations of classical constructions and post-
quantum ones in the area of privacy-preserving authentication mechanisms, it
is important to recall that all of them require, at some point, to prove knowl-
edge of a signature on some (potentially secret) attributes. For example, in an
anonymous credential system, the user generally receives a signature on their
attributes and some secret key at the time of issuance. To show their credentials
they then reveal the requested attributes and prove knowledge of the signa-
ture, the hidden attributes and the secret key so as to remain anonymous. In
non-frameable group signatures, DAA or EPID schemes, the user first receives
a certificate C on a secret key s and then generates their own signatures by
including a zero-knowledge proof that C is valid on s. Of course, the resulting
signatures also contains additional elements that define the specificity of each
primitive but the point is that the common core is this proof of knowledge which
essentially needs two kinds of building blocks: a “signature scheme with efficient
protocols” as coined by Camenisch and Lysyanskaya [CL02] and an associated
zero-knowledge (ZK) proof system.

The latter notion is well-known and has seen several advances over the past
few years, in particular in the lattice setting, e.g., [BLS19,YAZ+19,LNP22].
The former notion is rather informal but it usually refers to a digital signa-
ture scheme with some specific features such as the ability to sign committed
(hidden) messages and to prove knowledge of a signature on such messages. This
places some restrictions on the design of the signature scheme as it for example
proscribes hash functions and hence most popular paradigms such as Hash-
and-Sign and Fiat-Shamir. Yet, several extremely efficient constructions from
number theoretic assumptions exist, in particular in bilinear (pairing) environ-
ments [CL04,BB08,PS16]. They constitute a very powerful and simple-to-use
building block which explains the countless applications using them.

5 In this paper, we use “classical” to denote cryptographic constructions that rely on
computational assumptions broken by quantum algorithms.
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This situation stands in sharp contrast with the one of post-quantum cryptog-
raphy where we are aware of only one lattice-based construction [LLM+16] with
such features. Moreover the latter was designed with Stern’s proof of knowledge
in mind and thus does not leverage the recent advances in the area of lattice-
based zero-knowledge proofs. The original paper only provides asymptotic esti-
mation but our thorough analysis (deferred in Appendix G) shows that, even
with the recent ZK protocol from [YAZ+19], a proof of knowledge of a signature
is still, at best, 670 MB large, which is far too high for practical applications.
This leaves designers of privacy-preserving systems with no other solution than
constructing the whole system from scratch, which requires skills in many dif-
ferent areas and thus limits the number of contributions.

1.2 Our Contributions

The goal of our paper is to propose the lattice counterpart of [CL04,BB08,PS16],
that is, a signature scheme with efficient protocols that is specifically designed
to smoothly and efficiently interact with the most recent lattice-based zero-
knowledge proof systems. More precisely, we provide a lattice-based signature
scheme for which we can (1) obtain signatures on potentially hidden (in a com-
mitment) messages, and (2) prove in zero-knowledge the possession of a message-
signature pair. Compared to the only such construction [LLM+16], our scheme
is not only much more efficient but also transposes well to an algebraically struc-
tured setting which leads to further performance improvements, as summarized
in Table 1.1.

Our natural starting point is [LLM+16] which consists in a Boyen signa-
ture [Boy10] on a randomly chosen tag τ ∈ {0, 1}ℓ and for a syndrome shifted
by the binary decomposition of the commitment c = D0r + D1m to a binary
message m, the commitment scheme being implicit in [Ajt96]. At first sight, this
scheme perfectly fits the recent zero-knowledge proof system proposed by Yang
et al. [YAZ+19] but yet leads to an extremely large proof of knowledge as ex-
plained above (a thorough complexity analysis is provided in Appendix F.3 and
Table G.1). We then undertake a complete overhaul of this scheme, pointing out
at the same time the reasons of such a high complexity.

The main novelty is that we adopt a much more global approach as we look
simultaneously at the three components of such systems, namely the commit-
ment scheme (necessary to obtain signature on hidden messages), the signature
scheme and the zero-knowledge proof systems, and the possible synergies. We,
in particular, emphasize that the design choices we made for each component
were not driven by the will to improve the latter individually but rather by their
impact on the whole system. Typically, some of the modifications we introduce
in the signature scheme itself has almost no impact on its complexity but yet
results in very significant gains when it comes to proving knowledge of a sig-
nature. More generally, our approach leads to a series of contributions that we
regroup in three main parts.
The signature scheme. One of the first consequences of having to sign com-
mitted messages is that the signature must now include the randomness added
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to the commitment by the signer. In [LLM+16], this randomness has the same
dimension as the one of the Boyen signature but a much larger width (see Ta-
ble G.1) and thus represents the largest part of the signature. This is amplified
by the proof of knowledge, which explains in part the high complexity of the
latter. One of the reasons of such a large width is that the security proof re-
quires to embed a hidden relation in the matrix D that is applied to the binary
decomposition of the Ajtai commitment c. More precisely, it defines D = AU for
the matrix A from the Boyen public key and some short matrix U. This (along
with other design choices discussed below) deteriorates the quality of the SIS
solution extracted during the security proof and thus leads to large parameters.

To address this issue, we depart from [LLM+16] by generating conjointly the
parameters of the signature scheme and the ones of the commitment scheme
and in particular by re-using parts of the former in the latter. More specifically,
in our construction, a commitment to m is c = Ar + Dm, for a Gaussian
randomness r, where A is a matrix from the signer’s public key and D is a
public random matrix. From the efficiency standpoint, this has two important
effects. First, this allows merging the randomness r with the other parts of the
signatures, as we explain below, and thus to reduce the number of elements that
we have to prove knowledge of. Second, as A is no longer hidden by a matrix U,
this significantly reduces the discrepancy between the adversary output and the
extracted SIS solution in the security proof, leading to much better parameters.

Obviously, this has important consequences on the construction as the com-
mitment matrix A is now selected by the signer, which is usually embodied by
the adversary in privacy security games. To ensure that A is random to make the
Ajtai commitment hiding, we need to generate it as a hash output. This solution
is then totally incompatible with the [LLM+16] approach where the signer needs
to generate A together with an associated trapdoor.

Instead of Boyen’s signature, we then choose to use the trapdoors of [MP12],
which interface well with the Ajtai commitment. More precisely, our public key is
composed of a random matrix A, a matrix B = AR and a random syndrome u,
and the secret key is a random ternary matrix R. In order to sign a binary
message m hidden in a commitment c = Ar+Dm, we use pre-image sampling
to sample a Gaussian vector v′ such that [A|τG − B]v′ = u + c, where τ is a
tag from a tag space T ⊆ Z×q and G is the gadget matrix from [MP12]. As A
is involved in both the left hand side of the equation and in c, we can set the
signature as (τ,v = v′ − [rT |0]T ). Verification consists in checking

[A|τG−B]v = u+Dm mod q and ∥v∥∞ small. (1)

One can note that we have removed in the process the binary decomposition
of c. We indeed choose a very different approach in the security proof which
shows that this step is actually not necessary. Removing this decomposition is
also crucial in order to compact the commitment randomness r with the pre-
image v′. It avoids further intermediate steps that deteriorate the SIS solution
extracted from the forgery, as explained above, which leads to better parameters
overall. Moreover, when it comes to proving knowledge of the signature, each
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intermediate step makes the whole statement harder to prove and requires to
create additional witnesses, i.e., each bit of c, that must be committed, whose
membership in {0, 1} must be proven, etc. Our point here is that each seem-
ingly innocent modification is considerably amplified when considering the full
protocol and therefore results in major gains.

At this stage, a reader familiar with the construction in [dPLS18] might won-
der why we do not try to embed the committed message in the tag τ , instead
of having this Dm component in our verification equation. Here, we need to
recall that the situation of [dPLS18] is very specific as the signer (the group
manager in their application) knows the signed message m, which belongs to
some bounded set in their application. In our case, we want to hide this message
that may have a very large entropy (this is for example the case in anonymous
credentials systems). In all cases, the security reduction must guess, at the setup
stage, the value of the tag τ∗ involved in the forgery. Therefore, if τ is generated
from m itself, then the reduction would have to guess this message, which would
result in an exponential security loss in most scenarios. A workaround could
be to construct τ from H(m) for some appropriate function H (most likely a
hash function because of the properties it would have to satisfy) whose image
has lower entropy so as to guess H(m) instead of m. Alternatively, H could be
modelled as a random oracle. The problem with this solution is that verifica-
tion would now require to prove that H(m) has been correctly evaluated. For
very specific scenarios (e.g., blind signature) where m can be revealed at the
verification time, this would work with a security loss depending on the entropy
of H(m). For all others (e.g., group signature, anonymous credentials, e-cash,
etc), where the message must remain secret, this would not be possible with
the zero-knowledge frameworks we target because of the nature of H. As we
aim to design a versatile tool, suitable for all applications, we choose to have a
tag uncorrelated to the message, hence the Dm component mentioned above.
As per the security proof, there are two constraints in the way to choose tags:
generate tags without encountering collisions to only emit one signature per tag,
and without enduring an exponential loss in the security proof due to guesses.
Given that we essentially target privacy-preserving applications such as group
signatures or anonymous credentials, we focus, in the body of our paper, on
a stateful construction that inherently solves these two problems. For all these
applications, it is indeed natural for the signer to keep track of the signatures it
has issued. For group signature, this is even a requirement of the security model
[BSZ05]: a registration table must be updated after each addition of a group
member. However, for completeness, we show in Appendix H that our construc-
tion can easily be tweaked to be stateless, at the cost of a very mild increase of
the signature size, while complying with the two constraints above.

So far, we have essentially discussed improvements of both the commitment
and the signature schemes. Table 1.1 shows that our resulting signature is be-
tween 30 and 40 times smaller than that of [LLM+16] when considering the
same setting (standard lattices). However, this gain is still not sufficient to lead
to practical proofs as ZK lattice proofs are still complex, even with the recent
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setting λ |pk| (mb) |sk| (mb) |sig| (kb) |π| (kb)

[LLM+16] (exact proof) stand. 128 296 · 104 156 · 102 862 · 101 102 · 105

[LLM+16] (fast mode) stand. 128 707 · 104 372 · 102 139 · 102 671 · 103

Sec. 3 (exact proof) stand. 128 115 · 101 892 261 306 · 103

Sec. 3 (fast mode) stand. 128 296 · 101 229 · 101 418 177 · 102

Sec. 3.3 (exact proof) module 128 7.8 8.9 273 639

Table 1.1. Comparison of efficiency estimates of the signature schemes of [LLM+16], of
Section 3 and of Section 3.3 for λ = 128 bits of quantum security, with the size of zero-
knowledge proof of possession of a message-signature pair. In the setting column, stand.
stands for standard lattices, as opposed to the ring setting of our last construction. The
proofs for [LLM+16] and Section 3 are either exact proofs or approximate ones using
the fast mode of Section 4.2 and described in the technical overview. The complete
analysis and parameter sets used for these estimates can be found in Appendix G.

framework of [YAZ+19]. We now focus on the proofs of knowledge necessary for
our protocol and explain how we can modify the previous framework for a better
efficiency.
Efficient Protocols and Zero-Knowledge Arguments. A “signature scheme
with efficient protocols” requires two kinds of protocols, one to get a signature on
a committed message and one for proving possession of a message-signature pair.
Regarding the former, the problem is rather simple as the message m to sign is
already embedded in a commitment c = Ar+Dm. However, we have to slightly
modify this construction because both the user requesting the signature and the
signer must contribute to the randomness of the commitment. This leads to a
commitment c = A(r′ + r′′) +Dm where r′ is added by the user to enforce the
hiding property of c and r′′ is added by the signer to be able to handle any query
in the security proof. Only the former needs to prove knowledge of r′ and m so
as to rely on the EUF-CMA property of the signature scheme we introduced. In
all cases, the user ends up with a signature (τ,v) on a binary m verifying (1)
and needs to prove it in a zero-knowledge way.

For that, we employ the recent zero-knowledge framework proposed by Yang
et al. [YAZ+19] which can be used to prove linear relations with quadratic con-
straints. The latter feature is very useful in our case as our verification equa-
tion (1) is quadratic in (m; (τ,v)) because of the term τGv2 (where v2 is the
bottom part of v). Moreover, this allows one to prove that an element is short
by first writing its binary decomposition and then proving that each resulting
component x is indeed binary through the quadratic equation x(x− 1) = 0.

Unfortunately, this nice feature comes at a price as this decomposition pro-
cedure entails a (log2B)-fold increase of the size of the witness v, where B is a
bound on ∥v∥∞. For a high dimensional vector v in Zm, this results in a very
large proof which has led the authors of [YAZ+19] to propose a so-called fast
mode for their protocol. In a nutshell, this variant relies on the observation that
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the norm of Hv, for a random short matrix H of dimension k × m, implies
some bound on the norm of v, even when the latter is chosen by the adversary.
As Hv must be hidden, one must still use the quadratic relation above to prove
shortness but on a witness with a much smaller dimension as k is in practice
much smaller than m. The efficiency gains are very significant but we point out
several shortcomings with the solution proposed in [YAZ+19]. First, contrarily
to the claim in [YAZ+19], this fast mode cannot be used to prove that v is
positive and we provide a concrete counter-example in Section 4. This is not
a problem in our case as we only want to prove results on the ℓ∞ norm of v
but this can be a problem for specific applications such as the e-cash system
considered in [YAZ+19]. Second, the authors in [YAZ+19] make use of a binary
matrix H which significantly deteriorates the overall statement as one must set
a bound mβ on the norm of Hv, when ∥v∥∞ is bounded by β. Although this
soundness gap seems unavoidable with this mode, we show that we can do better
with a matrix H ∈ {−1, 0, 1}k×m, which allows selecting better parameters and
thus leads to more efficient protocols.

Finally, we also propose in Appendix E a series of optimizations for the pro-
tocol of [YAZ+19] that range from better parameter selection to compression of
the commitments, resulting in further efficiency improvements. For a fair com-
parison, the figures in Table 1.1 take into account these improvements for both
our scheme and the one from [LLM+16]. This table shows that our contributions
reduce the size of a proof of knowledge (using the fast mode) to roughly 18 MB,
which can be interpreted in two ways. On the one hand, this is a dramatic im-
provement over [LLM+16]. On the other hand, this is still large and probably
impractical for many applications. The next part of our contributions thus inves-
tigates how to instantiate our construction in another setting to further reduce
this size.
Extending to Structured Lattices. Our construction extends to the mod-
ule setting where we replace the integers by polynomials with integer coeffi-
cients. More concretely, we consider a power-of-two cyclotomic ring, i.e., R =
Z[X]/⟨Xn + 1⟩ with n a power-of-two. The additional structure yields more ef-
ficient computations, as well as more compact keys. The trapdoors of [MP12]
have already been used over such algebraic rings, e.g., [DM14,dPLS18,BEP+21],
which makes our module construction very similar to the one based on standard
lattice assumptions. All the tools required to prove the security of our scheme
also have a ring counterpart, which therefore leads to almost no differences in the
security proofs either. The main difference comes when considering exact zero-
knowledge proofs over algebraic rings. Our verification equation in the module
setting is

[A|τG−B]v = u+Dm mod qR and v short. (2)

Proving knowledge of (2) requires to prove that (1) τ is in the specified tag
space, (2) v is short, (3) m is a vector of binary polynomials, and (4) that the
quadratic equation is verified. Based on state-of-the-art proof systems, (1) con-
strains which tag space to choose so that we can efficiently prove membership,
while ensuring that a difference of tags is in (R/qR)× as needed per the security
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proofs. Statement (2) requires to define a notion of shortness over the ring, which
is usually defined based on the size of the polynomials’ coefficients. Up until re-
cently, exact proofs performing the latter task [BLS19,ENS20] (also used for (3))
used NTT packing, i.e., interpreting the coefficients of v as the NTT (Number
Theoretic Transform) of another vector v′, which is most efficient when Xn + 1
splits into low-degree irreducible factors modulo q. This splitting makes it harder
to choose a proper tag space for which differences are always invertible. Finally,
(4) requires a proof system able to deal with quadratic equations. Similar rela-
tions [dPLS18,LNPS21] were handled by transforming the relation quadratic in
the witnesses into a linear relation in the commitment of the witnesses. Since
efficient proofs of commitment opening rely on relaxed openings, this solution
introduces a soundness gap in the proven statement, which we would like to
avoid.

Instead, we use the very recent framework of Lyubashevsky et al. [LNP22]
which provides a unified method to prove all our statements. It extends the pre-
vious works of [BLS19,ENS20] and enables proving quadratic relations exactly,
as well as quadratic evaluations. The latter can be used to prove exact bounds
directly in the ℓ2 norm, which leads to more efficient proofs than proving ℓ∞
bounds.

In the module setting, we therefore end up with a signature scheme that is
efficient on all metrics, as highlighted in Table 1.1. In particular, we manage to
keep our proofs of knowledge of a message-signature pair below 650 KB6. As
these proofs are one of the main building blocks of privacy-preserving protocols,
these efficiency gains readily translate to the latter and thus should have a sig-
nificant impact on the area. More generally, our construction is designed to be
used as a black box, which should foster many applications, as was the case with
the pairing-based signatures with efficient protocols [CL04,BB08,PS16].
Application: Anonymous Credentials. Signature with efficient protocols like
the one we propose gives a single signature construction that can be turned
into several privacy-preserving primitives such as group signatures, anonymous
credentials, e-cash etc. We give an example of one such construction based on our
signature to show how it interfaces with the “efficient protocols”. More precisely,
we propose an anonymous credentials system following the syntax and security
model from [FHS19]. At a high-level, the security relies on the zero-knowledge
and soundness properties of the proof system and on the EUF-CMA security
of our signature. To the best of our knowledge, this provides the first explicit
lattice-based anonymous credentials system.

2 Preliminaries

Throughout this paper, for two integers a ≤ b, we define [a, b] = {k ∈ Z :
a ≤ k ≤ b}. When a = 1 and b ≥ 1, we simply use [b] to denote [1, b]. For a

6 To remain as broad as possible, we use statistical trapdoors and related tools. One
could however get further efficiency gains by using a computational instantiation.
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positive integer q, we define Zq = Z/qZ. In this work, we consider q to be an
odd prime (or product of odd primes), and we sometimes identify Zq with the
set of representatives [−(q − 1)/2, (q − 1)/2]. The vectors are written in bold
lowercase letters a, while the matrices are in bold uppercase letters A. The
transpose operator is denoted with the superscript T . The identity matrix of
size n × n is denoted by In. For any a ∈ Rn, we define its Euclidean (ℓ2) norm
as ∥a∥2 = (

∑
i∈[n]|ai|

2
)1/2 and its infinity (ℓ∞) norm as ∥a∥∞ = maxi∈[n]|ai|.

For a matrix A = [ai]i∈[m] ∈ Rn×m, we define ∥A∥max = maxi∈[m]∥ai∥∞,
and ∥A∥2 = maxx̸=0∥Ax∥2/∥x∥2. We denote by λ the security parameter.

2.1 Lattices

A (full-rank) lattice L of rank n is a discrete additive subgroup of Rn. The dual
lattice of a lattice L is defined by L∗ = {x ∈ SpanR(L) : ∀y ∈ L, ⟨x,y⟩ ∈ Z}. In
this work, we consider the following family of q-ary lattices.

Definition 2.1. Let n,m, q be positive integers. Let A ∈ Zn×mq . We define the
lattice L⊥q (A) = {e ∈ Zm : Ae = 0 mod q}.

2.2 Probabilities

For a finite set S, we define |S| to be its cardinality, and U(S) to be the uni-
form probability distribution over S. The action of sampling x ∈ S from a
probability distribution P is denoted by x ←↩ P . We use x ∼ P to say that
the random variable x follows the distribution P . The statistical distance be-
tween two discrete probability distributions P and Q over a countable set S is
defined as ∆(P,Q) = 1

2

∑
x∈S |P (x)−Q(x)|. We start by recalling the leftover

hash lemma from [HILL99] which we write to match our context and notations.

Lemma 2.1 (Adapted from [HILL99,DORS08]). Let n,m, q be positive
integers such that q is an odd prime. For A ∼ U(Zn×mq ), x ∼ U({−1, 0, 1}m),
and u ∼ U(Znq ), it holds that ∆((A,Ax mod q), (A,u)) ≤ 1

2

√
qn/3m. In particu-

lar, whenever m log2 3 ≥ n log2 q+ω(log2 λ), the statistical distance is negligible.

For any center vector c ∈ Rn, and Gaussian width σ > 0, we define the Gaus-
sian function ρσ,c : x ∈ Rn 7→ exp(−π∥x− c∥22/σ2). For a lattice L of rank n,
we define the discrete Gaussian distribution DL,σ,c of support L, width σ and
center c by DL,σ,c : x ∈ L 7→ ρσ,c(x)/ρσ,c(L), where ρσ,c(L) =

∑
x∈L ρσ,c(x).

When c = 0, we omit it in the notations. We then use it to define the smooth-
ing parameter of a lattice L [MR07], parameterized by a real ε > 0, by ηε(L) =
inf{s > 0 : ρ1/s(L∗) ≤ 1+ε}. If the standard deviation is wider than the smooth-
ing parameter, the discrete Gaussian distribution benefits from properties that
are similar to the ones of the continuous Gaussian distribution. In particular,
the sum of two independent discrete Gaussians is a discrete Gaussian.

Lemma 2.2 (Adapted from [Reg05, Claim 3.9][MP13, Thm. 3.3]). Let L
be lattice of rank n. Let r, s > 0 and t =

√
r2 + s2 be such that rs/t ≥ ηε(L) for
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some ε ∈ (0, 1/2]. Then, we have ∆(DL,r + DL,s,DL,t) ≤ 7ε/4. The condition
on r, s is satisfied for example when r, s ≥

√
2ηε(L).

When centered around 0, the discrete Gaussian distribution benefits from tail
bounds similar to the standard Gaussian distribution. In this work, we use tail
bounds on the ℓ2 and ℓ∞ norms. We also recall the result of [Lyu12] bounding
the magnitude of ⟨x ,v⟩ for a discrete Gaussian x and an arbitrary vector v.
Although the tail bound on the ℓ∞ norm follows directly from the latter, it was
first proven in [Pei08, Cor. 5.3].

Lemma 2.3 ([Ban93, Lem. 1.5][Pei08, Cor. 5.3][Lyu12, Lem 4.3]). Let L
be a lattice of rank n. Let σ > 0 and v ∈ Rn. Then, for all t > 0, it holds that

1. Px∼DL,σ
[∥x∥2 > σ

√
n] < 2−2n,

2. Px∼DL,σ
[∥x∥∞ > σ log2 n] ≤ 2ne−π log2

2 n,
3. Px∼DL,σ

[|⟨x,v⟩| > σt∥v∥2] ≤ 2e−πt
2

.

We also use the following bound on the spectral norm of a matrix with
independent sub-Gaussian entries. We recall the definition of a sub-Gaussian
random vector.

Definition 2.2 (Sub-Gaussian Distribution). Let n be a positive integer,
and x a (discrete or continuous) random vector over Rn. We say that x is sub-
Gaussian with sub-Gaussian moment s if for all unit vector u ∈ Rn and all t ∈ R,
we have E[exp(t⟨x,u⟩)] ≤ es2t2/2.

Lemma 2.4 ([Ver12]). Let ℓ,m be two positive integers, and P a sub-Gaussian
distribution of moment s. There exists a universal constant C > 0 such that for
all t > 0, PU←↩Pℓ×m [∥U∥2 ≥ Cs(

√
ℓ+
√
m+ t)] ≤ 2e−πt

2

.

