Efficient Verification of the Wesolowski Verifiable
Delay Function for Distributed Environments

Vidal Attiag![0000—0001-5095-4740] ‘T yigi Vigneri', and Vassil Dimitrov!»?

! TOTA Foundation, Pappelallee 78/79, 10437 Berlin, Germany
https://www.iota.org
{vidal.attias,luigi.vigneri,vassil}@iota.org
2 Calgary University, Calgary, AB T2N 1N4, Canada

Abstract. Verifiable Delay Functions (VDFs) are a set of new crypto-
graphic schemes ensuring that an agent has spent some time (evaluation
phase) in a unparalleled computation. A key requirement for such a con-
struction is that the verification of the computation’s correctness has
to be done in a significantly shorter time than the evaluation phase.
This has led VDFs to recently gain exposure in large-scale decentralized
projects as a core component of consensus algorithms or spam-prevention
mechanisms. In this work, due to the increasing relevance and the lack of
literature, we will focus on the optimization of the verification phase of
Wesolowski’s VDF and provide a three-axis of improvement concerning
multi-exponentiation computation, prime testing techniques, and hash-
ing tricks. We will show that our optimizations reduce the computation
time of the verification phase between 12% and 35% for the range of
parameters considered.

1 Introduction

After more than two decades since the emergence of commercial services on the
Internet [38] and following an increasing centralization of data by governments
and large private companies, decentralized projects promise to grant more con-
trol over privacy and personal information. Enabling access to services to a large
scale of users, humans, or potentially Internet of Things (IoT) devices, requires
managing large streams of messages and inescapable loads of spamming, would
it be accidental or mischievous. However, spam-prevention mechanisms in such
decentralized settings require novel approaches and it essentially boils down to
asking users to pledge a scarce resource they own proportionally to their use of
the network. Such resources include money, computational power, time, identity,
or a certain notion of reputation in the network [10,[17]. Using time as a spam-
prevention mechanism dates back to the late 90s with the Hashcash system [4]
that prevented e-mail spamming by requiring senders to solve a small crypto-
graphic puzzle (Proof of Work) consisting in finding the nonce corresponding
to a hashing function’s output. This idea will be used in the founding paper
of the blockchain [30] and will be the cornerstone of many Distributed Ledger
Technology (DLT) projects.

https://www.iota.org

2 V. Attias et al.

This digital revolution is hindered by various structural flaws of DLTs, with
the major drawback being the non-scalability of most blockchain-based pro jectsﬂ
This shortcoming prevents many potential use cases and, additionally, these so-
lutions imply high transaction fees which are not compatible with a future filled
with ToT devices: use cases involving high-transaction throughput include au-
tonomous vehicles [20,24] posting updates on their state or paying a toll or a
parking, supply chains [37] involving multiple partners that need a source of
trust in their relations, digital monetary systems [14,23] and so on. Fortunately,
some DLT's are moving forward aiming to be the backbone of these future high-
performance, decentralized networks: among them, IOTA [35], Ethereum 2.0 [25],
Bitcoin’s Lightning off-chain protocol [34], Polkadot [40]. These projects aim to
eliminate the need for expensive Proof of Work, sometimes replacing it with
a Verifiable Delay Function (VDF) [6,[13]/33/39] as a spam-prevention mecha-
nism [2] or as a core component of the consensus protocol |11].

VDFs were introduced in 2018 by Boneh et al. [6] where the authors for-
mally defined functions that provably take some sequential steps to compute,
hence some time. At a high level, VDF's can be seen as a Proof of Work that
cannot be parallelized. As an example, an RSA-based VDF will require to solve
y = 22" mod N, which can only be done efficiently by performing 7 squaring
and no parallel algorithm is known to solve this problem. In this paper, we will
look at one of the best candidates for spam prevention, namely the Wesolowski’s
efficient VDF |39] which ensures small verification times and low communica-
tion overhead [19]. Our main contribution consists of a thorough study of the
verification phase. Fast verification is critical when VDF is used as an anti-spam
mechanism in DLTs since invalid messages have to be detected and discarded
rapidly to avoid harming the performance of the system. This study is focused
on the optimization of the three most time-consuming parts of the verification
algorithm: 7) modular multi-exponentiation, i) prime testing algorithm and 4ii)
hash function computation. In this paper, we will provide a theoretical analysis
of each part and will demonstrate, through experiments on real devices, that
important improvements can be achieved with realistic parameters. To the best
of our knowledge, this is the first work of this kind as the VDF literature is
either focused on the cryptographic theory of VDFs or the optimization of the
evaluation phase.

The rest of the paper is organized as follows. First, Section [2] we will intro-
duce VDFs and their usage, and describe Wesolowski’s construction. Then, in
Section [3| we will show how using double-exponentiation algorithms significantly
improve the verification time of Wesolowski’s construction. Next, Section {| will
be dedicated to prime testing and Section [5| will discuss hash functions to solve
a specific part of this operation. Finally, Section [f] concludes the paper.

3 In 2022, the throughput of the two major blockchains, Bitcoin and Ethereum, is
limited to just a few transactions per second.

Title Suppressed Due to Excessive Length 3

2 Verifiable Delay Functions

2.1 Context

Using computer programs to verify that some time has elapsed between two
events has been a long-sought-after grail in the cryptography world. This problem
stems from the difficulty of trusting foreign hardware and executions and the
lack of trusted time beacons. In 1993, Timothy May mentioned ideas of how
to use timed-release cryptographic protocols [28]. The idea at that time was to
be able to send cyphered messages in the future, meaning that uncyphering the
said message would take a predictable time. Rivest, Shamir. and Wagner [36]
proposed the first real construction of such a function, introducing time-lock
puzzle. Their construction was based on the RSA cryptosystem, the core of the
puzzle was to compute

b=a2 mod N (1)

with N a product of two large prime numbers and a a member of the group

%X. The puzzle issuer can easily compute b by computing e = 2¢ mod ¢(N)

and then b = a® mod N with knowledge of the factorization of N, with ¢(NV)
being Euler’s totient function. However, an agent who wants to solve the puzzle
without knowledge of N factors will have compute iteratively a2, a2’, ..., a2’
using modular squaring’s. The security is based on the fact that computing
¢(N) from N is provably as hard as factoring N and the conjecture that there
is no faster method of computing a2 mod N without knowledge of ¢(N) than
iteratively squaring [5], guarantees that solving the puzzle takes at least T =¢-S
seconds, where S is the number of squaring per second that an agent can process.
The novelty of the scheme proposed by Rivest et al. compared to May’s proposal
is that it removes the need for a trusted third party.

One has to wait for more than twenty years to see substantial evolution in
the field of provable time functions when in 2018 Boneh et al. |6] introduced
the notion of Verifiable Delay Functions (VDFs), based on the seminal work of
Rivest et al.

2.2 Definition of Verifiable Delay Functions

Boneh et al. present a class of functions M — Y, for an input message space M
and an output space), that consists of a set of three algorithms [6]:

— Setup: Setup(\,7) — pp = (ek, vk) that takes a security parameter A and
a challenge difficulty 7 and outputs the public parameters pp which consist
of the evaluation key ek and the verification key vk. The security parameter
A can be an RSA security (the modulus size), bit-level security, an elliptic
curve security strength, etc. The evaluation key and the verification keys will
vary greatly depending on the construction, or even be identical; in short,
they provide an instance of the underlying cryptographic scheme considered,
e.g., an RSA modulus.

