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Abstract

We consider the problem of uniformly sampling supersingular elliptic curves over finite fields of
cryptographic size (SRS problem). The currently best-known method combines the reduction of a suitable
CM j-invariant and a random walk over some isogeny graph. Unfortunately, this method is not suitable
for cryptographic applications because it leaks too much information about the endomorphism ring of the
generated curve. This fact motivates a stricter version of the SRS problem, requiring that the sampling
algorithm gives no extra information about the endomorphism ring of the output curve (cSRS problem).
The known cSRS algorithms work only for small finite fields, since they involve the computation of
polynomials of large degree. In this work we formally define the SRS and cSRS problems, we discuss the
relevance of cSRS for cryptographic applications, and we provide a self-contained survey of the known
approaches to both the problems. Afterwards, we describe and analyse some alternative techniques, based
either on Hasse invariant or division polynomials, and we explain the reasons why these techniques do
not readily lead to efficient cSRS algorithms.

1 Introduction
The problem of sampling supersingular elliptic curves over Fp, or SRS problem, is not as easy as drawing
marbles from a bag: when p is large, the best known algorithms are only able to extract a negligible fraction
of all the existing supersingular elliptic curves. The others can be sampled ‘indirectly’ as the endpoints
of random walks. In other words, they cannot be reached without first passing through one of those few
supersingular elliptic curves which we are able to sample directly. Surprisingly enough, this would not be
a problem if our only purpose was to efficiently sample uniformly random supersingular elliptic curves.
However, cryptographic applications require more: the curve should be sampled in such a way that its
endomorphism ring remains unknown. In fact, this further requirement rules out any known efficient method
for sampling supersingular elliptic curves, leaving us with an open problem that we call cSRS problem.

Although the cSRS problem is well-known in literature [Vit19, p. 71; CPV20, p. 3], we believe that its
importance is not stressed enough: therefore, the first goal of this article is to provide a short and essentially
self-contained introduction to the problem, motivating its appeal from both a mathematical and crypto-
graphic point of view. In particular, Section 2.5 recalls the main features of supersingular isogeny graphs
following [AAM19] and [DFJP14], while Section 3.2 gathers some cryptographic protocols that could ben-
efit from an efficient solution of the SRS problem, ranging from CGL hash function to SIDH [CLG09;
DFJP14; Pet17].

Our second goal consists in surveying some known approaches to the SRS and cSRS problems: this
is done in Section 4. We first give a thorough theoretical explanation of Bröker’s algorithm [Brö09]. It is
based on the the deep connection, already observed by Deuring in [Deu41], between CM elliptic curves over
number fields and elliptic curves over finite fields. In fact, the only known way to sample a supersingular
elliptic curve modulo large primes consists in reducing modulo p some suitably chosen CM curve. Later
on, we consider some standard characterizations of supersingular elliptic curves, which lead to two highly
inefficient methods for sampling supersingular elliptic curves: exhaustive search over randomly sampled
elliptic curves, and root-finding on a polynomial of large degree (Hasse invariant). In Sections 4.2 and 4.3
we explain why the reduction of CM curves is not a good approach to the SRS problem, since it ends up
either requiring an excessive computational cost or revealing the endomorphism ring of the output [LB20;
CPV20]. We would like to highlight that a comprehensive and clarifying explanation of these issues is still
lacking.

Finally, we make a step further, exploring other ways to sample supersingular elliptic curves without
making use of CM curves, with the hope of opening new research directions:
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• In Section 5, we compute the Hasse invariant of other models of elliptic curves. In Theorem 4.17,
a classic result about the Hasse invariant is extended to elliptic curves in Jacobi form. In Proposi-
tion 5.10 we also prove a special property of the Hasse invariant of a supersingular elliptic curve in
Montgomery form: namely, it splits completely over Fp2 .

• In Section 6.2, we prove a slight generalization of a result in [Dol18] (Proposition 6.7), from which
we deduce another explicit characterization of supersingular elliptic curves in terms of their p-th
division polynomial.

• In Section 6.3, under further assumptions on the prime p, we formulate another characterization of
supersingular elliptic curves based on Fp-rational points of small torsion.

2 Preliminaries

2.1 Elliptic curves
Let K be a perfect field with charK /∈ {2, 3}. An elliptic curve over K is a projective curve that can be
written, up to birational equivalence, as a cubic in A2(K) in (short) Weierstrass form

y2 = x3 +Ax+B with A,B ∈ K (1)

having a base point at infinity O and such that the discriminant, ∆(E) = −16(4A3 + 27B2), is not 0.
Every isomorphism class of elliptic curves over K can be uniquely identified with an element j ∈ K,

called j-invariant. The value of j can be easily retrieved from the coefficients of any curve E : y2 =
x3 +Ax+B in the isomorphism class as

j(E) = −1728
(4A)3

∆(E)
.

We recall from [Sil09, Prop. 1.4.b-c] the fundamental properties of the j-invariant.

Proposition 2.1.

(a) Two elliptic curves over K are isomorphic if and only if they have the same j-invariant.

(b) Let j0 ∈ K. There exists an elliptic curve defined over K(j0) whose j-invariant is equal to j0.

Every elliptic curve E can be endowed with the structure of an abelian group (E,+) [Sil09, § III.2]
whose zero element is O.

Since elliptic curves are defined up to birational equivalence, there exist various representations other
than the Weierstrass model considered above. In Table 1, we summarise the form of the affine equation and
the corresponding definition of the j-invariant for some of these alternative models. We also provide the
values of the coefficients A and B of a birationally equivalent Weierstrass model.

2.2 Isogenies
An isogeny between two elliptic curves E1, E2 over K is a morphism

ϕ : E1 → E2

such that ϕ(O) = O. We say that ϕ is a K-isogeny, or that ϕ is defined over K, if the rational functions
defining ϕ can be chosen with coefficients in K. We refer to [Sil09, § III.4] for the basic properties of
isogenies and the definition of degree.

For each positive integer m, let [m] denote the ‘multiplication-by-m’ map

[m]P = P + P + · · ·+ P︸ ︷︷ ︸
m times

.

The above definition easily extends to negative integers, setting [−m]P = −([m]P ). For each m ∈ Z, the
m-torsion of E is the subgroup E[m] = ker[m].
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Table 1: Other models of elliptic curves
Model Affine equation j-invariant Equivalent Weierstrass model

Legendre
[Sil09, p. 49] y2 = x(x− 1)(x− λ) 28 (λ2 − λ+ 1)3

λ2(λ− 1)2


A =

−λ2 + λ− 1

3

B =
−2λ3 + 3λ2 + 3λ− 2

27

Montgomery
[CS17, § 2.4]

B′y2 = x3 +A′x2 + x
256(A′2 − 3)3

A′2 − 4


A = B′2

(
1− A′2

3

)
B =

B′3A′

3

(
2A′2

9
− 1

)

Jacobi
[BJ03, § 3]

y2 = εx4 − 2δx2 + 1 64
(δ2 + 3ε)3

ε(δ2 − ε)2


A = −4ε− 4

3
δ2

B = −16

27
δ(δ2 − 9ε)

Denote by End(E) the set of endomorphisms (that is, isogenies E → E) of an elliptic curve E. Since
End(E) is torsion-free, the map

[ ] : Z→ End(E)

m 7→ [m]

is injective. Endomorphisms in the image of the injective map [ ] are called trivial. Whenever the map [ ]
is not surjective, that is, there exists some non-trivial endomorphism, we say that E is a CM curve, or,
equivalently, that E has complex multiplication. CM curves defined over number fields can be used as a
starting point for generating supersingular elliptic curves, as we are going to see in Section 4.

Proposition 2.2. Let ϕ : E1 → E2 be a nonconstant isogeny of degree m. Then there exists a unique
isogeny

ϕ̂ : E2 → E1

such that ϕ̂ ◦ ϕ = [m].

Proof. See [Sil09, Thm. 6.1.a].

The isogeny ϕ̂ is called dual isogeny. We also define [̂0] = [0].

2.3 Endomorphism rings
In this section we gather the fundamental facts about the structure of End(E) for an elliptic curve E. We
first recall the following definitions:

• An algebra B over a field K (with charK 6= 2) is a quaternion algebra if there exist i, j ∈ B such
that 1, i, j, ij form a basis for B and

i2 = a, j2 = b, ji = −ij (2)

for some a, b ∈ K∗.

• Let B be an algebra of finite dimension n over Q. An order O ⊂ B is a Z-module of rank n which
is also a subring.

For example, if we take B = K, where K is a quadratic extension of Q, and denote by OK its ring of
integers, one can prove that the orders in K are exactly the rings O = Z + fOK , where f is a positive
integer called the conductor of O [Cox13, Lemma 7.2].

Theorem 2.3 (Structure of End(E)). Let E be an elliptic curve over K. Then End(E) is either Z, an
order in an imaginary quadratic extension of Q, or an order in a quaternion algebra over Q. If K has
characteristic 0, the last case never occurs.
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Proof. [Sil09, Cor. III.9.4].

Corollary 2.4 (Characteristic polynomial of an endomorphism). Let ϕ be an endomorphism of an elliptic
curve E over K, and define

d = degϕ and a = 1 + degϕ− deg(1− ϕ).

Then
ϕ2 − [a] ◦ ϕ+ [d] = [0]. (3)

Proof. This can be checked directly using the properties of dual isogenies.

The integer a from Corollary 2.4 is called the trace of ϕ and denoted by tr(ϕ). In particular, when E is
defined over a finite field Fq of characteristic p, the map

ϕq : E → E

(x, y) 7→ (xq, yq)

is called the q-th power Frobenius endomorphism E, and its trace is the trace of E over Fq . Moreover, its
degree equals q [Sil09, Prop. II.2.11], so that (3) yields(

xq
2

, yq
2)
− [tr(ϕq)](x

q, yq) + [q](x, y) = O

for each (x, y) ∈ E(Fq).

2.4 Supersingular elliptic curves
We will now recall some characterizations of supersingular elliptic curves. Such criteria for supersingularity
will be employed in Sections 4,5 and 6 to generate supersingular curves. In the following, we will use p for
a prime number and q for a generic power of p.

Theorem 2.5 (Definitions of supersingular elliptic curve). Let K be a perfect field of characteristic p, and
let E be an elliptic curve over K. For each r ≥ 1 let

ϕr : E → E(pr)

be the pr-th power Frobenius map. Then the following are equivalent:

(a) E[pr] = 0 for each r ≥ 1.

(b) The endomorphism [p] : E → E is purely inseparable and j(E) ∈ Fp2 .

(c) End(E) is an order in a quaternion algebra.

If an elliptic curve satisfies one of the previous conditions, it is called supersingular.

Proof. See [Sil09, Thm. 3.1].