By noticing that P = U([−1, 1]) is sub-Gaussian with moment
√
2/3, we can

bound the spectral norm of ternary uniform matrix by C
√
2/3(
√
ℓ +
√
m + t)

except with probability 2e−πt
2

, for some constant C > 0 that does not depend
on the dimensions. We can verify experimentally that in this case C

√
2/3 ≤ 1,

and we thus omit it in the rest of the paper for clarity. The security proof of our
signature requires a bound on ∥Um∥2 for an arbitrary message m ∈ {0, 1}m and
uniform ternary U. When m is small, Lemma 2.4 gives a close to optimal bound
by ∥Um∥2 ≤ ∥U∥2

√
m. However, whenm is large, we expect a tighter bound. By

using the fact that square sub-Gaussian random variables are sub-exponential
and tail bounds on sub-exponential distributions, we get the following lemma.
The proof and associated definitions are provided in Appendix A.

Lemma 2.5. Let ℓ,m be two positive integers and x > 0. We assume that ℓ > x·
10/ log2 e. Let m ∈ {0, 1}m. We have PU←↩U([−1,1])ℓ×m [∥Um∥2 ≥ 2

√
ℓm] ≤ 2−x.

In our situation, x = Θ(λ) with λ the security parameter, and ℓ = O(n log2 q +
ω(log2 λ)). The condition ℓ > 10x/ log2 e is then verified. Note that this condition
is necessary only to obtain the simple bound 2

√
ℓm with probability 2−x, but
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one could use a different bound or different probability to avoid this condition.
Combining both lemmas gives the following

PU←↩U([−1,1]ℓ×m)[∥Um∥2 ≥ min(2
√
ℓ,
√
ℓ+
√
m+ t)

√
m] ≤ 2−2λ + 2e−πt

2

, (3)

whenever ℓ ≥ 20λ/ log2 e which is the case in our context. The spectral bound
of Lemma 2.4 is also necessary to set the correct parameters to sample Gaussian
vectors v verifying [A|τG−AR]v = u, where A is a uniform matrix, R a short
random matrix and G the gadget matrix of [MP12] used for efficient pre-image
sampling. Our signature uses the following pre-image sampling algorithm.

Lemma 2.6 ([MP12]). There exists an algorithm SampleD that takes as input
a trapdoor matrix R ∈ Zm1×n⌈log2 q⌉, a partial parity-check matrix A ∈ Zn×m1

q ,
an invertible tag matrix H ∈ Zn×nq , a syndrome u ∈ Znq and a standard de-

viation σ ≥ ηε(Z)
√
7
√
1 + ∥R∥22, and that outputs v that is statistically close

to DZm1+n⌈log2 q⌉,σ conditioned on [A|HG−AR]v = u mod q, with G = In ⊗ g

and g = [1 . . . 2⌈log2 q⌉−1].

2.3 Hardness Assumption

The security of our signature scheme relies on the Short Integer Solution (SIS)
problem [Ajt96], which we recall here.

Definition 2.3 (Short Integer Solution). Let n,m, q be positive integers,
and β2 ≥ β∞ ≥ 1. The Short Integer Solution problem SIS∞,2n,m,q,β∞,β2

asks to
find x ∈ L⊥q (A)\{0} given A←↩ U(Zn×mq ) such that ∥x∥∞ ≤ β∞ and ∥x∥2 ≤ β2.

Note that the original formulation of SIS considers a single bound β on the ℓ2
norm. There is a trivial reduction from the latter to SIS∞,2n,m,q,β∞,β2

by setting β =

min(β∞
√
m,β2). As discussed by Micciancio and Peikert [MP13, Thm. 1.1],

using both norm bounds leads to more precise hardness results, and sometimes
smaller approximation factors when relating the problem to worst-case problems
on lattices. Moreover, it seems to be relevant for the concrete hardness of the
problem as well. Indeed, most lattice reduction algorithms aim at finding vectors
in the ball of radius β2 but without constraining the magnitude of the coefficients.
Finding a lattice vector in the intersection of the ball of radius β2 and the
hypercube of half side β∞ is at least as hard as the same task without the β∞
bound. When β∞ ≪ β2, it may even be substantially harder.

2.4 Signature Scheme

A signature scheme is defined by four algorithms. The Setup algorithm is a
probabilistic algorithm that, on input a security parameter λ, outputs the pub-
lic parameters pp that will be common to all users. The key generation algorithm
KeyGen is a probabilistic algorithm that, on input pp, outputs a secret signing

12



key sk and a public verification key pk. The signing algorithm Sign is a prob-
abilistic algorithm which, on inputs sk and a message m (and pk, pp), outputs
a signature sig. Finally, the verification algorithm Verify is a deterministic algo-
rithm that, on inputs pk,m, sig (and pp), outputs 1 if sig is a valid signature
on m under pk, and 0 otherwise. We use the Existential Unforgeability against
Chosen Message Attacks (EUF-CMA) security model, which we formally recall
in Appendix B along with the security proofs of our signature scheme.

3 A Lattice-Based Signature Scheme

We present here our signature scheme which interfaces smoothly with privacy-
enhancing protocols. It provides an alternative to the only such scheme based
on lattices due to Libert et al. [LLM+16].

One of the main differences between their construction and ours is that we
aim at optimizing the interactions between the commitment scheme implicitly
used by such kind of protocols and the signature scheme itself. In [LLM+16], the
public parameters of these two components were generated independently. We
depart completely from this approach by generating these parameters conjointly
and even by using a common matrix A for these two parts. Besides the natural
gain in the public key size, this strategy allows one to merge different components
of the signature itself. In particular, compared to [LLM+16], our signature no
longer has to include the commitment opening, which significantly reduces its
size.

Obviously, this has important consequences on the design of the scheme itself.
One of them is that it forbids to re-use the approach of [LLM+16], inherited
from Boyen signature [Boy10], where A was generated together with a trapdoor,
because it would clearly break the hiding property of the commitment scheme.
We instead rely on a G-trapdoor R of size m1 ×m2 in the sense of [MP12] and
then use a matrix [A|τG − AR] where τ is a tag from Z×q . We can therefore
generate A as a random matrix7 of size n ×m1, where m1 is the dimension of
the commitment randomness. We then use it to construct the commitment c to
a message m ∈ {0, 1}m3 as c = Ar +Dm mod q, where D is a random matrix
of size n ×m3 and m3 is the dimension of the message. The randomness r can
then be merged with the short vector v generated thanks to the trapdoor, as
mentioned above.

In [LLM+16], the authors had to first compute a binary decomposition c′ of
the commitment c to the message before generating a short pre-image of u +
Dc′ where u (resp. D) was some public vector (resp. matrix). This might look
harmless when we only consider the signature because it does not increase its
size. However, when plugged in the Yang et al. ZK framework [YAZ+19] this
replaces one secret vector c by log2 q ones and makes the overall statement
to prove more complex8. To remove this binary decomposition we revisit the
7 In our protocol for signing hidden messages, we will have to enforce this requirement

but this can be done easily by setting A as some hash output.
8 Considering a binary tag also leads to similar inefficiencies
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security proof and show how to avoid it by using an argument based on the Rényi
Divergence. Additionally, this change seems necessary to extend our construction
to polynomial rings, as described in Section 3.3.

More generally, all the modifications we introduce have a second positive ef-
fect on complexity. In both our security proof and the one of [LLM+16], it is
necessary to generate the public matrices with hidden relations, usually by mul-
tiplying one by some low-norm matrix U to generate the other. This impacts
the norm of the extracted solutions, which grows with the number of such ma-
trices and computational steps, and therefore impacts the system parameters.
By reusing A for different purposes and by removing some computational steps
(e.g., multiplication by D), we significantly reduce the discrepancy between the
adversary output and the resulting SIS solution, leading to much better param-
eters.

3.1 Description of the Signature

We now describe the four algorithms that define our signature scheme. The
signature is designed to sign a binary message m. We present our scheme for
the more general case of a message with variable length rather than a variable
number of blocks of fixed length which may require unnecessary padding.

Algorithm 3.1: Setup
Input: Security parameter λ.
1. Choose a positive integer n.
2. Choose a prime integer q.
3. Choose a positive integer q′ ≤ q. ▷ Bound on tags
4. T ← Zq′ \ {0}. ▷ Tag space
5. Choose f(λ)← ω(log2 λ).
6. m1 ← ⌈(n log2 q + f(λ))/ log2 3⌉. ▷ Commitment randomness dimension
7. m2 ← n⌈log2 q⌉.
8. m← m1 +m2. ▷ Signature dimension
9. Choose a positive integer m3. ▷ Maximum bit-size of m

10. g← [20| . . . |2⌈log2 q⌉−1] ∈ Z1×⌈log2 q⌉
q . ▷ Gadget vector

11. r ← ηε(Z). ▷ r = 5.4 leads to ε ≈ 2−131

12. Choose t > 0.
13. σ ← r

√
7
√

(
√
m1 +

√
m2 + t)2 + 1. ▷ Preimage sampling width

14. σ2 ← max
(√

m3 min(2
√
m1,
√
m1 +

√
m2 + t)2 − σ2, ω(

√
log2m1)

)
.

15. σ1 ←
√
σ2 + σ2

2 .
16. D←↩ U(Zn×m3

q ). ▷ Message commitment key
Output: pp = (D;g;λ, n,m1,m2,m3, q, σ, σ2, σ1).

Algorithm 3.2: KeyGen
Input: Public parameters pp as in Algorithm 3.1.
1. A←↩ U(Zn×m1

q ).
2. R←↩ U([−1, 1]m1×m2).
3. B← AR mod q ∈ Zn×m2

q .
4. u←↩ U(Zn

q ).
Output: pk = (A,B,u), and sk = R.
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Algorithm 3.3: Sign
Input: Signing key sk, Message m ∈ {0, 1}m3 , Public key pk, Public Param. pp,
State st.
1. r←↩ DZm1 ,σ2 .
2. c← Ar+Dm mod q. ▷ Commitment to m

3. τ ← F (st). ▷ τ ∈ T
4. v← SampleD(R,A, τIn,u+ c, σ)− [rT |0m2 ]

T . ▷ Aτ = [A|τ(In ⊗ g)−B]

5. st← st+ 1.
Output: sig = (τ,v).

Algorithm 3.4: Verify
Input: Public key pk, Message m ∈ {0, 1}m3 , Signature sig, Public Param. pp.
1. Aτ ← [A|τ(In ⊗ g)−B] ∈ Zn×m

q .
2. Split v into [vT

1 |vT
2 ]

T , with v1 ∈ Zm1 , v2 ∈ Zm2 .
3. b← (Aτv = u+Dm mod q) ∧ (∥v1∥∞ ≤ σ1 log2m1) ∧ (∥v2∥∞ ≤ σ log2m2) ∧

(τ ∈ T )
Output: b. ▷ b = 1 if valid, 0 otherwise

The correctness of the signature scheme simply relies on the sum of discrete
Gaussians (Lemma 2.2) and the Gaussian tail bound (Lemma 2.3). The former
guarantees that v1 is statistically close to DZm1 ,σ1

, and the latter ensures that for
an honest signature it holds that ∥v1∥∞ ≤ σ1 log2m1, and ∥v2∥∞ ≤ σ log2m2

with overwhelming probability. Note that the randomness r used to commit to
the message can be drawn from a Gaussian with any width σ2 > 0. However,
the security proofs require σ1 to be at least min(2

√
m1,
√
m1+

√
m3+ t)

√
m3 in

order to hide the shifted center of the Gaussian vector, which in turns restricts
the value of σ2. Additionally, the goal of this signature scheme being to allow
signing on committed messages, σ2 must be chosen so that the commitment
scheme is statistically hiding, which is why we take it at least ω(

√
log2m1).

We present our signature scheme in the most general way, thus explaining the
multitude of dimensions mi and Gaussian widths σi. This also allows fine-tuning
of the parameters depending on the specific application. Typically, an application
requiring to sign only small messages of constant bit-size m3 would be able to
select a much smaller σ1 and would then yield smaller signatures.

We also point out the fact that we express the shortness condition on v in
the ℓ∞ norm. This is due to the fact that the zero-knowledge argument frame-
work from [YAZ+19] that we consider to prove possession of a message-signature
pair allows one to prove bounds on the coefficients more naturally. As a result,
we can base the security of our signature scheme on SIS∞,2 which is at least as
hard as SIS2 as explained in Section 2.3.

An example parameter set, also taking into account the requirements of Sec-
tions 4 and 5, can be found in Appendix G, Table G.2. The scheme can also be
instantiated as a standalone signature, without considering the efficient proto-
cols and zero-knowledge proof systems. This would allow one to reduce the size
of q, but at the expense of increasing n to achieve the same security, which in
the end leads to similar signature and key sizes.
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Remark 3.1. As discussed in Section 1, we choose to describe a stateful version
of our construction that better suits our applications, hence the fact that our
tags τ are generated as F (st). The only requirements placed on F are that it
must be injective, with outputs in the tag space, which should easily be met
in practice. For example, in the case of group signatures, one can proceed as
in [dPLS18] and set the tags as the group members’ identities. Nevertheless, if
selecting such a function F proved to be difficult for some use case, we recall
that a stateless version of our construction is provided in Appendix H.

3.2 Security of the Signature

We distinguish two types of forgeries that an attacker can produce, which we
treat separately for the sake of clarity. More precisely we distinguish between
the cases depending on whether or not the tag τ∗ of the forgery has been re-
used from the signature queries. Combining the corresponding lemmas proves
the EUF-CMA security of the signature under the SIS assumption. It consists in
the SIS challenger tossing a coin and proceeding as in either Lemma 3.1 or 3.2
and aborting if the forgery does not match the coin toss. The proofs are provided
in Appendix B.2 and B.3 for completeness.

Lemma 3.1. An adversary produces a Type I forgery (τ∗,v∗) if the tag τ∗ does
not collide with the tags of the signing queries. If an adversary can produce a
Type I forgery with advantage δ, then we can construct an adversary B that
solves the SIS∞,2n,m1+1,q,β∞,β2

problem with advantage Adv[B] ≳ δ/(|T | −Q), for


β∞ = σ1 log2m1 +m2σ log2m2 +m3

β2 =
√
1 + (

√
m1 +

√
m2 + t)2 ·

√
m1(σ1 log2m1)2 +m2(σ log2m2)2

+min(2
√
m1,
√
m1 +

√
m3 + t)

√
m3 + 1.

Lemma 3.2. An adversary produces a Type II forgery (τ∗,v∗) if the tag τ∗

is re-used from some i∗-th signing query (τ (i
∗),v(i∗)), i.e., τ∗ = τ (i

∗). If an
adversary can produce a Type II forgery with advantage δ, we can construct B
solving SIS∞,2n,m1,q,β′

∞,β′
2

with advantage

Adv[B] ≳ δα
∗/(α∗−1)e−α

∗π

Q
,

for
β′∞ = 2σ1 log2m1 +m2 · 2σ log2m2 +m3

β′2 =
√

1 + (
√
m1 +

√
m2 + t)2 ·

√
σ2
1m1(1 + log22m1) + σ2m2(1 + log22m2)

+ min(2
√
m1,
√
m1 +

√
m3 + t)

√
m3.

and where α∗ = 1 +
√
log2(1/δ)/(π log2 e).
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3.3 Our Signature on Modules

The results of Table 1.1 show that the performances of the signature scheme from
Section 3.1 and associated protocols are dramatically improved over [LLM+16].
However, the complexity is still rather high and we therefore investigate in this
section a way to decrease it. Concretely, we show that the signature scheme
from Section 3.1 can be extended over the ring of integers of a number field.
For the zero-knowledge arguments required by the efficient protocols, we em-
ploy the recent framework from [LNP22], which we detail in Section 4.3. We
use a tag space that corresponds to the identity space of their group signa-
ture construction. We also use a message space that is similar to the latter but
with no restriction on the number of non-zero coefficients. We present our con-
struction with a single power-of-two cyclotomic ring, but we note that it can
be adapted to use subrings for efficiency gains. For more details on the use of
subrings, we refer to [LNPS21,LNP22]. In what follows, we take n a power of
two and R the 2n-th cyclotomic ring, i.e., R = Z[X]/⟨Xn + 1⟩. We also de-
fine Rq = Zq[X]/⟨Xn + 1⟩ for any modulus q ≥ 2. We call θ the coefficient
embedding of R, i.e., for all r =

∑
i∈[0,n−1] riX

i ∈ R, θ(r) = [r0 . . . rn−1]
T .

We then define Sbin = θ−1({0, 1}n) and S1 = θ−1({−1, 0, 1}n). We also define
the usual norms ∥·∥p over R by ∥r∥p := ∥θ(r)∥p. Finally, we define the discrete
Gaussian distribution over R by θ−1(Dθ(R),σ), which we denote by DR,σ.
Remark 3.2. The Gaussian distributions are defined with respect to the coeffi-
cient embedding θ. Theoretical works usually define Gaussian distributions with
respect to the Minkowski embedding (or canonical embedding) σH . We refer
to [LPR13] for more details. In our specific case of power-of-two cyclotomic
rings, it holds that σH =

√
nPθ where P is a unitary matrix. Hence, by denot-

ing DθR,σ (resp. DσH

R,σ) the Gaussian distribution with respect to θ (resp. σH), we
can show that DσH

R,σ
√
n

is exactly the same distribution as DθR,σ.

3.3.1 Description. Our module signature scheme is described by Algorithms
3.5, 3.6, 3.7 and 3.8.

Algorithm 3.5: Setup
Input: Security parameter λ.
1. Choose a positive integer d.
2. Choose k ≤ n to be a power of two.
3. Choose a prime integer q such that q = 2k + 1 mod 4k and q ≥ (2

√
k)k.

4. Choose positive integers w, κ.
5. Tw ← {τ ∈ Sbin : ∥τ∥2 =

√
w}. ▷ Tag space

6. g ← ⌈q1/κ⌋.
7. m1 ← ⌈(d log2 q + f(λ))/ log2 3⌉ ▷ f(λ) = ω(log2 λ)

8. m2 ← dκ
9. m← m1 +m2. ▷ Signature dimension

10. Choose a positive integer m3. ▷ Maximum bit-size of m is n ·m3

11. g = [1 · · · gκ−1] ∈ R1×κ
q . ▷ Gadget vector

12. r ← ηε(Z). ▷ r = 5.4 leads to ε ≈ 2−131

13. Choose t > 0. ▷ Spectral norm slack
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14. σ ← r
√
g2 + 1

√
(
√
nm1 +

√
nm2 + t)2 + 1. ▷ Pre-image sampling width

15. σ2 ←
√

(
√
nm1 +

√
nm3 + t)2 · nm3 − σ2. ▷ Commitment randomness width

16. σ1 ←
√
σ2 + σ2

2.
17. D←↩ U(Rd×m3

q ). ▷ Message Commitment Key
Output: pp = (D;g;λ, n, d,m1,m2,m3, q, w, κ, σ, σ2, σ1).

Algorithm 3.6: KeyGen
Input: Public parameters pp as in Algorithm 3.5.
1. A←↩ U(Rd×m1

q ).
2. R←↩ U(Sm1×m2

1 ).
3. B← AR mod qR ∈ Rd×m2

q .
4. u←↩ U(Rd

q).
Output: pk = (A,B,u), and sk = R.

Algorithm 3.7: Sign
Input: Signing key sk, Message m ∈ Sm3

bin , Public key pk, Public Parameters pp,
State st
1. r←↩ DRm1 ,σ2 .
2. c← Ar+Dm mod qR. ▷ Commitment to m

3. τ ← F (st). ▷ τ ∈ Tw
4. v← SampleD(R,A, τId,u+ c, σ)− [rT |0m2 ]

T . ▷ Aτ = [A|τ(Id ⊗ g)−B]

5. st← st+ 1.
Output: sig = (τ,v).

Algorithm 3.8: Verify
Input: Public key pk, Message m ∈ Sm3

bin , Signature sig, Public Parameters pp.
1. Aτ ← [A|τ(Id ⊗ g)−B] ∈ Rd×m

q .
2. b← (Aτv = u+Dm mod qR) ∧ (∥v∥2 ≤

√
σ2
1nm1 + σ2nm2) ∧ (τ ∈ Tw)

Output: b. ▷ b = 1 if valid, 0 otherwise

3.3.2 Security Analysis. The security of the scheme is now based on the
problem M-SISd,m1,q,β . It asks to find w ∈ Rm1 such that Aw = 0 mod qR
and 0 < ∥w∥2 ≤ β given A←↩ U(Rd×m1

q ). The security proofs rigorously follow
that of Lemma 3.1 and 3.2. This is due to the fact that all the tools that we use
have a ring counterpart. We briefly explain what tools are needed to carry out
the proofs in the module case. We stress that the construction can also be used
over rings (d = 1).

First, we need to ensure that a difference of distinct tags is invertible in Rq.
By [LS18, Cor. 1.2], when q = 2k + 1 mod 4k, a ring element r is invertible
in Rq if 0 < ∥r∥∞ ≤ q1/k/

√
k. We chose q so that a difference of tags τ1 − τ2

has ℓ∞ norm at most 2 ≤ q1/k/
√
k. Hence, a difference of distinct tags is in R×q .

Then, the leftover hash lemma of Lemma 2.1 has been adapted to general rings
of integer by Boudgoust et al. and further generalized in [BJRW23]. We state it
here for our specific usage in power-of-two cyclotomic rings.

Lemma 3.3 ([BJRW23, Lem. 2.8]). Let R = Z[X]/⟨Xn+1⟩ with n a power
of two, and d,m, q be positive integers with q prime. Then, ∆((A,As), (A,u)) ≤
1
2

√
(1 + qd/3m)n − 1, where A ∼ U(Rd×mq ), s ∼ U(Sd1 ) and u ∼ U(Rdq).
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The use of the Rényi divergence in the proof of Lemma 3.2 applies on the
discrete Gaussian distributions, which are defined by their embedding to Rn. As
such, the argument remains unchanged. We also need to argue that for A ←↩

U(Rd×m1+m2
q ) and v ←↩ DRm1+m2 ,Σ with Σ =

[
σ1Inm1

0

0 σInm2

]
, then u =

Av mod q is close to uniform. For that, we use [LPR13, Thm. 7.4] which states
that if σ, σ1 ≥ 2nq(d+2/n)/(m1+m2), then the public syndrome u is close to uni-
form in Rdq . We note that this results holds when the Gaussian over R is de-
fined with respect to the Minkowski embedding. As explained in Remark 3.2,
in the case of our Gaussian distributions, we only need σ, σ1 ≥ 2

√
nq

d+2/n
m1+m2 .

Since m1 +m2 ≥ d(log2(q)/ log2(3) + κ) + f(λ)/ log2(3), the result holds when-
ever σ, σ1 ≥ 31+2/n · 2

√
n, which is the case in our context.

Finally, we need to bound the spectral norm of structured matrices that are of
size nm1×nm2 (or nm1×nm3). In power-of-two cyclotomic rings, the structured
matrix considered is a block matrix whose blocks are nega-circulant matrices of
size n× n. The entries are thus all distributed according to U([−1, 1]) but they
are not all independent within a block. This means we cannot apply Lemma 2.4
directly. The spectral norm of such a structured matrix of size nm1 × nm2 is
proven to be the maximal spectral norm of the n complex-embedded matrices
of size m1 ×m2 [BJRW23, Lem. 2.3], which all have i.i.d. entries that are sub-
Gaussian of moment

√
2n/3. Applying Lemma 2.4 to these embedded matrices

with the union bound (on half the complex embeddings) gives

P
R←↩Sm1×m2

1
[∥R∥2 ≥ C

√
2n/3(

√
m1 +

√
m2 + t)] ≤ ne−πt

2

,

for an absolute constant C > 0. Although this bound is proven, we can verify
experimentally that it is not tight, and rather that the original bound (when
there is no structure) of

√
nm1 +

√
nm2 + t for a small t (typically 6 − 7) is

satisfied with overwhelming probability. Further, we use the latter bound for
setting parameters in the description of the signature.

