
Jammin’ on the deck

Norica Băcuieți1, Joan Daemen1, Seth Hoffert, Gilles Van Assche2, and
Ronny Van Keer2

1 Radboud University, Nijmegen, The Netherlands
2 STMicroelectronics, Diegem, Belgium

Abstract. Currently, a vast majority of symmetric-key cryptographic
schemes are built as block cipher modes. The block cipher is designed to
be hard to distinguish from a random permutation and this is supported
by cryptanalysis, while (good) modes can be proven secure if a random
permutation takes the place of the block cipher. As such, block ciphers
form an abstraction level that marks the border between cryptanalysis
and security proofs. In this paper, we investigate a re-factored version
of symmetric-key cryptography built not around the block ciphers but
rather the deck function: a keyed function with arbitrary input and out-
put length and incrementality properties. This allows for modes of use
that are simpler to analyze and still very efficient thanks to the excellent
performance of currently proposed deck functions. We focus on authen-
ticated encryption modes with varying levels of robustness. Our modes
have built-in support for sessions, but are also efficienty without them. As
a by-product, we define a new ideal model for authenticated encryption
dubbed the jammin cipher. Unlike the OAE2 security models, the jam-
min cipher is both a operational ideal scheme and a security reference,
and addresses real-world use cases such as bi-directional communication
and multi-key security.

Keywords: deck functions, authenticated encryption, wide block ci-
pher, modes of use, ideal model

1 Introduction

Currently, a vast majority of symmetric-key cryptographic schemes are built as
a mode of use of a block cipher. A block cipher is governed by a secret key
and transforms an input block of fixed length into an output block of the same
length, and as such its functionality is rather limited. However, the existence of
powerful modes of use really unleashes the power of block ciphers: Combining
them allows building cryptographic schemes for encryption, authentication and
authenticated encryption of messages consisting of arbitrary-length plaintext
and associated data. Block ciphers have even been used to build hash functions.

Modes of use usually come with a security guarantee: Assuming the under-
lying block cipher satisfies some security criterion, the cryptographic scheme
can be proven secure. Often, this criterion is that the block cipher, when keyed
with a uniformly chosen key unknown to the adversary, is hard to distinguish

from a random permutation; this is known as the pseudorandom permutation
(PRP) security of a block cipher, in the case that an adversary is only allowed
to query the block cipher in the forward direction, otherwise it is called strong
PRP (SPRP) security. The PRP and SPRP security notions have become so
accepted that they are referred to as the standard model. Thanks to this split
in block ciphers and modes, the assurance of block-cipher based cryptographic
schemes relies on public scrutiny of the block cipher with respect to its (S)PRP
security.

The security guarantee of many modes hit the so-called birthday bound and
causes the security of block-cipher based modes to break down as soon as the data
complexity reaches 2n/2, with n the block size. This accounts for the presence,
or absence, of collisions in block cipher outputs, depending on the mode.

Hitting this birthday bound is due to the invertibility of the block cipher
while most modern block cipher modes do not even use the inverse block cipher.3
Such modes often rely on the keyed block cipher to behave like a random function
rather than a permutation, e.g., see [22], and this is called PRF security.

Block cipher modes deal with dividing variable-length inputs into fixed-length
blocks. This often comes with considerable complexity, such as dealing with
complete last blocks, and this tends to propagate to the security proofs. Modes
would be simpler if the underlying primitive would natively support variable
input and output lengths. Moreover, (S)PRP security makes little sense for a
primitive with variable input and output lengths, and striving for good PRF
security makes more sense.

Such primitives would be a good replacement of block ciphers as a focus point
in symmetric key cryptography and they have actually been proposed by Daemen
et al. [7] under the name of deck function. That paper presents a construction
for building deck functions called farfalle and showcases an instance based on
Keccak-f called Kravatte with excellent performance. Later the same authors
presented a second farfalle instance called Xoofff improving on all aspects over
Kravatte in [7]. But deck function just specifies an interface and farfalle is not
the only way to build a deck function, in the same way that there are multiple
ways to build a block cipher: a wide design space is waiting to be explored!

Next to the simplicity of modes, performance is a clear and natural motiva-
tion for exploring authenticated encryption using deck functions. For instance,
Kravatte and Xoofff have excellent reported performance figures and outperform
modes using the AES block cipher, sometimes even when the platform has hard-
ware AES support [5]. Even if faster block ciphers can be built, security proofs of
their modes rely on their (S)PRP security, and achieving a solid level of (S)PRP
security comes at the price of a relatively large number of rounds. Building a
variable-input-length function that targets PRF security using the same building
blocks can be done more efficiently when the reductionist security argument is
dropped. We illustrate this with two MAC functions: CMAC [23] with underly-

3 The input and output of a block cipher are often called plaintext and ciphertext,
respectively. This may be correct for the ECB mode, but for the majority of today’s
modes, the input is not the plaintext or the output is not the ciphertext.

2

ing block cipher AES-128 [9] and Pelican-MAC [10]: for long messages the former
costs 10 AES rounds while the latter only 4 (unkeyed) AES rounds per 128-bit
block of input. Despite the absence of a reductionist security proof, Pelican-MAC
has maintained its security claim, very close to that of CMAC with AES-128, up
to this day. A similar argument can be made for functions with variable-length
output. Efficient deck functions support both a variable-length input and out-
put and trade reductionist (S)PRP-based security proofs in for security based on
cryptanalysis. Clearly, deck function-based cryptography seems like a promising
alternative to block-ciphers that is worth exploring.

Another motivation is that the incrementality feature of deck functions comes
in handy, not only for the simplicity of authenticated encryption mode defi-
nitions, but also for the specific case of session-supporting authenticated en-
cryption. Today’s applications for cryptography go beyond the encryption or
authentication of individual messages. The processing of streams of data, with
intermediate tags, and bi-directional communication are common use cases. In
this context, a session deals with the authentication of sequences of messages,
preventing an attacker from reshuffling messages. Furthermore, ensuring that a
message is authenticated in the context of previously sent messages comes essen-
tially for free thanks to the incrementality properties of deck functions. Another
interesting use case is the transmission of long messages to low-end devices,
where intermediate tags can authenticate the message in an incremental way. In
our exploration, we therefore consider authenticated encryption modes on top
of deck functions, with or without support of sessions.

1.1 Our contributions

Our two main contributions are an ideal model and a number of deck function
modes, both for session-supporting authenticated encryption.

The ultimate ideal-world authenticated encryption scheme An ideal
authenticated encryption scheme has at least one of the two following features:

1. operational: it can serve as an ideal SAE scheme to be used in higher-level
protocols. It achieves the highest security thinkable (i.e., the cryptograms
are as random as injectivity allows) while behaving deterministically (equal
inputs give equal outputs under the same state).

2. referential: it can serve as an ideal-world model in distinguishability settings
for SAE modes or schemes, to prove, or claim, a distinguishing bound.

We define in Section 2 the jammin cipher that combines both. This allows build-
ing a higher-level protocol that makes use of jammin cipher, prove it secure, and
subsequently instantiate it with a concrete AE scheme. The security of the re-
sulting protocol can then be quantified using the triangle inequality. Note that
the jammin cipher naturally also covers non-session authenticated encryption.

For models that include the support of sessions, there do exist security
definitions that we could use, namely, the Online Authenticated Encryption

3

(OAE2) security definitions [15]. Specifically, OAE2 covers streaming applica-
tions, where plaintexts and ciphertexts can be processed on the fly. However,
they are unsuitable because they define not a single ideal-world scheme, but a
set of three schemes, Ideal2A, Ideal2B and Rand2C. The former two are oper-
ational and define the same security concept, but have different interfaces. The
third, Rand2C, is referential-only and defines a different security concept. In
particular, in Ideal2A and Ideal2B forgery is possible and in Rand2C forgery
is impossible by construction. This separation between the operational versions
and the referential version leaves a security gap [15, Proposition 2] larger than
the one between the modes we define in this paper and our ideal scheme, the
jammin cipher.

Besides combining operational and referential roles in a single scheme, the
jammin cipher has several features that make it superior to OAE2:

– It can serve as a security reference for both nonce-enforcing and nonce-
misuse-resistant schemes. For OAE2, variants like nOAE or dOAE must
be used instead [15].

– It produces cryptograms whose distribution is intuitive and is as random as
allowed while leaving the possibility for decryption. In contrast, the definition
of Ideal2A/B make use of a rather complex building block IdealOAE(τ),
called uniformly sampled τ -expanding injective functions.

– It has ciphertext expansion as a parameter. This is necessary when dealing
with schemes that have variable ciphertext expansion due to the use of block
encryption. Instead, OAE2 only supports ciphertext expansion by a fixed
length.

– It addresses multi-key security.
– It supports unwrap and wrap calls in any order, including bi-directional

communication. While the Ideal2B scheme is operational and supports au-
thenticating multiple messages, an instance can only encipher messages or
decipher cryptograms but not both.

The jammin cipher results from taking another look at OAE2 security, im-
proving it and simplifying it.

Deck function-based session-supporting authenticated encryption In
Section 3, we discuss deck functions and some of their basic applications. In
Section 4 we define Deck-PLAIN, the simplest of our five SAE modes. If using
a strong deck function and on the condition that the encryption context is a
nonce, Deck-PLAIN can be distinguished from the jammin cipher only through
tag guessing. In Section 5, we introduce four modes that do not require the
encryption context to be a nonce, with different properties. We summarize these
modes in Table 1.

1.2 Notation

The set of all bit strings is denoted Z∗
2 and ϵ is the empty string. The length

in bits of the string X is denoted |X|. The concatenation of two strings X,Y

4

Tolerates Tolerates release of Minimal ciphertext
Mode Section nonce misuse unverified plaintext expansion
Deck-PLAIN 4 ✓
Deck-BO 5.1 ✓
Deck-BOREE 5.2 ✓ ✓
Deck-JAMBO 5.3 ✓ ✓
Deck-JAMBOREE 5.4 ✓ ✓ ✓

Table 1: Overview of our SAE modes.

is denoted as X||Y and their bitwise addition as X + Y . Bit string values are
noted with a typewriter font, such as 01101. The repetition of a bit is noted in
exponent, e.g., 03 = 000.

In a sequence of m strings, we separate the individual strings with a semicol-
umn, i.e., X(0);X(1); . . . ;X(m−1). The set of all sequences of strings is denoted
(Z∗

2)
∗ and ∅ is the sequence containing no strings at all. Similarly, the set of all

sequences containing at least one string is denoted (Z∗
2)

+.
Finally, ∅ is the empty set and ⊥ denotes an error code.

1.3 Security setup

In this paper we perform security analysis in the distinguishability framework
where one bounds the advantage of an adversary A in distinguishing a real-
world system from an ideal-world system.

Definition 1. Let O,P be two collections of oracles with the same interface.
The advantage of an adversary A in distinguishing O from P is defined as

∆A(O ; P) =
∣∣Pr (AO → 1

)
− Pr

(
AP → 1

)∣∣ .
Here A is an algorithm that returns 0 or 1.

If we can build a real-world system P that is hard to distinguish from the
ideal-world system O, then we can replace O by P in the protocol without
sacrificing much security. Concretely, if we can prove an upper bound on the
distinguishing advantage ∆A(O ; P) for any adversary A, the attack success
probability increases by at most that bound.

2 The jammin cipher, an ideal-world SAE scheme

We define the jammin cipher in Algorithm 1.

2.1 Interface

We describe the jammin cipher in an object-oriented way, with object instances
(or instances for short) held by the communicating parties. An instance belongs

5

Algorithm 1 The jammin cipher JWrapExpand(p)

1: Parameter: WrapExpand, a t-expanding function
2: Global variables: codebook initially set to ⊥ for all, taboo initially set to empty

3: Instance constructor: init(ID)
4: return new instance inst with attribute inst.history = ID

5: Instance cloner: inst.clone()
6: return new instance inst′ with the history attribute copied from inst

7: Interface: inst.wrap(A,P) returns C
8: context← inst.history;A
9: if codebook(context;P) = ⊥ then

10: C = ZWrapExpand(|P |)
2 \ (codebook(context; ∗) ∪ taboo(context))

11: if C = ∅ then return ⊥
12: codebook(context;P)

$← C
13: inst.history← inst.history;A;P
14: return codebook(context;P)

15: Interface: inst.unwrap(A,C) returns P or ⊥
16: context← inst.history;A
17: if ∃!P : codebook(context;P) = C then
18: inst.history← inst.history;A;P
19: return P
20: else
21: taboo(context)← C
22: return ⊥

to a given party who initializes it with an object identifier ID. Such an identifier
is the counterpart of a secret key in the real world: Encryption and decryption
will work consistently only between instances initialized with the same identifier.
This setup models independent pairs (or groups) that make use of the AE scheme
simultaneously. For example, Alice and Bob may secure their communication
each using instances that share the same identifier IDAlice and Bob, while Edward
and Emma use instances initialized with IDEdward and Emma. We will informally
call an object the set of instances sharing the same object identifier. This way,
all the instances of the same object have indistinguishable behavior, and this
justifies that we collectively call them an object, whereas instances of different
objects are completely independent.

Our scheme supports two functions: wrap and unwrap. With the wrap function
the object computes a cryptogram C from a message that has a plaintext P
and associated data A, both arbitrary bit strings. With the unwrap function
the object computes the plaintext P from the cryptogram C and A again. The
cryptogram C is the encryption of P for a given A.

The jammin cipher is parameterized with a function WrapExpand(p) that
specifies the length of the cryptogram given the length p of the plaintext. Typical

6

examples observed in AE schemes in the literature are WrapExpand(p) = p+ t
with t some fixed length, e.g., 128 for stream encryption followed by a 128-bit tag.
For OCB [27], we have WrapExpand(p) = t

⌈
p
t + 1

⌉
with t the block length of

the cipher. Both are examples of t-expanding functions. For use with the jammin
cipher, we require WrapExpand to satisfy this property, defined below.

Definition 2. A function f : Z≥0 → Z≥0 is t-expanding iff (i) ∀ℓ > 0: f(ℓ) >
f(0) and (ii) ∀ℓ : f(ℓ) ≥ ℓ+ t.

Property (i) is needed in some of the modes to distinguish authentication-only
messages from others. Property (ii) allows us to use t as a security parameter:
the advantage of distinguishing a real-world scheme from an ideal scheme will
be lower bound by an expression in the number of queries multiplied by 2−t.