Corollary 2.6. Every supersingular curve defined over a field of characteristic p is isomorphic to a super-
singular curve defined over Fp2 .

Proof. This is an immediate consequence of part (b) of the previous Theorem and the properties of j-
invariants in Proposition 2.1.

For supersingular elliptic curves there is also another characterization which takes into account the
number of Fq-rational points:

Theorem 2.7. Let E be an elliptic curve defined over Fq and ϕ : E → E the q-th power Frobenius endo-
morphism. Then E is supersingular if and only if

tr(ϕ) ≡ 0 mod p

or, equivalently,
#E(Fq) ≡ 1 mod p.

Proof. See [Was08, Prop. 4.31].
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2.5 Isogeny graphs
Supersingular isogeny graphs are a major object of study in isogeny-based cryptography. Their peculiar
structure allows ‘walking’ from an elliptic curve to another in such a way that

• each step can be performed quickly (via Vélu’s formulae: see [Gal18, § 25.1.1; Vél71]);

• starting from a given supersingular elliptic curve, every other supersingular elliptic curve can be
reached within a small number of steps;

• the endpoints of random walks have an ‘almost uniform’ distribution (rapid mixing).

In this section, we provide a general introduction to random walks over graphs, showing the relation be-
tween the ‘randomness’ of a random walk and the structure of the corresponding graph. Finally, referring
to a famous result due to Pizer in [Piz98], we show that random walks on suitably chosen isogeny graphs
of supersingular elliptic curves actually land on ‘random’ vertices.

2.5.1 Random walks

In this section we mainly follow [Lov96, § 1; Ter99, § 6].
Let G be a graph with set of vertices V and set of vertices E. A random walk on G is the stochastic

process (Xt)t≥0 defined as follows:

• each state Xt is a vertex of G;

• the starting node X0 is any vertex of G;

• for each pair of vertices i, j ∈ V ,

Pi→j =


#{ edges between i and j }
#{edges starting from i} if there is an edge between i and j,

0 otherwise,

where Pi→j denotes the probability that, given Xt = i for some t ≥ 0, the next state Xt+1 equals j.

The length of a random walk is the (possibly infinite) number of its states.
The above definition implies that a random walk is a Markov chain. Its transition matrix T is closely

related to the adjacency matrix of the graph.

Proposition 2.8. Let G be a graph, A its adjacency matrix and T the transition matrix of a random walk
on G. Then, if G is a k-regular graph,

T =
1

k
A.

Since the adjacency matrix encloses every information about the structure of G, it is natural to ask
which assumptions on G ensure that a random walk on G approaches the uniform distribution, no matter
how the starting vertex is chosen. To address this question, we name probability function on G = (V,E)
any non-negative map p : V → R such that

∑
x∈V p(x) = 1.

Remark 2.9. Let n be the number of vertices of G, and suppose that we are able to sample vertices of G
according to a certain probability distribution p = (p1, p2, . . . , pn). Then, a random walk of length t on G
allows us to sample vertices with probability distribution T tp.

Theorem 2.10. Suppose that G = (V,E) is connected, non-bipartite and k-regular with n vertices. Let
A be its adjacency operator and T = (1/k)A the Markov transition operator. Then, for every probability
function p on G we have

lim
t→∞

T tp = u

where u is the uniform distribution, i.e. u(x) = 1/n for each x ∈ V .

Proof. See [Ter99, Thm. 6.1].

Moreover, the convergence of a random walk to the uniform distribution is particularly fast if the eigen-
values of the adjacency matrix are small (in absolute value).
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Theorem 2.11. Let G be a connected non-bipartite k-regular graph with n vertices. Denote by A its
adjacency matrix, and by T = (1/k)A its Markov transition matrix. Define

µ =
max(|λ2|, |λn|)

k
,

where λ1 = k > λ2 ≥ · · · ≥ λn are the eigenvalues of A. Then, for every probability function p on G and
every positive integer t,

‖T tp− u‖1 ≤
√
nµt,

where u is the uniform probability distribution and ‖ · ‖1 is defined as ‖f‖1 =
∑
x∈V |f(x)| for each

f : V → R.

Proof. See [Ter99, Thm. 6.2].

2.5.2 Ramanujan property

Theorem 2.11 suggests that the ‘speed of expansion’ of random walks is related to the absolute value of the
eigenvalues of the adjacency matrix.

A k-regular graph is Ramanujan if

max(|λ2|, |λn|) ≤ 2
√
k − 1,

where λ2 and λn are the second and the least eigenvalue of its adjacency matrix respectively.

Lemma 2.12 (Rapid mixing on Ramanujan graphs). Let G be a k-regular Ramanujan graph on n vertices,
S be any subset of s vertices, and v be any vertex of G. Then, a random walk of length at least

log
(
n√
s

)
log
(

k
2
√
k−1

)
starting from v ends in S with probability between 1

2
s
n and 3

2
s
n .

Proof. See [JMV09, Lem. 2.1].

Corollary 2.13. Let G be a k-regular Ramanujan graph on n vertices. The diameter of G, i.e. the maximal
distance between any pair of its vertices, is O(log(n)).

Proof. Fix two vertices v and w. Then, setting S = {w} in Lemma 2.12, we can conclude that a random
walk of length log(n)/ log

(
k/(2
√
k − 1)

)
starting from v ends inw with non-zero probability. In particular,

the distance between v and w is O(log(n)).

2.5.3 Supersingular isogeny graphs

Let ` and p be two distinct primes, p ≥ 5 and q = pr for some r ≥ 1. By Tate’s theorem [Tat66, § 3],
two elliptic curves over Fq are Fq-isogeneous if and only if they have the same trace over Fq . We can thus
define the `-isogeny graph G`(Fq, a) as follows:

• its vertices are the elliptic curves with trace a over Fq modulo isomorphism over Fq;

• its edges are the isogenies over Fq of degree ` between vertices.

An easy consequence of Tate’s theorem is that two curves in the same isogeny graph are either both super-
singular or both ordinary, depending on their trace over Fq being or not a multiple of p. From now on we
will focus on supersingular isogeny graphs1.

In order to represent the set of supersingular j-invariants in Fp2 (see Theorem 2.5) in terms of an `-
isogeny graph, we wonder if the trace a can be chosen in such a way that the vertices of G`(Fp2 , a) are in
bijection with the supersingular j-invariants. We address this question by rephrasing a result in [AAM19].

Proposition 2.14. Let a ∈ {2p,−2p}. Then, for each supersingular j-invariant j0 ∈ Fp2 there is exactly
one vertex in G`(Fp2 , a) composed by supersingular elliptic curves with j-invariant j0.

1More information about the ordinary case can be found in [Sut13; Koh96].
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Proof. See [AAM19, pp. 5–6].

Another `-isogeny graph, denoted by G`(Fp2), can be defined as follows:

• its vertices are the supersingular j-invariants in Fp2 ;

• its edges are the isogenies of degree ` between vertices.

Working with G`(Fp2) or with G`(Fp2 ,±2p) is actually the same.

Theorem 2.15. G`(Fp2) and G`(Fp2 ,±2p) are isomorphic.

Proof. See [AAM19, Thm. 6].

G`(Fp2), or equivalently G`(Fp2 ,±2p), enjoys the very properties which ensure ‘good randomicity’ of
random walks. First of all, we consider the regularity of the graph.

Proposition 2.16. Every vertex of G`(Fp2 ,±2p) has outdegree `+ 1.

Proof. Let E be a vertex and α be a degree-` isogeny starting from E. Then [Sil09, Thm. III.4.10] kerα
has order `; in particular,

kerα ⊆ E[`].

By [Sil09, Cor. III.6.4], the `-torsion of E is

E[`] ∼= Z�̀ Z×
Z�̀ Z,

and so it has exactly `+ 1 subgroups of order `. For each finite group G, the quotient curve E′ = E/G (i.e.
the image of the isogeny with kernel G) is unique up to isomorphism [Sil09, Prop. 4.12].

Actually, with the possible exception of the vertices 0 and 1728 and their neighbours (see [AAM19,
Thm. 7], we can consider G`(Fp2) as an undirected (`+ 1)-regular graph. In [Piz98], a fairly stronger result
is proven.

Theorem 2.17. G`(Fp2) is Ramanujan.

Therefore, G`(Fp2) enjoys the rapid mixing property stated in Lemma 2.12. Moreover, since the number
of supersingular j-invariants is at most bp/12c + 2 (see Corollary 5.4), from Corollary 2.13 we conclude
that the diameter of G`(Fp2) is O(log p).

3 Motivation
The mathematical properties of supersingular elliptic curves go far beyond the results in the previous sec-
tion. We believe that the appeal of this topic, from a theoretical perspective, needs no further evidence.
However, there are also practical reasons for considering supersingular elliptic curves, since they are widely
used in isogeny-based cryptography: we detail this fact in Section 3.1, and provide two examples in Sec-
tion 3.2. Finally, in Section 3.3, we come to the formulation of the SRS and cSRS problems, to which the
remainder of this article is devoted.

3.1 Hard problems for supersingular elliptic curves
Fix a fixed prime p of cryptographic size, the following problems are considered computationally hard [Gal+16,
§ 2.2].

Problem 1 (`-ISOGENYPATH). Given two supersingular elliptic curves E and E′ over Fp2 , find an `-
isogeny path between them, i.e. a path

E → E1 → · · · → E′

on G`(Fp2 , 2p).

Problem 2 (ENDRING). Given a supersingular elliptic curve E over Fp2 , compute End(E) (i.e., find four
endomorphisms that generate End(E) as a Z-module).

7



Not every instance of ENDRING is computationally hard, though. There exist supersingular elliptic
curves whose endomorphism ring can be easily computed: namely, those having non-trivial endomorphisms
of small degree. We will detail this in Section 4.3.2.

Solving either `-ISOGENYPATH or ENDRING turns out to be the same.

Theorem 3.1. `-ISOGENYPATH and ENDRING are computationally equivalent. More precisely:

• ifE,E′,End(E) and End(E′) are given, an `-isogeny pathE → E′ can be computed in polynomial
time;

• ifE,E′, an `-isogeny pathE → E′ and End(E) are given, End(E′) can be computed in polynomial
time.

Proof. This was proven first under heuristic assumptions in [PL17, § 3.3], and later formally in [Wes21;
Gha+21, § 7.1].

3.2 Two cryptographic applications
Hard mathematical problems can often be exploited to construct secure cryptographic protocols, and `-
ISOGENYPATH is no exception. Here we provide two examples, whose main purpose is to motivate our
formulation of the cSRS problem in Section 3.3.

CGL hash function As a first example, we present a hash function based on the isogeny graph G`(Fp2)
for some small prime ` 6= p: the CGL function [CLG09]. The CGL function is outlined in Algorithm 1 for
the case ` = 2. Figure 1 depicts the paths in G2(Fp2) that are followed throughout the computation of the
CGL hash of the message 101.