4 V. Attias et al.

— Evaluation: Eval(ek,m) — (y,) that takes an input message m from M
and outputs a solution y from)); depending on the actual construction of
the VDF, the output can admit a proof m to speed the verification up. Here
again, the input and output spaces M and) will depend on the construc-
tion. For an RSA-based VDF for example, given a modulus N, we will have
M=Y=[1,N-1].

— Verification: Verif(vk, m,y,7) — {T, L} that accepts as an input the veri-
fication key vk, the evaluation input message m, a candidate solution y and a
potential auxiliary proof m, and deterministically returns T if Eval(ek,m) =
(y,m), and L otherwise. In order to be efficient, the Verif algorithm has to
run in a time polylog of Eval.

The set of algorithms must satisfy three properties, correctness, soundness
and sequentiality, to qualify a function as a VDF:

— Correctness: A VDF is said to be correct if Verif(vk, m,y,r) returns T
when (y,) < Eval(ek,m) for any (ek,vk) < Setup(\,7), A, 7, and m from
M.

— Soundness: A VDF is sound if for any algorithm .4 that runs in time
O(poly(7,),

P[Verif(vk,m,y,7) =T A y # Eval(ek,m)] <, (2)

where pp = (ek,vk) < Setup(\,7) and (m,y,w) < A(\ pp,7). In other
words, given the public parameters pp = (ek,vk) and an output (m,y,)
generated by the algorithm A, if y is not the solution output by Eval(ek, m),
then the probability that the verification accepts on y and w should be
negligible in the size of the security level .

This ensures that an attacker cannot forge a fake solution given an input m,
in the context of the public parameters A and 7.

— Sequentiality: A VDF consists of a sequence of 7 steps that must be per-
formed sequentially, i.e., one cannot compute steps in parallel. However, the
steps themselves might be parallelizable; however, they should not give a
substantial advantage to an agent with a high parallelization capacity.

One should notice that in this formal definition of a VDF, the public param-
eters are dependent on the challenge difficulty 7. Hence, in case the challenge
difficulty needs to change, all the public parameters have to be recomputed again.
This property has been abandoned by the most recent VDF constructions, al-
lowing more flexible use in applications.

2.3 The Wesolowski construction

This paper focuses on a specific VDF construction, namely Wesolowski’s VDF
introduced [39]. This construction, which is based on sequential modular squar-
ing, offers the best tradeoff between verification time and a lightness of the
outputs [7,[19]. Moreover, such features allow the integration of Wesolowski’s
VDF in DLTs at little cost, for instance as a spam-prevention mechanism [2].

Title Suppressed Due to Excessive Length 5

Setup. Wesolowski’s VDF setup requires two security parameters: in the rest of
the paper, we will overrule the A parameter mentioned in the general framework
with a new A (typically between 1024 and 2048 bits) which is the RSA modulus
size and k (typically between 128 and 256), which represents the bit-level security
of the hashing functions used in the protocol. A committee generates an RSA
public modulu&ﬁ N of bit length A and defines a cryptographic hashing function
H : {0,1}* — {0,1}?*. We then define, for any o € {0,1}*,

{ Hyrime(@) = H(a+ j))

j=min{i | H(a+1i) is prime}

returning the smallest prime number larger or equal to H(«).

Evaluation. The evaluation takes a challenge 7 € N and an input message
m € {0,1}* as inputs, and then computes z = H(m) and solves the challenge
y =22 mod N. It is important to reiterate that, if the evaluator knows d(N),
the computation time is drastically decreased as

.

22" mod N = g2 mod ¢(N) mod N. (4)

Proof. The proof begins by computing | = Hprime(z + y) and then 7 =

x2"/1 mod N. This algorithm can be parallelized, and it takes a #&ﬂ time to

run if s cores are used. At the end of this phase, the evaluator can publicly use
the pair (I, 7) as a proof of computation. In Algorithmwe present a pseudocode
of evaluation and proof algorithms combined.

Algorithm 1: Evaluation and proof of the Wesolowski construction
Input: m € {0,1}", 7 € N
Output: 7 € [0, N — 1], | prime € [0,2%* — 1]

:x <« H(m)

Y

for k+ 1to 7 do
y + y? mod N

end for

I+ Hprime(w + y)

7 =224 mod N

return (m,1)

4 Multiparty generation of RSA modulus is an actively researched topic [8L[9L[15]. We
do not provide further details as this is out of the scope of the paper.

6 V. Attias et al.

Verification. A verifier takes as an input the 4-tuple (m, 7,1, 7). It first gets
the hash of the message © = H(m) as in the evaluation algorithm and checks
whether

Hprime('r + y/) = l7 (5)

where
r =27 mod I,
{ (6)

y' =7 2" mod N.

The computations described by Eq.@ are performed to recover the VDF solu-
tion y from (m, 7,1, 7). Considering that 7 = 2"/ mod N and y = 2™ mod N,
then
7t 2" mod N = gl27/U . g2 modl
= ;132T =y

Given the soundness property, we are assured that if the ¢y’ that we find is
equal to 22" then the 4-tuple given in the input is a correct computation of
the VDF. However, since we cannot require the verifier to compute again the
y' = 22" mod N given that verification should be exponentially faster than the
evaluation; this is when Eq. is helpful. It works as opening a commitment
from the evaluator and ensures that the y’' value found by the verifier is the
same as the y value computed by the prover.

The verification phase for the Wesolowski’s VDF takes a time O(A*) and is
thus independent of 7. In Algorithm [2] we present the pseudocode for this phase.

Algorithm 2: Verification of the Wesolowski VDF
Input: x, 7, 7,1
Output: T or L

:x <+ H(m)

r<« 27 modl

y <+ 7w 2" mod N

if | = Hprime(z + y) then
return T

else
return L

end if

Overhead on the network The output size of a VDF can be of paramount
importance, e.g., when the VDF is used as a spam-prevention mechanism. As
bandwidth becomes a valuable resource in contested environments, the spam-
prevention mechanism’s footprint must be limited. A VDF solution in the order
of magnitude of megabytes would not be suitable for such an application. For
example, as of 2022, an IOTA message can be up to 32 KiB (32*1024 bytes) and

Title Suppressed Due to Excessive Length 7

the dedicated space for the PoW proof is 8 bytes. Therefore, we can state that a
footprint in the order of kilobytes would be acceptable. Fortunately, Wesolowski’s
VDF has such a tiny footprint. An evaluation output is composed of elements
of the RSA group 7 which is at most A bits long and a prime number of size at
most 2-k. As motivated later on, a conservative estimation can be A = 2048 bits
and 2 - k = 512 bits, which make 320 bytes.

2.4 Breakdown of the verification algorithm

In this paper, we will focus on the analysing the performance of the verification
algorithm, which plays a critical role in many applications. In particular, we will
analyze how one can minimize computation time.

Looking at Algorithm [2] we can isolate the following components:

1. Lines 1 and 2 operate some initialization of z and r. It is of interest to point
out that Line 2 seems to have a computation time exponentially dependent
on 7; however, knowing that [is a prime number, one can actually compute

2™ mod [= 27 ™4 ¢() mod |, (7)

since ¢(l) = I — 1. These two lines will take a time negligible compared to
the other ones, so we will not consider them in our analysis.

