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Abstract. In this paper, we propose a new concept of hierarchical rota-
tion key for homomorphic encryption to reduce the burdens of the clients
and the server running on the fully homomorphic encryption schemes
such as Cheon-Kim-Kim-Song (CKKS) and Brakerski/Fan-Vercauteran
(BFV) schemes. Using this concept, after the client generates and trans-
mits only a small set of rotation keys to the server, the server can gen-
erate any required rotation keys from the public key and the smaller
set of rotation keys that the client sent. This proposed method signifi-
cantly reduces the communication cost of the client and the server, and
the computation cost of the client. For example, if we implement the
standard ResNet-18 network for the ImageNet dataset with the CKKS
scheme, the server requires 617 rotation keys. It takes 145.1s for the client
with a personal computer to generate whole rotation keys and the total
size is 115.7GB. If we use the proposed two-level hierarchical rotation
key system, the size of the rotation key set generated and transmitted
by the client can be reduced from 115.7GB to 2.91GB (×1/39.8), and
the client-side rotation key generation runtime is reduced from 145.1s
to 3.74s (×38.8 faster) without any changes in any homomorphic oper-
ations to the ciphertexts. If we use the three-level hierarchical rotation
key system, the size of the rotation key set generated and transmitted
by the client can be further reduced from 1.54GB (×1/75.1), and the
client-side rotation key generation runtime is further reduced to 1.93s
(×75.2 faster) with a slight increase in the key-switching operation to
the ciphertexts and further computation in the offline phase.
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1 Introduction

Fully homomorphic encryption (FHE) is an encryption scheme which supports
the evaluation of arbitrary boolean or arithmetic operations on encrypted data.
It is a primary solution for the privacy issue of outsourcing computation, which
enables the clients to securely entrust enterprises to process their private infor-
mation while preserving privacy. The main application includes machine learning
[15, 26, 27], genomic analysis [6, 23, 24], cloud services [25], and AI-as-a-service
(AIaaS) [31]. Especially, the privacy-preserving AIaaS system is deemed to be
one of the most promising techniques, where the clients provide the encrypted
data on the cloud and the server processes the data by using the deep neural
network, while preserving the privacy of clients’ data. Thus, data privacy via
FHE is getting more important.

Among various FHE schemes, Cheon-Kim-Kim-Song (CKKS) [9, 11] and
Brakerski/Fan-Vercauteran (BFV) [5, 14] schemes are two of the most practi-
cal FHE schemes. They can support arithmetic operations for complex numbers
or integers in the single-instruction multiple-data (SIMD) manner. Thus, several
data can be encrypted in one ciphertext, and one homomorphic operation can
simultaneously perform component-wise operations on these multiple message
data. Since the CKKS scheme deals with real or complex number data and sup-
ports approximate computation on the encrypted real or complex data, it fits
the situation allowing approximate computation. On the other hand, the BFV
scheme deals with integer data and supports exact computation on the encrypted
integer data, and it fits the situation requiring exact computation. The CKKS
and BFV schemes also support rotation operation, corresponding to a cyclic
shift of message data within a ciphertext. Specifically, it means the cyclic shift
operations for the encrypted message vector in that of the CKKS scheme and for
rows of the encrypted matrix in one ciphertext of the BFV scheme. The homo-
morphic rotation operation is inevitable if we require operations between data at
different locations in one ciphertext, such as the bootstrapping [3,7,8,28,29], the
matrix multiplication [20], and the convolution in convolutional neural networks
[22,26,27].

In order for the server to perform a rotation operation, an evaluation key for
the operation is required, called a rotation key. In the client-server model, the
client owns the data but wants to delegate the data processing operations to the
server, and the server handles the client’s data with abundant computational
resources instead of the client. Therefore, a secret key capable of decrypting the
encrypted data is privately owned by the client. The server should ask the client
for a rotation key because the secret key is required to generate these rotation
keys. Then the client generates rotation keys with the secret key and sends them
to the server. It is similar to generating a public key from a private key in a
public key encryption system. (In this paper, the public key only refers to the key
used for encryption.) If the rotation of several types of cyclic shifts is required
in the homomorphic computation, a distinct rotation key is required for each
cyclic shift. Therefore, the server should identify all the cyclic shifts of rotation
operation in its computation model in advance and request the corresponding
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rotation keys to the client. However, this causes several serious problems when
trying to use FHE in the industry, as in the following subsection.