Algorithm 1: CGL hash function
Input: A message m of n bits: m = b1b2 · · · bn.
Output: CGL(m).
Choose a supersingular curve E0 over Fp2 ;
Choose a 2-torsion point P of E0;
Compute the isogeny ϕ0 : E0 → E0/〈P 〉 with kernel 〈P 〉;
Set E1 = E0/〈P 〉;
for i ∈ {1, . . . , n} do

Find the 2-torsion points of Ei, other than O;
Rule out the 2-torsion point P such that map Ei → Ei/〈P 〉 with kernel 〈P 〉 is the dual of ϕi−1;
Label the other 2-torsion points by P0, P1 (according to some convention);
Compute the isogeny ϕi : Ei → Ei/〈Pbi〉 with kernel 〈Pbi〉;
Set Ei+1 = Ei/〈Pbi〉;

end
Set CGL(m) = j (En+1);

In this setting, a collision happens whenever the same curveEn+1 can be reached through two distinct `-
isogeny paths starting from E1. Therefore, the hardness of `-ISOGENYPATH ensures that the CGL function
is, in general, collision resistant and preimage resistant: see [CLG09, § 5].

However, Theorem 3.1 suggests that the starting curve E0 for the CGL hash function should be chosen
carefully. Namely, if computing End(E0) is by any chance easy, then finding a collision becomes easy as
well.

SIDH key-exchange As a second example, we consider an algorithm designed by Petit [Pet17] to attack
SIDH [DFJP14]. SIDH is a key-exchange protocol between two players, say Alice and Bob. Below we
recall its construction.

Public parameters:

• A prime p of the form p = `eAA `eBB · f ± 1, where `A and `B are ‘small’ primes.

• A supersingular elliptic curve E0 defined over Fp2 .
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Figure 1: The path followed by the CGL function along the graph G2(Fp2) for the message 101.

• Two bases {PA, QA} and {PB , QB} which generate E0[`eAA ] and E0[`eBB ] respectively.

Key exchange:

• Alice chooses two random integers mA, nA ∈ [1 . . . `eAA ], not both divisible by `A. Then she com-
putes an isogenyϕA : E0 → EA with kernel 〈[mA]PA+[nA]QA〉, and sends (EA, ϕA(PB), ϕA(QB))
to Bob.

• Bob acts similarly: he chooses two random integers mB , nB ∈ [1 . . . `eBB ], not both divisible by
`B . Then he computes an isogeny ϕB : E0 → EB with kernel 〈[mB ]PB + [nB ]QB〉, and sends
(EB , ϕB(PA), ϕB(QA)) to Alice.

• Alice computes an isogeny ϕ′A : EB → EBA with kernel 〈[mA]ϕB(PA) + [nA]ϕB(QA)〉.

• Bob computes an isogeny ϕ′B : EA → EAB with kernel 〈[mB ]ϕA(PB) + [nB ]ϕA(QB)〉.

• The shared secret is the j-invariant of EAB , which is the same as the j-invariant of EBA.

The security of SIDH relies on the following problem:

Problem 3 (CSSI (Computational supersingular isogeny)). Given Alice’s output (EA, ϕA(PB), ϕA(QB))
as above, find ϕA (equivalently: find its kernel 〈[mA]PA + [nA]QA〉).

Since the degree of ϕA is by construction `eAA , CSSI can be seen as a variant of `A-ISOGENYPATH
where some extra information is given about the isogeny to be found (namely, its action on E0[`eAA ]).

In [Pet17, p. 4], however, it is shown that the knowledge of any non-trivial small-degree endomorphism
of E0 leads to dramatic speed-ups in the solution of CSSI: in this case, under further assumption on the
starting parameters, CSSI can be even solved in polynomial time in the size of p.

Therefore, as in the previous case, the supersingular elliptic curve E0 should be chosen carefully.

3.3 SRS and cSRS problems
In this section we formalise the problem of sampling uniformly random supersingular elliptic curves over
Fp2 , in two different versions:

• the first, weaker version is solely focused on the mathematical problem;

• the second, stronger version adds some further request in the light of cryptographic applications.

Let A be an algorithm. We say that A is a superisingular random sampler if, on input a prime p,
A produces a supersingular elliptic curve E over Fp2 and the sets

{E | E ← A(p)} and
{
E
∣∣ E←${Supersingular elliptic curves over Fp2}

}
have the same distribution.
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Remark 3.2. Suppose that A′ is a deterministic algorithm that, on input a prime p, produces a supersingular
elliptic curve E over Fp2 . Then, A′ can be easily turned into a supersingular random sampler A thanks to
the rapid mixing property (Lemma 2.12). Namely, on input p, A simply performs a random walk starting
from E ← A′(p), and outputs the endpoint of the random walk.

Supersingular Random Sampling (SRS) problem
Construct a supersingular random sampler whose time complexity is O(p).

In order to formulate a stronger version of the SRS problem, for any supersingular random sampler A
we define a slight variation of Problem 2.

Problem 4 (ENDRINGA). GivenE ← A(p) and the randomness used by A to sampleE, compute End(E).

Let A be a supersingular random sampler. We say that A is a crypto-sampler if ENDRINGA is computa-
tionally equivalent to ENDRING.

Crypto Supersingular Random Sampling (cSRS) problem
Construct a crypto-sampler whose time complexity is O(p).

Remark 3.3. Let A be a supersingular random sampler consisting of a random walk E → E′ that starts
from the output of a deterministic algorithm A′, as described in Remark 3.2. In this case, the randomness
used by A is the random walk itself. It is then clear, in the light of Theorem 3.1, that computing End(E′)
using the randomness of A is equivalent to computing End(E). Therefore, A is a crypto-sampler if and
only if ENDRING on input E is hard.

4 Known approaches
We now survey some known SRS methods, showing that none of them leads to an efficient cSRS algorithm.

First, we provide a detailed description of the most efficient SRS algorithm, to the best of our knowledge.
It consists of the combination of two building blocks:

• an algorithm due to Bröker, described in Section 4.1;

• a random walk over G`(Fp), described in Section 4.3.

In Section 4.3.2 we will see why the resulting algorithm is not a cSRS algorithm.
Finally, in Section 4.4 we present some actual cSRS algorithms. They are mainly of theoretical interest,

though, since their computational cost is at least sub-exponential in the size of p.

4.1 Bröker’s algorithm
For any given prime p ≥ 5, at least one supersingular j-invariant can be efficiently found thanks to Bröker’s
algorithm [Brö09], which heavily relies on the following result by Deuring.

Theorem 4.1 (Deuring). Fix a prime p ≥ 5. LetE be an elliptic curve over a number fieldK, with End(E)
isomorphic to an order O in an imaginary quadratic field k. Let P be a prime of K over p, and suppose
that E has a good reduction2 modulo P, which we denote by Ẽ. Then Ẽ is supersingular if and only if p
has only one prime of k above it (that is, p does not split over k).
Moreover, let E be an elliptic curve over a field of characteristic p with a non-trivial endomorphism α0.
Then there exists an elliptic curve E defined over a number field K, an endomorphism α of E and a good
reduction Ẽ of E at a prime P of K over p, such that E is isomorphic to Ẽ and α0 corresponds to α̃ (the
reduction of α at P) under the isomorphism.

Proof. See [Deu41; Lan87, Thm. 13.12 and 13.14].

The first part of Deuring’s theorem provides a criterion for determining whether the reduction modulo a
prime ideal P of a CM curve is supersingular or not, while the second part ensures that every supersingular
elliptic curve can be expressed as the reduction modulo a prime ideal P of a suitable CM curve.

2We say that E has a good reduction modulo P if the P-adic valuation of ∆(E) equals 0. See [Sil09, § VII.5] for more details.
In particular, this means that the coefficients of E can be seen as elements of some finite extension of Fp, and they define an elliptic
curve Ẽ called the reduction of E modulo P.
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4.1.1 Finding CM curves with supersingular reduction

By Deuring’s Theorem, constructing a supersingular elliptic curve over Fp is equivalent to constructing a
CM curve E defined over some number field and such that p does not split in End(E). Equivalently, if
we denote by k the imaginary quadratic field containing End(E), and by D the discriminant of k, we are
imposing the condition (

D

p

)
6= 1, (4)

where the left-hand expression denotes the Legendre symbol [Cox13, Prop. 5.16, Cor. 5.17].
Once that a quadratic field k satisfying (4) is fixed, the goal is to determine the CM j-invariants whose

endomorphism rings lie in k. To this end, a deeper insight of the link between elliptic curves and lattices
over C is needed.

From complex lattices to complex elliptic curves Let x1 and x2 two R-linearly independent vectors in
the complex plane C (seen as a 2-dimensional R-vector space). The complex lattice generated by x1 and
x2 is the set

Λ = {z1x1 + z2x2 | z1, z2 ∈ Z} .

Two lattices Λ1,Λ2 are homothetic if there exists β ∈ C \ {0} such that Λ2 = βΛ1.
We will now recall how an elliptic curve E over C can be constructed from a complex lattice Λ, and

also how End(E) can be retrieved from Λ. For this part we follow [Cox13, § 10; Sil09, § C.11; Was08,
§ 9.1-9.3, 10.1]; see also [Gal18, § 16.1] for a general overview on lattices in Rn.

Let Λ be a complex lattice generated by x1, x2 ∈ C; we call complex torus the quotient C/Λ. For each
integer k ≥ 3, the Eisenstein series

Gk(Λ) =
∑
ω∈Λ
ω 6=0

ω−k

is defined. Each Eisenstein series converges: [Was08, Lem. 9.4]. In order to ease the notation, 60G4(Λ)
and 140G6(Λ) are usually denoted by g2(Λ) and g3(Λ), respectively.

Finally, the j-invariant of a complex lattice is

j(Λ) = 1728
g2(Λ)3

g2(Λ)3 − 27g3(Λ)2
. (5)

Theorem 4.2. Two complex lattices are homothetic if and only if they have the same j-invariant.

Proof. See [Cox13, Thm. 10.9]

As the use of the word ‘j-invariant’ suggests, complex lattices and elliptic curves over C are closely
related.

Theorem 4.3. Let Λ be a complex lattice, and define the elliptic curve

EΛ : y2 = 4x3 − g2(Λ)x− g3(Λ).

Then the groups C/Λ and E(C) are isomorphic. Moreover, the map

{Homothety classes of complex lattices} → {Isomorphism classes of elliptic curves over C}
Λ 7→ EΛ

is one-to-one, and j(Λ) = j(EΛ).

Proof. See [Was08, § 9.2 and 9.3].

The following proposition clarifies the connection between Λ and the endomorphism ring of EΛ.

