
MOSFHET: Optimized Software for FHE over the Torus

ANTONIO GUIMARÃES and EDSON BORIN, Institute of Computing, University of Campinas, Brazil

DIEGO F. ARANHA, DIGIT Centre and Department of Computer Science, Aarhus University, Denmark

Homomorphic encryption is one of the most secure solutions for processing sensitive information in untrusted environments, and
there have been many recent advances towards its efficient implementation for the evaluation of linear functions and approximated
arithmetic. However, the practical performance when evaluating arbitrary (nonlinear) functions is still a major challenge for HE
schemes. The TFHE scheme [Chillotti et al., 2016] is the current state-of-the-art for the evaluation of arbitrary functions, and, in this
work, we focus on improving its performance. We divide this paper into two parts. First, we review and implement the main techniques
to improve performance or error behavior in TFHE proposed so far. For many, this is the first practical implementation. Then, we
introduce novel improvements to several of them and new approaches to implement some commonly used procedures. We also show
which proposals can be suitably combined to achieve better results. We provide a single library containing all the reviewed techniques
as well as our original contributions. Our implementation is up to 1.2 times faster than previous ones with a similar optimization level,
and our novel techniques provide speedups of up to 2.83 times on algorithms such as the Full-Domain Functional Bootstrap (FDFB).

CCS Concepts: • Mathematics of computing → Mathematical software performance; • Security and privacy → Public key
encryption; Mathematical foundations of cryptography; Privacy-preserving protocols; Management and querying of encrypted data.

Additional Key Words and Phrases: Homomorphic Encryption, TFHE, Functional Bootstrap, Programmable Bootstrap, Efficient

Implementation

ACM Reference Format:
Antonio Guimarães, Edson Borin, and Diego F. Aranha. 2022. MOSFHET: Optimized Software for FHE over the Torus. 1, 1 (April 2022),
21 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

The idea of performing computation over encrypted data was a long-chased goal in the Cryptography community. The
concept was first defined in 1978 [35], but for decades proposed solutions only achieved partial homomorphism. In
2009, Gentry [22] presented the first Fully Homomorphic Encryption (FHE) scheme, based on ideal lattices, enabling
arbitrary computation through the evaluation of logic gates. Efficiency was a problem from the start, but Gentry’s work
also established a blueprint later used to build more efficient FHE schemes based on the Learning With Errors (LWE)
problem [34] and its variants [7, 8]. Many of these follow-up works presented significant improvements efficiency-wise,
but the literature generally evolved around the needs of specific uses cases, leaving behind, in terms of performance,
capabilities such as the evaluation of arbitrary (nonlinear) functions.

Currently, one of the most efficient solutions for homomorphic evaluation is the CKKS cryptosystem [11], which
was proposed aiming specifically at the homomorphic evaluation of neural network algorithms, a major use case for

This work was partially performed when the first author was visiting the Department of Computer Science at Aarhus University. It was supported by the
São Paulo Research Foundation under grants 2013/08293-7, 2019/12783-6, and 2021/09849-5; by the National Council for Scientific and Technological
Development under grant 313012/2017-2; and by the Independent Research Fund Denmark (DFF) project no. 1026-00350B.

Authors’ addresses: Antonio Guimarães, antonio.guimaraes@ic.unicamp.br; Edson Borin, edson@ic.unicamp.br, Institute of Computing, University of
Campinas, Campinas, Brazil; Diego F. Aranha, dfaranha@cs.au.dk, DIGIT Centre and Department of Computer Science, Aarhus University, Aarhus,
Denmark.

2022. Manuscript submitted to ACM

Manuscript submitted to ACM 1

https://doi.org/10.1145/nnnnnnn.nnnnnnn

2 Guimarães, et al.

FHE. These algorithms require a high throughput of linear arithmetic operations and are capable of correctly operating
even with relatively large imprecisions [5]. Considering that, CKKS offers a very efficient homomorphic evaluation of
approximate arithmetic in a SIMD-like manner. Its efficiency, however, restricts functionality, as the scheme needs to
rely on arithmetic approximations for nonlinear functions. The cost of evaluating such approximations might grow
exponentially with the desired precision [30], and trusting the arithmetic robustness of the overlying application is not
always possible. In this way, the scheme requires extensive modifications for some applications and is unfit for many
of them. For example, it is currently not possible to achieve state-of-the-art accuracy levels on deep neural networks
without employing unrealistically large parameters [30].

Schemes implementing exact computing, on the other hand, usually represent applications as compositions of very
basic logic components, such as binary logic gates, finite automata, and lookup tables. Translating an application to
such components is a straightforward process and works broadly. However, large applications require a great number
of logic components, and evaluating each may take significant amounts of time. The TFHE cryptosystem [14] is the
current state-of-the-art for arbitrary exact (non-approximate) homomorphic evaluation. It was originally designed to
evaluate binary logic gates, but newer versions also enable evaluating multi-bit gates [3] and lookup tables [15].

1.1 Contributions

There were several recent proposals for improving TFHE, but most of them are built upon various different implemen-
tations of the scheme, making it hard to address and evaluate their impact on the cryptosystem. Many also remained
purely theoretical contributions, with no practical implementation until now. Considering this, our first goal in this
work is to unify all these proposals in a single highly-optimized library. In this way, we can not only measure their
impact considering the use of modern implementation techniques and algorithms but also evaluate how combinations
of optimizations affect performance. Our library, MOSFHET (Optimized Software for FHE over the Torus) [26], is
fully portable and self-contained with optional optimizations for the Intel AVX2, FMA, and AVX-512 Instruction Set
Extensions (ISEs). We designed it specifically for enabling the efficient prototyping of improvements to TFHE. In this
first part, we implement the core functionalities of TFHE and the following techniques.

• The Functional [5] or Programmable [15] Bootstrap and its improved version [16].
• The Circuit Bootstrap [13] and its optimizations [16].
• The multi-value bootstrap [9, 16] and its optimizations [25].
• The Key Switching [12] and its optimizations [10].
• The BlindRotate Unfolding [40] and its optimizations [6].
• The Full TRGSW bootstrap [23].
• Three different approaches [16, 29, 38] for evaluating the Full-Domain Functional Bootstrap (FDFB).
• Public Key compression using randomness seed [14].
• BFV-like multiplication [16].

From these, we highlight that this work is the first to implement the Evaluation Key Compression for TFHE and
to experimentally compare multiple approaches for the full-domain functional bootstrap. We should also note that
techniques such as the multi-value bootstrap [9] and the Full TRGSW bootstrap are only available on unmaintained
implementations of TFHE. For other techniques, we compare our results with other publicly available libraries, such as
TFHEpp [31, 32], Concrete [39], and PALISADE [1].

Manuscript submitted to ACM

MOSFHET: Optimized Software for FHE over the Torus 3

When implementing these techniques, we found several opportunities for improvements on them as well as for
combining them to yield better performance or error growth behavior. We also developed new methods to implement
some commonly used procedures. As result, we present the following contributions:

• We introduce a new method to implement the Full-Domain Functional Bootstrap (FDFB) that is up to 2.83 times
(AVX-512 version) faster than previous approaches while being the first to maintain the same output error
variance as the regular (half-domain) Functional Bootstrap.
• We exploit key compression techniques so far used mostly for memory or storage optimizations to achieve
speedups of up to 1.44 times on the execution time of core procedures, such as the Key Switching Algorithm.
• We generalize the BlindRotate Unfolding (as suggested in [6]) and show that it does not achieve the expected
gains on large parameters.
• We found that previous works [9, 25] on the multi-value bootstrap fail to consider a corner case when estimating
the output noise variance for some array decompositions. Moreover, we show how to reduce noise variance on
this corner case with a negligible impact on performance.
• We implement basic polynomial arithmetic multiplication procedures that are significantly slower than the
negacyclic FFT convolution, but that enable the implementation of techniques requiring precision higher than 53
bits (the hardware limit for floating-point representation). We also accelerate the negacyclic FFT convolution
itself by implementating a version of the SPQLIOS FFT library [21] using AVX-512 instructions. This optimization
provides up to 1.5 times speedup over the original (FMA-optimized) SPQLIOS.

The remainder of this text is organized as follows: Section 2 introduces the basic notation and concepts of TFHE;
Section 3 presents the techniques implemented in our library and the improvements upon them; Section 4 presents the
experimental results; finally, Section 5 concludes the paper.

2 FULLY HOMOMORPHIC ENCRYPTION OVER THE TORUS (TFHE)

TFHE [12–14] is a fully homomorphic encryption scheme based on the Learning With Errors (LWE) problem [34] and its
ring variant [7]. In this section, we describe its algebraic structures as well as its basic functioning for homomorphically
evaluating linear arithmetic and arbitrary functions. We use superscript to denote the number of elements in a vector
and subscript to denote modulus. In this way, S𝑛𝑞 is the set of vectors with 𝑛 elements, each of them in some set Smodulo
𝑞. We denote a set of polynomials over the variable 𝑋 with coefficients in S by S[𝑋]. For power-of-two cyclotomic
polynomials, we describe their modulo by the degree, therefore S𝑞 [𝑋]𝑛𝑁 (or S′𝑁 [𝑋]𝑛 for S′ = S𝑞) is the set of vectors
with 𝑛 elements, where each element is a polynomial over the variable 𝑋 with modulus Φ2𝑁 (𝑋) = 𝑋𝑁 − 1 with each
coefficient belonging to the set S modulo 𝑞. Additionally, ⟨𝑎, 𝑏⟩ denotes the inner product between vectors 𝑎 and 𝑏, and
⌈𝑙⌋𝑡 denotes the rounding of a number 𝑙 to the closest multiple of 𝑡 . If omitted, 𝑡 = 1. Hereafter, we start by describing
the LWE variant used in TFHE, whereM is some ℜ-module.

Definition 2.1 (Binary-Secret Scale-invariant LWE, from TFHE [14]). Let an LWE sample be a pair (𝑎, 𝑏) ∈ M𝑛+1, where
𝑎 is uniformly sampled fromM𝑛 , 𝑏 = ⟨𝑎, 𝑠⟩ + 𝑒 ∈ M, and 𝑛 ≥ 1 ∈ Z. The binary secret key 𝑠 is sampled from a uniform
distribution over some 𝔅𝑛 and the error 𝑒 is sampled from a Gaussian distribution overM with mean 0 and standard
deviation 𝜎 . Given a polynomial bounded number of LWE samples using the same 𝑠 , we define two versions of the
LWE problem:

• Search problem: Find 𝑠 .
Manuscript submitted to ACM

4 Guimarães, et al.

• Decision problem:Distinguishwith non-negligible advantage the LWE samples from vectors uniformly sampled
fromM𝑛+1.

Encryption scheme. The basic idea behind an LWE-based cryptosystem is to encrypt messages by adding them to
the 𝑏 component of the LWE sample since it is indistinguishable from a vector sampled from the uniform distribution
(LWE decision problem). TFHE works with scalar and polynomials messages and encrypts them, respectively, in TLWE
and TRLWE samples. They are both as described in Definition 2.1, differing by the definition ofM and 𝔅:

• For TLWE samples,M is the real torus T = R/Z, which is the set of real numbers modulo 1, and the secret key 𝑠
is sampled from B𝑛 , which is the set of 𝑛-sized arrays with elements in the binary set B = {0, 1}. To encrypt
a message, we map it to T and add to the 𝑏 component of a fresh TLWE sample. We denote the set of TLWE
samples encrypting the message𝑚 ∈ T with key 𝑠 ∈ B𝑛 and parameters 𝑘 = (𝑛, 𝜎) by 𝑐 ∈ TLWE𝑠,𝑘 (m). We omit
the parameters whenever the key is enough to specify them. For decrypting, we first use the secret key 𝑠 to
calculate the phase of a sample 𝑝ℎ𝑎𝑠𝑒 (𝑐) = 𝑏 − ⟨𝑎, 𝑠⟩, which is the message plus the Gaussian error. At this point,
we can either consider the phase as an approximated result or we can discretize the torus and round the phase to
remove the error and get the exact message𝑚 = ⌈𝑝ℎ𝑎𝑠𝑒 (𝑐)⌋𝑡 , where 𝑡 is a discretization parameter.
• For TRLWE samples,M is T𝑁 [𝑋], which is the set of polynomials modulo the 2𝑁 -th cyclotomic polynomial
(𝑋𝑁 − 1) with coefficients in the real torus T. The secret key 𝑠 is sampled from B𝑁 [𝑋]𝑛 , which is the set of
𝑛-sized arrays of polynomials modulo the 2𝑁 -th cyclotomic polynomial (𝑋𝑁 − 1) with coefficients in binary
set B = {0, 1}. Encryption and decryption are similar as described for TLWE samples. We denote the set of
TRLWE samples encrypting the message𝑚 ∈ T𝑁 [𝑋] with key 𝑠 ∈ B𝑁 [𝑋]𝑛 and parameters 𝑘 = (𝑛, 𝑁, 𝜎) by
TRLWE𝑠,𝑘 (m). Again, we omit the parameters whenever the key is enough to specify them.