2. Line 3 computes the modular multi-exponentiation (MME) operation y <
7t - 2" mod N. Modular multi-exponentiation is not a trivial operation to
compute [2]. For example, one could naively compute y; + 7' mod N, yo <
2" mod N and then y < y; -y mod N but it is proven to be suboptimal [26],
especially considering the sizes of N, [and r.

3. Line 4 consists of the computation of the Hy,ime function, which determin-
istically returns a prime number that is the output of several iterations of a
hash function. This function itself can be broken down into two components,
i) the primality testing and i) the hashing function. Both have massive lit-
erature attached to them, and numerous optimization exists for these com-
putations. We will present in this paper how some of these optimizations fit
particularly well for Wesolowski’s verification computations.

In Table[I] we display the computation times of the MME, hashing, and prime
testing parts of the verification algorithm, considering values for k in {256,512}
and for A\ in {1024, 2048, 4096}, these values being the most realistic ones to be
used in a real-world setup. We have used the Apple M1 chip for testing, with
custom implementation using the OpenSSL library for C++, the same setup
that will be used for the experimental section of this article. In addition to the
absolute values in milliseconds, we have provided the table with the percentage
of each part of the verification, each line adding up to 100%.

This table shows us that the three steps of these calculations take a substan-
tial amount of time, depending on the parameters k and A. One can observe that
the time dedicated to hashing is the most stable one, taking 14-18% for k = 256

8 V. Attias et al.

down to 7-9% for k = 512. On the other hand, the multi-exponentiation compu-
tation share increases with A and the prime testing shares increase with k. It is
to be also noted that the computation time of multi-exponentiation depends on
both k and A, 2k being the size of the exponents and A of the radices. Hashing
also increases with k£ and A, considering that A is the size of the input values
and 2k is the size of the output. However, the prime testing is independent of A
because it only computes prime testing on numbers of size 2k.

We can see from this breakdown that each part can be optimized indepen-
dently of the other ones, considering that they are executed in sequentially and
the output of the two first is used as an input of the following one. Moreover, the
values displayed in Table [1| motivate the need for this study, each part taking
substantial time; hence an optimization on each has its own merits. Therefore,
we will analyze each part of the verification procedure, namely MME, hashing
and prime testing, separately in the next sections.

k A MME Hashing | Prime testing || Total time
1024 || 0.117 (14%) | 0.143 (17%) 0.574 (69%) 0.834

256 | 2048 || 0.407 (35%) | 0.205 (18%) 0.551 (47%) 1.16
4096 || 1.542 (65%) | 0.328 (14%) | 0.500 (21%) 2.36
1024 || 0.271 (7%) | 0.286 (7%) 3.42 (86%) 3.98

512 1 2048 || 0.771 (17%) | 0.413 (9%) 3.42 (74%) 4.60
4096 || 2.94 (42%) | 0.66 (9%) 3.41 (49%) 7.01

Table 1: Breakdown of the verification algorithm, describing computation times
for the modular multi-exponentiation (MME), hashing, and prime testing parts,
for different values of k and A. Times are given in milliseconds and the percentage
of each row adds to 100%.

Algorithm 3: Pseudocode of the function Hppime

Input: m € {0,1}", k€ N

Output: [prime € {0, 1}?*

1: 1+0

2: while Hy(x + 1) is not prime do
30 i—i+1

4: end while

5: return Hy(z + 1)

Title Suppressed Due to Excessive Length 9

3 Use of double-exponentiation algorithms for verification
optimization

In this section, we optimize the computation of the MME part of Wesolowski’s
VDF verification, corresponding to Line 3 of Algorithm [2] According to Table
MME can take up to 42% of the whole verification time, which motivates the
need for optimization. In the verification algorithm, it is required to compute
y' < 7wt 2" mod N where 7, and N are of size A bits and [and r are of size 2k
bits. A naive way to perform such an operation is to compute y; + 7! mod N
and yo < " mod N and then y < y1 - yo mod N. However, this is proven to
be suboptimal [26], and we will present in this section some algorithms to speed
up the computation time. The above problem is of the following form:

Problem 1 (Double-exponentiation computation). Find the algorithm A* that
solves 2% - 4® mod N in the shortest average time, for # and y random elements
of an RSA group of modulus N with size A and a, b random integers of size K.

Problem [1] is referred to as the double-exponentiation computation and is
part of a broader area of research named multi-exponentiation algorithms which
consists in computing []"_; z{* with €ific1,n)} and Tigie n)y being elements of a
cyclic group and n a natural number. Using the same notation as used to define
the Wesolowski’s VDF, we can say that the radices x; can be represented using
A; bits and the exponents are of size K. As we will see in the rest of the section,
these parameters largely affect the verification time.

The literature comprises various algorithms, mostly dedicated to solving the
general multi-exponentiation problem [29}/41], which can be easily reduced to the
double-exponentiation problem. For our scenario, two main algorithms can be
considered, the windowed 2"-ary algorithm (we refer to it as 2¥-ARY) and the
Simultaneous sliding window algorithm by Yen, Laih and Lenstra (YLL). The
two algorithms are similar, the latter being optimization of the former. They are
based on the idea of different precomputing combinations of products of small
powers of z and y. The evaluation of the multi-exponentiation is reduced to a
series of table lookup, modular product, and squaring, in a very similar fashion
to the quick exponentiation. The two algorithms have a tuning parameter w that
describes the size of the small powers of y and x computed in the precomputation
phase. The precomputation computation time grows exponentially with w but
the evaluation time is inversely proportional to w. The main practical difference
between the two algorithms is that YLL introduces some computational over-
head in the evaluation phase of the multi-exponentiation that gets smoothed out
when increasing A, hence increasing the relative weight of modular multiplication
concerning to the computational overhead induced by YLL.

In a previous work [3], we performed an implementation study of double-
exponentiation algorithms, providing computation time comparisons between
the naive approach, 2¥-ARY and YLL. In particular, this paper [3] provides
the heatmap referenced in Figure [I] highlighting the algorithm with the short-
est computation time for double-exponentiation for different values of A and k.

10 V. Attias et al.

Please note that this figure has been experimentally generated using the same
setup as described in Section [2:4] Hence, for the set of values we are interested
in, i.e., K in {128,256} and X in {1024, 2048, 4096}, the best algorithm to use is
YLL with w =2 for K =256 or YLL with w = 3 for K = 512.

4-YLL

4-2"-ary

3-YLL

3-2%-ary

Value of A

2-YLL

2-2%-ary

Separate

22 23 24 25 26 27 23 29 210 211 212 213
Value of k

Fig. 1: Best MME algorithm as a function of A and k£ on an Apple M1 chip.

3.1 Experimental results

Given the implementations provided in , we compare the computation times
for the MME part of the verification using an Apple Silicon M1 chip and the
OpenSSL library for C++. Table [2] presents the results for the values of K and
X aforementioned. The optimization is pretty stable, around 66% for K = 256
and 62-63% for K = 512, which represent a substantial improvement. Moreover,
the computation time is linear concerning K and A, which helps with the pre-
dictability of the performances. Additionally, the fact that the optimal algorithm
for these values is always YLL helps with the implementation.

4 Prime testing

The second important optimization is on the Hyim. function, described in Sec-
tion It consists of two operations, a hash and the primality testing of its
result, to be repeated a certain number of times. However, the number of repeti-
tions is unpredictable as the algorithm stops as soon as it finds a prime output.