Lemma 3.4. If an adversary can produce a Type I forgery with advantage δ,
then we can construct B that solves M-SIS2d,m1+1,q,β with advantage Adv[B] ≳
δ/(|Tw| −Q), for

β =
√

1 + (
√
nm1 +

√
nm2 + t)2

√
σ2
1nm1 + σ2nm2

+ (
√
nm1 +

√
nm3 + t)

√
nm3 + 1.

Lemma 3.5. If an adversary can produce a Type II forgery with advantage δ,
we can construct B that solves the M-SIS2d,m1,q,β′ problem with advantage

Adv[B] ≳ δα
∗/(α∗−1)e−α

∗π

Q
,

for
β′ =

√
1 + (

√
nm1 +

√
nm2 + t)2 ·

√
2σ2

1nm1 + 2σ2nm2

+ (
√
nm1 +

√
nm3 + t)

√
nm3,

and where α∗ is defined by α∗ = 1 +
√
log2(1/δ)/(π log2 e).
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4 Zero-Knowledge Arguments of Knowledge

We now detail out the zero-knowledge arguments of knowledge (ZKAoK) that
we use to instantiate the protocols from Section 5. Since we propose a construc-
tion over Zq and another over structured lattices, we employ the frameworks
from [YAZ+19] and [LNP22] respectively to tackle the relations to be proven.
We first discuss some aspects of the former, and later explain in Section 4.3 how
to use both frameworks to instantiate the necessary relations.

4.1 A Framework for Quadratic Relations over Zq

Our construction requires a proof system that handles exact quadratic relations,
over Zq for our first construction and another framework over Rq for our struc-
tured variant. Let us first focus on the former. To handle such relations, we
could have used Stern-like protocols but this would only reach constant sound-
ness error, thus implying a large number of repetitions and hence bad perfor-
mance. Additionally, the decomposition-extension methods used in the original
scheme [LLM+16] make the relation to be proven much larger. To circumvent
these two shortcomings, we instead use the more recent framework by Yang et
al. [YAZ+19]. It combines the perks of Stern-like ZKAoK and Fiat-Shamir with
Aborts ZKAoK to reach a framework with standard soundness and inverse poly-
nomial soundness error. This requires fewer iterations as a result. More precisely,
the framework of [YAZ+19] provides a ZKAoK for the relation

R∗ = {((A,y,M);x) ∈(Zk×Lx
q × Zk

q × ([Lx]
3)LM)× ZLx

q : Ax = y mod q

∧ ∀(h, i, j) ∈M,x[h] = x[i] · x[j] mod q}.

This relation can be used to prove that the witness vector is short, which we
need for our verification equation for example. Concretely, any witness x ∈ Zq
that we need to prove smaller than some bound B is decomposed as x1, . . . , xℓ,
where ℓ = ⌈log2B⌉, which are proved binary using the quadratic relation x2i =
xi mod q. The downside of this approach is that it adds ℓ witnesses for each short
element, which quickly becomes cumbersome. To address this issue, the authors
of [YAZ+19] introduced a so-called fast mode that significantly reduces the size
of the witness. We describe such a mode in Section 4.2 but also show that its
analysis in [YAZ+19] is not entirely correct and thus provide a more thorough
one. We also propose additional optimizations in Appendix E.

4.2 Zero-Knowledge Fast Mode Revisited
As explained above, the decomposition technique entails a (ℓ+1)-fold increase of
the witness, which is prohibitive for high-dimensional vectors. This has led the
authors of [YAZ+19] to sketch a so-called fast mode to obtain drastic efficiency
gains in this case. The idea is to relax the zero-knowledge argument, thus intro-
ducing a soundness gap, and prove knowledge of a solution w′ of Pw′ = v mod q
such that w′ is nB-bounded instead of B-bounded, where n is the dimension
of w. More precisely, they consider the following relation

R′ = {((P,v,H, c), (w,u, r)) ∈ (Zm×n
q × Zm

q × [0, 1]λ×n × C)× (Zn
q × [0, nB]λ × R) :

Pw = v mod q ∧Hw − u = 0 mod q ∧ c = Commit(w; r)}
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The point is that the prover now only has to prove a bound on the λ elements
of u instead of the n elements from w, which is very interesting when λ ≪ n,
a condition easily met in practice. The authors argue that, if one knows a wit-
ness (w,u, r) satisfying R′, it ensures that w is in [0, nB]n, except with negligi-
ble probability over the randomness of H. We provide a simple counter-example
to the above. For example, assume a prover knows w = [−1, 1, . . . , 1]T such
that Pw = v mod q. We now consider H to be a random matrix whose entries
are independently distributed according to U({0, 1}). We denote by hi the i-th
row of H for i ∈ [λ]. For all i ∈ [λ], we have Phi [h

T
i w ∈ [0, nB]] = 1 − 2−n by

simply conditioning on the first coefficient of hi. It yields PH[Hw ∈ [0, nB]λ] =
(1−2−n)λ ≥ 1−λ2−n. Since the fast mode is only relevant when n ≥ λ, it holds
that Hw ∈ [0, nB]λ with overwhelming probability. This shows that R′ can-
not be used to prove that w has non-negative coefficients and thus for example
invalidates the use of the fast mode in the e-cash use-case in [YAZ+19].

Fortunately, a more thorough analysis shows that Hw mod q is in [0, B]λ

implies that w mod q ∈ [−2B, 2B]n with high probability, which would be suffi-
cient in our case as we only need to prove bounds on the ℓ∞ norm. However, we
have so far only discussed of soundness. When it comes to correctness, we note
that the choices made in [YAZ+19] results in an unwieldy situation.

First, because one has to set an upper bound on Hw that will be satisfied
with high probability for any w in [−B,B]n. For a binary matrix H, it seems
hard to do much better than [−nB, nB]λ since we will be close to this bound
for w = [B, . . . , B]T , hence the factor n in the soudness gap mentioned above.

Second, because one cannot start the argument with w ∈ [−B,B]n as it can
lead to having Hw with negative coefficients. One must shift all the coefficients
of w before running the protocol, but it results in a skewed statement on w.
Indeed, it would prove that w+B1n is in [−2nB, 2nB]n and therefore that w ∈
[−(2n+ 1)B, (2n− 1)B]n, where 1n = [1 . . . 1]T ∈ Zn.

For these reasons, we believe it is much more natural to sample the coefficients
of H uniformly from {−1, 0, 1}. We prove below that Hw mod q is in [−B,B]λ

still implies that w mod q ∈ [−2B, 2B]n, which avoids to shift the witness and
thus the problem mentioned above. Moreover, such distribution of H allows us
to derive much better upper bounds on Hw using for example an argument
similar to the one of lemma 2.5. However, we do not study more thoroughly this
general problem as we are able to derive sharp bounds for our specific use case
(see remark 4.1 below).
More formally, let H ∈ [−1, 1]k×n, with k = λ/ log2(9/5). The following lemma,
proven in Appendix D, argues that Hw mod q ∈ [−B,B]k implies w mod q ∈
[−2B, 2B]n with overwhelming probability over the choice of H.

Lemma 4.1. Let B ∈ Z be such that 6B < q/2. Let k be a positive integer.
Let w ∈ Zn be a vector. Assuming that ∥w mod q∥∞ > 2B, it then holds
that PH←↩U([−1,1]k×n) [∥Hw mod q∥∞ ≤ B] ≤ (5/9)k.

The fast mode that we consider now corresponds to the following relation,
where B is chosen so that ∥Hw mod q∥∞ ≤ B with overwhelming probabil-
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ity for an honest witness w.

R′′ ={((P,v,H, c), (w,u, r)) ∈ (Zm×n
q × Zm

q × [−1, 1]k×n × C)×

(Zn
q × [−B,B]k × R) : Pw = v mod q ∧Hw − u = 0 mod q ∧ c = Commit(w; r)}

Remark 4.1. For our relations, the vectors that we need to prove short are
sampled from discrete Gaussian distributions. For example the vector v1 fol-
lows DZm1 ,σ1

. For a fixed H ∈ {−1, 0, 1}k×m1 , the third statement of Lemma 2.3
yields that Pv1

[|⟨v1 ,hi⟩| ≥ σ1t
√
m1] ≤ Pv1

[|⟨v1 ,hi⟩| ≥ σ1t∥hi∥2] ≤ 2e−πt
2

,
where hi is the i-th row of H and the first inequality follows by event inclusion
as ∥hi∥2 ≤

√
m1. The union bound yields Pv1

[∥Hv∥∞ ≥ σ1t
√
m1] ≤ 2ke−πt

2

,
where k = λ/ log2(9/5) as per Lemma 4.1. Hence, taking t = log2 λ gives
that ∥Hv∥∞ ≤ σ1

√
m1 log2 λ with overwhelming probability. This improves on

the trivial bound σ1m1 log2m1. By making sure that 2σ1
√
m1 log2 λ < (q−1)/2,

which is generally the case, we have no wrap-around modulo q in Hv1 and there-
fore ∥Hv1 mod q∥∞ ≤ σ1

√
m1 log2 λ. The conditions of Lemma 4.1 allow one

to choose B = σ1
√
m1 log2 λ ≪ q/12. Then, proving that ∥Hv1 mod q∥∞ ≤

σ1
√
m1 log2 λ implies that ∥v1 mod q∥∞ ≤ 2σ1

√
m1 log2 λ.

4.3 Zero-Knowledge Arguments and Relations

The zero-knowledge framework from [YAZ+19] allows to prove quadratic rela-
tions over Zq. The protocols accompanying our signature that we present in
Section 5 require a proof system to prove knowledge of a commitment opening,
and to prove knowledge of a message-signature pair, which are both quadratic
relations. At a high level, the commitment opening proof requires to prove a lin-
ear relation and that the witness is short. As explained when describing R∗, the
latter can be dealt with by decomposing each entry in a binary vector, and prov-
ing that the latter indeed has binary coefficients. Similarly, proving knowledge
of (m, τ,v) such that Verify(pk,m, (τ,v), pp) = 1, requires proving that some
elements have small magnitude, and that Av1−Bv2 + τGv2 = u+Dm mod q
which is quadratic because of the term τv2. Due to lack of space, we defer to Ap-
pendix F the details on how to use the framework of [YAZ+19] to instantiate
them.

We however give more details for our construction over structured lattices.
Although the framework of [YAZ+19] straightforwardly adapts to the ring or
module setting, it results in relations of the form Ax = y mod qR and x[h] =
x[i]x[j] mod qR. In our case, we aim to prove that the witness is short (or bi-
nary for the message part) with respect to the coefficient embedding of R. Tak-
ing the example of the message, m[i] = m[i]2 mod qR does not imply that the
coefficients of the polynomial m[i] are binary, but only that the number theo-
retic transform (NTT) of m[i] is a binary vector. A naive alternative would be
to embed the entire relation into Z via the coefficient embedding and apply-
ing [YAZ+19] in a non-structured way. This would indeed prove the desired rela-
tion but it would also ignore the underlying structure and all the optimizations
that come with it. Instead, we use the very recent framework by Lyubashevsky,
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Nguyen and Plançon [LNP22], which generalizes the previous work of [BLS19]
and [ENS20] used to obtain exact proofs. The advantage of this framework is
that it provides a way to prove bounds on the ℓ2 norm of the witness with-
out resorting to bounds on the ℓ∞ norm. As explained in [LNP22], this leads
to proving tighter bounds on the ℓ2 norm, and in a more efficient way as a
result. We denote by σ−1 to be the automorphism of Rq that can be defined
as σ−1(

∑n−1
i=0 riX

i) = r0 −
∑n−1
i=1 riX

n−i. Their proof system allows one to
prove relations of the form∀i ∈ [ρ], fi(s) = 0 mod qR ∀i ∈ [ve],

∥∥∥E(e)
i s− u

(e)
i

∥∥∥
2
≤ β(e)

i

∀i ∈ [ρeval], F̃i(s) = 0 ∀i ∈ [va],
∥∥∥E(a)

i s− u
(a)
i

∥∥∥
∞
≤ β(a)

i ,

where the fi, Fi are quadratic functions in s = [sT1 , σ−1(s1)
T ]T (s1 being the

committed vector), and F̃i(s) denotes the constant coefficient of the polyno-
mial Fi(s). The norm conditions with superscript (e) are proven exactly, while
those with superscript (a) are proven approximately. We note for completeness
that the considered automorphism is not necessarily σ−1. We present here how
our relations can be instantiated in their framework, which consists in describing
the functions fi, Fi and matrices and vectors for the norm conditions.

Let q1 < q be a prime integer such that q1 = 2k+1 mod 4k, and define qπ =
q1q as the modulus of the proof system, which is different from the modulus
of our signature. We take q1 having the same splitting as q in R to ensure the
invertibility of challenge differences in Rqπ as discussed in [LNP22, Sec. 2.3].

4.3.1 Proof of Commitment Opening. Consider the relation

q1(Ar′ +Dm) = q1c mod qπR ∧ ∥r′∥2 ≤ σ3
√
nm1 =: α3 ∧m ∈ Sm3

bin,

where the private input is r′,m and the public input is A,D, c. We multiply the
linear equation by q1 to work with the proof system modulus. We now instantiate
this relation in the framework of [LNP22]. Using the notations of [LNP22], we
define s1 = [r′|m] ∈ Rm1+m3 and s = [s1|σ−1(s1)] ∈ R2(m1+m3).
Quadratic Equations: Define fi(s) = (eTi [q1A|q1D|0d×m1+m3 ]) ·s+(−eTi q1c) for
all i ∈ [d], where ei is the zero vector with a 1 at position i. Then, proving fi(s) =
0 mod qπR for all i ∈ [d] yields q1(Ar′ +Dm) = q1c mod qπR.
Quadratic Evaluations: We define r =

∑
j∈[0,n−1]X

j . For all i ∈ [m3], de-
fine Fi(s) = sTE2m1+m3+i,m1+is + (−re2m1+m3+i)

T s = σ−1(m[i])(m[i] − r),
where Ek,ℓ denotes the zero matrix with a 1 at position (k, ℓ). Then, prov-
ing F̃i(s) = 0 for all i ∈ [m3] implies m ∈ Sm3

bin. This relies on the fact that
for m ∈ R, the constant coefficient of σ−1(m)(m − r) is ⟨θ(m) , θ(m) − 1n⟩.
Then, proving that this inner product is 0 over Z is equivalent to proving
that θ(m) ∈ {0, 1}n, i.e., m ∈ Sbin.
Norm Conditions: We define E(e) = [Im1

|0m1×m1+2m3
], u(e) = 0m1

, and β(e) =
α3. Then

∥∥E(e)s− u(e)
∥∥
2
≤ β(e) is equivalent to ∥r′∥2 ≤ α3.
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Remark 4.2. The above aims at proving the relation exactly. However, we note
that the commitment scheme employed in [LNP22] already contains a part A1s1+
A2s2. By setting the public matrices A1,A2 as A,D respectively, s2 = r′ which
is chosen from a Gaussian distribution, and s1 = m, we can directly use the
protocol of [LNP22, Fig. 8]. We simply have to set ∥s1∥2 ≤

√
nm3 =: α, and the

quadratic evaluations as above to prove (exactly) that s1 = m is indeed in Sm3

bin.
It then proves the correct statement but with a soundness gap on the norm of r′.

4.3.2 Proof of Message-Signature Pair Possession. Consider the relation

q1(Av1 −Bv2 + τGv2 −Dm) = q1u mod qπR

with ∥v∥2 ≤
√
σ2
1nm1 + σ2nm2 =: α ∧m ∈ Sm3

bin ∧ τ ∈ Tw,

where the private input is τ,v = [vT1 |vT2 ]T ,m and the public input is com-
posed of A,B,D,G,u. We define s1 = [v1|v2|m|τ ] ∈ Rm1+m2+m3+1 and s =
[s1|σ−1(s1)] ∈ R2(m1+m2+m3+1).
Quadratic Equations: We define A′ = q1[A| −B| −D|0d×m1+m2+m3+2], and for
all i ∈ [d], we define

Gi = q1

 0(m1+m2+m3)×2(m1+m2+m3+1)

01×m1 eTi G 01×m1+m2+2(m3+1)

0(m1+m2+m3+1)×2(m1+m2+m3+1)

 .
Then, for all i ∈ [d], define fi(s) = sTGis+(eTi A

′)s+(−q1eTi u). Proving fi(s) =
0 mod qπR for all i ∈ [d] yields q1(Av1 −Bv2 + τGv2 −Dm) = q1u mod qπR.
Quadratic Evaluations: We define r =

∑
j∈[0,n−1]X

j . For all i ∈ [m3 + 1], de-
fine Fi(s) = sTE2(m1+m2)+m3+1+i,m1+m2+is + (−re2(m1+m2)+m3+1+i)

T s. We
also define Fm3+2(s) = sTE2(m1+m2+m3+1),m1+m2+m3+1s − w = σ−1(τ)τ − w.
Proving F̃i(s) = 0 for i ∈ [m3] is equivalent to m ∈ Sm3

bin as before. Then, show-
ing F̃m3+1(s) = 0 proves τ ∈ Sbin, while F̃m3+2(s) = 0 proves that ∥τ∥22 =
⟨θ(τ),θ(τ)⟩ = w, thus giving τ ∈ Tw.
Norm Conditions: We define E(e) = [Im1+m2 |0m1+m2×m1+m2+2(m3+1)], u(e) =

0m1+m2
, and β(e) = α. Then

∥∥E(e)s− u(e)
∥∥
2
≤ β(e) proves ∥v∥2 ≤ α.

5 Privacy-Preserving Protocols and Anonymous
Credentials

The very purpose of a signature scheme with efficient protocols (SEP) is to
be used as a building block for privacy-preserving primitives such as group
signature, anonymous credentials or e-cash. For such applications, one usually
needs (1) to get a signature on committed (hidden) messages and (2) to prove
knowledge of a signature, without revealing it. This has led previous papers,
e.g., [CL04,PS16,LLM+16], providing such types of signatures to describe spe-
cific protocols addressing those needs. We here follow the same approach. More
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specifically, we give a first protocol in Section 5.1 which allows a signer to oblivi-
ously sign a message, by only knowing a commitment to the message. The second
protocol, presented in Section 5.2, enables a user to prove the possession of a
message-signature pair, where the signature has been obtained by the oblivious
signing protocol. As in previous works, we do not identify any properties ex-
pected from such protocols nor prove any results regarding their security. As
this might look unconventional, we need to recall a few facts about SEPs and
their use in privacy-preserving applications.

The use of signature schemes in the latter applications can be done based
on formal generic frameworks, e.g., [BSZ05] for group signature or [FBS19]
for e-cash, or on some rather common heuristics, e.g., for anonymous creden-
tials [CL04]. In all cases, the point is that, in theory, no specific property is
expected from the signatures beyond EUF-CMA security. Typically, [BSZ05]
and [FBS19] consider standard digital signature schemes for their framework.

However, in practice, the use of any digital signature is likely to lead to
a totally impractical construction because of the difficult interactions between
general-purpose signatures and the other building blocks such as zero-knowledge
proofs. This is where SEPs prove handy. They are specifically designed to smoothly
interact with the other building blocks so as to optimize the efficiency of the re-
sulting construction.

In this context, defining security notions that such protocols should achieve
would be meaningless as no such formal properties are expected by the construc-
tions using them. Worse, this is likely to lead to unnecessary complications as
it is difficult to define a relevant security model for SEPs. Typically, an SEP
allows one to get a signature on hidden messages and then to prove knowledge
of the message-signature pair. How to define a relevant security model in this
context? Unforgeability indeed means the inability to produce a signature on
new messages but here we do not know the messages requested by the adversary
to the signing oracle and we do not know which message-signature pairs it is
proving knowledge of. In other words, we cannot decide if the adversary won.

Libert et al [LLM+16] circumvents this issue by forcing the user to provide
an encryption of the messages in the blind issuance process. This does not ad-
dress the problem of formalizing the properties expected from the protocols (1)
and (2) of SEPs (and indeed [LLM+16] does not define such properties) but this
enables to provide some results regarding security as a reduction can recover all
the messages it has signed (by decrypting the ciphertexts) and thus decide when
a forgery occurs. Besides being unconventional (this led [LLM+16] to prove “se-
curity” of the protocols without defining what “security” means), this approach
complicates the protocols by adding this encryption step that is not necessary
in most applications using such signatures. Indeed, in concrete applications, this
problem is usually solved by other means. For example, in e-cash systems, “forg-
eries” can be detected by comparing the amount of withdrawn coins with the
one of spent coins. In group signatures, there is an opening procedure that al-
lows to trace back a group signature to a group member. This enables to detect
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forgeries as the latter will be involved in group signatures that cannot be opened
to anyone.

To sum up, SEPs constitute an informal subclass of digital signatures de-
signed for privacy-preserving applications. Defining specific security properties
for the protocols associated with SEPs is not necessary for such applications and
artificially increases complexity. In accordance with previous works, we therefore
do not consider such security properties.

However, to demonstrate how an SEP can easily be plugged in a privacy-
preserving construction and how security is concretely managed in this case, we
provide in Section 5.3 the description of an anonymous credentials system based
on our SEP scheme.

In this section, we present the protocols for the construction over structured
lattices, but they can be naturally adapted for the construction over Zq. We thus
use the zero-knowledge arguments presented in Section 4.3 using the framework
from [LNP22]. One would instead use the framework of [YAZ+19] for the rela-
tions over Zq, which are detailed in Appendix F.

5.1 Oblivious Signing Protocol

We present here our first protocol between a signer S and a user U . The user U
is interacting with S in order to obtain a signature (τ,v) on a message m, by
only providing S with a commitment c to the message m. We assume that
Algorithms 3.5 and 3.6 have been run prior to entering the protocol but with
some slight modifications that we detail below. First, instead of choosing σ2 as
in Algorithm 3.5, it chooses σ3 ≥

√
2ηε(R

m1) and then

σ4 ≥ max

(√
((
√
nm1 +

√
nm3 + t)

√
nm3 + σ3

√
nm1)2 − σ2,

√
2ηε(R

m1)

)
.

It then re-defines σ2 =
√
σ2
3 + σ2

4 and σ1 =
√
σ2 + σ2

2 . The new widths σ3, σ4 are
also included in pp in addition to σ, σ1, σ2. We explain this change in Remark 5.1.
Second, as we use the public key matrix A as part of the commitment matrices,
we must ensure that it cannot be tempered with by the attacker. As such, we
generate A as the hash of a public string. In the random oracle model, the matrix
can be assumed to follow the prescribed uniform distribution over Rd×m1

q .
Algorithm 5.1: OblSign (Oblivious Signing Interactive Protocol)

Input: Signer S with sk, pk, pp, st, and a user U with m ∈ Sm3
bin and pk, pp.

User U .
1. r′ ←↩ DRm1 ,σ3 . ▷ σ3 ≥

√
2ηε(R

m1 )

2. c← Ar′ +Dm mod qR.
3. Send c to S.

User U ←→ Signer S.
4. Interactive zero-knowledge argument between U and S, where U proves that c

is commitment to m with randomness r′. If S is not convinced, the protocol
aborts.
Signer S.

5. r′′ ←↩ DRm1 ,σ4 .
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6. c′ ← c+Ar′′ mod qR.
7. τ ← F (st). ▷ τ ∈ Tw
8. v′ ← SampleD(R,A, τId,u+ c′, σ)− [r′′

T |0]T .
9. Send (τ,v′) to U .

10. st← st+ 1
User U .

11. v← v′ − [r′
T |0]T .

