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Abstract. The most common application for side-channel attacks is
the extraction of secret information, such as key material, from the im-
plementation of a cryptographic algorithm. However, using side-channel
information, we can extract other types of information related to the
internal state of a computing device, such as the instructions executed
and the content of registers. We used machine learning to build a side
channel disassembler for the ARM-Cortex M0 architecture, which can
extract the executed instructions from the power traces of the device.
Our disassembler achieves a success rate of 99% under ideal conditions
and 88.2% under realistic conditions when distinguishing between groups
of instructions. We also provide an overview of the lessons learned in re-
lation to data preparation and noise minimization techniques.

Keywords: Side-channels · Disassembler · Machine-learning.

1 Introduction

The extraction of information using side channels is extensively studied in an
adversarial setting, where the target of the attack is the implementation of a
cryptographic algorithm. There are two classes of side-channel attacks. The first
are non-profiled attacks, where the adversary can choose the input data, observe
the encryption output, and monitor the side-channel information. The second is
profiled attacks, where the adversary has access to a clone device to learn the
behavior of the algorithm. Side channel attacks have a long history of success [1]
in extracting key information from power or electromagnetic traces collected
during the execution of a cryptographic algorithm.

However, monitoring the side-channel information of an embedded system
has also been proven to be useful for defense purposes [2]. A side-channel disas-
sembler monitors the control flow of an application at run-time by translating
side-channel information, such as power traces, into assembly code consisting
of instructions and operands. The applications of a side-channel disassembler
are multiple. An example is the detection of security breaches, such as malware
attacks. To detect malware using a side-channel disassembler, the signature in-
formation of the healthy device at run-time is collected. This information is used
to verify the integrity of the code running on the device. A flag is raised if a de-
viation from normal operation mode is detected. Another application is reverse
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engineering of the firmware of a target device. Side-channel disassemblers have
been shown to successfully recognize both the opcode and the operands for a
given device and instruction set architecture.
Problem statement. Translating a power trace into a sequence of instructions
is a challenge. The first challenge is that an instruction is typically executed
once for an execution path, so there is relatively little information to use for
identification. The second challenge is that the power signature of an instruction
is influenced by other instructions in the pipeline [3], changing the side-channel
signature of an instruction. The third challenge is that the implementation of the
microarchitecture of an embedded device is a trade secret, and hidden storage
elements influence the interaction of instructions [4].
Contribution. Building on previous work, we investigate the use of machine
learning models for side-channel disassembly of instructions running on an ARM-
Cortex M0 processor, which is a popular choice for IoT due to its ultralow gate
count. Its side-channel leakage has been extensively studied in the context of
leakage simulators. Unlike side-channel disassemblers which extract the assem-
bly instruction from a power trace, leakage simulators aim to construct the power
trace for a set of assembly instructions. This is the first attempt at modeling
a 32-bit architecture with a 3-stage pipeline; previous work has focused on 8-
bit processors with 2-stage pipelines. 32-bit architectures are more complex and
typically add more components, increasing the difficulty of recognizing instruc-
tions in power traces. Using the information collected from the power traces, we
performed experiments to identify the groups of instructions as suggested in [5]
and individual instructions. Under ideal conditions, our side-channel disassem-
bler reaches a success rate of 99%, while under realistic conditions, we observe
a success rate of 88.2%.
Paper organization. Section 2 describes the related work. The experimental
setup that we used to validate our results is presented in Section 3 and the
datasets we collected are described in Section 4. The challenges of selecting
mixed-instruction sequences are described in Section 5. Our results are presented
in Section 6 and conclusions are presented in Section 7. The KL-based feature
selection proposed in [6] is discussed in more detail in section A (appendix).