Implementation-wise, TFHE represents torus elements as integers in Z2𝑝 using the map T
∼−→ Z2𝑝 given by 𝑥 ↦→ 𝑥 ·2𝑝 ,

where 𝑝 is the bit precision used in the implementation.

Evaluating Arithmetic. T(R)LWE samples are in an ℜ-module. Therefore, we have well-defined additions between
samples and multiplications with other rings. In both cases, operations are pair-wise: Let 𝑐𝑖 = (𝑎𝑖 , 𝑏𝑖) ∈ T(R)LWE(𝑚𝑖)
for 𝑖 ∈ {0, 1} be two T(R)LWE samples encrypting messages𝑚𝑖 . The sum of them is given by 𝑐𝑠𝑢𝑚 = (𝑎0 +𝑎1, 𝑏0 +𝑏1) ∈
T(R)LWE𝑠 (𝑚1 +𝑚2) while 𝑐𝑠𝑐𝑎𝑙𝑒 = (𝑎0 · 𝑧, 𝑏0 · 𝑧) ∈ T(R)LWE𝑠 (𝑚1 ∗ 𝑧) encrypts the scaling by 𝑧 ∈ ℜ, where ℜ is a ring
(typically, Z or Z𝑁 [𝑋]).

T(R)LWE samples also support external products by TRGSW samples, which are sets of ℓ𝑛 TRLWE samples. They
are rarely used to encrypt messages but are necessary for creating evaluation keys, which are self-encryptions of the
TLWE and TRLWE secret keys (the cryptosystem assumes circular security) necessary for providing fully homomorphic
evaluation. Contrary to the T(R)LWE samples, the set of TRGSW samples is a ring and supports both additions and
multiplications. We can also perform an external product between T(R)LWE and TRGSW samples. We denote the
set of TRGSW samples encrypting the message𝑚 ∈ Z𝑁 [𝑋] with key 𝑠 ∈ B𝑁 [𝑋]𝑛 and parameters 𝑘 = (𝑛, 𝑁, 𝜎, ℓ)
by TRGSW𝑠,𝑘 (m). For the most part of this paper, we can consider TRGSW encryption and decryption as black-box
algorithms.

As we scale, add, or multiply samples, the Gaussian error in the component𝑏 increases. For being a fully homomorphic
encryption scheme, and therefore allowing for the evaluation of an unbound number of consecutive operations, we need
to have tools for controlling the error growth. The bootstrap procedure, as first defined by Gentry [22], is a technique
that allows resetting the error to a default value established by the parameter set.
Manuscript submitted to ACM

MOSFHET: Optimized Software for FHE over the Torus 5

2.1 Bootstrapping

In TFHE, the bootstrap can be used not only for resetting the error but also to implement arbitrary (nonlinear) functions.
In its first version, TFHE’s bootstrap was capable of evaluating any logic gates with two-bit inputs. For implementing it,
it defines three main building blocks, which we describe in this section.

2.1.1 Public and Private Key Switching. The idea behind a key-switching algorithm is the homomorphic evaluation of
the phase of a ciphertext. Let 𝑐 = (𝑎, 𝑏) ∈ T(R)LWE𝑠,𝑘 (𝑚) be a T(R)LWE sample encrypting𝑚, the keyswitch algorithm
uses an encryption of the secret key 𝑠 , defined as KS𝑖 ∈ T(R)LWE𝑠′,𝑘′ (𝑠𝑖), to calculate the 𝑝ℎ𝑎𝑠𝑒 (𝑐) = 𝑏 − ⟨𝑎,KS⟩. The
result of this operation is 𝑐 ′ ∈ T(R)LWE𝑠′,𝑘′ (𝑚), allowing us, therefore, to switch keys and parameters. This process
also allows the evaluation of linear morphisms, i.e., any function 𝑓 for which 𝑝ℎ𝑎𝑠𝑒 (𝑓 (𝑐)) = 𝑓 (𝑝ℎ𝑎𝑠𝑒 (𝑐)). We should
note that, by this definition, 𝑓 can be a linear combination of several T(R)LWE samples, which allows us, for example,
to pack TLWE samples in TRLWE samples, a process called Packing Key Switching. Algorithm 1 shows the Public Key
Switching algorithm from TFHE. We should note that 𝑎𝑖 is decomposed before being multiplied by the encryption of 𝑠
(line 4) so that the error variance growth, which would be quadratic on the value of 𝑎𝑖 , is now significantly reduced.

Algorithm 1: Public Functional Key Switching (PublicKeySwitch) [14]

Input :𝑝 TLWE samples 𝑐 (𝑧) = (𝑎 (𝑧) , 𝑏 (𝑧)) ∈ TLWE𝑠 (`𝑧), 𝑧 ∈ [[1, 𝑝]]
Input :a public R-Lipschitz linear function 𝑓 : T𝑇 ↦→ T𝑁 [𝑋]
Input :a precision parameter 𝑡 ∈ Z
Input :a Key Switching key KS𝑖, 𝑗 ∈ T(R)LWEs′ (

𝑠𝑖
2𝑗), for 𝑖 ∈ [[1, 𝑛]] and 𝑗 ∈ [[1, 𝑡]]

Output :a T(R)LWE sample 𝑐 ′ ∈ T(R)LWE𝑠′ (𝑓 (`𝑧)), for 𝑧 ∈ [[1, 𝑝]]
1 for 𝑖 ∈ [[1, 𝑛]] do
2 𝑎𝑖 ← 𝑓 (𝑎 (1)

𝑖
, 𝑎
(2)
𝑖
, ..., 𝑎

(𝑝)
𝑖
)

3 Let 𝑎𝑖 = ⌈𝑎𝑖 ⌋ 1
2𝑡

be the closest multiple of 1
2𝑡 to 𝑎𝑖

4 Decompose each 𝑎𝑖 =
∑𝑡

𝑗=1 𝑎𝑖, 𝑗 · 2−𝑗 , where 𝑎𝑖, 𝑗 ∈ B𝑁 [𝑋]
5 Return (0, 𝑓 (𝑏 (1)

𝑖
, 𝑏
(2)
𝑖
, ..., 𝑏

(𝑝)
𝑖
)) −∑𝑛

𝑖=1
∑𝑡

𝑗=1 𝑎𝑖, 𝑗 · KS𝑖, 𝑗

The private version of the function bootstrap is quite similar to the public one, differing by the fact that the function 𝑓
is embedded in the key switching key, i.e., 𝐾𝑆𝐾 ∈ T(R)LWE𝑠′,𝑘′ (𝑓 (𝑠)). This version is especially useful when 𝑓 depends
on secret information, such as the key, as occurs in Section 3.7. Algorithm 2 shows the private key switching from
TFHE.

2.1.2 Blind Rotate. Given a TLWE sample 𝑐 = (𝑎, 𝑏) ∈ TLWE𝑠 (𝑚) and a TRLWE sample 𝑡 ∈ TRLWE𝑠′ (𝑣), the
BlindRotate procedure computes 𝑡 ′ = TRLWE𝑠′ (𝑡𝑣 · 𝑋 ⌈𝑝ℎ𝑎𝑠𝑒 (𝑐)2𝑁 ⌋). Since this multiplication occurs modulo the
2𝑁 -th cyclotomic polynomial, the operation works as a negacyclic rotation of the polynomial 𝑡 ∈ T𝑁 [𝑋] by an amount
defined by the phase of 𝑐 (thus, a blind rotation). It is important to note that the phase contains the Gaussian error and
it is scaled by 2𝑁 . In addition to that, the rounding of each element of 𝑎 also introduces an error.

2.1.3 Sample Extract. Given a TRLWE sample 𝑐 ∈ TRLWE𝑠 (𝑝 =
∑𝑁−1
𝑖=0 𝑚𝑖𝑋

𝑖), it extracts a TLWE sample encrypting a
coefficient from the polynomial 𝑝 , i.e., SampleExtract𝑗 (𝑐) ∈ 𝑇𝐿𝑊𝐸𝑠′ (𝑚 𝑗), where 𝑠 ′ is the TLWE interpretation of 𝑠 .

2.1.4 Gate Bootstrapping. Using the previously defined building blocks, we can now define the gate bootstrap algorithm,
shown in Algorithm 4. We can summarize the idea behind this algorithm in three steps:

Manuscript submitted to ACM

6 Guimarães, et al.

Algorithm 2: Private Functional Key Switching (PrivateKeySwitch) [14]
Input :𝑝 TLWE samples 𝑐𝑘 = (𝑎𝑘 , 𝑏𝑘) ∈ TLWE𝑠 (`𝑘), 𝑘 ∈ [[1, 𝑝]]
Input :a precision parameter 𝑡 ∈ Z
Input :a Key Switching key KS𝑖, 𝑗,𝑘 ∈ T(R)LWE𝑠′ (

𝑓𝑘 (𝑠)𝑖
2𝑗), for 𝑖 ∈ [[1, 𝑛]], and KS𝑛+1, 𝑗,𝑘 ∈ T(R)LWE𝑠′ (

𝑓 (−1)
2𝑗),

for 𝑗 ∈ [[1, 𝑡]] and 𝑘 ∈ [[1, 𝑝]], where 𝑓𝑘 are linear morphisms
Output :a T(R)LWE sample 𝑐𝑜𝑢𝑡 ∈ T(R)LWE𝑠′ (𝑓 (`𝑘)), for 𝑘 ∈ [[1, 𝑝]]

1 for 𝑘 ∈ [[1, 𝑝]] do
2 for 𝑖 ∈ [[1, 𝑛]] do
3 Let 𝑎𝑘,𝑖 = ⌈𝑎𝑘,𝑖 ⌋ 1

2𝑡
be the closest multiple of 1

2𝑡 to 𝑎𝑘,𝑖
4 Decompose each 𝑎𝑘,𝑖 =

∑𝑡
𝑗=1 𝑎𝑘,𝑖, 𝑗 · 2−𝑗 , where 𝑎𝑘,𝑖, 𝑗 ∈ B𝑁 [𝑋]

5 Return −∑𝑝

𝑘=1
∑𝑛+1
𝑖=1

∑𝑡
𝑗=1 𝑎𝑘,𝑖, 𝑗 · KS𝑘,𝑖, 𝑗

Algorithm 3: BlindRotate Algorithm [14]
Input :a sample 𝑐 = (𝑎1, ..., 𝑎𝑛, 𝑏) ∈ TLWE𝑠 (𝑚)
Input :a sample 𝑡𝑣 ∈ TRLWE𝑆 (𝑚)
Input :a list of samples 𝐶𝑖 ∈ TRGSW𝑆 (𝑠𝑖), for 𝑖 ∈ [[1, 𝑛]]
Output :a TRLWE sample of 𝑐 ′ ∈ TRLWE𝑆 (𝑋 ⌈𝑝ℎ𝑎𝑠𝑒 (𝑐)2𝑁 ⌋ · 𝑡𝑣)

1 ACC← 𝑋−⌈𝑏2𝑁 ⌋ · 𝑡𝑣
2 for 𝑖 = 1 to 𝑝 do
3 ACC← CMUX(𝐶𝑖 , 𝑋 ⌈𝑎𝑖2𝑁 ⌋ · ACC,ACC)
4 return ACC

1 Procedure CMUX(C, A, B)
2 return 𝐶 · (𝐵 −𝐴) + 𝐵

(1) Set the accumulator vector, ACC, to be
∑𝑁
𝑖=0

1
4𝑋

𝑖 ∈ T𝑁 [𝑋]
(2) Use BlindRotate to calculate ACC ·𝑋−𝜙 (𝑐)2𝑁 mod Φ2𝑁

(3) Use SampleExtract to extract the constant term of rotated ACC.