12. if Verify(pk;m; (τ,v); pp) = 1, then return (τ,v). ▷ Algorithm 3.8
13. else return ⊥

Remark 5.1. Notice that Algorithm 5.1 does not exactly rely on the signature
scheme of Section 3. This is because the signer S also contributes to the ran-
domness of the commitment to the message m via r′′. If the randomness came
only from the user U , the signer, who is embodied by the SIS adversary in
the security proofs, would have no control over the randomness part of the
signing query. In the proof of Lemma 3.4 (and Lemma 3.5 for the i-th query
with i ̸= i+), the randomness r is legitimately sampled from DRm1 ,σ2 . As such,
it could instead be sampled as r′ + r′′ with r′ ←↩ DRm1 ,σ3 sampled by the
forger A, and r′′ ←↩ DRm1 ,σ4

sampled by the SIS adversary, thus matching
with Algorithm 5.1. This would restrict σ2 =

√
σ2
3 + σ2

4 . If σ3, σ4 ≥
√
2ηε(R

m1),
Lemma 2.2 guarantees that r′+r′′ is 7ε/4-close to DRm1 ,σ2 as required. However,
when dealing with the i+-th query in Lemma 3.5, the SIS adversary needs to
control part of the randomness. At this step of the proof, r0 would be distributed
according to DRm1 ,σ4

, and it would construct v′1
(i+)

= v1−(r0−Um(i+)−r′(i
+)
)

with r′
(i+) sampled fromDRm1 ,σ3

by the forgerA. The rest remains the same, but
this modification introduces the condition

√
σ2 + σ2

4 ≥ α + σ3
√
m1, where α =

(
√
nm1 +

√
nm3 + t)

√
nm3. It yields σ2 ≥

√
(α+ σ3

√
nm1)2 + σ2

3 − σ2, leading

to σ1 =
√
σ2 + σ2

2 ≥
√
(α+ σ3

√
nm1)2 + σ2

3 instead of just α. In most applica-
tions, m3 is much larger than σ3 and it thus only entails a mild increase of σ1.

5.2 Message-Signature Pair Possession Protocol

The second protocol provides a user, who obtained a certificate sig = (τ,v) on a
message m, with the ability to prove possession of this valid message-signature
pair. For that, they only have to prove that Verify(pk,m, (τ,v), pp) = 1 without
revealing neither m nor (τ,v). The protocol of Algorithm 5.2 thus simply consists
in using the ZKAoK presented in Section 4.3 to prove this relation. The proof
can be made non-interactive in the random oracle model using the Fiat-Shamir
transform.

Algorithm 5.2: Prove (Message-Signature Pair Possession)
Input: User U with pk, pp,m, (τ,v), and a verifier V with pk, pp.

User U ←→ Verifier V .
1. Interactive zero-knowledge argument between U and V , where U proves knowl-

edge of (m; (τ,v)) such that Verify(pk,m, (τ,v), pp) = 1.
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5.3 Application to Anonymous Credentials

Anonymous credentials (AC), a.k.a. attribute-based credentials, is a generic term
covering a wide spectrum of privacy-preserving systems considering essentially
two main use-cases. One where a user interacts with an organization to get
a signature on potentially concealed attributes, and one where this user will
prove possession of this signature on his attributes while limiting leakage to
some threshold depending on the concrete applications. For example, one may
agree to reveal some attributes but wants to retain unlinkability of showings,
which implies to hide the signature. We refer to [FHS19] for a discussion on the
different features of such systems. In all cases, one can note that our two protocols
above readily address those needs. To demonstrate that, we formally describe the
anonymous credentials system resulting from our SEP construction and prove
that it satisfies the security model introduced in [FHS19]. This model is recalled
in Appendix C.1 for completeness but, in a few words, anonymous credentials is
defined by two Keygen algorithms, one (OKeyGen) for the organization issuing
credentials and one (UKeyGen) for the user, along with two interactive protocols,
one (Issue) run by the organization and the user who wants to obtain a certificate
and one (Show) run by some user and some verifier to check the validity of the
claimed attributes. From the security standpoint, two properties are expected:
anonymity and unforgeability. The former informally requires that Show does
not leak more information than necessary, i.e., the set of disclosed attributes.
The latter requires that no user can claim a credential on some attributes unless
it has personally received a certificate from the organization. This in particular
implies that nobody can present a credential that they do not own.

The OKeyGen and UKeyGen algorithms and the (Issue) and (Show) protocols
based on our SEP construction are presented below. It gives, to our knowl-
edge, the first lattice-based anonymous credential system. The algorithm Setup
(Alg. 3.5) is modified so that m3 = ms +m′3 where ms = 2d and m′3 · n is the
maximal total bitsize of the attributes. We consider a system with ℓ attributes,
where hi · n is the bitsize of the i-th attribute mi which means m′3 =

∑
i∈[ℓ] hi.

The commitment matrix D is decomposed into D = [Ds|D1| . . . |Dk] where Ds ∈
Rn×ms
q and Di ∈ Rn×hi

q .
Algorithm 5.3: OKeyGen

Input: Public parameters pp as in Algorithm 3.5.
Output: (opk, osk)← KeyGen(pp). ▷ Algorithm 3.6

Algorithm 5.4: UKeyGen
Input: Public parameters pp as in Algorithm 3.5.
1. s←↩ U(Sms

bin).
2. t← Dss mod qR.

Output: (upk, usk) = (t, s).

Algorithm 5.5: Issue (Credential Issuance Protocol)

Input: Organization O with osk, opk, upk, pp, st, and a user U with m ∈ S
m′

3
bin

and usk, upk, opk, pp,m.
User U ←→ Organization O.
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1. Run the interactive protocol OblSign from Algorithm 5.1, where O plays the
signer and with message m̃ = [uskT |mT ]T . In this syntax, i.e., [FHS19], the
signer knows m but not usk. Hence the ZKAoK is adapted to prove knowledge
of short (r′, s) such that c−

∑
i Dimi = Ar′ +Dss mod qR, and additionally

that Dss = upk mod qR.

Algorithm 5.6: Show (Credential Showing Protocol)
Input: User U with usk, opk, pp,m, (τ,v), I, and verifier V with opk, pp, (mi)i∈I .

User U ←→ Verifier V .
1. Interactive zero-knowledge argument between U and V , where U proves knowl-

edge of (s, (mi)i/∈I ; (τ,v)) such that Verify(pk, m̃, (τ,v), pp) = 1.

Theorem 5.1. The AC described in Algorithms 5.3, 5.4, 5.5 and 5.6 is correct,
anonymous under the zero-knowledge property of the underlying ZKAoKs, and
unforgeable under the hardness of Inhomogeneous M-SIS, M-LWE, the soundness
of the ZKAoKs and the EUF-CMA security of our SEP.

The proof of Theorem 5.1 is given in Appendix C.2 for lack of space. We also defer
the detailed performance analysis in Appendix G. As an example, for 10 128-
bit attributes with 4 disclosed ones, the proof size in the Show protocol is less
than 730 KB.

Conclusion

In this paper, we have proposed a new signature scheme with efficient protocols
which is several orders of magnitude more efficient than the current state-of-
the-art [LLM+16]. This improvement was obtained by revisiting the latter con-
struction in a systematic way, considering not only the signature scheme itself
but also its interactions with the other components such as the commitment
scheme and the zero-knowledge proofs. In the process, we have also rectified a
problem with the fast mode of the zero-knowledge framework of [YAZ+19] and
introduced some optimizations, which are of independent interest.

Our construction was designed to remain as generic as possible in order to be
compatible with the broadest possible spectrum of applications. In particular, it
can be instantiated in both standard lattices and structured ones so as to suit any
lattice-based system. Despite this versatility, the size of a proof of knowledge of a
message-signature pair, one of the core component of privacy-preserving systems,
can be much lower than 1 MB, which should foster the development of practical
post-quantum constructions in this area. We made a step in this direction by
giving the first lattice-based anonymous credentials system.
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A Proof of Lemma 2.5

We recall here the definition of a sub-exponential random variable. We say that
a random variable X is sub-exponential with parameters (ν, α) if for all t ∈
(−1/α, 1/α), E[exp(t(X − E[X])))] ≤ exp(t2ν2/2). We have that a sum of m
independent sub-exponential random variables with the same parameters (ν, α)
is sub-exponential with parameters (ν

√
m,α). Finally, it holds that for a sub-

exponential random variable with parameter (ν, α)

∀r > 0,P[X − E[X] ≥ r] ≤

{
e−r

2/(2ν2) if 0 < r < ν2/α

eν
2/(2α2)−r/α if r ≥ ν2/α.

Proof (of Lemma 2.5). Let m ∈ {0, 1}m be an arbitrary vector, and we de-
note by k = ∥m∥1 the number of ones in the vector. We consider the random
matrix U whose entries are independent and identically distributed according
to U([−1, 1]), and we denote by uij the random variable representing the (i, j)-th
entry of U. For clarity, we also denote by uTi the i-th row of U. We know that
each uij is sub-Gaussian with parameter

√
2/3, i.e.,

∀t ∈ R,E[exp(tuij)] ≤ exp(t2/3).

By independence of the entries, we directly obtain for all i ∈ [n]

∀t ∈ R,E[exp(tuTi m)] ≤ exp(kt2/3).

Hence, each uTi m is sub-Gaussian with parameter s =
√
2k/3. We define the

random variables xi = uTi m, yi = x2i and we also define µi = E[yi]. Since xi is
sub-Gaussian with parameter s, we can prove that

∀p ≥ 1,E[|xi|p] ≤ p(
√
2s)pΓ (p/2),

where Γ is the Gamma function. In particular, we have µi ≤ 2(
√
2s)2Γ (1) =

4s2 = 8k/3. We then have

E[et(yi−µi)] = 1 + tE[yi − µi] +
∞∑
p=2

tpE[(yi − µi)p]/p!

≤ 1 +

∞∑
p=2

tpE[x2pi ]/p!

≤ 1 +

∞∑
p=2

tp(2p(
√
2s)2pΓ (p))/p!

= 1 + 2

∞∑
p=2

(2s2t)p

= 1 + 8s4t2/(1− 2s2t),
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where we used the fact that Γ (p) = (p− 1)! and that we restrict |t| < 1/(2s2β)
for some free variable β ≥ 1. It thus follows that

E[et(yi−µi)] ≤ 1 + 8βs4t2/(β − 1) ≤ exp(16βs4/(β − 1) · t2/2).

Hence, yi−µi is a centered sub-exponential with parameters ν = 4s2
√
β/(β − 1)

and α = 2s2β. We then define y =
∑
i∈[ℓ] yi and µ =

∑
i∈[ℓ] µi. It thus holds

that y − µ is a centered sub-exponential with parameters ν
√
ℓ and α. Using the

tail bound above for a sub-exponential distribution, we have that for all 0 < r <
ν2ℓ/α = 16ℓk/(3(β − 1)) then

P[y − µ ≥ r] ≤ exp(−r2/(2ℓν2)).

Since the yi are identically distributed, we have that µ = ℓµ1 ≤ 8ℓk/3. And we
also have y = ∥Um∥22. We now set the parameters β and r so that

P[∥Um∥2 ≥ 2
√
ℓm] ≤ 2−x.

In particular, we set β = 1/(1 − 8x/(ℓ log2 e)). Assuming ℓ ≥ 10x/ log2 e en-
tails β ∈ (1, 5]. Also, we set β this way to have

√
2β/((β − 1) log2 e)

√
x/ℓ = 1/2.

Then, we set r = 8k/3 ·
√
2β/((β − 1) log2 e)

√
ℓx = 4ℓk/3. We indeed have r ≤

16ℓk/(3(β − 1)) = ℓν2/α. The way we set r, we have exp(−r2/(2ℓν2)) = 2−x,
and r + µ ≤ 4ℓk/3 + 8ℓk/3 = 4ℓk. Hence

P[∥Um∥2 ≥ 2
√
ℓk] ≤ P[

√
y ≥
√
r + µ] ≤ exp(−r2/(2ℓν2)) = 2−x,

In the worst case, we have k = m which yields the claim.

B Security Proofs

B.1 Additional Preliminaries

Probabilities. We denote by Supp(P ) the support of the probability distribu-
tion P . In addition to the statistical distance, we use another measure of closeness
between two probability distributions, namely the Rényi divergence [R6́1] RD.
The Rényi divergence was thoroughly studied for its use in cryptography by
Bai et al. [BLR+18] as it shows to be a powerful alternative to the statistical
distance.

Definition B.1. Consider two discrete probability distributions P and Q over a
countable set S such that Supp(P ) ⊆ Supp(Q). We define the Rényi divergence
of order α > 1 as

RDα(P∥Q) =

 ∑
x∈Supp(P )

P (x)α

Q(x)α−1

 1
α−1

.
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The two measures enjoy a probability preservation property, which are es-
sential in proving our results.

Lemma B.1. Let P,Q be two probability distributions with Supp(P ) ⊆ Supp(Q),
and E ⊆ Supp(Q) be an arbitrary event. Then, P (E) ≤ ∆(P,Q) + Q(E),
and P (E)

α
α−1 ≤ RDα(P∥Q) ·Q(E).

In the security proofs, we need to compute the Rényi divergence between two
shifted discrete Gaussian distributions. We use the following lemma.

Lemma B.2 ([LSS14, Lem. 4.2]). Let L be a lattice of rank n, and c ∈ Rn.
Let α > 1. Then, for any σ > 0, it holds that

1. RDα(DL,σ∥DL,σ,c) ≤ exp(απ∥c∥22/σ2),

2. RDα(DL,σ,c∥DL,σ) ≤ exp(απ∥c∥22/σ2) ·
(

1+ε
1−ε

)α/(α−1)
, if σ ≥ ηε(L).

Finally, to ensure that the syndrome generated by the SIS challenger is cor-
rectly distributed, we need to argue that A′v′ is close to uniform for a Gaussian
vector v′. We thus use the result of [MP12] which argues that the smoothing
parameter of L⊥q (A′) is small with high probability over the choice of A′.

Lemma B.3 (Adapted from [MP12, Lem. 2.4]). Let n and q be positive
integers with q prime, and let m ≥ n log2 q + log2(2 + 2ε−1) for some ε > 0.
Let σ ≥ 2ηε(Zm). Then for any δ > 0, it holds that ∆((A,Ae mod q), (A,u)) ≤
δ + 2ε/δ, where A ∼ U(Zn×mq ), e ∼ DZm,σ, and u ∼ U(Znq ).

In particular, choosing ε = δ2/2, m > n log2 q+2−2 log2 δ, σ ≥ ω(
√
log2m)

leads to a statistical distance of at most 2δ. In our case, we apply it with m =
m1+m2 ≫ n log2 q+2λ+4, yielding a statistical distance much smaller than 2−λ.

Signature Security Model. The most widely used notion of security for a sig-
nature scheme is the Existential Unforgeability against Chosen Message Attacks
(EUF-CMA) security. This captures the fact that an attacker that can obtain
signatures on messages of its choosing is incapable of forging a signature on a
new message. We formally define it by a game between an adversary A and a
challenger C in Figure B.1.
The adversary’s advantage is defined as Adv[A] = P[A wins], where the proba-
bility is over all the random coins. We say that the scheme is EUF-CMA secure
if for all probabilistic polynomial time (PPT) adversary A, Adv[A] is negligible.

B.2 Proof of Lemma 3.1

Proof. Consider a PPT adversary A that produces Type I forgeries for the sig-
nature scheme with advantage δ. We now construct an adversary B that solves
the SIS∞,2n,m1,q,β

problem. The adversary B is given [A|u] ∈ Zn×m1+1
q as input and

is asked to find w ∈ L⊥q ([A|u]) such that 0 < ∥w∥∞ ≤ β∞ and 0 < ∥w∥2 ≤ β2.
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Challenger C Adversary A

pp← Setup(1λ)
(pk, sk)← KeyGen(pp)

pk

m(i)

Choose m(i)sigi ← Sign(sk,m(i), pk, pp) sigi

Choose m∗, sig∗m∗, sig∗

A wins if m∗ /∈ {m(i); i ∈ [Q]}
and Verify(pk,m∗, sig∗, pp) = 1

Signing
Queries

Fig. B.1. Existential Unforgeability against Chosen Message Attacks game

Setup Stage: B first generates the cryptographic material to give to A. We as-
sume that the parameters g, n,m1,m2,m3, q, σ, σ2, σ1. are already set. We also
define G = In ⊗ g. The adversary B first generates the tags τ (1), . . . , τ (Q) that
will be used for the signing queries of A by calling F and incrementing the state
st. It also makes a guess τ ←↩ U(T \ {τ (i); i ∈ [Q]}) on the tag that will be
used in the adversary’s forgery. In particular, we assume that Q = poly(λ) is the
maximum number of signing queries that A is able to make.

Next, B samples U from U([−1, 1]m1×m3). It then randomizes A to de-
fine D = AU mod q, and sets pp = (D;g;λ, n,m1,m2,m3, q, σ, σ2, σ1). Then, B
samples R ←↩ U([−1, 1]m1×m2) and defines B = AR + τG mod q. The adver-
sary B then forms pk = (A,B,u). From these matrices, we can define Aτ for
any tag τ ∈ Zq′ by

Aτ =
[
A|τG−B

]
=

[
A|(τ − τ)G−AR

]
, (4)

Since τ does not collide with the tags τ (1), . . . , τ (Q) that will be used to answer
the signing queries, we have τ (i)− τ ∈ Z×q as q is prime. The matrices Aτ(i) thus
have the adequate form to sample preimages using the trapdoor-based algorithms
from [MP12]. Finally, B sends (pk, pp) to A.
Query Stage: At the i-th signature query, A provides B with a message m(i) ∈
{0, 1}m3 . B can then faithfully run Algorithm 3.3 using the carefully crafted key
material, and the tag τ (i). More precisely, it computes Aτ(i) using Equation (4),
as well as the message commitment c = Ar(i) + Dm(i) mod q for a fresh ran-
domness r(i) ←↩ DZm1 ,σ2

. As discussed, we can still use the G-trapdoor R to
sample preimages, allowing B to compute

v(i) = SampleD(R,A, (τ (i) − τ)In,u+ c, σ)−
[
r(i)

0m2

]
.

Note that v(i) is correctly distributed and passes verification (with overwhelming
probability by Lemma 2.2 and 2.3). The signature given to A is sigi = (τ (i),v(i)).

36



Forgery Stage: After at most Q queries, the adversary returns a forgery sig∗ =
(τ∗,v∗) on a new message m∗ that passes verification. If A fails to produce such
a forgery, B aborts. We call this event Abort1. We now condition on ¬Abort1. At
this point, B aborts if τ∗ ̸= τ . We call this event Abort2 and further condition
on ¬Abort2. Then, the guess was correct and therefore the contribution of G
in Aτ∗ vanishes. Since the forgery passes verification we have Aτ∗v∗ = u +
Dm∗ mod q. Using the definition of the cryptographic material from the setup
stage, it can be written as[

A| −AR
]
v∗ = u+AUm∗ mod q.

This means that

w =

[
[Im1
| −R]v∗ −Um∗

−1

]
∈ Zm1+1

is in L⊥q ([A|u]). The adversary B thus returns w as a solution for SIS∞,2n,m1+1,q,β∞,β2
.

Advantage: We now analyze the advantage of B. We first look at the distribution
of (pk, pp). Since m1 log2 3 ≥ n log2 q + f(λ), it holds by Lemma 2.1 that∆((A,AR mod q), (A, U(Zn×m2

q ))) ≤ m2

2

√
qn

3m1
≤ m22

−f(λ)/2−1,

∆((A,AU mod q), (A, U(Zn×m3
q ))) ≤ m3

2

√
qn

3m1
≤ m32

−f(λ)/2−1,

Additionally, since A, R are independent of τG, it holds that ∆(B,AR) ≤
m22

−f(λ)/2 (by the triangle inequality). The signatures that are given to A in
the query stage are distributed according to the legitimate distribution. This
means that

P[¬Abort1] ≥ δ − negl(λ). (5)

As the guess τ is independent of A′s view, we directly have

P[¬Abort2|¬Abort1] =
1

|T | −Q
. (6)

We now analyze the solution provided by B. We have to show it is non-zero
and have ℓ∞ norm at most β. Since the last coefficient of w is −1, we directly
get that w ̸= 0. Then, by decomposing v∗ into [v∗1

T |v∗2
T ]T , with v∗1 ∈ Zm1

and v∗2 ∈ Zm2 , we have

∥w∥∞ ≤ ∥v
∗
1∥∞ +m2∥R∥max∥v

∗
2∥∞ +m3∥U∥max∥m

∗∥∞
≤ σ1 log2m1 +m2 · σ log2m2 +m3

= β∞.

Now, since v∗1,v
∗
2 correspond to the forgery that passes verification, we only

know their ℓ∞ norm. In particular, we cannot apply the Gaussian tail bound to
determine their ℓ2 norm. Therefore, we can at best have ∥v∗1∥2 ≤ σ1

√
m1 log2m1
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and ∥v∗2∥2 ≤ σ
√
m2 log2m2. Also, note that the spectral norm of [Im1

| −R] is

exactly
√

1 + ∥R∥22. It follows that

∥w∥2 ≤
√
1 + (∥[Im1 | −R]∥2∥v∗∥2 + ∥Um∗∥2)2

≤ 1 +

√
1 + ∥R∥22

√
m1(σ1 log2m1)2 +m2(σ log2m2)2

+min(2
√
m1m3, (

√
m1 +

√
m3 + t)

√
m3)

≤ 1 +
√
1 + (

√
m1 +

√
m2 + t)2

√
m1(σ1 log2m1)2 +m2(σ log2m2)2

+min(2
√
m1, (

√
m1 +

√
m3 + t))

√
m3

= β2,

where the inequalities follow from Equation (3) and Lemma 2.4 except with
probability 4e−πt

2

+ 2−2λ. By defining Abort{1,2} = Abort1 ∨ Abort2, we obtain

P[w valid solution|¬Abort{1,2}] ≥ 1− 4e−πt
2

− 2−2λ = 1− negl(λ). (7)

Combining Equations (5), (6) and (7) by the probability chain rule, we get

Adv[B] ≥ (δ − negl(λ)) · 1

|T | −Q
· (1− negl(λ)) ≈ δ

q′ −Q
,

as claimed.

B.3 Proof of Lemma 3.2

Proof. Consider a PPT adversary A that can produce a Type II forgery for the
signature scheme with advantage δ. We now construct an adversary B that solves
the SIS∞,2n,m1,q,β′

∞,β′
2

problem. The adversary B is given A ∈ Zn×m1
q as input and

is asked to find w ∈ L⊥q (A) such that 0 < ∥w∥∞ ≤ β′∞ and 0 < ∥w∥2 ≤ β′2.
Setup Stage: The adversary B first generates the tags τ (1), . . . , τ (Q) that will be
used for the signing queries of A by calling F and incrementing the state st. Note
that since F is injective, as mentioned in Remark 3.1, there is no collision among
the tags. The adversary B makes a guess i+ ←↩ U([Q]) on the index of the tag that
will be re-used byA in the forgery stage. Then, B samples R←↩ U([−1, 1]m1×m2),
and U from U([−1, 1]m1×m3). It then defines{

B = AR+ τ (i
+)G mod q

D = AU mod q

The adversary B samples v from DZm,σ, r0 from DZm1 ,σ2 , and defines

u = Aτ(i+)

(
v −

[
r0
0m2

])
mod q.
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Note that for all i ∈ [Q], we have

Aτ(i) = [A|(τ (i) − τ (i
+))G−AR],

where the contribution in G vanishes only for i = i+, as there is no collision.
The adversary B thus forms pp = (D;g;λ, n,m1,m2,m3,m, q, σ, σ2, σ1) and the
public key pk = (A,B,u), and sends both to A.
Query Stage: We distinguish the queries for i ̸= i+ from the i+-th query. First,
consider the i-th query, for i ̸= i+, on the message m(i). B samples a fresh
randomness r(i) from DZm1 ,σ2 and computes the commitment c = Ar(i) +

Dm(i) mod q. Since τ (i) − τ (i+) ∈ Z×q , B computes

v(i) = SampleD(R,A, (τ (i) − τ (i
+))In,u+ c, σ)−

[
r(i)

0m2

]
.

Note that v(i) is correctly distributed and passes verification (with overwhelming
probability by Lemma 2.2 and 2.3). The signature given to A is sigi = (τ (i),v(i)).