1.1 Rotation Key Problems

Communication costs for rotation keys In the case of complex systems such
as machine learning systems, there are many cyclic shifts required for servers
to perform the computation model homomorphically. Therefore, the number of
the rotation keys that the client has to transmit becomes very large, and the
amount of communication that the client and the server should bear dramati-
cally increases. For example, assume that we implement the standard ResNet-20
network for the CIFAR-10 dataset with pre-trained parameters on the CKKS
scheme with the polynomial modulus degree N = 216 using the techniques in
[26]. Then the size of all 32767 (= 215−1) rotation keys is about 13TB, which is
an extremely large size to be sent from the client. If the server requests only the
required rotation keys for the ResNet-20 network, the server requires 265 rota-
tion keys, corresponding to transmission of 105.6GB. If we design the ResNet-18
network for the ImageNet dataset using the same techniques, 617 rotation keys
are required, and it occupies 197.6GB of memory in the server.

Computational costs in the client The computational cost for generat-
ing whole rotation keys is also a huge burden on the client. Since the client is
assumed not to have high-performance computing devices, the runtime for gen-
erating these huge amounts of rotation keys can be very large. For example,
even if we have a computer with an AMD Ryzen Threadripper PRO 3995WX
CPU processor, a high-performance CPU, it takes 13 minutes to generate whole
rotation keys, which is too long to wait for generating keys. Thus, it is desirable
to reduce the runtime for rotation key generation in the client.

Lack of flexibility for various services The server may need to support
various services for the client. In this case, the server should request a distinct
rotation key set required for each service to the client. Whenever a new computa-
tion model is added or an existing model is modified in the server, a new rotation
key set should be requested. It is a serious problem for the client because the
client has to send a new rotation key set whenever the server’s computational
model is improved and updated. Someone may think that the server simply needs
to receive all kinds of rotation keys in advance because of the uncertainty of the
model. However, for CKKS schemes using N = 216, this solution is virtually im-
possible because generating all kinds of rotation keys requires the transmission
and storage of 13 TB of rotation keys.

Information leakage of computation model The server should find what
kind of cyclic shifts is used in the computation model and request the corre-
sponding rotation keys to the client. However, based on the type of cyclic shifts
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required by the server, the client can reasonably infer some information about
the computation model of the server. These computational models are important
secret assets of the server, and thus they usually do not want to leak any infor-
mation about the computational model to the client. To solve this situation, the
server may deliberately request additional unnecessary rotation keys to confuse
the client so that it does not infer, but it causes additional communication and
computation costs by increasing the amount of rotation keys to be requested.

Inefficient memory management Since the server usually handles a large
number of clients, a large amount of memory is required to store their rotation
keys. For example, if a server handles 10,000 clients and requires 500GB of
memory per client to store rotation keys for several specific services, 5000TB
of memory is required only to store their rotation keys. If each client uses the
service infrequently, the server may want to reduce the memory share of the
rotation key by temporarily removing the rotation keys that are not currently
in use and generating them again when necessary. However, once the rotation
keys are removed, the server should request the client to generate and transmit
them again.

1.2 Our Contributions

In the conventional rotation key system in CKKS and BFV schemes, all rotation
keys should have been generated only through secret keys. However, in the pro-
posed new hierarchical rotation key system, all rotation keys can be generated
from public keys or other rotation keys without generating them from secret
keys. Specifically, the client creates a small number of so-called “master rotation
keys” and sends them to the server with the public key. The server can then
generate all required rotation keys from the public key by using the “master
rotation keys.” That is, the server may convert the public key into a rotation
key corresponding to an arbitrary cyclic shift.

We find that the “master rotation key,” which allows servers to convert public
keys into rotation keys, can be designed by placing a hierarchy on the rotation
keys. Therefore, we name the proposed rotation key system the hierarchical
rotation key system. Rotation keys in the higher level can be used to generate
rotation keys in the lower level. The previously mentioned “master rotation
key” corresponds to a rotation key in the highest level, and the rotation keys for
services are rotation keys in the lowest (level-0) level. These levels are divided
according to the size of the total modulus of each rotation key and the special
modulus values used.

