
Laconic Private Set-Intersection From Pairings

Diego Aranha1, Chuanwei Lin1, Claudio Orlandi1, and Mark Simkin2

1 Aarhus University, Aarhus, Denmark
{dfarhanha,orlandi}@cs.au.dk, chuanwei.lin@au.dk.

2 Ethereum Foundation
mark.simkin@ethereum.org

Abstract. Private set-intersection (PSI) is one of the most practically relevant special-purpose secure
multiparty computation tasks, as it is motivated by many real-world applications. In this paper we
present a new private set-intersection protocol which is laconic, meaning that the protocol only has
two rounds and that the first message is independent of the set sizes. Laconic PSI can be useful in
applications, where servers with large sets would like to learn the intersection of their set with smaller
sets owned by resource-constrained clients and where multiple rounds of interactions are not possible.
Previously, practically relevant laconic PSI protocols were only known from factoring-type assumptions.
The contributions of this work are twofold: 1) We present the first laconic PSI protocol based on as-
sumptions over pairing-friendly elliptic curves; and 2) For the first time we provide empirical evaluation
of any laconic PSI protocol by carefully implementing and optimizing both our and previous protocols.
Our experimental results shows that our protocol outperforms prior laconic PSI protocols.

1 Introduction

Private set intersection (PSI) protocols allow two parties holding private sets X and Y respectively to jointly
compute X ∩Y without revealing any other information about their input sets to each other. Such protocols
turn out to be useful in settings like botnet detection [NMH+10], private contact discovery [Mar14], online
advertising [PSSZ15], and contact tracing [DPT20]. For this reason there have been numerous works [Mea86,
FNP04, KS05, DCW13, PSSZ15, KKRT16, PRTY19, PRTY20] that study both theoretically and practically
efficient PSI protocols.

In many of these applications, we have a powerful server with a large database, who communicates with
many different computationally weak clients with small databases. One such example is the Signal3 mes-
senger, where the server stores a list of all registered users and different clients would like to determine
which of their contacts use the messenger as well, without revealing the contacts that do not use it. Unfortu-
nately, privacy does not come for free and even executing state-of-the-art PSI protocols incurs a significant
computational overhead on both the server and the client.

Client-side devices, such as smartphones, are often resource constrained and if a protocol is too slow to be
executed by the client, then there is little that can be done. In practice, it is not realistic to require a client
to either download excessively large amounts of data or to perform computationally intensive and battery-
draining computations. For the server, however, a somewhat inefficient protocol does not immediately mean
that all is lost. A pragmatic, but effective method to alleviate server-side inefficiencies in practice is to follow
the Kill-It-With-Iron (KIWI) approach, which simply dictates to improve performance by means of buying
either better or just more hardware. This approach is clearly no silver bullet and it can only offset protocol
inefficiencies within limits, but it raises the following natural question:

How small can we make the overhead of the party holding the smaller set?

Laconic cryptography [CDG+17, QWW18, DGI+19, DGGM19] is an emerging field within cryptography
that asks the same question for general cryptographic tasks. In laconic cryptography, protocols are run
between a receiver R with a potentially large input and a sender S with a small input. At the end R
3 https://signal.org/

https://signal.org/

learns the output. The protocol should have the following properties: 1) The protocol should only have two
messages; 2) The total communication and the work of S cannot depend on the size of R’s input; and 3)
The first message of R can be re-used by multiple senders S. Predating laconic cryptography, Ateniese et
al. [ADT11] provided the first succinct PSI protocol which satisfies requirement 2 above but fails to be fully
laconic. After theoretical results that showed that any function can be securely evaluated with a laconic
protocol, the work of Alamati et al. [ABD+21] showed for the first time that there exist special purpose
protocols for PSI which are potentially of practical relevance (e.g., they don’t make non-black box use of
the underlying groups). Both protocols use techniques inspired by RSA-based accumulators, and our work
follows in this line of “accumulator based” PSI protocols.

Sender S Receiver R
Input: a string y Input: a set X

Output: none Output: y
?
∈ X

Sample random β Sample random α

�
R = Acc(X)α

T = Rβ

U = ψ(y)β
-
∀xi ∈ X : X−i = X \ {xi}

If φ(U,X−i)
α = T

Output y = xi

Fig. 1: Our protocol in a nutshell. For the sake of simplicity the figure considers the special case where of
private set membership (PSM) e.g., a PSI protocol where one of the two parties has as single element as
input. This can be trivially extended to a PSI protocol by having the sender send a different (T,U) tuple
for each y in their input set.

1.1 Contribution and Technical Overview

In this work, we present a new two-party laconic PSI protocol which aims at minimizing the overhead for
the sender both from a theoretical and practical perspective.

The protocol is conceptually very simple, which makes implementing it in practice less error-prone: During
the protocol execution we only send two messages, sending one message from the receiver to the sender and
one message back. The size of the receiver’s message is a single group element (independent on the size
of the receiver’s input set), whereas the sender’s message size is linear in the sender’s input set size. The
computational complexity of the sender is independent of the size of the receiver’s input set.

Our main protocol provides semi-honest security under a new, but natural assumption over pairing-
friendly curves. To provide some evidence about the soundness of our new assumption, we prove that it
holds in the generic group model. We also discuss easy countermeasures to guarantee privacy in the presence
of active attacks and present a protocol which gives full simulation-based security against active attacks.

To evaluate the performances of our construction we have implemented it together with the semi-honest
versions of the protocols of [ADT11] and [ABD+21], for which no public implementations were available so
far. Note that while the protocol of [ADT11] is not laconic, it still provides a useful baseline since it has a
very small communication overhead thanks to the use of the random oracle model and private setup. In order
to achieve a fair comparison, we have performed the same optimizations to all protocols, and we provide
extensive benchmarks and comparisons to existing works.

2

PSI from Algebraic Accumulators. We give an high-level overview of our protocol through the lens of cryp-
tographic accumulators [Bd94] that satisfy algebraic properties (e.g., those based on the RSA [Bd94,CL02,
LLX07] or pairings [Ngu05,CKS09,DT08,ATSM09,KB21] assumptions). This is only an informal description
and neglects several details but we still believe it can be helpful in understanding the logic of the protocol
(the actual protocol description in Section 3 presents the protocol directly without using accumulator nota-
tions). A cryptographic accumulator A = Acc(X) is a function which allows to compress a large set X into
a small representation A. It is then possible to create, for any y ∈ X, a witness w that y was included in the
accumulator which can be verified with a function Ver. The soundness property of an accumulator requires
that if y 6∈ X then it should be infeasible to produce a witness w such that Ver(Acc(X), y, w) = 1.

Natural algebraic accumulators satify the following properties:

1. The witness w is not a function of y, but only of the remaining elements of X once y is removed i.e.,
w = Wit(X−y)

2. The verification function can be decomposed in the following way:

Ver(Acc(X), y,Wit(X−y)) = 1⇔ φ(ψ(y), X−y) = Acc(X)

3. The functions φ, ψ output elements in a group and for all y,X and scalar β it holds that:

φ(ψ(y)β , X) = φ(ψ(y), X)β

These properties lead to a natural construction for a PSI protocol as visualized in Figure 1. Intuitively the
receiver sends a randomized version of the accumulator R = Aα for some random α. The sender replies with
ψ(y)β and Rβ (with a different β for each element in their set). Now the receiver computes witnesses for each
subset of X of size |X|−1 and checks whether the element sent by the sender matches the one removed from
X. Security of the protocol, intuitively, follows from the usage of the randomizers α, β and from the fact
that it is computationally hard for the receiver to find witnesses for elements which were not in the original
set X, thus the receiver cannot perform a brute force attack on y. This is only a very general intutition, and
the security of the protocol is formally proven in a different way later in the paper.

Pairing Based Accumulators. We instantiate the above blueprint with a pairing based accumulator such as
the ones from [Ngu05, CKS09, DT08, ATSM09, KB21]: since we only need a one-shot accumulator (i.e.,
elements are only inserted into the accumulator, and all at once), the construction is quite simple. In

such an accumulator Acc(X) = g
∏
x∈X(x−s), w = Wit(X−i) := g

∏
x∈X−i

(x−s)
and the verification function

Ver(Acc(X), y, w) outputs 1 if
e(Acc(y), w) = e(Acc(X), g)

where e is the bilinear map, and s is some secret unknown to the receiver. To compute the polynomials the

parties must have access to the generator g raised to all powers of s i.e., (g, gs. . . . , gs
2

, . . . , gs
|X|

) – security
relies on the receiver not knowing s, while the sender could know s (but doesn’t need to) so the string can
be generated by some third party trusted by the sender. Due to the algebraic nature of the accumulators
it is possible to randomize each message simply by raising them to random exponents and, thanks to the
bilinearity of e, the verification equation is satisfied e.g., we get:

e(Acc(y)β ,Wit(X \ {y}))α = e(Acc(X)α·β , g)

We refer to to Section 3 for the actual description of our protocol.

Comparison with Prior Accumulator-Based PSI Table 1 provides a qualitative comparison of our protocol
vs. the protocols of [ADT11,ABD+21]. In this comparison we assume a trusted setup for all three protocols:
in this model also the protocol of [ADT11] only has two rounds, but this requires the sender to receive
private information from the setup and therefore does not allow multiple sender to reply to the same first
message from the receiver. The main disadvantage of our protocol looking at the table is clearly that the
size of the setup for the receiver scales with the size of their inputs. Note however that our setup has the

3

[ADT11] [ABD+21] Ours

Assumption RSA RSA SBDDH
Random Oracle Yes No No
Communication (|ZN |, |ZN |+m|H|) (|ZN |,m|ZN |+m|H|) (|G2|,m|G1|+m|H|)
Setup Size S O(1) (private) O(1) O(1)
Setup Size R O(1) O(1) O(n)
Multi-Sender/Laconic No Yes Yes

Table 1: Comparison of existing succinct PSI protocols e.g., where the communication and computation
complexity of the sender is independent of the size of the receivers’ set. We denote by m,n the size of
S,R inputs respectively. Communication complexity is expressed as (first message,second message), with
|ZN |, |G1|, |G2| representing the size of elements from the RSA group, and the two base groups in a type-3
pairing friendly elliptic curve, and H the output of a hash function.

same structure as the setup of widely deployed preprocessing SNARKs, and therefore such setups have
already been generated using the so-called “powers of tau” ceremonies of ZCash, FileCoin, etc. for sizes
up to 100 millions. Moreover, this dependency also provides an interesting additional security guarantee: in
our protocol the sender knows that the size of the set input by the receiver cannot exceed the size of the
setup, while in RSA-based protocols there is no such upper bound, thus a server might maliciously choose
their input to be the entire (or a large fraction of) the universe from which the inputs are picked. Note
also that [ADT11] offers the best communication complexity. This is due to their use of private setup and
random oracle model. We briefly discuss an variant of our protocol in the same model achieving the same
communication in Section 4.5.