Now consider the i+-th query. In this case, B simply computes v(i+) = v −[
r0 −Um(i+)

0m2

]
and gives sigi+ = (τ (i

+),v(i+)) to A. We analyze later the dis-

tribution of v(i+), but notice that the verification equation is verified because of
the definition of u.

Aτ(i+)v
(i+) = u+Aτ(i+)

[
Um(i+)

0m2

]
mod q

= u+AUm(i+) mod q

= u+Dm(i+) mod q.

Forgery Stage: After at most Q queries, A outputs a Type II forgery (τ∗,v∗)
on a new message m∗. If A fails to output a valid forgery, event that we denote
by Abort1, then B aborts. We now condition on ¬Abort1. At this point, B checks
its guess on i+ and aborts if τ∗ ̸= τ (i

+). We denote this event Abort2, and further
condition on ¬Abort2. It holds that

Aτ(i+)v
(i+) −Dm(i+) = u mod q = Aτ∗v∗ −Dm∗ mod q.

Since Aτ∗ = Aτ(i+) = A[Im1
| −R], it holds that

A
(
[Im1
| −R](v(i+) − v∗)−U(m(i+) −m∗)

)
= 0 mod q.

As a result, B forms the vector

w = [Im1
| −R](v(i+) − v∗)−U(m(i+) −m∗) ∈ Zm1 ,

39



which is in L⊥q (A), and returns it as a solution for SIS.

Advantage: We now analyze the advantage of B. We first focus on the distribution
of (pk, pp). Since m1 log2 3 ≥ n log2 q + f(λ), Lemma 2.1 yields∆((A,AR mod q), (A, U(Zn×m2

q ))) ≤ m2

2

√
qn

3m1
≤ m22

−f(λ)/2−1,

∆((A,AU mod q), (A, U(Zn×m3
q ))) ≤ m3

2

√
qn

3m1
≤ m32

−f(λ)/2−1.

As A,R are independent of τ (i
+)G, it holds that ∆(B,AR) ≤ m22

−f(λ)/2

(by the triangle inequality). Then, let us analyze the distribution of u. De-
fine A′ = [A|−AR] mod q. By construction, we have u = A′v′ mod q, where v′1
is within statistical distance 7ε/4 of DZm1 ,σ1 by Lemma 2.2, and v′2 is distributed
as DZm2 ,σ. Fix f(m) = ω(

√
log2m) such that σ, σ1 ≥ f(m). Lemma B.3 thus

yields that u is within negligible statistical distance of U(Znq ), conditioning on A′

being uniform. Changing A′ back to [A| −AR] gives

∆(u, U(Znq )) ≤ negl(λ) +m22
−f(λ)/2−1 = negl(λ).

As a result, (pk, pp) is correctly distributed up to a negligible statistical distance.
We now analyze the distribution of the signature that are produced by B. For
the i-th query with i ̸= i+, the signature is distributed exactly as in the legiti-
mate algorithm. At the i+-th signing query, the vector v(i+)

1 is within statistical
distance 7ε/4 of DZm1 ,σ1,z+ , where z+ = Um(i+). As before, by Equation (3)
obtained by combining Lemma 2.4 and 2.5, we have∥∥z+∥∥

2
=

∥∥∥Um(i+)
∥∥∥
2
≤ min(2

√
m1,
√
m1 +

√
m3 + t)

√
m3,

except with probability 2e−πt
2

+ 2−2λ. We now measure the closeness of v(i+)

to the real distribution by using the Rényi divergence of order α for a free
parameter α > 1. By Lemma B.2 it holds that

RDα(DZm1 ,σ1∥DZm1 ,σ1,z+) ≤ exp

(
απ

σ2
1

∥∥z+∥∥2
2

)
≤ eαπ,

as σ1 ≥ min(2
√
m1,
√
m1 +

√
m3 + t)

√
m3. Combining the probabilities for the

distribution of the keys and the signatures, and by the probability preservation
properties of the statistical distance and Rényi divergence of Lemma B.1, we
have

P[¬Abort1] ≥ e−απ(δ − negl(λ))α/(α−1) ≥ e−απδα/(α−1) − negl(λ). (8)

We then optimize over α. The maximum value of the right-hand side is attained
for α∗ = 1 +

√
log2(1/δ)/(π log2 e). Further, since the guess i+ is independent

of A’s view it holds that

P[¬Abort2|¬Abort1] =
1

Q
. (9)
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We now analyze the solution constructed by B. We have to show it is non-zero
and has norm at most β′. We first focus on the former. We essentially show that
forA to ensure w = 0, it must predict at least one column u′ of U as m∗ ̸= m(i+).
So we have

P[w = 0]

≤ Pu′ [u′ = u∗ : u∗ ← A(A,Au′ mod q,v
(i+)
1 )]

≤
√
Pu′ [u′ = u∗ : u∗ ← A(A,Au′ mod q)] · RD2(DZm1 ,σ1,Um(i+)∥DZm1 ,σ1

)

+ 7ε/4

≤ 1 + ε

1− ε
eπ

√
PU[u′ = u∗ : u∗ ← A(A,Au′ mod q)] + 7ε/4

where the last inequality stems from Lemma B.2 as σ1 ≥ σ ≥ ηε(Zm1)9.
Then, since m1 log2 3 ≥ n log2 q + f(λ) and that Au′ mod q can take 2n log2 q

values, [DORS08, Lem. 2.2] then gives that u′ given Au′ mod q contains at
least m1 log2 3 − n log2 q ≥ f(λ) = ω(log2 λ) bits of entropy. Hence, w ̸= 0
except with negligible probability.

Finally, it holds that

∥w∥∞ ≤ ∥(v1 − r0)− v∗1∥∞ +m2∥R∥max∥v2 − v∗2∥∞ +m3∥U∥max∥m
∗∥∞

≤ 2σ1 log2m1 +m2 · 2σ log2m2 +m3

= β′∞.

The inequality is valid if v1 − r0 follows DZm1 ,σ1
(Lemma 2.2) and that the

Gaussian tail bound of Lemma 2.3 is verified for v1 − r0,v2. By the union
bound, this happens with probability at least 1 − (2m1e

−π log2
2m1 + 7ε/4) −

2m2e
−π log2

2m2 = 1 − negl(λ). As in the proof of Lemma 3.1, we cannot use the
Gaussian tail bound in ℓ2 norm for v∗. Hence, we have the following

∥w∥2 ≤
√
1 + ∥R∥22

√
(σ2m1 + σ2

2m1 +m1σ2
1 log

2
2m1) + (σ2m2 +m2σ2 log22m2)

+ ∥Um∗∥2

≤
√
1 + (

√
m1 +

√
m2 + t)2

√
σ2
1m1(1 + log22m1) + σ2m2(1 + log22m2)

+ min(2
√
m1,
√
m1 +

√
m3 + t)

√
m3

= β′2,

where the first inequality follows from Lemma 2.3 except with probability 2 ·
2−2m1 + 2−2m2 , and the second inequality stems from Lemma 2.4 except with
probability 4e−πt

2

+ 2−2λ. This yields

P[w valid solution|¬Abort1 ∧ ¬Abort2] = 1− negl(λ). (10)
9 Note that the Rényi divergence is taken in the opposite direction than before, hence

the presence of the factor (1 + ε)/(1− ε).
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Combining Equations (8), (9) and (10) by the probability chain rule, we get

Adv[B] ≥ (δα
∗/(α∗−1)e−α

∗π − negl(λ)) · 1
Q
· (1− negl(λ)),

as desired. Note that the parameters and the behavior of B do not depend on the
order α that is used to compute the advantage bound. As such, α∗ can indeed
depend on the forger’s advantage δ.

C Anonymous Credentials

C.1 Definitions

In Section 5.3, we use the definition and security model from [FHS19] that we
recall below. We note that, in their definition, the attributes are revealed to the
signer during issuance (but not the user’s secret key). This means that when us-
ing the OblSign protocol of our SEP, part of the message to be signed is revealed
to the signer. Rather than an artifact specific to the construction from [FHS19],
this peculiarity stems from the difficulty of formally defining a notion of unforge-
ability when the signed message is hidden, as discussed in Section 5. Regardless,
this is not problematic in practice as credentials would usually be emitted on
known attributes, even though the latter would be hidden when presenting the
credential. Although we prove the security of our construction in this setting,
our protocol could easily hide the attributes during issuance if necessary.

C.1.1 Syntax. An anonymous credentials is composed of two algorithms
and two interactive protocols. The OKeyGen takes as input public parame-
ters (in our case those generated by Setup) and outputs the organization’s key
pair (opk, osk). Similarly, the UKeyGen takes the public parameters (and pos-
sibly the organization’s public key) and outputs the user’s key pair (upk, usk).
The IssueO,U protocol involves an organization O with (osk, opk, upk, pp, st) and
the users’ attributes (mi)i∈[ℓ], and a user U with (usk, upk, opk, pp) and its at-
tributes (mi)i∈[ℓ]. The user either obtains a credential cred on its attributes or ⊥
if the protocol failed, while the organization just gets notified of whether or not
the execution was successful. Finally, the ShowU,V protocol involves a user U
with (usk, opk, pp, (mi)i∈[ℓ], cred, I) and a verifier V with (opk, pp, (mi)i∈I). The
protocol outputs b = 1 to V if the credential cred is valid for the disclosed
attributes (mi)i∈I and b = 0 otherwise, and U gets no output.

C.1.2 Security Requirements. The model from [FHS19] stipulates that
the anonymous credentials system must be correct, anonymous, and unforgeable.
Correctness says that an honest execution of IssueO,U should succeed often10,
and that an honest execution of ShowU,V on honestly obtained credentials should
10 There may be a correctness error which is similar to the completeness error of zero-

knowledge arguments.
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also succeed often. For the anonymity and unforgeability, we stick to the syntax
of [FHS19] by first defining the following variables and oracles.

– HU: Set of user indices corresponding to honest users, initially empty.
– CU: Set of user indices corresponding to corrupt users, initially empty.
– ctr: Issuance counter, initially set to 0.
– A: Set of triplets (j, j′, (mi)i∈[ℓ]) filled when the oracles OObtIss or OIssue

successfully issue a credential for user j on the attributes (mi)i∈[ℓ], and
where j′ is an issuance index.

– OHU(j): Given a user index j, it returns ⊥ if j ∈ HU ∪ CU. Otherwise, it
samples (upkj , uskj)← UKeyGen(pp) and returns upkj . It then adds j to HU.

– OCU(j, upk): Given a user index j and optionally a public key upk, it registers
a new user with public key upk if j /∈ HU. Otherwise, it returns uskj and
sets HU ← HU \ {j}. Either way, it adds j to CU. The former case models
the ability to register users with malformed keys, i.e., who do not know the
associated secret key.

– OObtIss(j,m): On input j ∈ HU and attributes m = (mi)i∈[ℓ], the ora-
cle runs IssueO,U ((osk, opk, upkj , pp, st,m); (uskj , upkj , opk, pp,m)) assuming
the roles of both O and user j. If the execution succeeds, it increments the
issuance counter ctr, it stores the obtained credential and stores (j, ctr,m)
in A. It returns indication of whether the execution succeeded. If j /∈ HU, it
simply returns ⊥.

– OObtain(j,m): Given a user index j and attributes m, it returns ⊥ if j /∈ HU.
Otherwise, it runs IssueA,U (·, (uskj , upkj , opk, pp,m)) with the adversary A
posing as the organization. It thus issues a credential to an honest user.

– OIssue(j,m): Given a user index j and attributes m, it returns ⊥ if j /∈ CU.
Otherwise, it runs IssueO,A((osk, opk, upkj , pp, st,m), ·) with the adversary
assuming the role of the user. It thus allows the adversary to obtain creden-
tials from the honest organization. If the execution is successful, it increments
the issuance counter ctr, stores the credential and adds (j, ctr,m) in A.

– OShow(j
′, (m

(j′)
i )i∈I): It takes as input an issuance index j′ and disclosed at-

tributes (m
(j′)
i )i∈I . The issuance index corresponds to a successfully issued

credential cred(j
′) on (m

(j′)
i )i∈[ℓ] for a user j during the j′-th query to OIssObt

or OObtain. If the corresponding user j is not honest, i.e., j /∈ HU, the ora-
cle returns ⊥. Else, it runs ShowU,A((uskj , opk, pp, (m

(j′)
i )i∈[ℓ], cred

(j′), I), ·)
with the adversary posing as the verifier.

Anonymity. The anonymity property captures the fact that a user showing
its credential cred obtained on attribute vector m remains anonymous among
all users who have the same disclosed attributes (mi)i∈I . It means that during
an execution of ShowU,V , the verifier V does not learn anything other that U
owns a valid credential on the shown attributes (mi)i∈I . Additionally, different
showings of the same credential with the same revealed attributes should be
unlinkable. It is formalized by the game presented in Figure C.1. The anony-
mous credentials system is anonymous if for all PPT adversary A, its advan-
tage |P[b∗ = b ∧ OCU was not queried on j0 nor j1]− 1/2| in the anonymity game
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is negligible. To avoid overloading the protocols we assume that (opk, osk) are
honestly generated, but this assumption is not necessary if one includes a zero-
knowledge proof that they know the secret osk linked to opk.

Challenger C Adversary A
(opk, osk)← OKeyGen(pp)

opk, osk

Choose issuance indices
j′0, j

′
1 on same disclosed

attributes (mi)i∈Ij′0, j
′
1, (mi)i∈I

Aborts if (j0, j′0,m(j′0)) /∈ A

or (j1, j
′
0,m

(j′1)) /∈ A
b←↩ U({0, 1})

ShowC,A((uskjb , opk, pp,m
(j′b), cred(j

′
b), I), ·)

Choose b∗ ∈ {0, 1}b∗

Oracle Queries to
OHU,OCU,OObtain,OShow

Oracle Queries to
OHU,OCU,OObtain,OShow

Fig. C.1. Anonymity Game for the Anonymous Credentials System. The index jα is
the user index associated to the issuance index j′α. The attribute vector m(j′α) is the
attribute vector used in the j′α issuance, and must satisfy (m

(j′α)
i )i∈I = (mi)i∈I .

Unforgeability. The unforgeability property of anonymous credentials ensures
that a user cannot show attributes for which it does not own a valid credential.
It means that it cannot impersonate an honest user (as it would mean knowing
its secret key) which thwarts replay attacks, and that it cannot forge fresh cre-
dentials that have not been issued by the Issue protocol. Additionally, malicious
users cannot collude and use their legitimate credentials to obtain a new one on
a set of attributes that has not been used in a successful issuance. We formalize
it as a game in Figure C.2. The adversary wins the game if the challenger does
not abort and if the challenger’s output of the execution of Show is b = 1. We say
that the anonymous credentials system is unforgeable if for all PPT adversary A,
its probability of winning is negligible.

C.1.3 Additional Assumptions. In order to prove the unforgeability of our
anonymous credentials system, we require the inhomogeneous variant of M-SIS,
and M-LWE (in knapsack form) which we now recall. Note that the knapsack
form of M-LWE is at least as hard as the standard definition by the duality
result of [BJRW23, Lem. 4.1].

44



Challenger C Adversary A
(opk, osk)← OKeyGen(pp)

opk

Choose disclosed
attributes (mi)i∈I(mi)i∈I

Aborts if (j, j′,m(j′)) ∈ A
for some j ∈ CU

with (m
(j′)
i )i∈I = (mi)i∈I

ShowA,C(·, (opk, pp, (mi)i∈I))

Oracle Queries to
OHU,OCU,OObtIss,OIssue,OShow

Fig. C.2. Unforgeability Game for the Anonymous Credentials System.

Definition C.1 (M-ISIS). Let n be a power of two and R the 2n-th cyclotomic
ring. Let d,m, q be positive integers and β > 0. The Module Inhomogeneous
Short Integer Solution problem M-ISISd,m,q,β asks to find s ∈ Rm such that Ds =
t mod qR and ∥s∥2 ≤ β, given D←↩ U(Rd×mq ) and t←↩ U(Rdq).

Definition C.2 (M-LWE). Let n be a power of two and R the 2n-th cyclo-
tomic ring. Let d,m, q be positive integers and β > 0. The Module Learning
With Errors problem M-LWEd,m,q,U(Sbin) asks to distinguish between the follow-
ing distributions: (1) (D,Ds mod qR), where D ∼ U(Rd×mq ) and s ∼ U(Smbin),
and (2) (D, t), where D ∼ U(Rd×mq ) and t ∼ U(Rdq).

C.2 Security Analysis

C.2.1 Correctness. We first show correctness of our anonymous credentials,
meaning that honest execution of the issuance protocols does not fail, and that
honestly obtained credentials can be shown successfully.

Lemma C.1. The anonymous credentials system of Section 5.3 is correct.

Proof. Let pp ← Setup(1λ). Let (opk, osk) ← OKeyGen(pp) and (upk, usk) ←
UKeyGen(pp). Then, let m ∈ Sm

′
3

bin and I ⊆ [ℓ]. We now consider an honest ex-
ecution of IssueO,U ((osk, opk, upk, pp, st,m); (usk, upk, opk, pp,m)). By the com-
pleteness of the zero-knowledge argument of knowledge, we only have to check
the abort condition of step 11. First, note that τ ∈ Tw and m̃ ∈ Sm3

bin. Then, we
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have

Aτv = Aτv
′ −Ar′

= u+ c′ −A(r′′ + r′) mod qR

= u+ c−Ar′ mod qR

= u+Dss+
∑
i∈[ℓ]

Dimi mod qR

= u+Dm̃ mod qR.

Finally, it holds that v is statistically close to an elliptical discrete Gaussian
distribution, where v1 is of width

√
σ2 + σ2

3 + σ2
4 = σ1, and v2 is of width σ.

Thence, ∥v∥2 ≤
√
σ2
1nm1 + σ2nm2, except with probability 2−2(m1+m2). This

shows that an honest execution of Issue succeeds with overwhelming probability
conditioned on the zero-knowledge argument to pass.

We now consider a successful execution of the credential issuance process,
i.e., (⊥; cred)← IssueO,U ((osk, opk, upk, pp, st,m); (usk, upk, opk, pp,m)). Because
the execution did not abort, it means that Verify(pk, m̃, (τ,v), pp) = 1. Directly
from the completeness of the zero-knowledge argument of knowledge, we get
that ShowU,V ((usk, opk, pp,m, (τ,v), I); (opk, pp, (mi)i∈I)) outputs (⊥, 1).

C.2.2 Anonymity. We now prove that the showing of credentials to verifiers
or organizations does not leak information about the user’s concealed attributes
and credential except that they own a valid credential on the disclosed attributes.

Lemma C.2. The anonymous credentials of Section 5.3 is anonymous based on
the zero-knowledge property of the ZKAoK involved in Show.

Proof. We proceed by a single game hop. We define a modified version of the
anonymity game of Figure C.1. It is exactly the same game except that when
interacting with the adversary in ShowC,A((uskjb , opk, pp,m

(j′b), cred(j
′
b), I), ·),

the challenger C will simulate the interaction, i.e., without resorting to uskjb ,
(m

(j′b)
i )i/∈I , cred(j

′
b). By the zero-knowledge property of the zero-knowledge ar-

gument, the advantage of A in the modified game is negligibly close to that it
would have in the original game.

Now, the view of A only depends on (m
(j′b)
i )i∈I , which does not depend on b

as we require (m
(j′0)
i )i∈I = (mi)i∈I = (m

(j′1)
i )i∈I . Thence, the view of A is

independent of b and therefore its advantage is 0. It proves that the advantage
of A in the original anonymity game is negligible.

C.2.3 Unforgeability. We finally prove that a user cannot prove knowledge
of a credential they did not receive from a successful execution of the issuance
protocol. At a high level, if an adversary is able to do so, then it either breaks
the soundness of the ZKAoK or was able to forge a signature.
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Lemma C.3. The anonymous credentials of Section 5.3 is unforgeable based on
the hardness of M-ISISd,ms,q,

√
nms

, the zero-knowledge property of the ZKAoK
involved in Issue and Show, on the soundness of the ZKAoK involved in Show,
and on the EUF-CMA security of the signature scheme of Section 3.

Proof. We consider a PPT adversary A against the unforgeability game. As
described, A receives the organization’s public key opk and must return a dis-
closed set of attributes (m∗i )i∈I while proving possession of a credential cred∗ on
said attributes in a successful execution of Show with the honest organization.
If (m∗i )i∈I corresponds to an attribute vector m that was queried for issuance by
a corrupt user, the forgery is refused. This leaves two scenarios. Either (1)A tried
to impersonate an honest user, or (2) it did not. Since Amust prove knowledge of
a secret s∗ satisfying Dss

∗ = t, this means that (1) corresponds to the case where
there exists j ∈ HU such that s∗ = uskj , i.e., verifying Dss

∗ = upkj mod qR, and
(2) where for every j ∈ HU, s∗ ̸= uskj . We tackle these two types of forgeries
separately.

(1) Impersonation Forgery. At the outset, the challenger receives an M-ISIS in-
stance (Ds, t). It then runs Setup but sets Ds = Ds instead of sampling it
themselves. It then makes a guess on which honest user will be targeted. For
that it samples j+ ←↩ U([|Tw|]). Indeed, the number of users requesting creden-
tials to one organization is bounded by the number of possible tags as explained
in Remark 3.1. It then runs OKeyGen(pp) to obtain (opk, osk) = ((A,B,u),R),
and sends opk to A. From there on out the adversary makes queries to different
oracles which are answered as follows.

– OHU: On input a user index j, the challenger runs (upkj , uskj)← UKeyGen(pp)

and outputs upkj if j ̸= j+, and outputs t if j = j+.
– OCU: On input a user index j, it gives uskj to A if j ̸= j+. If j = j+, the

challenger aborts the reduction altogether as the guess was wrong.
– OObtIss: It takes as input a user index j and attribute vector m ∈ S

m′
3

bin.
If j ∈ CU it sends ⊥ to A. Otherwise, if j ̸= j+, the challenger can assume
the role of the issuer and the user in the Issue protocol as it knows the
issuer’s key osk and the key uskj of user j. If the execution fails, it sends ⊥
to A, and nothing if it succeeds. However, if j = j+, it instead generates c
as Ar′ + t+

∑
iDimi mod qR, and simulates the zero-knowledge argument

when assuming the role of the user in Step 4 of Issue. Again, if this modified
execution fails, it sends ⊥ to A, and nothing if it succeeds.

– OIssue: It takes as input a user index j and attribute vector m ∈ S
m′

3

bin.
If j /∈ CU, it returns ⊥ to A and does not engage in the issuance proto-
col. Otherwise, since the challenger knows osk, it can run the Issue protocol
where the adversary plays the user j with public key upkj , and the chal-
lenger plays the signer. In the end, either A gets ⊥ if the execution failed,
or obtained a credential (τ,v) on m.

– OShow: It takes an issuance index j′, corresponding to the j′-th credential
issued on (m

(j′)
i )i∈[ℓ] for some user j, and also disclosed attributes (m(j′)

i )i∈I .
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If user j ∈ CU, the challenger outputs ⊥ to A. Otherwise, if j ̸= j+, it
runs the legitimate protocol Show where A assumes the role of the verifier,
which can be done as the challenger knows uskj , the attributes and the
credential. If j = j+ however, it cannot run Show. Instead, it simulates the
zero-knowledge argument with the adversary as the verifier.