In this logic gate version of TFHE, all messages should have values in the set { −14 ,
+1
4 }. However, the accumulation

of errors and the arithmetic part of the logic gate implementation cause these values to change. The gate bootstrapping
essentially rounds them back to the expected values. To exemplify, a NAND logic gate would be implemented as
NAND(𝑎, 𝑏) = GateBootstrap((0, 58) − 𝑎 − 𝑏).

3 STATE-OF-THE-ART ON TFHE AND IMPROVEMENTS

In this section, we describe the main proposals presented so far for improving core algorithms or functionalities of
TFHE. We also present our own novel ideas and methods. We should note that we do not include proposals made for
other cryptosystems. Although many could be adapted from schemes such as FHEW [18], GSW [23], or even CKKS [11],
we had to limit our efforts at some point. We also do not consider optimizations for building applications or high-level
functions with TFHE, as these are usually more specialized use cases.

3.1 The Functional Bootstrap

First defined by Boura et al. [5] in 2019, the idea of a functional bootstrap is to evaluate a function within the bootstrap
procedure either in addition to or instead of resetting the error. For TFHE, the functional bootstrap is a generalization
Manuscript submitted to ACM

MOSFHET: Optimized Software for FHE over the Torus 7

Algorithm 4: GateBootstrap algorithm [14]
Input :a TLWE sample 𝑐 = (𝑎, 𝑏) ∈ TLWE𝑠 (𝑚)
Input :a constant ` ∈ T
Input :a bootstrapping key BK𝑖 ∈ TRGSWS (𝑠𝑖), for 𝑖 ∈ [[1, 𝑛]]
Output :𝑐 ′ ∈ 𝑇𝐿𝑊𝐸S (𝑚′ · `), where S ∈ B𝑁 is a vector (TLWE) interpretation of S ∈ B𝑁 [𝑋] and

𝑚′ =

{
1, if𝑚 < 0.5
−1, otherwise

1 𝑏 ← ⌈2𝑁𝑏⌋ and 𝑎𝑖 ← ⌈2𝑁𝑎𝑖 ⌋ ∈ Z2𝑁 for each 𝑖 ∈ [[1, 𝑛]]
2 𝑣 ← (1, 𝑋, 𝑋 2, ..., 𝑋𝑁−1) · ` ∈ T𝑁 [𝑋]
3 ACC← BlindRotate((0, 𝑣), (𝑎1, ..., 𝑎𝑛, 𝑏), (BK1, ...,BK𝑛))
4 return SampleExtract0 (ACC)

of the gate bootstrapping for arbitrary functions discretized in Lookup Tables (LUTs). This notion, we should note, is
not new to TFHE and was first introduced with the FHEW cryptosystem [18, 33]. Algorithm 5 shows the functional
bootstrap of TFHE.

Algorithm 5: FunctionalBootstrap algorithm [5, 15, 25]
Input :a TLWE sample 𝑐 = (𝑎, 𝑏) ∈ TLWE𝑠 (𝑚2𝐵), for𝑚 ∈ 𝑍𝐵
Input :an integer LUT 𝐿 = [𝑙0, 𝑙1, ..., 𝑙𝐵−1] ∈ Z𝐵𝐵
Input :a bootstrapping key BK𝑖 ∈ TRGSWS (𝑠𝑖), for 𝑖 ∈ [[1, 𝑛]]
Output :𝑐 ′ ∈ TLWES (𝐿 [𝑚]2𝐵), where S ∈ B

𝑁 is a vector (TLWE) interpretation of S ∈ B𝑁 [𝑋]
1 𝑏 ← ⌈2𝑁𝑏⌋ and 𝑎𝑖 ← ⌈2𝑁𝑎𝑖 ⌋ ∈ Z2𝑁 for each 𝑖 ∈ [[1, 𝑛]]
2 𝑡𝑣 ← ∑𝑁−1

𝑖=0
1
2𝐵 · 𝑙 ⌊ 𝑖𝐵

𝑁
⌋𝑋

𝑖 ∈ T𝑁 [𝑋]
3 ACC← BlindRotate((0, 𝑡𝑣), (𝑎1, ..., 𝑎𝑛, 𝑏 + 1

4𝐵), (BK1, ...,BK𝑛))
4 return SampleExtract0 (ACC)

The first step for evaluating the arbitrary function is to discretize its domain, evaluate it in all discretized points, and
store the results in a lookup table (LUT). The LUT, then, needs to be encoded as a polynomial (line 2). Equation 1 details
this process. The Base 𝐵 is a discretization parameter.

𝐿 = [𝑙1 = 𝑓 (1), 𝑙2 = 𝑓 (2), ..., 𝑙𝐵 = 𝑓 (𝐵)] ↦→
𝑁 /𝐵−1∑
𝑖=0

𝑙1
2𝐵
𝑋 𝑖 +

2𝑁 /𝐵−1∑
𝑖=𝑁 /𝐵

𝑙2
2𝐵
𝑋 𝑖 + ... +

𝑁−1∑
𝑖=(𝐵−1)𝑁 /𝐵

𝑙𝐵

2𝐵
𝑋 𝑖 (1)

Likewise, messages also need to be encoded in a way that they map to integers, which can be achieved by discretizing
the torus. At this step, two parameters can define the discretization: numeric base (𝐵) or precision. The first refers to
the numeric base in which messages are decomposed when working with messages encrypted in several samples. The
second is the number of bits in each TLWE sample or in each coefficient of the polynomials in TRLWE samples that
are considered part of the message. Typically, 𝐵𝑎𝑠𝑒 = 2𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛−1, due to the negacyclic property, or 𝐵𝑎𝑠𝑒 = 2𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ,
when working with full-domain functional bootstraps (Section 3.5).

The negacyclic property. The table lookup is performed by using the BlindRotate to multiply the test vector by
𝑋−𝜙 (𝑐)2𝑁 . This multiplication occurs modulo the 2𝑁 -th cyclotomic polynomial and, therefore, presents a negacyclic

Manuscript submitted to ACM

8 Guimarães, et al.

property, i.e., let 𝑝 be a polynomial, 𝑝 · 𝑋𝑁 = −𝑝 . This property restricts the use of the functional bootstrap to anti-
symmetric functions, i.e., functions 𝑓 such that 𝑓 (𝑥 + 𝑁) = −𝑓 (𝑥). For arbitrary functions, we avoid the negacyclic
property by using only the first half of the torus to encode messages.

Evaluating encrypted LUTs and private functions. Algorithm 5 receives a LUT represented as an array of integers in
Z𝐵
𝐵
, but it could receive directly the test vector (𝑡𝑣) polynomial (calculated in line 2) or even a TRLWE sample encrypting

𝑡𝑣 . This last case is especially useful for evaluating private functions, but the error variance of the encrypted LUT is
added to the output error variance of the algorithm. This version can also be used to evaluate multi-variable functions,
as we can use the Packing Key Switch to create LUTs from function inputs [25]. In this case, the output error variance
is always greater than at least one of the function inputs, limiting the bootstrap’s error-reducing capabilities.

3.2 The Improved Programmable Bootstrap

The programmable bootstrap, proposed in 2020 by Chillotti et al. [15], is essentially the same technique as the functional
bootstrap but defined using a discretized notation of TFHE. Nonetheless, a subsequent improved version of this
technique [16], proposed in 2021, introduced new parameters that allow for slicing and selecting just part of the input to
evaluate the function over. Let 𝑐 = (𝑎, 𝑏) ∈ TLWE(𝑚2𝐵) be a TLWE sample encrypting𝑚 and let �̃� be the binary vector
representation of𝑚, i.e.𝑚 =

∑ ⌊log2𝑚⌋
𝑖=0 2𝑖�̃�. The improved version of the Programmable Bootstrap allows to evaluate

𝑓 (∑𝑗−𝑖
𝑘=0 2

𝑘�̃�𝑘+𝑖), for any 𝑖 ≤ 𝑗 ∈ [[0, ⌊log2𝑚⌋]]. In this way, it makes it possible to decompose messages and bootstrap
decomposed digits separately. This feature can be leveraged by methods that work over decomposed messages for
enabling the evaluation of large lookup tables representing functions with high precision. We further discuss them in
Section 3.6.

Algorithm 6 describes the improved version of the programmable bootstrap using the functional bootstrap of TFHE.

Algorithm 6: Improved Programmable Bootstrap (PBS) [16]
Input :a TLWE sample 𝑐 = (𝑎, 𝑏) ∈ TLWE𝑠 (𝑚2𝐵), for𝑚 ∈ 𝑍𝐵
Input :an integer LUT 𝐿 = [𝑙0, 𝑙1, ..., 𝑙𝐵−1] ∈ Z𝐵𝐵
Input :message slicing parameters ^ and \
Input :a bootstrapping key BK𝑖 ∈ TRGSWS (𝑠𝑖), for 𝑖 ∈ [[1, 𝑛]]
Output :𝑐 ′′ ∈ TLWES (𝐿 [𝑚]2𝐵), where S ∈ B

𝑁 is a vector (TLWE) interpretation of S ∈ B𝑁 [𝑋]
1 𝑏 ′ ← ⌊𝑏 · 2^⌉ 1

2\
∈ T

2 𝑎′
𝑖
← ⌊𝑎𝑖 · 2^⌉ 1

2\
∈ T for each 𝑖 ∈ [[1, 𝑛]]

3 Let 𝑐 ′ = (𝑎′, 𝑏) ∈ TLWE𝑠 (⌊ 𝑚2𝐵 · 2
^⌉ 1

2\
)

4 return FunctionalBootstrap(𝑐 ′, 𝐿, 𝐵𝐾)

3.3 The Multi-Value Functional Bootstrap (MVFB)

Evaluating several different functions over the same input is a necessity not only for high-level applications but even
for core procedures of the cryptosystem, such as the Circuit Bootstrap (Section 3.7) and the Tree-Based Functional
Bootstrap (Section 3.6). The multi-value functional bootstrap is a technique that allows these evaluations to occur at a
much smaller cost than executing several (single-value) functional bootstraps. The most straightforward solution for
implementing the multi-value bootstrap would be using the BlindRotate to calculate just 𝑐 ′ ∈ TRLWE(𝑋 ⌈𝑝ℎ𝑎𝑠𝑒 (𝑐)2𝑁 ⌋)
Manuscript submitted to ACM

MOSFHET: Optimized Software for FHE over the Torus 9

and, then, multiplying it by each LUT (encoded in polynomials). In 2019, Carpov et al. [9] proposed a better method
based on decomposing the polynomials that encoded the LUTs to achieve a better error output. Algorithm 7 describes it.