Other Related Work. There exists a very large body of research for PSI protocols. We will only mention
the ones most relevant for our work here: several works have studied the question of private set intersection
between a party with a large and a party with a small set. In applications where the communication patterns
guaranteed by laconic protocols is not required, these protocols offer very attractive features. The protocols
of Chen et al. [CLR17] and Chen et al. [CHLR18] are both based on (lattice-based) fully homomorphic
encryption and offer good performances in the case of unbalanced set sizes. In these protocols the roles of the
parties are swapped and it is the party with the smaller set which obtains the output of the computation, and
the communication scales logarithmically with the size of the larger set, thus they are not laconic. Moreoever,
due to the parameter size for lattice-based cryptography their communication overhead in practice is larger
than for RSA or discrete logarithm based constructions. The works of [RA18] and [KLS+17] independently
optimize PSI for unbalanced set sizes and introduce a large receiver side storage overhead to achieve an
online phase which only scales in the size of the smaller set. The protocol of [KRS+19] offers a solution
with impressive performances for mobile private contact discovery, yet the communication complexity scales
linearly with the size of the larger set, and their protocol requires several rounds of interaction. The work
of [RT21] is the state of the art for PSI with small input sets, and we compare empirically against them in
the implementation section.

2 Preliminaries

2.1 Notation

We write a
$← A to sample a uniform element a from a set A. We write [n] for the set {1, . . . , n}. Given a

set X = {x1, . . . , xm}, where xi ∈ Zq we write X−i for the set X−i := X \ {xi}. We write P (X, s) for the
polynomial

∏
x∈X(x− s) of degree |X| in Zq whose roots are all the elements in X and we write P (X, s) =∑|X|

i=0 p(X, i)s
i for its coefficients. Note that using our notation we have P (X, s) = P (X−i, s) · (xi − s).

4

2.2 Assumptions

To get the best concrete efficiency, we work with an asymmetric (type 3) bilinear map e from groups G1×G2

to GT , both of prime order q generated by g1, g2, gT = e(g1, g2) respectively.

We describe here the computational assumption on which the security of our protocol relies on. We define
the (B1, B2)-Strong Bilinear Decisional Diffie-Hellman ((B1, B2)-SBDDH) problem as follows: A challenger

picks a random s ∈ Z∗q and outputs a (B1 + B2 + 2)-tuple of elements
(
g1, g

s
1, . . . , g

sB1

1 , g2, g
s
2, . . . , g

sB2

2

)
∈

G1
B1+1 ×G2

B2+1. The adversary, on input this string, outputs y ∈ Zq. Then the challenger flips a random
bit b and, if b = 0, outputs T = e(g1, g2)1/(y+s), whereas if b = 1 it samples T as a random element from the
target group. The goal of the adversary is to guess the bit b given the T as input. More formally:

Definition 1 ((B1, B2)-Strong Bilinear Decisional Diffie-Hellman Problem ((B1, B2)-SBDDH)).
Consider the game GSBDDH

b,(B1,B2),A described in Figure 2. We say that the (B1, B2)-SBDDH problem is hard if,
for every PPT adversary A, the advantage

AdvSBDDH
(B1,B2),A(κ) :=

∣∣∣∣Pr
(
GSBDDH
0,(B1,B2),A(κ) = 1

)
− Pr

(
GSBDDH
1,(B1,B2),A(κ) = 1

)∣∣∣∣
is negligible in the security parameter κ.

The Game GSBDDH
b,(B1,B2),A(κ)

The game is parametrized by a stateful adversary A = (A1,A2), a parameter (B1, B2) and a bit b.

1. s
$← Z∗q ;

2. y←A1

({
gs
i

1

}B1

i=0
,
{
gs
i

2

}B2

i=0

)
3. T0 = e(g1, g2)1/(y+s);

4. T1
$← GT ;

5. b′←A2(Tb);
6. Output 1 if b = b′.

Fig. 2: The (B1, B2)-Strong Bilinear Decisional Diffie-Hellman Game ((B1, B2)-SBDDH)

We say the (B1, B2)-SBDDH assumption holds if no PPT adversary can solve the (B1, B2)-SBDDH
problem with more than negligible probability.

Looking ahead, the security of our protocol will rely on the (1, B)-SBDDH assumption with B being an
upper bound on the size of the set of the receiver.

The assumption can also be extended to symmetric (type 1) pairings by setting g = g1 = g2 (note in
this case some of the elements given as input to A1 become redundant). Our assumption can be seen as the
natural decisional extension of the Strong Diffie-Hellman (B-SDH) assumption proposed in [BB08]. This

assumption says that given a set {gsi}i∈[B] it is hard to come up with (y, h) such that h = g1/(y+s). Note
however that it is not hard to distinguish h from a random group element, since it is possible to compute the
pairing e(gs · gy, h) and check whether this is the identity in the target group. But it is indeed plausible to
assume that e(g, g)1/(y+s) is indistinguishable from random. In fact a very similar assumption has been used
before under the name Decisional Bilinear Diffie-Hellman inversion assumption (B-DBDHI) by [DY05],
which is equivalent to ours when y = 0. To increase confidence that our assumption is indeed solid, in
Section 5 we prove that our assumption holds in the generic group model.

5

2.3 PSI Notation and Functionalities

A private set intersection protocol (PSI) is a two party protocols between a receiver R and a sender S
with input respectively X = {x1, . . . , xm} and Y = {y1, . . . , yn}. We assume all elements in both sets can
be efficiently encoded as elements of Zq. At the end of the protocol the receiver R learns the intersection
Z = X ∩ Y while the sender learns nothing. This is formally captured in the standard ideal functionality
FPSI which is deferred to the Appendix in Figure 4. For completeness, we also state the zero-knowledge
functionality Fzk (which will be used in actively secure version of our protocol) in the Appendix in Figure 5.

3 Our Laconic PSI Protocol – Semi-Honest Security

We give an high-level overview of our protocol using symmetric (type 1) pairings. The actual description of
the protocol uses asymmetric (type 3) pairings since this leads the a faster implementation. Intuitively, our
protocol works as follows: during the setup phase some party trusted by the sender S4 samples a random
secret s and publishes g raised to the all the powers of s, i.e. gs

i

up to the maximum size of the set of
the receiver. Then, the receiver R uses this information to generate an accumulator of his set X. The
accumulator is then randomized to hide the receiver’s set. In other words, the receiver sends a single group
element R = gr·P (X,s) where P (X, s) is the evaluation in s of the polynomial whose roots are all elements in
X (note that the receiver does not know s but can anyway evaluate this polynomial in the exponent using
the elements from the setup as detailed in the formal description of the protocol), and r is some random
value. Note that the receiver can also compute the accumulator for all subsets X−k obtained by removing
a single xk from X for all k. Call R−k those randomized accumulators, computed as R−k = gr·P (X−k,s).
Assume for this informal description that the set of the sender S is a singleton containing y. Now the sender
S can send the accumulator computed on its own singleton set, again randomized to hide its input, i.e.,
the sender sends U = gt(s−y) for some random t. The sender also sends the “target value” T = e(R, g)t for
reasons that will be apparent shortly. Finally the receiver can use the bilinear pairing to “combine in the
exponent” the accumulator of the sender with each of its own “subset accumulators” R−k by computing
e(R−k, U) and checking whether this is equal to the target element T . Note that if y is equal to the element
missing from any X−k, the output of the pairing is an element in the target group whose exponent contains
P (X, s) and the randomness chosen by both parties. It turns out that this is exactly the target value sent
by the sender, thus the output of the comparison will reveal to the receiver whether y ∈ X.

For security, note that the input of the receiver is in fact protected unconditionally: the randomizer r
turns R into a uniformly random group element independent of the set X. Security for the sender is more
interesting. Note that the sender re-uses the randomness t in both T = e(R, g)t and U = gt(s−y). One might
be tempted to directly argue security using some DDH-type assumption, however note that this would fail
since R, which determines the base in the first element, is chosen by the receiver. It turns out that the
security of the protocol can be reduced to the SBDDH assumption (Definition 1), as we show in the proof
of Theorem 1.

The formal description of the protocol is given in Figure 3. The main differences with this informal
description are the following: the protocol is presented using asymmetric (type 3) pairings; the set of the
sender can contain multiple elements, and the sender will compute a pair (T,U) as described above for
each element in their set using independent randomness for each pair; to save on communication, a hash of
the target is sent instead; finally, the sender randomly permutes their set before performing the protocol,
otherwise the receiver might extrapolate additional information about the input of the receiver from the
positions of the matches (e.g., if the sender orders its input in lexicographical order and the receiver finds a
match in the first position, then the receiver learns that all elements in the set of the sender are larger than
this, which is not an information that could have been derived from the intersection of the sets alone).

Theorem 1. The protocol ΠPSI securely implements FPSI in the presence of passively corrupted adversary
assuming hardness of the (1, B)-SBDDH problem (Definition 1) and collision-resistance of H.

4 We will later discuss how to reduce the amount of trust in this party.

6

The Protocol ΠPSI

Inputs/Outputs: The protocol is run between a receiver R with input X = {x1, . . . , xm} and a sender S with
input Y = {y1, . . . , yn}. We assume the inputs can be efficiently encoded as elements in Zq. At the end the
receiver learns Z = X ∩ Y while the sender learns nothing.

Setup: Let λ be security parameter and H(·) be a collision-resistant hash function H : {0, 1}∗ → {0, 1}λ. The
receiver and the sender agree on a bilinear map e : G1 × G2 → GT where the generators are g1, g2, gT =
e(g1, g2) respectively. During the setup phase a party trusted by S picks a random s ∈ Z∗q , then computes
and send:

setupR = (S1, S2, . . . , Sm) and setupS = (S′)

to R and S respectively where S′ = gs1 and Si = gs
i

2 for i = 0, . . . ,m.
First Round: In any session sid, the receiver R sends

msg1 = (sid,R)

to the sender, computed as follows:

1. Pick random r
$← Zq;

2. Compute R =
(∏m

i=0 S
p(X,i)
i

)r
if X 6= ∅;

3. Compute R = (S0)r if X = ∅.
Second round: In any session sid, the sender S sends to the receiver R the message

msg2 = (sid, T1, U1, . . . , Tn, Un)

computed as follows. Pick a random permutation π : [n]→ [n]. Then for all j ∈ [n]:

1. Pick random tj
$← Zq;

2. Compute

(Tj , Uj) =

(
H
(
e
(
g
tj
1 , R

))
,
(
S′ · g−yπ(j)

1

)tj)
Retrieve Output: To retrieve the output from a session sid, the receiver R does the following; For all j ∈

[n], k ∈ [m], the receiver initializes Z = ∅ and then does the following:
1. Compute

R−k =

(
m−1∏
i=0

S
p(X−k,i)
i

)r
2. If H (e (Uj , R−k))

?
= Tj , then add xk to the output Z;

The receiver outputs Z.