2 Related work

Side-channel disassemblers Park et al. [6] have created a side-channel dis-
assembler targeting the Atmega 328P microcontroller and report a success rate
of 99.03% in instruction identification. The first step of the disassembler is to
collect power traces. Next, all instructions are divided into groups on the basis
of their operands. Since the microcontroller used has a two-stage pipeline, the
target instruction is preceded and succeeded by a random instruction to fill the
pipeline. After the traces are collected, the difference between each trace and a
reference trace containing only nop’s is computed to remove electrical noise. This
work is the starting point for the results presented in this paper. We extensively
experimented with the proposed special feature selection and combined it with
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several machine learning algorithms. Eisenbarth et al. [7] targets a PIC16F687
microcontroller, running at 1MHz that features a set of 35 instructions (most are
1 cycle instructions). Their goal is to reconstruct the instructions executed and
their order from a single measurement. They use templates to model the power
consumption of a single instruction. They also use instruction frequency analysis
to determine the probability that instructions appear in a piece of code and feed
this information to the distinguisher function. They report a recognition rate of
70%. Msgna et al. [8] targets an 8-bit ATMega163 microcontroller, running at
4MHz, which features a set of 130 instructions. For the experiments, they only
used 39 instructions and report a 100% recognition rate.
Side-channel leakage for the ARM-Cortex M0. McCann et al. [5] cre-
ated ELMO, a leakage simulator for the ARM-Cortex M0/M4 family. ELMO is
instruction-accurate, which easily allows the identification of a leaky instruction
in the context of side channels. An exciting feature of ELMO is the support for
sequence dependency. The critical observation is that the power consumption
of different instructions depends on the instructions executed before. Following
a cluster analysis to identify similar instructions (i.e., those that leak informa-
tion in the same way), the authors identified five groups that correspond to
the same processor component. In this work, we use the grouping of instruc-
tions proposed by [5]. In addition, the authors find remarkable consistency in
the data-dependent leakage of different physical boards. Shelton et al. [4] im-
proves the side channel model of ELMO by capturing interactions that span
multiple cycles. ELMO [5] is augmented to account for storage elements, which
play a critical role in the security of masked implementations. A novel feature
of ELMO* [4] is a systematic battery of small code sequences that can be used
to highlight the interaction of instructions through storage elements. The idea
of finding hidden storage elements is generic and could be used for any other
architecture. Bazangani et al. [9] propose a new leakage simulator ABBY, for
the ARM-Cortex M0 architecture based on machine learning. The advantage of
ABBY compared to ELMO is twofold. The first advantage is that no reverse en-
gineering of the target device is required, and the second is that ABBY can learn
nonlinear leakage models. Arora et al. [3] compare the manufacturing variability
between different physical devices from the same manufacturer. The study tar-
gets an ARM-Cortex M0 architecture and shows that the power trace signature
of a sequence of instructions depends on microarchitecture implementation. The
implication of this work is that the existence of a generic side-channel disas-
sembler, which is identified with high-accuracy instructions on ARM-Cortex M0
cores produced by different manufacturers, is improbable.

3 Experimental setup

For training or profiling, power traces are collected from an ARM-Cortex M0
microcontroller, STM32F0 Discovery (STM32F051R8). The CPU is clocked at
8 MHz. To improve the signal-to-noise ratio in the measured power traces, the
capacitors between VDD and GND are removed, since they reduce the signal-
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to-noise ratio in the power traces (Figure 1a). The oscilloscope is set to 1.25GS,
resulting in 156.25 samples per cycle. The power consumption of the board is
measured using an AC current probe since it ignores the DC component, which
can vary between different measurements. An overview of the setup can be found
in Figure 1b.
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Fig. 1: Overview of the setup used to collect the traces. (a) Frontal view of the
STM32F030R8 board, where the removed capacitors: C18, C19, C20, C21 are
highlighted. (b) Schematic overview of the setup used to collect traces.

4 The Datasets

The ARM-Cortex M0 implements the ARMv6-M instruction set, which con-
sists of most of the 16 bit Thumb instructions and some of the 32 bit Thumb-2
instructions. For this project, we select the core instructions relevant for crypto-
graphic operations, similar to [5], who observed that the power consumption of
the selected instructions can be divided into five different groups by performing
a cluster analysis. The resulting groups and instructions are shown in Table 1.

Group 1 (ALU) adds, ands, cmp, eors, movs, orrs, subs

Group 2 (SHIFTS) lsls, lsrs, rors

Group 3 (LOADS) ldr, ldrb, ldrh

Group 4 (STORES) str, strb, strh

Group 5 (Multiplications) muls

Table 1: Overview of the division of instructions into groups.

