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Abstract. An important open problem in supersingular isogeny-based cryptography is to produce,
without a trusted authority, concrete examples of “hard supersingular curves,” that is, concrete super-
singular curves for which computing the endomorphism ring is as difficult as it is for random supersin-
gular curves. Or, even better, to produce a hash function to the vertices of the supersingular `-isogeny
graph which does not reveal the endomorphism ring, or a path to a curve of known endomorphism
ring. Such a hash function would open up interesting cryptographic applications. In this paper, we
document a number of (thus far) failed attempts to solve this problem, in the hopes that we may spur
further research, and shed light on the challenges and obstacles to this endeavour. The mathematical
approaches contained in this article include: (i) iterative root-finding for the supersingular polynomial;
(ii) gcd’s of specialized modular polynomials; (iii) using division polynomials to create small systems
of equations; (iv) taking random walks in the isogeny graph of abelian surfaces; and (v) using quantum
random walks.
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1 Introduction

Supersingular curves (and isogenies between them) have become a hot topic in cryptography over
the last ten years or so. Fortunately the theory of complex multiplication provides efficient algo-
rithms to generate a supersingular elliptic curve over Fp2 , even for the astronomically large p that
are used for cryptographic applications (see Bröker [10]). It is also known how to uniformly sample
a supersingular elliptic curve over Fp2 : generate one curve E0 using Bröker’s method and then take
a sufficiently long random walk in the supersingular isogeny graph to get a curve E.

One of the main computational problems in isogeny-based cryptography is to compute an
isogeny between two given supersingular elliptic curves over the same finite field Fp2 . This problem
is called the supersingular isogeny problem or the path finding problem in the supersingular isogeny
graph. It is believed to be hard, even for quantum computers. A related problem is the supersin-
gular endomorphism ring problem: Given a supersingular elliptic curve E over Fp2 , compute its
endomorphism ring End(E) (or even just one non-trivial endomorphism of E). The supersingular
endomorphism ring problem and the supersingular isogeny problem are related [26, 31, 54].

The algorithm sketched in the first paragraph for generating a uniformly distributed supersin-
gular curve has the side-effect that the person who generated the curve also knows a path from
E0 to E. In certain cryptographic applications this approach is not acceptable as it allows a user
to insert a trapdoor or in some other way violate the desired security. There are a number of
papers that have already mentioned this problem [2, 9, 15]. Currently the only solution known
is to involve some “trusted party” to generate a random curve and then “forget” any resulting
secret information. There is great interest in finding better ways to solve this problem that do not
require trusting a single party. Among other applications, using a starting curve that is generated
uniformly at random in the SIDH key exchange [34] would avoid torsion point attacks [40, 44, 46].
Further, it would circumvent the trusted setup in an isogeny-based verifiable delay function [21],
in delay encryption [12] and in an SIDH-based oblivious pseudorandom function [8]. For the latter,
the necessity of the trusted setup was pointed out by [6].

There are (at least) three general problems that are of interest for isogeny-based cryptography:

1. Given a prime p, to compute a supersingular curve E over Fp2 without revealing anything
about the endomorphism ring or providing any information to help solve the isogeny problem
(for isogenies from E to some other supersingular curve over Fp2). This is the problem of
demonstrating a hard curve [9].

2. Given a prime p, to generate one or more random supersingular curves E over Fp2 without
revealing anything about the endomorphism ring or providing any information to help solve the
isogeny problem to other supersingular curves over Fp2 .

3. Defining a hash function to the entire supersingular graph. To produce a hash function
taking arbitrary strings as input, and outputting supersingular j-invariants. The hard prob-
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lems in this context include both pre-image finding and collision-finding for the hash function,
and path finding and endomorphism ring computation for the output curve. We ask for these
problems to remain hard on curves produced by the hash function.

There are also variants of these problems that involve sampling from (resp. mapping to) subsets
of the set of supersingular curves. The most significant is defining a hash function just to the
Fp subgraph.

The two obvious approaches to these problems are to use tools from the theory of complex
multiplication and/or random walks. However neither method is secure for our problems. The
insecurity of methods based on random walks is self-evident. The insecurity of methods based on
CM is less clear, and was demonstrated by Castryck, Panny and Vercauteren [15] and Love and
Boneh [9]. In short, methods based on CM involve computing roots of a Hilbert class polynomial
HO(T ) modulo p. In order for this to be practical and efficient it is necessary that the degree of
the polynomial be small enough (technically, bounded by a polynomial function in log(p)), which
means the class number of O is small. This means that all roots are M -small in the sense of
Love–Boneh [9], who show that one can efficiently compute isogenies between any two M -small
curves.

Castryck–Panny–Vercauteren [15] and Wesolowski [53] have considered the analogous approach
in the special case of sampling supersingular curves with j-invariant in Fp using CM theory. Again
they show that any such approach is not secure (they show how to solve the class group action
problem in subexponential and polynomial time respectively).

Hence we need new ideas. The goal of the paper is to explain some possible approaches and to
discuss the obstructions to getting a practical solution.

In all cases we are interested in an efficient public algorithm that takes input p, can be executed
without any secret information, and that outputs (the j-invariant of) a supersingular elliptic curve
over Fp2 . We do not want the algorithm to provide any additional information that would be useful
to the person who executes it. For the problem of generating a single hard curve (e.g., to bypass
the requirement for trusted set up), the meaning of “efficient” might be relaxed, as long as it is
feasible in applications.

As already mentioned, it would already be interesting to have an algorithm that returns a single
curve. But the most desirable outcome is a cryptographic hash function H(m) that takes a
binary string m and returns a supersingular j-invariant and satisfies these properties:

1. It is efficient and deterministic.
2. It is hard to find a collision, namely two binary strings m1 and m2 such that H(m1) = H(m2).
3. It is hard to invert, namely given an h in the codomain it is hard to compute a binary string
m such that H(m) = h.

4. The j-invariants are uniformly distributed in the codomain.

Note that one can build an algorithm for hashing to the supersingular set by combining a
standard cryptographic hash function H ′ (e.g., SHA-3) with a randomised algorithm to generate a
supersingular curve (as in problem 2 listed above). To do this simply compute H ′(m) and use it
as the seed to a pseudorandom generator and then run the algorithm to generate a supersingular
curve replacing all calls to randomness with this pseudorandom sequence. Hence, it suffices to focus
on problems 1 and 2 above.

Several of the suggested methods try to bypass the problem of working with polynomials of
exponentially-large degree. Section 2 sketches an approach motivated by iterated methods for root-
finding (such as the Newton-Raphson method). However the main idea in this section is to avoid
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writing down the polynomial by indirectly computing its evaluation at a given point. This motivates
a study of iterative methods in this special case. Similarly, Section 3 studies an approach based
on modular curves and the fact that one can compute the roots in Fp2 of the greatest common
divisor of two polynomials F (x, xp) and G(x, xp) in polynomial time in certain circumstances, even
though the polynomials themselves have exponential degree. This approach does not lead to a
useful solution at present, as the computation only produces curves that could feasibly have been
computed using the CM method. Section 4 also attempts to control the growth of polynomials, by
giving a system of low-degree polynomials whose common solution would give a desired curve.

Other methods try to use random walks in new ways. Section 5 suggests walking on the isogeny
graph of abelian surfaces, until one lands on a reducible surface. The challenge faced by this method
is that reducible surfaces are exponentially rare in the isogeny graph and we lack techniques to
navigate to one from an arbitrary position in the graph. Finally, Section 6 suggests a way to use a
quantum implementation of the CGL hash to generate a random supersingular curve. The way a
quantum algorithm uses randomness means this cannot be combined with a standard cryptographic
hash function as described above. And although if properly implemented on a quantum computer,
the algorithm makes the path information inaccessible to the user, at present, without a method to
certify the use of the quantum algorithm, this approach only replaces the need for a trusted entity
from one who will erase the path data to one who will promise to use a quantum computer.

We hope the ideas in these sections will be useful to researchers. We identify a number of ob-
structions to efficient hashing to supersingular curves. We hope that future research might overcome
one of these obstructions.
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2 Iterating to supersingular j-invariants

For a prime number p > 2, define the polynomial Hp(t) by

Hp(t) =

(p−1)/2∑
j=0

(p−1
2
j

)2

tj . (1)

Proposition 1. Let Eλ denote the elliptic curve whose Legendre form is y2 = x(x − 1)(x − λ).
Then for λ ∈ Fp

#Eλ(Fp) ≡ p+ 1−Hp(λ) (mod p).

Similarly for λ ∈ Fp2
#Eλ(Fp2) ≡ p2 + 1−Hp(λ)p+1 (mod p).
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Proof. This follows from the proof of [50, Theorem V.4.1(b)].

Thus λ is a root of Hp(t) if and only if Eλ is a supersingular elliptic curve. It is known that all
the roots belong to Fp2 and that, for p ≡ 3 (mod 4), we have that p1/2+o(1) of them belong to Fp.
None belong to Fp when p ≡ 1 (mod 4). This follows since the number of supersingular curves over
Fp is p1/2+o(1) by combining [32] and [22, Eq (1)] and such a curve can be put in Legendre form if
and only if all of its 2-torsion is rational, which is only possible when p ≡ 3 (mod 4).