Algorithm 7:Multi-Value Functional Bootstrap algorithm (MVFB) [9]
Input :a TLWE sample 𝑐 = (𝑎 = [𝑎1, 𝑎2, ..., 𝑎𝑛], 𝑏) ∈ TLWE𝑠 (𝑚2𝑁),𝑚 ∈ Z2𝑁
Input :a scale factor 𝜏
Input :𝑞 LUTs encoded in polynomials 𝑇𝑉𝐹𝑖 ∈ Z𝑁 [𝑋], for 𝑖 ∈ [[1, 𝑞]]
Input :a bootstrapping key BK𝑖 ∈ TRGSWS (𝑠𝑖), for 𝑖 ∈ [[1, 𝑛]]
Output :An array of TLWE samples 𝑐 ′

𝑖
∈ TLWES (𝐹𝑖 (𝑚)2𝑁) for 𝑖 = 1, ..., 𝑞, where S ∈ B𝑁 is a vector interpretation

of S ∈ B𝑁 [𝑋]
1 𝑏 ← ⌊2𝑁𝑏⌉, 𝑎𝑖 ← ⌊2𝑁𝑎𝑖 ⌉ ∈ Z2𝑁 for each 𝑖 ∈ [[1, 𝑛]]
2 𝑣 ← 1

2
∑𝑁−1
𝑖=0 𝑋 𝑖 · 1

2𝑁 · 𝜏 ∈ T𝑁 [𝑋]
3 ACC← BlindRotate((0, 𝑣), (𝑎1, ..., 𝑎𝑛, 𝑏), (BK1, ...,BK𝑛))
4 𝑐 ′

𝑖
= SampleExtract0(

𝑇𝑉𝐹𝑖

𝑣 · ACC), for each 𝑖 ∈ [[1, 𝑞]]
5 return 𝑐 ′

This method is a significant improvement over the straightforward version, but it still introduces significantly more
errors than the single-value counterpart. Carpov et al. [9] estimates the error output variance of their multi-value
bootstrap as given by Equation 2, where 𝜎𝐹𝐵 is the output error variance of the (single-value) functional bootstrap.

𝑉𝑎𝑟 (𝐸𝑟𝑟 (𝑐)) ≤ 𝑠 (𝑞 − 1)2𝜎𝐹𝐵 (2)

In 2021, Guimarães et al. [25] improved the method by introducing a base composition with linear error growth,
based on the scaling algorithm described in Algorithm 8. Equation 3 shows the final output error variance. Both
works, however, start from the assumption that the square norm of the polynomial representing the LUT, ∥𝑇𝑉𝑓 ∥22 ,
is smaller than 𝑠 (𝑞 − 1)2, where 𝑠 and 𝑞 are, respectively, the input and output bases. This equation is not true in all
cases. Let us take, for example, a 4-slot LUT with values [1, 0, 1, 1], input base 4, and output base 2. The factorized
version would be [2,−1, 1, 0], for which the square norm is 22 + −12 + 12 = 6, which should be smaller or equal than
𝑠 (𝑞 − 1)2 = 4(2 − 1)2 = 4. This is a corner case for their error estimations, which, in this work, we solve by applying the
same scaling algorithm used in the base composition (Algorithm 8) to the multiplication by the first element of the
factorized LUT. In our example, while the square norm is still 22 + −12 + 12 = 6, the variance growth is linear on the
first element, thus presenting a final growth of 21 + −12 + 12 = 4.

𝑉𝑎𝑟 (𝐸𝑟𝑟 (𝑐)) ≤ 𝑠 (𝑞 − 1)𝜎𝐹𝐵 (3)

Bootstrapping Many LUTs. In 2021, Chillotti et al. [16] presented a newmethod for the multi-value bootstrap. Different
from the previous ones, their method does not incur additional errors nor affect performance. On the other hand, the
number of LUTs evaluated in each bootstrap is limited by the cryptosystem parameters. Algorithm 9 describes the
Bootstrap Many LUTs procedure.

3.4 Tensor product

As first defined, T(R)LWE samples cannot be directly multiplied by one another. However, there are several FHE
schemes also based on the RLWE problem presenting tensorial multiplications between samples [11, 20]. In 2021,

Manuscript submitted to ACM

10 Guimarães, et al.

Algorithm 8:Multiplication (scaling) using the multi-value extract (MultiValueExtractScaling) [25]
Input :a TRLWE sample 𝑐 ∈ TRLWES (p), which is the accumulator (ACC) of a previous functional bootstrap,

and a cleartext scalar 𝑏 ∈ Z
Output :a TLWE sample 𝑐 ′ ∈ TLWES (𝑏 · 𝑝0), where 𝑝0 is the constant term of 𝑝 , and S ∈ B𝑁 is a vector

interpretation of S ∈ B𝑁 [𝑋]
1 𝑐 ′ ← TLWES (0)
2 𝑐 ′ ← 𝑐 ′ + SampleExtract𝑖 (𝑝), for each 𝑖 ∈ [[0, ⌈𝑏2 ⌉ − 1]]
3 𝑐 ′ ← 𝑐 ′ − SampleExtract𝑖 (𝑝), for each 𝑖 ∈ [[𝑁 − ⌊𝑏2 ⌋, 𝑁 − 1]]
4 Return 𝑐 ′

Algorithm 9: Bootstrap ManyLUT (BML) [16]
Input :a TLWE sample 𝑐 = (𝑎 = [𝑎1, 𝑎2, ..., 𝑎𝑛], 𝑏) ∈ TLWE𝑠 (𝑚2𝑁),𝑚 ∈ Z2𝑁
Input :a set L of q lookup tables, each represented by an array 𝐿𝑖 ∈ T𝐵 encoding a function 𝐹𝑖 , for 𝑖 ∈ [[0, 𝑞)
Input :a bootstrapping key BK𝑖 ∈ TRGSWS (𝑠𝑖), for 𝑖 ∈ [[1, 𝑛]]
Output :An array of TLWE samples 𝑐 ′

𝑖
∈ TLWES (𝐹𝑖 (𝑚)) for 𝑖 ∈ [[0, 𝑞), where S ∈ B𝑁 is a vector interpretation

of S ∈ B𝑁 [𝑋]
1 𝑟 ← 𝑁

𝑞𝐵

2 𝑏 ← ⌊2𝑁𝑏⌉, 𝑎𝑖 ← ⌊2𝑁𝑎𝑖 ⌉ ∈ Z2𝑁 for each 𝑖 ∈ [[1, 𝑛]]
3 𝑣 ← ∑𝐵−1

𝑖=0
∑𝑞−1

𝑗=0
∑𝑟−1
𝑘=0 𝐿𝑗,𝑖𝑋

(𝑖𝑞+𝑗)𝑟+𝑘

4 ACC← BlindRotate((0, 𝑣), (𝑎1, ..., 𝑎𝑛, 𝑏 + 1
4𝐵𝑞), (BK1, ...,BK𝑛))

5 𝑐 ′
𝑖
= SampleExtract𝑖𝑟 (ACC), for each 𝑖 ∈ [[0, 𝑞)

6 return 𝑐 ′

Chillotti et al. [16] showed that it is possible to implement the BFV-like [20] tensor product using TFHE parameters.
They also showed how it can be used to perform a multiplication between TLWE samples. While their work presents
all the necessary error estimations and parameters, it remained a purely theoretical contribution without practical
implementations so far. In this work, we implement the BFV-like tensor product in TFHE for TRLWE samples with 𝑛 = 1
(following the TRLWE definition of Chillotti et al. [16]). Algorithm 10 describes the tensor product, and Algorithm 11
shows the multiplication between TLWE samples.

Algorithm 10: TRLWE tensor product (TensorProd) [16]

Input : two TRLWE samples 𝑐𝑖 = (𝑎𝑖 , 𝑏𝑖) ∈ TRLWE𝑠 (𝑝𝑖𝐵), for 𝑝𝑖 ∈ Z𝑁 [𝑋] and 𝑖 ∈ {0, 1}
Input :a relinearization key RLK𝑖 ∈ TRGSW𝑠 (𝑠

2

𝔅𝑗), for 𝑗 ∈ [[1, 𝑡]]
Input :an integer precision parameter 𝑞 ∈ N
Output :𝑐 ′ ∈ 𝑇𝑅𝐿𝑊𝐸𝑠 (𝑝0 ·𝑝1𝐵

)
1 𝑄 ← 𝑞2,Δ← log2 (𝑞/𝐵)
2 𝐴𝑖 ← 𝑞𝑎𝑖 , 𝐵𝑖 ← 𝑞𝑏𝑖 , for 𝑖 ∈ {0, 1}
3 𝑇 ← ⌊ ⌊𝐴1 ·𝐴2 ⌉𝑄

Δ ⌉𝑞
4 𝐴′ ← ⌊ ⌊𝐴1 ·𝐵2+𝐵1 ·𝐴2 ⌉𝑄

Δ ⌉𝑞
5 𝐵′ ← ⌊ ⌊𝐵1 ·𝐵2 ⌉𝑄

Δ ⌉𝑞
6 Decompose 𝑇 /𝑞, such that 𝑇 /𝑞 =

∑𝑡
𝑗=1𝑇

′
𝑗
·𝔅−𝑗

7 return (𝐴′/𝑞, 𝐵′/𝑞) +∑𝑡
𝑖=1𝑇

′
𝑖
· RLK𝑖

Manuscript submitted to ACM

MOSFHET: Optimized Software for FHE over the Torus 11

Algorithm 11: TLWE multiplication (TLWEMult) [16]
Input : two TLWE samples 𝑐𝑖 = (𝑎𝑖 , 𝑏𝑖) ∈ TLWE𝑠 (𝑚𝑖

𝐵
), for𝑚𝑖 ∈ Z𝐵 and 𝑖 ∈ {0, 1}

Input :a relinearization key RLK𝑖 ∈ TRGSW𝑠 (𝑠
2

𝔅𝑗), for 𝑗 ∈ [[1, 𝑡]]
Input :an integer precision parameter 𝑞 ∈ N
Input :a Key Switching key KSK𝑖, 𝑗 ∈ T(R)LWES (

𝑠𝑖
2𝑗), for 𝑖 ∈ [[1, 𝑛]] and 𝑗 ∈ [[1, 𝑡]]

Output :𝑐 ′ ∈ 𝑇𝐿𝑊𝐸𝑠 (𝑚0×𝑚1
𝐵
)

1 𝑓 : T ↦→ T𝑁 [𝑋] =𝑚 ↦→𝑚𝑋 0

2 𝐶0 ← PublicKeySwitch(𝑐0, 𝑓 , 𝐾𝑆𝐾)
3 𝐶1 ← PublicKeySwitch(𝑐1, 𝑓 , 𝐾𝑆𝐾)
4 𝐶𝑚𝑢𝑙 ← TensorProd(𝐶0,𝐶1, 𝑅𝐿𝐾,𝑞)
5 return SampleExtract0 (𝐶𝑚𝑢𝑙)

Integer precision. In Algorithm 10, we use an integer precision parameter 𝑞 ∈ N to map (by scaling) elements from
the torus to Z𝑞 . This is not necessary for the definition of the algorithm, but it shows the required precision of the
underlying polynomial arithmetic implementation. Typically, 𝑞 = 232 or 𝑞 = 264. In the first case, multiplications can be
performed directly using the FFT without adding significant error. In the latter, the multiplication might require up to
128 bits of precision depending on the input base 𝐵. Considering that, in this work, we also implement a version of the
TRLWE tensor product using 128-bit polynomial multiplication based on the Karatsuba algorithm [27].

3.5 Full-Domain Functional Bootstrap (FDFB)

The functional bootstrap is capable of evaluating arbitrary functions only if the input is in the first half of the torus,
due to the negacyclic property (Section 3.1). Thus, it is a half-domain functional bootstrap (HDFB). It also is not able to
perform modular (cyclic) arithmetic. The full-domain functional bootstrap (FDFB) is a variant that overcomes such
restrictions and operates over the entire input domain following modular cyclic arithmetic. There are several techniques
for implementing it [16, 17, 29, 38], and, in general, they evaluate an arbitrary function 𝑓 by decomposing it into
multiple sub-functions 𝑓𝑖 and evaluating each 𝑓𝑖 with an HDFB. In this work, we implement all solutions that are not
purely based on high-level function pre-processing. Specifically, we implement all that require modifications to or
introduce new building blocks to the cryptosystem. The following sections discuss them.

3.5.1 The Tensor Product method. Chillotti et al. [16] were the first to present a full-domain functional bootstrap for
TFHE or, as they defined, a without-padding programmable bootstrap (WoP-PBS). Algorithm 12 shows their technique,
proposed in 2021.