Since the microcontroller board has a limited amount of memory, the data
sets collected consist of multiple acquisitions. The acquisitions are created from
multiples programs. A program is a sequence of assembly instructions. For our
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data sets, a program is constructed as follows: ten nops, two random instruc-
tions, one target instruction followed by two random instructions and ten nop

instructions. An example can be seen in Figure 2.

adds
random

instruction

target
instruction

random
register

r5 r4

ldr r6

orrs r1 r3

movs r3 r3

adds r0 r3
address 
register

r2

random instruction

random instruction

random instruction

random instruction

target instruction

Fig. 2: Snippet of a program. Note that 10 nops are executed before and after
this fragment to ensure an accurate acquisition.

The nop instructions do not use operands. The operands used for the other
instructions in program are random values in random registers. Since loads and
stores instructions need an actual memory address to load from and store to,
one register (r6) is reserved for this and filled with an existing memory address.
The other free registers (r0-r5) are filled with new random 32-bit values before
each program is executed.

Three datasets are created for different purposes. To be able to apply the
proposed feature selection in [6], dataset A is created that matches the settings
required for this special feature selection. Dataset B is created for the recognition
of the five instruction groups, and dataset C is created for the recognition of
instructions within the largest instruction group: group 1.

Dataset A contains sixty programs targeting three instructions. Two additional
programs consisting of nop instructions are used as a baseline to remove electrical
noise. The three target instructions are: adds, ands (from group 1) and muls

(group 5). For each target instruction, we generate 20 programs by randomizing
the random instructions. The random instructions are taken from groups 1, 2,
and 5. For each program 300 power traces are acquired, with 6000 samples per
trace. The collection of traces is done in one acquisition campaign.

Dataset B contains a total of 12,500 programs, with target instructions in the
five groups. Each group contains 2,500 programs. The target instruction is ran-
domly selected from all instructions in the group. For each program, 20 traces
are collected, with 6000 samples each. An average is taken over these 20 power
traces to reduce electrical noise. Only 500 programs fit into the memory of the
board, so the data set consists of 25 different acquisitions.

Dataset C contains 17,500 programs targeting instructions from group 1. For
each of the seven target instructions in the group, 2500 programs are created.
For each program, 20 traces are collected with 6000 samples each. To reduce
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electrical noise, an average is taken over these 20 power traces. The data set is
collected in 35 acquisition campaigns.

5 Selecting the mixed-instruction sequence

After acquiring the traces, we want to determine the samples in the trace related
to the assembly code executed. Since the ARM-Cortex M0 has a three-stage
pipeline, we selected three cycles (or the equivalent of 469 samples) since each
of the stages can contribute to the power usage of the target instruction. The
collected traces have 6000 samples, but we do not know at which samples our
assembly is being executed. With our setup, it is not possible to calculate the
time between the trigger and the moment our assembly code starts executing.
In the power traces, we can see the influence of the executed assembly, but since
we have a three-stage pipeline (Figure 3) we do not know which stage of the
pipeline causes the change in power consumption or which instructions are in
the pipeline at that exact moment.

nop

nopnop

nop nop

nop

Stage 1: 
Fetch

Stage 2:
Decode

Stage 3:
Execute

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7

random
instruction

target
instruction

random 1 random 2 target random 3 random 4

random 1 random 2 target random 3 random 4

random 1 random 2 target random 3 random 4

Fig. 3: Executed instructions in the pipeline. The target instruction is expected
to influence the power trace in cycle 3-5.

To select the samples in the power trace corresponding to target instruction,
we explore two techniques. The first is sample-eviction, which works by removing
a window of three cycles from the traces by replacing them with zero values
and then calculating the classification score. By evicting samples at different
intervals in the trace, we expect the lowest score 1 to indicate the location of
the most important samples. The second technique is moving-window, where
we calculate the classification score in a moving window of three cycles. The
highest score indicates the three cycles that contain the most useful information
for the machine learning model. For both techniques, we chose to use a Multilayer
Perceptron model as discussed in subsection 6.1.