When two parties communicate, they usually have more than one message to
send to each other. And a message is often a response to a previous request, or in
general its meaning is to be understood in the context of the previous messages.
The jammin cipher is stateful, where the sequence of messages exchanged so far
is tracked in the attribute history. Initialization sets this attribute to the object
identifier and each wrap and (successful) unwrap appends a message (A,P). So
history is a sequence with ID followed by zero, one or more messages (A,P).

A session is the process in which the history grows with the sequence of mes-
sages exchanged so far. The wrap and unwrap functions make the history act as
associated data, so that a cryptogram authenticates not only the message (A,P)
but also the sequence of messages exchanged so far. An important application of
this are intermediate tags, which authenticate a long message in an incremental
way.

Finally, a jammin cipher object can be cloned. This is the ideal world’s equiv-
alent of making a copy of the state of the cipher. This means the user can save
the history and restart from it ad libitum.

2.2 Inner workings

The jammin cipher keeps track of all wrap queries in a global archive called
codebook. This is a mapping from tuples (history;A;P) to a cryptogram or an
error code. The data elements history and A together form the context for the
encryption of P : In different contexts, the jammin cipher encrypts plaintexts
independently. We write context← history;A as the context for encryption in a
wrap call, or decryption in an unwrap call, is the history with A appended.

Initially, all the entries of codebook return an error. In the algorithm, the ex-
pression codebook(context;P)

$← S denotes the assignment of a random element
chosen uniformly from S to the entry codebook(context;P), and codebook(context; ∗)
denotes the set of the values of codebook(context;P) over all P .

Similarly, the jammin cipher keeps track of invalid cryptograms in a global
archive called taboo. This is a mapping from (decryption) contexts to a set of
cryptograms. Initially taboo is empty and with each attempt at decryption of
an invalid cryptogram, it adds the cryptogram to the set of the corresponding

7

context context = history;A. The expression taboo(context) ← C denotes the
addition of C to taboo(context).

Cryptograms in codebook are never overwritten, as the only place where a
cryptogram value is assigned to codebook is on line 12, under the condition that
codebook previously contains ⊥. This makes wrapping deterministic. Similarly,
the jammin cipher will unwrap any ciphertext C to the same plaintext value in
any given context, i.e., unwrapping is deterministic. This is formalized in the
following property.

Proposition 1. From codebook one always recovers at most one plaintext value,
i.e.,

∀(context, C), |{P : codebook(context;P) = C}| ≤ 1.

Proof. Let C ∈ C be the value that is added to codebook(context;P) in line 12.
If P ′ ̸= P was another plaintext value such that codebook(context;P ′) = C,
then we would get a contradiction as C ∈ codebook(context; ∗) and thus C /∈ C,
proving the proposition. ⊓⊔

We see that in line 11, wrap may return an error and therefore exhibit non-
ideal behavior. We will now prove that for reasonable ciphertext expansion this
requires an excessive number of specific unsuccessful unwrap queries.

Proposition 2. If WrapExpand is t-expanding with t ≥ 2, wrap is successful
unless there were at least 2t different unsuccessful unwrap queries with the same
context.

Proof. A necessary condition for an error to be returned is the following. There
exists a context and a cryptogram length n such that the sum of the following
two items is at least 2n:

– the number of calls to wrap(A,P) with WrapExpand(|P |) = n,
– the number of unsuccessful calls to unwrap(A,C) with |C| = n.

This is because the cardinality of C in line 10 is at least 2n minus the number
of n-bit strings in codebook(context; ∗) or in taboo(context).

First, let us consider the case where n = WrapExpand(0) ≥ t with P = ϵ.
Given that WrapExpand is t-expanding, only taboo(context) can exclude possible
cryptograms from C on line 10. It is therefore necessary to have at least 2n ≥ 2t

unsuccessful calls to unwrap.
Then, say n > WrapExpand(0). The number of plaintext values that wrap

to ciphertexts of size n is limited to 2n−t+1. The possible plaintext lengths p
are such that WrapExpand(p) = n but they must satisfy p ≤ n − t. Summing
over all such possible lengths, the number of distinct plaintext values is upper
bounded by 2n−t+1. For line 11 to return an error, it is therefore necessary to
have at least 2n − 2n−t+1 unsuccessful calls to unwrap. Since n > t ≥ 2 this is
lower bounded by 2t. ⊓⊔

8

2.3 Properties

The jammin cipher enjoys the following properties:

Deterministic wrapping: In a given context, an object wraps equal messages
(A,P) to equal cryptograms C. It achieves this by tracking the cryptograms
in the codebook archive.

Injective wrapping: An object wraps messages with equal context and A and
different P to different cryptograms. It achieves this by excluding cryptogram
values that it returned in earlier wrap calls for the same context and A.

Random cryptograms: Except for determinism and injectivity, all cryptograms
C are fully random.

Deterministic unwrapping: In a given context, an object unwraps equal cryp-
tograms to equal responses. It achieves this by tracking in taboo cryptogram
values that it returns an error to.

Correctness: Thanks to deterministic (un)wrapping and injective wrapping,
one jammin cipher object correctly unwraps what another wrapped, when-
ever their contexts are equal.

Forgery-freeness: In a given context, an object will only unwrap successfully
cryptograms C resulting from prior wrap calls in the same context.

2.4 Discussion

Deterministic wrapping has the limitation that it allows an adversary to tell
identical plaintexts from identical cryptograms, and this can leak information.
In particular, if the plaintext in the message comes from a set of small cardinal-
ity, an adversary can recover it from the cryptogram by wrapping the possible
plaintexts. This opens to a family of attacks such as the chosen-prefix secret-
suffix (CPSS) attack [11,15].

The countermeasure against these attacks is to make encryption context-
dependent. If the user can ensure that the encryption context is different when
identical plaintexts are encrypted, equal plaintexts will give different cryptograms
and there is no leakage. The context for encryption is usually a message counter
(e.g., in counter mode) or a (random) initial value (e.g., in CBC encryption)
and, if it is unique for each encryption, we say it is a nonce. A data element that
is unique per encryption is sometimes simply called a nonce, but this may turn
out to be confusing when discussing use cases where the uniqueness of the data
element cannot be guaranteed.

The jammin cipher does not enforce the encryption context to be a nonce.
Ultimately, whether the encryption context is a nonce depends on the higher
level protocol or use case.

The jammin cipher takes as encryption context the sequence of messages
exchanged so far, including the associated data in the message containing the
plaintext to be encrypted (in a message without plaintext, there is no encryp-
tion and hence no encryption context). The advantage of doing authenticated
encryption in sessions is immediate as this reduces the requirement for global

9

diversifiers of one per session rather than one per message. Session-level diver-
sifiers may even be omitted unless communicating parties wish to start parallel
threads or start afresh from the same shared key.

Definition 3. We say that the encryption context is a nonce iff all wrap queries
with non-empty plaintext have a different context context.

In case of re-use of encryption context, the jammin cipher will leak equality
of plaintexts given equal cryptograms obtained with equal encryption contexts,
but nothing more. In some use cases this may be acceptable. For such use cases,
the jammin cipher can serve as a security reference for modes or schemes. A
proof of an upper bound on the distinguishing advantage between such a mode
and the jammin cipher, proves that the leakage of the mode is limited to equality
of plaintexts given equal cryptograms obtained with equal encryption contexts,
plus the proven advantage that is typically negligible.

In particular, stream encryption with a keystream that is generated from the
encryption context is perfectly secure in use cases where the encryption context
is a nonce, but its security completely breaks down when re-using encryption
contexts. Therefore, if we wish security in case of repeating encryption contexts,
we must use a more elaborate encryption mechanism than stream encryption.

2.5 Bi-directional communication

The jammin cipher supports bi-directional communication. Alice and Bob, who
wish to communicate securely, each create an instance of the jammin cipher
with the same ID. They can subsequently encrypt their messages with wrap and
decrypt/check them with unwrap, even sharing one session, i.e., having synchro-
nized histories.

Figure 1 shows an example of a protocol between a client, Alice, and a server,
Bob, who share one session. Alice and Bob each maintain a session counter.
The session starts with Alice who wraps NAlice as the associated data and no
plaintext. Alice sends the cryptogram (or tag) T0 to Bob, who checks it. In the
rest of the protocol, Alice and Bob take turns at wrapping and unwrapping. At
each step, A.history and B.history are equal.

As this protocol is run, the encryption context grows with all the previous
associated data and plaintexts and is at all times a nonce. On Alice’s side, she
increments NAlice after issuing the first wrap of the session; hence she will not
start a new session with the same session counter. Bob stores in NBob the previ-
ous session counter, and assuming that the valid values of NAlice are increasing,
he accepts only NAlice > NBob. When he calls wrap, he is therefore sure of using
a fresh session counter. Note that Bob modifies NBob and synchronizes it with
NAlice only after checking T0, therefore avoiding denial-of-service attacks where
an adversary would control NBob.

This example highlights the power of the adversarial model that the jam-
min cipher represents. If such bi-directional communication protocol is secure
in our model, then it is also secure with a concrete scheme that is infeasible to
distinguish from the jammin cipher.

10

Fig. 1: Example of protocol. As a convention, every time there is a check, if it
fails, we assume that the protocol ignores the messages or stops.

Alice Bob
IDAlice&Bob, NAlice IDAlice&Bob, NBob
NAlice ← NAlice + 1
A← init(IDAlice&Bob)

T0 ← A.wrap(NAlice; ϵ)
Alice,NAlice,T0−−−−−−−−−−−−−→ NAlice

?
> NBob

B ← init(IDAlice&Bob)

B.unwrap(NAlice, T0)
?

̸= ⊥
NBob ← NAlice

P1 ← A.unwrap(ϵ, C1)
?

̸= ⊥ C1←−−−−− C1 ← B.wrap(ϵ, “Today’s menu”)

C2 ← A.wrap(ϵ, “a command”) C2−−−−−→ P2 ← B.unwrap(ϵ, C2)
?

̸= ⊥

P3 ← A.unwrap(ϵ, C3)
?

̸= ⊥ C3←−−−−− C3 ← B.wrap(ϵ, “a response”)

etc.

With codebook and taboo being global variables, the ideal model is omni-
scient. Even if Alice and Bob are distant, the responses of their calls to wrap and
unwrap remain deterministic and consistent. In a real-world scheme, it simply
means that Alice and Bob share the same secret key and therefore can compute
exactly the same things. Also, if Alice or Bob tries to unwrap a message that
none of them wrapped, an error is inevitably returned. In a real-world scheme,
checking the tag achieves the same goal except for the probability p ≤ 2−t that
the adversary correctly guessed it.

For simplicity, we assume that Alice, as the client, always initiates the com-
munication. This avoids that Alice and Bob initiate the communication with
the same value N . Alternatively, Alice and Bob could maintain a pair of session
counters NAlice and NBob in separate domains (e.g., NAlice is always even and
NBob is always odd) so as to authenticate the initiator of the communication.

2.6 Security of the jammin cipher in the OAE2 security model

We demonstrate the OAE2 security of the jammin cipher by proving an upper
bound on the distinguishing advantage between the jammin cipher and OAE2
ideal-world system Rand2C. Concretely, referring to the OAE2c security defini-
tion [15, Fig. 6] (see also Appendix C), we prove a tight bound for the case that
the ciphertext expansion is t bits.

11

Theorem 1. Let J +t be the jammin cipher with WrapExpand(p) = p+t. Then,
for any adversary D that makes at most q queries, we have

Advoae2-priv
J+t (D) ≤ q

2t+1
and Advoae2-auth

J+t (D) = 0 .

Furthermore, when the encryption context is a nonce, we have

Advoae2-priv
J+t (D) = Advoae2-auth

J+t (D) = 0 .

The proof can be found in Appendix B.1.
Our operational jammin cipher is hence fully indistinguishable from the non-

operational Rand2C by a nonce-respecting adversary and defines the exact same
security concept in that case. In case the encryption context is not a nonce, they
can be distinguished only and exclusively by a property of Rand2C that makes
it non-operational: non-injective encryption.

In [15, Proposition 2] the authors provide similar bounds for Ideal2B and
obtain Advoae2-priv

Ideal2B (D) ≤ q2/2t and Advoae2-auth
Ideal2B (D) ≤ ℓ/2t with ℓ the number

of messages in a single session. Thus, the jammin cipher is closer to the security
definition Rand2C than Ideal2B is.

3 Deck functions

A deck function is a keyed function that takes as input a sequence of strings and
returns a pseudorandom string of arbitrary length and that can be computed in-
crementally. Here deck stands for Doubly-Extendable Cryptographic Keyed func-
tion.

Definition 4 ([7]). A deck function F takes as input a secret key K ∈ KF and
a sequence of an arbitrary number of strings X(0); . . . ;X(m−1) ∈ (Z∗

2)
+, produces

a string of bits of arbitrary length and takes from it the range starting from a
specified offset q ∈ N and for a specified length n ∈ N. We denote this as

Z = 0n + FK

(
X(0); . . . ;X(m−1)

)
≪ q .

A deck function must allow efficient incremental computing, as detailed in Sec-
tion 3.1, and typically comes with a pseudorandomness security claim, see Sec-
tion 3.2.

Regarding the notation, we assume that the number of bits that the deck
function outputs is determined by the context, and in particular makes the
length of two strings involved in a bitwise addition equal. For instance, in the
expression X + FK (. . .), we assume that the deck function outputs |X| bits.
Also, in X + (FK (. . .) ||Y), the deck function outputs |X| − |Y | bits so that the
string inside the brackets matches X in length.

12

3.1 Incrementality

A deck function should allow efficient incremental computing. In particular, by
keeping state after computing an output for input sequence X = X(0); . . . ;X(m−1),
computing an output for X;Y (0); . . . ;Y (n−1) should have a cost independent of
X. In addition, by keeping state after computing 0n+FK

(
X(0); . . . ;X(m−1)

)
≪ q,

computing 0m + FK

(
X(0); . . . ;X(m−1)

)
≪ (q + n) should have a cost indepen-

dent of n or q.
More formally, we assume that a deck function F can be implemented by

defining a finite state set S and three auxiliary functions:

– InitF : KF → S. Calling s← InitF (K) processes the key K ∈ KF and returns
the initial state s.

– InputF : S × Z∗
2 → S. Calling s ← InputF (s,X) processes the string X and

updates the state s.
– OutputF : S × N → Z∗

2 × S. Calling (Z, s) ← OutputF (s, n) returns the
output string Z ∈ Zn

2 and updates the state s.