Proposition 4.4. Let Λ be a complex lattice, and EΛ the corresponding elliptic curve as in Theorem 4.3.
Then

End(EΛ) ∼= {β ∈ C | βΛ ⊆ Λ}. (6)

11



Proof. See [Was08, Theorem 10.1].

Thus, if a complex lattice Λ such that Z ( {β ∈ C | βΛ ⊆ Λ} is considered, the corresponding elliptic
curve EΛ has complex multiplication. If fact, every such Λ is homothetic to a fractional ideal in some
imaginary quadratic field, as we are going to prove in Corollary 4.9.

Proposition 4.5. LetO be an order in an imaginary quadratic field k. Then every non-zero fractional ideal
of O is a complex lattice.

Proof. See [Cox13, § 10.C].

Remark 4.6. On the contrary, a complex sublattice of an imaginary order O is not, in general, an ideal, nor
even a subring, of O. For example, consider k = Q(

√
i) and the sublattice Λ generated by 2 and i in the

ring of integers of k. The square of the second generator is −1, which does not lie in Λ. Therefore, Λ is not
closed under multiplication.

Let S be the right-hand side of (6), i.e.

S = {β ∈ C | βΛ ⊆ Λ},

and assume that Λ is a fractional ideal of an order O in a quadratic imaginary field. The inclusion O ⊂ S
holds trivially. The other inclusion needs not to be true, though: see[Cox13, § 7.A]. When it does (that is:
Λ is not an ideal in any order greater than O), Λ is called a proper ideal.

Proposition 4.7. LetO be an order in an imaginary quadratic field k, and Λ a proper non-zero ideal inO.
Then End(EΛ) ∼= O.

Proof. It follows immediately from the definition of proper ideal and Proposition 4.4.

The above result provides a class of complex elliptic curves whose endomorphism ring is exactly O:
those of the form EΛ, where Λ is a proper fractional ideal of O. Actually, up to isomorphism, there are no
other complex elliptic curves with endomorphism ring O.

Theorem 4.8. Let Λ be a complex lattice, and α ∈ C \ Z. Then, the inclusion αΛ ⊂ Λ holds if and only if
there exists an order O in an imaginary quadratic field k such that α ∈ O and Λ is homothetic to a proper
fractional O-ideal.

Proof. See [Cox13, Thm. 10.14].

Corollary 4.9. Let O be an imaginary quadratic order and E a complex elliptic curve with End(E) ∼= O.
Then there exists a proper fractional O-ideal Λ such that E ∼= EΛ.

Proof. Theorem 4.3 ensures that E ∼= EΛ′ for some complex lattice Λ′. Since we are assuming that E is
a CM curve, by (6) there exists α ∈ C \ Z such that αΛ′ ⊆ Λ′. From Theorem 4.8 we know that there
exists an imaginary quadratic orderO′ containing α and Λ′ is homothetic to a proper fractionalO′-ideal Λ.
By Proposition 4.7, End(EΛ) = O′. Moreover, since Λ and Λ′ are homothetic, the curves EΛ and EΛ′ are
isomorphic. Hence, their endomorphism rings are isomorphic too, i.e. O = O′.

Corollary 4.10. Let O be an order in an imaginary quadratic field. Then the map f : Λ 7→ j(EΛ) yields
a one-to-one correspondence between the ideal class group C (O) and the j-invariants of CM curves with
endomorphism ring O.

Proof. It is easy to prove that two proper fractional ideals of O determine the same class if and only if they
are homothetic as complex lattices. Therefore, f is well-defined on equivalence classes of ideals, and by
Theorem 4.2 it is also injective. Proposition 4.7 ensures that f(Λ) is actually a CM j-invariant. Finally,
surjectivity follows from Corollary 4.9.

Hilbert class polynomials Corollary 4.10 alone does not provide an explicit strategy to compute CM
j-invariants: even though a suitable complex lattice Λ can be easily determined, the infinite sums g2(Λ) and
g3(Λ) involved in (5) make any direct computation quite impractical. Furthermore, a priori it is not ensured
that the CM j-invariants considered in Corollary 4.10 are algebraic over Q. In fact, this is a necessary
condition to apply Deuring’s theorem, since the CM curve (and therefore its j-invariant) is required to be
defined over some number field. The latter problem is addressed in the following proposition.
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Proposition 4.11. Let O be an order in an imaginary quadratic field k, and denote by Λ1,Λ2, . . . ,Λh a
complete set of representatives for C (O). Then the polynomial

PO =

h∏
i=1

(
X − j(EΛi)

)
(7)

has integer coefficients. In particular, the CM j-invariants j(EΛ1
), . . . , j(EΛh

) are algebraic over Q.

Proof. See [Cox13, Thm. 13.2].

The polynomial PO defined in (7) is called Hilbert class polynomial (or ring class polynomial, whenever
O is not maximal) of the quadratic order O.

There exist several algorithms to compute the Hilbert class polynomial of a given imaginary quadratic
orderO in time Õ(discO). For the sake of completeness we sketch below the classical approach from [Coh93,
p. 7.6.2]:

1) compute a set of representatives Λ1,Λ2, . . . ,Λh for C (O). Equivalently, following [Coh93, § 5.3.1],
enumerate all the positive definite reduced integral binary quadratic forms aX2 + bXY + cY 2 of
discriminant D = disc(O), i.e. the triples of integers (a, b, c) such that

• |b| ≤ a ≤ c,
• if |b| = a or a = c, then b ≥ 0,

• b2 − 4ac = D.

2) Let (a, b, c) be one of the triples from the previous step. Then the corresponding representative is
Λ = Z+ τZ with τ = −b+

√
D

2a , and j(Λ) can be approximated via the expansion

j(τ) = 1728

(
1 + 240

∑∞
k=1

k3qk

1−qk

)3

(
1 + 240

∑∞
k=1

k3qk

1−qk

)3

−
(

1− 504
∑∞
k=1

k5qk

1−qk

)2 , (8)

where q = e2πiτ : see e.g. [Was08, Prop. 9.12].

3) If the approximations j̃1, . . . , j̃h from the previous step are ‘good enough’, thanks to Proposition 4.11
the exact Hilbert class polynomial of O can be found by rounding the coefficients of

∏h
i=1(X − j̃i)

to the nearest integers. More precisely, the closeness of j̃i to j(Λi) depends on both the partial
sums from (8) considered for the approximation, and the precision used for numerical computations.
While the impact of the first choice is limited by the rapid convergence of (8), the second one requires
a deeper analysis of the coefficients of PO [Eng06, § 4].

4.1.2 The algorithm

To summarise, in Section 4.1.1 we have depicted the following strategy to generate a supersingular j-
invariant in Fp2 for a fixed prime p ≥ 5:

1) Choose an imaginary quadratic field k whose discriminant D satisfies equation (4);

2) Choose an order O in k;

3) Compute the Hilbert class polynomial PO;

4) Consider the reduction modulo p of PO and find one of its roots.

Bröker’s algorithm, which is summarised in Algorithm 2, is just a special case of the above strategy. In
particular, it performs steps (1) and (2) in such a way that the computation time is polynomial in the size of
p, and the j-invariant found lies in Fp. This is achieved by

• computing the smallest prime q ≡ 3 mod 4 such that
(
−q
p

)
6= 1;

• setting k = Q(
√
−q);

• setting O = Z[(1 +
√
−q)/2], that is the maximal order of Q(

√
−q).
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Algorithm 2: Bröker’s algorithm
Input: A prime p ≥ 5.
Output: A supersingular j-invariant j ∈ Fp.
Set q = 3;

while
(
−q
p

)
= 1 do

Assign q to the next prime equivalent to 3 modulo 4;
end
Compute the Hilbert class polynomial PO relative to the quadratic order O of discriminant −q;
Find a root α ∈ Fp of PO modulo p;
Set j = α.

In particular, the fact that q is the smallest possible ensures that O is uniquely determined by p. Thus, the
output of Bröker’s algorithm depends only on p and the root of PO chosen at step (4).

According to Bröker’s analysis in [Brö09, Lem. 2.5], the expected running time of Algorithm 2 is
Õ
(
(log p)3

)
due to the following reasons:

• heuristically, q is likely to be below 50 for p ∼ 2256. This fact seems reasonable, since half the
elements of Z/pZ are quadratic non-residues. In fact, in [LO77] it is proven that, under GRH, q has
size O

(
(log p)2).

• PO can be computed in Õ(disc(O)) = Õ(q) = Õ
(
(log p)2) time, as we have already pointed out in

Section 4.1.1.

• a root of PO in Fp can be found, as described e.g. in [GG13, § 14.5], in probabilistic time

Õ
(
deg(PO)(log p)2

)
,

that is Õ
(
(log p)3

)
because deg(PO) = h(O) = Õ(

√
q). The latter equality is a classical result from

[Sie35].

4.2 Extending Bröker’s algorithm
We have already observed that Bröker’s algorithm does not sample uniformly random supersingular elliptic
curves. In fact, for any p, the output belongs to a uniquely determined subset of all possible supersingular
j-invariants: namely, the roots of PO in Fp, which are Õ(

√
q). Following [LB20], we now go back to

the general strategy summarised at the beginning of Section 4.1.2, and see how it can be translated into an
actual SRS algorithm.

4.2.1 Listing imaginary quadratic orders

Imaginary quadratic orders can be listed according to their discriminants:

Theorem 4.12. Write every integer as f2D, where D is square-free. There is a bijection

{ Imaginary quadratic orders } ↔ Z<0

O ⊆ Q(
√
D) 7→

{
discO if D ≡ 1 mod 4,
discO

4 if D ≡ 2, 3 mod 4

Order of conductor f in Q(
√
D)← [ f2D.

In particular, if we denote by D the set

D = {discO | O imaginary quadratic order },

we have

D =
{
f2d | f, d ∈ Z, d < 0, d square-free and either d ≡ 1 mod 4 or f is even

}
. (9)
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Proof. We recall from [Cox13, § 5.B] that every imaginary quadratic field can be written as Q(
√
D) with

D square-free, and its discriminant is

dQ(
√
D) =

{
D if D ≡ 1 mod 4,

4D if D ≡ 2, 3 mod 4.

Let OD be the ring of integers of Q(
√
D). Any positive integer f yields a unique order O = Z+ fOD of

conductor f , and every imaginary quadratic order can be constructed in this way (see Section 2.3).
Finally, the discriminant of an order of conductor f in Q(

√
D) is f2dQ(

√
D) (see [Cox13, p. 134]). There-

fore, the maps defined above are one inverse to the other.

4.2.2 Increasing the number of outputs

The general strategy outlined in Section 4.1.2 consists in choosing a random imaginary quadratic order
O whose discriminant is not a square modulo p, and finding a root of PO modulo p. Algorithm 3 exactly
follows this strategy, setting a lower bound−4M for discO (we use the same notation forM as in [LB20]).