We propose two fundamental key generation algorithms in the hierarchical
rotation key system. The first is a PubToRot algorithm that generates a low-
level r-shift rotation key from the public key by using the high-level r-shift
rotation key. The second is a RotToRot algorithm that generates a low-level
r + r′-shift rotation key from a low-level r′-shift rotation key by using a high-
level r-shift rotation key. If the client generates and sends a highest-level rotation
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key set corresponding to cyclic shift set S = {r0, r1, · · · , rt−1} to the server, the

server can generate the required lower-level
∑t−1

i=0 wiri-shift rotation keys for
some non-negative integers wi’s from the public key by sequentially computing
PubToRot operations and RotToRot operations. If the client generates and sends
the highest-level rotation keys for cyclic shifts of the powers of some integer p,
the server can generate any rotation keys by using p-ary number system. If the
server needs to generate a set of many low-level rotation keys simultaneously,
it can make the most existing low-level rotation keys to generate each low-level
rotation key with minimal operations.

The key idea for the proposed hierarchical rotation key system is that the
rotation keys can be generated by using rotation operation to the other rota-
tion keys or the public key. In the proposed hierarchical rotation key system, a
public key is treated as a single ciphertext and each rotation key is treated as
a set of ciphertexts. If we perform the rotation operation to each ciphertext in
a rotation key, a new rotation key for other cyclic shifts can be derived. Since
the rotation operation requires a rotation key with a larger modulus than the
ciphertext, the rotation key for this rotation key generation should have a higher
level than the newly generated rotation key. Thus, we propose to set some hier-
archy in the rotation keys by the modulus size. We define the rotation key with
a larger modulus as the rotation in ‘higher key level’. Thus, each rotation key
can generate rotation keys with a lower key level. The client-server system using
the hierarchical rotation key system has the following improvements compared
to the conventional client-server system using FHE schemes, which solves the
above five key problems completely.

i) The communication cost between the client and the server is significantly
reduced because the clients only need to transmit a small set of high-level
rotation keys.

ii) The computation cost of the client is reduced since the clients can generate
only a small set of rotation keys.

iii) Even if multiple services need to be requested by the client or the computa-
tion model changes in the middle of the services, the server can create the
additional rotation keys without additional requests to the client, making
the service more flexible.

iv) Since the server can generate the rotation keys with cyclic shifts required for
its computation model, it does not have to disclose this information to the
client, preventing information leakage about the computation model.

v) The server can temporarily remove unused rotation keys and regenerate them
through high-level rotation keys when needed, thereby significantly lowering
the overall memory share of the rotation keys.

Fig. 1 shows an example using a hierarchical rotation key system. Fig. 1(a)
illustrates a case when an FHE-based service is provided with a conventional
method. If the server can provide various types of services for each client, the
client must generate and transmit all the rotation keys required for each service
to the server. Therefore, when there are many services that can be provided, the
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(a) (b)

Fig. 1: Comparison of conventional rotation key system and hierarchical rotation
key system for HE-based services in the client-server model (a) Conven-
tional rotation key system (b) The proposed hierarchical rotation key
system.

burden on the client increases. Even if the client is currently using only a specific
service, there is a burden that the server must store all the rotation keys corre-
sponding to all services that the client is not using. Fig. 1(b) shows a case when
a hierarchical rotation key system is used. Regardless of how many services are
used or how complex the operation is required, the client only needs to send the
few high-level rotation keys that the server needs to create rotation keys. In the
case of homomorphic encryption parameters that support bootstrapping, com-
munication amount can be reduced from a few hundred GB to several hundred
MB. Thereafter, the server can generate rotation keys suitable for the service to
be requested by the client and use them for the service. In addition, in the case
of a service that the client does not use immediately, the corresponding rotation
keys may be removed to use the memory efficiently. If the client wants to resume
these services, it can generate and send rotation keys directly with high-level
rotation keys to provide the service.