Fig. 3: Our Private Set Intersection Protocol

7

Proof. We now show that the protocol is correct and that it is possible to generate simulated transcripts for
both parties that are computationally indistinguishable from the view of the parties in a real execution of
the protocol.

Correctness: Assume Y is a singleton set equal to y (e.g., for simplicity we skip the j index here) and that

y = xk. Then the receiver concludes that xk is in the intersection if: H (e (Uj , R−k))
?
= H (e (gt1, R)). Since

we assume H to be collision resistant, except with negligible probability this happens iff the two inputs to
H are equal. Then the receiver includes xk in their output iff y = xk since:

e (U,R−k) = e

(
U,

(
m−1∏
i=0

S
p(X−k,i)
i

)r)
= e

(
g
t(s−y)
1 , g

r·P (X−k,s)
2

)
= e (g1, g2)

r·t·P (X,s)

and also

e
(
gt1, R

)
= e

(
gt1,

(
m∏
i=0

S
p(X,i)
i

)r)
= e

(
gt1, g

r·P (X,s)
2

)
= e (g1, g2)

r·t·P (X,s)

Security – Corrupted Sender: We simulate the view of a corrupted sender in the following way: the simulator
Sim, on input the set Y of the sender and nothing else (the sender has no output in the protocol), picks
a random r ∈ Zq and outputs msg1 = (sid,R) with R = gr2. Note that this completes the view of the
sender S in the protocol since we only need to simulate the incoming messages. We argue that the output
of this simulator is indistinguishable from the view of a corrupted sender in the real protocol in a strong,
unconditional sense. By construction of R in the protocol, if X = ∅ then the simulation is trivially perfect.
If X 6= ∅, the distribution are identically distributed as long as P (X, s) 6= 0. Note however that this only
happens with negligible probability bounded by |X|/q = m/q. This concludes the argument in the case of a
corrupted sender.

Security – Corrupted Receiver: We simulate the view of a corrupted receiver, with output Z, in the following
way: the simulator Sim on input the sets X,Z follows the following instructions.

1. Simulate the setup as an honest party would do i.e., pick a random s ∈ Z∗q and add

(setupS , setupR) = (S′, S1, S2, . . . , Sm)

to the simulated view, where S′ = gs1 and Si = gs
i

2 for i = 0, . . . ,m.
2. Let Z = {z1, . . . , zζ}.
3. Compute R as in the protocol.
4. Pick a random subset Γ ⊆ [m] with |Γ | = |Z| = ζ. This simulates the positions for which R gets a match

in the protocol.
5. Define the complimentary set ∆ = [m] \ Γ . This simulates the positions for which R does not get a

match in the protocol.
6. Let Γ = {γ1, . . . , γζ} i.e., the positions from which R should learn their output. For every j ∈ [ζ] generate

(Tγj , Uγj) as in the protocol i.e., pick a random tj ∈ Zq and compute

(
Tγj , Uγj

)
=

(
H
(
e
(
g
tj
1 , R

))
,
(
S′ · g−zj2

)tj)
7. Let ∆ = {δ1, . . . , δω} with ω = m − ζ i.e., the positions from which R does not get a match. For every
j ∈ [ω] simulate (Tγj , Uγj) as follows: pick random tj , uj ∈ Zq and compute(

Tδj , Uδj
)

=
(
H
(
e (g1, g2)

tj
)
, g
uj
1

)
8

8. Finally include
msg2 = (sid, T1, U1, . . . , Tn, Un)

to the simulated view.

In other words, the simulator picks at random which indices j correspond to a match and which do not,
then makes sure that the j’s that should produce a match indeed do so by computing the corresponding
group elements as an honest party would do, while it just sends uniformly random group elements for the
j’s which should not give a match. We now argue indistinguishability of the real protocol and the simulated
execution using the following hybrids.

Hybrid 0. In this hybrid the distribution of the view of R is the same as in the real protocol.

Hybrid (1,0). The same as Hybrid 0, with the exception that now we do not directly pick the permutation π
uniformly at random. Instead, we first pick sets (Γ,∆) at random like in the simulation i.e., Γ is a random
subset of [m] with Γ = (γ1, . . . , γζ) and ∆ is the complimentary set. Now, for each j we find the index ρ(j)
such that zj = yρ(j) and we choose a random permutation π under the the constraint that π(γj) = ρ(j). We
then fill the remaining positions in the permutation at random.

The distribution produced by Hybrid (1,0) is identical to the distribution produced by Hybrid 0, since
in both cases π is an uniform permutation in [m].

Hybrid (1,j) for all j ∈ [m]. We now have a sequence of m hybrids, where in each hybrid we change the
distribution of a single pair (Tj , Uj), so that in Hybrid (1, j− 1) the pair (Tj , Uj) is generated like in the real
protocol, whereas in Hybrid (1, j) the pair (Tj , Uj) is generated like in the simulation. Each hybrid j uses
the output set Z and the last m− j elements of of the input set Y (thus, by construction, hybrid (1,m) does
not use Y).

Note that by construction of π in the previous hybrid, for all j ∈ Γ (i.e., the position for which the
receiver gets a match), the pair (Tj , Uj) is identically distributed in the real protocol and the simulation,
and therefore for all j ∈ Γ the distribution of Hybrid (1, j − 1) and Hybrid (1, j) are trivially identical.

We prove in Claim 3 that the distributions of Hybrid (1, j − 1) and Hybrid (1, j) for j ∈ ∆ are compu-
tationally indistinguishable under the (1,m)-SBDDH assumption.

Hybrid 2. In this hybrid the distribution of the view of R is the same as in the simulated execution.
The distribution of Hybrid 2 is identical to the one in Hybrid (1,m), since in Hybrid (1,m) the distribution

every single pair (Tj , Uj) from the real protocol has been replaced with the corresponding pair from the
simulated transcript. Therefore, this concludes the proof.

Claim. For all j ∈ Γ , the distribution generated by Hybrid (1, j − 1) and Hybrid (1, j) are computationally
indistinguishable under the (1,m)-SBDDH assumption (Definition 1).

Proof. We show here that a distinguisher A that can tell Hybrid (1, j − 1) and Hybrid (1, j) apart with
non-negligible advantage can be turned into an adversary B = (B1,B2) that has a non-negligible advantage
against the (1,m)-SBDDH problem. Note that the reduction can choose and therefore knows the inputs X,Y
for both parties. The reduction goes as follows:

1. B1 receives as input (g1, S
′, g2, S1, S2, . . . , Sm) from the (1,m)-SBDDH challenger.

2. The reduction picks a random permutation π and lets B1 output y∗ = −yπ(j).
3. Now B2 receives T ∗ as input from the challenger, and uses it to complete the transcripts of the protocol

in the following way:
(a) The reduction includes the message setup = (g1, S

′, g2, S1, S2, . . . , Sm) in the transcript of the pro-
tocol.

(b) The reduction picks a random r ∈ Zq, computes R = g
r·P (X,s)
2 and includes the message msg1 =

(sid,R) in the transcript of the protocol.
(c) For all i < j, the reduction generates a pair (Ti, Ui) like a real world sender S would do.

9

(d) For all i > j, the reduction generates a pair (Ti, Ui) following the instructions of the simulator Sim.
(e) For i = j, the reduction generates (Tj , Uj) as follows: pick a random τ ∈ Zq and compute

(Tj , Uj) =
(
H
(

(T ∗)τ ·P (X,s)
)
, gτ1

)
4. The reduction includes the message msg2 = (sid, T1, U1, . . . , Tm, Um) in the transcript of the protocol.
5. The reduction invokes the distinguisher A on input the transcripts of the protocol. If A’s guess is “real

protocol”, then B2 outputs 0, whereas if A’s guess is “simulated protocol”, then B2 outputs 1.

We now analyze the success probability of the reduction. It suffices to notice that when T ∗ = e(g1, g2)1/(s+y
∗)

then the input of the distinguisher is distributed identically as in Hybrid (1, j − 1) whereas then T ∗ is a
random element from GT then the input of the distinguisher is distributed identically as in Hybrid (1, j).
When b = 0, this can be observed using the following renaming of variable t := τ/(s + y∗). Note that, as
long as s+ y∗ 6= 0, which only happens with negligible probability, if τ is uniformly random in Zq then so is
t. Therefore when b = 0 we get that:

(Tj , Uj) =
(
H
(

(T ∗)
τ ·P (X,s)

)
, gτ1

)
=
(
H
(
e(g1, g2)τ ·P (X,s)/(s+y∗)

)
, gτ1

)
=
(
H
(
e(g1, g2)t·P (X,s)

)
, g
t(s+y∗)
1

)
=
(
H
(
e(g1, g2)t·P (X,s)

)
, g
t(s−yπ(j))
1

)
=

(
H
(
e(gt1, R)

)
,
(
S′ · g−yπ(j)

1

)t)
(in the first equality we replace T ∗ = e(g1, g2)1/(s+y

∗), in the second equality we replace t = τ/(s + y∗), in
the third equality we replace y∗ = −yπ(j), and in the final equality we replace the definitions of R and S′)
which is the distribution in the real protocol. When b = 1 and T ∗ is a random element from GT we can write
T ∗ = e(g1, g2)t

∗
and thus get:

(Ti, Ui) =
(
H
(

(T ∗)
τ ·P (X,s)

)
, gτ1

)
=
(
H
(
e(g1, g2)t

∗·τ ·P (X,s)
)
, gτ1

)
=
(
H
(
e(g1, g2)t

)
, gu1
)

(in the first equality we replace T ∗ = e(g1, g2)t
∗
, in the second equality we replace u := τ and t := t∗ · τ ·

P (X, s); note that if P (X, s) 6= 0 then t, u are uniform in Zq since τ, t∗ are) which is exactly the distribution
of the simulated execution.

This concludes the proof of the claim.

4 Active Security and Extensions

In this section we first (Section 4.1) analyze to which extent the original protocol provides any (weak but)
meaningful security guarantees against active adversaries essentially as it is (i.e., we argue for some game-
based properties of the protocol). Then (Section 4.2) we describe how to achieve full active security (in a
strong ideal world/real world simulation sense). We then discuss some extensions of the protocol including:
how to let multiple parties contribute randomness to the setup phase (Section 4.3), introducing tradeoffs
to reduce the computational overhead of the receiver, at the price of increased overhead for the sender,
using standard bucketing techniques (Section 4.4), a variant of the semi-honest protocol achieving better
communication complexity using random oracles and private setup (Section 4.5).

10

4.1 Active Attacks vs. ΠPSI And Countermeasures

We analyse possible active attacks on our protocol ΠPSI and some simple countermeasures which allow to
achieve game-based security properties in this setting. This also serves as a warm-up towards our final
fully-active secure protocol.