Algorithm 3: Extended Bröker’s algorithm
Input: A prime p ≥ 5 and a positive integer M .
Output: A supersingular j-invariant j ∈ Fp2 .
Choose a random negative integer n ∈ D ∩ [−4M,−3], with D as in (9);
Write n = f2d with d square-free;

while
(
d
p

)
= 1 do

Choose a new n;
end
Let O be the quadratic order of discriminant f2d;
Compute the Hilbert class polynomial PO;
Compute any root α ∈ Fp2 of PO modulo p;
Set j = α.

We stress that M should be large enough so that at least one quadratic discriminant n ∈ [−4M,−3] is
not a quadratic residue modulo p (otherwise the algorithm would run endlessly). Under GRH, it is enough
to set M = Õ

(
(log p)2

)
.

The analysis of Algorithm 2 can be straightforwardly adapted to show that the expected running time of
Algorithm 3 is Õ

(√
M · (log p)2

)
:

• |n| is at most 4M .

• PO can be computed in Õ(disc(O)) = Õ(M) time.

• a root of PO in Fp can be found in probabilistic time

Õ
(
deg(PO)(log p)2

)
= Õ

(√
M · (log p)2

)
.

In the light of Theorem 4.1, Algorithm 3 can generate any supersingular j-invariant in Fp2 , provided
that M is large enough. Therefore, it is natural to ask which is the minimum value of M for which this
holds. A first, rough estimate immediately suggests that M must be quite large3.

Proposition 4.13. Let N be the number of possible outputs of Algorithm 3. Then N = Õ(M3/2).

Proof. Let O be any quadratic order whose discriminant lies in the range [−4M,−3]. We have already
observed that the class number h(O), which is equal to the number of distinct roots of PO modulo p, is
Õ(M1/2). Denote by h(n) the class number of the quadratic order of discriminant n; then

N =
∑
n∈D
−4M≤n

h(n) ≤ 4M · Õ(M1/2) = Õ(M3/2), (10)

where D is defined as in (9).
3A more precise estimate can be found in [LB20, Prop. A.5].
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For N to be (close to) p/12, the previous proposition rules that the value of M must be Õ(p2/3). In that
case, though, the running time of Algorithm 3 is sub-exponential: namely, Õ(p1/3).

4.3 Bröker’s algorithm and random walks
We will now consider the extended Bröker’s algorithm Algorithm 3 under the assumption that M is poly-
nomial in the size of p (so that the running time is polynomial, too).

The only known algorithm for sampling over the set of all supersingular j-invariants over Fp2 [Vit19,
p. 71] is constructed according to the strategy described in Remark 3.2: it performs a random walk in
G2(Fp2) starting from the output of Algorithm 3. This algorithm, though, does not solve the cSRS problem,
as we are going to show in Section 4.3.2.

4.3.1 Efficiency

In Section 3.2 we have shown that a random walk in G2(Fp2) can be performed computing the CGL hash
function on a random message. How long should such message be, in order to ensure that every supersin-
gular curve can be reached? This question is addressed by Section 2.5.3. Namely, starting from a given
supersingular j-invariant in Fp2 (possibly, the output of Algorithm 3), every other supersingular j-invariant
in Fp2 can be reached within O(log(p)) steps in G2(Fp2).

4.3.2 Non-minimal output

Thus, the combination of (extended) Bröker’s algorithm and random walks solves the SRS problem. Un-
fortunately, though, it does not solve the cSRS problem.

Proposition 4.14. If E is an output of Algorithm 3, then End(E) can be computed efficiently.

Proof. The statement is remarked in [LB20, p. 1], but here we provide a more explicit explanation. Follow-
ing [LB20], we say that a curve is M -small if it has a non-trivial endomorphism of degree at most M . Let
O be the quadratic order selected at the end of the while loop in Algorithm 3.

• A copy of O is embedded in End(E). To prove this, we recall from Section 4.1.1 that j(E) is the
reduction modulo p of some complex CM j-invariant, say j̃, whose endomorphism ring is isomorphic
to O. Let Ẽ be a complex CM curve with j-invariant j̃, and suppose that its reduction is E. The
reduction map End(Ẽ) → End(E) is a degree-preserving injection: see e.g. [Sil94, Prop. 4.4].
Therefore, O embeds in End(E).

• In particular, as our notation suggested, E is M -small, i.e. End(E) contains a non-trivial endomor-
phism of degree |discO| ≤ M , which can be found applying Vélu’s formulae to every subgroup of
E having order |discO|. This can be done efficiently, since we are assuming that M is polynomial in
the size of p.

• In fact, the whole structure of End(E) can be computed as follows:

1) Depending on p, consider a ‘special’ order as in [Eis+18, Prop. 1]. By [Eis+18, Prop. 3], one
can compute a j-invariant j0 whose endomorphism ring is isomorphic to such order. Let E0 be
a curve of j-invariant j0. By construction, assuming GRH, E0 is O(log2 p)-small.

2) [LB20, Thm. 1.3] shows that isogenies of power-smooth degree between M -small curves can
be computed in polynomial time in the size of p. Thus, since End(E0) and a power-smooth
isogeny E0 → E are known, End(E) can be retrieved by Theorem 3.1.

Corollary 4.15. Let A be the algorithm that performs a random walk E → E′ starting from the output of
Algorithm 3. Then ENDRINGA can be solved in polynomial time in the size of p. In particular, A is not a
crypto-sampler.

Proof. The argument is the same as in Remark 3.3: once End(E) and an `-isogeny E → E′ are known,
End(E′) can be computed efficiently by Theorem 3.1.
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4.4 Exponential-time algorithms
Here we present two alternative approaches to solve the cSRS problem, based on classic results: exhaustive
search via Schoof’s algorithm and computation of Hasse invariants. Within the section we will also explain
why the computational cost of these two methods is exponential in the size of p.

4.4.1 Exhaustive search

There exist efficient algorithms to check whether a given elliptic curve E over Fp2 is supersingular or
not: one of them computes the number of Fp2 -rational points of E via Schoof’s algorithm [Sch85, § 3]
and checks if it equals 1 modulo p. Therefore, it is natural to ask if an efficient algorithm to solve the
cSRS problem might be as simple as an exhaustive search, i.e. sampling random elements in Fp2 until a
supersingular j-invariant is found.

Unfortunately, exhaustive search over Fp2 is unfeasible because supersingular j-invariants are ‘rare’:
about 1 out of p elements of Fp2 is a supersingular j-invariant, as we are going to show in Corollary 5.4.

One might wonder if the probability of finding a supersingular j-invariant increases when the sample
space is restricted to the smaller set Fp. The following estimate suggests that this is true, even though the
probability of success is still sub-exponential in the size of p:

Theorem 4.16. There are O(
√
p log p) supersingular j-invariants over Fp.

Proof. See [DG16, pp. 2–3].

Therefore, a random element in Fp is a supersingular j-invariant with probability about log p/
√
p. This

rules out exhaustive search over both Fp2 and Fp as an efficient method for solving the cSRS problem.

4.4.2 Hasse invariant

Consider a finite field Fq of characteristic p and an elliptic curve E over Fq given by an equation

E : y2 = f(x),

where f(x) is a separable polynomial of degree 3 or 4 as in Table 1. For any k > 0, define

Apk = coefficient of xp
k−1 in f(x)(pk−1)/2.

In particular, we call Ap the Hasse invariant4 of E.
A precise characterization of the Hasse invariant when f(x) has degree 3 is given in [Sil09, Thm. 4.1.a].

In sight of Section 5, we provide here a slight generalization of the same result.

Theorem 4.17. Consider a finite field Fq of characteristic p and an elliptic curve E over Fq given by an
equation

E : y2 = f(x),

where f(x) is a separable polynomial of degree 3 or 4 as in Table 1. Then E is supersingular if and only if
its Hasse invariant equals 0.

Proof. Since the case deg(f) = 3 is already covered in Silverman’s proof, we assume that E is in Jacobi
form.
First of all, we count the Fq-rational points of E. [BJ03, § 3] shows that the points of E are in one-to-one
correspondence with triplets (X : Y : Z)[1,2,1] which satisfy

Y 2 = εX4 − 2δX2Z2 + Z4, (11)

where (X : Y : Z)[1,2,1], or simply (X : Y : Z), denotes weighted projective coordinates defined by the
equivalence relation

(X : Y : Z) = (X ′ : Y ′ : Z ′) ⇐⇒ ∃ k ∈ Fp
∗

such that


X ′ = kX,

Y ′ = k2Y,

Z ′ = kZ.

(12)

4For each elliptic curve over Fq of equation
y2 = 4x3 − g2x− g3,

Hasse [Has35] defines a polynomial Aq ∈ Fq [g2, g3], such that Aq = 0 if and only if the corresponding curve is supersingular. Here
we generalise Hasse’s definition to other models of elliptic curves.
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Thus, the affine points of E are the image of the bijection

{(X : Y : Z)[1,2,1] | Z 6= 0} → A2(Fp)
(X : Y : 1) 7→ (x, y),

that is, they are indeed the solutions of the affine equation y2 = εx4 − 2δx2 + 1. In particular, if we let
χ : F∗q → {−1, 0, 1} be the map such that

χ(z) =


−1 if z is not a square,
0 if z = 0,

1 if z is a non-zero square,

we have
#
(
E(Fq) ∩ A2(Fq)

)
=
∑
x∈Fq

(
1 + χ

(
f(x)

))
= q +

∑
x∈Fq

χ
(
f(x)

)
.

The ‘points at infinity’ ofE, on the other hand, are triplets (X : Y : 0) satisfying (11). Notice thatX and Y
must be non-zero since ε 6= 0, so that the equation Y 2 = εX4 yields two Fq-rational points if ε is a square,
zero points otherwise. In conclusion,

#
(
E(Fq)

)
= 1 + χ(ε) + q +

∑
x∈Fq

χ
(
f(x)

)
. (13)

Since F∗q is cyclic of order q − 1, the equality

χ(z) = z
q−1
2

holds for every z ∈ Fq . In particular, (13) becomes

#E(Fq) = 1 + ε
q−1
2 + q +

∑
x∈Fq

(
f(x)

) q−1
2 .

We stress that the latter equation holds on Z, as long as we choose 1 and −1 to represent the equivalence
classes of ε

q−1
2 and (f(x))

q−1
2 modulo p.

Furthermore, one can prove the following equality [Was08, Lem. 4.35]:

∑
x∈Fq

xi =

{
−1 if q − 1 | i,
0 if q − 1 - i.