The basic idea is to compute a random root of the polynomial, thus giving a random super-
singular elliptic curve. At first glance this seems impractical, as representing the polynomial Hp(t)
takes exponential space, and computing Hp(t) would take exponential time. However, we can com-
pute Hp(λ) for λ ∈ Fp in polynomial time using Schoof’s algorithm to compute #Eλ(Fp). We can
similarly compute Hp(λ)p+1 by computing #Eλ(Fp2). It is unclear whether there is a fast way to
compute Hp(λ) for λ ∈ Fp2 .

2.1 Iterating to a root

One approach to finding a root of Hp(t) is to iterate a polynomial function over a finite field as
inspired by the Newton Raphson method. Recall that the Newton Raphson method finds a root of
a polynomial f(x) by first picking a point on the domain t0 and iteratively computing

tn+1 = tn −
f(tn)

f ′(tn)
. (2)

If a fixed point tm+1 = tm is found, then we can conclude that f(tm) = 0 and that we have found
a root.

In this vein, our “preliminary” idea is to find the roots using the same method. So one picks
some t0 ∈ Fp (or Fp2), and then defines

tn+1 = tn −
Hp(tn)

H ′p(tn)
. (3)

It is clear that if tm+1 = tm, we must have that Hp(tm) = 0, and we have found a supersingular
elliptic curve. Furthermore, this method could allow us to define a hash function into supersingular
curves, by using the hash input to determine t0 and then iterating (3).

However, there are three issues with this idea:

1. The algorithm may not halt at a fixed point (the iteration may become stuck in a cycle).
2. The algorithm may reach a fixed point, but require too many iterations to efficiently compute.
3. We do not know how to compute H ′p(t) efficiently, or compute Hp(t) efficiently for t ∈ Fp2 \ Fp.

To eliminate the third obstacle, we can consider the following alternatives to the Newton Raph-
son method which share the key property that fixed points of the iteration correspond to roots of
Hp(t):

tn+1 = tn −Hp(tn) (4)

tn+1 = tn −Hp(tn)p+1 . (5)

The denominator H ′p(t) in the previous attempt speeds up convergence to a root in a field with a
metric, if we are already close to a root. In a finite field with the discrete topology, this plays no
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role. Using Schoof’s algorithm we may efficiently iterate (4) over Fp (which is only of interest when
Hp(t) has roots over Fp, i.e. p ≡ 3 (mod 4)), while we may efficiently iterate (5) over Fp2 .

The first two obstacles are thornier to tackle: there are plenty of choices of t0 where iteration
leads to a cycle and not a fixed point, and paths to a fixed point can be very long. These are
fundamental obstructions which we will discuss experimentally and compare to the behavior of
random mappings.

2.2 To what extent is iteration random

In terms of understanding whether these iterative methods are useful for finding supersingular
elliptic curves, the important quantities to understand for the iteration are:

1. the number of fixed points;

2. the number of points which eventually reach a fixed point upon iteration;

3. for these points, the maximum number of iterations needed to reach the fixed point; and

4. the number of points which reach a fixed point after k iterations.

We will be mainly interested in understanding to what extent these iterative methods look like
iterating a random function (which we can understand theoretically).

Consider a random function from a set S of size n to itself. In other words, the image of each
element of S is chosen independently and uniformly at random from S. The expected number of
fixed points for a random function is one. Thus the iterative methods we are considering, which
have many fixed points, do not appear random in this respect. However, they appear random in
many other ways after taking this into account.

It appears experimentally that “many” points eventually reach a fixed point after iteration,
which means that our iterative methods have a reasonable chance of finding a supersingular curve.
However, the maximum number of iterations needed seems to be on the order of

√
n, which is

too long to be practical. This is in line with the expected “tail length” of a random mapping [41,
Theorem 8.4.8]. (Section 8.4 of loc. cit. contains a survey of the properties of random mappings.)
Finally, the number of points which reach one of the m fixed points after k iterations appears to be
on the order of (k + 1)m, at least when k is small relative to n. This is supported by our analysis
of random functions with many fixed points in Section 2.3.

We will now briefly discuss experimental results for different kinds of iterations. We have focused
on iteration (4) over Fp when p ≡ 3 (mod 4) as it is efficiently computable and well-motivated by
analogy with the Newton Raphson method. However, the behavior we are seeing does not seem
sensitive to the exact iterative method used.

Example 1. When using the original Newton iteration (3), many points eventually reach a fixed
point upon iteration. For example, when p = 101 the polynomial Hp(t) has 50 roots all defined
over F1012 . If one iterates using (3), 328 of the elements of F1012 eventually end up at a fixed point
(about three percent). In those cases it took at most 10 iterations to reach a fixed point. Similarly,
when p = 211 around twenty eight percent (12747 out of 2112 of the elements) eventually reach a
fixed point. The maximum number of iterations needed was 90. When p = 1009, eight out of ten
randomly chosen elements of Fp2 eventually reached a fixed point.

Example 2. The behavior when iterating using (4) over Fp2 is broadly similar; removing division
by H ′p(tn) does not seem to have a significant effect. For example, if we look at all primes between
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30 and 200 and compute the percentage of elements of Fp2 which eventually reach a fixed point, the
minimum and maximum percentages are about 1.9 percent and 81 percent. The mean is about 30
percent. There are often quite long paths which eventually lead to a fixed point. When p = 1009,
8 of 10 randomly chosen elements of F10092 ended in a fixed point, and 6 out of 10 for p = 10007.

Example 3. Iterating using (4) over Fp is only interesting when there are fixed points defined over
Fp, i.e. when p ≡ 3 (mod 4). It appears broadly similar to the previous iterations considered. The
number of fixed points is p1/2+o(1). Experimentally it looks like a sizeable fraction of the points of Fp
eventually reach a fixed point, and that for small k the number of points which reach a fixed point
after k iterations is about (k + 1) times the number of fixed points (so on the order of (k + 1)

√
p).

The largest number of iterations needed to reach a fixed point appears to be on the order of
√
p.

To quantify this, we computed the minimum and maximum values for:

– the number of fixed points divided by
√
p, denoted F1(p);

– the number of elements of Fp iterating to a fixed point, divided by p, denoted F2(p);
– the largest number of iterations needed to reach a fixed point divided by

√
p, denoted F3(p).

Table 1 shows the minimum and maximum values of these values for primes in several ranges.

p in Range: minF1(p) maxF1(p) minF2(p) maxF2(p) minF3(p) maxF3(p)

100 to 2000 .23 3.9 .019 .93 .034 .95
2000 to 3000 .29 4.0 .014 .61 .062 .64

20000 to 21000 .27 4.0 .0085 .46 .035 .47

Table 1. Statistics about iteration (4) over Fp

Figure 1 shows a graph of the ratio of the number of elements of Fp which reach a fixed point
after 5 iterations of (4) and of the number of fixed points, versus p. As expected, this appears to
be around 6 but is somewhat noisy.

Example 4. Iterating using (5) over Fp2 preserves the cosets of Fp in Fp2 . At first glance, it looks
like for most cosets the map behaves like a random map: each orbit has very few fixed points and
about

√
p points in each orbit lead to the fixed points.

Based on this behavior, using iteration to efficiently find a supersingular elliptic curve (or to
hash to a supersingular elliptic curve) does not seem to be practical. For concreteness, we will focus
on iterating (4) over Fp when p ≡ 3 (mod 4). The basic idea would be to pick a random starting
element and iterate k times, hoping to find a fixed point. Thus the key property of the iteration to
understand is the number of points which iterate to a fixed point in k steps. Assuming the iteration
is a random function that has many fixed points, we expect on the order of (k + 1)

√
p points with

this property (see Section 2.3).
The chance of randomly choosing to start at one of these is on the order of (k + 1)/

√
p. The

iteration requires k evaluations of Hp(t), each of which can be done in polynomial time using
Schoof’s algorithm. For this to be efficient, the number of iterations k must be polynomial in
log(p), so this approach is quite unlikely to find a fixed point efficiently.

Remark 1. This is no better than finding a supersingular curve (root of Hp(t)) by randomly guess-
ing. The probability of a random curve being supersingular is on the order of 1/

√
p. We can check
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Fig. 1. Number of elements which reach a fixed point after 5 iterations of x 7→ x−Hp(x) divided by the number of
fixed points, versus p

each guess by evaluating Hp(t) (equivalently counting points using Schoof’s algorithm). Checking
k random curves would require k evaluations of Hp(t), and would find a supersingular one with
similar probability to the iterative method.

Remark 2. For the iterative method to offer an improvement, we would need a way to make a
“giant step” and efficiently iterate multiple times at once. For example, given the nth iteration we
would like to be able to efficiently compute the 2nth iteration. We do not know if this is possible.

2.3 Random functions with fixed points

We use the functional graph perspective on random mappings and the asymptotic analysis devel-
oped in [28] to analyze functions with many fixed points. A function on n elements with m fixed
points is represented by:

– A functional graph, consisting of m rooted trees (one for each fixed point) plus a set of compo-
nents without fixed points;

– Each component without fixed points is a cycle of trees of length greater than 1 (the roots are
permuted cyclically);

– Each rooted tree is a node (the root) together with a possibly empty set of rooted trees that
are the children.