Privacy vs. Malicious Sender. Consider an actively corrupt sender S∗, who also controls the setup generation.
As we have discussed in the proof of Theorem 1, the output of the simulator is indistinguishable to the view
of a passively corrupt S in the protocol in a strong, unconditional sense. Therefore the only way that an
active attack can hope to break the privacy of the receiver is by choosing the setup setupR maliciously (we
will argue later that in fact it is always possible to check that the setup is well formed, but an adversary could
still choose s maliciously). Note that there is indeed an attack in this case: consider for simplicity the case
where X = {x} contains a single element. Then an active attacker would be able to check whether x∗ ∈ X
by picking s = −x∗ and publishing setupR = gs2, which leads to R = 1G2

iff x = x∗. This can be easily fixed
by adding a simple step to the protocol: we let the receiver 1) check that the setup message setupR is indeed
a vector of valid group elements in G2; and 2) we let the receiver R pick a random value σ (after seeing the
setup) which is used to “shift” both input sets X,Y into X̃, Ỹ where for all i, j x̃i = xi + σ and ỹj = yj + σ.

Then, both parties run the original protocol with inputs X̃, Ỹ instead. Since this is a bijective mapping this
transformation has no effect on correctness.

With these adjustments, we can easily prove that the message R is statistically independent of the set X
for any (even possibly ill-formed) choice of setupR. To see why consider setupR = (S1, . . . , Sm). If R checks
that setupR ∈ G2

m then there exists s1, . . . , sm ∈ Zq such that

setupR = (gs12 , . . . , g
sm
2)

(even if the sender S might not know these values). Let p(X̃, i) be the coefficients of the polynomial whose

roots are the elements of X̃, then it holds that R =
(
g
∑
si·p(X̃,i)

2

)r
is a uniformly random element in G2 as

long as
∑
si · p(X̃, i) 6= 0. But since σ is random and sampled after the adversary chosen s0, . . . , sm, this

only happens with negligible probability.

Correctness vs. Malicious Sender. We ask whether there are attacks that a malicious S∗ could mount on
our protocol which would lead the honest receiver R to output some “incorrect value”. By construction the
protocol only allows R to output a set Z such that Z ⊆ X so even a corrupt sender cannot make the receiver
output elements which are not already in their own set. But we can still ask whether there is a strategy for
S∗ to force the output of R to contain some high-entropy elements (imagine an application of PSI where
S is supposed to input some secret, e.g. a password, and R would later grant S access if the output of the
protocol is not empty). Again, there is a simple attack against this by choosing (T,U) = (H(1GT), 1G1

) which
leads, for any k, to H(e(U,R−k)) = T . We can easily counteract this by asking the honest receiver to abort
if they receive such tuples.

We can analyze what happens then: Suppose for simplicity that the honest receiver has a single, uniformly
random input element X = {x}. Then, after receiving some S1 from S∗, R replies with

(
R =

(
S1g
−x
2

)r)
. In

the retrieve phase, R outputs Z = {x} iff

H(e(U, gr2)) = T

where S1, U, T are chosen by the malicious S∗. Now, since x is uniformly random the message R contains
statistically no information about r independently of the choice of S1, and therefore the probability that
S∗ produces (U, T) that satisfy the check is negligible. (In the final fully active secure protocol this class of
attacks will be prevented without assuming any distribution of x, but by asking the malicious S∗ to prove
that they computed (T,U) according to the protocol specification).

11

Privacy vs. Malicious Receiver. A malicious receiver might try to send an ill-formed message R in the hope
to extract sensitive information about the input of the sender. Note however that any R 6= 1G2 is in fact a
possible choice for R. Intuitively, privacy vs. a malicious receiver holds since (under the discrete logarithm
assumption) even a malicious receiver knows at most one representation of R in base (S0, . . . , Sm), and any
such representation corresponds to an input set of X. So intuitively the worse that a malicious receiver can
do is to pick its input X∗ maliciously. Note in this sense that the fact that our protocol by construction
limits the receiver to pick a set X∗ of size at most m (defined by the setup phase) might even be seen as a
feature vs. the RSA based constructions which would allow a malicious receiver to pick a set X∗ of arbitrary
size.

Inspecting our semi-honest proof of security in Theorem 1 it is possible to notice that neither our simulator
nor the reduction to our assumption needs to use the knowledge of the discrete logarithm of R to prove the
claim, nor it needs to compute the setup parameters setupR as a function of the value of R. Note finally that
not even the invalid choice R = 1G2

would help the corrupt receiver, since this just leads T to be H(1GT),
thus losing information about the sender’s random choice t, and leading U to be perfectly indistinguishable
from a random element in the group.

Correctness vs. Malicious Receiver. Since the sender has no output, there are trivially no active attacks in
this case.

4.2 Full Active Security via ZK-Proofs

Here we explain how to achieve full active security (i.e., simulation-based) in the presence of active adver-
saries. We describe the differences with the semi-honest protocols and defer the full description of the active
secure protocol to Appendix B. At a very high-level, active security is achieved employing the countermea-
sures described above and by letting both parties prove in zero-knowledge that the messages they send are
well formed, to allow for simulation-based security. We stress that the ZK-relations we need in the protocol
can be proven with succinct communication using recent advances in zero-knowledge proofs.

Laconic PSI with Active Security. Our active secure protocol, which we denote by Π∗PSI, is similar to the one
in Figure 3 with the following modifications (the protocol makes use of the Fzk functionality in Figure 5):

1. Parties abort if they ever receive the identity element in any group.

2. Add a step to First Round where R verifies that the setup is of the correct form by checking, for all
i ∈ [m], that e(S′, Si−1) = e(g1, Si). When i = 1 this asserts that logg1(S′) = logg2(S1) = s, and for
all other i it asserts that logg2(Si−1) = s · logg2(Si). Noticing that our setup is very similar to those of
recent SNARKs, we borrow this technique from recent works on SNARKs with universal and updatable
setup [GKM+18].

3. In First Round, add a step where R invokes the Fzk functionality for the following relation (Greek
letters indicate values which are not already defined as part of the protocol):

RR =

{
x = (setupR, R)
w = (ω0, . . . , ωm)

: R = Sω0
0 · S

ω1
1 · . . . · Sωmm

}
where ωi = p(X, i) · r. Using recent results in compressed Σ-protocols, we can construct practically
efficient ZK-proofs (in the sense that they don’t need to represent group exponentiation as a Boolean
circuit) for such relation with size only O(log(m)) [AC20,BCC+16].

4. In Second Round, modify Step 2 to remove the collision-resistant hash function from the computation
of Tj i.e., Tj is now computed as Tj = e(g

tj
1 , R). Similarly, remove the hash function from the check in Step

2 in Retrieve Output. (The efficiency loss from having to prove the hash function in zero-knowledge
outweights the savings in communication.)

12

5. In Second Round, add a step where S invokes the Fzk functionality for the following relation (Greek
letters indicate values which are not already defined as part of the protocol):

RS =

{
x = (setupS , δ, {Tj , Uj}j∈[n])

w = ({tj , αj}j∈[n])
:

Tj = δtj∧
Uj = (S′)tjgα1

}
where δ = e(g1, R) and αj = −tj · yπ(j). Using [ABC+22], we can construct proofs for this relation of
size only O(log(n)).

We can then show the following:

Theorem 2. The protocol Π∗PSI securely implements FPSI in the presence of an actively corrupted adversary
assuming the hardness of the (1, B)-SBDDH problem (Definition 1) in the Fzk-hybrid model.

The full proof is deferred to Appendix B. Intuitively, the simulator will be able to extract the inputs of
both parties thanks to the Fzk functionality. In particular, extracting the input of the sender from αj , tj and σ
is quite straightforward once one notices that Tj 6= 1GT ⇒ tj 6= 0. To extract the input of the receiver we first
extract the coefficients ω0, . . . , ωm and then interpret them as the coefficients of a degree m polynomial Ω.
The simulator can find the roots of Ω using an efficient polynomial factoring algorithm [CZ81,vzGS92,Sho93]
which define an input set X̃∗ for the corrupted R∗, which can then be easily turned into X∗ by subtracting
σ. The views of both parties are still simulated essentially as in the semi-honest case.

4.3 Updatable Setup

Recall that correctness of the setup phase can be easily checked using pairing relations and that the sender
does not need to know the setup trapdoor s (in fact no one does). In other words, the only property required
by the setup is that the receiver does not learn s.

It is therefore natural to think of a setting in which multiple parties jointly generate the setup, such
that if at least one of these parties is honest then the protocol is secure. As already noticed the structure
of our setup is very similar to those of recent SNARKs with universal and updatable setup [GKM+18]. In
particular this means that we can use the same techniques to let multiple parties contribute randomness to
the setup in a sequential way in the following way: each party Pι takes as input the setup output by party
Pι−1 and outputs an updated setup string. For convenience let:

(S′0, S0,1, . . . , S0,m) = (g1, g2, . . . , g2)

Then party ι can first verify that the setup string ι− 1 is correct by checking that for all i ∈ [m]:

Sι−1,i 6= 1G2
and e(S′ι−1, Sι−1,i−1) = e(g1, Sι−1,i)

and then contribute randomness sι by outputting:

(S′ι, Sι,1, . . . , Sι,m) = ((S′ι−1)sι , Ssιι−1,1, . . . , S
sι
m

ι,m)

Which leads to a final secret s =
∏
ι sι being uniformly random in the view of the adversary as long as

at least one party is honest. This is a big advantage w.r.t., the RSA-based construction since multiparty
generation of RSA moduli is notoriously a complex secure multiparty computation task.

4.4 Reducing Receiver’s Overhead Using Bucketing

The main computational bottleneck in our protocol are the O(m · n) pairings performed by the receiver
during the Retrieve Output phase. While in this work, we chose to focus on minimizing the overhead
for the sender, there are value of m,n for which our protocol becomes too slow on the receiver side to be
practically relevant.

13

We note here that standard bucketing techniques (originating from [PSZ14]), such as simple hashing,
can be used in our setting to reduce the receiver’s computational costs at the expense of a larger first round
message from the receiver to the sender. More concretely, given a random function H : {0, 1}∗ → [k], the
receiver can first partition the set X by throwing elements xi into buckets H(xi) and then compute the first
round message of our laconic PSI protocol for each of those buckets independently. The sender can partition
the set Y consistently with function H, then, roughly speaking, pad each bucket slightly to hide the concrete
number of elements in the bucket, and finally compute the second round message independently for each
bucket and each of the first round messages that it received.

Using this strategy the first round message of the receiver increases by a multiplicative factor of k.
Ignoring the padding for a second, one can see that in expectation each bucket will contain n/k elements
and thus the receiver will need to perform roughly

k · n/k ·m/k = nm/k

pairing evaluations, which is a factor k cheaper than the computational costs for the naive receiver.