Title Suppressed Due to Excessive Length 11

K A Separate Optimized Factor
1024 0.119 0.078 (2-YLL) | x0.66
256 | 2048 0.415 0.270 (2-YLL) | x0.65
4096 1.546 1.027 (2-YLL) | x0.66
1024 0.222 0.143 (3-YLL) | x0.64
512 | 2048 0.788 0.490 (3-YLL) | x0.62
4096 3.001 1.891 (3-YLL) | x0.63

Table 2: Multi-exponentiation computation times and factor for different values
of K and A, comparing performing multi-exponentiations with Separate (naive
approach) or Optimized algorithms.

In this section and in the following one, we will explain how the H,,;m. function
can be optimized by using specific tricks for the primality testing of the hash
output and then speeding up the hashing itself.

4.1 Number of candidates needed to find a prime in Hyime

In the Appendix, we provide a comprehensive list of primality testing algo-
rithms, confirming that this is a very well-studied field and any implementation
of industry-grade cryptography libraries is extremely optimized. Thus, in paper
will present yet another prime testing algorithm, but rather show how we can
optimize their use.

The OpenSSL library uses the Rabin-Miller primality test [32]. We recall
that a primality test involving the Rabin-Miller algorithm of a number works
in the following way:

1. The test begins what is called the trial division phase, in which z will be
tested for the division of a certain amount of the first prime numbers. This
amount depends on the size of x. This is done to quickly eliminate numbers
instead of immediately going into the Miller-Rabin test, which involves heavy
computations.

2. After passing the trial division phase, x will be tested for primality as de-
scribed in [} Rabin-Miller’s algorithm is a powerful generalization of the
primality testing based on the use of Fermat’s Little Theorem. Fermat’s test
simply computes a?~' mod p, for some @ larger than 1. If the outcome is
different from 1 the number, p, is rejected as a composite one, otherwise the
algorithm reports 'probably prime’. The RM test 'removes’ the probabilistic
nature of Fermat’s primality testing by implementing the same computation
in a more refined way. Firstly, p — 1 is represented as 2%b for some positive a
and b, b is odd. Then, one computes a® mod p first, followed by a squarings
modulo p. If the final answer is different from one, the candidate - p - is
rejected, but if it is equal to one, then we look at the previous a reductions.
If any of them is different from 1 or p — 1, then the number p is still being

12 V. Attias et al.

rejected as a composite, even though it passes Fermat’s primality test. This
is the crucial difference between the two tests. According to the computa-
tional number theory, if the test is successfully passed for any a less than
2in2(p), then the number p can be certified as a prime number. The algo-
rithm is indeed very powerful, but it still involves a large number of modular
exponentiations.

We have estimated that for an Apple Silicon M1 chip, for a very large number
of uniformly drawn integers of size 2048 bits, the time spent in the Rabin-Miller
test represents 96% of the accumulated computation time. This shows that the
trial division which prunes some candidates is a valuable part of prime testing.
It prevents most of them from entering the Rabin-Miller test and then grieve
the computation time.

In the case of Wesolowski’s VDF verification, we are interested in finding a
prime number during the Hpim. function, in which we run the Rabin-Miller test
for a certain number of times. But what number of candidates must be tested
until finding a prime one? The more candidates required to find a prime, the
more hashing will have to be performed and the more prime testing we will run.
So, although not all candidates make it to the Robin-Miller test, some do and
all consume some time to compute.

Considering that the H,,ime function returns a uniform random number of
N bits, the probability that it is prime is ﬁ [31], thus the average number of
trials to find a prime is IV In 2, so respectively 155, 178, 266 and 354 for N being
224, 256, 384 or 512 bits. The distribution of the number of candidates until
finding a prime follows the geometric law. For p = ﬁ, we have Pz = k| =
p-(1—p)*. In Figure we represent the distribution of the number of candidates
required to find a prime for N = 256 and N = 512 with the dashed lines. While
the number of candidates is theoretically unbounded, after one million runs of
the Hprime function we observe that it takes less than 5000 trials at most to find
a prime.

However, number theory teaches us that sieving candidates using small prime
numbers effectively increases the probability of finding a prime. Indeed, half of
the numbers are divisible by 2; a third is divisible by 3; a fifth is divisible by 5
etc. Thus, if we can guarantee that a number has no small prime divisors, up to
a certain threshold, then the probability that it is a prime rises significantly.

De Bruijn [12] gives an estimated formula of the probability that a sieved
number is a prime. For a number of size N guaranteed to have no prime numbers
up to B, the probability that it is a prime is e"’% (1 +o0 (%)) with + being the
Euler-Mascheroni’s constant, approximately 0.57721. For example for B = 47,
i.e., the 15-th prime number and N = 512 bits, the probability of finding a prime
is 51—1 Compared to the probability of ﬁ for a uniform random number, this is
a huge gap.

4.2 Primality testing without trial division part

Fortunately, in our case, we have a way to manipulate the output of the hash
function to obtain a sieved number without having to go through trial divisions.

Title Suppressed Due to Excessive Length 13

For example, for a random number x and a given number B, it is guaranteed
that T = | 5| - B + 1 is co-prime with B; in other words, it does not share any
prime divisor with B. Then, considering y the output of our hash function, if
we take B being the product of a certain amount of the first prime numbers, we
can build 7 that does not have any of these first prime numbers. Then, we can
considerably limit the number of candidates the Hp,;m. function has to go test
before finding a prime number.

The question now is to understand which number B to consider, i.e., how
many small primes are necessary to yield a satisfying reduction of the candidates.
In Table [3) we display the following informations:

— We provide a theoretical estimation of the average number of candidates
required to find a prime number, for i) uniformly random candidates and
it) for candidates sieved up to the 15 first small primes, for candidates of
size 224, 256, 384 and 512 bits. For uniformly drawn candidates we use the
formula N 1n2 and for sieved numbers, we use the De Bruijn estimation.

— We provide an experimental estimation of the average number of candidates
required to find a prime for comparison alongside the theoretical estimations.

We have limited our experimentations to the fifteen first small primes because
it is the maximum number of small primes whose product fits into a word of 64
bits, which allows us to use the OpenSSL word division function instead of
dividing by a bignum.

From this table, we can make several observations:

— As predicted by the formula, the average number of candidates to find a
prime is linear with the size of the number to test .

— The average number of candidates to test decreases dramatically by a factor
of 7 (approximation from e?In43 = 6.699) when the first fifteen primes are
considered. This means that we can perform seven times less hash and prime
testing for a single word division and a multiplication per candidate.

— De Bruijn’s formula precision is pretty weak for a low amount of small primes
sieved. For example, when only the prime factor 2 is removed, the difference
between the real experimental values and the De Bruijn formula is 40%.
However, such a difference decreases below 10% after only eight primes.

— De Bruijn approximation constantly overestimates the average number of
candidates before finding a prime, even though it becomes very close for fif-
teen primes. This is important to observe because it proves that the formula
is only an approximation and should be considered carefully.