3.5.2 The PubMux Method. In 2021, Kluczniak and Schild [29] proposed a technique for the FDFB based on the
definition of a public version of TFHE’s C multiplexer (CMUX, Algorithm 4). In this version, the inputs are polynomials
(instead of T(R)LWE samples), and the selector is a TLWE sample (instead of a TRGSW sample). Algorithm 13 presents
their technique. It first calculates the input sign, then uses it to select, using the PubMux method, between LUTs
encoding the subfunctions 𝑓0 = 𝑓 and 𝑓1 = −𝑓 . The result is used as a test vector for a regular functional bootstrap using
the same input.

3.5.3 The Chaining Method. The FDFB presented by Chillotti et al. [16] is the state-of-the-art on performance, requiring
just one multi-value bootstrap. However, it still introduces more errors than the original FB, as it selects between the
bootstrap lookup results using the TRLWE tensor product. In this section, we introduce a novel method for performing

Manuscript submitted to ACM

12 Guimarães, et al.

Algorithm 12: Full-Domain Functional Bootstrap based on TLWEMult (FDFB-CLOT21) [16]
Input :a TLWE sample 𝑐 = (𝑎, 𝑏) ∈ TLWE𝑠 (𝑚𝐵), for𝑚 ∈ 𝑍𝐵
Input :an integer LUT 𝐿 = [𝑙0, 𝑙1, ..., 𝑙𝐵−1] ∈ Z𝐵𝐵
Input :a bootstrapping key BK𝑖 ∈ TRGSWS (𝑠𝑖), for 𝑖 ∈ [[1, 𝑛]].
Input :a relinearization key RLK𝑖 ∈ TRGSW𝑠 (𝑠

2

𝔅𝑗), for 𝑗 ∈ [[1, 𝑡]]
Input :an integer precision parameter 𝑞 ∈ N
Input :a key switching key KSK𝑖, 𝑗 ∈ T(R)LWES (

𝑠𝑖
2𝑗), for 𝑖 ∈ [[1, 𝑛]] and 𝑗 ∈ [[1, 𝑡]]

Output :𝑐 ′ ∈ 𝑇𝐿𝑊𝐸S (𝐿 [𝑚]2𝐵), where S ∈ B
𝑁 is a vector (TLWE) interpretation of S ∈ B𝑁 [𝑋]

1 𝑐𝑎 ← FunctionalBootstrap(𝑐, 𝐿[0 : 𝐵
2], 𝐵𝐾)

2 𝑐𝑏 ← FunctionalBootstrap(𝑐, 𝐿[𝐵2 : 𝐵], 𝐵𝐾)
3 𝑐𝑠𝑖𝑔𝑛 ← FunctionalBootstrap(𝑐, [12𝐵 ,,

1
2𝐵], 𝐵𝐾)

4 𝑐𝑎𝑠 ← TLWEMult(𝑐𝑎, 𝑐𝑠𝑖𝑔𝑛 + (0, 1
2𝐵), 𝑞, RLK,KSK)

5 𝑐𝑏𝑠 ← TLWEMult(𝑐𝑏 , 𝑐𝑠𝑖𝑔𝑛 − (0, 1
2𝐵), 𝑞, RLK,KSK)

6 return 𝑐𝑎𝑠 + 𝑐𝑏𝑠

Algorithm 13: Full-Domain Functional Bootstrap based on PubMux (FDFB-KS21) [29]
Input :a TLWE sample 𝑐 = (𝑎, 𝑏) ∈ TLWE𝑠 (𝑚𝐵), for𝑚 ∈ 𝑍𝐵
Input :an integer LUT 𝐿 = [𝑙0, 𝑙1, ..., 𝑙𝐵−1] ∈ Z𝐵𝐵
Input :a bootstrapping key BK𝑖 ∈ TRGSWS (𝑠𝑖), for 𝑖 ∈ [[1, 𝑛]]
Input :precision parameters ℓ,𝔅 ∈ N
Input :a key switching key KSK𝑖, 𝑗 ∈ T(R)LWES (

𝑠𝑖
2𝑗), for 𝑖 ∈ [[1, 𝑛]] and 𝑗 ∈ [[1, 𝑡]].

Output :𝑐 ′ ∈ 𝑇𝐿𝑊𝐸S (𝐿 [𝑚]𝐵
), where S ∈ B𝑁 is a vector (TLWE) interpretation of S ∈ B𝑁 [𝑋]

1 𝑝1 ←
∑ 𝐵

2 −1
𝑖=0

∑ 2𝑁
𝐵

𝑗=0
𝑙𝑖
𝐵
𝑋

2𝑁𝑖
𝐵
+𝑗

2 𝑝2 ←
∑ 𝐵

2 −1
𝑖=0

∑ 2𝑁
𝐵

𝑗=0 −
𝑙
𝑖+ 𝐵2
𝐵
𝑋

2𝑁𝑖
𝐵
+𝑗

3 𝑐𝑠𝑖𝑔𝑛,𝑖 ← FunctionalBootstrap(𝑐, [1
2𝔅𝑖 ,,

1
2𝔅𝑖], 𝐵𝐾) − 1

2𝔅𝑖 , for 𝑖 ∈ [[0, ℓ)
4 𝑡𝑣 ← PubMux(𝑐𝑠𝑖𝑔𝑛, 𝑝1, 𝑝2)
5 return FunctionalBootstrap(𝑐, 𝑡𝑣, 𝐵𝐾)
1 Procedure PubMux(C, A, B)
2 𝐵𝐴← 𝐵 −𝐴
3 Let 𝐵𝐴′ be the decomposition of 𝐵𝐴 in base 𝔅, s.t. 𝐵𝐴 =

∑ℓ−1
𝑖=0 𝐵𝐴

′
𝑖
·𝔅−𝑖

4 return 𝐵 +∑ℓ−1
𝑖=0 𝐶𝑖 · 𝐵𝐴′𝑖

the full-domain functional bootstrap that provides the same error variance output as the basic (half-domain) FB.
Algorithm 14 describes it. Despite requiring two functional bootstraps, the algorithm combines them using the chaining
method [25], which provides the lowest output error variance. We note that this method can be seen as an extension
of the FullFBS presented by Yang et al. [38] for their cryptosystem (TOTA), although their method only removes the
negacyclicity, without addressing full-domain evaluation specifically. One can obtain the original technique from Yang et
al. [38] by replacing line 1 of Algorithm 14 with line 2 of Algorithm 5.

3.6 Evaluating large Lookup tables

All methods and variations of the functional bootstrap we presented so far have a common limitation: The message is
encrypted in a single sample, and the size of the LUT is limited by the parameters of the cryptosystem. In practice, it is
Manuscript submitted to ACM

MOSFHET: Optimized Software for FHE over the Torus 13

Algorithm 14: Full-Domain Functional Bootstrap based on Chaining (FDFB-C)
Input :a TLWE sample 𝑐 = (𝑎, 𝑏) ∈ TLWE𝑠 (𝑚𝐵), for𝑚 ∈ 𝑍𝐵
Input :an integer LUT 𝐿 = [𝑙0, 𝑙1, ..., 𝑙𝐵−1] ∈ Z𝐵𝐵
Input :a bootstrapping key BK𝑖 ∈ TRGSWS (𝑠𝑖), for 𝑖 ∈ [[1, 𝑛]]
Output :𝑐 ′ ∈ 𝑇𝐿𝑊𝐸S (𝐿 [𝑚]𝐵

), where S ∈ B𝑁 is a vector (TLWE) interpretation of S ∈ B𝑁 [𝑋]

1 𝑡𝑣 ← ∑ 𝐵
2 −1
𝑖=0

∑1
𝑗=0

∑𝑁
𝐵
−1

𝑘=0
1
𝐵
𝑙 𝑗𝐵

2 +𝑖
𝑋 (2𝑖+𝑗)

𝑁
𝐵
+𝑘

2 𝑐𝑠𝑖𝑔𝑛 ← FunctionalBootstrap(𝑐, [𝐵+14𝐵 ,,
𝐵+1
4𝐵], 𝐵𝐾) −

𝐵+1
4𝐵

3 return FunctionalBootstrap(𝑐 + 𝑐𝑠𝑖𝑔𝑛, 𝑡𝑣, 𝐵𝐾)

not possible to efficiently evaluate functions with more than 6 bits of precision with these methods [16]. To evaluate
large lookup tables, it is necessary to decompose the message into several ciphertexts and combine the evaluation of
several small LUTs over the decomposed digits. In 2021, Guimarães et al. [25] introduced two methods for evaluating
large LUTs. Algorithm 15 describes the tree-based functional bootstrap.

Algorithm 15: Tree-based functional bootstrap (TreeFB) [25]

Input :a set of TLWE samples 𝑐𝑖 ∈ TLWE𝑠 (𝑚𝑖

2𝐵), such that
∑𝑑−1
𝑖=0 𝑚𝑖𝐵

𝑖 =𝑚 encodes the integer𝑚 in base 𝐵
with 𝑑 digits

Input :a set L of 𝐵𝑑 polynomials ∈ Z𝑁 [𝑋] encoding the lookup table of an arbitrary function F
Input :a bootstrapping key BK𝑖 ∈ TRGSWS (𝑠𝑖), for 𝑖 ∈ [[1, 𝑛]]
Input :a Key Switching key KS𝑖, 𝑗 ∈ T(R)LWEs (

𝑠𝑖
2𝑗), for 𝑖 ∈ [[1, 𝑛]] and 𝑗 ∈ [[1, 𝑡]]

Output :A TLWE sample 𝑐 ′ ∈ TLWES (𝐹 (𝑚)2𝐵), where S ∈ B
𝑁 is a vector (TLWE) interpretation of S ∈ B𝑁 [𝑋]

1 TV← L
2 𝑓 : T𝐵 ↦→ T𝑁 [𝑋] = (𝑎1, ..., 𝑎𝐵) ↦→ 𝑎1𝑋𝑁−1 + ... + 𝑎𝐵
3 for 𝑖 ← 0 to 𝑑 − 1 do
4 𝑐 ′ ← MVFB(𝑐𝑖 ,TV, BK)
5 for 𝑗 ← 1 to 𝐵𝑑−𝑖−2 do
6 TV𝑗−1 ← PublicKeySwitch((𝑐 ′ (𝑗−1)×𝐵, ..., 𝑐 ′ 𝑗×𝐵), 𝑓 ,KS)
7 return 𝑐 ′0

They also introduced a chaining method (ChainingFB) for combining multiple functional bootstraps, which is more
intricate to implement but provides better error output variance. Its implementation is specific to each function. In
summary, the method boils down to using linear combinations of an FB output as the selector for the next. Algorithm 14
exemplifies it. Guimarães et al. [25] remarks that, although more functionally restricted, the method is especially good
for evaluating functions with carry-like or test logics. In 2022, Clet et al. [17] showed that the method is capable of
evaluating any function by using a digit composition as linear combination, i.e., (𝑎0, 𝑎1) ↦→ 𝑎0 + 𝑎1 · 𝐵, where 𝐵 is the
numeric base. This composition, however, requires quadratically larger parameters, and it is still unclear whether it
would improve the evaluation of arbitrary high-level functions.

3.7 The Circuit Bootstrap

Working with T(R)LWE samples is usually the norm in TFHE, as computation is cheaper both for arithmetic and
FB-based arbitrary function evaluation. However, several techniques require samples to be encrypted as TRGSW [14]
samples. In this context, the Circuit Bootstrap, first proposed by Chillotti et al. in 2016, is a technique for producing

Manuscript submitted to ACM

14 Guimarães, et al.

a TRGSW sample from a TRLWE one. Since it is based on the functional bootstrap, the content of the fresh sample
can be arbitrarily defined by a function. Algorithm 16 defines the circuit bootstrap based on the functional bootstrap.
Since it requires the evaluation of several functions over the same input, we can use the BML algorithm, presented in
Section 3.3, to accelerate the computation (as suggested by Chillotti et al. [16]) at the cost of a slightly increased error
rate.