Note that all of these objects are labeled.

As in [28], there is a standard method to give relationships between exponential generating
functions for these objects. Let Fm(z) be the exponential generating function for random mappings
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with exactly m fixed points. This means that

Fm(z) =
∞∑
n=0

Fm,nz
n/n!

where Fm,n is the number of such functions with n total elements. Equivalently, it is the sum z|ϕ|/|ϕ|!
over all functions ϕ with m fixed points. Likewise let C(z) and T (z) be the exponential generating
functions for components and trees, and let Cfpf (z) be the exponential generating function for
fixed-point-free components.

Lemma 1. We have the following relationships:

Fm(z) = T (z)m · exp(Cfpf (z)) (6)

Cfpf (z) = − log(1− T (z))− T (z) (7)

T (z) = z exp(T (z)). (8)

Proof. The first is a consequence of the fact that a function with m fixed points consists of m
rooted trees plus a set of components with no fixed points. It is standard that

C(z) =
∑
k≥1

1

k
T (z)k = log(1/(1− T (z)))

as a connected component based on a cycle of length k is built out of k trees and one can cyclically
permute them. Therefore we see that

Cfpf (z) = C(z)− T (z) = log(1/(1− T (z)))− T (z).

The third is standard, a consequence of the fact that a tree is a node plus a set of trees.

We can use asymptotic analysis to compute the number of random functions with m fixed
points. Flajolet and Odlyzko [28, Proposition 1] give an asymptotic expansion

T (z) = 1−
√

2
√

1− ez − 1/3(1− ez) +O
(

(1− ez)3/2
)

of T (z) around its singularity at z = 1/e. We can rewrite Fm(z) = T (z)m exp(C≥2(z)) in terms of
T (z) as

Fm(z) = T (z)m
1

1− T (z)
exp(−T (z)) = T (z)m−1

z

1− T (z)

using that T (z) = z exp(T (z)). We have that z = 1
e−

1
e (1−ez), so the leading term in the asymptotic

expansion of Fm(z) is
(e
√

2
√

1− ez)−1.
Using [28, Theorem 1] gives the asymptotic

Fm,n
n!
∼ en−1√

2πn
. (9)

For example, taking m = 0 gives the asymptotic 1
e

1√
2πn

en for F0,n/n!. In comparison, Flajolet and

Odlyzko’s asymptotic analysis gave the known fact (letting Fn denote the number of functions on
n elements) that Fn/n! ∼ 1√

2πn
en. As expected, this implies that about 1

e of randomly chosen

functions do not have a fixed point.
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Remark 3. Note that if m is fixed as n→∞, the precise value of m has no effect on the asymptotics
of Fm,n.

We will now modify our generating functions to take into account the number of elements
which reach a fixed point after k iterations of a random function. The key case is for trees, where
we consider the exponential generating function Tk(z, u) where the coefficient of znu` is the number
of rooted trees of size n with ` nodes that are distance at most k from the root, divided by n!.

Lemma 2. We have that T0(z, u) = uT (z), that Tk(z, u) = zu exp(Tk−1(z, u)), and that Tk(z, 1) =
T (z).

Proof. The first equality reflects that each tree has exactly one node at distance 0 from the root.
The second comes from the fact that a rooted tree is a root plus a collection of child trees, and a
node has distance at most k from the root if it either is the root or has distance at most k− 1 from
the root of one of the child trees. The third equality is clear.

We likewise modify Fm(z) to become a bi-variate exponential generating function Fm,k(z, u)
which counts nodes with distance at most k to one of the m fixed points. It satisfies

Fm,k(z, u) = Tk(z, u)m exp(Cfpf (z)) = Tk(z, u)m
z

(1− T (z))T (z)
.

Lemma 3. The exponential generating function for the sum of the number of elements which reach
a fixed point after k iterations for functions with m fixed points is

dFm,k(z, u)

du
|u=1.

Proof. This follows from viewing the bi-variate exponential generating function as a sum over all
functions with m fixed points.

Proposition 2. For fixed m and k, the number of elements which reach a fixed point after k
iterations for a random function on n elements with m fixed points is asymptotically (k + 1)m as
n→∞.

Proof. We compute that T0(z,u)
du |u=1 = T (z) and

dTk(z, u)

du
|u=1 = z exp(Tk−1(z, 1)) + z exp(Tk−1(z, 1))

dTk−1(z, u)

du
|u=1

= T (z) + T (z)
dTk−1(z, u)

du
|u=1

= T (z) + T (z)2 + . . .+ T (z)k+1

with the last step following by induction. Thus we have that

dFm,k(z, u)

du
|u=1 = mT (z)m−1(T (z) + T (z)2 + . . .+ T (z)k+1)

z

(1− T (z))T (z)
.

The leading term in the asymptotic expansion at z = 1/e is (k + 1)m(e
√

2
√

1− ez)−1 again using
[28, Proposition 1], so applying [28, Theorem 1] and comparing with (9) gives the result.
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Remark 4. These results require that k and m be fixed as n grows. A more careful analysis should
give that they continue to hold as long as k and m grow “slowly” compared to n, but we do not
pursue this here.

In light of this analysis of functions with many fixed points, the iterative methods investigated
in Section 2.2 behave exactly like random functions with the correct number of fixed points.

3 Modular polynomials and curves isogenous to their conjugates

3.1 Overview

As described in the introduction, Bröker’s method is limited by the degree of the Hilbert polyno-
mials, upon which the runtime depends. However, taking small-degree Hilbert polynomials leads to
curves with small endomorphisms (a vulnerability). In this section, we consider using polynomials
whose roots correspond to curves with endomorphisms of exponentially large degree.

If n is a positive integer coprime to p, then the classical modular polynomial Φn(x, y) ∈ Z[x, y]
is defined as follows. For any elliptic curve E, let SE,n = {C ⊆ E[n] : C cyclic,#C = n}. There
are ψ(n) elements of SE,n, where ψ is the Dedekind psi function (recall that ψ(`k) = (` + 1)`k−1

for ` prime, and ψ is multiplicative; in particular, ψ(n) > n). Write E/C for the codomain of a
separable n-isogeny from E with kernel C. Then

Φn(j(E), y) =
∏

C∈SE,n

(y − j(E/C)).

In other words, Φn(x, y) = 0 if and only if x and y are j-invariants related by a cyclic n-isogeny.
This remains the case over any field.

Now, consider the roots of the univariate polynomial Φn(x, xp). These roots are the j-invariants
of curves with cyclic n-isogenies to their conjugates (with root multiplicities equal to the number
of distinct n-isogeny kernels), and hence with an inseparable np-endomorphism (composing the n-
isogeny with the inseparable p-powering isogeny from the conjugate back to the starting curve; see
e.g. [18]). There is no particular reason why these curves should also have small-degree non-integer
endomorphisms.

The collection of supersingular curves with an n-isogeny to the conjugate has been studied
[3, 4, 18], and plays a role in the security of the path-finding problem [27]. In particular, the
class group of Q(

√
−np) acts on this set, and these curves form CSIDH-like graphs which could

be used for cryptographic purposes [18]. Thus, a construction for random supersingular curves
involving Φn(x, xp) may lead to a means of sampling from these CSIDH-like graphs. As in the CSIDH
setting, there are subexponential quantum algorithms to solve the vectorization or class group action
problem (see [5, Section 9.1], [18] and [53]). Thus, if there is a curve of known endomorphism ring
in this set (see for example [17]), one may be able to solve the fundamental isogeny problems
(path-finding and endomorphism ring computation) in quantum subexponential time. This is still
far from polynomial and may be considered secure for some applications.

For p > n, the polynomial Φn(x, xp) has degree ψ(n)p, which is exponential with respect to
log p. While this polynomial is quite sparse, especially when p � n, we cannot compute its roots
efficiently. The idea is to reduce that degree, and make computations manageable, by instead
computing roots of the factor(s)

fn,m,p(x) := gcd(Φn(x, xp), Φm(x, xp))

11



for some auxiliary m, without explicitly computing Φn(x, xp) or Φm(x, xp).
The proposed approach for constructing supersingular curves is then:

1. Choose n and m.
2. Compute one or more roots of fn,m,p(x) in Fp2 . There are O(nm) of these roots, and we can

compute them in polynomial time with respect to n, m, and log p (see §3.2).
3. Test each root to see if it is a supersingular j-invariant, using e.g. Sutherland’s supersingularity

test [52]; we give heuristics for this step in §3.3.

This method obviously produces curves known to have endomorphisms of degree nm, np and
mp. In fact, we know slightly more: the endomorphisms of degree np and mp have trace zero in
the supersingular case (that is, they act like ±√np and ±√mp, respectively) provided n < p (see
[16, Lemma 6]). Since we wish to avoid endomorphisms of small degree, the presence of the degree-
mn endomorphism means that we should take at least one of n and m to be exponentially large.
Nevertheless, it is plausible that the information about the endomorphism leaked from the process
of construction is not enough to allow us to compute End(E) efficiently (i.e., in polynomial time).