Table [3| shows that we do not need an extremely high number of sieved
num- bers to reduce the number of candidates significantly. We argue that a
cutoff of the first fifteen primes is sufficient as it offers a good tradeoff between
division costs and effictively reduces the number of candidates. For example, the
OpenSSL library runs the trial division phase for the 64 first primes for numbers
up to 512 bits long. The 64-th prime is 311, then according to the De Bruijn
formula, the expected number of candidates should be respectively 25 and 50

14 V. Attias et al.

Primes | Product of primes N=224 N=256 N=384 N=512
DB Exp | DB Exp | DB Exp | DB Exp

0 155 153 | 177 178 | 266 265 | 354 354
1 125 78 143 87 215 132 | 287 176
2 79 52 90 57 136 88 181 117
3 30 54 41 61 47 92 71 123 93
4 210 44 36 51 40 76 60 102 81
5 2310 36 52 41 36 62 55 83 73
6 510510 33 29 38 34 58 50 77 68
7 510510 30 28 35 31 52 47 70 63
8 9699690 29 26 33 29 50 45 67 62
9 223092870 27 25 31 29 47 42 63 57
10 6469693230 25 24 29 27 44 41 59 56
11 200560490130 25 24 29 27 43 40 58 54
12 7420738134810 24 22 27 26 41 39 55 52
13 304250263527210 23 22 26 25 40 38 53 51
14 13082761331670030 | 23 22 26 25 39 37 52 50
15 614889782588491410 | 22 21 25 24 38 36 51 49

Table 3: Comparison of the average number of candidates required to find a
prime number between the De Bruijn formula (DB) and experimental results
(exp), with tested numbers of size 224, 256, 384, and 512 bits.

for numbers of size N of 256 and 512 bits. When compared with Table [3] it is
absolutely not a significant improvement. However, the product of the 64 first
primes is a 417 bits long number which fits in 7 words of 64 bits each, which is
the reason why we argue that sieving only up to the 15 first primes is sufficient.

In Figure 2 we show the probability distribution of the number of candidates
to be tried before finding a prime number and the values of what happens when
we sift through the numbers with the presented technique and have adjusted
the z-axis to a logarithmic scale for better visibility. Considering that the dis-
tribution follows a geometric law, we observe that it is markedly more likely to
find a prime with a low number of candidates than without sieving. The prob-
ability of performing more than 100 trials is almost nonexistent. In addition to
reducing the average computation time, it also improves the predictability of the
computation time by reducing the standard deviation.

4.3 Security analysis

It is fundamental to verify whether the filtering technique described in the pre-
vious section can be exploited to affect the security of the VDF concerning the

Title Suppressed Due to Excessive Length 15

1.0 4 === 256 random cm RIS
—— 256 sieved it
—-== 512 random / /
. /
0.8 4 — 512 sieved y I,'
/
) / ,'
[/ i
] A
S 0.6 i
- P
o
z l
= /I /
2 0.4 1 #
Qo /
o /
a ,/
4
0.2 1
0.0 1 ==r
10° 10t 10?2 103

Number of candidates

Fig.2: Probability of finding a prime in function of the number of trials for
candidates of size 256 and 512 bits and with comparison with sieved numbers

properties described in Section More precisely, we shall investigate the set
of primes that can be generated according to our sieving method.

The method that we have presented earlier produces numbers that can be
identified to an arithmetic progression of the form {a + i -d | i € N}, with
a = 1 and d = B. We denote the prime-counting function in this set with
Ta,d(2), which counts the number of primes smaller than x. This function can be
efficiently approximated by 7(x) ~ % . For numbers of size respectively 256 and
512 bits, there are approximately 10”4 and 10'®! primes respectively. Dirichlet
and Legendre conjectured, then proved by de la Vallée Poussin, that

Li(z)
Tad(T) ~ —=F, (®)

p(d)
with ¢ being the Euler’s totient function, and Li being the offset logarithmic
integral, that is Li(z) = [, {%. We can make two observations: i) the number

of primes does not depend on the offset a; i) the factor of primes “lost” in the
sieving operation only depends on the size of B, not on the size of the numbers
sieved.

In Figure [3] we display the number of primes that can be generated after the
sieving operation (in blue) as a function of the number of small primes that are
used in the sieving, against the total number of primes that can be generated
randomly (in red). We show the results for numbers of size 256 and 512 bits.
This figure shows that when sieving the fifteen first prime numbers, the number
of accessible prime numbers is reduced from 227 to 2297 (for the 256 dynamic
range). But even this issue can be circumvented with the use of randomization.

16 V. Attias et al.

We propose the following algorithm. For a given output = of the hash func-
tion, we compute .
B
with 7 being a random number smaller than B and co-prime with | % |- B. In this
way, we can generate all the co-prime numbers with B. The main issue is the
way to draw this number 7 in practice. This number r has to be deterministically
generated to ensure the correctness of the non-interactive Hp,;m. function, the
verifier needs to be able to generate the same ones while generating a number
with enough entropy to cover all the prime numbers, which can naturally be
achieved with a hash function. The coprimality test is easily done by computing
the greatest common divisor of | % | - B and r and ensuring it is equal to 1.

T=|=] -B+r, (9)

10149 4
10137
el
1
® 10125 4
5
5
2 10113 4 —— Baseline 512 bits
aE: —— Division 512 bits
S 1010 4 —=—- Baseline 256 bits
5 —=~ Division 256 bits
] 89 |
2 10
€
=}
4 1077 4
ws] T ——e

2 4 6 8 10 12 14
Number of small primes in B

Fig. 3: Comparison of the number of primes reachable after sieving concerning
random numbers in the function of the number of small primes sieved and with
values for 256- and 512-bits numbers.

4.4 Experimental results

Finally, in Table [@] we show the average time to compute a single primality
test, for a randomly chosen number and a sieved number (up to fifteen small
primes). Along with these values, we estimate the computation time spent on
prime testing during the execution of the H,im. function by multiplicating the
previous value by the average number of candidates required to find a prime.
Finally, in the last column, we display the improvement gained on the Hp,ime

Title Suppressed Due to Excessive Length 17

function when using the sieving technique in the last column. We display these
values for numbers of size 224, 256, 384 and 512 bits, and the unit of measurement
here is in microseconds.

One might be surprised to see that a single primality test is, on average,
more computationally expensive when sieved numbers are considered. However,
this can be clearly explained because a sieved number is 7 times more likely
to pass the trial division and make it to the actual Rabin-Miller test, which is
more expensive than the trial division by a factor of (almost) 2. One can observe
that the ratio of 7 is also observed here. With the sieved approach, we actually
save the trial division for the 85% of candidates eliminated (that would have
failed the Rabin-Miller test anyway). The improvement observed on the Hpyime
function itself is limited, only up to around 4%. However, we invite the reader
to note that the primality test is intertwined with executing a hash function.
Hence, the speedup here and the optimization that we will show in the next
section contribute to a non-negligible optimization of the Wesolowski’s VDF
verification.

Size Random Sieved Speedup
224 || 554 (3.57) | 532 (25.3) 3.97%
256 || 635 (3.57) | 609 (25.4) | 4.09%
384 || 2430 (9.17) | 2360 (65.5) 2.88%
512 || 3510 (9.92) | 3390 (69.2) 3.42%

Table 4: Total and per-trial (in parenthesis) average computation time in mi-
croseconds of primality testing between a uniformly random number and a sieved
number up to fifteen small primes, for numbers of size 224, 256, 384, and 512
bits.

5 Optimized hashing

In this section, we discuss about the hash function used in the Wesolowski’s VDF.
The requirement is that the chosen hash function H must be cryptographically
secure, that is H satisfies the following properties:

— Pre-image resistance (PR): given an output y, it is not feasible to find
an input x such that H(z) = y.

— Second pre-image resistance (SPR): given an input z7, it is hard to
find a second input xs such that H(z1) = H(x2).

— Collision resistance (CR): it is hard to find a distinct pair (x1,z2) of
inputs such that H(z1) = H(z2).