If the guess j+ is correct, which implies that j+ is never queried to OCU, then
the game is correctly simulated. Indeed, the differences stem from the public key
of user j+ and the simulation of the zero-knowledge arguments. Since t is uni-
form, it is indistinguishable from regular keys Dss under M-LWEd,2d,q,U(Sbin).
Then, by the zero-knowledge property of the ZKAoK, the simulated proof are
correctly distributed. Hence, if A has advantage δ in performing a forgery at-
tack satisfying (1), it can successfully prove knowledge of (s∗, (m∗i )i/∈I∗ , τ∗,v∗)
with disclosed attributes (m∗i )i∈I∗ such that Verify(opk, m̃∗, (τ∗,v∗), pp) = 1
where m̃∗ = [s∗T |m∗1

T | . . . |m∗k
T ]T . The challenger can then extract s∗ by the

soundness of the ZKAoK, and because it is an attack of type (1), there ex-
ists j∗ ∈ HU such that s∗ = uskj , thus implying Dss

∗ = upkj∗ . If j∗ = j+, the
challenger’s guess is correct and this happens with probability at least 1/|Tw|
because it means j+ was never queried to OCU and was therefore independent
of the view of A. In that case, we thus have Dss

∗ = t mod qR, and s∗ ∈ Sms

bin

so ∥s∗∥2 ≤
√
nms. The challenger thus solves the M-ISIS instance with advan-

tage at least δ/|Tw| − negl(λ).

(2) Fresh Forgery. If the challenger expects this type of forgery, it expects a
forgery on the SEP. It therefore flips a coin to guess which type of forgery on
the signature will be performed (type I or type II).

If it expects a type I forgery, it proceeds exactly as in Section B.2, with-
out having to extract the commitment randomness in the issuance. This is
because signature queries are answered legitimately without having to tamper
with the randomness. As a result, once the challenger has changed the setup,
it can answer all the oracle queries OHU,OCU,OObtIss,OIssue,OShow legitimately.
When A eventually proves knowledge of (s∗, (m∗i )i/∈I , τ∗,v∗) with disclosed at-
tributes (m∗i )i∈I such that Verify(opk, m̃∗, (τ∗,v∗), pp) = 1, the challenger can
extract (s∗, (m∗i )i/∈I , τ

∗,v∗) from the proof by the soundness of the ZKAoK.
Then, (τ∗,v∗) is a valid type I forgery for our SEP as m̃∗ is a fresh message.
Indeed, by definition of type (2) forgeries of the anonymous credentials, we have
that s∗ ̸= uskj for all j ∈ HU. This first fact means that m̃∗ differs from all
the m̃ involved in calls to OObtIss. Secondly, by the definition of a forgery of the
AC, it must hold that for all j ∈ CU, (j, j′, (m∗i )i∈[ℓ]) /∈ A), which means that m̃∗
must differ from all the m̃ involved in calls to OIssue. As a result, we obtain a
solution to M-SIS as in Section B.2.

If it expects a type II forgery of the SEP, it proceeds as in Section B.3 with a
minor difference due to the fact that it needs to control the commitment random-
ness for the i+-th signature query, as explained in Remark 5.1. In this context,
in the issuance corresponding to the tag τ∗ = τ (i

+) that will be used in the
forgery extracted from the showing of the AC, the challenger proceeds as fol-
lows. By the soundness of the ZKAoK, it extracts (r′(i

+)
, s(i

+)) such that c(i
+) =
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Ar′
(i+)

+ Dss
(i+) +

∑
i∈[ℓ] Dim

(i+)
i mod qR. As opposed to Section B.3 where

it computed v′
(i+)

= v − [(r0 −Um̃(i+))T |0]T , with m̃(i+) = [s(i
+)
T
|m(i+)

T
]T ,

here, it computes

v′
(i+)

= v −

[
r0 −Um̃(i+) − r′

(i+)

0

]
.

The rest of the proof remains the same. In the end, when A engages in Show to
attack the unforgeability of the AC, the challenger extracts (s∗, (m∗i )i/∈I , τ∗,v∗).
It thus obtain (τ∗,v∗) which is a valid type II forgery for the SEP on message m̃∗
(which is fresh as explained above). It then proceeds exactly as in Section B.3
to obtain a solution to M-SIS.

In the end, if A has advantage δ in producing a forgery of type (2) for the
anonymous credentials system, it holds that δ ≤ supA′ PPT AdvEUF−CMA[A′] +
negl(λ), where AdvEUF−CMA[A′] denotes the advantage of A′ in producing a
valid forgery (type I or type II) for our signature with efficient protocols.

D Proof of Lemma 4.1

Proof. For clarity, we denote by x = x mod q the vector of representatives
in [−q/2, q/2] of a vector x. With such representatives, we have C = C for
any integer C in [−q/2, q/2], which simplifies the notations in what follows. We
assume that there exists i in [n] such that wi /∈ [−2B, 2B]. Let h be a random
vector distributed according to U([−1, 1]n). For clarity, we define S = [n] \ {i}.
We now have

Ph[hTw ∈ [−B,B]]

=
∑

C∈[−q/2,q/2]

Ph[
∑
j∈S

hjwj = C] · Ph[
∑
i∈[n]

hjwj ∈ [−B,B]|
∑
j∈S

hjwj = C]

=
∑

C∈[−q/2,q/2]

Ph[
∑
j∈S

hjwj = C] · Phi
[hiwi + C ∈ [−B,B]]

=
∑

C∈[−q/2,q/2]

Ph[
∑
j∈S

hjwj = C] ·
∣∣{hi : hiwi + C ∈ [−B,B]}

∣∣
3

,

where the second equality is a consequence of hi being uniform in [−1, 1]. We
now split the sum indexed by C into two complementary parts Σ1 and Σ2 as
follows.

Σ1 =
∑

C∈(− q
2+2B, q2−2B)∩Z

Ph[
∑
j∈S

hjwj = C] ·
∣∣{hi : hiwi + C ∈ [−B,B]}

∣∣
3

Σ2 =
∑

C∈[− q
2 ,−

q
2+2B]∪[ q2−2B,

q
2 ]

Ph[
∑
j∈S

hjwj = C] ·
∣∣{hi : hiwi + C ∈ [−B,B]}

∣∣
3
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We can now focus on bounding the set {hi : hiwi + C ∈ [−B,B]} in each
case. First note that for all hi ∈ [−1, 1], if{

hiwi + C ∈ [−B,B]

(hi + 1)wi + C ∈ [−B,B],

are both satisfied, then there exist r1, r2 ∈ [−B,B] and k1, k2 ∈ Z, such that

hiwi + C = r1 + k1q ∧ (hi + 1)wi + C = r2 + k2q.

Note that the above equations are now over Z, not Zq. Combining these two
equations gives us wi = r2 − r1 + (k2 − k1)q, which implies that the represen-
tative wi is necessarily in [−2B, 2B]. This contradicts the original assumption
of wi /∈ [−2B, 2B]. In other words, we have shown that the set {hi : hiwi + C ∈
[−B,B]} cannot contain two consecutive numbers.

Now let us consider the situation where both hi and hi + 2 would be in this
set. As hi ∈ [−1, 1], this can only occur when hi = −1. This means that:{

−wi + C ∈ [−B,B]

wi + C ∈ [−B,B],

and hence there exist r1, r2 ∈ [−B,B] and k1, k2 ∈ Z, such that

−wi + C = r1 + k1q (11)
wi + C = r2 + k2q. (12)

This implies that 2wi = r2 − r1 + (k2 − k1)q. As wi /∈ [−2B, 2B], these equa-
tions can be satisfied only when wi =

r2−r1±q
2 with r2 − r1 ∈ [−2B, 2B]. The

latter interval implies that wi ∈ [− q2 ,−
q
2 + B] ∪ [ q2 − B,

q
2 ]. But in that case,

Equation (11) implies that C = wi + r1 ∈ [− q2 ,−
q
2 + 2B] ∪ [ q2 − 2B, q2 ]. In

other words, {hi : hiwi + C ∈ [−B,B]} contains at most 1 element if C /∈
[− q2 ,−

q
2 + 2B] ∪ [ q2 − 2B, q2 ] and at most two elements otherwise. We thus get

the following bounds on Σ1 and Σ2.

Σ1 ≤
1

3

∑
C∈(− q

2+2B, q2−2B)∩Z

Ph[
∑
j∈S

hjwj = C]

Σ2 ≤
2

3

∑
C∈[− q

2 ,−
q
2+2B]∪[ q2−2B,

q
2 ]

Ph[
∑
j∈S

hjwj = C]

Let x denote
∑

C∈[− q
2 ,−

q
2+2B]∪[ q2−2B,

q
2 ]

Ph[
∑
j∈S hjwj = C]. Then, we have that 1−

x is
∑

C∈(− q
2+2B, q2−2B)∩Z

Ph[
∑
j∈S hjwj = C] which yields

Ph[hTw ∈ [−B,B]] ≤ 1

3
+
x

3
.
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Our last task is then to find a suitable upper bound on x. More concretely,
we want to prove that x ≤ 2

3 . To this end, we will show that, for any vector u
uniformly sampled from {−1, 0, 1}n−1 and any vector w ∈ Zn−1q , the probability
(over the choice of u) that

∑
j ujwj ∈ (− q2 ,−

q
2 + 2B] ∪ [ q2 − 2B, q2 ] is at most 2

3
when the requirements of our lemma are fulfilled.

In our case, we first recall that the elements of the sets {hj}j∈S are uniformly
sampled from {−1, 0, 1}n−1 that we identify to Z3 seen as an additive group.
Let t = [1, . . . , 1]T ∈ Zn−13 and let T = Zn−13 /⟨t⟩. Any element u ∈ T then
has exactly 3 representatives in Zn−13 that we note u,u′,u′′ ∈ {−1, 0, 1}n−1. We
then have exactly

u+ u′ + u′′ = 0

where the previous equation holds in Zn−1 because, for any j ∈ [n − 1], it
holds {uj , u′j , u′′j } = {−1, 0, 1}. For all w ∈ Zn−1q , we define

Σu =

n−1∑
j=1

ujwj , Σu′ =

n−1∑
j=1

u′jwj , Σu′′ =

n−1∑
j=1

u′′jwj .

We then know that Σu + Σu′ + Σu′′ = 0 in Z and hence that Σu + Σu′ +
Σu′′ = 0. What remains to prove is that this implies that at least one of these
representatives is not in (− q2 ,−

q
2 + 2B] ∪ [ q2 − 2B, q2 ]. Let us assume, without

loss of generality that both Σu and Σu′ are in this set (else, we are done). This
means (over Z) that

Σu +Σu′ = r + kq

for some integer k and some r ∈ [−4B, 4B]. Therefore Σu′′ = −r − kq and,
as it is an element of (− q2 ,

q
2 ) (as any representative), this means that Σu′′ =

−r ∈ [−4B, 4B]. Since the lemma assumes q
2 > 6B, this means that Σu′′ /∈

(− q2 ,−
q
2 + 2B] ∪ [ q2 − 2B, q2 ]. In other words, for all w ∈ Zn−1q , among the 3

representatives of any element of T , at least one is such that
∑
j ujwj is not in

this set, which proves that x ≤ 2
3 and hence our lemma.

E Optimizing the Zero-Knowledge Framework

We detail here three independent optimizations of the framework from [YAZ+19].
We note that the first two optimizations apply as is to the original framework,
while the third involves further changes.
Concrete Hardness Assumptions. The first one consists in changing the
underlying hardness assumptions. Instead of using worst-case to average-case
connections to standard lattice problems, we use slightly overstretched param-
eters for which the hardness of LWE is only based on concrete hardness argu-
ments. The goal is to change the distribution of the randomness used to commit
to the witness x in the original proof so that it leads to smaller elements. More
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precisely, we sample the randomness from a ternary distribution instead of a dis-
crete Gaussian. Additionally, we add an extra verification step in order to rely
on the HNF-SIS problem with two norm bounds β∞, β2 on the ℓ∞ norm and ℓ2
norm respectively (Definition 2.3). Again, now relying on concrete hardness ar-
guments, we obtain an improved condition on q only depending on β∞, which is
usually much smaller than β2. Moreover, as discussed after Definition 2.3, con-
straining the magnitude of the solution’s coefficients seems to be beneficial for
both theoretical and concrete hardness.
Rejection Sampling. The second modification we make is to better leverage
the rejection sampling result from Corollary E.1 adapted from [Lyu12]. This
step ensures that a discrete Gaussian sample shifted by a small enough vector is
statistically close to the original discrete Gaussian distribution, thus masking the
shift. However, this fact is not used to its full potential in the proof of [YAZ+19].
Doing so leads to smaller bounds in the verification equations and SIS norm
bounds as a result. Additionally, we note when computing the size of the proof
(in the non-interactive version), the authors treat the discrete Gaussian vectors
as mere vectors over Zq. We can thus reduce the amount of storage needed
as they have small coefficients with overwhelming probability, which results in
smaller proofs by up to 20%.
Compacted Commitments. The final optimization regards the case when the
proof system is run only once. It is sometimes better to increase the size p of
the challenges rather than re-iterate the proof several times in order to achieve
negligible soundness error. When running it once, we can compact the commit-
ments thus limiting the number of elements to send and the size of the proof as
a consequence. We note that compacting the commitments may not be desirable
when the proof system is run multiple times as it would involve committing to
the witness x multiple times.

E.1 Preliminaries

In what follows we sample the commitment randomness from a small distribu-
tion in order to optimize the parameters and the efficiency. For that, we employ
the following ternary distribution which we denote by ψ1, instead of Gaussian
distributions. It outputs 0 with probability 6/16 and −1, 1 both with probabil-
ity 5/16. This distribution has the advantage of being very efficiently sampleable
as it only requires the sampling of 4 uniformly random bits to output a sample
of ψ1. For x sampled from ψn1 , it holds that ∥x∥22 is distributed according to a
binomial distribution with parameter (n, 5/8). As such, Hoeffding’s inequality
gives the following.

Lemma E.1. Let n be a positive integer. Then for all δ > 0 it holds

Px←↩ψn
1

[
∥x∥2 ≥

√
(1 + δ)

5

8
n

]
≤ exp

(
−25

32
δ2n

)
.

The above probability becomes 0 when δ > 3/5.
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Proof. Let x be a random vector whose coefficient are independent and identi-
cally distributed according to ψ1. Therefore, for all i ∈ [n], x2i follows a Bernoulli
distribution with parameter 5/8. Then, define the random variable X = ∥x∥22 =∑
i∈[n] x

2
i . Hence, since X follows a binomial distribution B(n, 5/8). By Hoeffd-

ing’s inequality, for all t > 0, we have

P[X − E[X] ≥ t] ≤ e−2t
2/n.

Since E[X] = 5n/8, then it holds that for all δ > 0, setting t = 5nδ/8 > 0 gives

P[X ≥ (1 + δ)5n/8] ≤ e−25δ
2n/32.

Therefore, it holds

∀δ > 0,Px←↩ψn
1

[
∥x∥2 ≥

√
(1 + δ)

5

8
n

]
≤ exp(−25

32
δ2n).

We also recall the rejection sampling results from [Lyu12, Thm. 4.6, Lem.
4.7], which we adapt slightly to our case. In particular, we allow for a probabilistic
bound on the shifts from V , resulting in very small changes in the acceptance
probability and statistical distance.

Lemma E.2 (Adapted from [Lyu12, Thm. 4.6, Lem. 4.7]). Let n be a
positive integer, and V,Z two countable set of Rn. Let T be a positive real, and
we define VT = {v ∈ V : ∥v∥2 ≤ T}. Let h be a probability distributions on V
such that Pv∼h[v /∈ VT ] ≤ ε′ for some ε′ ≥ 0. Let f be a probability distribution
on Z, and (gv)v∈V a family of probability distributions on Z such that

∃M > 0,∀v ∈ VT ,Pz∼f [Mgv(z) ≥ f(z)] ≥ 1− ε,

for some ε ≥ 0. We then define two distributions

P1: Sample v←↩ h, and z←↩ gv. Output (v, z) with probability min(1, f(z)
Mgv(z)

).
P2: Sample v←↩ h, and z←↩ f . Output (v, z) with probability 1/M .

Then, it holds that P1 outputs something with probability at least (1−ε)(1−ε′)
M ,

and that

∆(P1,P2) ≤ max

(
ε′ +

ε+ ε′

2M
,
ε

M
+
ε′

2

(
1 +

1− ε
M

))
.

When ε = ε′ and M ≥ 1, we simply have ∆(P1,P2) ≤ ε(1 + 1/M).

Proof. For each v ∈ VT , we define Sv = {z ∈ Z : Mgv(z) ≥ f(z)}. We first
bound the probability that P1 outputs something, where the probability is over
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all the randomness. We denote this event by E1. We have the following

P[E1] =
∑

v′∈VT

h(v′)P[E1|v = v′] +
∑

v′ /∈VT

h(v′)P[E1|v = v′]

≥
∑

v′∈VT

h(v′)
∑
z∈Z

gv′(z) ·min

(
f(z)

Mgv′(z)
, 1

)

=
∑

v′∈VT

h(v′)

 ∑
z∈Sv′

f(z)

M
+

∑
z/∈Sv′

gv′(z)


≥

∑
v′∈VT

h(v′)
∑

z∈Sv′

f(z)

M

=
1

M

∑
v′∈VT

h(v′)Pz∼f [Mgv′(z) ≥ f(z)]

≥ 1− ε
M

∑
v′∈VT

h(v′)

=
1− ε
M

Pv∼f [v ∈ VT ]

≥ (1− ε)(1− ε′)
M

.

Further, we also need to lower bound P[E1]. We rely on the fact that
∑

v′ /∈VT
h(v′) =

Pv∼h[v /∈ VT ] ≤ ε′. We thus get

P[E1] =
∑

v′∈VT

h(v′)P[E1|v = v′] +
∑

v′ /∈VT

h(v′)P[E1|v = v′]

≤
∑

v′∈VT

h(v′)P[E1|v = v′] +
∑

v′ /∈VT

h(v′)

≤
∑

v′∈VT

h(v′)

 ∑
z∈Sv′

f(z)

M
+

∑
z/∈Sv′

gv′(z)

+ ε′

≤
∑

v′∈VT

h(v′)

 ∑
z∈Sv′

f(z)

M
+

∑
z/∈Sv′

f(z)

M

+ ε′

=
1

M
Pv∼h[v ∈ VT ] + ε′

≤ 1

M
+ ε′.

Next, let pi be the probability that Pi does not output anything. We have proven
that p1 ∈ [1−1/M−ε′, 1−(1−ε)(1−ε′)/M ], and we trivially have p2 = 1−1/M .
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Meanwhile, we have

∆(P1,P2) =
|p1 − p2|

2
+

1

2

∑
v∈V

∑
z∈Z
|P1(v, z)− P2(v, z)|

≤ |p1 − p2|
2

+
1

2

∑
v∈V

h(v)
∑
z∈Z

∣∣∣∣gv(z)min

(
f(z)

Mgv(z)
, 1

)
− f(z)

M

∣∣∣∣
=
|p1 − p2|

2
+

1

2

∑
v∈VT

h(v)
∑
z∈Z

∣∣∣∣gv(z)min

(
f(z)

Mgv(z)
, 1

)
− f(z)

M

∣∣∣∣
+

1

2

∑
v/∈VT

h(v)
∑
z∈Z

∣∣∣∣gv(z)min

(
f(z)

Mgv(z)
, 1

)
− f(z)

M

∣∣∣∣.
We then bound the two sums separately. First, for all v in VT , it holds that

∑
z∈Z

∣∣∣∣gv(z)min

(
f(z)

Mgv(z)
, 1

)
− f(z)

M

∣∣∣∣ = ∑
z∈Sv

∣∣∣∣f(z)M
− f(z)

M

∣∣∣∣+ ∑
z/∈Sv

∣∣∣∣gv(z)− f(z)

M

∣∣∣∣
=

∑
z/∈Sv

f(z)

M
− gv(z)

≤
∑
z/∈Sv

f(z)

M

=
1

M
Pz∼f [z /∈ Sv]

≤ ε

M
.

This means that the first sum can be bounded by ε
2M Pv∼h[v ∈ VT ] ≤ ε

2M . To
bound the second sum, we use the triangle inequality and for all v in V \ VT we
get that

∑
z∈Z

∣∣∣∣gv(z)min

(
f(z)

Mgv(z)
, 1

)
− f(z)

M

∣∣∣∣ ≤ gv(Z) + f(Z)

M
= 1 +

1

M
,

as the minimum in the sum can be bounded by 1. As a result, the second sum
can be bounded above by 1

2 (1 +
1
M )Pv∼h[v /∈ VT ] ≤ ε′(M+1)

2M . Finally, from the
bounds derived on p1, we have |p1 − p2| ≤ max(ε′, ε(1− ε′)/M). We thus get

∆(P1,P2) ≤
ε+ ε′(M + 1)

2M
+max

(
ε′

2
,
ε(1− ε′)

M

)
= max

(
ε′ +

ε+ ε′

2M
,
ε

M
+
ε′

2

(
1 +

1− ε
M

))
.

It is easy to verify that when M ≥ 1 and ε′ = ε, the first term in the maximum
above is the largest, and equals ε(1 + 1/M).
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We then obtain the following corollary. We formulate it to give the freedom to
choose the repetition rate M and the tail bound error. Note that in [Lyu12], M
is determined by T , σ and the tail bound error. We instead choose M and the
tail bound error, and then determine the minimal σ needed.

Corollary E.1. Let n, p be positive integers. Let L be a lattice of rank n, and
let V = [−p, p]n. Let T = p

√
5n(1 + δ)/8, where δ =

√
32(λ+ 1)/(25n log2 e).

Define h the distribution obtained by sampling α from U([−p, p]) and s from ψn1
and outputting v = αs. Further, let M > 1, t =

√
(λ+ 2)/(π log2 e) and de-

fine σmin = (−t +
√
t2 + ln(M)/π)−1 · T . Let σ ≥ σmin. We now define two

distributions

P1: Sample v ←↩ h and y ←↩ DL,σ. Define z = y + v. Output (v, z) with
probability min(1,

DL,σ(z)
M ·DL,σ(z−v) ).

P2: Sample v←↩ h and z←↩ DL,σ. Output (v, z) with probability 1/M .

Then, it holds that P1 outputs something with probability at least (1− 2−λ)/M ,
and that ∆(P1,P2) ≤ 2−(λ+1)(1 + 1/M) ≤ 2−λ.

Proof. Due to the definition of h, T, δ and Lemma E.1, we have Pv∼h[∥v∥2 >
T ] ≤ exp(− 25

32δ
2n) = 2−λ−1. Using the notations from Lemma E.2, we set ε′ =

2−λ−1. Now let f = DL,σ and (gv)v∈V = (v + DL,σ)v∈V . We simply have to
verify that

∀v ∈ VT ,Pz∼f [Mgv(z) ≥ f(z)] ≥ 1− 2−λ−1. (13)

Let v ∈ VT , and z←↩ DL,σ. Then, we have

f(z)

gv(z)
=

DL,σ(z)
DL,σ(z− v)

= exp
( π

σ2
(∥v∥22 − 2⟨v,z⟩)

)
.

Except with probability at most 2e−πt
2

= 2−λ−1, it holds that |⟨v,z⟩| ≤ σt∥v∥2
by Lemma 2.3. We now condition on |⟨v,z⟩| ≤ σt∥v∥2. It yields

f(z)

gv(z)
≤ exp

( π

σ2
(∥v∥22 + 2σt∥v∥2)

)
≤ exp

(
π((T/σ)2 + 2t(T/σ))

)
.

The way we defined σmin, we have that T/σmin is the only positive solution
to x2 + 2tx − ln(M)/π = 0. Since, we have σ ≥ σmin, we have that T/σ is
between the two solutions of the equation and as such we have that (T/σ)2 +
2t(T/σ)− ln(M)/π ≤ 0. It can be re-written as

exp
(
π((T/σ)2 + 2t(T/σ))

)
≤M,
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Hence, conditioned on |⟨v,z⟩| ≤ σt∥v∥2, it holds that f(z)/gv(z) ≤ M . We
obtain

Pz∼DL,σ

[
f(z)

gv(z)
≤M

]
= Pz[|⟨v,z⟩| ≤ σt∥v∥2]Pz

[
f(z)

gv(z)
≤M

∣∣∣∣ |⟨v,z⟩| ≤ σt∥v∥2]
+ Pz[|⟨v,z⟩| > σt∥v∥2]Pz

[
f(z)

gv(z)
≤M

∣∣∣∣ |⟨v,z⟩| > σt∥v∥2

]
≥ (1− 2−λ−1)Pz

[
f(z)

gv(z)
≤M

∣∣∣∣ |⟨v,z⟩| ≤ σt∥v∥2]
= 1− 2−λ−1.

thus proving Equation (13) as required. Then, we can set ε = 2−λ−1 = ε′.
Invoking Lemma E.2 yields the result. The probability of outputting something
is at least (1− ε)2/M ≥ (1− 2ε)/M = (1− 2−λ)/M .