The output string returned by OutputF (s, n) is the output of the deck func-
tion FK(. . .) with K processed by the last call to InitF and the sequence of
strings processed by the calls to InputF . Consecutive calls to OutputF extend
the outputs produced since the last call to InputF . As an example, consider the
following sequence of calls.

s← InitF (K)

s← InputF (s;X
(0))

(Z1, s)← OutputF (s, n1) Z1 = 0n1 + FK(X(0))

(Z2, s)← OutputF (s, n2) Z2 = 0n2 + FK(X(0))≪ n1

s← InputF (s;X
(1))

(Z3, s)← OutputF (s, n3) Z3 = 0n3 + FK(X(0);X(1))

The incrementality of the deck function requires that InputF (s,X) and OutputF (s, n)
take a time that depends only on |X| and n, respectively, and that is independent
of s, although block effects are still possible.

3.2 Security claim

A deck function equipped with a fixed unknown random key should behave like
a random oracle. We call this pseudorandom function (PRF) security.

Definition 5. The advantage of an adversary D in distinguishing a deck func-
tion F from a random oracle RO is:

Advprf
F (D) =

∣∣∣P [
K

$←− KF : DFK = 1
]
− P

[
DRO = 1

]∣∣∣ .
13

Here RO is a random oracle that takes as input a string sequence. We define
the PRF advantage of a deck function Advprf

F as

Advprf
F (R) = sup

D∈D(R)

Advprf
F (D) ,

with D(R) the set of all distinguishers with given resource limits R. Here, we
define the resource vector R in a rather abstract way, and in practice it typically
comprises the data complexity M and the computational complexity N quantified
in some well-defined unit.

In a multi-user setting with u users, we replace the key K by a key array K
drawn from Ku

F , and the adversary has to distinguish between u independently
keyed deck functions and u independent random oracles:

Advprf
F (D) =

∣∣∣P [
K

$←− Ku
F : DFK1

,...,FKu = 1
]
− P

[
DRO1,...,ROu = 1

]∣∣∣ .
Expressions for the PRF advantage of a particular deck function is not some-

thing that can be measured or proven. Rather, they are useful in security claims.
For a particular deck function one can claim an upper bound on the PRF ad-
vantage and this serves as a challenge for cryptanalysts. For designers of cryp-
tographic schemes making use of the deck function, they can serve as a secu-
rity specification: Assuming the bound holds, it allows determining the security
strength of the scheme. For the validity of the underlying assumption, one has
no choice but to rely on cryptanalysis.

3.3 Examples of deck functions

Deck functions can be built in many ways and two established constructions
for building them from cryptographic permutations are the keyed duplex con-
struction [8] and farfalle [3]. For the former, we can mention Strobe [13] and
Xoodyak [6] as concrete instantiations. For the latter, Kravatte [3] and Xoofff [7]
are two farfalle instantiations making use of the Keccak-f and Xoodoo permu-
tations respectively.

A deck function can be built from other primitives and guarantee a certain
PRF security level on the condition that the underlying primitive satisfies some
security definition. For instance, we can imagine that a deck function can be
fairly naturally built as a mode on top of a tweakable block cipher [18]. First, we
compress the input through a secure MAC construction such as PMAC1 [25] or
ZMAC [16], with slight adaptations for the multi-string input support. Then, we
generate the output by processing the MAC through the tweakable block cipher,
for instance with the tweak as a counter albeit in a different domain than during
the compression. It is plausible that this construction can be proven PRF-secure
assuming the tweakable block cipher to have tweakable PRP security.

14

3.4 Basic applications

Deck function can readily be used for stream encryption, authentication, and
(nonce-based) authenticated encryption of single messages.

One can use a deck function for stream encryption by taking as input a di-
versifier D and use the output to encrypt a plaintext P as C ← P + FK(D)
and decrypt again as P ← C +FK(D). If the diversifier D is a nonce and FK is
random oracle, this is one-time pad encryption and so achieves perfect secrecy.
Information leakage of this stream cipher is upper bounded by the PRF distin-
guishing advantage of the deck function. We refer to notion of indistinguishabil-
ity from random bits under an adaptive chosen-plaintext-and-message-number
attack, or IND$ [26]. This shows the following proposition:

Proposition 3. Let D be any adversary attacking this stream cipher Π. Then
there exists an adversary D′ using the same resources as D such that

Advind$
Π (D) ≤ Advprf

F (D′) .

One can use a deck function as a MAC function returning a t-bit tag by taking
as input the message P and truncate the output to t: bits T ← 0t+FK(P). One
can verify a tag by taking as input the message P and its tag T and check whether
T+FK(P) equals 0t. If so, we say (P, T) verifies successfully. We speak of forgery
if an adversary can find a (message,tag) pair (P, T), with T not generated in a
tag generation query and that verifies successfully. Plugging in a random oracle
for FK would give a forgery success probability of q/2t with q the number of tag
verification queries. It follows that the forgery success probability of our MAC
function is at most by q/2t plus the PRF distinguishing advantage of the deck
function. We hence prove the following proposition, see also [17, Section 4.4]:

Proposition 4. Let D be any adversary attacking this authentication scheme Π.
Then there exists an adversary D′ using equivalent resources as D such that

Advuf-cma
Π (D) ≤ Advprf

F (D′) +
qver
2t

,

with D making qver verification queries. The equivalence of resources means that
the queries to the tag generation and tag verification methods are translated into
queries to F of same length.

From this, authenticated encryption with a deck function in an encrypt-then-
MAC fashion is immediate. The plaintext is encrypted as Z ← P +FK(A), with
A associated data that should be a nonce (it may contain a diversifier). Then
a tag is computed as T ← 0t + FK(A;Z). The cryptogram (Z, T) can be first
verified and then decrypted if the tag is correct. Apart from string encoding
details, this is a non-session special case of Deck-PLAIN, covered in the next
section.

15

4 Deck-PLAIN

We specify in Algorithm 2 a deck function mode for nonce-based SAE called
Deck-PLAIN. It allows two parties to exchange a sequence of messages, each
consisting of associated data and plaintext. At sending end it wraps a message
by encrypting the plaintext to a ciphertext and appending a tag that authenti-
cates the sequence of all messages up to that point. At receiving end it unwraps
a cryptogram by verifying the tag and, if correct, it decrypts the ciphertext;
otherwise, it will return an error.

Deck-PLAIN offers the same interface as the jammin cipher. The only differ-
ence is upon initialization, where the jammin cipher takes an identifier as input,
while Deck-PLAIN takes a secret key, in particular from an array of keys to be
able to model multi-key support. It has two length parameters: the tag length t
and an alignment unit length ℓ. The former determines the security level, while
the latter is related to an implementation optimization as detailed below.

In the individual messages both associated data and plaintext are optional.
We call messages without plaintext authentication-only messages and messages
without associated data plaintext-only messages. Deck-PLAIN even supports
empty messages for the purpose of authenticated acknowledgments.

If a key is used more than once, the associated data of the first message of
the session must be a nonce per key, e.g., a session counter. One may choose to
have an authentication-only first message. The corresponding tag is then called
a startup tag. Verification of a startup tag allows the receiver of the message to
authenticate the origin of the session start request including the session counter.

4.1 Inner workings

Similar to the jammin cipher, Deck-PLAIN accumulates the sequence of mes-
sages in a data element called history. Concretely, this is the sequence of asso-
ciated data and plaintexts of messages received and differs only from history in
the jammin cipher by the explicit encoding used.

In a wrap call, Deck-PLAIN encrypts a plaintext by adding to it a keystream
that is the output of the underlying deck function with input the context. This
context is the history followed by A of the message. Clearly, the encryption
context is the same as in the jammin cipher. Initialization of a session loads
the key in the deck function and initializes the history to an empty sequence
of strings. Every call of the deck function absorbs the full history but as it is
efficiently incremental, only the strings that were appended since previous deck
function call need to be processed.

Deck-PLAIN performs the wrapping of a message in two steps:

1. Encryption: It extracts keystream from the deck function and adds it to
the plaintext, yielding the ciphertext.

2. Tag generation: It appends associated data and ciphertext to the history
and extracts the tag from the deck function.

16

Algorithm 2 Definition of Deck-PLAIN(F, t, ℓ)

Parameters: deck function F , tag length t ∈ N and alignment unit length ℓ ∈ N
Let offset = ℓ

⌈
t
ℓ

⌉
: the smallest multiple of ℓ not smaller than t

Instance constructor: init(K, i) taking key array K, key index i
(inst.K, inst.history)← (K[i],∅)
return Deck-PLAIN instance
Note: in the sequel, K, history denote the attributes of inst

Instance cloner: inst.clone()
return new instance inst′ with all attributes (K, history) copied from inst

Interface: inst.wrap(A,P) returns C
if |P | = 0 then

history← history;A||00
else if |A| > 0 or history = ∅ then

context← history;A||10
Z ← P + FK (context)
history← context;Z||1

else
context← history
Z ← P + FK (context)≪ offset
history← context;Z||1

T ← 0t + FK (history)
return C = Z||T

Interface: inst.unwrap(A,C) returns P or ⊥
if |C| < t then return ⊥
Parse C in Z and T
if |Z| = 0 then

history′ ← history;A||00
else if |A| > 0 or history = ∅ then

history′ ← history;A||10;Z||1
else

history′ ← history;Z||1
T ′ ← 0t + FK (history′)
if T ′ ̸= T then return ⊥
if |A| > 0 or history = ∅ then

context← history;A||10
P ← Z + FK (context)

else
context← history
P ← Z + FK (context)≪ offset

history← history′

return P

17

Unwrapping is similar. Tag verification is performed before decryption.
In consecutive plaintext-only wrap or unwrap calls, Deck-PLAIN reserves

the first t bits of deck function outputs for tags and the remaining ones for
keystream. It takes keystream from an offset that is the smallest multiple of
ℓ not shorter than t. So Deck-PLAIN requires only one deck function call per
message in this important use case.

For authentication-only messages Deck-PLAIN skips the en(de)cryption step
and the absorbing of ciphertext. For plaintext-only messages it skips the ab-
sorbing of associated data, except for a blank message where it absorbs the
empty associated data. To make the mapping from sequences of messages to
the history injective, Deck-PLAIN appends frame bits to associated data and
ciphertext strings for domain separation before appending to the history. In
particular, ciphertext strings end with 1 and associated data strings with 00 (in
an authentication-only message) or 10 (otherwise). Hence, the individual calls
to (un)wrap can be identified in the history without ambiguity.

4.2 Security analysis

To be secure, Deck-PLAIN relies on the encryption context to be a nonce, as it
otherwise leaks the difference between two plaintexts, as for stream ciphers. If
the encryption context is a nonce, Deck-PLAIN can be distinguished from the
jammin cipher only by a forgery or by distinguishing the deck function from a
random function, as captured in the following theorem.

Theorem 2. Let D be any fixed deterministic adversary whose goal is to distin-
guish Deck-PLAIN(F, t, ℓ) from J +t, the jammin cipher with WrapExpand(p) =
p + t. If in the queries of D the encryption context is a nonce, there exists an
adversary D′ using the same resources as D such that

∆D(Deck-PLAIN(F, t, ℓ) ; J +t) ≤ qunwrap
2t

+Advprf
F (D′),

with qunwrap the number of unwrap calls D makes.

We start by introducing the H-coefficient technique and defer the proof to
Section 4.4.

4.3 The H-coefficient technique

Our proofs use the H-coefficient technique from Patarin [24]. We will follow the
adaptation of Chen and Steinberger [4]. Consider any information-theoretic de-
terministic adversaryA whose goal is to distinguishO from P, with its advantage
denoted ∆A(O ; P). The interaction of A with its oracles, either O or P, will be
recorded in a transcript τ . Denote by DO (resp. DP) the probability distribution
of transcripts that can be obtained from interaction with O (resp. P). Call a
transcript τ attainable if Pr (DP = τ) > 0. Denote by T the set of attainable
transcripts, and consider any partition T = Tgood ∪ Tbad into “good” and “bad”
transcripts. The H-coefficient technique states the following [4].

18

Lemma 1 (H-coefficient Technique). Consider a fixed information-theoretic
deterministic adversary A whose goal is to distinguish O from P. Let ε be such
that for all τ ∈ Tgood: Pr (DO = τ) /Pr (DP = τ) ≥ 1− ε . Then, ∆A(O ; P) ≤
ε+ Pr (DP ∈ Tbad).

The H-coefficient technique can thus be used to bound a distinguishing advantage
in the terminology of Definition 1. In our proofs below, we use the special case
where Pr (DO = τ) ≥ Pr (DP = τ) for all τ ∈ Tgood, so that ∆A(O ; P) ≤
Pr (DP ∈ Tbad), and we set O to the jammin cipher and P to the real world.

4.4 Proof of Theorem 2

Proof. We use a hybrid argument and replace the deck function with a random
oracle before comparing Deck-PLAIN with the jammin cipher, i.e.,

∆D(Deck-PLAIN(F, t, ℓ) ; J +t)

≤ ∆D′′(Deck-PLAIN(RO, t, ℓ) ; J +t) +Advprf
F (D′),

where D′′ has the same resources as D.
We then use Lemma 1 with O = J +t ≜ J and P = Deck-PLAIN(RO, t, ℓ).

In this proof, we use the session syntax of the jammin cipher. This is w.l.o.g. as
in Deck-PLAIN the history is an encoding of the more abstract history in J .

We define a transcript τ as a sequence of records of the form

(wrap/unwrap, context, P, C),

where the first component indicates the type of call made and the context is the
combination of the history as in the definition of J and A of the wrap/unwrap
call. In a wrap record, P is a parameter and C is the returned value, with C ̸= ⊥.
In an unwrap record, C is a parameter and P is a return value and may contain
an error code ⊥. We ignore in the transcript wrap records with equal tuple
(context, P) and unwrap records with equal tuple (context, C). This is w.l.o.g. as
both worlds act deterministically. Similarly, we ignore in the transcript unwrap
records that have the same tuple (context, P, C) as a wrap record. This is w.l.o.g.
as both worlds behave consistently in this respect. We use this to have a simple
definition of forgery, namely the presence of a successful unwrap record in the
transcript.

We have one type of bad event: a successful forgery. Tbad is the set of tran-
scripts containing a record (unwrap, context, P, C) with P ̸= ⊥. In a forgery
attempt, unwrap compares a tag to a tag generated with the underlying RO
applied to a unique input. As the latter is a uniformly generated t-bit string,
the probability that they are equal is 2−t, hence Pr (DP ∈ Tbad) ≤ qunwrap

2t after
qunwrap calls to unwrap.

We now prove that, for all τ ∈ Tgood, we have Pr (DJ = τ) ≥ Pr (DP = τ),
hence ε = 0 in Lemma 1. In both worlds, the cryptogram bits are generated ran-
domly and independently for different contexts, so we can partition the transcript

19

records per context and take the probability as the product of the probabilities
over the different contexts. We will now consider a subset of the transcript for a
given context value.