3.2 Computing roots of fn,m,p

We want to compute roots of fn,m,p(x) = gcd(Φn(x, xp), Φn(x, xp)) in Fp2 . Note that simply com-
puting Φm(x, xp) and Φn(x, xp) in Fp[x], computing their gcd and finding its roots is exponential in
log p, because degΦm(x, xp) > mp and Φn(x, xp) > np; these polynomials are sparse for large p, but
generic gcd computations (which are quasilinear in the maximum of the degrees of the inputs [42])
cannot take advantage of this.

Algorithm 1 computes all of the Fp2-roots14 of fn,m,p(x) in polynomial time with respect to
m, n, and log p. The key to its polynomial runtime in log p is that the polynomials Fm and Fn
constructed in Lines 3 and 4 satisfy (by definition)

Φm(j, jp) = Φn(j, jp) = 0 ⇐⇒ Fm(j0, j1) = Fn(j0, j1) = 0

for all j = j0 + j1
√
δ in Fp2 = Fp(

√
δ), and it is much easier to solve the bivariate system

Fm(X0, X1) = Fn(X0, X1) = 0 than it is to compute gcd(Φm(x, xp), Φn(x, xp)) when p is large.
As has already been noted, for security in applications, at least one of n and m must be expo-

nentially large. But if n (or m) is super-polynomially large with respect to log p, then Algorithm 1
requires super-polynomial time and space, since it must work explicitly with the polynomials Φn.
Hence a natural question is whether we can do better than Algorithm 1 when one (or both) of n and
m is large. This is an open question. If m is small and n is very large then a “dream” approach would
be to compute Fm using the classical algorithm and then somehow compute Resultant(Fm, Fn;X0)
directly by some form of “square-and-multiply” approach without explicitly computing Fn.

3.3 Supersingular roots of fn,m,p

Now we consider the question of how many of the roots of fn,m,p(x) might be supersingular j-
invariants. The individual polynomials Φn(x, xp) should be expected to have overwhelmingly ordi-
nary roots, but there are some heuristic reasons to expect fn,m,p(x) to have a higher proportion
of supersingular roots. The first reason is that ordinary and supersingular isogeny graphs have

14 Algorithm 1 ignores root multiplicities, but can be easily modified to take them into account if required.
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Algorithm 1: Compute the set of roots of fn,m,p(x) = gcd(Φn(x, xp), Φn(x, xp)) in Fp2 .

Input: m, n, p
Output: The set of roots of fn,m,p(x) in Fp2

1 Compute Φm(X,Y ) and Φn(X,Y ) in Fp[X,Y ] // Using e.g. the algorithm of [11]

2 Compute a nonsquare δ in Fp, and its square root
√
δ in Fp2

3 Fm ← Φm(X0 +
√
δX1, X0 −

√
δX1) in Fp[X0, X1] // Fm ∈ Fp[X0, X1] because Φm is symmetric

4 Fn ← Φn(X0 +
√
δX1, X0 −

√
δX1) in Fp[X0, X1] // Fn ∈ Fp[X0, X1] because Φn is symmetric

5 R← Resultant(Fm, Fn; X0) // Bivariate resultant ResX0(Fm, Fn) in Fp[X1]
6 J1 ← Roots(R, Fp)

7 S ← ∅
8 for j1 ∈ J1 do
9 G← GCD(Fm(X0, j1), Fn(X0, j1))

10 J0 ← Roots(G, Fp)

11 S ← S ∪ {j0 + j1
√
δ : j0 ∈ J0}

12 return S

very different properties, and in particular very different expansion properties. In particular for
any moderately large n (a small power of p), we have Φn(x, xp) = 0 for all supersingular curves x,
but only a density zero subset of all ordinary curves defined over Fp. Another viewpoint is that of
Hom(E,E(p)). In the ordinary case, the quadratic form given by the degree on this set is binary,
while in the supersingular case, it is quaternary. Hence we might expect that it is “easier” for
quaternary form to represent two specified integers n and m, than for a binary form to do so. Or, if
one prefers, we are demanding that the endomorphism ring of E contain endomorphisms of degrees
np and mp; the larger endomorphism rings of supersingular curves are more likely to allow this.

There are O(mn) roots of fn,m,p(x) in Fp2 (to see this, apply Bézout’s theorem to the polyno-
mials Fm and Fn in Algorithm 1). There are ≈ p/12 supersingular curves over Fp2 , and O(

√
np) of

them have an n-isogeny to their conjugate (see e.g. [18, §4.3]). Hence, if we expect that the property
of having an n-isogeny and having an m-isogeny to the conjugate are in an appropriate sense “in-
dependent,” then one might expect the supersingular portion of fn,m,p(x) to have degree O(

√
nm).

This would seem to be too large. Of course, the independence assumption cannot be expected to
hold indiscriminately; perhaps there are choices of n and m for which this can be improved. Given
the degree estimate just described, one might consider taking the gcd of three different modular
polynomials. This will almost certainly have a smaller degree: the same heuristic argument as above
would lead to degree O(

√
nmr/p) for the gcd of Φn(x, xp), Φm(x, xp) and Φr(x, x

p). With such a
degree, one might consider taking n ∼ m ∼ √p and r polynomial in log p. One might expect the
3-way gcd to have supersingular roots, provided it is not 1, by the same heuristics as above.

Remark 5. If E has an n-isogeny and an m-isogeny to its conjugate E(p), then it also has an nm-
endomorphism to itself. When p is inert in Q(

√
−nm), some such E will be reductions modulo

p of curves over Q with CM by Z[
√
−nm], specifically those where the reduction of the nm-

endomorphism factors through the conjugate. In this case, we can expect a nontrivial gcd between
fn,m,p(x) and the Hilbert class polynomial for Q(

√
−nm).

3.4 Experimental evidence

To test the heuristics of the previous section, the polynomials fn,m,p(x) were computed for a fixed
prime p = 983 with pairs (n,m) ranging over 2 ≤ n ≤ 45, n + 1 ≤ m < 8n. Figure 2 shows the
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degree of the Fp2 part of the polynomial as compared with
√
nm. Figure 3 shows the proportion of

supersingular roots. Table 2 gives the average values of these quantities for various subsets of the
data, including where (n,m) is coprime or not, and where p is inert or split in Q(

√
−nm). Figure 4

gives a sense of how the number of Fp2 roots of fn,m,p varies in an intricate manner as a function
of n and m for fixed p.

In addition, the polynomials fn,m,p(x) were computed for various fixed pairs (n,m) with p
ranging over all primes less than 106 with p ≡ 3 (mod 4). Figure 5 shows the degrees of f8,12,p and
f8,13,p with respect to p.
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Fig. 2. Scatterplot of fn,m,983: x-axis is
√
nm, y-axis is the number of Fp2 roots. The line y = x is shown for reference.

There are a total of 7046 data points.
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Fig. 3. Scatterplot of fn,m,983: x-axis is degree, y-axis is the ratio of supersingular roots to all Fp2 roots. The visible
hyperbolas correspond to the existence of 0, 1, 2 etc. non-supersingular roots. At left, 4286 pairs (n,m) which are
coprime; at right, 2760 pairs which are not coprime. The red line indicates the average ratio across all pairs.
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Fig. 4. Plot of the number of Fp2 roots (left) and supersingular Fp2 roots (right) of fn,m,983 as a function of n and
m (x and y axes). Dark = more (maximum = 238 Fp2 roots at left; 70 supersingular roots at right); light = fewer
(minimum = 0); white = uncomputed.
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Fig. 5. Plots of deg fn,m,p as a function of p. At left, n = 8, m = 12. At right, n = 8, m = 13. When p is inert in
Q(
√
−nm), the plotted points are black. When p is split, the plotted points are red. In both plots, there are 4808

points in total, representing a random selection of primes which are 3 (mod 4) in the given range.

In general, the data seems to support the following tentative patterns: (i) the degrees of the fn,m,p
may be similar to or slightly less than predicted by heuristics, (ii) the proportion of supersingular
roots among Fp2 roots is often high, (iii) there is variation in the ratio of supersingular roots with n
and m, with slightly higher proportions found amongst n and m not coprime, and (iv) as p varies,
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data set points avg. supersingular roots
F
p2

roots
avg.

F
p2

roots
√
nm

all 7046 0.9362 0.6251

coprime 4286 0.9189 0.6555

not coprime 2760 0.9632 0.5779(
−nm

p

)
= −1 3572 0.9424 0.6373(

−nm
p

)
= 1 3474 0.9300 0.6126

Table 2. Statistics for various subsets of the data set for p = 983. The first row (‘all’) contains all the polynomials
fn,m,983 collected as described in the beginning of the section. The other rows give statistics for subsets of the data
where n and m satisfy some criterion: the row ‘coprime’ (respectively ‘not coprime’) refers to those data points where
gcd(n,m) = 1 (respectively, gcd(n,m) 6= 1), and the final two rows include points where n and m satisfy the indicated
equality.

the degree of fn,m,p is relatively constant, but is dependent upon the coprimality, not just size, of
n and m.

4 Reverse Schoof

A supersingular curve is characterized by the number of points over any extension. Provided a curve,
Schoof’s algorithm [49] provides the trace. When hashing into supersingular graphs, we know the
trace and we want to find a curve. Thus, one may try to use Schoof’s algorithm “backwards.”