The top graph in Figure 4 shows a processed power trace where noise and
nop were subtracted to give a better visualization of where random and tar-
get instructions influence the power trace. The middle and bottom graphs in
Figure 4 show the result of the sample-eviction and moving-window technique,
respectively. Note that, for both techniques, the score for a given sample is cal-
culated over the 469-sample window, which starts at that specific sample. The

1 a poor classification score indicates the relevant samples are missing
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Fig. 4: Power-trace (top) and the applied techniques for selecting the samples to
be used in further analysis (middle and bottom).

gray lines are plotted with intervals of one cycle, or 156.25 samples. The starting
point of the cycle is not known, so the lines could be out of phase.

There are different options to interpret the available information. Looking at
the top graph of Figure 4 there are six cycles clearly influenced by the executed
assembly. An estimation could be that the pipeline fetch stage uses the least
power, so the six cycles would be cycle 2-7 in Figure 3. The corresponding cycles
where the target instruction is in the pipeline are marked with black dashed lines
on the top graph of Figure 4.

In the middle graph Figure 4, sample-eviction the score is lowest just before
sample 3100 and begins to increase rapidly after that. This could indicate that
the most important cycles are happening before that moment (between the black
dashed lines). Using the moving-window technique, we could use the three cycles
just after the significant increase in the score (between black dashed lines) or
the three-cycle window used to calculate the maximum score (between purple
dashed lines).

These techniques and information do not give a clear location for the most
important samples in the power trace. Since the machine learning algorithm used
will receive a 469 sample input similar to moving-window, we take the maximum
score for moving-window in sample 2780 as a starting point for our experiments.



8 Jurian van Geest and Ileana Buhan

To check whether other samples would contain additional information, we ex-
plore using more than 469 samples as input in subsection 6.2.

For the selection of KL divergence-based features, the location of relevant
samples in the trace is followed by the continuous wavelet transform and KL
divergence. In section A (Appendix), this is discussed in more detail.

6 Experimental results

6.1 Overview of algorithms used for training and classification

The machine learning models used are Linear Discriminant Analysis (LDA),
Quadratic Discriminant Analysis (QDA), Multilayer Perceptron (MLP), and
Convolutional Neural Network (CNN). We use LDA and QDA to implement
two of the models used in [6]. The package sklearn.discriminant analysis is
used for Python implementation. MLP and CNN models are often used for side-
channel analysis. The models used are simple and created using the tensorflow.keras
Python package. The details of MLP and CNN can be found in Table 2 and Ta-
ble 3.

Layer type Details

Dense units=200, activation=selu
Dense units=200, activation=selu
Dense units=200, activation=selu
Dense units=200, activation=selu
Dense units=classes, activation=softmax

Table 2: MLP

Layer type Details

Conv filters=8. kernel size=20, activation=relu
Flatten
Dense units=128, activation=relu
Dropout
Dense units=128, activation=relu
Dense units=classes, activation=softmax

Table 3: CNN

Before computing the MLP and CNN scores, the data have to be normalized
first. This is done using sklearn.preprocessing.StandardScaler. For both
the MLP and CNN models, they are set on 100 epochs, since the accuracy did
not increase for more epochs. For all machine learning models, the scores are
calculated using 5-fold cross-validation.
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6.2 Choosing the configuration for the dataset

Most instructions take one cycle to execute; however, all loads and stores take
two cycles. This means that the starting sample of target instruction can change
depending on whether one or both of the two random instructions that precede
the target instruction are load or store. To overcome this problem, while loading
the traces, we check whether load/stores occurs before target instruction and
increase the offset by the right amount of samples if there are. In Table 4 can be
seen that for each of the machine learning models the score increases, for LDA
and QDA there is even a significant improvement when adjusting the offset.

LDA QDA MLP CNN

Normal offset 65.9% 50.6% 80.4% 79.6%
Adjusted offset 84.4% 70.7% 85.6% 87.8%

Table 4: Dataset B. Offset vs. none

When different acquisitions are run, the power traces can be slightly differ-
ent due to variables such as temperature. To check whether this influences the
scores for our dataset, we ran scores for three different configurations. The first
configuration uses only one acquisition file per group, resulting in 500 programs
per group. The second configuration uses the complete datasets with five acqui-
sition files per group, and the training and testing parts are taken randomly. For
the last configuration, the training part consists of 4 acquisition files per group,
and the last file is used for testing. The results for each configuration can be
found in Table 5. Note that for the highlighted cell the QDA calculation warned
that the variables are collinear, so this result should not be considered accurate.
The partial data set performs worse than the complete dataset, so increasing the
number of programs increases the accuracy despite adding multiple acquisition
files. When using configuration 3 the scores are similar to configuration 2, so the
influence of changing environmental variables on different acquisitions seems to
be limited.