As the context is unique per wrap call for non-empty plaintexts, there
can be only one of the form (wrap, context, P ̸= ϵ, C) and one of the form
(wrap, context, ϵ, Cϵ ̸= C).

Upon an unsuccessful unwrap query, the jammin cipher returns ⊥ as it avoids
forgeries and hence contributes a factor 1 to the probability. Upon a wrap query
the jammin cipher selects C from a set of cardinality at most 2|P |+t and hence
contributes a factor at least 2−(|P |+t) to Pr (DJ = τ). It may return an error,
but thanks to Proposition 2, this would require qunwrap ≥ 2t.

Upon an unsuccessful unwrap query, P = Deck-PLAIN(RO, t, ℓ) returns
⊥ in a good transcript and this contributes at most 1 to Pr (DP = τ). Upon
a wrap query, P computes the value C = Z||T with Z = P + RO(context),
context = history;A (or P +RO(history)≪ offset when A = ϵ and history ̸= ∅)
and T = RO(updated history). Thanks to the fact that upon wrap the context
is unique and P takes tags and keystream in different domains or from different
parts of the random oracle output stream, it contributes a factor exactly 2−(|P |+t)

to Pr (DP = τ). A wrap record with P = ϵ contribute a factor exactly 2−t to
Pr (DP = τ).

This shows that Pr (DJ = τ) ≥ Pr (DP = τ) and concludes the proof. ⊓⊔

5 Feistel network modes

The security of Deck-PLAIN breaks down when the encryption context is not a
nonce. In this section, we introduce four different modes of deck functions that
are more robust against nonce misuse. Two of the modes make optimal use of
the redundancy: for t-bit security they only require a plaintext expansion by t
bits. Moreover, two of them provide protection against the accidental release of
unverified decrypted ciphertext (a.k.a. release of unverified plaintext or RUP [2]).

After contemplating different modes like Synthetic Initial Value (SIV) [28],
Robust IV (RIV) [1] and wide-block ciphers [19, 20], it occurs that they can
all be expressed under the hood of a Feistel network. We here give an intuitive
overview of these modes from this point of view, starting with the simplest case:
SIV. Consider Figure 2 (left) with only the first two rounds. The left branch is
initialized with t bits set to zero, while the right branch contains the plaintext.
After the first round, V is a pseudorandom function of the plaintext and becomes
the tag. We use V also as a synthetic diversifier in the next round, and encrypt
the plaintext Y = P by adding to it a keystream that depends on V .

In case the implementation (accidentally) releases unverified decrypted ci-
phertexts, an adversary can obtain decrypted ciphertexts for chosen values of
V . After querying unwrap with C0 = V ||Z0 and C1 = V ||Z1 and get unverified
decrypted ciphertexts P0 and P1, she observes that Z0 + Z1 = P0 + P1. The
RIV mode avoids this by adding a third round. The ciphertext Z serves as input

20

RO1

RO2

RO3

BOREE only

0t P

Y

V

Z

W

C

RO1

RO0

RO2

RO3

JAMBOREE only

P last‖10∗0t‖P first

X

U

Y

V

Z

story

W

C

Fig. 2: Feistel network inside the different modes, Deck-BO(REE) on the left and
Deck-JAMBO(REE) on the right.

to a third pseudorandom function to mask V . Compared to SIV, the adversary
cannot control V at decryption anymore since she has access to W only.

To avoid collisions in V , SIV and RIV need to have t large enough. In case of
unbounded nonce misuse, due to the birthday paradox we must take t = 2s for
s bits of security. Consider now Figure 2 (right). Compared to SIV and RIV, it
adds a round at the beginning and the plaintext is spread onto the two branches,
with t bits of redundancy on the left branch. This round compresses P into Y ,
and then we proceed as with SIV and RIV. The left and right branch must be
wide enough to avoid collisions in Y , but this is decoupled from the expansion
length t and we can now have t = s for s bits of security. If a mode performs the
first three rounds but not the last one, we obtain an improved SIV mode, with
the optimal redundancy but no resistance to RUP.

We call our modes Deck-BO, Deck-BOREE, Deck-JAMBO and
Deck-JAMBOREE and they make use of the Feistel network-based block
cipher in Algorithm 3. This algorithm is parameterized with the deck function
F and whether the optional first (jam) and last (ree) rounds are performed.
A call to the block cipher takes as input a secret key K, a context (tweak)
and the input already split into four parts L0||L+||R0||R+. The left branch
is L0||L+ and the right branch is R0||R+. The first (resp. last) round affects
only R0 (resp. L0). Additionally, the block cipher returns a history that is the
combination of its context and the intermediate value Y . In Deck-BO(REE), Y
coincides with the plaintext, while in Deck-JAMBO(REE) it is the compressed

21

plaintext or plaintext representative. In all cases, Y needs to be absorbed when
evaluating the block cipher and this allow the returned history not to have to
be absorbed again, thanks to the incrementality of the deck function.

Algorithm 3 Definition of block cipher B and its inverse.
Parameters: deck function F and round flags ⊆ {jam, ree}
Note: in the sequel, L is a shortcut notation for L0||L+ and R for R0||R+.

Interface: O = BF,flags(K, context, L0, L+, R0, R+)
if jam ∈ flags then

R0 ← R0 + FK (context;L||001)
L← L+ FK (context;R||011)
history← context;R||011
R← R+ FK (context;L||101)
if ree ∈ flags then

L0 ← L0 + FK (context;R||111)
return (history, L||R)

Interface: O = B−1
F,flags(K, context, L0, L+, R0, R+)

if ree ∈ flags then
L0 ← L0 + FK (context;R||111)

R← R+ FK (context;L||101)
L← L+ FK (context;R||011)
history← context;R||011
if jam ∈ flags then

R0 ← R0 + FK (context;L||001)
return (history, L||R)

5.1 Deck-BO

Deck-BO, defined in Algorithm 4, combines the SIV approach [28] with the
session support of Deck-PLAIN. Deck-BO wraps a message in three phases:

1. Tag generation: It generates the tag by applying the deck function to the
context (history and A) and the plaintext of the message, if non-empty.

2. Encryption: If the plaintext is non-empty, it generates the ciphertext by
adding to the plaintext the output of the deck function applied to the context
extended with the tag.

3. It updates the history.

Unwrapping is similar. Deck-BO has a single length parameter: the tag length t.
It applies domain separation between associated data and plaintext strings in
the history, as well as between the generation of keystream and of tag.

In contrast to Deck-PLAIN, the leakage of Deck-BO is limited to revealing
equality of plaintexts given equal encryption contexts. To achieve that, Deck-BO

22

first computes the tag over the history with associated data and plaintext at-
tached and then generates the keystream from the encryption context with this
tag appended to it. Unless we have colliding tags for equal encryption contexts,
keystreams are independent. Therefore, for its security Deck-BO relies on the
absence of (rare) tag collisions.

Algorithm 4 Definition of Deck-BO(F, t) and Deck-BOREE(F, t)

Parameters: deck function F and expansion length t
B = BF,∅ for Deck-BO or B = BF,{ree} for Deck-BOREE

Constructor: init(K, i) taking key array K, key index i
(K,history)← (K[i],∅)
return instance

Interface: wrap(A,P) returning C
if |P | = 0 then

history← history;A||00
return C ← 0t + FK (history)

if |A| = 0 then context← history else context← history;A||10
(history, C)← B(K, context, 0t, ϵ, P, ϵ)
return C

Interface: unwrap(A,C) returning P or ⊥
if |C| = t then

history′ ← history;A||00
P ← ϵ
C′ ← 0t + FK (history′)
if C′ ̸= C then return ⊥

else if |C| > t then
if |A| = 0 then context← history else context← history;A||10
T ||Z ← C such that |T | = t
(history′, P ′)← B−1(K, context, T, ϵ, Z, ϵ)
L||P ← P ′ such that |L| = t
if L ̸= 0t then return ⊥

else return ⊥
history← history′

return P

The security of Deck-BO is captured in Theorem 3.

Theorem 3. Let D be any fixed deterministic adversary whose goal is to distin-
guish Deck-BO(F, t) from J +t, the jammin cipher with WrapExpand(p) = p+ t.
Then there exists an adversary D′ using the same resources as D such that

∆D(Deck-BO(F, t) ; J +t) ≤ qunwrap
2t

+
∑

context

(
σ(context)

2

)
2t

+Advprf
F (D′),

23

with qunwrap the number of unwrap calls that D makes and σ(context) the number
of wrap queries with P ̸= ϵ for a given context value.

The second term is due to tags colliding for equal encryption contexts and it
determines the length of the tag to achieve a certain security strength s. If the
encryption context is a nonce, the term vanishes and it is sufficient to take
t = s. In case of unbounded nonce misuse, it may reach q2wrap

2t+1 and we have to
set t ≥ 2s− 1. In use cases where the number of times an encryption context is
repeated can be upper bounded by 2x, we can relax this to t = s+ x− 1.

The proof is similar to that of Theorem 6, except that (i) V , Y and U ||X
are not added to the records, (ii) the bad events are only the successful forgery
and the tag collision. The complete proof can be found in Appendix B.2.

5.2 Deck-BOREE and release of unverified decrypted ciphertexts

Deck-BO does not tolerate the release of unverified decrypted ciphertexts when
unwrapping. This leads to a distinguisher as detailed earlier. We introduce
Deck-BOREE to address use cases where this is a concern. Deck-BOREE hides
the tag value from the adversary by encrypting it using keystream computed
from the ciphertext. The distinguisher described above for Deck-BO no longer
works as the tag (SIV) depends on the ciphertext and decryption leads to inde-
pendent keystreams and therefore independent decrypted ciphertexts. We define
Deck-BOREE in Algorithm 4.

Theorem 4 formalizes the security of Deck-BOREE. For the release of unver-
ified decrypted ciphertexts, we use an approach similar to indifferentiability [21].
In the real world, we extend the interface of the adversary with the value of the
right branch (Y) after processing the unwrap query, as this is where the plain-
text appears before the tag is verified. For the ideal world, such a right branch
does not exist and we simulate it with independently distributed random bits,
so without connection to any actual plaintexts. Infeasibility to distinguish the
two systems with this extended interface implies that security is preserved even
when releasing unverified decrypted ciphertext.

In addition, we grant the adversary the choice per query whether she gets
the value of the right branch (or its simulated value). If not, she just receives ⊥.
So Theorem 4 also covers the case where the unverified decrypted ciphertexts
are not disclosed, or only a limited number of them.

Theorem 4. Let D be any fixed deterministic adversary whose goal is to distin-
guish Deck-BOREE(F, t) from J +t, the jammin cipher with WrapExpand(p) =
p + t. In addition, this adversary has access to the unverified decrypted cipher-
texts in the case of Deck-BOREE and to a random string of bits |C| − t bits in
the case of the jammin cipher. Then there exists an adversary D′ using the same
resources as D such that

∆RUP
D (Deck-BOREE(F, t) ; J +t) ≤ qunwrap

2t
+

∑
context

(
σ′(context)

2

)
2t

+Advprf
F (D′),

24

with qunwrap the number of unwrap calls that D makes and σ′(context) the number
of wrap (resp. unwrap) queries with P ̸= ϵ (resp. |C| > t and the adversary
accesses the unverified decrypted ciphertext) for a given context value.

The second term is due to (hidden) tag collisions for wrap call and unwrap
calls with leakage for given encryption contexts. As for Deck-BO, it determines
the length of the tag to achieve a certain security strength s and the same
trade-offs apply. If the adversary does not access unverified decrypted ciphertext,
unwrap queries do contribute to σ′(context) and we get the same bound as in
Theorem 3 for Deck-BO.

The proof is similar to that of Theorem 6, except that (i) U ||X does not need
to be added to the records and Y is added only to unwrap records, (ii) the bad
events are only the successful forgery and the hidden tag (or V) collision. The
complete proof can be found in Appendix B.3.

5.3 Deck-JAMBO and optimal redundancy

Deck-JAMBO can be seen as an enhancement of Deck-BO to allow mixing plain-
text with redundancy, resulting in less required expansion. This is accomplished
by performing a round at the beginning in order to protect against chosen plain-
text attacks. With Deck-JAMBO, it is possible to take advantage of redundancy
that is already present in the plaintext, as long as it resides in the left branch of
the Feistel network. We define it in Algorithm 5.

We leave the specifications of how to split the input of the block cipher into
left and right parts out of the definition of Deck-JAMBO and Deck-JAMBOREE.
The reason is that the most efficient way to do so may vary with the particular
deck function in use. For instance, for farfalle-based deck functions, one may
wish the left part of the input to fit in exactly one block after padding. Such
specific technicalities do not belong in the definition of a general-purpose mode.

For security, we require the plaintext expansion and the splitting of the input
to satisfy some properties. The split cuts the expanded plaintext or cryptogram
into four parts, as the left and right parts are further split for the optional first
and last rounds. We formalize this with three functions, plaintext expansion and
extraction and a split function.

First, the expand function takes as input the plaintext P and the expansion
length t and returns the expanded plaintext P ′ = expand(P, t) of the form
0t||P ||10∗. The number of zero bits at the end may depend on the length of P
but shall not depend on its value. This function must ensure that |P ′| ≥ 4t. The
expand function implicitly defines a WrapExpand function, namely,

WrapExpand(|P |) = |expand(P, t)| .

For P = ϵ, Deck-JAMBO has a special treatment and the resulting cryptogram
has |C| = t bits. So, we can set WrapExpand(0) = t and therefore the implicitly
defined WrapExpand function is t-expanding by construction.

Second, we define a plaintext extraction function called extract(P ′, t) that
returns ⊥ if P ′ does not start with 0t or cannot be unpadded, and extracts P

25

otherwise. Naturally, we require that extract(expand(P, t)) = P for any P . Note
that the behavior of this function is fixed and cannot be customized.

Third, the split function takes as input the expanded plaintext P ′ or cipher-
text C and the expansion length t, and it returns a tuple (L0, L+, R0, R+) =
split(α, t) such that α = L0||L+||R0||R+, |L0| ≥ 2t and |R0| ≥ 2t. Here again,
the lengths of the four parts may depend on the length of the input string but
not on its value. If the input string is shorter than 4t bits, it returns an error.