4.5 Reducing Communication Complexity with Private Setup and Random Oracle

Note from Table 1 that the protocol of [ADT11] offers the best communication complexity. This is due
to their use of private setup and random oracle model. We briefly discuss here a variant of our protocol
achieving the same communication complexity: Following the blueprint of [ADT11], in the setup phase we
let the sender S learn the setup trapdoor s. Thanks to the knowledge of s, S can compute for each y ∈ Y

T = e(g
t/(s−y)
1 , R) = e(g1, g2)r·t·P (X,s)/(s−y)

and send it along with U = gt1. The check performed by the receiver in Retrieve Output does not need to
change, and the result of the following computation on the receiver side

e(U,R−k) = e(g1, g2)r·t·P (X−k,s)

is equal to T when y = xk. If the sender has a set of size larger than 1, in the standard model we would
need to use a different t for each y to preserve privacy. However, thanks to the properties of the random
oracle model, we can use a single randomizer t and transfer a single U together with H(T1), . . . ,H(Tm) and
still achieve security. Intuitively this is because, in the random oracle model, the hardness of computing
e(g1, g2)1/(s−y) is turned into entropy. Since the resulting protocol is not laconic and requires the sender to
know the trapdoor from the setup (which makes the setup much harder to realize in practice) we do not
investigate this variant further.

5 Generic Security of the (B1, B2)-SBDDH Assumption

In this section, we examine the (B1, B2)-SBDDH assumption in the generic group model: In the generic group
model, elements of G1, G2 and GT are encoded as unique random strings, so that the adversary can only
test string equality. We define a family of injective functions Θ1 where θ1 ∈ Θ1 is a function θ1 : Zq 7→ {0, 1}`
mapping a scalar a ∈ Zq to the string representation θ1(a), with ` ≥ log2 q. Similarly, we define families
Θ2, ΘT for G2 and GT such that θ2 ∈ Θ2 is of the form θ2 : Zq 7→ {0, 1}` and θT ∈ ΘT is of the form
θT : Zq 7→ {0, 1}`. The adversary performs operations on group elements by interacting with an oracle G
which in turns gives access to several sub-oracles: three oracles for the group operation in each of the three
groups G1, G2 and GT , two oracles for the homomorphism ψ : G2 7→ G1 and its inverse ψ−1, and one oracle
for the bilinear pairing e : G1 ×G2 7→ GT . Note that such homomorphism are not efficiently computable in
the type of curves that we use to instantiate the protocol. However, by giving more power to the adversary
in model we make our claim stronger and we cover security of the SBDDH assumptions also in other settings
in which such homomorphism are efficiently computable, or in the symmetric case where G1 = G2.

14

Theorem 3. Let A = (A1,A2) be an stateful algorithm that solves the (B1, B2)-SBDDH problem. Assume
that A makes at most qG oracle to G queries for the group operations in G1, G2 and GT , the homomorphisms
ψ and ψ−1, and the bilinear pairing e : G1 ×G2 7→ GT , all counted together. Then,∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Pr

AG2 (θT (Γ0) , θT (Γ1)) = b

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x
$← Z∗q ;

θ1, θ2, θT
$← Θ1, Θ2, ΘT ;

y←AG1

 q,
{θ1

(
xi
)
}i∈[0,B1],

{θ2
(
xi
)
}i∈[0,B2]

 ,

b
$← {0, 1};

Γb ← 1/(x+ y);

Γ1−b
$← Z∗q

− 1

2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
is bounded by ε < 2 (qG + 2B + 4)

2 (B+1)
q and B = max(B1, B2).

Proof. Instead of letting A interact with the actual oracles, we consider an algorithm B simulating the game
with A. The main idea is that B will not pick an actual value x until the very end of the game, and will
instead just keep internally the symbolic polynomial representation of all the elements queried by A. Since in
the generic group model A sees random strings anyway, the simulation is perfect as long as B do not send two
different representations to A for the same group element. This could happen e.g., if two of the polynomials
internally stored by B evaluate to same the value once the formal variable is replaced by the sampled x. This
proof structure is very standard in generic group model proofs see e.g., [Sho97,DY05,BB08,CDK+12].

The simulated oracle B maintains three lists of pairs L1 = {(F1,i, s1,i) : i = 0, 1, . . . , t1 − 1}, L2 =
{(F2,i, s2,i) : i = 0, 1, . . . , t2 − 1} and LT = {(FT,i, sT,i) : i = 0, 1, . . . , tT − 1}. Let B denote max (B1, B2).
Here, the entries F1,i and F2,i will be multivariate polynomials of degree ≤ B in Zq[X,Γ0, Γ1] and FT,i will
be of degree ≤ 2B in Zq[X,Γ0, Γ1]. The entries s1,i, s2,i and sT,i will be all the encoding strings given out to
the adversary. At the beginning of the game, the lists are initialized at step τ = 0 by assigning F1,i = Xi for
i = 0, . . . , B1, F2,i = Xi for i = 0, . . . , B2, FT,0 = Γ0 and FT,1 = Γ1. The corresponding encodings are set to
random distinct `-bit strings. All polynomials are stored as coefficients of powers of variables. The lists have
length t1 = B1 + 1, t2 = B2 + 1 and tT = 2.

We assume that A only makes oracle queries on encoding strings of elements it had previously received.
For any query encoding string, B can find the corresponding polynomial by determining the index of string.
It is required that the strings in each list should be distinct.

To start the game, B provides A1 with the B1 + B2 + 2 encoding strings (s1,0, . . . , s1,B1 , s2,0, . . . , s2,B2)
that correspond to the first part of the SBDDH instance. A1 begins to issue oracle queries. B responds to
A1’s queries as follows:

Group operations: Given two operands s1,i and s1,j with 0 ≤ i, j < t1 and a multiply/divide bit, B
computes the polynomial F1,t1 = F1,i±F1,j accordingly. If F1,t1 = F1,l for some l < t1, B sets s1,t1 = s1,l.
Otherwise, s1,t1 is set as a random string in {0, 1}`\{s1,0, . . . , s1,t1−1}. The pair (F1,t1 , s1,t1) is added to
the list L1, the string s1,t1 is given to A1 as the answer, and t1 is incremented by 1.
Group operation queries in G2 and GT are answered similarly, except B operates on the lists L2 and LT
respectively.

Homomorphisms: Given a homomorphism query from G2 to G1 with an operand s2,i, 0 ≤ i < t2, B makes
a copy of the associated polynomial F2,i into L1, i.e. F1,t1 = F2,i. If F1,t1 = F1,l for some l < t1, B sets
s1,t1 = s1,l. Otherwise, s1,t1 is set as a random string in {0, 1}`\{s1,0, . . . , s1,t1−1}. The pair (F1,t1 , s1,t1)
is added to the list L1, the string s1,t1 is given to A1 as the answer to the query, and t1 is incremented
by 1.
Inverse homomorphism queries from G1 to G2 are answered similarly, except B makes a copy of the
polynomial from G1 and operates on the list L2.

Pairing: Given a pairing query consisting of two operands s1,i and s2,j with 0 ≤ i < t1 and 0 ≤ j < t2, B
computes the product FT,tT = F1,i ·F2,j . If FT,tT = FT,l for some l < tT , B sets sT,tT = sT,l. Otherwise,

15

sT,tT is set as a random string in {0, 1}`\{sT,0, . . . , sT,tT−1}. The pair (FT,tT , sT,tT) is added to the list
LT , the string sT,tT is given to A1 as the answer to the query, and tT is incremented by 1.

After making qG,1 queries, A1 outputs y, and A2 receives the strings (sT,0, sT,1) corresponding to the
second part of the SBDDH instance. Now A2 can perform more oracle queries similarly to A1 (remember that
since A is stateful, A2 has full information about the queries performed by A1 and the responses received
by B).

After making at most qG,2 queries with qG = qG,1 + qG2 , A2 returns a guess b̂ ∈ {0, 1}. B chooses a bit b

and uniform value x, z
$← Z∗q and sets Γb ← 1/(x+ y), Γ1−b ← z.

If the simulation provided by B is consistent, it reveals nothing about b. The only way in which the
simulation could be inconsistent is that, after we choose values for X,Γ0, Γ1, two different polynomials in
each list happen to produce the same value. Specifically, A wins if either of the following holds, for any
† ∈ {1, 2, T}:

1. F†,i(x, 1/(x+ y), z) = F†,j(x, 1/(x+ y), z)
2. F†,i(x, z, 1/(x+ y)) = F†,j(x, z, 1/(x+ y))

in Zq for some i, j such that F†,i 6= F†,j in Zq[X,Γ0, Γ1],
Assume that x + y 6= 0 (which happens with probability 1 − 1/q). Then note that ∀i the degree of the

polynomials F1,i, F2,i is upper bounded by B and the degree of the polynomials FT,i is upper bounded by 2B.
In particular, no polynomial that the adversary created interacting with the oracle contains the term 1/X.
Therefore we can bound the probability that any two polynomials assume the same value when substituting
with the formal variable with the random choices using the Schwartz-Zippel lemma. In particular we get
that for all i, j, Pr[F1,i − F1,j = 0] = Pr[F2,i − F2,j = 0] ≤ B/q and Pr[FT,i − FT,j = 0] ≤ 2B/q. Summing
up we get that the probability that the simulation fails is bounded by:

ε ≤ 2 ·
((

t1
2

)
B

q
+

(
t2
2

)
B

q
+

(
tT
2

)
2B

q

)(
1− 1

q

)
+

1

q

Remembering that the total length of the lists of polynomials t1 + t2 + tT after qG queries is at most
qG +B1 +B2 + 4 we get that:

ε < 2 (qG + 2B + 4)
2 (B + 1)

q
= O

(
q2GB +B3

q

)

6 Experimental Results

We implemented our protocol together with related work using the RELIC library [AGM+], and bench-
marked the implementations on an Intel Core i7-7820X CPU running at 3.60GHz. RELIC is well-suited
for implementing the different protocols, since it contains efficient implementations of the RSA cryptosys-
tem, record-setting implementations of the pairing computation and some advanced functionality including
multi-scalar exponentiations within the pairing groups. We selected parameters at the 128-bit security for the
experiment, which translates to 3072-bit RSA moduli and the BLS12-381 pairing-friendly curve, as estimated
in [BD16,MSS16]. Since some of the benchmarks were computationally intensive and could not be executed
more than once, we disabled HyperThreading and TurboBoost to reduce randomness. We conducted two sets
of experiments: the first to compare our protocol against other accumulator-based protocols, and the second
to compare against other protocols in the literature optimized for small set sizes. The code to implement the
protocols and execute the experiments is available at https://github.com/relic-toolkit/relic/tree/

main/demo/psi-client-server.
We compared our protocol with the works of Alamati et al. [ABD+21] and Ateniese et al. [ADT11],

which both use RSA-based accumulators. For implementing the two latter protocols, we apply a collection of
optimizations for a fair comparison. The description of the optimized protocols is provided in Appendix C.
We implement the hash-to-prime function by simply testing a truncated value of the hash result for primality,

16

https://github.com/relic-toolkit/relic/tree/main/demo/psi-client-server
https://github.com/relic-toolkit/relic/tree/main/demo/psi-client-server

and incrementing until a positive answer is found. We deliberately select the hash length to λ1 = 80 bits to
achieve statistical security of 40 bits, which is comparable to other semi-honest protocols in the literature.
The hash results are also cached by the Receiver from the First Round until the very last step (Retrieve
Output) to avoid excessive primality testing. For the particular case of the [ADT11] protocol, we allow the
sender to optimize the exponentiations by using the Chinese Remainder Theorem with knowledge of the
factorization N = PQ. In order to reduce traffic requirements, in the last step we compare hash results
instead of full elements, while preventing collisions by setting the hash output length to λ2 = 256 bits. For
the RSA-based protocols, a complexity of O(m2) is required in the Retrieve step to rebuild the accumulator
m times (one for each missing element) containing the m−1 elements. That is repeated for each of the O(n)
elements Uj received from the Sender in the case of [ABD+21]. It is not possible to precompute this step,
since it depends on the Sender output. A dynamic programming optimization proposed in [ADT11] could
reduce this cost further, but it was not implemented.