The security properties of the zero-knowledge argument rely on the Short
Integer Solution (SIS) problem [Ajt96] and the Learning With Errors (LWE)
problem [Reg05] in Hermite Normal Form (HNF).

Definition E.1 ((HNF) Short Integer Solution). Let n,m, q be positive
integers, and β2 ≥ β∞ ≥ 1. The Hermite Normal Form Short Integer Solution
problem, denoted by HNF-SIS∞,2n,m,q,β∞,β2

, consists in finding x ∈ L⊥q ([In|A′])
given A′ ←↩ U(Zn×(m−n)q ) such that 0 < ∥x∥∞ ≤ β∞ and 0 < ∥x∥2 ≤ β2.

We say that HNF-SIS is δ-hard if for any probabilistic polynomial-time (PPT)
adversary A, the probability of A finding such a vector is at most δ over the
randomness of A′.

Definition E.2 ((HNF) Learning With Errors). Let n,m, q be positive in-
tegers, and ψ a probability distribution over Z. The Hermite Normal Form Learn-
ing With Errors problem, denoted by HNF-LWEn,m,q,ψ, asks to distinguish be-
tween the following two distributions: (1) (A,As+e mod q) with A←↩ U(Zm×nq ),
s←↩ ψn and e←↩ ψm; (2) (A,b) with A←↩ U(Zm×nq ) and b←↩ U(Zmq ).

We say that HNF-LWE is δ-hard if for any PPT adversary A, the advantage
of A in distinguishing both distributions is at most δ.

Finally, we briefly recall the security properties of a commitment scheme
aCommit(m; ρ) which commits to a message m under randomness ρ. We say
that aCommit is δ-hiding if a PPT adversary A has advantage at most δ in the fol-
lowing game: A chooses m0 ̸= m1, receives aCommit(mb; ρ) where b is a random
bit, and outputs b′ ∈ {0, 1}. A wins if b′ = b. We say that aCommit is δ-binding
if a PPT adversary has advantage at most δ in outputting (m0, ρ0), (m1, ρ1) such
that m0 ̸= m1 and aCommit(m0; ρ0) = aCommit(m1; ρ1).

E.2 The Optimized Protocol.

We now present the main protocol with the optimizations we presented. Let ℓ1, ℓ2
be two positive integers. We denote by Lx the size of the witness vector, and LM
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the size of the quadratic constraints set. We also define L = ℓ1 + ℓ2 + Lx +
LM. As is done in [YAZ+19], we employ the homomorphic commitment scheme
from [BDL+18] over the integers. More precisely, we define

C =

[
Iℓ1 C1

0Lx+LM×ℓ1 ILx+LM C2

]
∈ Z(ℓ1+Lx+LM)×L

q ,

with C1 ←↩ U(Zℓ1×(Lx+LM+ℓ2)
q ), C2 ←↩ U(Z(Lx+LM)×ℓ2

q ). Let p = 2λ be the
maximal magnitude of the challenges, and M > 1 the repetition rate of the re-
jection sampling procedure. We then set δ, t, T as per Corollary E.1, namely δ =√

32
25 log2 e

· λ+1
L , t =

√
(λ+ 2)/(π log2 e) and T = p

√
5(1 + δ)/(8L). Next de-

fine s2 = (−t+
√
t2 + ln(M)/π)−1 ·T . We define the rejection sampling function

by p(v, z) = min(1,DZL,s2(z)/(M · DZL,s2(z− v))) for all v, z ∈ ZL. Finally, let
aCommit be an auxiliary commitment scheme with randomness space {0, 1}κ and
message space Zk+2(ℓ1+Lx+LM)

q , and that is binding and hiding. The following
interactive protocol involves a prover P with public input A ∈ Zk×Lx

q , y ∈ Zkq ,
andM⊆ [Lx]

3 with |M| = LM and private input x ∈ ZLx
q . The verifier V is only

given the public input. In the protocol, P must convince V in zero-knowledge
that they know x verifying{

Ax = y mod q

∀(h, i, j) ∈M,x[h] = x[i]x[j] mod q
(14)

Theorem E.1. The protocol described in Figure E.1 is complete with complete-
ness error at most δc = 1− 1/M + negl(λ).

We define β∞ = 8ps2 log2 L and β2 = 8ps2
√
L. Assume HNF-SISℓ1,L,q,β∞,β2

is δSIS-hard and that aCommit is δab -binding. Then, there exists an extractor E
that for any A,y,M and any PPT cheating prover P̂, if P̂ can convince a
verifier V without knowing a witness with probability at least 2/(2p+ 1) + ε for
a non-negligible ε, then E can extract an x that verifies (14) in polynomial time,
except with probability δSIS.

Finally, assume that HNF-LWEℓ2,ℓ1+Lx+LM,q,ψ1
is δLWE-hard, and that the

commitment aCommit is δah-hiding. Then, there exists a simulator S that with
input A,y,M outputs a transcript that is (δah + 2−λ−1(1 + 1/M) + δLWE)-
indistinguishable from the transcript of an honest execution of the protocol with
a prover knowing a witness x satisfying (14).

Although the proof of Theorem E.1 follows naturally from that of [YAZ+19],
we give it in Section E.3. The above protocol can be turned into a non-interactive
zero-knowledge argument of knowledge via the Fiat-Shamir heuristic in the ran-
dom oracle model. In this case, the resulting proof does not contain the whole
transcript as some elements are uniquely determined by the others for the proof
to be correct. More precisely, the proof is π = (α, ρ, c1, z0, z1) where the chal-
lenge α = H(A,y,M, Caux;AUX) with AUX an auxiliary input. The verifica-
tion algorithm then re-computes t from the verification equation (4), c2 from
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Prover P[A,y,M;x] Verifier V[A,y,M]

r←↩ U(ZLx
q )

t← Ar mod q
s1 ←↩ ψL

1
s2 ←↩ DZL,s2

Let a,b be LM-dimensional vectors
For e ∈ [LM], let (h, i, j) be the e-th element of M
a[e]← r[h]− r[i]x[j]− r[j]x[i]
b[e]← −r[i]r[j]

c1 ← Cs1 +

0ℓ1

x

a

 mod q

c2 ← Cs2 +

0ℓ1

r

b

 mod q

ρ←↩ U({0, 1}κ)
Caux ← aCommit(t∥c1∥c2; ρ)

Caux

α←↩ U([−p, p])
α

z0 ← αx+ r
z1 ← αs1 + s2
Abort with probability 1− p(αs1, z1)

t, c1, c2, ρ, z0, z1

Let d be an LM-dimensional vector
For e ∈ [LM], let (h, i, j) be the e-th element of M
d[e]← αz0[h]− z0[i]z0[j]

Accept if:
(1) Caux = aCommit(t∥c1∥c2; ρ)
(2) ∥z1∥∞ ≤ s2 log2 L
(3) ∥z1∥2 ≤ s2

√
L

(4) Az0 = αy + t mod q

(5) Cz1 +

0ℓ1

z0
d

 = αc1 + c2 mod q

Fig. E.1. Zero-knowledge Argument of Knowledge for Equation (14) with compacted
commitments.

equation (5) and Caux from equation (1). We end up with a proof of size

|π| = ⌈log2(2p+ 1)⌉+ κ+ (ℓ1 + Lx + LM)⌈log2 q⌉+ Lx⌈log2 q⌉
+ L⌈log2(s2 log2 L)⌉ (15)

= ⌈log2(2p+ 1)⌉+ κ+ (ℓ1 + 2Lx + LM)⌈log2 q⌉+ L⌈log2(s2 log2 L)⌉ (16)

The last term in (15) does not appear in the proof size of [YAZ+19] as they
treat z1 (and z2 in their case) as vectors in Zq. However, due to the rejection
sampling, one has that they are Gaussian vectors and we can therefore reduce
the amount of storage needed. Depending on the chosen parameters, this simple
observation reduces the proof size by up to 20%.

59



E.3 Proof of Theorem E.1

Proof. Completeness: Consider an honest execution of the protocol, i.e., between
a prover P[A,y,M;x] with x satisfying (14), and a verifier V[A,y,M]. Since
the execution is honest and since aCommit does not use any internal randomness
other than ρ, (1) is trivially verified. Next, due to the rejection sampling, P
respond in the third move only with probability p(αs1, z1). By Corollary E.1, it
holds that the prover responds with probability at least (1−2−λ)/M , and that z1
is within statistical distance 2−λ−1(1+1/M) of DZL,s2 . We further condition on
a non-aborting transcript. Lemma 2.3 combined with the union bound gives

P[∥z1∥∞ > s2 log2 L∨ ∥z1∥2 > s2
√
L] ≤ 2−λ−1

(
1 +

1

M

)
+ 2−2L + 2Le−π log2

2 L.

Equation (4) is easily verified as Az0 = A(αx+r) = α(Ax)+Ar = αy+t mod q.
Now, let e ∈ [LM] and let (h, i, j) be the e-th element ofM. We have

d[e] = αz0[h]− z0[i]z0[j]

= α(αx[h] + r[h])− (αx[i] + r[i])(αx[j] + r[j])

= α2(x[h]− x[i]x[j]) + α(r[h]− r[i]x[j]− r[j]x[i]) + (−r[i]r[j])
= αa[e] + b[e] mod q.

As a result, it holds that d = αa+ b mod q. It thus yields

Cz1 +

0ℓ1z0
d

 = C(αs1 + s2) +

 0ℓ1
αx+ r

αa+ b

 mod q

= α

Cs1 +

0ℓ1x
a

+

Cs2 +

0ℓ1r
b

 mod q

= αc1 + c2 mod q,

proving (5). Combining it all yields

P[⟨P[A,y,M;x],V[A,y,M]⟩ ≠ 1] ≤ 1− 1/M + negl(λ).

Extractor: Now, assume that a cheating prover P̂ can convince the verifier that
they possess a witness for (A,y,M) with probability 2/(2p + 1) + ε for some
non-negligible ε. We construct the extractor E that uses P̂ via black-box access.
First, E runs P̂ until it obtains an accepting transcript (t, c1, c2, α, z0, z1). Be-
tween each run, E rewinds the inner randomness of P̂ to have the same first move
response. This first transcript is obtained in expected time T1 = (2/(2p + 1) +

ε)−1. Then, E re-iterates the same process but sends challenges α′ ̸= α to P̂. As-
suming aCommit is δab -binding and since the first move always uses the same ran-
domness, E can therefore obtain another accepting transcript (t, c1, c2, α′, z′0, z′1)
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in expected time T2 = (1/(2p+1)+ ε− δab )−1. It then continues running P̂ with
challenges α′′ /∈ {α, α′} to get a third accepting transcript (t, c1, c2, α

′′, z′′0 , z
′′
1)

in expected time T3 = (ε − δab )
−1. The total expected time is therefore T =

T1 + T2 + T3 ≤ poly(λ). Finally, the extractor E outputs the witness x =
(α′ − α)−1(z′0 − z0) mod q. We now analyze the correctness of E . We further
define ∆1 = α′ − α and ∆2 = α′′ − α. First, we have

Ax = ∆−11 (Az′0 −Az0) mod q

= ∆−11 (α′y + t− (αy + t)) mod q (by (4))

= ∆−11 (α′ − α)y mod q

= y mod q.

We now prove that x verifies the quadratic constraints except with probabil-
ity δSIS. For that, we define e′ = z′1−z1, e′′ = z′′1−z1, f ′ = z′0−z0, f ′′ = z′′0−z0,
and g′ = d′ − d, g′′ = d′′ − d. The verification equation (5) gives

Ce′ +

0ℓ1f ′
g′

 = ∆1c1 mod q

Ce′′ +

0ℓ1f ′′

g′′

 = ∆2c1 mod q.

Cancelling the right-hand side provides us with

C(∆2e
′ −∆1e

′′) +

 0ℓ1
(∆2f

′ −∆1f
′′)

(∆2g
′ −∆1g

′′)

 = 0 mod q.

The first block then gives [Iℓ1 |C1](∆2e
′ −∆1e

′′) = 0 mod q. Yet, we can bound
the norms of ∆2e

′ − ∆1e
′′ using the verification equations (2) and (3) and

get ∥∆2e
′ −∆1e

′′∥∞ ≤ 8ps2 log2 L = β∞ and ∥∆2e
′ −∆1e

′′∥2 ≤ 8ps2
√
L = β2.

Since we assume that HNF-SISℓ1,L,q,β∞,β2 is δSIS-hard, then no PPT adversary
can solve it with advantage more than δSIS. Hence, we get that ∆2e

′−∆1e
′′ = 0

except with probability at most δSIS. We now condition on ∆2e
′ − ∆1e

′′ = 0.
The second and third blocks in the above yields ∆2f

′ = ∆1f
′′ mod q and ∆2g

′ =
∆1g

′′ mod q. We now define r = z0 − αx mod q. Then

z′0 − α′x = z′0 −∆1x− αx = z′0 − f ′ − αx mod q = r mod q (17)

z′′0 − α′′x = z′′0 −∆2x− αx = z′′0 −∆2∆
−1
1 f ′ − αx

= z′′0 −∆2∆
−1
2 f ′′ − αx mod q

= r mod q. (18)
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Now let e ∈ [LM] and (h, i, j) be the e-th element ofM. We have

d[e] = αz0[h]− z0[i]z0[j]

= α(αx[h] + r[h])− (αx[i] + r[i])(αx[j] + r[j])

= α2(x[h]− x[i]x[j]) + α(r[h]− r[i]x[j]− r[j]x[i]) + (−r[i]r[j])
= c[e]α2 + a[e]α+ b[e].

Due to Equations (17) and (18), we also have d′ = α′
2
c + α′a + b and d′′ =

α′′
2
c+ α′′a+ b. Hence, since ∆−11 g′ = ∆−12 g′′ mod q, we obtain

(α′ + α)c+ a = (α′′ + α)c+ a mod q

which leads to (α′′−α)c = 0 mod q. Since α′′ ̸= α′ and q is prime, then α′′−α′ ∈
Z×q and therefore c = 0 mod q. This proves that for all (h, i, j) ∈ M, x[h] =
x[i]x[j] mod q. As a result, the output of E is correct except with probability at
most δSIS.
Simulator: We construct the following simulator S that simulates the distribution
of an honest transcript but only using the public inputs. It proceeds as follows

1. α←↩ U([−p, p])
2. z0 ←↩ U(ZLx

q )

3. t← Az0 − αy mod q
4. For e ∈ [LM], let (h, i, j) be the e-the element ofM. Then, d[e]← αz0[h]−

z0[i]z0[j]
5. z1 ←↩ DZL,s2

6. c1 ←↩ U(Zℓ1+Lx+LM
q )

7. c2 ← Cz1 +

0ℓ1z0
d

− αc1 mod q

8. ρ←↩ U({0, 1}κ)
9. Caux ← aCommit(t∥c1∥c2; ρ)

10. C ′aux ← aCommit(0; ρ)
11. Output (Caux, α, t, c1, c2, ρ, z0, z1) with probability 1/M and (C ′aux, α,⊥)

otherwise.

We now prove that the output of S is computationally indistinguishable from the
transcript of an honest execution of the protocol. We proceed by game hopping.
Game G0: This corresponds to an honest execution.
Game G1: Here, the prover P retrieves the challenge α from the honest verifier
by sending aCommit(0; ρ) for some ρ←↩ U({0, 1}κ). It then rewinds the verifier
to its initial state including its inner randomness. It then proceeds as follows:

1. r←↩ U(ZLx
q )

2. t← Ar mod q
3. s1 ←↩ ψL1
4. s2 ←↩ DZL,s2
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5. For e ∈ [LM], let (h, i, j) be the e-the element of M. Then, a[e] ← r[h] −
r[i]x[j]− r[j]x[i] and b[e]← −r[i]r[j]

6. c1 ← Cs1 +

0ℓ1x
a

 mod q

7. c2 ← Cs2 +

0ℓ1r
b

 mod q

8. z0 ← αx+ r
9. z1 ← αs1 + s2

10. Set the binary variable abort to 1 with probability 1− p(αs1, z1)
11. ρ←↩ U({0, 1}κ)
12. Caux ← aCommit(t∥c1∥c2; ρ) and it sends Caux to the verifier
13. When receiving α′ from the verifier, the prover aborts if abort = 1 and

otherwise sends (t, c1, c2, ρ, z0, z1).

Game G2: It is identical to G1 except in the computation of t and c2. They are
instead computed to verify equations (4) and (5) in the verification:

1. t← Az0 − αy mod q
2. For e ∈ [LM], let (h, i, j) be the e-the element ofM. Then, d[e]← αz0[h]−

z0[i]z0[j]

3. c2 ← Cz1 +

0ℓ1z0
d

− αc1 mod q

Game G3: It is identical to G2 except for the computation of Caux.

1. Caux ← aCommit(0; ρ) if abort = 1 and Caux ← aCommit(t∥c1∥c2; ρ) other-
wise.

Game G4: It is identical to G3 except in the computation of z1 and abort.

1. z1 ←↩ DZL,s2

2. Set abort = 1 with probability 1− 1/M and 0 otherwise

Game G5: It is identical to G4 except in the computation of c1.

1. c1 ←↩ U(Zℓ1+Lx+LM
q )

Game G6: It is identical to G5 except in the computation of z0

1. z0 ←↩ U(ZLx
q )

We now prove that each game is indistinguishable from the next. First, since
the verifier V is honest, the challenge α′ is fully determined by its inner random-
ness. As it is rewinded, we always have α′ = α. All other variables are identically
distributed, which gives

∆(ViewG0
(V),ViewG1

(V)) = 0. (19)
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By the completeness of the protocol, t and c2 are uniquely determined by the
other variables and the verification equations (4) and (5). Thus

∆(ViewG1
(V),ViewG2

(V)) = 0. (20)

Since aCommit is δah-hiding, it holds that a PPT adversary A can distinguish
between games G2 and G3 with advantage at most δah.

|P[A(ViewG2
(V)) = 1]− P[A(ViewG3

(V)) = 1]| ≤ δah. (21)

Then, by Corollary E.1, it directly holds that the computation of z1 and abort
in G4 is within statistical distance 2−λ−1(1 + 1/M) of that of game G3. Hence

∆(ViewG3(V),ViewG4(V)) ≤ 2−λ−1(1 + 1/M). (22)

We then use the hiding property of the commitment scheme from [BDL+18]
to argue that G4 and G5 are indistinguishable under the LWE assumption.
The details are already provided in [YAZ+19]. More precisely, since we assume
that HNF-LWEℓ2,ℓ1+Lx+LM,q,ψ1

is δLWE-hard, then for any PPT adversary A
we get

|P[A(ViewG4
(V)) = 1]− P[A(ViewG5

(V)) = 1]| ≤ δLWE. (23)

In G5, z0 = αx+ r where r is uniform in ZLx
q and independent of αx. Hence, z0

is also uniform in ZLx
q . Thus:

∆(ViewG5(V),ViewG6(V)) = 0. (24)

Then, the distribution of the transcript in G6 no longer depends on the witness x
and is exactly the same as the output of S. Combining Equations (19), (20), (21),
(22), (23) and (24) yields∣∣P[A(ViewG0(V)) = 1]− P[A(S(A,y,M)) = 1]

∣∣ ≤ δah+2−λ−1(1+1/M)+ δLWE,

as desired.

F Instantiating the Protocols

In this section we show how to instantiate the different relations to be proven
in zero-knowledge with the proof system of [YAZ+19]. More precisely, we need
to have zero-knowledge arguments for the opening of an Ajtai commitment, and
for the verification equation of our signature with efficient protocols. We detail
both in Sections F.1 and F.2. For completeness and for performance comparison
purposes, we also instantiate the construction Libert et al. [LLM+16] with the
framework of [YAZ+19].

When concretely evaluating these proofs, we consider the optimizations pro-
posed in Appendix E, consisting in compacting the commitments of the original
framework and in better parameter selections, which leads to substantial effi-
ciency improvements.
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F.1 Proof of Commitment Opening.

Consider a prover with private input m ∈ {0, 1}m3 and r′ ∼ DZm1 ,σ3
, and

public input pp, pk. Recall that by Lemma 2.3, we have ∥r′∥∞ ≤ σ3 log2m1 with
overwhelming probability. We can thus define α3 = ⌈σ3 log2m1⌉ and assume
that r′ ∈ [−α3, α3]

m1 . The prover wishes to prove that

Ar′ +Dm = c mod q ∧ ∥r′∥∞ ≤ α3 ∧ m ∈ {0, 1}m1 .

We thus transform this relation into one that fits the Yang et al. framework.
For that, we first define a3 = α31m1 . Next, we define r′′ = r′ + a3 ∈ [0, 2α3]

m1 .
Let kα3 = ⌊log2 2α3⌋+1 and define11 gα3 = [⌊(2α3 +2i−1)/2i⌋]i∈[kα3 ]

∈ Z1×kα3 ,
and Gα3 = Im1 ⊗ gα3 . We then denote by r′ ∈ {0, 1}m1kα3 a binary decomposi-
tion of r′′ along gα3 , i.e., that verifies r′′ = Gα3r

′. Such a decomposition can be
efficiently computed. It now suffices to prove the following

AGα3
r′ +Dm = c+Aa3 mod q ∧ r′ ∈ {0, 1}m1kα3 ∧ m ∈ {0, 1}m3 .

By defining A = [AGα3
|D], x = [r′

T |mT ]T , y = c+Aa3 andM = {(i, i, i); i ∈
[m1kα3

+m3]}, we have ((A,y,M);x) ∈ R∗. The length of the witness is Lx =
m1kα3 + m3, and the size of M is LM = Lx. Note that since q is prime, the
constraint x[i] = x[i]2 mod q indeed implies that x[i] ∈ {0, 1}.

When m1 ≫ λ, the fast mode of Section 4.2 compresses the size of the
witness and the constraint set as we now prove that Hr′ has coefficients bounded
by σ3

√
m1 log2 λ. It yields a witness of size Lx = m1+k(⌊log2(2σ3

√
m1 log2 λ)⌋+

1) +m3, with k = λ/ log2(9/5), and LM = Lx −m1.

F.2 Proof of Message-Signature Pair Possession.