As a consequence, since f(x) has degree 4, the only nonzero terms in
∑
x∈Fq

f(x)(q−1)/2 are (up to a sign)
the coefficients of xq−1 and x2(q−1) in f(x)(q−1)/2. Namely, the coefficient of xq−1 is Aq by definition,
while the coefficient of x2(q−1) actually is the leading coefficient of f(x)(q−1)/2, which is ε

q−1
2 . Then we

have
#E(Fq) ≡ 1 + ε

q−1
2 − ε

q−1
2 −Aq ≡ 1−Aq mod p.

Moreover, from [Sil09, Theorem 2.3.1] we know

#E(Fq) = q + 1− a,

where a is the trace of the q-power Frobenius endomorphism. By Theorem 2.7 we can therefore conclude

E is supersingular ⇐⇒ a ≡ 0 mod p ⇐⇒ Aq = 0.

The implication Aq = 0 ⇐⇒ Ap = 0 follows by induction from the relation

Apr+1 = AprA
pr

p ,

which can be proven exactly as in the cubic case (see [Was08, Lemma 4.36]).

It is common to consider the Hasse invariant for elliptic curves in Legendre form.
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Proposition 4.18. Let y2 = x(x − 1)(x − λ) be the equation defining an elliptic curve in Legendre form.
Then

Ap = (−1)m
m∑
i=0

(
m

i

)2

λi,

where m = (p− 1)/2.

Proof. See [Deu41, p. 201; Was08, Thm. 4.34; Sil09, Thm. 4.1.b].

We focus on the construction of Ap as a polynomial in the variable λ. If we write down explicitly its
coefficients (considered modulo p)5

ci =
(m!)2

(i!)2
(
(m− i)!

)2 for i = 0, . . . ,m,

it is easy to see that they can be computed recursively, starting from c0 = 1, via the following formula:

ci+1 = ci ·
(m− i)2

(i+ 1)2
.

This avoids the computation of any factorial modulo p, but does not suggest any easy way to find the roots
of Ap. In terms of computational complexity, computing the zeroes of Ap appears actually worse than an
exhaustive search of supersingular j-invariants over Fp2 as described in Section 4.4.1. We will say more on
this subject in Section 5.

5 Hasse invariant of other models of elliptic curves
Section 2.4 gathers various characterizations of supersingular elliptic curves over finite fields. Through-
out the next sections we do a step further, and see if these characterizations may lead to efficient solving
algorithms for the SRS/cSRS problem.

In this section, the Hasse invariantAp (defined in Section 4.4.2) is computed for elliptic curves in Weier-
strass form and for the other elliptic-curve models in Table 1 (excluding Legendre, which has already been
considered in Section 4.4.2): namely, for each model we construct Ap as a polynomial whose coefficients
lie in Fq , and whose roots are coefficients of supersingular elliptic curves over (some extension of) Fq .

We make use of the same notation as in Section 4.4.2, i.e.:

m =
p− 1

2

where p is a prime ≥ 5.

5.1 Weierstrass
Consider the family of elliptic curves over Fq in Weierstrass form, i.e. the curves of equation y2 = x3 +
Ax+B with A,B ∈ Fq . Thus, the Hasse invariant Ap can be regarded as a polynomial in Fq[A,B].

Proposition 5.1. The Hasse invariant of an elliptic curve E : y2 = x3 +Ax+B in Weierstrass form is

Ap =

b p−1
3 c∑

i=d p−1
4 e

(
m

i

)(
m− i

2m− 3i

)
A2m−3iB2i−m. (14)

Proof. Write

(x3 +Ax+B)m =

m∑
i=0

(
m

i

)
x3i(Ax+B)m−i

5The factor (−1)m can be neglected, since we are interested in the zeroes of Ap.
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=

m∑
i=0

(
m

i

)
x3i

m−i∑
j=0

(
m− i
j

)
(Ax)jBm−i−j

 .

In each term, the degree of x equals p− 1 if and only if j = p− 1− 3i. Therefore

Ap =

b p−1
3 c∑

i=d p−1
4 e

(
m

i

)(
m− i

2m− 3i

)
A2m−3iB2i−m.

Now, we wonder which values of A,B ∈ Fq annihilate Ap. The cases A = 0 or B = 0 can be
ruled out since they yield elliptic curves with j-invariant 0 or 1728, which we have already considered in
Section 4.4.2. A and B may therefore be regarded as elements in the multiplicative group F∗p2 . Namely, we
can express A and B as powers of some primitive element g ∈ F∗p2 , say

A = gk, B = g` with k, ` ∈ {0, . . . , p2 − 2}.

Thus we can rewrite Ap as follows:

Ap =

b p−1
3 c∑

i=d p−1
4 e

(
m

i

)(
m− i

2m− 3i

)
A2m−3iB2i−m

=

b p−1
3 c∑

i=d p−1
4 e

(
m

i

)(
m− i

2m− 3i

)
gk(2m−3i)g`(2i−m)

=

b p−1
3 c∑

i=d p−1
4 e

(
m

i

)(
m− i

2m− 3i

)
gm(2k−`)+i(2`−3k)

In order to find the coefficients A,B defining supersingular curves, it is necessary to look for values of
k, ` such that the latter expression annihilates. Moreover, by multiplying the expression by the inverse of
gm(2k−`), it is enough to consider

b p−1
3 c∑

i=d p−1
4 e

(
m

i

)(
m− i

2m− 3i

)
gi(2`−3k). (15)

Notice that (15) can be seen as a polynomial over Fp in the variable g2`−3k.

Lemma 5.2. Let n be a positive integer and fix C ∈ Z�(pn − 1)Z. Then

2L− 3K ≡ C mod pn − 1 (16)

has pn − 1 solutions in K and L.

Proof. Observe that

• if k ≡ C mod 2, the following pairs(
k,

3k + C

2

)
and

(
k,

3k + C

2
+
pn − 1

2

)
are distinct solutions of (16);

• if k 6≡ C mod 2, no element ` ∈ Z/(pn − 1)Z satisfies equation (16).

Therefore, equation (16) has

2 · p
n − 1

2
= pn − 1

solutions.
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The zeroes of (15), seen as a polynomial over Fp in the variable g2`−3k, correspond to the superinsin-
gular j-invariants as detailed in the following results.

Theorem 5.3. Let g be a primitive element of Fp2 , and fix C = 2`′ − 3k′ such that (15) annihilates. In
other words, gC is a root of

G(X) =

b p−1
3 c∑

i=d p−1
4 e

(
m

i

)(
m− i

2m− 3i

)
Xi ∈ Fp[X]. (17)

Denote by
E′ : y2 = x3 +A′x+B′

the corresponding supersingular elliptic curve having

A′ = gk
′
, B′ = g`

′
.

Then the curves defined over Fp2 and isomorphic to E′ are exactly the curves whose coefficients written in
the form

A = gk, B = g`

satisfy
C ≡ 2`− 3k mod p2 − 1.

Proof. Let E be a curve defined over Fp2 and isomorphic to E′ over Fp. Therefore [Sil09, p. 45] the
coefficients of E must satisfy

A = u4A′, B = u6B′ (18)

for some u ∈ F∗p4 such that u2 ∈ F∗p2 . Notice that there are exactly p2 − 1 values of u with such property6;
that is, there are exactly p2 − 1 curves defined over Fp2 and isomorphic to E. In terms of a given generator
g of F∗p2 , we have

gk = u4gk
′

= g2r+k′ and g` = u6g`
′

= g3r+`′

for some r ∈ {0, . . . , p2 − 2}. Then

2`− 3k ≡ 2(3r + `′)− 3(2r + k′) ≡ 2`′ − 3k′ ≡ C mod (p2 − 1).

Thus, letting u vary, we have p2 − 1 distinct solutions for the equation in L and C

2L− 3K ≡ C mod (p2 − 1). (19)

Lemma 5.2 ensures that there is no other solution.

Corollary 5.4. Let G(X) be the polynomial defined in (17). The non-zero roots of G(X) are in bijection
with the supersingular j-invariants /∈ {0, 1728}.

Proof. Let g be a primitive element of Fp2 . We have already shown that every non-zero root gC of G(X)
corresponds to some isomorphism class of supersingular curves. Namely, if

E : y2 = x3 + gkx+ g`

is a representative of this class (in particular, 2k − 3` ≡ C mod (p2 − 1)), its j-invariant is

j(E) = 1728 · 4g3k

4g3k + 27g2`

= 1728 · 4g3k

4g3k + 27g2`
· g
−3k

g−3k

=
1728 · 4

4 + 27g2`−3k
.

6Namely, the elements

1, γ
p2+1

2 , γ2
p2+1

2 , . . . γ(p
2−2) p2+1

2

for some generator γ of F∗
p4

.
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Therefore the correspondence

{non-zero roots of G(X)} ↔ {supersingular j-invariants /∈ {0, 1728}}

gC 7→ 1728 · 4
4 + 27gC

64 · 4
j
− 4

27
← [ j

(20)

is one-to-one.

Let

G̃p(X) =

b p−1
3 c∑

i=d p−1
4 e

(
m

i

)(
m− i

2m− 3i

)
︸ ︷︷ ︸

ci

Xi−d p−1
4 e

be the polynomial considered in the proof of Corollary 5.4, with m = (p − 1)/2. So far, we have shown
that the roots of G̃p(X) correspond to the supersingular j-invariants in Fp2 \ {0, 1728}. Moreover, by (20),
G̃p splits completely over Fp2 (since every supersingular j-invariant lies in Fp2 : see Theorem 2.5.b).

The coefficients of G̃p, for i ∈
{
dp−1

4 e, . . . , b
p−1

3 c
}

, are

ci =

(
m

i

)(
m− i

2m− 3i

)
=

m!

i!(m− i)!
· (m− i)!

(2m− 3i)!(2i−m)!

=
m!

i!(2m− 3i)!(2i−m)!
.

We can assume that G̃p(X) is normalized with respect to its constant term; therefore, starting from cd p−1
4 e

=

1, every other coefficient can be computed recursively via the following formula:

ci+1 = −12 · (3i+ 1)(3i+ 2)

(4i+ 3)(4i+ 5)
· ci. (21)

As p does not appear within the factors of any coefficient, we conclude that every coefficient of G̃p(X) is
different from 0.

5.2 Montgomery
Consider the family of elliptic curves over Fq in Montgomery form, i.e. the curves of equation y2 =
(x3 + Ax2 + x)/B with A,B ∈ Fq , B 6= 0 and A2 6= 4. Thus, the Hasse invariant Ap can be regarded as
a polynomial in Fq[A,B].

Moreover, we note that the zeroes of Ap do not depend on B. This is actually coherent with the fact
that j-invariants of Montgomery curves depend only on A (see Table 1). We can therefore assume B = 1
and compute Ap as a polynomial in the only variable A.