Algorithm 5 Definition of Deck-JAMBO(REE)(F, t, expand, split)

Parameters: deck function F , expansion length t, expand and split functions
B = BF,{jam} for Deck-JAMBO or B = BF,{jam,ree} for Deck-JAMBOREE

Constructor: init(K, i) taking key array K, key index i
(K, story)← (K[i],∅)
return instance

Interface: wrap(A,P) returning C
if |P | = 0 then

story← story;A||00
return C ← 0t + FK (story)

if |A| = 0 then context← story else context← story;A||10
P ′ ← expand(P, t)
(L0, L+, R0, R+)← split(P ′, t)
(story, C)← B(K, context, L0, L+, R0, R+)
return C

Interface: unwrap(A,C) returning P or ⊥
story′ ← story
if |C| = t then

story′ ← story′;A||00
C′ ← 0t + FK (story′)
if C′ = C then P ← ϵ else P ← ⊥

else if split(C, t) ̸= ⊥ then
if |A| = 0 then context← story else context← story;A||10
(L0, L+, R0, R+)← split(C, t)
(story′, P ′)← B−1(K, context, L0, L+, R0, R+)
P ← extract(P ′, t)

else P ← ⊥
if P ̸= ⊥ then story← story′

return P

Compared to Deck-BO, we renamed the history to story as it is no longer
guaranteed that the mapping of the sequence of messages to this sequence of
strings is injective. In particular, we do not append plaintexts but rather plain-
text representatives. Different plaintexts with colliding plaintext representatives
are rare, and we treat them as bad events in the proof.

26

The security of Deck-JAMBO is captured in the theorem below. Compared
to Deck-BO, the expansion parameter t can be equal to the security strength s
in all cases. Collisions that happen on the left or right branch are bad events,
but as the branches are at least 2t bits wide, these are rare.

Theorem 5. Let D be any fixed deterministic adversary whose goal is to distin-
guish Deck-JAMBO(F, t, expand, split) from J t,expand, the jammin cipher with
WrapExpand that follows from t and the chosen expand function (or J for short).
Then there exists an adversary D′ using the same resources as D such that

∆D(Deck-JAMBO(F, . . .) ; J) ≤ qunwrap
2t

+
∑

context

(
σ(context)

2

)
22t−1

+Advprf
F (D′),

with qunwrap the number of unwrap calls that D makes and σ(context) the number
of wrap queries with P ̸= ϵ for a given context value.

The proof is similar to that of Theorem 6, except that (i) V and U ||X are
not added to the records and Y only to wrap records, (ii) the bad events are only
the successful forgery, and the left branch (or V) collision and the plaintext rep-
resentative (or Y) collision. The complete proof can be found in Appendix B.4.

5.4 Deck-JAMBOREE

Deck-JAMBOREE combines the advantages of Deck-BOREE and Deck-JAMBO
in a natural way. For encryption it makes use of a wide tweakable block cipher
such as AEZ [14] but rather specified in terms of a deck function, like Double-
decker [12]. For authentication, it relies on the redundancy in the expanded
plaintext presented to this block cipher.

The security of Deck-JAMBOREE is captured in the theorem below. Like
Deck-JAMBO, the expansion parameter t can be equal to the security strength s.
And like Deck-BOREE, it is secure even in the case of the release of unverified
decrypted ciphertext. The RUP model is defined similarly, with the difference
that there is no clear split anymore between the ciphertext and the tag as in
Deck-BOREE. Hence, the adversary has access to the entire unverified decrypted
cryptogram, which would contain the expanded plaintext in a successful unwrap.

Theorem 6. Let D be any fixed deterministic adversary whose goal is to distin-
guish Deck-JAMBOREE(F, t, expand, split) from J t,expand, the jammin cipher
with WrapExpand that follows from t and the chosen expand function (or J for
short). In addition, this adversary has access to the unverified decrypted cryp-
tograms in the case of Deck-JAMBOREE and to a random string of bits |C| bits
in the case of the jammin cipher. Then there exists an adversary D′ using the
same resources as D such that

∆RUP
D (Deck-JAMBOREE(F, . . .) ; J) ≤ qunwrap

2t
+

∑
context

(
σ′(context)

2

)
22t−1

+Advprf
F (D′),

27

with qunwrap the number of unwrap calls that D makes and σ′(context) the number
of wrap (resp. unwrap) queries with P ̸= ϵ (resp. |C| > t and the adversary
accesses the unverified decrypted cryptogram) for a given context value.

Proof. As done in the proof of Theorem 2, we use a hybrid argument and replace
the deck function with a random oracle before comparing Deck-JAMBOREE
with the jammin cipher. We then use Lemma 1 with O = J and P =
Deck-JAMBOREE(RO, . . .).

In this proof, we use the session syntax of the jammin cipher. The context
is history;A in the jammin cipher, or story;A||10 (or just story if A = ϵ) in
Deck-JAMBOREE. However, in Deck-JAMBOREE, what is kept in story is not
the plaintext but the plaintext representative Y . This mapping is not injective
but collisions are rare and we treat them as bad events. If no bad events happen,
the story is an injective function of history. For additional uniformity in the
notation, RO0(context;X) (resp, RO1, etc.) is a call to RO(context;X||001)
(resp. RO(context;X||011), etc.) in Deck-JAMBOREE.

The plaintext representative Y is computed as follows. Let
(L0, L+, R0, R+) = split(expand(P, t), t) and denote the lengths of the
components as l = |L0| + |L+|, r0 = |R0| and r+ = |R+|. Because of
expand(P, t), we have that L0||L+ = 0t||P first and R0||R+ = P last||10pad, with
P split as P = P first||P last accordingly. Then,

Y = (R0||R+) + (RO0(context;L0||L+)||0r+)
= (P last||10pad) + (RO0(context; 0

t||P first)||0r+) .
(1)

We define a transcript τ as a sequence of records of the form

(wrap,context, P, C, V, Y),

(unwrap,context, P, C, V, Y, U ||X),

where the first component indicates the type of call made and the second contains
the context in an agnostic representation. Also, context = history;A when P = ϵ.
For a call to wrap, P is its parameter and C is the returned value, with C ̸= ⊥.
For a call to unwrap, C is its parameter and P , the plaintext or an error code,
is the returned value. We ignore in the transcript wrap records with equal tuple
(context, P) and unwrap records with equal tuple (context, C). This is w.l.o.g. as
both worlds act deterministically. Similarly, we ignore in the transcript unwrap
records that have the same tuple (context, P, C) as a wrap record. This is w.l.o.g.
as both worlds behave consistently in this respect. We use this to have a simple
definition of forgery, namely as a successful unwrap record.

There are additional components in the records.

1. Y , the plaintext representative in wrap records. Its presence is required to
define bad events, and it is disclosed only at the end of the game. When
P = ϵ, we have Y = ϵ.

– In Deck-JAMBOREE, Y is the right branch of B after the first round,
as in Equation (1) (see also Figure 2).

28

– In the jammin cipher, Y = P last||10pad +RO0(context;P
first)||0r+ , with

RO0 being statistically independent of the coins used in the jammin
cipher.

2. V , the hidden diversifier V in wrap and unwrap records. When P = ϵ or
|C| = t, V = ϵ. Its presence is required to define bad events, and it is
disclosed only at the end of the game. In both cases it is computed from
parts of the cryptogram C. Let W ||Z = C with |W | = l, see also Figure 2.

– In Deck-JAMBOREE, V = W +RO3(context;Z).
– In the jammin cipher, V = W +RO3(context;Z), with RO3 statistically

independent of the coins used in the jammin cipher.
3. Y , the unverified plaintext representative in unwrap records. Y is used to

define bad events, and it is disclosed only at the end of the game. Y = ⊥
when the adversary does not access the unverified decrypted cryptogram.

– In Deck-JAMBOREE, Y = Z +RO2(context;V).
– In the jammin cipher, Y = X + RO0(context;U)||0r+ for consistency.
RO0 is independent of the coins used in the jammin cipher and U ||X is
determined as detailed below.

4. U ||X, the unverified decrypted cryptogram in unwrap records. This data
element may be disclosed upon each unwrap query so that the adversary
can react adaptively. In all cases, U ||X = Y = ⊥ when the adversary does
not access the unverified decrypted cryptogram.

– In Deck-JAMBOREE, U = V + RO1(context;Y) and X = Y +
RO0(context;U)||0r+ . In the case of a valid unwrap query, U ||X would
contain the actual plaintext.

– In the jammin cipher, U ||X = 0|C| +RO2(context;C) and RO2 is sta-
tistically independent from RO0 and independent of the coins used in
the jammin cipher, so Y bears no relation with any plaintext.

We have 3 types of bad event. If a transcript has a bad event, it is in Tbad.

Collision in plaintext representative Y : the transcript has two dis-
tinct records of the form (wrap, context, P, C, V, Y) with P ̸= ϵ or
(unwrap, context, P, C, V, Y ̸= ⊥, U ||X) with equal context and equal value
Y . For the wrap queries to Deck-JAMBOREE, the first r0 (≥ 2t) bits of Y
are randomly generated with RO. As Y is disclosed only at the end of the
game, the adversary cannot use P last adaptively to compensate for changes
inRO(. . . ;P first|| . . .) and obtain a collision. Also, when the adversary varies
P last but not P first the resulting Y cannot collide. For the unwrap queries
to Deck-JAMBOREE, Y = Z +RO2(context;V) and distinct queries with
colliding V ’s cannot lead to collisions in Y . So in the end, we look at the
probability of collisions on strings of at least 2t random bits among at most
σ′(context) records at once.

Collision in hidden left branch V : the transcript has two distinct records
of the form (wrap, context, P, C, V, Y) or (unwrap, context, P, C, V, Y, U ||X ̸=
⊥) with equal context, |C| > t and equal values V . For wrap queries to
Deck-JAMBOREE, V = 0t||P first +RO1(context;Y) and Y can be assumed
to be unique per query. For unwrap queries to Deck-JAMBOREE, V is

29

computed from C = W ||Z, noting that 1) the values of V cannot be used
adaptively to adjust W and obtain a collision and 2) when the adversary
varies W but not Z the resulting V cannot collide. In addition, collisions
between wrap and unwrap queries must also be taken into account, and
again we look at the probability of collisions on strings of at least 2t random
bits among at most σ′(context) records at once.

Successful forgery : the transcript has a record of the form
(unwrap, context, P, C, V, U ||X) with P ̸= ⊥. After qunwrap queries, the
probability that the left branch starts with t zeroes for one of the queries is
upper bounded by qunwrap2

−t. This is true even if different queries lead to
identical values at the input of RO1.

This yields Pr (DP ∈ Tbad) ≤ qunwrap
2t +

∑
context

(σ
′(context)

2)
22t−1 .

We now argue that, for all τ ∈ Tgood, we have Pr (DJ = τ) ≥ Pr (DP = τ),
hence ε = 0 in Lemma 1.

In both worlds, cryptogram and additional component bits are generated ran-
domly and independently for different contexts, so we can partition the transcript
records per context and take the probability as the product of the probabilities
over the different contexts. We will now consider a subset of the transcript for
a given context value. In such records, there can be several records of the forms
(wrap, context, P, C, V, Y) and (unwrap, context,⊥, C, V, Y, U ||X).

In the jammin cipher, each wrap record with P ̸= ϵ and a new value of P first

contributes a factor 2−r0 due to the value of Y . The value of each C in the wrap
queries is taken from a set of cardinality at most 2|C|. Hence, each such record
contributes a factor at least 2−|C| to Pr (DJ = τ), conditioned on the previously
considered records. Conditioned on the wrap records, the unwrap records con-
tribute only through their values V , Y and U ||X (when U ||X ̸= ⊥) because
the jammin cipher avoids all forgeries. As U ||X = 0|C| +RO2(context;C), this
contributes a factor 2−|C| exactly. Since Y = X + RO0(context;U)||0r+ , this
contributes a factor 2−r0 for a fresh value U and 1 for repeating values U condi-
tioned on the first occurrence with U . Hence, V , Y and U ||X in unwrap queries
contribute a factor 2−|C|−r0 or 2−|C| depending on the repetitions of U . As
V = W +RO3(context;Z), wrap and unwrap queries with a fresh Z contribute
2−l, while those that vary only on W contribute 1 conditioned on the first query
with Z. The jammin cipher may return an error, but thanks to Proposition 2,
this would require qunwrap ≥ 2t.

In P = Deck-JAMBOREE(RO, . . .), each wrap record with P ̸= ϵ and a
new value of P first contributes a factor 2−r0 due to the value of Y . The value
of each C = W ||Z in the wrap queries is obtained as Z = Y +RO2(context;V)
and W = 0t||P first +RO1(context;Y) +RO3(context;Z). Given that all the V
and Y values are distinct in Tgood, the contribution of C is a factor exactly 2−|C|

to Pr (DP = τ). Conditioned on the wrap records, we look at the contributions
of the values of V , Y and U ||X (when U ||X ̸= ⊥) in the unwrap records. The
contribution of P = ⊥ amounts to at most 1 in Pr (DP = τ) as forgeries may
happen. As Y = Z+RO2(context;V), the value Y contributes a factor 2−r since
the V ’s are distinct. As U = V + RO1(context;Y), the value U contributes a

30

factor 2−l since the Y ’s are distinct. As X = Y +RO0(context;U)||0r+ , the value
X in queries with a fresh U contribute a factor 2−r0 , while the others contribute
1 conditioned on the first query with U . Hence, V , Y and U ||X in unwrap
queries contribute a factor 2−|C|−r0 or 2−|C| depending on the repetitions of U .
For wrap queries, V = 0t +RO1(context;Y), which contributes a factor exactly
2−l since all the Y ’s are distinct. For unwrap queries, V = W +RO3(context;Z)
and queries with a fresh Z contribute 2−l, while those that vary only on W
contribute 1 conditioned on the first query with Z.

This shows that Pr (DJ = τ) ≥ Pr (DP = τ) and concludes the proof.

6 Conclusions

In this paper, we proposed the jammin cipher as an ideal model for session-
supporting authenticated encryption (SAE), with a number of advantages over
OAE2. Also, we investigated the use of deck functions to build SAE schemes
with various robustness properties, and we analyzed their security under the
jammin cipher model.

Deck functions provide an efficient and simple way of building SAE schemes.
We found that proving the security of the deck function-based modes is rela-
tively easy and gives strong bounds that are tight, as the bounds account only
for simple bad events like tag guessing and internal collisions. New modes are
relatively easy to design, and this opens the door to more tailored schemes for
niche applications, but we leave this as future work.