Algorithm 16: CircuitBootstrap algorithm [14]

Input :a TLWE sample 𝑐 = (𝑎, 𝑏) ∈ TLWE𝑠 (𝑚) for𝑚 ∈ {0, 14 }
Input :a constant ` ∈ T
Input :a bootstrapping key BK𝑖 ∈ TRGSW𝑠′ (𝑠𝑖), for 𝑖 ∈ [[1, 𝑛]]
Input :a Private Key Switching key KSA𝑖, 𝑗 ∈ T(R)LWE𝑠′ (

𝑓 (𝑠)𝑖
2𝑗), for 𝑖 ∈ [[1, 𝑛]], and

KS𝑛+1, 𝑗 ∈ T(R)LWE𝑠′ (
𝑓 (−1)
2𝑗), for 𝑗 ∈ [[1, 𝑡]] and 𝑓 : B ↦→ B𝑁 [𝑋] = (𝑠) ↦→ 𝑠 · −𝑠 ′

Input :a Key Switching key KSB𝑖, 𝑗 ∈ T(R)LWEs′ (
𝑠𝑖
2𝑗), for 𝑖 ∈ [[1, 𝑛]] and 𝑗 ∈ [[1, 𝑡]]

Output :𝑐 ′ ∈ TRGSW𝑠′,(ℓ,𝔅) (𝑚′ · `), where𝑚′ =
{
1, if𝑚 ∈ [[0.25, 0.5)
0, otherwise

1 𝑓 : T ↦→ T𝑁 [𝑋] =𝑚 ↦→𝑚 · 𝑋 0

2 for 𝑖 ← 1 to ℓ do
3 𝑐 ← FunctionalBootstrap(𝑐, [0,𝔅−𝑖], 𝐵𝐾)
4 𝑐 ′

𝑖
← PrivateKeySwitch(𝑐,KSKA)

5 𝑐 ′
ℓ+𝑖 ← PublicKeySwitch(𝑐, 𝑓 ,KSKB)

6 return 𝑐 ′

3.8 The Full TRGSW bootstrap

The TreeFB algorithm (Section 3.6) supposes the use of the multi-value functional bootstrap for every level of the tree
to achieve a linear number of bootstraps. However, after the first (base) level of the tree, LUTs are encrypted in TRLWE
samples (instead of encoded in clear-text polynomials). Carpov et al. [9] MVFB (Algorithm 7) does not operate over
encrypted test vectors and Chillotti et al. [16] BML (Algorithm 9) supports a limited number of LUTs. Guimarães et
al. [25] suggests using the CircuitBootstrap to employ the MVFB over encrypted LUTs, but they did not implement
the technique as it would require an implementation supporting 64-bit torus precision. Our library not only provides
this precision level but also all optimizations for the CircuitBootstrap discussed by them [25]. We note, however,
that instead of executing the regular FB plus a CircuitBootstrap, we can just directly perform a full TRGSW bootstrap,
which uses the same number of BlindRotate executions as the CircuitBootstrap, but saves time by avoiding key
switchings.

The full TRGSW bootstrap is similar to the functional bootstrap described in Algorithm 5, but the accumulator
vector is a TRGSW sample instead of a TRLWE sample. In this way, the external products become internal products
between TRGSW samples, which are at least ℓ times more expensive but have the same output error variance. The
result produced by the algorithm, encrypting 𝑋 ⌈𝑝ℎ𝑎𝑠𝑒 (𝑐)2𝑁 ⌋ , is also a TRGSW sample and can, therefore, be multiplied
by the decomposed LUTs in Carpov et al. method, even when they are encrypted in TRLWE samples. Different from the
original MVFB, the output error variance of such multiplication depends on the square norm of the TRGSW samples,
and not on the LUT. In this way, Carpov et al. decomposition presents no advantage anymore, and we can use the
straightforward version of the multi-value bootstrap described at the beginning of Section 3.3.
Manuscript submitted to ACM

MOSFHET: Optimized Software for FHE over the Torus 15

3.9 T(R)LWE conversion

The Key Switching algorithm is one of the core procedures of TFHE, and its performance degrades rather fastly for
large parameters when inputs are TLWE samples. For TRLWE samples, on the other hand, the Key Switching can
be sped up by using the FFT to perform multiplications, which comes at the cost of an increased error rate. In 2021,
Chen et al. [10] presented several algorithms that allow performing TLWE Key Switching using TRLWE Key Switching
methods. For TLWE-to-TRLWE conversion, however, their algorithm multiplies the coefficients of the result by 𝑁 (the
modulo polynomial degree) as a side effect, since it is based on the Galois permutation. In the standard instantiation of
TFHE, coefficients are in the real torus and 𝑁 does not have an inverse. In this way, we implement their algorithms for
completeness, but we did not find many cases in which it could be used efficiently. Specifically, it is possible to use such
algorithms in cases in which the message can be divided by 𝑁 using bootstraps or before encryption.

3.10 The BlindRotate Unfolding

The BlindRotate is the most expensive operation in TFHE’s bootstrap. It calculates 𝑋
∑𝑛

𝑖=1 𝑠𝑖𝑎𝑖 . Its most expensive
operations, in turn, are the multiplications by TRGSW samples, which encrypt 𝑠𝑖 . In 2018, Zhou et al. [40] showed how
to reduce the number of multiplications by unfolding the BlindRotate loop. Equation 4 shows their proposal. In the
same year, Bourse et al. [6] improved the unfolding equation by calculating the last term from the first three. They also
suggest the equation could be generalized to large unfoldings. In this work, we implemented this generalization and
tested unfoldings of sizes 2, 4, and 8.

𝑋𝑎𝑠+𝑎′𝑠′ = 𝑠𝑠 ′𝑋𝑎+𝑎′ + 𝑠 (1 − 𝑠 ′)𝑋𝑎 + (1 − 𝑠)𝑠 ′𝑋𝑎′ + (1 − 𝑠) (1 − 𝑠 ′). (4)

3.11 Public Key compression

The bootstrap operation and, to a lesser degree, the key switching algorithm are the most time-consuming procedures in
TFHE. Both of them, however, can be sped up at the cost of larger keys. Specifically, one can increase the decomposition
base of the key switching and the BlindRotate unfolding in the bootstrap. In both cases, it is possible to achieve
linear gains on performance with exponential growth on the key size. Techniques for compressing evaluation keys
are broadly available in the literature. For TFHE, Chillotti et al. [14] suggest storing just the pseudo-random number
generator (PRNG) seed used to generate the 𝑎 component of TRLWE samples and only generating 𝑎 when necessary.
This technique gives up to 𝑛 times storage gain, but so far has not been implemented for TFHE. In this work, we not
only implement the idea but also show how we can use it to improve execution time in the key switching algorithm.

Algorithm 17 shows the core TRLWE subtraction algorithm used in the key switching. We could use any PRNG to
implement it, but SHAKE256 [19] was a convenient choice as we were already using it for the rest of the implementation,
and it is a cryptographically secure PRNG. This version provides almost two times storage and memory usage reduction
for TRLWE key switching keys and bootstrap keys. However, it slows down the execution by more than 10 times.
We could minimize the impact of this slowdown by expanding the entire keys at loading time, but we would lose the
memory usage gains, which are one of the most important benefits of this technique.

To solve this problem, we implement the key switching as shown in Algorithm 18. There are two main changes to
note in this version:

(1) We replace SHAKE256 by Xoroshiro [2, 37], a much faster PRNG, but that is not considered cryptographically
secure. There are several examples of using such generators for generating public information, as is the case of

Manuscript submitted to ACM

16 Guimarães, et al.

Algorithm 17: TRLWE subtraction

Input :a compressed TRLWE sample 𝑐0 = (𝑠𝑒𝑒𝑑𝑎0 , 𝑏0) ∈ TRLWE𝑠 (𝑝0𝐵), for 𝑝0 ∈ Z𝑁 [𝑋]
Input :a TRLWE sample 𝑐1 = (𝑎1, 𝑏1) ∈ TRLWE𝑠 (𝑝1𝐵), for 𝑝1 ∈ Z𝑁 [𝑋]
Output :𝑐 ′ = (𝑎′, 𝑏 ′) ∈ TRLWE𝑠 (𝑝0−𝑝1𝐵

)
1 𝑎0 ← SHAKE256(𝑠𝑒𝑒𝑑𝑎0 , 𝑁)
2 for 𝑖 ← 0 to 𝑁 − 1 do
3 𝑎′

𝑖
= 𝑎0,𝑖 − 𝑎1,𝑖

4 𝑏 ′
𝑖
= 𝑏0,𝑖 − 𝑏1,𝑖

5 return 𝑐 ′

the 𝑎 component of (R)LWE samples. For the security aspects of using Xoroshiro for generating 𝑎, we refer to
previous literature [2, 4, 24]. If a secure PRNG is required even for public parameters, viable alternatives may be
found in Lightweight Cryptography [36].

(2) We interleave the memory load of the 𝑏 component with the expansion computation of the PRNG. In this way,
we take advantage of instruction-level parallelism since CPU (𝑎 calculation) and memory (𝑏 loading) intensive
code portions are executed simultaneously by the processor.

Algorithm 18: TRLWE subtraction

Input :a compressed TRLWE sample 𝑐0 = (𝑠𝑒𝑒𝑑𝑎0 , 𝑏0) ∈ TRLWE𝑠 (𝑝0𝐵), for 𝑝0 ∈ Z𝑁 [𝑋]
Input :a TRLWE sample 𝑐1 = (𝑎1, 𝑏1) ∈ TRLWE𝑠 (𝑝1𝐵), for 𝑝1 ∈ Z𝑁 [𝑋]
Output :𝑐 ′ = (𝑎′, 𝑏 ′) ∈ 𝑇𝑅𝐿𝑊𝐸𝑠 (𝑝0−𝑝1𝐵

)
1 𝑠𝑡𝑎𝑡𝑒 ← 𝑠𝑒𝑒𝑑𝑎𝑖
2 for 𝑖 ← 0 to 𝑁 − 1 do
3 𝑎′

𝑖
= 𝑋𝑜𝑟𝑜𝑠ℎ𝑖𝑟𝑜128𝑝𝑝_𝑛𝑒𝑥𝑡 (𝑠𝑡𝑎𝑡𝑒) − 𝑎1,𝑖

4 𝑏 ′
𝑖
= 𝑏0,𝑖 − 𝑏1,𝑖

5 return 𝑐 ′

At the implementation level, it was also necessary to vectorize Xoroshiro’s code using AVX2 instructions. Ultimately,
it was necessary to use a highly optimized version of an already very fast generator to have gains over the non-
compressed version, but we were able to achieve speedups of up to 1.44 times. The vectorized version of Xoroshiro is a
side contribution of this work.

3.12 State-of-the-art summary

Table 1 summarizes the techniques presented in this section as well as the improvements we presented for them. Besides
the improvements listed in the table, we note that one of our main contributions in this work is to implement all the
techniques in a single highly optimized software library.

4 EXPERIMENTAL RESULTS

We implement all algorithms presented in Section 3 in a single C library. The code is fully portable, self-contained, and
includes optional optimizations for the Intel AVX2 Instruction Set Extension (ISE). In this section, we compare the
execution times with implementations from TFHEpp [31], Concrete [15], and PALISADE [1, 29]. We use the parameter
set defined by TFHEpp [31] and reproduced in Table 2.
Manuscript submitted to ACM

MOSFHET: Optimized Software for FHE over the Torus 17

Table 1. Summary of the techniques presented in Section 3 and our contribution to each

Procedures Literature Section Improvements in this work
Functional Bootstrap [5, 18] 3.1 -
Improved Programmable Bootstrap [16] 3.2 -
Circuit Bootstrap [14] 3.7 Accelerated using the BLM (as suggested in [16])

Multi-value Bootstrap [9, 25] 3.3
We modified the composition algorithm to treat
a corner case on error growth.