Proposition 5.5. The Hasse invariant of an elliptic curve E : y2 = (x3 + Ax2 + x)/B in Montgomery
form is

Ap =

bm
2 c∑
i=0

(
m

i

)(
m− i
m− 2i

)
Am−2i,

and its coefficients can be computed recursively starting from c0 = 1 via the formula

ci+1 = ci ·
(m− 2i)(m− 2i− 1)

(i+ 1)2
.

Proof. We start by observing that

(x3 +Ax2 + x)m = xm(x2 +Ax+ 1)m
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= xm ·
m∑
i=0

(
m

i

)
x2i(Ax+ 1)m−i

= xm ·
m∑
i=0

(
m

i

)
x2i

m−i∑
j=0

(
m− i
j

)
Ajxj

 .

In each term, the degree of x equals p − 1 if and only if m + 2i + j = 2m, or, equivalently, j = m − 2i.
Therefore,

Ap =

bm
2 c∑
i=0

(
m

i

)(
m− i
m− 2i

)
︸ ︷︷ ︸

ci

Am−2i.

Notice that c0 = 1, defined above, is now the coefficient of the leading term; the other coefficients can
be computed recursively via the formula

ci+1 = ci ·
(m− 2i)(m− 2i− 1)

(i+ 1)2
.

Remark 5.6. The degrees of the terms in Ap have all the same parity. In particular, if A annihilates Ap, also
−A does. This is, again, coherent with the fact that isomorphism classes depend only on A2.

5.2.1 Splitting field of the Hasse invariant

Since every supersingular j-invariant lies in Fp2 by Theorem 2.5.b, the equation for the j-invariant of
Montgomery curves (see Table 1) suggests that the roots of Ap lie in Fp12 . A stronger result actually holds,
as we are going to show in Proposition 5.10, whose proof requires a few lemmata. The first one is just a
special case of [Was08, Ex. 4.10]:

Lemma 5.7. Let E : y2 = x3 + Ax + B be an elliptic curve in Weierstrass form over Fp2 with trace t.
Then one of its twists has trace −t.

Proof. Let γ be a generator for F∗p4 . Define

u = γ
p2+1

2

and consider the curve
E′ : y2 = x3 + u4Ax+ u6B.

From [Sil09, p. 45] we know that

ϕ : E → E′

(x, y) 7→ (u2x, u3y).

is an isomorphism defined over Fp4 but not over Fp2 ; in other words, E′ is a quadratic twist of E.
Let t′ be the trace of E′. By [Sil09, Rem. V.2.6] and [Hus87, Prop. 4.1.10] we have

#E(Fp2) = 1 + p2 − t, #E′(Fp2) = 1 + p2 − t′, #E(Fp2) + #E′(Fp2) = 2p2 + 2.

The thesis follows immediately.

Lemma 5.8. Let E : y2 = x3 + A′x + B′ be a supersingular elliptic curve over Fp2 in Weierstrass form
with j-invariant different from 0 or 1728. Then every 4-torsion point of either E or its quadratic twist E′ is
Fp2 -rational.

Proof. It is well-known [Sil09, Ex. 3.32, Ex. 5.10] that the number of Fp2 -rational points of a supersingular
elliptic curve E over Fp2 is p2 − t+ 1, where

t ∈ {0,±p,±2p}.
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Furthermore, t ∈ {0,±p} if and only if j(E) ∈ {0, 1728} [AAM19, pp. 5–6]. We can therefore assume
that E has trace 2p, while its quadratic twist E′ has trace −2p by Lemma 5.7.

From [Sch87, Lemma 4.8.ii] we know the structure of Fp2 -rational groups of the two curves:

E(Fp2) ∼= Z�(p− 1)Z×
Z�(p− 1)Z and E′(Fp2) ∼= Z�(p+ 1)Z×

Z�(p+ 1)Z.

In particular,

• if p ≡ 1 mod 4, then Z/(p − 1)Z has a subgroup of order 4 and such subgroup must be Z/4Z.
Otherwise, E would have more than 4 points of 2-torsion, contradicting [Sil09, Cor. III.6.4]. Then
Z/4Z × Z/4Z is a subgroup of E(Fp2) (up to isomorphism). Equivalently, again from [Sil09,
Cor. III.6.4], E[4] ⊆ E(Fp2).

• Similarly, if p ≡ 3 mod 4, one can prove E′[4] ⊆ E′(Fp2).

Lemma 5.9. Let E′ : y2 = x3 +A′x+B′ be an elliptic curve over Fq . Then E′ is birationally equivalent
to a Montgomery curve E over Fq if and only if

(a) E′ has an Fq-rational 2-torsion point (α, 0).

(b) 3α2 +A′ = s2 for some s ∈ F∗q .

The coefficients of E are {
A = 3αs−1,

B = s−1.

Proof. See [OKS00, Prop. 4.1, 7.5].

Proposition 5.10. Ap for Montgomery curves splits completely over Fp2 . Equivalently, the coefficient A of
every supersingular Montgomery curve lies in Fp2 .

Proof. First of all, notice that the j-invariant

j =
256(A2 − 3)3

A2 − 4

of a Montgomery curve E : By2 = x3 + Ax2 + x over Fp2 equals 0 if and only if A is a square root of 3.
Similarly, one can check that j(E) = 1728 if and only if either A = 0 or A is a square root of 2−1 · 9. In
both cases, A lies in Fp2 .
Let E be a representative of a supersingular j-invariant j′ /∈ {0, 1728}. By Proposition 2.1, E can be
written in Weierstrass form over Fp2 :

E : y2 = x3 +A′x+B′.

By Lemma 5.8 we can also assume that the 4-torsion points of E are Fp2 -rational. It particular, it has
2-torsion points (αi, 0) for i ∈ {1, 2, 3}, with αi ∈ F∗p2 (they are non-zero, otherwise B′ = 0 and j = 1728

which contradicts our assumption). Notice that B′ can be written as

B′ = −α3
i −A′αi (22)

for every i ∈ {1, 2, 3}, and exploit such relation in order to factor the fourth division polynomial ψ4 (see
Section 6.1):

ψ4/2y = 2x6 + 10A′x4 + 40B′x3 − 10(A′)2x2 − 8A′B′x− 2(A′)3 − 16(B′)2

= 2x6 − 40x3α3
i − 16α6

i + 10A′x4 − 40A′x3αi+

+ 8A′xα3
i − 32A′α4

i − 10(A′)2x2 + 8(A′)2xαi − 16(A′)2α2
i − 2(A′)3

= − 2(−x2 + 2xαi + 2α2
i +A′)(x4 + 2x3αi + 6x2α2

i − 4xα3
i+

+ 4α4
i + 6A′x2 − 6A′xαi + 6A′α2

i + (A′)2).

(23)
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Since ψ4 annihilates exactly on the 4-torsion points (see Proposition 6.5), for each i there exist two distinct
values xi and x′i in Fp2 that annihilate the first factor of (23), i.e.

−x2 + 2xαi + 2α2
i +A′,

or, equivalently, satisfy
A′ + 3α2

i = (x− αi)2. (24)

Notice that xi − αi is non-zero because xi 6= x′i. The conditions (a) and (b) from Proposition 5.9 are
therefore verified, andE is birationally equivalent to Montgomery curves defined over Fp2 with coefficients{

Ai = 3αi(xi − αi)−1

Bi = (xi − αi)−1

for every i ∈ {1, 2, 3}.
We claim that A2

i 6= A2
j for i 6= j. Suppose, by contradiction, A2

i = A2
j for some i 6= j. By (24) we can

write

9α2
i (3α

2
i +A′)−1 = 9α2

j (3α
2
j +A′)−1

α2
i (3α

2
j +A′) = α2

j (3α
2
i +A′)

α2
i = α2

j ,

but this cannot occur. In fact, αi 6= αj by construction, and the assumption B′ 6= 0 together with (22)
implies αi 6= −αj .
To summarise, starting from a suitable supersingular elliptic curve in Weierstrass form with j-invariant
j′ /∈ {0, 1728}, we have found three distinct solutions A2

1, A
2
2, A

2
3 for the equation

j′ =
256(X − 3)3

X − 4
.

Since there is no other solution, the coefficient of x2 of a Montgomery curve with j-invariant j′ must be
one of {±Ai | i = 1, 2, 3}, and all these values lie in Fp2 .

5.3 Jacobi
Consider the family of elliptic curves over Fq in Jacobi form, i.e. the curves of equation y2 = εx4−2δx2+1
with ε, δ ∈ Fq , ε 6= 0 and δ2 6= ε. Thus, the Hasse invariant Ap can be regarded as a polynomial in Fq[ε, δ].

Proposition 5.11. The Hasse invariant of an elliptic curve E : y2 = εx4 − 2δx2 + 1 in Jacobi form is

Ap =

bm
2 c∑
i=0

(
m

i

)(
m− i
m− 2i

)
︸ ︷︷ ︸

ci

εi(−2δ)m−2i

and its coefficients ci can be computed recursively starting from c0 = 1 via the formula

ci+1 = ci ·
(m− 2i)(m− 2i− 1)

(i+ 1)2
.

Proof. Similar to the proof of Proposition 5.5. In particular, notice that the coefficients are the same.

5.4 Efficiency analysis
We have found explicit formulas to construct the Hasse invariant Ap for several elliptic-curve models, but
none of them allows for an efficient construction of Ap. From a computational point of view, even the
storage of Ap becomes problematic when p is of cryptographic size.

However, the combination of Bröker’s algorithm and random walks, as described in Section 4.3, pro-
vides an efficient method to find arbitrarily many roots of Ap. We cannot rule out that this fact, combined
with the recursion formula for the coefficients of Ap, might lead to an efficient algorithm to solve the cSRS
problem. We leave the investigation for future work.
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6 Torsion points
In this section we provide two distinct characterizations of supersingular elliptic curves over finite fields in
terms of suitably chosen torsion points.

6.1 Division polynomials
Following [Sil09, ex. 3.7; Was08, sec. 3.2], we introduce division polynomials, which constitute the main
tool for our constructions. Let

E : y2 = x3 +Ax+B

be an elliptic curve over a perfect field K with charK /∈ {2, 3}. For m = −1, 0, 1, 2, . . . we define the
division polynomials ψm ∈ K[A,B, x, y] as

ψ−1 = −1,

ψ0 = 0,

ψ1 = 1,

ψ2 = 2y,

ψ3 = 3x4 + 6Ax2 + 12Bx−A2,

ψ4 = 2y(2x6 + 10Ax4 + 40Bx3 − 10A2x2 − 8ABx− 2A3 − 16B2),

and then recursively by means of the following relations:

ψ2n+1 = ψn+2ψ
3
n − ψn−1ψ

3
n+1 for n ≥ 2, (25)

ψ2n =
ψ2
n−1ψnψn+2 − ψn−2ψnψ

2
n+1

ψ2
for n ≥ 3. (26)

For ease of notation, we also define

φm = xψ2
m − ψm+1ψm−1,

2ψ2ωm = ψ2
m−1ψm+2 − ψm−2ψ

2
m+1.