To introduce the approach, let us first discuss the case when p is a prime of the form p+1 =
∏
i `i,

where `i are small distinct odd primes. For such p, the approach could proceed as follows. Let a
be some parameter for the curve, like the j-invariant or the Montgomery coefficient. For every i,
write Ψ`i(x`i , a) for the division polynomial of order `i of the curve parameterized by a. These
polynomials can be efficiently computed. Consider the system{

Ψ`i(x`i , a) = 0 ∀ `i|p+ 1

xp
2

`i
− x`i = 0 ∀ `i|p+ 1,

with variables x`i and a. The equations of this system force the `i-torsion points of the curve with
parameter a to be defined over Fp2 for all i. Therefore the p + 1 torsion is also defined over Fp2 ,
which implies that any curve with parameter a being a solution of this system is supersingular.
Taking the resultant of all polynomials in the system with respect to all variables but a gives a
polynomial whose roots are all parameters a that correspond to supersingular curves.

More generally when p+ 1 is not smooth, one can fix a set of small primes or prime powers `i
such that their product is above the Hasse bound, and replace the equations xp

2

`i
− x`i = 0 in the

above systems by alternative equations forcing the endomorphisms

π2 + [p− 1]π + p2

on the curve with parameter a to act trivially on the `i torsion.
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For primes used in the SIDH key exchange [34], we have p + 1 = f`e22 `
e3
3 , where f, `2, `3 are

small integers. In this case, one can replace a single equation Ψ`i(x`i , a) by a polynomial system{
Ψ`i(xi1, a) = 0
[`i]a(xi(j+1),−) = (xij ,−) for 1 ≤ j ≤ ei − 1,

(10)

where [`i]a are “x-only” multiplication-by-` polynomials on the curve of parameter a. For any
solution to this system, xij is the x-coordinate of a point (xij ,−) of order `ji on the curve with
parameter a. Note that the equations [`i]a(xi(j+1),−) = (xij ,−) are of degree roughly `2i and
Ψ`i(xi1, a) is of degree (`2i − 1)/2.

As with other approaches involving large polynomial systems or large degree equations, the
cost and optimal strategy to solve these systems are not obvious. We observe that the polynomial
system (10) contains equations in e1 + e2 + 1 variables of degree roughly `2i and `i together with
the equation translating the fact that the torsion points lie in Fp2 of degree p2. Yet, compared to
generic polynomial systems of the same degree and with an equal number of variables, the given
polynomial systems have only a few mixed monomial terms. Further, they exhibit a certain block
structure. Instead of using generic algorithms such as Gröbner basis computations, taking the full
monomial structure into account might help to solve the polynomial systems faster. This might
be feasible using algorithms such as Rojas’ algorithm for sparse polynomial systems [48]. However,
further research is needed to draw conclusions about the concrete speedup that can be achieved
using this additional structure and to assess the cost of solving the polynomial systems given in
this section.

Unlike other approaches using Hasse polynomials or modular polynomials, the approach of this
section allows one to write down the polynomial systems explicitly.

4.1 Variants

Reducing the number of solutions: Instead of computing a random solution to the polynomial
systems described in the previous section and thus a random curve with the correct number of
points, some applications require computing only one curve with unknown endomorphism ring.
To achieve this, one could add additional equations to the systems (10) to reduce the number of
expected solutions – potentially all the way to 1, hence selecting a single curve.

One approach could be to restrict the x-coordinate of torsion points to random cosets of mul-

tiplicative subgroups, namely replacing xp
2

`i
− x`i = 0 for some i by

(µix`i)
ri − 1 = 0

for suitable ri dividing p2− 1, and random µi in Fp2 . This will decrease the degrees of equations in
the system, as well as the number of solutions. If one does not restrict the field equations for all i,
one may want to choose some i uniformly at random.

Assuming that the solutions to the system (10) are “randomly” distributed among all cosets
of the multiplicative subgroup, the expected number of solutions to the system is reduced by the
number of such cosets. If one of the remaining solutions is chosen uniformly at random and if
the cosets for different i were chosen uniformly at random, then the supersingular elliptic curve
corresponding to the final solution is a random supersingular elliptic curve. One could consider
various versions of this, leaving more or fewer solutions. Another special case reducing the number
of solutions is described in more detail in Section 4.2.
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Hybrid version: Another variant is to drop some equations in the polynomial system (10). The
resulting system has then more solutions. Each solution to the resulting system leads to a curve with
a number of points N with trace not fixed modulo the Hasse bound. That is, the curve generated
might be of order N different from the order p2 − 1 we would like to find. Hereby, the number of
equations dropped from the system (10) controls the size of gcd(N, p2 − 1). Thus, to compute a
supersingular elliptic curve one may want to proceed as follows. One generates a system with fewer
equations and keeps computing random solutions until the resulting curve has the correct order.
We leave it for future research to examine how much easier it is to solve the resulting systems
compared to (10).

4.2 From points to curves

To sample a random curve, one could also proceed by sampling the x-coordinate of a point first and
then finding a curve that contains a point of a given order with this x-coordinate. As this approach
corresponds essentially to adding constraints on x`i as described in the previous paragraph, this is
a different way of thinking about a special case reducing the number of solutions. In the rest of this
section, all curves are Montgomery curves.

Supersingular elliptic curves have p+ 1 points over Fp, (p+ 1)2 or (p− 1)2 points over Fp2 , and
(p2 − 1)2 points15 over Fp4 . Let E be a supersingular curve defined over Fp2 such that #E(Fp2) =
(p + 1)2. Then a random element x ∈ Fp2 is the x-coordinate of an Fp2-rational affine point on E
with probability ≈ 1

2 . Given an integer N dividing p + 1, a point P = (x,−) ∈ E is an N -torsion

point with probability ≈ N2

(p+1)2
. Since there are roughly p

12 supersingular curves defined over Fp2 ,

the probability that x ∈ Fp2 is the x-coordinate of a point of order N on some supersingular curve
over Fp2 is roughly {

pN2

24(p+1)2
if N <

√
24(p+1)2

p (≈ √p)
1 otherwise.

Moreover, for N >
√
p, we expect x ∈ Fp2 to be the x-coordinate of an N -torsion point on roughly

pN2

24(p+1)2
supersingular curves.

The point P = (t,−) having order N on a curve parametrized by the Montgomery coefficient
a translates to ξN,t(a) = 0, where ξN,t(a) = ΨN (t, a) denotes the Nth division polynomial of a
parametrized by a evaluated at t as before. In [24, §2.1], an algorithm for computing ΨN (x, a) mod
f(x) in O(n) (ignoring logarithmic factors) is provided, where f is a given polynomial of degree n.
We expect the degree of ξN,t(a) to be of size O(N2). Thus, to compute ξN,t(a), one can set f = aN

2

and the algorithm will finish in time O(N2).

From our previous discussion, for N >
√
p, we know that the polynomial ξN,t(a) has roughly

pN2

24(p+1)2
supersingular roots for any uniformly random element t ∈ Fp2 . Meanwhile, its degree

is roughly N2 > p, which is already larger than that of the supersingular polynomial Hp(X) of
Section 2 whose roots are all supersingular. However, ξN,t(a) can be computed recursively, which

is not the case for Hp(X) which is described by its p2−1
2 coefficients. Unfortunately computing

ξN,t(a) for N >
√
p takes time greater than O(p) which renders this approach too expensive as

sampling randomly from Fp2 finds a supersingular curve after sampling roughly p times on average.

15 Up to at most five exceptions corresponding to supersingular curves having trace t = 0 or t = ±p [1].
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Nevertheless, there may be some hope in better understanding and computing ΨN,t(a), as well as
finding its Fp2-rational roots. We leave further investigation for future work.

5 Genus 2 Walks

Let A be a principally polarised abelian surface (PPAS) over a finite field Fq of characteristic
p > 2. The correct generalisation of the notion of supersingularity to genus 2 is to say that A is
supersingular if and only if the Newton polygon of its Weil polynomial has all its slopes equal to
1/2; this is the case if and only if the p-torsion A[p] is isomorphic (as a BT1 group scheme) to
either I2,1 or I1,1 ⊕ I1,1, where I1,1 is the p-torsion group scheme of a supersingular elliptic curve
(see Pries [45] for further detail). In the latter case, we say A is principally polarized superspecial
abelian surface (PPSSAS).

Every PPAS A is isomorphic (as a principally polarized abelian variety) to either the Jacobian
Jac(C) of some genus-2 curve C, or the product E1 × E2 of two elliptic curves (which are both
supersingular if A is superspecial). Oort [43] has shown that every superspecial abelian surface is
isomorphic as an unpolarized abelian variety to a product of supersingular elliptic curves, and that
every supersingular abelian surface is at least isogenous to a product of supersingular elliptic curves
(if the abelian surface is supersingular but not superspecial, then the isogeny is inseparable).