References

1. Abed, F., Forler, C., List, E., Lucks, S., Wenzel, J.: RIV for robust authenticated
encryption. In: Peyrin, T. (ed.) Fast Software Encryption - 23rd International
Conference, FSE 2016, Bochum, Germany, March 20-23, 2016, Revised Selected
Papers. Lecture Notes in Computer Science, vol. 9783, pp. 23–42. Springer (2016),
https://doi.org/10.1007/978-3-662-52993-5_2

2. Andreeva, E., Bogdanov, A., Luykx, A., Mennink, B., Mouha, N., Yasuda, K.: How
to securely release unverified plaintext in authenticated encryption. In: Sarkar, P.,
Iwata, T. (eds.) Advances in Cryptology - ASIACRYPT 2014 - 20th International
Conference on the Theory and Application of Cryptology and Information Security,
Kaoshiung, Taiwan, R.O.C., December 7-11, 2014. Proceedings, Part I. Lecture
Notes in Computer Science, vol. 8873, pp. 105–125. Springer (2014), https://
doi.org/10.1007/978-3-662-45611-8_6

3. Bertoni, G., Daemen, J., Hoffert, S., Peeters, M., Van Assche, G., Van Keer, R.:
Farfalle: parallel permutation-based cryptography. IACR Trans. Symmetric Cryp-
tol. 2017(4), 1–38 (2017), https://tosc.iacr.org/index.php/ToSC/article/
view/801

4. Chen, S., Steinberger, J.P.: Tight security bounds for key-alternating ciphers.
In: Nguyen, P.Q., Oswald, E. (eds.) Advances in Cryptology - EUROCRYPT
2014 - 33rd Annual International Conference on the Theory and Applications

31

https://doi.org/10.1007/978-3-662-52993-5_2
https://doi.org/10.1007/978-3-662-45611-8_6
https://doi.org/10.1007/978-3-662-45611-8_6
https://tosc.iacr.org/index.php/ToSC/article/view/801
https://tosc.iacr.org/index.php/ToSC/article/view/801

of Cryptographic Techniques, Copenhagen, Denmark, May 11-15, 2014. Proceed-
ings. Lecture Notes in Computer Science, vol. 8441, pp. 327–350. Springer (2014),
https://doi.org/10.1007/978-3-642-55220-5_19

5. Daemen, J., Hoffert, S., Peeters, M., Van Assche, G., Van Keer, R.:
All on Deck! Real World Crypto 2020, New York, USA, January 8-10,
2020, https://rwc.iacr.org/2020/slides/Assche.pdf, https://www.youtube.
com/watch?v=CQDsLhf-d-A (2020)

6. Daemen, J., Hoffert, S., Peeters, M., Van Assche, G., Van Keer, R.: Xoodyak,
a lightweight cryptographic scheme. IACR Trans. Symmetric Cryptol. 2020(S1),
60–87 (2020), https://doi.org/10.13154/tosc.v2020.iS1.60-87

7. Daemen, J., Hoffert, S., Van Assche, G., Van Keer, R.: The design of Xoodoo and
Xoofff. IACR Trans. Symmetric Cryptol. 2018(4), 1–38 (2018), https://doi.org/
10.13154/tosc.v2018.i4.1-38

8. Daemen, J., Mennink, B., Van Assche, G.: Full-state keyed duplex with built-
in multi-user support. In: Takagi, T., Peyrin, T. (eds.) Advances in Cryptology -
ASIACRYPT 2017 - 23rd International Conference on the Theory and Applications
of Cryptology and Information Security, Hong Kong, China, December 3-7, 2017,
Proceedings, Part II. Lecture Notes in Computer Science, vol. 10625, pp. 606–637.
Springer (2017), https://doi.org/10.1007/978-3-319-70697-9_21

9. Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption
Standard. Information Security and Cryptography, Springer (2002), https://doi.
org/10.1007/978-3-662-04722-4

10. Daemen, J., Rijmen, V.: The pelican MAC function. IACR Cryptol. ePrint Arch.
2005, 88 (2005), http://eprint.iacr.org/2005/088

11. Duong, T., Rizzo, J.: Here come the XOR ninjas. Manuscript (2011)
12. Gunsing, A., Daemen, J., Mennink, B.: Deck-based wide block cipher modes and an

exposition of the blinded keyed hashing model. IACR Trans. Symmetric Cryptol.
2019(4), 1–22 (2019), https://doi.org/10.13154/tosc.v2019.i4.1-22

13. Hamburg, M.: The STROBE protocol framework. In: Real World Crypto (2017)
14. Hoang, V.T., Krovetz, T., Rogaway, P.: Robust authenticated-encryption AEZ

and the problem that it solves. In: Oswald, E., Fischlin, M. (eds.) Advances in
Cryptology - EUROCRYPT 2015 - 34th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Sofia, Bulgaria, April 26-
30, 2015, Proceedings, Part I. Lecture Notes in Computer Science, vol. 9056, pp.
15–44. Springer (2015), https://doi.org/10.1007/978-3-662-46800-5_2

15. Hoang, V.T., Reyhanitabar, R., Rogaway, P., Vizár, D.: Online authenticated-
encryption and its nonce-reuse misuse-resistance. In: Gennaro, R., Robshaw, M.
(eds.) Advances in Cryptology - CRYPTO, 2015, Proceedings, Part I. Lecture
Notes in Computer Science, vol. 9215, pp. 493–517. Springer (2015), https://
doi.org/10.1007/978-3-662-47989-6_24

16. Iwata, T., Minematsu, K., Peyrin, T., Seurin, Y.: ZMAC: A fast tweakable block
cipher mode for highly secure message authentication. In: Katz, J., Shacham, H.
(eds.) Advances in Cryptology - CRYPTO 2017 - 37th Annual International Cryp-
tology Conference, Santa Barbara, CA, USA, August 20-24, 2017, Proceedings,
Part III. Lecture Notes in Computer Science, vol. 10403, pp. 34–65. Springer (2017),
https://doi.org/10.1007/978-3-319-63697-9_2

17. Katz, J., Lindell, Y.: Introduction to Modern Cryptography. Chapman and
Hall/CRC Press (2007), http://www.cs.umd.edu/%7Ejkatz/imc.html

18. Liskov, M.D., Rivest, R.L., Wagner, D.A.: Tweakable block ciphers. In: Yung, M.
(ed.) Advances in Cryptology - CRYPTO 2002, 22nd Annual International Cryp-

32

https://doi.org/10.1007/978-3-642-55220-5_19
https://rwc.iacr.org/2020/slides/Assche.pdf
https://www.youtube.com/watch?v=CQDsLhf-d-A
https://www.youtube.com/watch?v=CQDsLhf-d-A
https://doi.org/10.13154/tosc.v2020.iS1.60-87
https://doi.org/10.13154/tosc.v2018.i4.1-38
https://doi.org/10.13154/tosc.v2018.i4.1-38
https://doi.org/10.1007/978-3-319-70697-9_21
https://doi.org/10.1007/978-3-662-04722-4
https://doi.org/10.1007/978-3-662-04722-4
http://eprint.iacr.org/2005/088
https://doi.org/10.13154/tosc.v2019.i4.1-22
https://doi.org/10.1007/978-3-662-46800-5_2
https://doi.org/10.1007/978-3-662-47989-6_24
https://doi.org/10.1007/978-3-662-47989-6_24
https://doi.org/10.1007/978-3-319-63697-9_2
http://www.cs.umd.edu/%7Ejkatz/imc.html

tology Conference, Santa Barbara, California, USA, August 18-22, 2002, Proceed-
ings. Lecture Notes in Computer Science, vol. 2442, pp. 31–46. Springer (2002),
https://doi.org/10.1007/3-540-45708-9_3

19. Luby, M., Rackoff, C.: How to construct pseudorandom permutations from pseu-
dorandom functions. SIAM J. Comput. 17(2), 373–386 (1988), https://doi.org/
10.1137/0217022

20. Lucks, S.: Faster Luby-Rackoff ciphers. In: Gollmann, D. (ed.) Fast Software En-
cryption, Third International Workshop, Cambridge, UK, February 21-23, 1996,
Proceedings. Lecture Notes in Computer Science, vol. 1039, pp. 189–203. Springer
(1996), https://doi.org/10.1007/3-540-60865-6_53

21. Maurer, U.M., Renner, R., Holenstein, C.: Indifferentiability, impossibility results
on reductions, and applications to the random oracle methodology. In: Naor, M.
(ed.) Theory of Cryptography, First Theory of Cryptography Conference, TCC
2004, Cambridge, MA, USA, February 19-21, 2004, Proceedings. Lecture Notes in
Computer Science, vol. 2951, pp. 21–39. Springer (2004), https://doi.org/10.
1007/978-3-540-24638-1_2

22. Mennink, B., Neves, S.: Optimal PRFs from blockcipher designs. IACR Trans.
Symmetric Cryptol. 2017(3), 228–252 (2017), https://doi.org/10.13154/tosc.
v2017.i3.228-252

23. NIST: NIST special publication 800-38b, recommendation for block cipher modes
of operation: the cmac mode for authentication (June 2016)

24. Patarin, J.: The ”coefficients H” technique. In: Avanzi, R.M., Keliher, L., Sica, F.
(eds.) Selected Areas in Cryptography, 15th International Workshop, SAC 2008,
Sackville, New Brunswick, Canada, August 14-15, Revised Selected Papers. Lecture
Notes in Computer Science, vol. 5381, pp. 328–345. Springer (2008), https://doi.
org/10.1007/978-3-642-04159-4_21

25. Rogaway, P.: Efficient instantiations of tweakable blockciphers and refinements to
modes OCB and PMAC. In: Lee, P.J. (ed.) Advances in Cryptology - ASIACRYPT
2004, 10th International Conference on the Theory and Application of Cryptology
and Information Security, Jeju Island, Korea, December 5-9, 2004, Proceedings.
Lecture Notes in Computer Science, vol. 3329, pp. 16–31. Springer (2004), https:
//doi.org/10.1007/978-3-540-30539-2_2

26. Rogaway, P.: Nonce-based symmetric encryption. In: Roy, B.K., Meier, W. (eds.)
Fast Software Encryption, 11th International Workshop, FSE 2004, Delhi, India,
February 5-7, 2004, Revised Papers. Lecture Notes in Computer Science, vol. 3017,
pp. 348–359. Springer (2004), https://doi.org/10.1007/978-3-540-25937-4_22

27. Rogaway, P., Bellare, M., Black, J., Krovetz, T.: OCB: a block-cipher mode of
operation for efficient authenticated encryption. In: Reiter, M.K., Samarati, P.
(eds.) CCS 2001, Proceedings of the 8th ACM Conference on Computer and Com-
munications Security, Philadelphia, Pennsylvania, USA, November 6-8, 2001. pp.
196–205. ACM (2001), https://doi.org/10.1145/501983.502011

28. Rogaway, P., Shrimpton, T.: A provable-security treatment of the key-wrap prob-
lem. In: Vaudenay, S. (ed.) Advances in Cryptology - EUROCRYPT 2006, 25th
Annual International Conference on the Theory and Applications of Crypto-
graphic Techniques, St. Petersburg, Russia, May 28 - June 1, 2006, Proceed-
ings. Lecture Notes in Computer Science, vol. 4004, pp. 373–390. Springer (2006),
https://doi.org/10.1007/11761679_23

33

https://doi.org/10.1007/3-540-45708-9_3
https://doi.org/10.1137/0217022
https://doi.org/10.1137/0217022
https://doi.org/10.1007/3-540-60865-6_53
https://doi.org/10.1007/978-3-540-24638-1_2
https://doi.org/10.1007/978-3-540-24638-1_2
https://doi.org/10.13154/tosc.v2017.i3.228-252
https://doi.org/10.13154/tosc.v2017.i3.228-252
https://doi.org/10.1007/978-3-642-04159-4_21
https://doi.org/10.1007/978-3-642-04159-4_21
https://doi.org/10.1007/978-3-540-30539-2_2
https://doi.org/10.1007/978-3-540-30539-2_2
https://doi.org/10.1007/978-3-540-25937-4_22
https://doi.org/10.1145/501983.502011
https://doi.org/10.1007/11761679_23

A The jammin cipher step-by-step

In this section, we build the jammin cipher incrementally. We describe three
intermediate ideal AE schemes, and each time correct a flaw or add a feature.
The purpose of this section is to serve as a tutorial and to give a different
perspective on the jammin cipher as specified in Algorithm 1.

A.1 Conventions

We describe the jammin cipher and the intermediate schemes in an object-
oriented way, with object instances (or instances for short) held by the com-
municating parties. An instance belongs to a given party who initializes it with
an object identifier ID. Such an identifier is the counterpart of a secret key in
the real world: Encryption and decryption will work consistently only between
instances initialized with the same identifier. This setup models independent
groups that make use of the AE scheme simultaneously. For example, Alice and
Bob may secure their communication each using an instance that share the same
identifier IDAlice and Bob, while Edward and Emma use instances initialized with
IDEdward and Emma. We will informally call an object the set of instances sharing
the same object identifier. This way, all the instances of the same object have
indistinguishable behavior, and this justifies that we collectively call them an
object, whereas instances of different objects are completely independent.

Our scheme supports two functions: wrap and unwrap. With the wrap function
the object computes a cryptogram C from a message that has a plaintext P
and associated data A, both arbitrary bit strings. With the unwrap function
the object computes the plaintext P from the cryptogram C and A again. The
cryptogram C is the encryption of P for a given A.

A.2 Initial requirements

Our scheme shall satisfy the following requirements:

Deterministic wrapping: An object wraps equal messages (A,P) to equal
cryptograms C.

Random cryptograms: Except for determinism, all cryptograms C are fully
random.

Forgery-freeness: An object will only unwrap successfully cryptograms C re-
sulting from prior wrap calls with the same A.

We give an encryption scheme that satisfies these three requirements in Al-
gorithm 6. It satisfies determinism and fully prevents forgery by keeping track
of all wrap queries in an archive called codebook. This is a mapping from tuples
(ID;A;P) to a cryptogram or an error code.

Initially, all the entries of codebook return an error. The expression

codebook(ID;A;P)
$← S

34

Algorithm 6 jammin cipher Mk I
Global variables: codebook initially set to ⊥ for all

Instance constructor: init(ID)
return new instance inst with attribute inst.id = ID
(In the sequel, we use ID to mean the object identifier saved in inst.id.)

Interface: inst.wrap(A,P) returns C

if codebook(ID;A;P) = ⊥ then codebook(ID;A;P)
$← Z|P |

2

return codebook(ID;A;P)

Interface: inst.unwrap(A,C) returns P or ⊥
if ∃!P : codebook(ID;A;P) = C then return P
else return ⊥

denotes the assignment of a random element chosen uniformly from S to the
entry codebook(ID;A;P).