It is important to note that the CR property is similar to the SPR one, CR
implying SPR. For this reason, if a hash function satisfying SPR has an output

18 V. Attias et al.

size k, then a hash function satisfying CR must have an output size 2k because
of the existence of birthday attacks [21].

Practically, acceptable bit-level security is 128 bits, whereas a considered
very strong bit-level security is 256 bits. Then a hash function would need an
output of respectively 256 or 512 bits, hence the values aforementioned. This
section, will present a practical point of view on hash functions, using the C++
library of OpenSSL, showcasing different hash function candidates and then an
optimization that can be applied for our specific use case of VDF verification.

5.1 Overview of hash functions

First, we provide an overview of the candidate hash function to consider in our
study. In theory, any hash function that satisfiessatisfies the properties men-
tioned above is suitable for the Hpim. function. However, differences in per-
formance among various hash functions may be huge. Therefore, considering
that we are using the OpenSSL library for conducting our experiments, we have
restricted the choice of the hash function to the following available hash families:

— SHA-2: SHA-2 is the previous generation of NIST-selected hash functions
designed in the early 2000s. It encompasses six hash functions, SHA-224,
SHA-256, SHA-384, SHA-512, SHA-512/224 and SHA-512/256, having respec-
tively an output size of 224, 256, 384, 512, 22 and 256 bits. We will restrict
the study to only the SHA-256 and SHA-512 functions for the sake of sim-
plicity. It is important to note that for this family, OpenSSL provides two
programming interfaces, one is based on a C-style implementation with types
and functions and the other one is based on a modern hashing API, called
EVP and is aimed at increasing the modularity of hash, changing a hash
function being done by only changing a parameter instead of rewriting the
whole code section. We denote the C-style API by SHA-2 (C) whereas the
EVP interface will just be denoted as SHA-2 for consistency with the other
families as they are only available through the EVP API.

— SHA-3: this is the last generation of the NIST-elected hash functions, some-
times referred to as KECCAK, its former name before standardization by the
NIST destined to replace the SHA-2 family, although the latter being still
deemed secure. SHA-3 is generally considered to be less performant than its
predecessor but it features two important characteristics: ¢) unlike SHA-2,
it is resistant to length-extension attacks; i) it is built on a complete dif-
ferent design, hence industry can safely switch to an alternative, if SHA-2
design appears to be broken in the future. It encompasses four hash func-
tions, SHA3-224, SHA3-256, SHA3-384 and SHA3-512, with respective output
sizes 224, 256, 384 and 512 bits. We will restrict our study to the SHA3-256
and SHA3-512 for the sake of simplicity.

— SHAKE: the SHAKE family is a hybridisation between SHA-2 and SHA-3.
Its main feature is to allow for sponge hashing, meaning that one can set
arbitrary input and output sizes. We excluded this family from our study
because we do not consider this feature to be of interest for the sake of the
Hprime function.

Title Suppressed Due to Excessive Length 19

— BLAKEZ2: the BLAKE hash function is an unfortunate finalist of the NIST
competition that elected KECCAK as the new standard for the SHA-3 genera-
tion, but it has made it to most libraries due to its excellent performances.
It comes with two implementations, blake2s256 and blake2b512, with an
output size of respectively 256 and 512 bits. The main difference between
the two functions is that the former is designed for 32-bits architecture while
the latter is designed for 64-bits ones.

We have compared the computation time of SHA-2, SHA-3 and BLAKE2 fam-
ilies on an Apple Silicon M1 chip using the OpenSSL library for C++ for the
sets of parameters we are interested in our VDF study, being the input size A
in {1024, 2048,4096} and with a security level of 128 or 256 bits (i.e., an output
size of 256 or 512 bits). Table [5| presents the results. A first observation is that
the deprecated SHA-2 (C) implementation leads to significantly better perfor-
mances, from 15% when k = 512 and A = 4096 to over 50% in computation
time reduction when k = 256 and A = 1024. A second observation is that the
SHA-3 family is substantially slower than the SHA-2 family, especially for kK = 256
and the gap increases with \. Finally, the case of BLAKE2 is more complex. It is
consistently outperformed by SHA-2 for k = 256, even using the EVP interface.
For k = 512, it is outperformed in the case of A\ = 1024 (outperforms SHA-2
(C) with a very slight margin (3%) when A = 2048 and definitely takes over for
larger values of \.

Security level A SHA-2 | SHA-2(C) | SHA-3 | BLAKE2
. . 1024 566 255 686 702
128 bits level security
. 2048 740 460 1052 1074
(256 bits output)
4096 1197 853 1745 1825
. . 1024 875 601 899 635
256 bits level security
. 2048 1222 956 1464 928
(512 bits output)
4096 1960 1689 2633 1486

Table 5: Comparison between SHA-2, SHA-2-C, SHA-3 and BLAKE2 implementa-
tions on an Apple Silicon M1 chip using OpenSSL library for C++, for different
security level k and input size A. For BLAKE2, we used the blake2s256 function
for the 128 bits level security and blake2b512 for the 256 bits level security
parameter. All values are given in nanoseconds.

The sheer variety of hash functions makes it hard to select one for a given
project. We have presented a set of hash functions family that were suitable for
VDF verification and their performance. Still, one should keep in mind that these
results only indicate that other factors, such as security, have to be considered.
For our purpose, we chose to pick the SHA-2 family for the computation of the
Hprime function, as the primary goal of the work is about performance. It is

20 V. Attias et al.

important also to note that the BLAKE2 family is of great interest too. On 64-
bits systems, the blake2b512 performs well for large values and the blake2s256
should be promising for 32-bits architectures.

5.2 Context copying optimization

In this section, we will present the optimizations for the Hpime function. In
Table we showed that the H,pime function makes up to 18% of the total
computation time of the VDF verification. Looking back to Algorithm [3] we can
observe that the input fed into the hash function is + ¢ with ¢ typically being
a value below 5,000, as described in Section So ¢ can be described by using
only two bytes. On the other hand, = typically has a size of 1024, 2048, or 4096
bits, respectively 128, 256, or 512 bytes, which means that the input « + ¢ of the
hash function is mostly the same when the Hp,m. function is called, except for
the two last bits being updated at each call.

Delving into the inner workings of hashing functions will help us understand
how this particular phenomenon can be leveraged to optimize the performances
of the H,yime function. From a high-level perspective, a hash function is called
in OpenSSL as follows:

— Creation. A hashing context holding the interna hashing state gets created.

— Update. The state of the hashing context is updated with a memory area
and a length in bytes. This will prepare the internal hashing states with the
input memory.

— Finalization. The hash output is written into a memory area, ready to be
used.

It is important to note that the updating part of the hash primitive can take
arbitrary long memory size. It is possible to deterministically update multiple
times a hashing context, with different memory areas and memory lengths, the
smallest unit being one byte. Our idea is to use a hashing context copying the
mechanism provided by OpenSSL allows saving the context’s internal state to
be independently updated multiple times. Considering that our number x is of
size n bytes, then we start by initializing a hash context ¢ that we will update
with the n — 2 left-most bytes of x. Then for each iteration performed, we will
create a new hash context ¢’ that is a deep copy of ¢, and then we will update
¢’ with the 2 right-most bytes of z, finalize the hash of the context ¢’ and write
the result in a number r that we will test for primality. If not a prime, we set x
to be x + 1 to get the next candidate deterministically. The key idea is that the
primary hash context c is never changed after the first update of n — 2 bytes, so
each iteration involves an update of 2 bytes instead of n bytes.