We now review some well-known results about division polynomials, which can be proven by induction
(see e.g. [Was08, Lem. 3.3, 3.5]).

Proposition 6.1. For each m > 0, the polynomial ψ2 is an even-degree factor of{
ψ2ψm if m is even,
ψm if m is odd.

In particular, ψm is a polynomial for each m.

Remark 6.2. If m is odd, ψm, φm and ψ−1
2 ωm are polynomials in K[A,B, x, ψ2

2 ]; the same holds, if m is
even, for ψ−1

2 ψm, φm and ωm. As a consequence, when evaluating these polynomials at points of E, ψ2
2

can be substituted with 4(x3 + Ax + B), so that the variable y no longer appears. Therefore, by a slight
abuse of notation, we will often identify these polynomials with their representatives in the quotient ring

K[A,B, x, ψ2
2 ]�(y2 − x3 −Ax−B)

∼= K[A,B, x].

Proposition 6.3. Consider φm and ψ2
m as elements in K[A,B, x]. Then

φm(x) = xm
2

+ terms of lower degree

ψ2
m(x) = m2xm

2−1 + terms of lower degree.

Theorem 6.4 (Computation of [m]P via division polynomials). Consider an elliptic curve E : y2 = x3 +
Ax+B over K, a point P = (x0, y0) ∈ E(K) \ {O} and a positive integer m such that [m]P 6= O. Then,
the point [m]P can be calculated as follows:

[m]P =

(
φm
ψ2
m

,
ωm
ψ3
m

)
(27)
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or, equivalently,

[m]P =

(
x0 −

ψm−1ψm+1

ψ2
m

,
ψm+2ψ

2
m−1 − ψm−2ψ

2
m+1

4y0ψ3
m

)
where we denote by φm, ψm e ωm the evaluations φm(A,B, x0, y0), ψm(A,B, x0, y0) and ωm(A,B, x0, y0).

Proof. See [Was08, sec. 9.5].

Proposition 6.5 (Characterization of E[m] via division polynomials). Let E : y2 = x3 + Ax + B be an
elliptic curve over K. Then

E[m] = {O} ∪ {(x0, y0) ∈ E(K) | ψm(A,B, x0, y0) = 0}.

Proof. See [CR88, Prop. 9.10].

6.2 p-torsion points
Theorem 2.5 ensures that an elliptic curveE is supersingular if and only ifE[p] = {O}. As in Section 4.4.2,
in this section we construct a polynomial whose zeroes are exactly the coefficients A and B defining super-
singular elliptic curves in Weierstrass form. In this case, though, the coefficients of such polynomial lie in a
much bigger set, namely Fp[X].

Since any non-constant polynomial over Fp has its zeroes in Fp, Proposition 6.5 allows us to rephrase
the characterization given in Theorem 2.5.(a) as follows:

Proposition 6.6. Let E : y2 = x3 + Ax + B be an elliptic curve over a field Fq of characteristic p. Then
E is supersingular if and only if ψp(A,B, x) is constant.

A more refined result is given in [Dol18, Lemma 4]: we state it below in a more general fashion.

Proposition 6.7. LetE : y2 = x3+Ax+B be a supersingular elliptic curve over Fp2 . Then the polynomial

ψpr with r =


1 if tr(E) = ±2p

2 if tr(E) = 0

3 if tr(E) = ±p

is either 1 or −1 in Fp[A,B, x].

Proof. Doliskani’s proof covers the case tr(E) = ±2p, but it can be easily extended to the other cases. The
characteristic polynomial of a supersingular curve E over Fp2 is

X2 ∓ 2pX + p2 if tr(E) = ±2p

X2 + p2 if tr(E) = 0

X2 ∓ pX + p2 if tr(E) = ±p.

As a consequence, a suitable r-th power of Frobenius endomorphism ϕp2 equals ±[pr], namely
ϕp2 = ±[p] if tr(E) = ±2p

ϕ2
p2 = −[p2] if tr(E) = 0

ϕ3
p2 = ∓[p3] if tr(E) = ±p.

Suppose tr(E) = −p. From the latter equations we can write

[p3](x, y) =
(
xp

6

, yp
6
)

(28)

for every (x, y) ∈ E, while from equation (27) and Proposition 6.3 we obtain

[p3](x, y) =

(
φp3

ψ2
p3
,
ωp3

ψ3
p3

)
=

(
xp

6

+ terms of lower degree
p6xp6−1 + terms of lower degree

,
ωp3

ψ3
p3

)
. (29)

Comparing the first coordinates on the right-hand sides of (28) and (29) yields ψ2
p3 = 1. The other cases

can be proven similarly.
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Proposition 6.7 suggests the following strategy to sample supersingular elliptic curves:

• compute ψ2
p − 1 as a polynomial in Fp[A,B, x];

• find values of A and B that annihilate ψ2
p − 1: these are parameters of a supersingular elliptic curve.

Some further assumptions can be made in order to diminish the number of monomials in ψp:

• restrict the root finding to A,B ∈ Fp;

• assume B = −1−A.

Equivalently, we consider ψ2
p − 1 as an element of the quotient ring Fp[A,B, x]/J , where J = (A+ B +

1)(Ap−1 − 1).
In fact, every Fp2 -isomorphism class of supersingular curves over Fp contains at least one curve such that
B = −1−A.

Proposition 6.8. For each supersingular j-invariant j ∈ Fp there is at least one elliptic curve in Weierstrass
form that has j-invariant j, is defined over Fp and passes through (1, 0).

Proof. If j = 1728, the curve of equation y2 = x3 − x has j-invariant 1728 and passes through (1, 0).
Assume j 6= 1728. Combining Theorem 2.7 and Hasse’s inequality

|p+ 1−#E(Fp)| ≤ 2
√
p

(see e.g. [Was08, Thm. 4.2]), we know that any supersingular curve over Fp has exactly p + 1 points; in
particular, it has an even number of points. Therefore, as O is one of them, and every Fp-rational point
(x, y) yields another point (x,−y), every supersingular curve over Fp must intersect the horizontal axis an
odd number of times. Let (x0, 0) be any point in the intersection of the horizontal axis with a supersingular
curve E : y2 = x3 + A′x + B′ having j-invariant j. Thanks to Proposition 2.1.b, we can assume that E
is defined over Fp. Since j is non-zero, x0 must be non-zero, too. Let u ∈ F∗p2 be a square root of x0

−1.
Then [Sil09, p. 45] the curve defined by the coefficients

A = u4A′, B = u6B′

is isomorphic to E and passes through (1, 0) because we have

1 +A′ +B′ = 1 +
A

x0
2

+
B

x0
3

=
1

x0
3

(x3
0 +Ax0 +B)

= 0.

6.2.1 Efficiency analysis

Even with the addition of extra assumptions on A and B, the computation of ψp2 − 1 remains unfeasi-
ble. The main obstacles are the recursive definition of division polynomials and their quickly-increasing
degrees. Therefore, determining the coefficients of supersingular elliptic curves as roots of ψp2 − 1 seems
an impractical method to solve the cSRS problem, despite the theoretical interest of Proposition 6.7.

6.3 Small-torsion points
In this section, we sketch a new method for sampling supersingular elliptic curves over Fp, under the
assumption that p+ 1 has ‘many’ small factors.

Proposition 6.9. Let p =
∏r
i=1 `

ei
i − 1 be a prime such that

r∏
i=1

`i > 2
√
p, (30)

and let E : y2 = x3 +Ax+B be an elliptic curve in Weierstrass form over Fp. Denote by r′ the minimum
integer ≤ r satisfying (30). Then E is supersingular if and only if the division polynomial ψ`i(A,B, x, y)
has a root (xi, yi) ∈ E(Fp) for each i ∈ {1, . . . , r′}.
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Proof. Suppose that E be is supersingular. From Theorem 2.7 we know that the subgroup E(Fp) has
p+ 1 elements. In particular, for any prime `i dividing p+ 1, Cauchy’s theorem ensures that there exists a
subgroup of E(Fp) having order `i. Equivalently, there exists an Fp-rational `i-torsion point (xi, yi). Such
point annihilates ψ`i by Proposition 6.5.
For the converse, the bound (30) is needed. Suppose that there exists an Fp-rational `i-torsion point for
each i ∈ {1, . . . , r′}. Then each `i divides #E(Fp). Equivalently, by the CRT,

#E(Fp) ≡ 0 mod

r∏
i=1

`i. (31)

Moreover, #E(Fp) must satisfy Hasse’s inequality

|p+ 1−#E(Fp)| ≤ 2
√
p. (32)

One can check that the only integer satisfying (30), (31) and (32) is #E(Fp) = p + 1. Therefore, E is
supersingular by Theorem 2.7.

Remark 6.10. Some primes used in cryptographic applications do satisfy the hypotheses of Proposition 6.9:
for example, the prime p in CSIDH-512 [Cas+18, § 8.1] is p = 4 · 587 · `1 · · · `73 − 1 where `1, . . . , `73 are
the first 73 odd primes.

Fix a prime p =
∏r
i=1 `

ei
i − 1 such that (30) is satisfied for some (minimal) r′ ≤ r. Then, by Proposi-

tion 6.9, any solution of the system of equations

ψ`i(A,B, xi, yi) = 0 for each i ∈ {1, . . . r′}
y2
i − x3

i −Axi −B = 0 for each i ∈ {1, . . . r′}
xpi − xi = 0 for each i ∈ {1, . . . r′}
ypi − yi = 0 for each i ∈ {1, . . . r′}
Ap −A = 0

Bp −B = 0

(33)

yields the coefficients of a supersingular elliptic curve E : y2 = x3 + Ax + B over Fp, together with the
coordinates of Fp-rational `i-torsion points (xi, yi) for i ∈ {1, . . . , r′}.

6.3.1 Efficiency analysis

Despite working only for certain primes, the latter method seems promising. Indeed, the polynomials
involved in system (33) have either low degree or sparse coefficients. An unsofisticated use of Groebner
bases, though, is far from enough to turn this method into an efficient algorithm to solve the cSRS problem:
in our experiments, it worked only for primes up to 12011 = 4 ·3 ·7 ·11 ·13−1. We leave any improvement
of this technique for future work.

7 Conclusions
We have provided a more precise framework for the SRS and cSRS problems, surveying a solution to the
first, and presenting new approaches to the latter. A solution for the cSRS problem, though, is yet to be
found. We hope that our formalisation of the problem, along with the analysis of the drawbacks in each
method considered, will make a useful starting point for future research on the subject.
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