LDA QDA MLP CNN

Configuration 1: partial dataset 81.0% 31.3% 78.9% 76.9%
Configuration 2: complete shuffled 84.4% 70.7% 85.6% 88.3%
Configuration 3: complete 84.3% 71.0% 85.8% 88.1%

Table 5: Dataset B. Machine learning scores for different input configurations.

Since we do not have a perfect method for selecting the right samples in
the power traces, we compare different amounts of samples in Table 6. Note that
again the highlighted cell should not be considered accurate, since its calculation
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gave a collinearity warning. 469 samples selected using the sample-eviction and
moving window, 781 samples using the previous selection and the cycle before
and after that, and 3000 samples to ensure that all our assembly is in the selec-
tion. The differences between 469 and 781 samples are relatively small, which
could indicate that our feature selection is close to the actual most important
samples. The two additional instructions covered by the extra samples barely
increase the scores. When taking a large 3000 sample selection, the scores are
close to the other selections or even significantly lower in the case of MLP.

Samples LDA QDA MLP CNN

3000 84.9% 31.4% 79.6% 88.5%
781 85.4% 67.3% 88.8% 88.8%
469 84.4% 70.7% 87.9% 87.9%

Table 6: Dataset B. Using different amounts of samples.

For the next sections, we will use the all the acquisition files in the datasets
with shuffled traces, an adjusted offset and a selection of 469 samples.

6.3 Amount of traces per program

In section 4 is indicated that for each program in dataset B and C an average
trace is taken over 20 traces. In Table 7 can be seen what the scores are with
different approaches than averaging. When taking only a single trace, the score
drops significantly. If we use all 20 traces for machine learning, the score increases
to 93.7%. However, in this scenario (identical-program) the traces for training
and testing are taken randomly, which means that testing can be done on traces
generated with the same program as some of the traces used for training. When
making the train-test division based on program rather than traces, this problem
is avoided, but the score drops to 77.8% (different-program). This means that
averaging the 20 traces results in the best score (84.7%) for a realistic scenario.

Traces per program Method MLP score

1 - 79.5%
20 identical-program 93.7%
20 different-program 77.8%
20 averaged 84.7%

Table 7: Dataset B. Using different methods to divide all traces into training
and testing sets.
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6.4 Training and classification for groups of instructions

The scores for the classification of different groups are given in Table 8. Note that
the CNN score for the first row is not given since the number of input variables
after the selection of features is too low. The KL-based feature selection can
only be applied to dataset A, for which the scores are very close to random
guessing (50%). However, when we use the same samples for our analysis, the
score increases to 99.9%. This means that there is enough information in the
samples to get an almost perfect classification score, but the KL-based feature
selection cannot extract this information. Possible reasons for this can be found
in section A (appendix). However, this is a best-case scenario (identical-program),
where two instructions from different groups are compared with a data set that
contains power traces in its training and testing set that are based on the same
program. To create a similar but more realistic scenario (different-program) for
dataset B we took only two groups instead of all five in row three (Dataset B
(group 1 vs group 5)), and this still gives a accuracy of 94.5%. When using the
complete dataset, the accuracy drops to a maximum score of 88.2%.

Dataset Feature selection LDA QDA MLP CNN

Dataset A (adds vs muls) yes [6] 50.3% 50.2% 50.1% -
Dataset A (adds vs muls) no 69.2% 66.8% 99.9% 99.8%
Dataset B (group 1 vs group 5) no 95.4% 77.2% 93.4% 95.4%
Dataset B (all groups) no 84.4% 70.7% 86.4% 88.2%

Table 8: Dataset A vs. B groups.

The confusion matrix in Figure 5 shows the MLP result for all groups in
dataset B. Since the training and testing data are randomly divided, the expected
amount of traces per group, and therefore the maximum score in the matrix, is
500. It can be seen that the score is the worst for group 2 (shifts). The loads

and stores can be distinguished best. Although they can be distinguished on
the basis of their two-cycle duration compared to the one-cycle duration of the
other instructions, loads are also not classified as stores or the other way around.