We can construct a superspecial Jacobian A isogenous to a product of supersingular ellip-
tic curves E1 and E2 by gluing them along their 2-torsion, say. This corresponds to a Richelot
isogeny [47] E1 ×E1 → (E1 ×E2)/G ∼= A, where G ≤ (E1 ×E2)[2] is the graph of an isomorphism
of group schemes ψ : E1[2]→ E2[2] that is an anti-isometry with respect to the 2-Weil pairing (see
[38]); the resulting A is always a Jacobian. (We can also glue along the `-torsion for ` > 2, and
there is an analogous inseparable construction in [43] for gluing along the p-divisible group schemes
Ei[Frp] but the case ` = 2 is sufficient to illustrate our ideas—there is no reason to suspect that
` > 2 or ` = p will give better results—and it also has the advantage of being completely explicit.)

In this section, we explore approaches to supersingular elliptic curve generation based on the
following common idea: start with a known supersingular elliptic curve E0/Fq, glue it to itself to
construct a genus-2 Jacobian A ∼= Jac(C) explicitly isogenous to E2

0 , and then connect A with
a new random-looking elliptic product using Richelot isogenies, or through geometric inspection
of the Jacobian (via its Kummer surface). The hope is that these genus-2 operations will “hide”
obvious isogenies between the elliptic curves involved.

5.1 Random Walks

Our first idea is simple: We begin with a supersingular elliptic curve and glue it to itself which
induces an isogeny to an abelian surface. We then take a random walk on the isogeny graph of
abelian surfaces. Finally, we find the closest reducible surface and return one of its supersingular
elliptic factors. The idea can be summarised in the following diagram:

E × E glue−−−→ A
rand. walk−−−−−−−→ A′

unglue−−−−−→ E′ × E′′

The initial A is superspecial, and so superspeciality is preserved so long as the isogenies in the
random walk are of degree prime to the characteristic. This means that we are walking in the
superspecial graph.
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A similar situation occurs in [20], where the authors consider the supersingular isogeny problem
in genus 2 and higher. We will only sketch the outline of their arguments and will refer interested
readers to find details in their paper: In genus 2, given two superspecial abelian surfaces A1 and
A2, the idea is to reduce the problem of finding an isogeny φ : A→ A′ to the problem of finding a
factored isogeny ψ : E1 × E2 → E′1 × E′2 and (un)gluings π : A→ E1 × E2 and π′ : E′1 × E′2 → A′.

Finding the isogenies π and π̂′ is essentially done by taking random walks of length O(log(p)). Such
a walk encounters a product of elliptic curves with probability O(1/p) such that after O(p) many
random walks we should have found the required π and π̂′. (The heuristics of [20] are made more
rigorous in [30].)

Translating this to our setting, we see that random walks away from a fixed superspecial abelian
surface have no better expected runtime at encountering a supersingular elliptic curve than simply
searching for one directly by randomly sampling j-invariants and testing if they correspond to
supersingular elliptic curves.

Ultimately, for this approach to give any advantage over simply taking a random walk in the
elliptic supersingular graph, we need the genus-2 walk to “hide” information about the relative
endomorphism rings of the starting and ending elliptic factors. But as noted in [35], by fixing a
supersingular elliptic curve over a finite field it is possible to parametrise the space of PPSSASs
by positive-definite hermitian matrices which are elements of M2(Bp,∞), where Bp,∞ is the definite
quaternion algebra that is ramified at p and infinity [35, Rmk. 30]. Furthermore, isogenies between
PPSSASs can be represented by matrices in the same matrix algebra. Thus, knowledge of the
random walk in the genus-2 graph may allow the construction of a matrix in M2(Bp,∞) that can
be used to construct a path between our base and final supersingular elliptic curves.

Lastly, knowledge of the genus-2 walk may allow for the adversary to compute the endomorphism
ring of the target surface, by computing the matrix that corresponds to the isogeny walk. The
endomorphism ring of an elliptic product contains the endomorphism ring of each factor as a direct
summand, so this information should allow an adversary to compute the endomorphism ring of the
resulting (supersingular) elliptic curve.

5.2 Constructing curves on the Kummer surface

We saw above that random walks in the superspecial genus-2 graph give no real advantage over ran-
dom walks in the elliptic supersingular graph when constructing new supersingular elliptic curves—
and in any case, they reveal too much about the endomorphism ring. But we know that every su-
perspecial abelian surface A is isomorphic to an elliptic product as an unpolarised abelian variety,
so why not go looking for a new supersingular elliptic curve directly in A?

From a computational point of view, it is easier to work with curves on the Kummer surface,
which is the quotient of A by the action of the involution [−1]. The projective embeddings of
the Kummer surface A/〈±1〉 are easier to manage than those of the abelian surface A, since they
involve fewer equations and lower-dimensional ambient spaces; but they also retain much of the
information of A.

In this part, we consider the singular model Ksing in P3 of the Kummer surface of an abelian
surface A. The model Ksing is defined by a single quartic equation (see e.g. [13, Eq. 3.1.8]). We
write π : A → Ksing = A/〈±1〉 for the degree-two quotient map; this map is ramified precisely at
the sixteen 2-torsion points of A, and the images of these points under π are the singular points of
Ksing, known as nodes. We denote the set of nodes by S ⊂ Ksing.
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If E ⊂ A is an elliptic curve, then the restriction of π to E defines a double cover of curves
π : E → E′ := π(E) ⊂ Ksing. It follows from the Riemann–Hurwitz formula that E′ is either an
elliptic curve or a genus-0 curve; E′ is an elliptic curve if and only if π is unramified along E; and
E′ is a genus-0 curve if and only if π is ramified at precisely 4 points.

This observation provides two ideas for constructing a new supersingular elliptic curve from a
superspecial abelian surface A:

1. Find an elliptic curve on Ksing that does not go through any of the nodes of Ksing.
2. Find a genus-0 curve on Ksing that goes through precisely 4 of the nodes of Ksing.

For both approaches, we consider the intersection of Ksing with a hyperplane H.
Approach 1: For any hyperplane H ⊂ P3, the intersection Ksing∩H is a plane quartic curve C.

If C is non-singular then it is a genus-3 curve. If on the other hand C is singular and has precisely
two nodes then its (geometric) genus is 3−2 = 1. Hence, it is possible to obtain such genus-1 curves
by constructing hyperplanes that contain precisely two of the nodes of Ksing. Each pair of nodes
determines a one-parameter family of hyperplanes passing through them, and imposing singularity
of the intersection C at the nodes gives simple algebraic conditions on the parameter that let us
choose “good” hyperplanes. (If required, one may define a birational map from C to an elliptic
curve in Weierstrass form.) There is an important caveat here: even if C has genus 1, it may not
be the image of an elliptic curve in A.

In our experiments, we took Ksing to be the Kummer surface of the Jacobian of the superspecial
curve y2 = x6−x over Fp2 with p ≡ 4 (mod 5). We note that this Jacobian is not Richelot-isogenous
to any elliptic product (see e.g. [29, §4.15]), so we can be confident that any elliptic curves we find
are not connected with some gluing along 2-torsion. Unfortunately, none of the elliptic curves we
found using this approach were supersingular. We discuss reasons for this in §5.4 below.

Approach 2: This approach is doomed to fail: it is impossible to construct a hyperplane H
passing through precisely 4 of the nodes of Ksing. Any three of the singular points in Ksing already
define a hyperplane H, and it turns out that this hyperplane must pass through exactly 6 of the
nodes. These hyperplanes, known as the tropes of the Kummer, are classical objects of study; there
are sixteen of them, and the incidence structure formed by the intersections of tropes and nodes is
a (16, 6)-configuration [33, §26].

If H is a trope, then it is tangent to Ksing. The intersection is a smooth conic, taken twice,
and the preimage of this conic in A is isomorphic to the genus-2 curve generating A as a Jacobian;
its Weierstrass points are the ramified points above the six nodes (see [13, §3.7] for further details,
including the explicit recovery of the genus-2 curve). This curve may degenerate to a union of two
elliptic curves joined at one point, but then A is an elliptic product itself, and these two elliptic
curves are isomorphic to the factors—so we cannot obtain any new supersingular elliptic curves in
this way.

5.3 Genus-5 curves on the desingularised Kummer

We can find more elliptic curves by computing the desingularization φ : Ksm → Ksing of the
Kummer surface, which yields a smooth model Ksm in P5 (see [13, Chapter 16] for more details).
Concretely, let Y : y2 =

∏5
i=0(x − ai) be a hyperelliptic curve. Then Ksm = V (Ω0, Ω1, Ω2) ⊂ P5,

where

Ω0 :
5∑
i=0

X2
i = 0, Ω1 :

5∑
i=0

aiX
2
i = 0, Ω2 :

5∑
i=0

a2iX
2
i = 0 ,
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is a smooth model of the Kummer surface of the Jacobian variety of Y (see Klein [39], and the
survey articles by Dolgachev [23] and Edge [25]). As an intersection of three quadrics in P4, the
intersection of Ksm with a hyperplane is a non-hyperelliptic genus-5 curve C. We first explain how
to construct different elliptic curves that arise as quotients of the curve C, and later explore an
alternative path where we choose hyperplanes in such a way that the curve C is singular and its
irreducible components are elliptic curves.

Elliptic curves as quotients The intersection of the variety Ksm with a hyperplane defined by
Xi = 0 for some i ∈ {0, . . . , 5} yields a non-hyperelliptic genus-5 curve Ci. We are interested in
certain elliptic curves Ei,j with j ∈ {0, 1, 2, 3, 4, 5}\{i} that arise as quotients of the curve Ci. This
situation is also studied by Stoll in [51]. The construction is depicted in Figure 6.