Here, the prover has a private input m ∈ {0, 1}m3 and (τ,v) ∈ Zq×Zm and has
to prove

Av1 −Bv2 + τGv2 −Dm = u mod q,

where v1 ∈ Zm1 and v2 ∈ Zm2 , with ∥v1∥∞ ≤ σ1 log2m1, ∥v2∥∞ ≤ σ log2m2,
τ ∈ T and m ∈ {0, 1}m3 . We define

α1 = ⌈σ1 log2m1⌉ kα1
= ⌊log2 2α1⌋+ 1 gα1

=
[⌊
(2α1 + 2i−1)/2i

⌋]
i∈[kα1

]

α = ⌈σ log2m2⌉ kα = ⌊log2 2α⌋+ 1 gα =
[⌊
(2α+ 2i−1)/2i

⌋]
i∈[kα]

kq′ = ⌊log2 q′⌋+ 1 gq′ =
[
⌊(q′ + 2i−1)/2i⌋

]
i∈[kq′ ]

Further, we define a1 = α11m1 and a = α1m2 . Next, we set Gα1 = Im1 ⊗ gα1 ,
and Gα = Im2⊗gα. We define v′1 = v1+a1, and v′2 = v2+a. We then denote vj
their respective binary decomposition along gα1

,gα, i.e., such that Gα1
v1 = v′1,

and Gαv2 = v′2. We also denote by τ the binary decomposition of τ along gq′

such that τ = gq′τ . We need however to deal with the product term τv2. We use
11 Choosing gα3 this way ensures that for any binary vector x, gα3x ∈ [0, 2α3].
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the same idea as for subset-sums from the framework of Yang et al. [YAZ+19].
For that, we define u2 = Gv2 ∈ Zn, and u′2 = τu2. This gives an additional
linear relation, but fewer decompositions. The prover now has to prove that

AGα1
v1 −BGαv2 + u′2 −Dm = u+Aa1 −Ba mod q

GGαv2 − u2 = Ga mod q

−τ + gq′τ = 0 mod q

We thus define x = [τ |τ |v1|v2|m|u2|u′2] ∈ ZLx , where Lx = 1 + kq′ +m1kα1 +
m2kα +m3 + 2n, as well as

A =

0n×1 0n×kq′ AGα1
−BGα −D 0n×n In

0n×1 0n×kq′ 0n×m1kα1
GGα 0n×m3

−In 0n×n
−1 gq′ 0n×m1kα1

01×m2kα 01×m3
01×n 01×n


and y = [u + Aa1 − Ba|Ga′|0] mod q ∈ Z2n+1

q . Finally, we define M1 =
{(i, i, i); i ∈ [2, 1 + kq′ + m1kα1

+ m2kα + m3]}, which corresponds to the co-
efficients that need to be binary. We then need to add the relations u′2 = τu2.
For that, we define

M2 = {(1 + kq′ +m1kα1
+m2kα +m3 + n+ i, 1,

1 + kq′ +m1kα1
+m2kα +m3 + i); i ∈ [n]},

and constructM =M1∪M2. The witness has length Lx, andM is of size LM =
Lx − n − 1. Using the fast mode instead proves that H1v1,H2v2 have coeffi-
cients bounded by σ1

√
m1 log2 λ and σ

√
m2 log2 λ respectively. It yields a wit-

ness of size Lx = 1 + kq′ + m1 + m2 + m3 + 2n + k(⌊log2(2σ1
√
m1 log2 λ)⌋ +

⌊log2(2σ
√
m2 log2 λ)⌋+2), with k = λ/ log2(9/5), and LM = Lx−m1−m2−n−1.

Remark F.1. In the case where q′ = q, the tag does not need to be decomposed
in binary form. However, when the proof system is run only a few number of
times, we need to drastically increase the size of challenges to reach a negligi-
ble soundness error. For example, to obtain a negligible soundness error in one
iteration, one needs to take challenges of size p = 2λ. Because the SIS bound
for the proof system is β∞ = poly(λ) · p2, one must take q to be polynomially
larger than p2. In Algorithm 3.1, choosing q′ = q then leads to a tag space T of
size at least poly(λ)22λ. As a result, the proof of Lemma 3.1 incurs an exponen-
tial reduction loss of 1/|T | = 2−2λ/poly(λ). To circumvent this limitation, one
can choose q′ = poly(λ) ≪ q to make the reduction loss acceptable. It implies
that the signature verification must ensure that τ < q′, which we consider when
proving possession of a message-signature pair.

F.3 Instantiating [LLM+16] with R∗

The original construction by Libert et al. [LLM+16] uses the binary decom-
position of the commitment c instead of using the commitment itself. It ad-
ditionally bases itself on the Boyen signature scheme, and involves an extra
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matrix D ∈ Zn×2nkq , where k = ⌈log2 q⌉. For a fair comparison, we detail here
how to use the framework from [YAZ+19] for the construction of [LLM+16]. For
this section only, we set the parameters differently according to [LLM+16]. We
thus have m = 2nk, σ1 = σ

√
1 + 8(N + 1)2m3. Also, prior to being signed, the

message blocks are encoded using b 7→ (1− b, b). This means that although the
relevant message information is of mN bits, it is treated as a message of 2mN
bits. To be thorough, one would need to prove that the message is properly en-
coded in addition to proving that the message is binary. This can be done by
proving the additional relation (ImN ⊗ [1 1])m = 1mN which proves that the
consecutive bits b, 1− b indeed sum to 1. Since the relation is proven modulo q,
one must make sure that the coefficients are m are also proven binary. For sim-
plicity, we do not take this into account in the estimations of Table G.1. The
matrices Ai are uniform in Zn×mq , but the commitment key matrices Di are
uniform in Z2n×2m

q . We define H = I2n ⊗ [20 . . . 2k−1]. Since the binary decom-
position operator is non-linear, the verification equation has to be splitted into
two equations as follows.{

Av1 +A0v2 +
∑
i∈[ℓ] Ai(τ [i]v2)−Dw = u mod q,

Hw = D0r−
∑
i∈[N ] Dimi mod q,

with ∥v1∥∞, ∥v2∥∞ ≤ σ log2m, ∥r∥∞ ≤ σ1 log2 2m as well as τ ∈ {0, 1}ℓ,m ∈
{0, 1}2mN , and w ∈ {0, 1}2nk. We define α, α1, kα, kα1 ,gα,gα1 in a similar way
as Section F. We then define a = α1m, a1 = α112m and set Gα = Im ⊗ gα
and Gα1

= I2m ⊗ gα1
. Then, we define ui = Aiv2 ∈ Zn, as well as u′i = τ [i]ui

constituting 2ℓ vectors12 of Zn. The verification equations thus become


AGαv1 +A0Gαv2 +

∑
i∈[ℓ] u

′
i −Dw = u+ (A+A0)a mod q,

D0Gα1r+
∑
i∈[N ] Dimi −Hw = D0a1 mod q,

AiGαv2 − ui = Aia for all i ∈ [ℓ],

We thus define x = [τ |v1|v2|u1| . . . |uℓ|u′1| . . . |u′ℓ|w|r|m1| . . . |mN ] ∈ ZLx , where
Lx = ℓ+ 2mkα + 2ℓn+m+ 2mkα1 + 2mN . We then define

A =


0 AGα A0Gα 0 · · · 0 In · · · In −D 0 · · · · · · 0

−H D0Gα1
D1 · · · DN

A1Gα −In
...

. . .
AℓGα −In

 ,

12 Each bit of the tag not only represents a witness in itself but also entails two full
intermediate witnesses ui,u

′
i due to τ [i]v2. It leads to a much larger witness vector,

which is a source of inefficiencies.
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and

y =


u+ (A+A0)a

D0a1
A1a

...
Aℓa

 .

Finally, we defineM1 = {(i, i, i); i ∈ [ℓ+2mkα]∪ [ℓ+2mkα+2ℓn+1, L]}, which
corresponds to having all the coefficients of x to be binary, except for the ui,u

′
i.

We then need to add the relations u′i = τ [i]ui for i ∈ [ℓ]. For that, we define

M2 = {(ℓ+2mkα+ ℓn+n(i−1)+ j, i, ℓ+2mkα+n(i−1)+ j); (i, j) ∈ [ℓ]× [n]},

and constructM =M1∪M2. The witness has length Lx, andM is of size Lx−
ℓn as well. The fast mode of Section 4.2 reduces the witness and relation set sizes
to 

Lx = ℓ(2n+ 1) +m(5 + 2N) + k(2⌊log2(2σ
√
m log2 λ)⌋

+⌊log2(2σ1
√
2m log2 λ)⌋+ 3)

LM = Lx − ℓn− 4m,

where k = λ/ log2(9/5) according to Lemma 4.1.

G Parameters and Efficiency

In this section, we instantiate the two versions of our signature scheme with
concrete parameters in order to reach λ = 128 bits of quantum security. All the
concrete hardness estimates for the SIS,LWE,M-SIS,M-LWE problems are done
with the Core-SVP methodology, using the BKZ cost model with sieving SVP
oracle. In this model, the classical security is given by λc = 0.292b [BDGL16]
and the quantum security by λq = 0.265b [Laa15], where b is the BKZ blocksize.
We explain our choice of parameters for both the standard and module version
by encompassing the zero-knowledge arguments of message-signature possession.
We however note that for a standard use of the signature schemes, one could
choose different parameters. We choose to instantiate it for Q = 230 signature
queries, representing the number of signature issuance. We believe this choice is
reasonable for most applications.

G.1 Instantiating the Standard Signature

We provide in Table G.2 an example parameter set along with the size of the
keys, signature, and proof of possession for the signature of Section 3. It makes
use of the zero-knowledge framework of [YAZ+19] improved with the enhanced
fast mode from Section 4.2 and the optimizations of Appendix E (except the
compacted commitments, as explained below) that we have introduced.
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As explained in Remark F.1, in order to have as few iterations of the proof
system as possible, we need to choose large enough challenges, which in turns re-
quire to take a sufficiently large modulus. We then start by choosing the number
of iterationsN and the challenge size p, which imply we must take q ≥ poly(λ)·p2.
To avoid an exponential reduction loss, we set q′ ≈ Q. We then fix n so that
when the other parameters are set using Algorithm 3.1, we obtain a quantum
security of λ. Since the proofs of Lemma 3.1 and 3.2 both have a reduction
loss between the advantage of a signature forger (δ = 2−λ) and the advantage
against SIS (Adv[B]) which can be substantial, we need to take it into account.
More precisely, we compute the required SIS security λI, λII so that the SIS
problem stays hard even with the relations of Lemma 3.1 and 3.2. For our pa-
rameter, we need λI = 189 and λII = 181 for the respective SIS problems which
only slightly differ by their bounds. Hence, we must reach for a root Hermite
factor of δ0 = 1.0026. We also account for key recovery attacks, consisting of
recovering R from A,B. This attack is however much more costly than forgeries
as R is statistically hidden in (A,B) by the leftover hash lemma. We then set the
other parameters of the zero-knowledge argument as described in our optimized
framework in Appendix E and taking ℓ1, ℓ2 to reach 128 bits of quantum security
for the HNF-SIS and HNF-LWE problems. The security estimates of HNF-LWE
are performed using the estimator of Albrecht et al. [APS15]. We note that al-
though we take the secret and error ternary from distribution ψ1, we are never in
the regime of polynomial algebraic attacks [AG11]. Such attacks for ternary error
would require roughly ℓ32 samples. In our cases, we have ℓ1+max(Lx, LM)≪ ℓ22.

We also instantiate the scheme of [LLM+16]. For a fair comparison, we aim
for the same security and make use of the same improvements of the zero-
knowledge argument. The relation of [LLM+16] is instantiated in the framework
of [YAZ+19] in Appendix F.3.

For both our scheme and the one from [LLM+16], the ZKAoK are instantiated
to be run twice, and thus do not include the compacted commitments discussed in
Appendix E. Table 1.1 shows the construction of [LLM+16] leads to intractable
parameters and key sizes. We note that one could reduce the value of q at
the expense of increasing the number of proof iterations to achieve negligible
soundness. However, not only does this approach still leads to intractable key
sizes, but it also yields substantially larger proofs. Our results also summarized
in Table 1.1 shows the feasibility of signature with efficient protocols based on
lattice assumptions, as we gain several orders of magnitude in the size of key
materials and proof size, while maintaining the same security. The complete
parameter sets used to obtained these results can be found in Tables G.1 and G.2.

Remark G.1. We recall that, although the fast mode reduces the size of the wit-
ness vector, it also introduces a soundness gap, which is the object of Lemma 4.1.
As a result, the bounds on v∗1,v

∗
2 used in Lemma 3.1 and 3.2 are larger as dis-

cussed in Remark 4.1. We thus take this increase of the SIS bounds into account
when estimating the SIS security, which entails an increase of the dimension n.
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G.2 Instantiating the Module Signature

We now rely on the framework of [LNP22] for the zero-knowledge argument.
The module construction no longer suffers from the requirement of a large mod-
ulus. Indeed, in the module case, we can choose an exponentially large challenge
space while keeping the size of the challenges constant. The same thing occurs
for our tag space. Before, we needed to take q ≥ q′ where q′ was both the bound
on the tags and the size of the tag space. In the module case, we can take bi-
nary tags while adjusting the value of w in order to have a sufficiently large tag
space, i.e., |Tw| ≥ Q. Additionally, because the modulus of the signature q is
different from the modulus of the proof system qπ = q1q, we can first adjust
the parameters of our signature before setting the parameters of the proof sys-
tem. We proceed as in the previous section, accounting for the reduction loss
of Lemma 3.4 and 3.5. To choose the parameters of the proof system, we pro-
ceed as prescribed in [LNP22, Sec. 6.1], with the challenge space of [LNP22, Fig.
3]. For simplicity, we choose parameters close to those provided in their group
signature instantiation. We give the detailed parameter set in Table G.3 with
security and efficiency estimates. To avoid collision between our notations and
the proof system parameters, we specify the notations used in [LNP22] in the
description column.

This construction based on structured lattices leads to drastic efficiency gains
in both key and proof sizes as summarized in Table 1.1, which further reinforce
the concrete feasibility of efficient privacy-enhancing post-quantum signatures.
In particular, it shows that a proof of knowledge of a signature issued on a
committed (secret value), one of the main building blocks of privacy-preserving
primitives, can represent less than 700 KB, which is a considerable improvement
over [LLM+16] and may have many applications.
Instantiating the Anonymous Credentials. The anonymous credentials fol-
lows exactly the same process as for the module signature. The only difference
is that we in addition require the hardness of M-ISISd,2d,q,√2nd. The parameters
of our signature already overshot the hardness of the latter. We give an example
for a vector of 10 attributes of 128 bits each, and the proof size corresponds
to the non-interactive transcript size when |I| = 4 attributes are revealed. The
message m̃ thus has dimension m3 = 2d+ 10. All the parameters and efficiency
estimates of the anonymous credentials are given in Table G.4. We achieve sat-
isfactory sizes of less than 750 KB. Improving our SEP scheme would directly
result in similar improvements to the anonymous credentials system.

G.3 Parameter Sets
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Parameters Description Exact Proof Fast Mode
Signature

λ Security parameter 128 128

n SIS dimension 1650 2550

q Modulus 2155 − 31 2155 − 31

ℓ Tag bit-size (λ+ 2 log2Q) 188 188

m Trapdoor dimension 511500 790500

Nmsg Number of message blocks 1 1

σ Pre-image sampling width 24324 32014

σ1 Commitment randomness width 50335037584951 127285811917979

λI/λ
∗
I Required/Reached SIS security (I) 166/167 166/167

λII/λ
∗
II Required/Reached SIS security (II) 158/163 158/170

λIII/λ
∗
III Required/Reached SIS security (III) 128/506 128/629

|pk| Public key size (MB) 2963 · 103 mb 7076 · 103 mb
|sk| Secret key size (MB) 1559 · 101 mb 3725 · 101 mb
|sig| Signature size (KB) 8617 kb 13895 kb
|pp| Public parameters size (MB) 1640 · 101 mb 3917 · 101 mb

Proof
ℓ1 HNF-SIS dimension 8350 8000

ℓ2 HNF-LWE dimension 7900 7900

p Size of challenges 2λ/2 2λ/2

N Number of proof iterations 2 2

M Rejection sampling repetition rate 27 27

Lx Witness length 74788088 6510457

LM Relation set length 74477888 2869057

δs Soundness error 2−λ 2−λ

λ∗
SIS,π Reached HNF-SIS security 128 129

λ∗
LWE,π Reached HNF-LWE security 130 130

|π| Proof size (KB) 10198709 kb 671581 kb

Table G.1. Selected parameters, security and efficiency estimates of the signature
scheme of [LLM+16].
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Parameters Description Exact Proof Fast Mode
Signature

λ Security parameter 128 128

n SIS dimension 495 795

q Modulus 2155 − 31 2155 − 31

q′ Tag bound 231 231

m1 First trapdoor dimension 48732 78070

m2 Second trapdoor dimension 76725 123225

m3 Message bit-size 128 128

t Spectral norm slack 7.5 7.5

σ Pre-image sampling width 6015.41 7595.30

σ1

√
σ2 + σ2

2 6015.42 7595.31

σ2 Commitment randomness width 12.73 12.73

λI/λ
∗
I Required/Reached SIS security (I) 158/190 158/189

λII/λ
∗
II Required/Reached SIS security (II) 182/190 182/189

|pk| Public key size (MB) 1148 mb 2956 mb
|sk| Secret Key size (MB) 892 mb 2293 mb
|sig| Signature size (KB) 261 kb 418 kb
|pp| Public parameters size (MB) 1.2 mb 1.9 mb

Proof
ℓ1 HNF-SIS dimension 7850 7500

ℓ2 HNF-LWE dimension 7850 7850

p Size of challenges 2λ/2 2λ/2

N Number of proof iterations 2 2

M Rejection sampling repetition rate 27 27

Lx Witness length 2259407 210777

LM Relation set length 2258911 8686

δs Soundness error 2−λ 2−λ

λ∗
SIS,π Reached HNF-SIS security 128 129

λ∗
LWE,π Reached HNF-LWE security 129 129

|π| Proof size (KB) 306367 kb 17662 kb

Table G.2. Selected parameters, security and efficiency estimates of the signature
scheme of Section 3.

72



Parameters Description Value
Signature

λ Security parameter 128

n Ring degree 128

d M-SIS module rank 10

q Modulus 247 − 279

k Number of splitting factors 4

w Tag norm bound 6(
n
w

)
Size of tag space ≈ 232.3

κ Gadget matrix term ⌈log2 q⌉
m1 First trapdoor rank 620

m2 Second trapdoor rank 470

m3 Number of message polynomials 1

t Spectral norm slack 7.5

σ Pre-image sampling width 5379

σ1

√
σ2 + σ2

2 5935

σ2 Commitment randomness width 2510

λI/λ
∗
I Required/Reached M-SIS security (I) 161/192

λII/λ
∗
II Required/Reached M-SIS security (II) 182/184

|pk| Public key size (MB) 7.82 mb
|sk| Secret Key size (MB) 8.89 mb
|sig| Signature size (KB) 273 kb
|pp| Public parameters size (MB) 0.007 mb

Proof
d′ Height of commitment matrices A1,A2 (n) 17

q1 Slack Modulus (q1) 228 − 119

qπ Proof modulus (q) ≈ 275

- Bound on challenges (κ) 2

|C| Size of challenge space (|C|) ≈ 2147

σ−1 Proof automorphism (σ) σ−1

η Second bound on challenges (η) 72

ν Randomness s2 bound (ν) 1

- Number of garbage terms (λ) 5

- Length of s1 (m1) 1092

- Length of m (ℓ) 0

- Length of s2 (m2) 41

γ1 Rejection sampling constant for cs1 (γ1) 5

γ2 Rejection sampling constant for cs2 (γ2) 3

γ(e) Rejection sampling constant for exact ARP (γ(e)) 2

δs Soundness error ≈ 2−140

λ∗
M-SIS,π Reached M-SIS security 212

λ∗
M-LWE,π Reached ext-M-LWE security 141

|π| Proof size (KB) 639 kb

Table G.3. Selected parameters, security and efficiency estimates of the signature
scheme of Section 3.3.
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Parameters Description Value
Signature

λ Security parameter 128

n Ring degree 128

d M-SIS module rank 12

q Modulus 244 − 119

k Number of splitting factors 4

w Tag norm bound 6(
n
w

)
Size of tag space ≈ 232.3

κ Gadget matrix term ⌈log2 q⌉
m1 First trapdoor rank 657

m2 Second trapdoor rank 528

ms Dimension of user secret key 24

m′
3 Number of attribute polynomials 10

t Spectral norm slack 7.5

σ Pre-image sampling width 5609

σ1

√
σ2 + σ2

2 26587

σ2 Commitment randomness width 25989

λI/λ
∗
I Required/Reached M-SIS security (I) 161/191

λII/λ
∗
II Required/Reached M-SIS security (II) 182/183

|pk| Public key size (MB) 9.56 mb
|sk| Secret Key size (MB) 10.59 mb
|sig| Signature size (KB) 317 kb
|pp| Public parameters size (MB) 0.27 mb

Proof
d′ Height of commitment matrices A1,A2 (n) 17

q1 Slack Modulus (q1) 228 − 119

qπ Proof modulus (q) ≈ 272

- Bound on challenges (κ) 2

|C| Size of challenge space (|C|) ≈ 2147

σ−1 Proof automorphism (σ) σ−1

η Second bound on challenges (η) 72

ν Randomness s2 bound (ν) 1

- Number of garbage terms (λ) 5

|I| Number of disclosed attributes 4

- Length of s1 (m1) 1216

- Length of m (ℓ) 0

- Length of s2 (m2) 41

γ1 Rejection sampling constant for cs1 (γ1) 5

γ2 Rejection sampling constant for cs2 (γ2) 3

γ(e) Rejection sampling constant for exact ARP (γ(e)) 2

δs Soundness error ≈ 2−140

λ∗
M-SIS,π Reached M-SIS security 180

λ∗
M-LWE,π Reached ext-M-LWE security 149

|π| Proof size (KB) 724 kb

Table G.4. Selected parameters, security and efficiency estimates for the anonymous
credentials of Section 5.3. 74



H A Stateless Variant

We now describe how to obtain a stateless version of our signature scheme of
Section 3. We describe it for the module version at a high level only. To obtain a
stateless variant, one need to find a way to generate tags without encountering
collisions to only emit one signature per tag, and without enduring an expo-
nential loss in the security proof due to guesses. The first constraint imposes
an exponentially large tag space, which at first glance seems incompatible with
the second constraint. To meet the second constraint, we use the prefix guess-
ing method used in [LLM+16] which we refine to avoid a blowup in the key
size and subsequent zero-knowledge proofs. At a high level, when guessing a tag
τ ∈ {0, 1}ℓ in [LLM+16], the authors guess the longest prefix among the emitted
tags τ (i) that will match with the prefix of the tag τ∗ used in the type I forgery.
In our case, our tag is a single element of Sbin which voids this method as each
bit would need to be multiplied to a different matrix Ai to cancel the gagdet G
when τ = τ∗ in order to obtain a M-SIS solution.

To mimic the prefix guessing, we remove the Hamming weight condition
on the tag τ ∈ Sbin and instead decompose it into k parts, say k = 4, as
follows. Sample τ1, . . . , τ4 uniformly at random in

∑n/4−1
i=0 {0, 1} · Xi. To con-

struct the trapdoor matrix Aτ , compute Aτ = [A|
∑
i∈[4] τiBi − B] where

Bi = X(i−1)n/4G − ARi mod qR. The Bi are added to the public key, and
the Ri to the secret key. We then have

Aτ = [A|τG−A(R+
∑
i∈[4]

τiRi)].

Since τ = τ1 + τ2X
n/4 + τ3X

n/2 + τ4X
3n/4 ∈ Sbin ⊂ R×q , we can indeed sample

preimages using the modified trapdoor Rτ = R +
∑
i τiRi. This has the effect

of requiring a slightly larger Gaussian width as a result because we must replace
∥R∥2 by

∥Rτ∥2 ≤ ∥R∥2 +
∑
i∈[4]

∥τi∥1∥Ri∥2

≤ (1 + n) · (
√
nm1 +

√
nm2 + t).

It thus entails a mild increase in σ, which only affects the width of v2 in the
signature as the width σ1 for v1 smoothes out this increase by requiring σ1 ≥
∥Um∥2 which is generally larger for a big enough m3. Regardless, the factor n,
typically 256, only adds log2 n bits to each coefficient.

With this modification, we can use the prefix guessing method. Concretely,
as in [LLM+16], we simply make a guess on the length ℓ+ of the longest prefix
common to the forgery tag and the ones from the signature queries. In our case,
this guess is correct with probability 1/k. We thus only have to guess the value of
τ∗ℓ++1 and construct the key material accordingly. We will thus hide the guessed
prefix in the matrix B, and generate the Bi simply as Bi = ARi for the indices
i beyond the prefix length. With this method, we only have a security loss of
k2n/k while having an exponentially large tag space of size 2n.
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