For our protocol, we allow the Receiver to precompute and cache m versions of the randomized accumu-
lator as R−k, each missing one element, as to reduce complexity of the last step. This allows to implement
the Retrieve Output operation in effectively O(nm) operations. The group elements Uj sent by the Sender
are transmitted in compressed form to save bandwidth, since point compression is trivial for elliptic curves
on the Sender side and involves an expensive square root in a finite field for decompression at the Receiver,
again trading off costs to favor the Sender.

Table 2 contains the first set of results. We present numbers for computation by both Sender and Re-
ceiver, for equal set sizes ranging from 27 to 210. The Receiver’s computation is further broken down in
the First Round and Retrieve Output steps of the protocol. For our protocol, the First Round contains the
precomputation of all R−k, which explains the higher values. In this table, we do not take into account the
communication latency or bandwidth, but just the communication complexity in bits. From the table, one can
see that our protocol is close to 20 times more efficient than [ABD+21], and 3.25 times faster than [ADT11]
at the Sender side. For the Receiver, the speedups compared to [ABD+21] range from 40 to 160 with growing
set sizes, directly accompanying the growth in complexity for the last step. That protocol does not scale well
beyond m = 210 elements and results were thus omitted. Our protocol presents the best performances both
for computation and communication among the analyzed laconic protocols, being at least approximately
3.25 and 40 times faster than [ABD+21] for Sender and Receiver, respectively. In comparison to [ADT11],
our protocol is around 3.3 times slower for the Receiver, a rate quite similar to the Sender speedup, hence a
trade-off that is admissible in laconic cryptography.

We conducted a second set of experiments to evaluate the performance of our protocol in comparison
with other works optimizing for small sets. For this experiment, we implemented a dedicated set of client
and server programs using sockets and multi-threading in C, such that we could control the transmission
bandwidth. Following related work, we executed both client and server in different cores of the same machine
communicating over localhost, while using the Linux tc tool to limit the bandwidth of the loopback inter-
face. In this implementation, the Sender initiates the connection, receives the randomized accumulator from
the Receiver and then proceeds to close the connection immediately after finishing its round of the protocol,
thus optimizing for Sender latency. The Receiver continues the execution until the output is retrieved.

For comparison, we executed the protocol by Rosulek and Trieu [RT21] using their implementation.
We first validated that we could approximately reproduce results from their paper in terms of traffic and
execution time. We then proceeded to execute the protocol with set sizes n = 28 and m ∈ {28, 210, 212}
under the same bandwidth constraints and to measure the online Sender and Receiver latency reported by
their implementation. Table 3 contains the resulting data. The variance in set sizes and available bandwidth
captures the cut-off point quite precisely. Our protocol is less efficient for the Sender than [RT21] for the
smallest sets n = m = 28 due to higher communication requirements (20.67 vs 9.79 KB). By growing
the Receiver’s set size to 210 such that the communication requirements are similar for both protocols, we
observe that the performance difference is reduced, and latencies are competitive under the more constrained
bandwidth of 1 Mbps, with a small gain for our protocol. With the largest Receiver’s set size, the constant
communication complexity for the Sender in our protocol starts to clearly pay off and the resulting Sender
latency is from 2.3 to 4.4 times lower. Naturally, this comes at the expense of the Receiver’s complexity

17

Size (n = m) Protocol Sender (ms) Receiver (ms) First (ms) Retrieve (ms) Comm. (bits)

27
[ABD+21] 2814.6 680605.6 87.6 680518.0 429056

[ADT11] 475.5 5261.8 87.8 5174.0 38912

Ours 142.8 16822.2 2562.2 14260.0 83456

28
[ABD+21] 5645.8 5452745.2 164.9 5452580.3 855040

[ADT11] 931.7 20899.3 163.9 20735.4 71680

Ours 285.3 69524.9 10562.7 58962.2 165376

29
[ABD+21] 11319.8 43620974.2 331.5 43620642.7 1707008

[ADT11] 1863.1 83743.6 332.7 83410.9 137216

Ours 572.3 275742.7 47533.6 228209.1 329216

210
[ABD+21] - - - - 3410944

- [ADT11] 3691.0 333508.3 628.7 332879.6 268288

Ours 1137.5 1117925.5 210579.7 907345.8 656896

Table 2: Comparison of succinct/laconic PSI protocols based on accumulators. The lowest numbers for each
performance metric (Sender/Receiver latency and communication complexity) highlighted in bold for each
set size.

Online running time (ms)

10 Gbps 50 Mbps 1 Mbps

n m Protocol Comm. (KB) Sender Receiver Sender Receiver Sender Receiver

28

28 [RT21] 9.79 111.3 69.2 182.3 145.1 299.1 259.3

Ours 20.67 326.0 57501.0 412.2 57528.0 506.8 57696.3

210 [RT21] 34.04 260.3 264.2 321.9 186.2 542.0 432.6

Ours 20.67 326.3 228771.3 417.4 229000.5 507.7 229164.0

212 [RT21] 130.04 757.5 478.5 993.0 528.5 2253.6 1790.8

Ours 20.67 329.6 1140396.3 418.5 1155221.4 507.8 1646456.7

Table 3: Comparison of small-set PSI protocols at 128-bit security under different bandwidth requirements.
The lowest numbers for each combination of performance metric (Sender/Receiver latency and communica-
tion complexity) and set sizes are highlighted in bold.

which is much greater than in [RT21]. Hence, we can observe that our protocol is more efficient than [RT21]
in terms of Sender latency for unbalanced yet small set sizes under rigorous bandwidth constraints.

Acknowledgements We thank Peter Scholl and Akira Takahashi for useful feedback. Research supported by:
the Concordium Blockhain Research Center, Aarhus University, Denmark; the Carlsberg Foundation under
the Semper Ardens Research Project CF18-112 (BCM); the European Research Council (ERC) under the
European Unions’s Horizon 2020 research and innovation programme under grant agreement No 803096
(SPEC);

18

References

ABC+22. Diego F. Aranha, Emil Madsen Bennedsen, Matteo Campanelli, Chaya Ganesh, Claudio Orlandi, and
Akira Takahashi. ECLIPSE: enhanced compiling method for pedersen-committed zksnark engines. In
Goichiro Hanaoka, Junji Shikata, and Yohei Watanabe, editors, Public-Key Cryptography - PKC 2022 -
25th IACR International Conference on Practice and Theory of Public-Key Cryptography, Virtual Event,
March 8-11, 2022, Proceedings, Part I, volume 13177 of Lecture Notes in Computer Science, pages 584–614.
Springer, 2022.

ABD+21. Navid Alamati, Pedro Branco, Nico Döttling, Sanjam Garg, Mohammad Hajiabadi, and Sihang Pu. La-
conic private set intersection and applications. In Kobbi Nissim and Brent Waters, editors, Theory of
Cryptography - 19th International Conference, TCC 2021, Raleigh, NC, USA, November 8-11, 2021, Pro-
ceedings, Part III, volume 13044 of Lecture Notes in Computer Science, pages 94–125. Springer, 2021.

AC20. Thomas Attema and Ronald Cramer. Compressed Σ-protocol theory and practical application to plug &
play secure algorithmics. In Daniele Micciancio and Thomas Ristenpart, editors, CRYPTO 2020, Part III,
volume 12172 of LNCS, pages 513–543. Springer, Heidelberg, August 2020.

ADT11. Giuseppe Ateniese, Emiliano De Cristofaro, and Gene Tsudik. (If) size matters: Size-hiding private set
intersection. In Dario Catalano, Nelly Fazio, Rosario Gennaro, and Antonio Nicolosi, editors, PKC 2011,
volume 6571 of LNCS, pages 156–173. Springer, Heidelberg, March 2011.

AGM+. D. F. Aranha, C. P. L. Gouvêa, T. Markmann, R. S. Wahby, and K. Liao. RELIC is an Efficient LIbrary
for Cryptography. https://github.com/relic-toolkit/relic.

ATSM09. Man Ho Au, Patrick P. Tsang, Willy Susilo, and Yi Mu. Dynamic universal accumulators for DDH
groups and their application to attribute-based anonymous credential systems. In Marc Fischlin, editor,
CT-RSA 2009, volume 5473 of LNCS, pages 295–308. Springer, Heidelberg, April 2009.

BB08. Dan Boneh and Xavier Boyen. Short signatures without random oracles and the SDH assumption in
bilinear groups. Journal of Cryptology, 21(2):149–177, April 2008.

BCC+16. Jonathan Bootle, Andrea Cerulli, Pyrros Chaidos, Jens Groth, and Christophe Petit. Efficient zero-
knowledge arguments for arithmetic circuits in the discrete log setting. In Marc Fischlin and Jean-Sébastien
Coron, editors, EUROCRYPT 2016, Part II, volume 9666 of LNCS, pages 327–357. Springer, Heidelberg,
May 2016.

Bd94. Josh Cohen Benaloh and Michael de Mare. One-way accumulators: A decentralized alternative to digital
sinatures (extended abstract). In Tor Helleseth, editor, EUROCRYPT’93, volume 765 of LNCS, pages
274–285. Springer, Heidelberg, May 1994.

BD16. Elaine Barker and Quynh Dang. Nist special publication 800-57 part 1, revision 4. NIST, Tech. Rep, 16,
2016.

CDG+17. Chongwon Cho, Nico Döttling, Sanjam Garg, Divya Gupta, Peihan Miao, and Antigoni Polychroni-
adou. Laconic oblivious transfer and its applications. In Jonathan Katz and Hovav Shacham, editors,
CRYPTO 2017, Part II, volume 10402 of LNCS, pages 33–65. Springer, Heidelberg, August 2017.