Ksm

C0

E0,1 E0,2 E0,3 E0,4 E0,5

C1

. . . . .

C2

. . . . .

C3

. . . . .

C4

. . . . .

C5

. . . . .

Fig. 6. Elliptic curves Ei,j contained in the Kummer surface Ksm

Lemma 4. Let j ∈ {0, 1, 2, 3, 4, 5} \ {i} and consider the involution τj : Xj 7→ −Xj in P4. Then

Ei,j = Ci/〈τj〉

is a genus-1 curve.

Proof. The quotient map φ : Ci → Ei,j has degree 2. It is ramified at Ci ∩ {Xj = 0} ⊂ P4, a
set of 8 points, each with ramification index 2. The Riemann–Hurwitz formula gives 2g(Ci)− 2 =
2 · (2g(Ei,j)− 2) + 8 · (2− 1), whence g(Ei,j) = 1. ut

We now show how to compute a Weierstrass equation for Ei,j = Ci/〈τj〉 by example of the
genus-5 curve C5 = V (Ω′0, Ω

′
1, Ω

′
2) ⊂ P4, where

Ω′0 :
4∑
i=0

X2
i = 0, Ω′1 :

4∑
i=0

aiX
2
i = 0, Ω′2 :

4∑
i=0

a2iX
2
i = 0.

Moreover, we assume that j ∈ {0, 1, 2} since the other cases are obtained by permuting the variables.
First we simplify the equations defining C5 using Gaussian elimination to obtain equations of

the form
Ω′′0 : X2

0 +λ0,3X
2
3 +λ0,4X

2
4 = 0,

Ω′′1 : X2
1 +λ1,3X

2
3 +λ1,4X

2
4 = 0,

Ω′′2 : X2
2 +λ2,3X

2
3 +λ2,4X

2
4 = 0.

The quotient E5,j for j ∈ {0, 1, 2} is defined as the zero set of the two equations

Ω′′j1 : X2
j1

+λj1,3X
2
3 +λj1,4X

2
4 = 0,

Ω′′j2 : X2
j2

+λj2,3X
2
3 +λj2,4X

2
4 = 0
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in P4, where j1, j2 are such that {j1, j2, j} = {0, 1, 2}. This corresponds to the image of C5 under
the projection πj : P5 → P4 projecting away from Xj .

Note that E5,j is defined as the intersection of two quadrics in P3. To find a Weierstrass equation
for this curve, let P ∈ E5,j be a rational point. First perform a coordinate transformation such
that P = (0 : 0 : 0 : 1) and then consider the projection P3 → P2 projecting away from the last
coordinate. The restriction of this map to E5,j is birational and in particular the image of E5,j is
a curve in P2 defined by a cubic equation.

Singular hyperplane intersections In this part we consider singular curves that arise as the
intersection of Ksm with a hyperplane defined as L :

∑5
i=0 biXi = 0 for some coefficients bi ∈ k.

Such singular curves have geometric genus 5 and there are different configurations that can occur.
Since our goal is to find an elliptic curve, we are interested in singular curves that consist of several
components with at least one of these an elliptic curve. Here, we discuss the construction of singular
curves that consist of two elliptic curves intersecting in 4 different points. This configuration is
depicted in Figure 7.

Fig. 7. Configuration of a singular genus-5 curve consisting of two elliptic curves.

Finding parameters bi, such that the intersection is singular can be solved efficiently using linear
algebra. For that purpose, one considers the jacobian matrix M of the variety C = Ksm ∩ L. Let
M(P ) ∈M4,6(k) denote the evaluation of M at a point P = [x0 : · · · : x5] ∈ C. Then C is singular
in P if and only if rank(M(P )) = 3. Note that the last row of the matrix is given by the vector
b = (b0, . . . , b5), hence the parameters must be chosen such that b is a linear combination of the
first three rows of the matrix so that C is singular.

For most choices of b, the curve C will consist of only one irreducible component with precisely
one singular point. As mentioned before, we intend to construct a curve C with two genus-1 com-
ponents and 4 singular points. One possibility to achieve this is to choose b such that bi = bj = 0
for two indices i 6= j in {0, . . . , 5}. In that case, not only rank(M(P )) = 3, but M(P ′) has rank 3
for every P ′ = [x′0 : · · · : x′5] with x′k = xk if k /∈ {i, j} and x′k ∈ {±xk} otherwise.

We used this approach for different Kummer surfaces Ksm coming from a superspecial abelian
variety. We obtained singular genus-5 curves C that consisted of two elliptic curves intersecting in
4 points. The configuration is depicted in Figure 7. However, none of the elliptic curves obtained
in that way were supersingular.
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5.4 Why do we only obtain ordinary elliptic curves?

In §5.2 and §5.3 we succeeded in constructing elliptic curves from the Kummer surfaces of superspe-
cial abelian surfaces. However, these elliptic curves were not supersingular in most cases. At first
glance this might contradict the intuition that we expect elliptic curves on superspecial abelian
surfaces to be supersingular. To understand this situation, it is necessary to study the preimages
of the constructed elliptic curves in the corresponding abelian surface.

Let us consider the second approach from §5.3, where we constructed elliptic curves in Ksm. If
E ⊂ Ksm is an elliptic curve, then φ(E) ⊂ Ksing is a (possibly singular) genus-1 curve. On the other
hand C = π−1(E′) has genus 1 if and only if the cover π is unramified along C. This means that
E′ must not go through any of the singular points S ⊂ Ksing. The preimages of the sixteen nodes
of Ksing are lines in Ksm; we write L ⊂ Ksm for this set of lines. Translating our condition on E′ to
Ksm, we see that E should not intersect with L. But using explicit descriptions of L (see e.g. [14,
§2.2]), it is easy to see that there does not exist a hyperplane in P5 having trivial intersection with
all of these lines. This shows that the elliptic curve E does not correspond to an elliptic curve in A.

A similar argument holds for the elliptic curves constructed in §5.2. The situation in the first
approach of §5.3, where elliptic curves where constructed as quotients of genus-5 curves on Ksm

is different. One can show that the Jacobian of the genus-5 curve Ci as above, is isogenous to∏5
j=1Ei,j . But it is not clear if there is a relation to Jac(Y ). We leave this as an open question.

Question 1. What is the relation between the elliptic curves Ei,j and the Jacobian Jac(Y ) of the
initial hyperelliptic curve?

Experimental results show that for each genus-2 curve, we find 15 isomorphism classes of elliptic
curves Ei,j . In most cases, the elliptic curves are not supersingular. When starting with Y : y2 =
x6 − 1, we obtain a mix of ordinary and supersingular elliptic curves. If it is supersingular, the
j-invariant is 1728.

6 Quantum algorithm for sampling a hard curve

On a classical computer, the CGL hash function returns a random curve in the supersingular `-
isogeny graph. As described in the introduction, if one wishes the curve to be a “hard curve,”
then the drawback to this approach is the need for a trusted party who will throw away the path
information generated by the hash function. Classically, the trusted party seems difficult to avoid.
In this section, we explore the possibility of using a quantum computer to efficiently sample a hard
curve from the isogeny graph without leaking any information about the endomorphism ring of the
curve.

Although it is possible to create a quantum algorithm that, when run on a quantum computer,
makes the path information inaccessible, there is still a drawback. Given a curve E, we do not know
if it was sampled using a classical computer (with an algorithm leaking information about End(E))
or a quantum computer. Perhaps one can imagine a situation in which all parties inspect the
quantum computer and agree it is a quantum computer, and run the program under observation.
However, one may debate whether this situation differs appreciably from the situation in which all
parties inspect a classical algorithm designed to delete the path information during its execution,
and agree that it will delete it before it can be accessed. Perhaps one can hope for a means of
making the quantum computation “auditable” in some way, but we do not have such a method
here.
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Leaving these concerns aside for now, we present below a novel mathematical approach to
producing random supersingular curves. We use the idea of continuous-time quantum walks on
isogeny graphs of supersingular elliptic curves in characteristic p. The idea was first proposed by
Kane, Sharif and Silverberg [36, 37] for constructing public-key quantum money. In their scheme,
quantum walks are carried out over the ideal class group of a quaternion algebra; we adapt these
walks to isogeny graphs. The key observation we make here is that the distribution of the curves
defined by our sampling algorithm coincides with the limiting distribution of the quantum walks
on the graphs.

6.1 Quantum computing background

A qubit holds a quantum state that is a superposition (unit length C-linear combination) of the
two possible classical states of a bit, i.e. an element of complex norm 1 of C|0〉 ⊕ C|1〉. An n-
qubit quantum register holds a quantum state that is a higher-dimensional analogue: an element∑2n−1

x=0 αx|x〉 of complex norm 1 in
⊕

0≤x<2n C|x〉. Given any orthonormal basis |yi〉 of the C-
vector space, we can rewrite the state in that basis:

∑
i βi|yi〉. Some of the power of quantum

computers comes from the fact that superpositions of n qubits lie in an 2n dimensional state space:
the n-fold tensor product of the individual 2-dimensional state spaces (indeed (C|0〉 ⊕ C|1〉)⊗n =⊕

0≤x<2n C|x〉). Most of those states are entangled, meaning that they are not simple tensors in the
bases for the individual qubits.