[16] -
Key Switching [10, 14] 2.1.1, 3.9 Accelerated using public key compression

BlindRotate Unfolding [6, 40] 3.10 Method generalized for large unfoldings (as
suggested in [6])

TRGSW Bootstrap [14] 3.8 -

TreeFB [25] 3.6
We use the TRGSW bootstrap to provide multi-
value bootstrap for all levels of the tree.

ChainingFB [25] -

Full-Domain Functional Bootstrap
[16] 3.5.1 Accelerated using the BLM (as suggested in [16])
[29] 3.5.2 Accelerated using the BLM
This work 3.5.3 New technique

Public key compression [14] 3.11 We show how to exploit lightweight PRNG to
improve performance

BFV-like multiplication [16] 3.4 -

Table 2. Parameters from TFHEpp [31]

_
TLWE TRLWE TRGSW Key Switch
n 𝜎 n N 𝜎 ℓ 𝑙𝑜𝑔2 (𝑏𝑎𝑠𝑒) t 𝑙𝑜𝑔2 (𝑏𝑎𝑠𝑒)

127 632 2−15 1 2048 2−44 4 9 8 4

4.1 Execution Time

Table 3 shows the execution times of our algorithms, in microseconds, and compare with the TFHEpp library [31]. We
executed all experiments on a bare metal instance on AWS public cloud (m5zn.metal) featuring an Intel Xeon Platinum
8252C CPU at 4.5GHz with 192GB of RAM running Ubuntu 20.04.4 LTS. We note that the AVX-512 ISE reduces the
maximum processor frequency and might sometimes impact performance negatively compared with code using FMA
instructions. We compiled both implementations using GCC 10.3.0 with similar optimization flags1. Both our library
and TFHEpp (by default) use the same FFT library for fast polynomial arithmetics: the SPQLIOS [21] library with Intel
FMA ISE optimizations2. In this work, we also developed (as a side contribution) a version of SPQLIOS optimized using
AVX-512 instructions. For providing software portability, our library includes the FFNT library [28]. Each measurement
in the table is the average of 1000 executions. We also measured standard deviation and calculated a 99% confidence
interval for all metrics in our implementation. We omit them from the table as they are all negligible (smaller than 1%
of the average).

For most procedures, we obtain speedups varying from 1.21 to 1.4 times over TFHEpp. The AVX-512 version offers
a further speedup of up to 1.5 times over the FMA version, being up to 1.6 times faster than TFHEpp. The only case

1The complete compilation commands are available in the code repositories [26, 31]
2SPQLIOS was presented by Nicolas Gama et al. [21] with TFHE [12]. It was adapted by TFHEpp for their C++ code, which we adapted to pure C.

Manuscript submitted to ACM

18 Guimarães, et al.

Table 3. Execution time, in microseconds, for each procedure. The speedup considers the FMA version only, as TFHEpp does not
include AVX-512 acceleration.

Algorithm Section This work TFHEpp Speedup
(FMA version)FMA AVX-512 FMA

Functional Bootstrap 3.1 39,710 29,848 47,942 1.21
Full TRGSW Bootstrap Setup: 3.8 274,178 183,298 - -
Full TRGSW Bootstrap (cost per LUT): 61 45 - -
MVFB setup 3.3 39,508 29,750 - -
MVFB (cost per LUT): 12 11 - -
TRLWE Key Switching 2.1.1 46,079 45,644 39,191 0.85
TRLWE Key Switching using Compression 3.11 31,871 34,196 - 1.23
TLWE Key Switching 2.1.1 8,880 9,240 2,802 0.32
TRLWE Key Switching CDKS21 3.9 559 557 665 1.19
Circuit Bootstrap 3.7 416,258 396,560 - -
Circuit Bootstrap using BML 295,303 305,571 412,547 1.40
128-bit Tensor Product using Karatsuba:

3.4
12,867 12,910 - -

64-bit Tensor Product using FFT: 91 88 - -
32-bit Tensor Product using FFT: - - 30 -
Full Domain Functional Bootstrap KS21: 3.5.2 327,041 288,261 - -
Full Domain Functional Bootstrap KS21 with BML: 207,804 197,710 - -
Full Domain Functional Bootstrap CLOT21: 3.5.1 248,320 227,645 - -
Full Domain Functional Bootstrap CLOT21 with BML: 167,956 167,427 - -
Full Domain Functional Bootstrap (this work): 3.5.3 89,076 69,707 - -
Functional Bootstrap Unfold=2

3.10
70,200 58,319 - -

Functional Bootstrap Unfold=4 87,563 77,675 - -
Functional Bootstrap Unfold=8 506,666 492,330 - -

we observe slowdowns are in the TLWE KeySwitch, which they implement over a 32-bit version of the torus. Our
implementation only uses 64-bit representations of the torus, as they are required by several algorithms.

Comparing the technique among themselves, we highlight the up to 1.44 times speedup of the optimized version
of the key switching algorithms, achieved thanks to the evaluation key compression, which also reduces the key size
by a factor of 2. In the AVX-512 version, our FDFB method is 2.83 times faster than the FDFB-KS21 method and 2.40
times faster than the FDFB based on TLWE multiplication (FDFB-CLOT21), despite requiring more bootstraps. This is
explained by the cost of the TRLWE key switching procedures used in FDFB-CLOT21 (which uses Algorithm 11).

At first, we would also expect the have linear gains as we increase (exponentially) the unfolding. However, we
observed significant slowdowns likely due to the increased size of keys. Although we tried to further optimize our
unfolding implementation by specializing it in a specific unfolding, our best result was still slightly worse than without
using the technique. In this way, we chose to keep and report just the generic algorithm, which still provides a trade-off
on rounding errors and error variances and should bring gains for smaller parameters, as shown by Bourse et al. [6].

Comparison against other libraries. TFHEpp is the only library to cover many of the techniques we consider and
present a similar level of optimization. Nonetheless, we also executed the Functional Bootstrap of Concrete and the
FDFB of Kluczniak and Schild [29] in our environment. The former took 2.9 seconds to run on the same parameters,
being 74 times slower than our library. The latter was built over the PALISADE library [1], and we could not test for the
exact same parameter set as it instantiates TFHE mapping the torus to prime fields (which is common on other (R)LWE
Manuscript submitted to ACM

MOSFHET: Optimized Software for FHE over the Torus 19

cryptosystems but not on TFHE). Using the default parameters provided by the authors, the functional bootstrap took
2.7 seconds to execute (68 times slower than ours), and the full-domain functional bootstrap took 21.3 seconds, a 65
times slowdown compared to our non-optimized implementation of the same algorithm and a 102 times slowdown
compared to the optimized version.

5 CONCLUSION

In this work, we reviewed and implemented the main techniques presented so far for improving execution time or
error behavior in the homomorphic evaluation using the TFHE cryptosystem. We showed which proposals could be
efficiently combined and introduced several novel contributions. Our implementation achieved speedups of up to 1.2
over previous ones with a similar optimization level, and our new methods achieved speedups of up to 2.83 times
over previously employed techniques. We also presented, as side contributions, versions of Xoroshiro and SPQLIOS
vectorized with AVX2 and AVX-512 ISEs, respectively.

One of our major goals in this work was to present a software platform over which contributions and improvements
to TFHE could be easily developed and tested in efficient ways. In this context, we introduced MOSFHET, which is a
fully portable and self-contained C-library. Thanks to optional optimizations using AVX2 instructions, it also offers
efficient performance on the most commonly used CPUs. Compared to the implementation of Kluczniak and Schild [29],
for example, we achieved speedups of up to 102 times. Their implementation is built upon PALISADE [1], a library that
is broadly used for prototyping FHE schemes, but that is not specific to TFHE. In this way, it is not only far from offering
a competitive performance level but also does not provide easy access to the state-of-the-art techniques available for
the scheme. Our library comes to fulfill these two necessities. It implements all the newest techniques proposed in the
literature and provides an environment for efficiently prototyping new contributions.

As future work, we intend to continuously update the library to follow the state-of-art on TFHE; seek better options for
arithmetic with more than 64 bits of precision; adapt techniques from other cryptosystems that might seem interesting
for TFHE; and implement an additional library covering methods for the implementation of commonly used high-level
functions.

REFERENCES

[1] 2021. PALISADE Lattice Cryptography Library (release 1.11.5). https://palisade-crypto.org/. (Accessed on 03/12/2022).
[2] David Blackman and Sebastiano Vigna. 2021. Scrambled Linear Pseudorandom Number Generators. ACM Trans. Math. Softw. 47, 4, Article 36 (sep

2021), 32 pages. https://doi.org/10.1145/3460772
[3] Guillaume Bonnoron, Léo Ducas, and Max Fillinger. 2018. Large FHE Gates from Tensored Homomorphic Accumulator. In Progress in Cryptology

– AFRICACRYPT 2018, Antoine Joux, Abderrahmane Nitaj, and Tajjeeddine Rachidi (Eds.). Springer International Publishing, Cham, 217–251.
https://doi.org/10.1007/978-3-319-89339-6_13

[4] Joppe W. Bos, Simon Friedberger, Marco Martinoli, Elisabeth Oswald, and Martijn Stam. 2018. Fly, you fool! Faster Frodo for the ARM Cortex-M4.
Cryptology ePrint Archive, Report 2018/1116. https://ia.cr/2018/1116.

[5] Christina Boura, Nicolas Gama, Mariya Georgieva, and Dimitar Jetchev. 2019. Simulating Homomorphic Evaluation of Deep Learning Predictions.
In Cyber Security Cryptography and Machine Learning, Shlomi Dolev, Danny Hendler, Sachin Lodha, and Moti Yung (Eds.). Springer International
Publishing, Cham, 212–230. https://doi.org/10.1007/978-3-030-20951-3_20

[6] Florian Bourse, Michele Minelli, Matthias Minihold, and Pascal Paillier. 2018. Fast Homomorphic Evaluation of Deep Discretized Neural Networks.
In Advances in Cryptology – CRYPTO 2018, Hovav Shacham and Alexandra Boldyreva (Eds.). Springer International Publishing, Cham, 483–512.
https://doi.org/10.1007/978-3-319-96878-0_17

[7] Zvika Brakerski, Craig Gentry, and Shai Halevi. 2013. Packed Ciphertexts in LWE-Based Homomorphic Encryption. In Public-Key Cryptography –
PKC 2013, Kaoru Kurosawa and Goichiro Hanaoka (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 1–13. https://doi.org/10.1007/978-3-642-
36362-7_1

[8] Zvika Brakerski and Vinod Vaikuntanathan. 2011. Efficient Fully Homomorphic Encryption from (Standard) LWE. In 2011 IEEE 52nd Annual
Symposium on Foundations of Computer Science. 97–106. https://doi.org/10.1109/FOCS.2011.12

Manuscript submitted to ACM

https://palisade-crypto.org/
https://doi.org/10.1145/3460772
https://doi.org/10.1007/978-3-319-89339-6_13
https://ia.cr/2018/1116
https://doi.org/10.1007/978-3-030-20951-3_20
https://doi.org/10.1007/978-3-319-96878-0_17
https://doi.org/10.1007/978-3-642-36362-7_1
https://doi.org/10.1007/978-3-642-36362-7_1
https://doi.org/10.1109/FOCS.2011.12

20 Guimarães, et al.

[9] Sergiu Carpov, Malika Izabachène, and Victor Mollimard. 2019. New Techniques for Multi-value Input Homomorphic Evaluation and Applications.
In Topics in Cryptology – CT-RSA 2019, Mitsuru Matsui (Ed.). Springer International Publishing, Cham, 106–126. https://doi.org/10.1007/978-3-030-
12612-4_6

[10] Hao Chen, Wei Dai, Miran Kim, and Yongsoo Song. 2021. Efficient Homomorphic Conversion Between (Ring) LWE Ciphertexts. In Applied
Cryptography and Network Security, Kazue Sako and Nils Ole Tippenhauer (Eds.). Springer International Publishing, Cham, 460–479. https:
//doi.org/10.1007/978-3-030-78372-3_18