The jammin cipher Mk I satisfies the three requirements:

– Deterministic wrapping: when wrapping a plaintext P for equal ID and A
that was wrapped before, the cipher just returns the stored codebook entry.

– Random cryptograms: wrapping a message of |P | bits results in a ciphertext
randomly chosen from the set of |P |-bit strings.

– Forgery-free: all valid cryptograms are in the codebook and unwrapping a
cryptogram not in the codebook results in an error.

A.3 Adding injectivity and determinism

Our scheme in Algorithm 6 has two non-ideal properties:

1. Wrapping is not injective: An object may wrap messages with equal A but
different plaintexts to equal cryptograms. If that happens, unwrapping of
the cryptogram fails as there are multiple possible plaintexts.

2. Unwrapping is not deterministic: An invalid cryptogram may become valid
later if the object that unsuccessfully tried to unwrap it for some A outputs
it as a cryptogram to a wrap call with the same A.

Both problems can be solved by excluding certain strings when generating the
cryptogram values. Injectivity is achieved if the object excludes cryptogram val-
ues that it returned in earlier wrap calls for the same A. Deterministic unwrap-
ping is achieved if the object excludes cryptogram values that it returned an error
to in earlier unwrap calls for the same A. We keep track of the latter in an archive
called taboo, that is a mapping from tuples (ID;A) to sets of cryptograms. We
implemented this in Algorithm 7. The expression codebook(ID;A; ∗) denotes the
set of values codebook(ID;A;P) over all P .

Our ideal-world AE scheme now satisfies the two additional requirements:

35

Injective wrapping: An object wraps messages with equal A and different P
to different cryptograms.

Deterministic unwrapping: An object unwraps equal cryptograms and A to
equal responses.

Algorithm 7 jammin cipher Mk II
Global variables: codebook initially set to ⊥ for all, taboo initially set to empty

Instance constructor: init(ID)
return new instance inst with attribute inst.id = ID
(In the sequel, we use ID to mean the object identifier saved in inst.id.)

Interface: inst.wrap(A,P) returns C
if codebook(ID;A;P) = ⊥ then
C = Z|P |

2 \ (codebook(ID;A; ∗) ∪ taboo(ID;A))
if C = ∅ then return ⊥
codebook(ID;A;P)

$← C
return codebook(ID;A;P)

Interface: inst.unwrap(ID, A,C) returns P or ⊥
if ∃!P : codebook(ID;A;P) = C then return P
else taboo(ID;A)← C and return ⊥

A.4 Expanding the ciphertexts

We see in Algorithm 7 that satisfying these two additional requirements results in
a limitation: the space of possible cryptograms may become very small resulting
in predictable cryptograms. It can even be exhausted, resulting in failure to wrap
due to lack of free cryptogram values. For n-bit plaintexts, this would be the case
after 2n +1 calls to wrap and unwrap of an object with the same A. As there is
no lower bound on plaintext length, for n = 1 this can be as little as 3.

The property that is at the root of this problem is that for any object and
A, all cryptogram values up to some length can be made valid by just making
wrap calls or invalid by making unwrap calls. In real-world authenticated en-
cryption schemes this is not possible because valid cryptogram values are rare:
For an object and given some A and cryptogram length, valid cryptograms form
a negligible subset of the space of all possible cryptograms. Ensuring that for our
ideal-world AE scheme valid cryptograms are rare, we have to adopt a solution
where wrapping is length-increasing: C is longer than P .

As increasing the length can be done in multiple ways, we parameterize
our scheme by a function that specifies the length of the cryptogram given
the length of the plaintext: WrapExpand(p). Typical examples observed in AE
schemes in the literature are WrapExpand(p) = p + t with t some fixed length,

36

e.g., 128 for stream encryption followed by a 128-bit tag. For OCB, we have
WrapExpand(p) = t

⌈
p
t + 1

⌉
with t the block length of the cipher. Clearly, ex-

hausting all cryptograms corresponding to plaintexts of length p for a given
object and A now requires at least 2WrapExpand(p) calls to unwrap (or part of
them to wrap).

We specify the resulting ideal-world AE scheme in Algorithm 8.

Algorithm 8 jammin cipher Mk III
Parameter: WrapExpand
Global variables: codebook initially set to ⊥ for all, taboo initially set to empty

Instance constructor: init(ID)
return new instance inst with attribute inst.id = ID
(In the sequel, we use ID to mean the object identifier saved in inst.id.)

Interface: inst.wrap(A,P) returns C
if codebook(ID;A;P) = ⊥ then
C = ZWrapExpand(|P |)

2 \ (codebook(ID;A; ∗) ∪ taboo(ID;A))
if C = ∅ then return ⊥
codebook(ID;A;P)

$← C
return codebook(ID;A;P)

Interface: inst.unwrap(ID, A,C) returns P or ⊥
if ∃!P : codebook(ID;A;P) = C then return P
else taboo(ID;A)← C and return ⊥

A.5 Diversification

Algorithms 6-8 have the limitation that an object will wrap equal messages to
equal cryptograms. Deterministic wrapping has the side-effect of allowing an ad-
versary to tell identical plaintexts from identical ciphertexts, and this can leak
information. In particular, if the plaintext comes from a set of small cardinality,
an adversary can recover it from the ciphertext by wrapping the possible plain-
texts. This opens to a family of attacks such as the chosen-prefix secret-suffix
(CPSS) attack [11,15].

To overcome this, it is up to the user to ensure that the associated data A
is always different. A data element that is guaranteed to be unique per call to
wrap is called a nonce, so the associated data A shall be a nonce.

In addition to avoid the pitfalls of deterministic encryption, it turns out that
one can build AE modes requiring the associated data A to be a nonce, e.g., by
including a message counter or some other unique data elements, that are more
efficient than those not requiring it.

Algorithm 8 can serve as a security reference for modes in use cases where A
is not a nonce. Typically, a mode that requires A to be a nonce will be proven

37

indistinguishable from the ideal-world model under the condition that A is a
nonce.

Ultimately, it is up to the caller to ensure A uniqueness. Note that diversifiers
do not have to be unique for wrap calls with empty plaintexts, that is, purely
authentication requests. This follows from the idea that there cannot be any
leakage from such calls since they do not encrypt anything. For instance, in a
stream encryption mode, this would not reveal the keystream.

A.6 Supporting sessions

Finally, we arrive at the jammin cipher. So far, the context in which encryption
was taking place was the ID;A pair. In this fourth and final attempt, we extend
what is part of the context and introduce sessions. We combine two ideas:

1. When two parties communicate, they usually have more than one message to
send to each other. And a message is often a response to a previous request,
or in general its meaning is to be understood in the context of the previous
messages. We therefore make an instance of the ideal world stateful, with
the sequence of messages exchanged so far acting as associated data.

2. The sequence of messages exchanged so far provides uniqueness, as it grows
at each call to wrap or unwrap, and it can therefore take over the role of the
associated data A.

A session is the process in which the context grows with the sequence of
messages exchanged so far. The object has become stateful and we include in
the context the session history: the object identifier and the messages exchanged
so far. In other words, the history is a sequence with ID followed by zero, one or
more messages (A,P).

We specify the jammin cipher is Algorithm 1 in Section 2. Compared to
Algorithm 8, we note the following differences:

– An instance was previously essentially static, with its attributes determined
upon construction. Now the attribute inst.history dynamically evolves at each
successful call to wrap or unwrap. A cryptogram can only be unwrapped suc-
cessfully if all previous messages have been recovered correctly. An important
application of this are intermediate tags.

– The codebook global variable now maps sequences of the form (ID; (A,P)+)
to cryptograms. Instances with equal ID but different inst.history attributes
therefore produce independent cryptograms even for equal A values.

– The taboo global variable now maps sequences of the form (ID; (A,P)∗;A)
to sets of cryptograms.

– The object can be cloned. The intention is to be able to simulate the real
world’s equivalent of making a copy of the state of the cipher. This means the
adversary can, for instance, save the context and restart from it ad libitum.

38

B Deferred proofs

B.1 Proof of Theorem 1, the jammin cipher in OAE2

We start with proving a property of the jammin cipher when the encryption
context is a nonce. In that case, the jammin cipher only excludes invalid cryp-
tograms when generating a new cryptogram.

Proposition 5. If the encryption context is a nonce and WrapExpand is t-
expanding, on line 10 of Algorithm 1, we have that C = ZWrapExpand(|P |)

2 \
taboo(context).

Proof. We will show that, in these circumstances, we have

codebook(context; ∗) ∩ ZWrapExpand(|P |)
2 = ∅.

As line 10 is under the “if”, we know that codebook(context;P) = ∅. We split
the proof in two cases depending on P .

– If P ̸= ϵ, and the encryption context is a nonce, we have that ∀P ′ ̸= ϵ,
codebook(context;P ′) = ∅. It may happen that codebook(context; ϵ) ̸= ∅,
but the condition on WrapExpand means that this set can only contain a
string that is strictly shorter than WrapExpand(|P |) bits.

– If P = ϵ, we have that codebook(context; ϵ) = ∅, but it may happen that
codebook(context;P ′) ̸= ∅ for some P ′ ̸= ϵ. However, the condition on
WrapExpand means that this set can only contain a string that is strictly
longer than WrapExpand(0) bits.

⊓⊔

We continue with the proof of Theorem 1 itself.

Proof. We first describe how the jammin cipher is instantiated in the OAE2c
security notion, then we tackle the bounds for privacy and authenticity.
Instantiation We define the E and D oracles in Real2C and Forge2C. Here,
Real2C is a system with the same interface as Rand2C that is based on the
jammin cipher. For the initialization, S ← E .init(K,N) is instantiated as

S ← J +t.init(0) followed by S.wrap(N, ϵ), (2)

where the ID is arbitrarily set to 0 as the OAE2c security deals with only one
key. To distinguish between the next and the last calls, we append a bit 0

or 1 to the associated data, hence E .next(S,A,M) and E .last(S,A,M) become
S.wrap(A||0,M) and S.wrap(A||1,M), respectively. The initialization of D ex-
actly like for E using Eq. (2), and D.next(S,A,C) and D.last(S,A,C) become
S.unwrap(A||0, C) and S.unwrap(A||1, C), respectively.
Privacy When distinguishing between Real2C and Rand2C, the only difference
is that Rand2C generates ciphertexts randomly with replacement, while the jam-
min cipher avoids ciphertexts already produced for the same associated data in

39

the same context. Cryptogram collisions between plaintexts of equal length and
same associated data and context are therefore the only way to distinguish the
real from the ideal world. To quantify the collision probability in case of Rand2C,
we can partition the query set it in subsets with equal context, associated data
and length. If we denote the number of queries in subset i by qi and the length
of the plaintexts in this set by pi, we obtain the following upper bound for the
collision probability:

Pr(col) ≤
∑
i

(
qi
2

)
/2pi+t =

∑
i

qi(qi − 1)

2pi+t+1
.

As for some given length p there are only 2p plaintexts, we have qi ≤ 2pi . Filling
this in yields

Pr(col) ≤
∑
i

qi − 1

2t+1
=

∑
i(qi − 1)

2t+1
≤ q − 1

2t+1
.

This bound is tight: the adversary can have all queries in one subset and take
q = 2p.

If the encryption context is a nonce, this strategy cannot be applied. Since
Real2C never calls unwrap, taboo remains empty. Together with Proposition 5,
this shows that the ciphertexts are always chosen from the complete set Z|P |+t

2

just like Rand2C, hence Advoae2-priv
J+t (D) = 0 in this case.

Authenticity In the Forge2C game, the adversary wins if it presents a cryp-
togram that was not previously generated. The jammin cipher always returns
an error, hence the adversary never wins, and Advoae2-auth

J+t (D) = 0. ⊓⊔

B.2 Proof of Theorem 3, on the security of Deck-BO

Proof. We use a hybrid argument and replace the deck function with a random
oracle before comparing Deck-BO with the jammin cipher, i.e.,

∆D(Deck-BO(F, t) ; J +t)

≤ ∆D′′(Deck-BO(RO, t) ; J +t) +Advprf
F (D′),

where D′′ has the same resources as D.
We then use Lemma 1 with O = J +t ≜ J and P = Deck-BO(RO, t). In

this proof, we use the session syntax of the jammin cipher. This is w.l.o.g. as in
Deck-BO the history is coded as an injective function of the (A,P) pairs.

We define a transcript τ as a sequence of records of the form

(wrap/unwrap, context, P, C),

where the first component indicates the type of call made and the context is the
combination of the history as in the definition of J and A of the wrap/unwrap
call. In a wrap record, P is a parameter and C is the returned value, with C ̸= ⊥.

40

In an unwrap record, C is a parameter and P is a return value and may contain
an error code ⊥. We ignore in the transcript wrap records with equal tuple
(context, P) and unwrap records with equal tuple (context, C). This is w.l.o.g. as
both worlds act deterministically. Similarly, we ignore in the transcript unwrap
records that have the same tuple (context, P, C) as a wrap record. This is w.l.o.g.
as both worlds behave consistently in this respect. We use this to have a simple
definition of forgery, namely as a successful unwrap record.

We have two types of bad event. If a transcript has a bad event, it is in Tbad.

Tag collision : the transcripts has two records of the form (wrap, context, P, C)
and (wrap, context, P ′, C ′) with ϵ ̸= P ̸= P ′ ̸= ϵ and the first t bits of C and
C ′ are equal. Since P ̸= P ′, these first t bits are randomly generated with
independent invocations of the random oracle, and we look at the probability
of collisions among at most σ(context) records.

Successful forgery : the transcript has a record (unwrap, history, A, P,C) with
P ̸= ⊥. In a forgery attempt, unwrap compares a tag to a tag generated with
the underlying RO applied to a unique input. As the latter is a uniformly
generated t-bit string, the probability that they are equal is 2−t.

This yields Pr (DP ∈ Tbad) ≤ qunwrap
2t +

∑
context

(σ(context)
2)
2t .

We now argue that, for all τ ∈ Tgood, we have Pr (DJ = τ) ≥ Pr (DP = τ),
hence ε = 0 in Lemma 1. In both worlds, the cryptogram bits are generated ran-
domly and independently for different contexts, so we can partition the transcript
records per context and take the probability as the product of the probabilities
over the different contexts. We will now consider a subset of the transcript for
a given context value. In such records, there can be several records of the forms
(wrap, context, P, C) and (unwrap, context,⊥, C).

In the jammin cipher, the value of each C in the wrap queries is taken from
a set of cardinality at most 2|C|. Hence, each such record contributes a factor
at least 2−|C| to Pr (DJ = τ), conditioned on the previously considered records.
Conditioned on the wrap records, the unwrap records contribute a factor 1 be-
cause the jammin cipher avoids all forgeries. The jammin cipher may return an
error, but thanks to Proposition 2, this would require qunwrap ≥ 2t.