5.3 Experimental results

In this section, we will only consider the C-style interface of SHA-2 as motivated
earlier. We are interested in determining whether and how the context copying
method can reduce the hashing computation time with our experimentation.

Title Suppressed Due to Excessive Length 21

In the presented optimization, the total hashing time is practically indepen-
dent of the input size A. We say practically because we are limited to 2 bytes
of increment, i.e., 65536 trials, which are enough for our purposes. Bur, more
generally, if m (instead of 2) indicates the number of bytes left for the increment
and k < m is the number of bytes of the input, then one has to hash &k — m
bytes in the first phase and then has 256™" trials.

Figure depicts the computation time spent hashing in Hp.ime with and
without the copy context technique (Figure for SHA-256 and SHA-512, as a
function of the input size A. Figure [4b|shows the same computation time (please
note the different scale of the y-axis) when the input is sieved using the technique
described in Section [4] Finally, Figure [dc] displays the ratio between the original
and the copy-context techniques for the SHA-256 and SHA-512 hash functions,
and with and without the sieving technique applied. First, we observe that, even
for a small number of trials, the computation time is (almost) independent of the
input size in the case of the copy-context technique while the original method
has a super-linear behavior. We can also see that there is a ratio of 7 between
the case when it is sieved and when it is not, which is consistent with the results
found in Section[d Finally, Figure[ddindicates that the ratio between the original
and the copy-context techniques does not depend much on whether the input is
sieved or not, i.e., whether there are many trials.

B 0’ 3x10 o 100 2x100 X100 ax100
Input size A input size A input size A

(a) Non-sieved input. (b) Sieved input. (¢) Ratio of computation
time of copy-context over
original method.

Fig.4: Comparison of computation time dedicated to hash in the verification
algorithm in function of the input size \.

6 Conclusion

In this paper, we have conducted a thorough analysis of the verification algo-
rithm of Wesolowski’s VDF construction. We have broken down the algorithm
into three main bricks, i) modular multi-exponentiation computation,) prime
testing and #44) hashing. We have conducted a theoretical analysis of the under-
lying problem for each of these components, isolated some optimizations that

22 V. Attias et al.

work particularly well for our specific situation, and supported theoretical find-
ings with experimental results.

For the modular multi-exponentiation part, we have shown that using dedi-
cated algorithms such as the Simultaneous sliding window algorithm can reduce
by 33% the computation time of a modular multi-exponentiation. For the prime-
testing algorithm, we have provided an analysis of how to generate numbers that
are already sieved out of the H,,ime function with minimal computational over-
head and how it reduces the number of trials significantly to find a prime in the
Hpime function by a factor of 7 with very little overhead which finally yields
about a 5% speedup. Finally, we have demonstrated how to leverage the struc-
ture of the hashing function inputs to dramatically decrease the computation
time, which becomes negligible. To sum up the results of this work, we display
Figure [5| which shows the total computation time when k = 128 (Figure
and k = 256 (Figure : our optimizations reduce the computation time of the
verification of the Wesolowski’s VDF between 12% and 35% for the range of
parameters considered in this work.

B Multiexponentiation
Hashing
2.04{ W Prime Testing

7- mmm Multiexponentiation
Hashing
m Prime Testing

0.328

Computation time (ms)
Computation time (ms)

1024 1024

(a) k=128 (b) k=256
* indicates 0.003ms for optimized hashing #x* indicates 0.023ms for optimized hashing

Fig.5: Comparison of computation time dedicated to each component between
non-optimized and optimized implementations for bit-level security k£ equal to
128 bits in (a) and 256 bits in (b)

References

1. W.R. Alford et al. There are Infinitely Many Carmichael Numbers. The Annals
of Math., 1994.

2. V. Attias et al. Preventing Denial of Service Attacks in IoT Networks through
Verifiable Delay Functions. In GLOBECOM 2020, 2020.

3. Vidal Attias, Luigi Vigneri, and Vassil Dimitrov. Rethinking modular multi-
exponentiation in real-world applications. Journal of Crypto. Eng., 2022.

4. Adam Back et al. Hashcash-a denial of service counter-measure, 2002.

10.

11.
12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.
26.

Title Suppressed Due to Excessive Length 23

N. Bitansky et al. Time-lock puzzles from randomized encodings. In ITCS 2016,
pages 345356, 2016.

D. Boneh et al. Verifiable delay functions. In CRYPTO 2018.

D. Boneh et al. A survey of two verifiable delay functions. TACR Cryptol. ePrint
Arch., page 712, 2018.

M. Chen et al. Diogenes: Lightweight scalable rsa modulus generation with a
dishonest majority. In IEEE SP21.

M. Chen et al. Multiparty generation of an rsa modulus. Journal of Cryptology,
2022.

A. Chepurnoy et al. A Systematic Approach to Cryptocurrency Fees. In Financial
Cryptography and Data Security. 2019.

B. Cohen and K. Pietrzak. The chia network blockchain, 2019.

N. G. de Bruijn. On the Number of Uncancelled Elements in the Sieve of Eratos-
thenes. In Reviews in Number Theory. 1974.

L. De Feo et al. Verifiable delay functions from supersingular isogenies and pairings.
In ASTACRYPT 2019, 2019.

César A. Del Rio. Use of distributed ledger technology by central banks: A review.
Enfoque UTE, 8(5):1-13, 2017.

Cyprien Delpech de Saint Guilhem, Eleftheria Makri, Dragos Rotaru, and Titouan
Tanguy. The return of eratosthenes: Secure generation of rsa moduli using dis-
tributed sieving. In Proceedings of the 2021 ACM SIGSAC Conference on Com-
puter and Communications Security, CCS '21, page 594-609, New York, NY, USA,
2021. Association for Computing Machinery.

Adina Di Porto and Piero Filipponi. A probabilistic primality test based on the
properties of certain generalized Lucas numbers. In Workshop on the Theory and
Application of of Cryptographic Techniques, pages 211-223. Springer, 1988.

John R. Douceur. The sybil attack. In Druschel, Peter, Kaashoek, Frans, Rowstron,
and Antony, editors, Peer-to-Peer Systems, volume 2429, pages 251-260. Springer
Berlin Heidelberg, 2002.

Paul Erdés and Carl Pomerance. On the number of false witnesses for a composite
number. Mathematics of Computation, 46(173):259-279, 1986.

Attias et al. Implementation Study of Two Verifiable Delay Functions. In Toke-
nomics, pages 1-6, 2020.

Pietro Ferraro, C. King, and Robert Shorten. Distributed ledger technology for
smart cities, the sharing economy, and social compliance. IEEE Access, 6:62728—
62746, 2018.

Philippe Flajolet and Andrew M. Odlyzko. Random Mapping Statistics. Advances
in Cryptology — EUROCRYPT ’89, pages 329-354, 1990.

Paul Garrett and Daniel Lieman. Public-key cryptography: Baltimore (proceedings
of symposia in applied mathematics). American Mathematical Society, Boston,
2005.

Fred Huibers. Distributed Ledger Technology and the Future of Money and Bank-
ing: Banking is Necessary, Banks Are Not. Bill Gates 1994. Accounting, Economics
and Law: A Convivium, pages 1-37, 2021.