[11] Jung Hee Cheon, Andrey Kim, Miran Kim, and Yongsoo Song. 2017. Homomorphic Encryption for Arithmetic of Approximate Numbers. In
Advances in Cryptology – ASIACRYPT 2017, Tsuyoshi Takagi and Thomas Peyrin (Eds.). Springer International Publishing, Cham, 409–437. https:
//doi.org/10.1007/978-3-319-70694-8_15

[12] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène. 2016. Faster Fully Homomorphic Encryption: Bootstrapping in Less
Than 0.1 Seconds. In Advances in Cryptology – ASIACRYPT 2016, Jung Hee Cheon and Tsuyoshi Takagi (Eds.). Springer Berlin Heidelberg, Berlin,
Heidelberg, 3–33. https://doi.org/10.1007/978-3-662-53887-6_1

[13] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène. 2017. Faster Packed Homomorphic Operations and Efficient Circuit
Bootstrapping for TFHE. In Advances in Cryptology – ASIACRYPT 2017, Tsuyoshi Takagi and Thomas Peyrin (Eds.). Springer International Publishing,
Cham, 377–408. https://doi.org/10.1007/978-3-319-70694-8_14

[14] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène. 2020. TFHE: fast fully homomorphic encryption over the torus. Journal of
Cryptology 33, 1 (2020), 34–91. https://doi.org/10.1007/s00145-019-09319-x

[15] Ilaria Chillotti, Marc Joye, and Pascal Paillier. 2021. Programmable Bootstrapping Enables Efficient Homomorphic Inference of Deep Neural
Networks. In Cyber Security Cryptography and Machine Learning, Shlomi Dolev, Oded Margalit, Benny Pinkas, and Alexander Schwarzmann (Eds.).
Springer International Publishing, Cham, 1–19. https://doi.org/10.1007/978-3-030-78086-9_1

[16] Ilaria Chillotti, Damien Ligier, Jean-Baptiste Orfila, and Samuel Tap. 2021. Improved Programmable Bootstrapping with Larger Precision and Efficient
Arithmetic Circuits for TFHE. In Advances in Cryptology – ASIACRYPT 2021, Mehdi Tibouchi and Huaxiong Wang (Eds.). Springer International
Publishing, Cham, 670–699. https://doi.org/10.1007/978-3-030-92078-4_23

[17] Pierre-Emmanuel Clet, Martin Zuber, Aymen Boudguiga, Renaud Sirdey, and Cédric Gouy-Pailler. 2022. Putting up the swiss army knife of
homomorphic calculations by means of TFHE functional bootstrapping. Cryptology ePrint Archive, Report 2022/149. https://ia.cr/2022/149.

[18] Léo Ducas and Daniele Micciancio. 2015. FHEW: Bootstrapping Homomorphic Encryption in Less Than a Second. In Advances in Cryptology –
EUROCRYPT 2015, Elisabeth Oswald and Marc Fischlin (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 617–640. https://doi.org/10.1007/978-
3-662-46800-5_24

[19] Morris Dworkin. 2015. SHA-3 Standard: Permutation-Based Hash and Extendable-Output Functions. https://doi.org/10.6028/NIST.FIPS.202
[20] Junfeng Fan and Frederik Vercauteren. 2012. Somewhat Practical Fully Homomorphic Encryption. Cryptology ePrint Archive, Report 2012/144.

https://ia.cr/2012/144.
[21] Nicolas Gama et al. 2016. Spqlios FFT Library. https://github.com/tfhe/tfhe/tree/master/src/libtfhe/fft_processors/spqlios. (Accessed on 04/25/2022).
[22] Craig Gentry. 2009. A fully homomorphic encryption scheme. Ph.D. Dissertation. Stanford University. crypto.stanford.edu/craig.
[23] Craig Gentry, Amit Sahai, and Brent Waters. 2013. Homomorphic Encryption from Learning with Errors: Conceptually-Simpler, Asymptotically-

Faster, Attribute-Based. In Advances in Cryptology – CRYPTO 2013, Ran Canetti and Juan A. Garay (Eds.). Springer Berlin Heidelberg, Berlin,
Heidelberg, 75–92. https://doi.org/10.1007/978-3-642-40041-4_5

[24] François Gérard and Mélissa Rossi. 2020. An Efficient and Provable Masked Implementation of qTESLA. In Smart Card Research and Advanced
Applications, Sonia Belaïd and Tim Güneysu (Eds.). Springer International Publishing, Cham, 74–91. https://doi.org/10.1007/978-3-030-42068-0_5

[25] Antonio Guimarães, Edson Borin, and Diego F. Aranha. 2021. Revisiting the functional bootstrap in TFHE. IACR Transactions on Cryptographic
Hardware and Embedded Systems 2021, 2 (Feb. 2021), 229–253. https://doi.org/10.46586/tches.v2021.i2.229-253

[26] Antonio Guimarães, Edson Borin, and Diego F. Aranha. 2022. MOSFHET: Optimized Software for FHE over the Torus. https://github.com/antoniocgj/
MOSFHET.

[27] Anatolii Alekseevich Karatsuba and Yu P Ofman. 1962. Multiplication of many-digital numbers by automatic computers. In Doklady Akademii Nauk,
Vol. 145. Russian Academy of Sciences, 293–294.

[28] Jakub Klemsa. 2021. Fast and Error-Free Negacyclic Integer Convolution Using Extended Fourier Transform. In Cyber Security Cryptography and
Machine Learning, Shlomi Dolev, Oded Margalit, Benny Pinkas, and Alexander Schwarzmann (Eds.). Springer International Publishing, Cham,
282–300. https://doi.org/10.1007/978-3-030-78086-9_22

[29] Kamil Kluczniak and Leonard Schild. 2021. FDFB: Full Domain Functional Bootstrapping Towards Practical Fully Homomorphic Encryption.
Cryptology ePrint Archive, Report 2021/1135. https://ia.cr/2021/1135.

[30] Qian Lou and Lei Jiang. 2019. SHE: A Fast and Accurate Deep Neural Network for Encrypted Data. In Advances in Neural Information Processing
Systems 32, H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (Eds.). Curran Associates, Inc., 10035–10043. http:
//papers.nips.cc/paper/9194-she-a-fast-and-accurate-deep-neural-network-for-encrypted-data.pdf

[31] Kotaro Matsuoka. 2020. TFHEpp: pure C++ implementation of TFHE cryptosystem. https://github.com/virtualsecureplatform/TFHEpp.
[32] Kotaro Matsuoka, Ryotaro Banno, Naoki Matsumoto, Takashi Sato, and Song Bian. 2021. Virtual Secure Platform: A Five-Stage Pipeline Processor

over TFHE. In 30th USENIX Security Symposium (USENIX Security 21). USENIX Association, 4007–4024. https://www.usenix.org/conference/
usenixsecurity21/presentation/matsuoka

Manuscript submitted to ACM

https://doi.org/10.1007/978-3-030-12612-4_6
https://doi.org/10.1007/978-3-030-12612-4_6
https://doi.org/10.1007/978-3-030-78372-3_18
https://doi.org/10.1007/978-3-030-78372-3_18
https://doi.org/10.1007/978-3-319-70694-8_15
https://doi.org/10.1007/978-3-319-70694-8_15
https://doi.org/10.1007/978-3-662-53887-6_1
https://doi.org/10.1007/978-3-319-70694-8_14
https://doi.org/10.1007/s00145-019-09319-x
https://doi.org/10.1007/978-3-030-78086-9_1
https://doi.org/10.1007/978-3-030-92078-4_23
https://ia.cr/2022/149
https://doi.org/10.1007/978-3-662-46800-5_24
https://doi.org/10.1007/978-3-662-46800-5_24
https://doi.org/10.6028/NIST.FIPS.202
https://ia.cr/2012/144
https://github.com/tfhe/tfhe/tree/master/src/libtfhe/fft_processors/spqlios
crypto.stanford.edu/craig
https://doi.org/10.1007/978-3-642-40041-4_5
https://doi.org/10.1007/978-3-030-42068-0_5
https://doi.org/10.46586/tches.v2021.i2.229-253
https://github.com/antoniocgj/MOSFHET
https://github.com/antoniocgj/MOSFHET
https://doi.org/10.1007/978-3-030-78086-9_22
https://ia.cr/2021/1135
http://papers.nips.cc/paper/9194-she-a-fast-and-accurate-deep-neural-network-for-encrypted-data.pdf
http://papers.nips.cc/paper/9194-she-a-fast-and-accurate-deep-neural-network-for-encrypted-data.pdf
https://github.com/virtualsecureplatform/TFHEpp
https://www.usenix.org/conference/usenixsecurity21/presentation/matsuoka
https://www.usenix.org/conference/usenixsecurity21/presentation/matsuoka

MOSFHET: Optimized Software for FHE over the Torus 21

[33] Daniele Micciancio and Yuriy Polyakov. 2020. Bootstrapping in FHEW-like Cryptosystems. Cryptology ePrint Archive, Report 2020/086. https:
//eprint.iacr.org/2020/086.

[34] Oded Regev. 2009. On Lattices, Learning with Errors, Random Linear Codes, and Cryptography. J. ACM 56, 6, Article 34 (Sept. 2009), 40 pages.
https://doi.org/10.1145/1568318.1568324

[35] Ronald L Rivest, Len Adleman, and Michael L Dertouzos. 1978. On data banks and privacy homomorphisms. Foundations of Secure Computation,
Academia Press (1978).

[36] Markku-Juhani O. Saarinen. 2019. Exploring NIST LWC/PQC Synergy with R5Sneik: How SNEIK 1.1 Algorithms were Designed to Support Round5.
Cryptology ePrint Archive, Report 2019/685. https://ia.cr/2019/685.

[37] Sebastiano Vigna and David Blackman. [n.d.]. xoshiro/xoroshiro generators and the PRNG shootout. https://prng.di.unimi.it/. (Accessed on
03/11/2022).

[38] Zhaomin Yang, Xiang Xie, Huajie Shen, Shiying Chen, and Jun Zhou. 2021. TOTA: Fully Homomorphic Encryption with Smaller Parameters and
Stronger Security. Cryptology ePrint Archive, Report 2021/1347. https://ia.cr/2021/1347.

[39] zama. [n.d.]. zama-ai/concrete: Concrete Operates oN Ciphertexts Rapidly by Extending TfhE. https://github.com/zama-ai/concrete. (Accessed on
02/21/2022).

[40] Tanping Zhou, Xiaoyuan Yang, Longfei Liu, Wei Zhang, and Ningbo Li. 2018. Faster Bootstrapping With Multiple Addends. IEEE Access 6 (2018),
49868–49876. https://doi.org/10.1109/ACCESS.2018.2867655

Manuscript submitted to ACM

https://eprint.iacr.org/2020/086
https://eprint.iacr.org/2020/086
https://doi.org/10.1145/1568318.1568324
https://ia.cr/2019/685
https://prng.di.unimi.it/
https://ia.cr/2021/1347
https://github.com/zama-ai/concrete
https://doi.org/10.1109/ACCESS.2018.2867655

	Abstract
	1 Introduction
	1.1 Contributions

	2 Fully Homomorphic Encryption over the Torus (TFHE)
	2.1 Bootstrapping

	3 State-of-the-art on TFHE and improvements
	3.1 The Functional Bootstrap
	3.2 The Improved Programmable Bootstrap
	3.3 The Multi-Value Functional Bootstrap (MVFB)
	3.4 Tensor product
	3.5 Full-Domain Functional Bootstrap (FDFB)
	3.6 Evaluating large Lookup tables
	3.7 The Circuit Bootstrap
	3.8 The Full TRGSW bootstrap
	3.9 T(R)LWE conversion
	3.10 The BlindRotate Unfolding
	3.11 Public Key compression
	3.12 State-of-the-art summary

	4 Experimental Results
	4.1 Execution Time

	5 Conclusion
	References