CDK+12. Ronald Cramer, Ivan Damg̊ard, Eike Kiltz, Sarah Zakarias, and Angela Zottarel. DDH-like assumptions
based on extension rings. In Marc Fischlin, Johannes Buchmann, and Mark Manulis, editors, PKC 2012,
volume 7293 of LNCS, pages 644–661. Springer, Heidelberg, May 2012.

CHLR18. Hao Chen, Zhicong Huang, Kim Laine, and Peter Rindal. Labeled PSI from fully homomorphic encryption
with malicious security. In David Lie, Mohammad Mannan, Michael Backes, and XiaoFeng Wang, editors,
ACM CCS 2018, pages 1223–1237. ACM Press, October 2018.

CKS09. Jan Camenisch, Markulf Kohlweiss, and Claudio Soriente. An accumulator based on bilinear maps and
efficient revocation for anonymous credentials. In Stanislaw Jarecki and Gene Tsudik, editors, PKC 2009,
volume 5443 of LNCS, pages 481–500. Springer, Heidelberg, March 2009.

CL02. Jan Camenisch and Anna Lysyanskaya. Dynamic accumulators and application to efficient revocation
of anonymous credentials. In Moti Yung, editor, CRYPTO 2002, volume 2442 of LNCS, pages 61–76.
Springer, Heidelberg, August 2002.

CLR17. Hao Chen, Kim Laine, and Peter Rindal. Fast private set intersection from homomorphic encryption. In
Bhavani M. Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu, editors, ACM CCS 2017, pages
1243–1255. ACM Press, October / November 2017.

CZ81. David G Cantor and Hans Zassenhaus. A new algorithm for factoring polynomials over finite fields.
Mathematics of Computation, pages 587–592, 1981.

DCW13. Changyu Dong, Liqun Chen, and Zikai Wen. When private set intersection meets big data: an efficient
and scalable protocol. In Ahmad-Reza Sadeghi, Virgil D. Gligor, and Moti Yung, editors, ACM CCS
2013, pages 789–800. ACM Press, November 2013.

19

https://github.com/relic-toolkit/relic

DGGM19. Nico Döttling, Sanjam Garg, Vipul Goyal, and Giulio Malavolta. Laconic conditional disclosure of secrets
and applications. In David Zuckerman, editor, 60th FOCS, pages 661–685. IEEE Computer Society Press,
November 2019.

DGI+19. Nico Döttling, Sanjam Garg, Yuval Ishai, Giulio Malavolta, Tamer Mour, and Rafail Ostrovsky. Trap-
door hash functions and their applications. In Alexandra Boldyreva and Daniele Micciancio, editors,
CRYPTO 2019, Part III, volume 11694 of LNCS, pages 3–32. Springer, Heidelberg, August 2019.

DPT20. Thai Duong, Duong Hieu Phan, and Ni Trieu. Catalic: Delegated PSI cardinality with applications to
contact tracing. In Shiho Moriai and Huaxiong Wang, editors, ASIACRYPT 2020, Part III, volume 12493
of LNCS, pages 870–899. Springer, Heidelberg, December 2020.

DT08. Ivan Damg̊ard and Nikos Triandopoulos. Supporting non-membership proofs with bilinear-map accumu-
lators. Cryptology ePrint Archive, Report 2008/538, 2008. https://eprint.iacr.org/2008/538.

DY05. Yevgeniy Dodis and Aleksandr Yampolskiy. A verifiable random function with short proofs and keys. In
Serge Vaudenay, editor, PKC 2005, volume 3386 of LNCS, pages 416–431. Springer, Heidelberg, January
2005.

FNP04. Michael J. Freedman, Kobbi Nissim, and Benny Pinkas. Efficient private matching and set intersection.
In Christian Cachin and Jan Camenisch, editors, EUROCRYPT 2004, volume 3027 of LNCS, pages 1–19.
Springer, Heidelberg, May 2004.

GKM+18. Jens Groth, Markulf Kohlweiss, Mary Maller, Sarah Meiklejohn, and Ian Miers. Updatable and universal
common reference strings with applications to zk-SNARKs. In Hovav Shacham and Alexandra Boldyreva,
editors, CRYPTO 2018, Part III, volume 10993 of LNCS, pages 698–728. Springer, Heidelberg, August
2018.

KB21. Ioanna Karantaidou and Foteini Baldimtsi. Efficient constructions of pairing based accumulators. In Ralf
Küsters and Dave Naumann, editors, CSF 2021 Computer Security Foundations Symposium, pages 1–16.
IEEE Computer Society Press, 2021.

KKRT16. Vladimir Kolesnikov, Ranjit Kumaresan, Mike Rosulek, and Ni Trieu. Efficient batched oblivious PRF with
applications to private set intersection. In Edgar R. Weippl, Stefan Katzenbeisser, Christopher Kruegel,
Andrew C. Myers, and Shai Halevi, editors, ACM CCS 2016, pages 818–829. ACM Press, October 2016.

KLS+17. Ágnes Kiss, Jian Liu, Thomas Schneider, N. Asokan, and Benny Pinkas. Private set intersection for
unequal set sizes with mobile applications. PoPETs, 2017(4):177–197, October 2017.

KRS+19. Daniel Kales, Christian Rechberger, Thomas Schneider, Matthias Senker, and Christian Weinert. Mobile
private contact discovery at scale. In Nadia Heninger and Patrick Traynor, editors, USENIX Security
2019, pages 1447–1464. USENIX Association, August 2019.

KS05. Lea Kissner and Dawn Xiaodong Song. Privacy-preserving set operations. In Victor Shoup, editor,
CRYPTO 2005, volume 3621 of LNCS, pages 241–257. Springer, Heidelberg, August 2005.

LLX07. Jiangtao Li, Ninghui Li, and Rui Xue. Universal accumulators with efficient nonmembership proofs.
In Jonathan Katz and Moti Yung, editors, ACNS 07, volume 4521 of LNCS, pages 253–269. Springer,
Heidelberg, June 2007.

Mar14. Moxie Marlinspike. The difficulty of private contact discovery. whispersystems.org/blog/

contact-discovery., 2014.

Mea86. Catherine A. Meadows. A more efficient cryptographic matchmaking protocol for use in the absence of a
continuously available third party. In Proceedings of the 1986 IEEE Symposium on Security and Privacy,
Oakland, California, USA, April 7-9, 1986, pages 134–137, 1986.

MSS16. Alfred Menezes, Palash Sarkar, and Shashank Singh. Challenges with assessing the impact of NFS advances
on the security of pairing-based cryptography. In Mycrypt, volume 10311 of Lecture Notes in Computer
Science, pages 83–108. Springer, 2016.

Ngu05. Lan Nguyen. Accumulators from bilinear pairings and applications. In Alfred Menezes, editor, CT-
RSA 2005, volume 3376 of LNCS, pages 275–292. Springer, Heidelberg, February 2005.

NMH+10. Shishir Nagaraja, Prateek Mittal, Chi-Yao Hong, Matthew Caesar, and Nikita Borisov. Botgrep: Finding
P2P bots with structured graph analysis. In 19th USENIX Security Symposium, Washington, DC, USA,
August 11-13, 2010, Proceedings, pages 95–110, 2010.

PRTY19. Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay Yanai. SpOT-light: Lightweight private set intersec-
tion from sparse OT extension. In Alexandra Boldyreva and Daniele Micciancio, editors, CRYPTO 2019,
Part III, volume 11694 of LNCS, pages 401–431. Springer, Heidelberg, August 2019.

PRTY20. Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay Yanai. PSI from PaXoS: Fast, malicious private set
intersection. In Anne Canteaut and Yuval Ishai, editors, EUROCRYPT 2020, Part II, volume 12106 of
LNCS, pages 739–767. Springer, Heidelberg, May 2020.

20

https://eprint.iacr.org/2008/538
whispersystems.org/blog/contact-discovery.
whispersystems.org/blog/contact-discovery.

PSSZ15. Benny Pinkas, Thomas Schneider, Gil Segev, and Michael Zohner. Phasing: Private set intersection using
permutation-based hashing. In 24th USENIX Security Symposium, USENIX Security 15, Washington,
D.C., USA, August 12-14, 2015., pages 515–530, 2015.

PSZ14. Benny Pinkas, Thomas Schneider, and Michael Zohner. Faster private set intersection based on OT
extension. In Kevin Fu and Jaeyeon Jung, editors, USENIX Security 2014, pages 797–812. USENIX
Association, August 2014.

QWW18. Willy Quach, Hoeteck Wee, and Daniel Wichs. Laconic function evaluation and applications. In Mikkel
Thorup, editor, 59th FOCS, pages 859–870. IEEE Computer Society Press, October 2018.

RA18. Amanda C. Davi Resende and Diego F. Aranha. Faster unbalanced private set intersection. In Sarah Meik-
lejohn and Kazue Sako, editors, FC 2018, volume 10957 of LNCS, pages 203–221. Springer, Heidelberg,
February / March 2018.

RT21. Mike Rosulek and Ni Trieu. Compact and malicious private set intersection for small sets. In Giovanni
Vigna and Elaine Shi, editors, ACM CCS 2021, pages 1166–1181. ACM Press, November 2021.

Sho93. Victor Shoup. Factoring polynomials over finite fields: asymptotic complexity vs. reality. In Proc. IMACS
Symposium, Lille, France. Citeseer, 1993.

Sho97. Victor Shoup. Lower bounds for discrete logarithms and related problems. In Walter Fumy, editor,
EUROCRYPT’97, volume 1233 of LNCS, pages 256–266. Springer, Heidelberg, May 1997.

vzGS92. Joachim von zur Gathen and Victor Shoup. Computing frobenius maps and factoring polynomials (ex-
tended abstract). In 24th ACM STOC, pages 97–105. ACM Press, May 1992.

A Standard Ideal Functionalities

The Ideal Functionality FPSI

The functionality FPSI works with two parties, the sender S and the receiver R, and an ideal world adversary
A, controlling the corrupted parties. The functionality is parameterized with two integers m,n specifying the
maximum set size for R,S respectively.
Receiver Input. Upon receiving input (sid,Rec, X) from the receiver R, ignore the message if another message
of the form (sid,Rec, ∗) had been received earlier or if |X| > m. Otherwise, store the message and send (sid,Rec)
to the adversary.
Sender Input. Upon receiving input (sid,Sen, Y) from the sender S, ignore the message if another message of
the form (sid,Sen, ∗) had been received earlier or if |Y | > n. Otherwise, output (sid,Sen) to the adversary.
Output. When the adversary sends (sid, continue), if messages for session sid where received by both parties,
send (sid,Output, Y = X ∩ Y) to the receiver R.

Fig. 4: The PSI ideal functionality FPSI

B Active Secure Protocol

Proof of Theorem 2.