In P = Deck-BO(RO, t), the value of each C in the wrap queries is obtained
from T = RO1(context;P) for the first t bits and P+RO2(context;T) for the last
bits, with the subscripts indicating domain separation. Given that all the tags
T are distinct in Tgood, the probability of each wrap record contributes a factor
exactly 2−|C| to Pr (DP = τ). Conditioned on that, an unwrap record naturally
contributes at most 1 to Pr (DP = τ).

This shows that Pr (DJ = τ) ≥ Pr (DP = τ) and concludes the proof. ⊓⊔

41

B.3 Proof of Theorem 4, on the security of Deck-BOREE

Proof. We use a hybrid argument and replace the deck function with a random
oracle before comparing Deck-BOREE with the jammin cipher, i.e.,

∆D(Deck-BOREE(F, t) ; J +t)

≤ ∆D′′(Deck-BOREE(RO, t) ; J +t) +Advprf
F (D′),

where D′′ has the same resources as D.
We then use Lemma 1 with O = J +t ≜ J and P = Deck-BOREE(RO, t).

In this proof, we use the session syntax of the jammin cipher. This is w.l.o.g. as
in Deck-BOREE the history is coded as an injective function of the (A,P) pairs.

We define a transcript τ as a sequence of records of the form

(wrap,context, P, C, V),

(unwrap,context, P, C, V, Y),

where the first component indicates the type of call made and the context is the
combination of the history as in the definition of J and A of the wrap/unwrap
call. In a wrap record, P is a parameter and C is the returned value, with C ̸= ⊥.
In an unwrap record, C is a parameter and P is a return value and may contain
an error code ⊥. We ignore in the transcript wrap records with equal tuple
(context, P) and unwrap records with equal tuple (context, C). This is w.l.o.g. as
both worlds act deterministically. Similarly, we ignore in the transcript unwrap
records that have the same tuple (context, P, C) as a wrap record. This is w.l.o.g.
as both worlds behave consistently in this respect. We use this to have a simple
definition of forgery, namely as a successful unwrap record.

There are additional components in the records.

1. hidden diversifier V , present in both wrap and unwrap records. It is there
to define bad events and disclosed only at the end of the game.

– In Deck-BOREE, upon wrapping, this is the tag before it is blinded.
It can be expressed from the ciphertext C = W ||Z with |W | = t and
|Z| = |C| − t, see Figure 2, as V = W +RO(context;Z||111)

– In the jammin cipher, V is randomly generated from the ciphertext,
but in a consistent way: V = W + RO3(context;Z), with RO3 being
statistically independent of the coins used in the jammin cipher.

2. Unverified decrypted ciphertext Y in unwrap records. It may be disclosed
upon each unwrap query so that the adversary can react adaptively. For each
query, the adversary decides whether she accesses the unverified decrypted
ciphertext; if not, Y = ⊥.

– In Deck-BOREE, Y = Z +RO(context;V ||101). In the case of a valid
unwrap query, Y would be the actual plaintext.

– In the jammin cipher, Y is generated randomly and independently of the
coins it uses internally as Y = 0|C|−t +RO2(context;C), so Y bears no
relation with any plaintext.

42

We have two types of bad event. If a transcript has a bad event, it is in Tbad.
Hidden tag (V) collision : the transcript has two distinct records of the form

(wrap, context, P, C, V) or (unwrap, context, P, C, V, Y) with equal context,
|C| > t, Y ̸= ⊥ (if unwrap) and equal values V . The probability of collision
among wrap queries is as in Theorem 3. For unwrap queries, the probabil-
ity is similar, with two cautionary notes: 1) the values of V cannot be used
adaptively to adjust W and obtain a collision and 2) a strategy where the
adversary varies W but not Z is pointless as the resulting V cannot collide.
Finally, collisions between wrap and unwrap queries must also be taken into
account, hence we get a total of

(
σ′(context)

2

)
pairs to consider.

Successful forgery : the transcript has a record (unwrap, history, A, P,C, V, Y)
with P ̸= ⊥. A forgery cannot happen in the jammin cipher, but it can in
Deck-BOREE.

This yields Pr (DP ∈ Tbad) ≤ qunwrap
2t +

∑
context

(σ
′(context)

2)
2t .

We now argue that, for all τ ∈ Tgood, we have Pr (DJ = τ) ≥ Pr (DP = τ),
hence ε = 0 in Lemma 1. In both worlds, the cryptogram bits are generated ran-
domly and independently for different contexts, so we can partition the transcript
records per context and take the probability as the product of the probabilities
over the different contexts. We will now consider a subset of the transcript for
a given context value. In such records, there can be several records of the forms
(wrap, context, P, C, V) and (unwrap, context,⊥,W ||Z, V, Y).

In the jammin cipher, the value of each C in the wrap queries is taken from
a set of cardinality at most 2|C|. Hence, each such record contributes a factor
at least 2−|C| to Pr (DJ = τ), conditioned on the previously considered records.
Conditioned on the wrap records, the unwrap records contribute only through
their values V and Y (when Y ̸= ⊥) because the jammin cipher avoids all
forgeries. As Y = 0|Z| + RO2(context;W ||Z), this contributes a factor 2−|Z|

exactly. As V = W + RO3(context;Z), queries with a fresh Z contribute 2−t,
while those that vary only on W contribute 1 conditioned on the first query with
Z. The jammin cipher may return an error, but thanks to Proposition 2, this
would require qunwrap ≥ 2t.

In P = Deck-BOREE(RO, t), the value of each C = W ||Z in the wrap
queries is obtained as Z = P+RO2(context;V) and W = 0t+RO1(context;P)+
RO3(context;Z). Given that all the P values and V values are distinct in Tgood,
the contribution of C is a factor exactly 2−|C| to Pr (DP = τ). Conditioned on
the wrap records, we look at the contributions of the values of V and Y (when
Y ̸= ⊥) in the unwrap records. The contribution of P = ⊥ amounts to at most
1 in Pr (DP = τ) as forgeries may happen. As Y = Z + RO2(context;V) and
the V values in the unwrap records are distinct (also distinct from the V values
in the wrap records), the value of Y of an unwrap record contributes a factor
2−|Z| exactly. For wrap queries, V = 0t + RO1(context;P), which contributes
a factor exactly 2−t since all the P values are distinct. For unwrap queries,
V = W + RO3(context;Z) and queries with a fresh Z contribute 2−t, while
those that vary only on W contribute 1 conditioned on the first query with Z.

This shows that Pr (DJ = τ) ≥ Pr (DP = τ) and concludes the proof. ⊓⊔

43

B.4 Proof of Theorem 5, on the security of Deck-JAMBO

Proof. We use a hybrid argument and replace the deck function with a random
oracle before comparing Deck-JAMBO with the jammin cipher, i.e.,

∆D(Deck-JAMBO(F, t, expand, split) ; J)

≤ ∆D′′(Deck-JAMBO(RO, t, expand, split) ; J) +Advprf
F (D′),

where D′′ has the same resources as D.
We then use Lemma 1 with O = J and P = Deck-JAMBO(RO, . . .).
In this proof, we use the session syntax of the jammin cipher. However,

in Deck-JAMBO, what is kept in story is not the plaintext but the plaintext
representative Y computed as detailed shortly. Below, we include collisions in
Y as bad events. If no bad events happen, story is an injective function of the
(A,P) pairs.

The plaintext representative Y is computed as follows. Let
(L0, L+, R0, R+) = split(expand(P, t), t). Then,

Y =
(
P last||10pad

)
+
(
RO(story;A||10; 0t||P first||001)||0r+

)
(3)

with L0||L+ = 0t||P first, R0||R+ = P last||10pad, l = |L0| + |L+|, r0 = |R0| and
r+ = |R+|.

We define a transcript τ as a sequence of records of the form

(wrap,context, P, C, Y),

(unwrap,context, P, C),

where the first component indicates the type of call made and the context is the
combination of the history as in the definition of J and A of the wrap/unwrap
call. In a wrap record, P is a parameter and C is the returned value, with C ̸= ⊥.
In an unwrap record, C is a parameter and P is a return value and may contain
an error code ⊥. We ignore in the transcript wrap records with equal tuple
(context, P) and unwrap records with equal tuple (context, C). This is w.l.o.g. as
both worlds act deterministically. Similarly, we ignore in the transcript unwrap
records that have the same tuple (context, P, C) as a wrap record. This is w.l.o.g.
as both worlds behave consistently in this respect. We use this to have a simple
definition of forgery, namely as a successful unwrap record.

There is an additional component in the wrap records, namely the plaintext
representative Y . The value of Y is used to define bad events, and it is disclosed
only at the end of the game. In all cases, Y = ϵ when P = ϵ.

– In Deck-JAMBO, it is computed as in Equation (3). I it is the right branch
of B after the first round, as can be seen in Figure 2.

– In the jammin cipher, Y is randomly generated, but in a consistent way,
namely, Y = (P last||10pad) + (RO0(context;P

first)||0r+), with RO0 being
statistically independent of the coins used in the jammin cipher.

44

We have two types of bad event. If a transcript has a bad event, it is in Tbad.
Plaintext representative (Y) collision The transcript has two records of

the form (wrap, context, P, C, Y) and (wrap, context, P ′, C ′, Y ′) with ϵ ̸= P ̸=
P ′ ̸= ϵ and Y = Y ′. In Deck-JAMBO, the first r0 bits of Y are ran-
domly generated with RO. As Y is disclosed only at the end of the game,
the value of P last cannot be used adaptively to compensate for changes in
RO(. . . ;P first|| . . .) and obtain a collision. Also, a strategy where the adver-
sary varies P last but not P first is pointless as the resulting Y cannot collide.
In the end, we look at the probability of collisions on r0 ≥ 2t bits among at
most σ(context) records.

Left branch (V) collision (collision in the first l bits of C) : The
transcript has two records of the form (wrap, context, P, C, Y) and
(wrap, context, P ′, C ′, Y ′) with ϵ ̸= P ̸= P ′ ̸= ϵ and the first l bits of C and
C ′ are equal. Assuming Y ̸= Y ′, these first l bits are randomly generated
with independent invocations of the random oracle, and we look at the
probability of collisions on l ≥ 2t bits among at most σ(context) records.

Successful forgery : The transcript contains a record (unwrap, context, P, C)
with P ̸= ⊥. A forgery cannot happen in the jammin cipher, but it can
in Deck-JAMBO. After qunwrap queries, the probability that the left branch
starts with t zeroes for one of the queries is qunwrap2

−t. This is valid even if
there are collisions at the input of the middle round.

Hence Pr (DP ∈ Tbad) ≤ qunwrap
2t +

∑
context

(σ(context)
2)

22t−1 .
We now argue that, for all τ ∈ Tgood, we have Pr (DJ = τ) ≥ Pr (DP = τ),

hence ε = 0 in Lemma 1. In both worlds, the cryptogram bits are generated ran-
domly and independently for different contexts, so we can partition the transcript
records per context and take the probability as the product of the probabilities
over the different contexts. We will now consider a subset of the transcript for
a given context value. In such records, there can be several records of the forms
(wrap, context, P, C, Y) and (unwrap, context,⊥, C).

In the jammin cipher, each wrap record with P ̸= ϵ and a new value of
P first contributes a factor 2−r0 due to the value of Y . The value of each C in
the wrap queries is taken from a set of cardinality at most 2|C|. Hence, each
such record contributes a factor at least 2−|C| to Pr (DJ = τ), conditioned on
the previously considered records. Conditioned on the wrap records, the unwrap
records contribute a factor 1 because the jammin cipher avoids all forgeries. The
jammin cipher may return an error, but thanks to Proposition 2, this would
require qunwrap ≥ 2t.

In P = Deck-JAMBO(RO, . . .), each wrap record with P ̸= ϵ and a new
value of P first contributes a factor 2−r0 due to the value of Y . The value of each
C in the wrap queries is obtained as V = 0t||P first+RO(context;Y ||011) for the
first l bits and P last||10pad +RO(context;V ||101) for the last bits. Given that
all the Y values and V values are distinct in Tgood, the probability of each wrap
record contributes a factor exactly 2−|C| to Pr (DP = τ). Conditioned on that,
an unwrap record contributes at most 1 to Pr (DP = τ).

This shows that Pr (DJ = τ) ≥ Pr (DP = τ) and concludes the proof. ⊓⊔

45

C OAE2c security

In figure [15, Fig. 6], the privacy and authentication games used for defining
OAE2c security are described. In contrast to the OAE2a and OAE2b security
definitions, privacy and authentication are defined separately. Concretely, the
privacy advantage is given by the adversary’s ability to distinguish between
the games Real2C and Rand2C, where Rand2C represents the ideal world and
Real2C represents the real world that uses a concrete cipher. Also, note that no
decryption oracle is given in the ideal world but that it only returns the expected
number of uniformly random bits. Then, regarding the authentication advantage,
no ideal world is queried. The advantage is defined using the game Forge2C, that
is, Real2C including the finalize procedure, as the probability that an adversary
produces an input that, when presented to the finalize procedure, the procedure
will evaluate it to true. Combining these two advantages, the authors of [15]
conclude that OAE2c security is achieved if an adversary has a small privacy
advantage as well as a small authentication advantage.

46

Fig. 3: Overview of OAE2c as defined in [15].

47

	Jammin' on the deck
	Introduction
	Our contributions
	Notation
	Security setup

	The jammin cipher, an ideal-world SAE scheme
	Interface
	Inner workings
	Properties
	Discussion
	Bi-directional communication
	Security of the jammin cipher in the OAE2 security model

	Deck functions
	Incrementality
	Security claim
	Examples of deck functions
	Basic applications

	Deck-PLAIN
	Inner workings
	Security analysis
	The H-coefficient technique
	Proof of Theorem 2

	Feistel network modes
	Deck-BO
	Deck-BOREE and release of unverified decrypted ciphertexts
	Deck-JAMBO and optimal redundancy
	Deck-JAMBOREE

	Conclusions
	The jammin cipher step-by-step
	Conventions
	Initial requirements
	Adding injectivity and determinism
	Expanding the ciphertexts
	Diversification
	Supporting sessions

	Deferred proofs
	Proof of Theorem 1, the jammin cipher in OAE2
	Proof of Theorem 3, on the security of Deck-BO
	Proof of Theorem 4, on the security of Deck-BOREE
	Proof of Theorem 5, on the security of Deck-JAMBO

	OAE2c security