Saurabh Jain, Neelu Jyothi Ahuja, P. Srikanth, Kishor Vinayak Bhadane,
Bharathram Nagaiah, Adarsh Kumar, and Charalambos Konstantinou. Blockchain
and Autonomous Vehicles: Recent Advances and Future Directions. IEEE Access,
9:130264-130328, 2021.

Christine Kim. Ethereum 2.0: how it works and why it matters, 2020.

V. V. Kochergin. On Bellman’s and Knuth’s Problems and their Generalizations.
Journal of Mathematical Sciences (United States), 233(1), 2018.

24

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.
40.

41.

V. Attias et al.

Rudolf Lidl, Winfried B. Miiller, and Alan Oswald. Some Remarks on Strong Fi-
bonacci Pseudoprimes. Appl. Algebra Eng., Commun. Comput., 1(1):59-65, March
1990.

Timothy C May. Timed-Release Crypto. http://cypherpunks.venona.com/date/
1993/02/msg00129.html, 1993.

Bodo Moéller. Algorithms for Multi-exponentiation. In Serge Vaudenay and Amr M
Youssef, editors, Selected Areas in Cryptography, pages 165-180, Berlin, Heidelberg,
2001. Springer Berlin Heidelberg.

Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. Decentralized
Business Review, page 21260, 2008.

Wiadystaw Narkiewicz. The Development of Prime Number Theory. Springer,
Berlin, Heidelberg, 2000.

OpenSSL. Openssl primality checking documentation, 2022. https://www.
openssl.org/docs/man3.0/man3/BN_check_prime.html, Last accessed on 2022-
04-24.

Krzysztof Pietrzak. Simple verifiable delay functions. In 10th Innovations in Theo-
retical Computer Science Conference (ITCS 2019), volume 124, pages 60:1—60:15.
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2019.

Joseph Poon and Thaddeus Dryja. The bitcoin lightning network: Scalable off-
chain instant payments, 2016.

Serguei Popov, Hans Moog, Darcy Camargo, Angelo Capossele, Vassil Dimitrov,
Alon Gal, Andrew Greve, Bartosz Kusmierz, Sebastian Mueller, Andreas Pen-
zkofer, Olivia Saa, William Sanders, Luigi Vigneri, Wolfgang Welz, and Vidal At-
tias. The Coordicide. IOTA Foundation, 2020.

R. L. Rivest et al. Time-lock puzzles and timed-release Crypto 1 Introduction.
Cryptologia, 1996.

D. Roeck et al. Distributed ledger technology in supply chains: a transaction cost
perspective. International Journal of Production Research, 2020.

V. Tabora. The Evolution of the Internet, From Decentralized to Centralized,
2018.

B. Wesolowski. Efficient verifiable delay functions. In EUROCRYPT 2019, 2019.
G. Wood. Polkadot: Vision for a heterogeneous multi-chain framework. White
Paper, 21:2327-4662, 2016.

S. M. Yen et al. Multi-exponentiation. IEE Proceedings: Computers and Digital
Techniques, 1994.

http://cypherpunks.venona.com/date/1993/02/msg00129.html
http://cypherpunks.venona.com/date/1993/02/msg00129.html
https://www.openssl.org/docs/man3.0/man3/BN_check_prime.html
https://www.openssl.org/docs/man3.0/man3/BN_check_prime.html

Title Suppressed Due to Excessive Length 25

Appendix

Overview of primality testing algorithms

Primality testing is one of the most important problems in computational num-
ber theory:

Problem 2 (Primality testing). Given a large integer p, determine whether p is
a prime or a composite number.

For large prime numbers, it is clear that the exhaustive search algorithm that
tests all the potential prime divisors of p is computationally infeasible. Indeed,
correct algorithms allow to determine if a number is a prime with an abso-
lute certainty but are not practical for large numbers that are commonly used;
conversely, probabilistic algorithms determine whether a number is prime with
bounds on the probability of giving a wrong answer. In this subsection we review
the most relevant probabilistic algorithms used to test primality.

Fermat’s Little Theorem. One can test if

27~ = 1(mod p)

and, if so, then either p is a prime or p is a 2-pseudoprime according to the
Fermat’s Little Theorem (FLT). The smallest composite number, for which this
test fails is 341. One can substitute 2 with larger values, but still there is a set
of composite numbers, called Carmichael numbers, for which the test produces
an incorrect answer. The fact that the set of Carmichael numbers is infinite has
been established in 1994 [1].
Rabin-Miller primality test. So, instead of using FLT-based tests, we can
use more precise Rabin-Miller primality test. If in computing a?~!(mod p) one
gets “1” as an answer, the algorithm performs a “forensic” investigation on how
exactly this outcome 1 has been obtained. In this case, the one can use only a
very small number of witnesses in order to test the primality of p, but the proof
that only small number of witnesses is sufficient depends on the correctness of
the extended Riemann hypothesis.
Solovay-Strassen primality test. The Solovay-Strassen primality testing al-
gorithm is based on a very simple idea: to test if p is a prime number, one

computes a"7 and compares this to the value of the Jacobi symbol (%) If p
is a prime number, the value of the Jacobi symbol is the same as the value of
the Legendre symbol (%) If p is not a prime, then these two values are the

same with at most 50% probability. The entire point of the algorithm is that
there is no need to factorize p in order to evaluate the Jacobi symbol. So, if the
algorithm is executed for, say, 100 values of a and in all the cases

072 = (%) (mod), (10)

then we can claim that p is a prime with probability at least 1 — 27190 [18§].
The biggest drawback of this algorithm is the necessity to compute the Jacobi

26 V. Attias et al.

symbol, which involves a large number of GCD computations, and is the chief
reason why it is rarely used in practice.

Generalized Fibonacci-based primality test. A similar algorithm is based
on the following interesting property of Fibonacci numbers: For every prime
number, except 5, the following congruence holds:

F,2_1 = 0(mod p).

Since the value of Fj,2_;(mod p) can be obtained in O(logp) operations |16,
27, the algorithm is attractive. Again, it fails for very few, specific composite
numbers, called Fibonacci pseudo-primes — the smallest one being 161.

In Table [f] we evaluate the computational complexities to test the primality
of p for the methods described above. According to our analysis, it is clear that
Rabin-Miller’s approach is superior:

— When comparing Rabin-Miller and Solovay-Strasses tests, we notice that
the latter technique requires the same number of modular multiplications
plus Inp evaluations of the Jacobi symbols, which requires approximately
the same computational time.

— Fibonacci-based primality testing is implemented by exponentiating the ma-

. (11
trix (1 0) to the power of p. The constant in our estimation, 10.5, is based on

the assumption that one uses Strassen’s matrix multiplications algorithnﬂ

Therefore, Rabin-Miller is about twice faster than Solovay-Strasses test and
about seven times faster than generalized Fibonacci-based primality test. This
basically makes Rabin-Miller’s test as the de-facto standard in the primality
testing field. A similar analysis can be found in the article [22].

Table 6: Complexity to test the primality of p (MM stands for modular multi-
plications).

Primality test Complexity

Rabin-Miller 1.5-1Inp - log, p (MM)
Solovay-Strasses | 1.5-Inp-log,p (MM) 4 Inp (Jacobi symbols estimation)
Fibonacci-based 10.5 - Inp - log, p (MM)

5 The use of standard matrix multiplications algorithm will increase this constant to
12.

	Efficient Verification of the Wesolowski Verifiable Delay Function for Distributed Environments