6.5 Training and classification results for individual instructions

The scores for the classification of different instructions are given in Table 9.
Again, KL-based feature selection can only be applied to dataset A. The scores
for KL-based feature selection are just above random guessing of instructions,
but when machine learning is used on the same traces, the score increases to
99.9% (identical-program). This shows that although KL-based feature selection
performs better for instructions than for groups, there is still a lot of information
in the dataset. Moving to a more realistic scenario (different-program), however,
in dataset C, the machine learning models perform significantly worse than for
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Fig. 5: Confusion matrix groups. Row indicates true label, column indicates pre-
dicted label.

groups with maximum scores of 58.1% for two classes and 25.5% for seven classes.
Note that the expected score for random guessing is 50% and 14.3% for two and
seven classes, respectively.

Dataset Feature selection LDA QDA MLP CNN

Dataset A (adds vs ands) yes[6] 56% 55.4% 51.6% 51.8%
Dataset A (adds vs ands) no 88.1% 78.5% 99.9% 99.9%
Dataset C (adds vs ands) no 54.7% 49.8% 58.1% 51.8%
Dataset C (all instructions) no 20.1% 15.5% 25.5% 25.2%

Table 9: Dataset A vs. C instructions.

The confusion matrix in Figure 6 shows an MLP result for all instructions
in dataset C. Since the training and testing data are randomly divided, the
expected amount of traces per instruction and therefore the maximum score in
the matrix is 500. Since the score is significantly lower than the score for groups,
the matrix shows a lot of false positives and false negatives. The only instruction
classified correctly in more than 50% of the cases is orrs.

6.6 Discussion

We use the term identical-program to describe the classification results obtained
when traces of the same program are used to train the model and report the
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classification results. We use the term different-program to describe the classifi-
cation results obtained when traces of different programs using the same target
instruction are used to train the model and report the classification results. The
different-program setting is more challenging compared to identical-program for
classification, but is also more realistic.

Our side-channel disassembler reached a success rate of 99% in the identical-
program setting, which is in line with most state-of-the-art results reported in
the literature. However, we observe a decrease in the success rate (95.4%) when
using the different program strategy. When we include all five groups, our model
success rate reaches 88.2%.

We observe the same behavior when analyzing results related to instruction
classification. Our side-channel disassembler reached a success rate of 99.9%
in the identical-program setting when used to distinguish between two instruc-
tions (in the same group). The same classification task in the different program
strategy results in a success rate of 58.1%. However, when we include all the
instructions, our model success rate reaches only 25.5%.

7 Conclusions and future work

In this work, we present the first side-channel disassembler that targets the
ARM-Cortex M0, a 32-bit microcontroller. Previous side-channel disassemblers
target simple 8-bit architectures. We show that the training and classification
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strategies used have a substantial impact on the performance reported in the
model. Under ideal conditions, our side-channel disassembler reaches a success
rate of 99%, while under realistic conditions, we observe a success rate of 88.2%.
To our surprise, the use of sophisticated methods for feature selection did not
prove helpful, and the best results we obtained with unprocessed features. As
a result, creating data sets is a simpler task. The present study only exam-
ined relatively simple deep learning models, which we did not optimize for the
task. Therefore, we believe that more advanced deep learning architectures can
improve the results.
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A Discussion KL-based feature selection

In this section, we explain the feature selection method proposed by [6], with
which we experimented extensively. After discussing the method in detail, we go
over possible issues causing the bad performance. The KL-based feature analysis
consists of two steps. The first step is pre-processing using the continuous wavelet
transform, and the second step is feature selection using KL divergence. The
input for KL-based feature selection is (number of traces, number of samples),
resulting in output shape (number of traces, number of features).

A.1 Background

Continuous Wavelet Transform(CWT) is used to transform traces from
the time domain to the time-frequency region. The wavelet used is a stan-
dard Ricker wavelet included in the scipy.signal package. The width used
for the scipy.signal.cwt function is 50. The result is a two-dimensional ar-
ray of shapes (50,469). This means that for each power trace, we end up with
50 ∗ 469 = 23450 data points. These data points are used as input for the next
step: feature selection.