A quantum state
∑

i βi|yi〉 cannot be observed except by measurement in an orthonormal basis
|yi〉, a process which collapses the state to one of the basis elements |yi〉, where state |yi〉 is obtained
with probability |βi|2 (the unit length condition implies a valid probability distribution). If there
are several registers, we can measure just one, obtaining a superposition of the remaining registers.
In a superposition

∑
x,y αxy|x〉|y〉, if we measure the first register, we obtain state C

∑
y αx0y|x0〉|y〉

(where C ∈ R is chosen to scale to unit length) for some x0, with probability
∑

y|αx0y|2.
To get started on a quantum computer, one can initialize simple states such as uniform superpo-

sitions 1√
N

∑N−1
i=0 |i〉. A quantum computer then operates on quantum states by unitary operators.

Among the most famous is the quantum Fourier transform, whose matrix is that of the inverse
discrete Fourier transform. In particular, it operates by

N−1∑
x=0

αx|x〉 7→
N−1∑
x=0

 1√
N

N−1∑
y=0

αye
2πiyx/N

 |x〉.
Classical algorithms can be performed in a quantum manner on one quantum register to store
the output in another. In particular, for an efficiently computable function f we can perform the
operation ∑

x

αx|x〉|0〉 7→
∑
x

αx|x〉|f(x)〉.

6.2 Sampling curves on a quantum computer

A näıve approach. To mimic the CGL algorithm in superposition, we first generate the super-
position

1√
N

N∑
x=1

|x〉,
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where N is the number of supersingular curves. Then simultaneously for each x, we use the classical
CGL algorithm to compute a curve Ex, at the end of the path associated to x, storing the result
in a second register. The resulting superposition is

1√
N

N∑
x=1

|x〉|Ex〉.

Measuring this state collapses the superposition to a classical state |x〉|Ex〉 for some uniformly
random x ∈ ZN . This is exactly the output of the CGL algorithm for a random input x, so the
above procedure does not do anything more than the classical CGL. In particular, the path is stored
in the first register. One way to avoid revealing the path is to apply the quantum Fourier transform
to the first register and measure the result. The state we get is

1√
N

N∑
x=1

ωxtN |Ex〉

for some uniformly random t ∈ ZN . Now, measuring this state produces a uniformly random
curve Ex without revealing anything about the path x. However, this approach does not have
any advantage over the classical CGL algorithm, as performing the quantum Fourier transform to
“hide” the path information is analogous to including instructions to discard the path information
in the classical CGL. In particular, if one measured the first register before the quantum Fourier
transform is applied, one could recover the path information. Such a runtime interference would
not be detectable from the output state alone.

Continuous-time quantum walk algorithm. One way to model random walks on a graph is
to apply the adjacency matrix as an operator on the real vector space generated by the vertices
(a Markov process). Näıvely, one might hope to mimic this on a superposition of the vertices, but
unfortunately, this matrix is not unitary. The substitute is the notion of a quantum walk, where
the adjacency matrix is replaced by its exponential, which is unitary.

The adjacency matrix of the `-isogeny graph is an N ×N matrix T` called the Brandt matrix.
Let us assume, for simplicity, that T` is symmetric.16 Let S be the set of supersingular elliptic
curves in characteristic p. The operator T` acts on the module

M =
⊕
E∈S

ZE.

In the quantum setting, we will work with the complex Euclidean space

X = M ⊗Z C =
⊕
E∈S

CE.

Note that in order to implement this space on a quantum computer, we use a computational basis
of j-invariants, so we will include ordinary curves also. However the random walk, if initiated with
a supersingular curve, will restrict itself to the subspace X generated by the set of supersingular
curves.

16 This assumption is satisfied for a mild condition on the characteristic p.
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Let U` = exp(iT`). The operator U` is unitary (since T` is hermitian) and its eigenvalues are
eiλ for the eigenvalues λ of T`. The operator U t` implements a continuous-time quantum walk at
time t on the `-isogeny graph. The application of this for us is that from this quantum walk we can
obtain a certain probability distribution on supersingular elliptic curves, and the ability to draw
from this distribution to produce a random supersingular elliptic curve (once again, according to
this distribution). This is done in the following way: fix an initial curve E0 and a bound T > 0,
pick a time t ∈ (0, T ] uniformly at random, compute U t` |E0〉 and measure in the basis {|E〉}E∈S .
The probability of measuring a curve E ∈ S is then given by

pE0→E(T ) =
1

T

∫ T

0
|〈E|eiT`t|E0〉|2dt. (11)

For this process to be useful, we must answer two questions about the distribution (11) on the
vertices of the `-isogeny graph: (i) How efficient is sampling from this distribution? and (ii) Do
samples leak information about endomorphism rings?

We comment on the second question first: The question of information leakage requires that
we understand the distribution (11) and the endomorphism rings of its outputs. However, given an
initial curve E0, this distribution seems difficult to analyse. In particular, it is not the same as the
distribution of endpoints of a classical random walk on the `-isogeny graph.

Regarding efficiency, for any prime ` ≤ poly(logN), the operator T` is sparse in the sense that
there are only ` + 1 = poly(logN) nonzero entries in each row or column. Therefore, T` is a good
candidate for a Hamiltonian of continuous-time quantum walks; we can use standard Hamiltonian
simulation techniques to implement the quantum walk operator U t` . However, the running time of
the best known simulation algorithm depends linearly on `t [7]. Therefore, these quantum walks
can efficiently be performed only for time t ≤ poly(logN).

Moving to a limiting distribution. To remedy these issues, we consider the limiting distribution
of (11). Let |φj〉, j = 1, . . . , N be a set of eigenvectors of T` and let λj be the corresponding
eigenvalues. It can be shown that [19, Section 16.6]

lim
T→∞

pE0→E(T ) =
N∑
j=1

|〈E0|φj〉〈E|φj〉|2. (12)

This limiting distribution is more tractable than (11), as it is stated in terms of the spectral theory of
the graph. In practice, for the distribution (11) to be negligibly close to (12), the value T/(λj −λk)
must be large for any j, k. However, the eigenvalues of T` are all in the range [−2

√
`, 2
√
`], so

there are some eigenvalues that are exponentially close to each other. This means that for us to
assume that we are sampling according to (12), we must select T to be exponentially large. But, as
mentioned above, we can only implement the walk operator U t` for polynomially large t. Therefore,
if we wish to use this nicer distribution, we need a different sampling algorithm which is efficient
for larger T .

There is a (heuristic) polynomial time algorithm for sampling according to the limiting dis-
tribution (12) using phase estimation. This algorithm is based on the crucial fact that the set of
operators {T`}` prime have a simultaneous set of eigenstates, namely the |φj〉, j = 1, . . . , N from
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above. Since {|φj〉} is a basis, we can write

|E0〉 =
N∑
j=1

〈φj |E0〉|φj〉.

Now let `1, `2, . . . , `r be a set of primes of size poly(logN). Quantum phase estimation is an al-
gorithm to recover the phase (which contains the eigenvalue information) of a unitary operator
U . Specifically, if U |φj〉 = eiλj |φj〉 for j = 1, . . . , N , the algorithm recovers an approximation to
λj . We will use phase estimation on the operator U`1 with the input state |E0〉. Let λ1,j be the
eigenvalue of T`1 corresponding to the eigenstate |φj〉. Then, because of the relationship between
the eigenvalues of T` and those of U`, after phase estimation we obtain the state

N∑
j=1

〈φj |E0〉|φj〉|λ̃1,j〉 (13)

where |λ1,j − λ̃1,j | ≤ 1/ poly(logN). Measuring the second register (which reveals a value λ̃1,j) we
obtain a state |ψ1〉 that is a projection of the state (13) onto a smaller subspace X1 ⊂ X . If we repeat
this procedure but now with the operator U`2 and the input state |ψ1〉, we get a new state |ψ2〉
that is the projection of |ψ1〉 onto a smaller subspace X2 ⊂ X1. If r is large enough, repeating this
procedure for all the remaining T`i we end up with some eigenstate |φj〉 with probability |〈E0|φj〉|2;
see [36, 37] for a detailed analysis of this claim. Now, if we measure |φj〉 in the basis {|E〉}E∈S , we
obtain a curve E with probability |〈E|φj〉|2. Therefore, E is a sample from the distribution (12).

Challenges. This proposed method still presents a few important questions. First, a theoretical
analysis of the distribution (12) is needed. As the `-isogeny graph is heuristically believed to behave
as a random (`+1)-regular graph, one hopes this distribution will approach the uniform distribution
over supersingular curves mod p. Second, the measurement process for phase estimation reveals a
series λ̃1,j , λ̃2,j , . . . , λ̃r,j of approximations to the eigenvalues λ1,j , λ2,j , . . . , λr,j of the eigenstate
|φj〉 under the operators T`1 , T`2 . . . . , T`r . It is unknown whether revealing this partial eigensystem
reveals any information, for example about the likely endomorphism ring of the resulting curve.
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[10] Reinier Bröker. Constructing supersingular elliptic curves. J. Comb. Number Theory, 1(3):269–
273, 2009.
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