Proof. Correctness of the modified protocol is immediate by inspection.
To prove security against an actively corrupted receiver R∗, we build the following simulator: the simu-

lator:

1. Produces strings (setupS , setupR) as in the protocol and sends them to R∗;
2. Receives (σ,R) from the receiver R∗;
3. Receives the witness (ω0, . . . , ωm) from the Fzk functionality;

21

The Ideal Functionality Fzk

The zero-knowledge functionality Fzk works with two parties, a prover P and a verifier V. The functionality is
parameterized with a relation R(x,w).
Verifier Input. Upon receiving input (sid,V, xV) from the verifier V, ignore the message if another message of
the form (sid,V, ∗) had been received earlier. Otherwise, store the message and send (sid,V, xV) to the adversary.
Prover Input. Upon receiving input (sid,P, xP, w) from the prover P, ignore the message if another message
of the form (sid,P, ∗) had been received earlier. Otherwise, send (sid,P, xP) to the adversary.
Output. When the adversary sends (sid, continue), if messages for session sid where received by both parties
such that x = xV = xP output (sid,Output, R(x,w)) to the verifier V.

Fig. 5: The Zero-Knowledge ideal functionality Fzk.

4. If the witness does not satisfy the relation, abort. Otherwise, interpret the witness as the coefficients of
a polynomial Ω. Find the roots X̃ of the polynomial Ω using an polynomial factoring algorithm [CZ81,
vzGS92,Sho93].

5. Recover the input set X from X̃ by subtracting σ from all entries.

6. Send the input X to FPSI on behalf of the corrupted receiver;

7. Receive the output set Z;

8. Complete the simulation of Second Round exactly as the semi-honest simulator i.e., for each z ∈ Z pick
a random index j and compute (Tj , Uj) as in the protocol. For all remaining indices j, sample uniformly
random pairs (Tj , Uj);

9. Trivially simulate the zero-knowledge proof using the functionality Fzk;

Indistinguishability of the view of R∗ follows since the output Z received from the functionality is the same
as the output in the real protocol, since the polynomial Ω extracted by the simulator is the same as the
polynomial P used in the protocol up to a multiplicative factor. Then, the argument follows the same idea as
in the semi-honest protocol, since for any choice of R 6= 1G2

the distribution of (Tj , Uj) in the real protocol
is indistinguishable from random under the (1, B)-SBDDH assumption as showed in Theorem 1.

To prove security against an actively corrupted sender S∗ we build the following simulator:

1. The simulator receives (setupS , setupR) from the malicious sender S∗, performs the same checks as an
honest receiver would and aborts if any check fails;

2. The simulator sends an uniformly random R and σ to S∗ (and trivially simulates the zero-knowledge
proof using the functionality Fzk);

3. Then for each j ∈ [n]:

(a) The simulator receives the tuples (Tj , Uj) from the corrupted S∗ and aborts if any Uj = 1G2
or

Tj = 1GT ;

(b) The simulator receives the witnesses (tj , αj) from the Fzk functionality and aborts if the witness does
not satisfy the relation;

(c) The simulator computes ỹj = −αj/tj (note that Tj 6= 1GT implies tj 6= 0);

(d) The simulator computes yj = ỹj − σ;

4. Finally the simulator inputs the set Y = {y1, . . . , yn} to the FPSI functionality on behalf of the corrupted
sender.

Indistinguishability of the view of the corrupted S∗ follows since, as argued earlier, the distribution of R
in the real protocol is perfectly indistinguishable from the uniform distribution for any (non-trivial) choice of
the setup parameters and the output of the honest R in the ideal world is distributed as in the real protocol
since we successfully extract the input of the sender.

22

The Active Secure PSI Protocol Π∗PSI

Inputs/Outputs: The protocol is run between a receiver R with input X = {x1, . . . , xm} and a sender S with
input Y = {y1, . . . , yn}. We assume the inputs can efficiently be encoded as elements of Zq. At the end the
receiver learns Z = X ∩ Y while the sender learns nothing.

Setup: The receiver and the sender agree on a bilinear map e : G1 × G2 → GT where the generators are
g1, g2, gT = e(g1, g2) respectively. During the setup phase a party trusted by S picks a random s ∈ Z∗q , then
computes and send:

setupR = (S′, S1, S2, . . . , Sm) and setupS = (S′)

to R and S respectively where S′ = gs1 and Si = gs
i

2 for i = 0, . . . ,m. The receiver checks that for all
i = [m], Si 6= 1G2 and that

e(S′, Si−1) = e(g1, Si)

First Round: In any session sid, the receiver R sends

msg1 = (sid, σ,R, πS)

to the sender, computed as follows:

1. Pick a random σ
$← Zq;

2. Compute the set X̃ = {x̃1, . . . , x̃m} as x̃i = xi + σ;

3. Pick random r
$← Zq;

4. Compute R =

(∏m
i=0 S

p(X̃,i)
i

)r
;

5. If R = 1G2 , then let R = (S0)r instead.
6. Compute a zero-knowledge proof πS that R is computed according to the protocol specification using

the relation RS defined in Section 4.
Second round: In any session sid, the sender S checks that R 6= 1G2 and if so sends to the receiver R the

message

msg2 = (sid, T1, U1, . . . , Tn, Un, πR)

computed as follows. Pick a random permutation π : [n]→ [n]. Then for all j ∈ [n]:

1. Pick random tj
$← Zq;

2. Compute the set Ỹ = {ỹ1, . . . , ỹn} as ỹi = yi + σ;
3. Compute

(Tj , Uj) =

((
e
(
g
tj
1 , R

))
,
(
S′ · g−ỹπ(j)

1

)tj)
4. Compute a zero-knowledge proof πR that each (Tj , Uj) is computed according to the protocol specifi-

cation using the relation RR defined in Section 4.
Retrieve Output: To retrieve the output from a session sid, the receiver R does the following; Check that for

all j ∈ [n] Tj 6= 1GT and Uj 6= 1G2 and abort otherwise; Else, for all j ∈ [n], k ∈ [m], the receiver initializes
Z = ∅ and then does the following:
1. Compute

R−k =

(
m−1∏
i=0

S
p(X̃−k,i)
i

)r
2. If e (Uj , R−k)

?
= Tj , then add xk to the output Z;

The receiver outputs Z.

Fig. 6: Our Actively Secure Private Set Intersection Protocol

23

C Semi-honest Laconic PSI Protocols

We present in Figures 7 and 8 the protocols of [ADT11, ABD+21] using our notation and applying our
optimizations. Note that the original description of [ABD+21] the functions H,F are respectively a pro-
grammable pseudorandom function and a seeded extractor, instead of two random oracles. In order to help
the performances of their protocol towards achieving a comparison as fair as possible, we implement both of
these primitivies with hash functions modeled as random oracles instead.

The Protocol ΠADT11
PSI

Let λ be security parameter and λ1, λ2 be the ones that depend on λ, H(·), F (·) be two random oracles such
that H : {0, 1}∗ → {0, 1}λ1 and F : {0, 1}∗ → {0, 1}λ2 .

Inputs/Outputs: The protocol is run between a receiver R with input X = {x1, . . . , xm} and a sender S with
input Y = {y1, . . . , yn}. At the end the receiver learns Z = X ∩ Y while the sender learns nothing.

Setup: A trusted party samples N
$← RSA(λ) where N = PQ and P,Q are safe prime numbers, i.e., P =

2P ′ + 1, Q = 2Q′ + 1, a uniformly random generator g of the set of quadratic residues in Z∗N . The party
distributes (P ′, Q′) to the sender S and output the common reference string

setup = (N, g, k).

First Round: In any session sid, the receiver R sends

msg1 = (sid,R)

to the sender, computed as follows:

1. Pick random r
$← [N];

2. Compute R = gr
∏
i∈[m]H(xi) mod N if X 6= ∅;

3. Compute R = gr mod N if X = ∅.
Second round: In any session sid, the sender S sends to the receiver R the message

msg2 = (sid, U, T1, . . . , Tn)

computed as follows. Sample a random t
$← {0, . . . , P ′Q′ − 1} and compute U = gt mod N . Pick a random

permutation π : [n]→ [n] and for all j ∈ [n], compute

Tj = F
(
Rt·(1/H(yπ(j))) mod N

)
Retrieve Output: To retrieve the output from a session sid, the receiver R initializes Z = ∅ and then does

the following: For all k ∈ [m],
1. Compute

R−k = Ur·
∏
i∈[m]\k H(xi) mod N

2. If there exist a j ∈ [m] such that F (R−k)
?
= Tj , then add xk to the output Z;

The receiver outputs Z.

Fig. 7: The (non-laconic) PSI protocols of [ADT11] based on RSA-accumulators.

24

The Protocol ΠABD+21
PSI

Let U be a universe which contains the input sets of the parties. Let κ ∈ Z such that 5κ ≤ λ. Let H(·), F (·) be
two random oracles such that H : {0, 1}∗ → Primes(κ) and F : {0, 1}∗ → {0, 1}λ.

Inputs/Outputs: The protocol is run between a receiver R with input X = {x1, . . . , xm} and a sender S with
input Y = {y1, . . . , yn}. At the end the receiver learns Z = X ∩ Y while the sender learns nothing.

Setup: A trusted party samples N
$← RSA(λ) where N = PQ and P,Q are safe prime numbers, a uniformly

random generator g ∈ Z∗N . The party outputs

setup = (N, g).

First Round: In any session sid, the receiver R sends

msg1 = (sid,R)

to the sender, computed as follows:

1. Pick random r
$← [N];

2. Compute R = gr
∏
i∈[m]H(xi) mod N if X 6= ∅;

3. Compute R = gr mod N if X = ∅.
Second round: In any session sid, the sender S sends to the receiver R the message

msg2 = (sid, T1, U1, . . . , Tn, Un)

computed as follows. Pick a random permutation π : [n]→ [n]. Then for all j ∈ [n]:

1. Pick random tj
$← [N];

2. Compute

(Tj , Uj) =
(
F
(
Rtj mod N

)
, gtj ·H(yπ(j)) mod N

)
Retrieve Output: To retrieve the output from a session sid, the receiver R initializes Z = ∅ and then does

the following: For all j ∈ [n], k ∈ [m],
1. Compute

R−k,j = U
r·
∏
i∈[m]\k H(xi)

j mod N

2. If F (R−k,j)
?
= Tj , then add xk to the output Z;

The receiver outputs Z.

Fig. 8: The laconic PSI protocols of [ABD+21] based on RSA-accumulators.

25

	Laconic Private Set-Intersection From Pairings
	Introduction
	Contribution and Technical Overview

	Preliminaries
	Notation
	Assumptions
	PSI Notation and Functionalities

	Our Laconic PSI Protocol – Semi-Honest Security
	Active Security and Extensions
	Active Attacks vs. PSI And Countermeasures
	Full Active Security via ZK-Proofs
	Updatable Setup
	Reducing Receiver's Overhead Using Bucketing
	Reducing Communication Complexity with Private Setup and Random Oracle

	Generic Security of the (B 1,B 2)-SBDDH Assumption
	Experimental Results
	Standard Ideal Functionalities
	Active Secure Protocol
	Semi-honest Laconic PSI Protocols