KL-based feature selection Kullback-Leibler (KL) divergence is the statis-
tical distance between two probability distributions. This means that before we
can use the KL divergence, the acquired data has to be transformed to prob-
ability distributions. This has to be done for each of the 23450 data points in
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the processed power traces. When comparing two programs or target instruc-
tions, for each data point the probability distribution is taken over the 300
(program) or 6000 (target instruction) traces. Computing the probability dis-
tributions is done with numpy.histogram using the Freedman-Diaconis rule for
determining the bin width. For the actual KL divergence calculation we use the
scipy.special.kl div function.

The resulting two-dimensional array has the same shape (50,469) as all input
power traces after the CWT. On the basis of the KL-divergence values at each
of the sample points in this array, the features to be used in machine learning
can be selected.

Not-varying feature points For each target instruction the KL divergence is
computed for each unique combination of its programs. This results in 190 KL
divergence arrays. To select points with a low KL divergence value, for each of
the arrays a list of coordinates (list) is created that includes only the sample
points that have a value below a certain threshold. The not-varying feature points
are selected using Equation 1.

NV Ptarget = list1 ∩ list2 ∩ · · · ∩ list190 (1)

Distinct points Between the different target instructions, the KL is also com-
puted, using all the programs together instead of comparing the programs. For
each of the 23450 sample points in the power traces, the probability distribution
is taken over the 20 ∗ 300 = 6000 power traces. Since there is only one combi-
nation for which the KL divergence has to be computed, the result is just one
array compared to the 190 for not-varying feature points. To avoid collinearity,
only local maximum values are used instead of taking points above a certain
threshold [6]. A list of the sample points that have a local maximum value is
computed; this list is called DPtargetA vs. targetB .

The final result of the selection of features is a combination of not-varying
feature points and distinct points:

feature points = NV PtargetA ∩NV PtargetB ∩DPtargetA vs. targetB (2)

The selected points should not vary much when the same target instruction is
executed, but should vary much when different target instructions are executed
and therefore contain much information for classification.

A.2 Results of feature selection

The final amount of feature points is determined using Equation 2. The amount
of not-varying feature points depends on the threshold used, while the amount of
distinct points is fixed. The latter therefore is the limiting factor for the amount
of resulting feature points. The different number of points to compute feature
points for adds vs. muls and adds vs. ands is given in Table 10.
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Threshold adds vs. muls adds vs. ands

Not-varying feature points 795 1540
Distinct feature points 155 435
Feature points 7 112
LDA score 50.3% 56%

Table 10: Results for KL-based feature selection

The first point of interest is the low amount of feature points for adds versus
muls, but doubling the KL threshold to 0.8 only increases the amount of feature
points to 8. The low amount of feature points could be an influence for the low
results, however adds vs. ands does not perform much better with 112 feature
points.

Fig. 7: KL divergence graphs with selected feature points for adds vs. muls. (a)
muls program 1 vs. program 2. (b) adds vs. muls.

When plotting feature points in the KL divergence graphs, one of the possible
causes for the low classification rates can be seen. The not-varying feature points
are selected to be below a certain threshold and therefore should have a low
KL value. This is true for both comparisons, as can be seen in Figure 7a and
Figure 8a. However, when looking at distinct points (Figure 7b and Figure 8b)
the selected feature points also have a very low KL value, whereas they should
have a high KL value.
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Fig. 8: KL divergence graphs with selected feature points for adds vs. ands. (a)
ands program 1 vs. program 2. (b) adds vs. ands.

The low KL values for distinct points are possible because there is no thresh-
old for distinct points to be above. The only requirement is that the selected
points be a local maximum. This does not exclude points with a high KL value,
but they are not present. When comparing these graphs with the results of [6],
we notice that the shape of our figures is different. Whereas the high KL values
for both comparing target instructions and comparing programs with the same
target instruction are located mainly on the higher scales, this is different for
the results in [6]. For their results, the low KL values for comparing different
programs with the same target instruction are located at the same scales as the
high values for comparing different target instructions. The cause of this could
be related to the exact implementation, which the authors of [6] do not specify,
or due to architectural differences between the different microcontrollers.
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