For the contribution 2, some readers may think that the computation amount
of the client has simply shifted to the server, and there is no improvement in
terms of computation amount. However, due to the nature of the client-server
model, which is appropriate for FHE, the server can use high-performance ma-
chines and is ready for abundant operations, but the client is not supposed to
have high-performance machines and wants to do minimal operations. For this
reason, it is a desirable direction in the client-server model that the burden of
clients is reduced by transferring a lot of the computational burden of clients to
servers, and recent studies related to HE focus on this direction [12,16].

If the hierarchies of rotation keys are further subdivided, various trade-offs
can be adjusted. For example, the fewer high-level rotation keys a client creates,
the more time the server will need to generate the rotation key. But if there
is a hierarchy with three types of key levels, we can mitigate this trade-off.
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Fig. 2: Efficient rotation key management in three-level hierarchical rotation key
generation. (a) Public key and level-2 rotation key transmission from the
client and preparation for faster level-0 rotation key generation by gener-
ating level-1 rotation keys in advance. (b) Faster rotation key generation
from public key and level-1 rotation keys.

Assume that there is an interval between the time when the rotation keys are
transmitted and the time when the service is provided. Then, as in Fig. 2, the
server can generate a more intermediate level of rotation keys after receiving the
highest level of rotation keys. When the server prepares to provide the service
(Fig. 2(a)), it is possible to use the highest-level rotation keys and the middle-
level rotation keys to generate the required (lowest-level) rotation keys for the
service more quickly (Fig. 2(b)). To increase the degree of freedom in rotation
key management in this way, we propose a generalized hierarchical rotation key
system at multiple key levels.

We further propose several optimization methods for servers to generate keys
more efficiently. In most cases, the server must generate a bundle of rotation keys
required for a specific service at once. When multiple rotation keys are generated
at once, there are many situations in which several types of rotation keys should
be generated from one rotation key. In this situation, a hoisting technique that
can be processed by merging some of the key generation operations is specifically
proposed. This reduces the amount of computation by about half. In addition,
the amount of computation varies greatly depending on the order of rotation key
generation. Finding an efficient generating order for optimization of computation
amount can be reduced to a minimum spanning tree problem, which can be
solved using Prim’s algorithm or Edmonds’ algorithm.

We conduct the simulation with the proposed rotation key generation sys-
tem for the ResNet-20 model with the CIFAR-10 dataset and ResNet-18 model
with the ImageNet dataset using an appropriate computing environment for the
client-server model. If we implement the standard ResNet-20 network for the
CIFAR-10 dataset and the ResNet-18 network for the ImageNet dataset with
the CKKS scheme, the server requires 265 and 617 rotation keys. It takes 88.7s
and 145.1s for the client with a personal computer to generate whole rotation
keys and the total size is 38.3GB and 115.7GB, respectively.
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If we use the proposed two-level hierarchical rotation key system to the
ResNet-20 model and the ResNet-18 model, the size of the rotation keys gen-
erated and transmitted by the client can be reduced from 38.3GB to 8.31GB
(×1/4.61) and from 115.7GB to 2.91GB (×1/39.8), respectively. The client-side
rotation key generation runtime is reduced from 88.7s to 18.9s (×4.69 faster) and
from 145.1s to 3.74s (×38.8 faster) without changing any homomorphic opera-
tions to the ciphertexts. The server-side rotation key generation requires 16.6s
and 12.5s. If we may need to make the rotation key generation more efficient
at the expense of slightly increasing the key-switching operation time for the
ResNet-20 model and the ResNet-18 model, the communication amount for ro-
tation keys significantly reduced to 2.67GB (×1/14.3) and 1.97GB (×1/58.7),
respectively. The client-side rotation key generation runtime is reduced to 6.30s
(×14.1 faster) and 2.52s (×57.6 faster), respectively. The server-side rotation key
generation requires 10.2s and 16.1s. If we use the three-level hierarchical rotation
key system for the ResNet-18 model, the size of the rotation key set generated
and transmitted by the client can be further reduced to 1.54GB (×1/75.1),
and the client-side rotation key generation runtime is further reduced to 1.93s
(×1/75.2) with a slight increase in the key-switching operation to the ciphertexts
and further computation in the offline phase.

Thus, our contribution can be summarized as follows.

– We point out that the rotation key problem of homomorphic ciphers causes
many practical problems in the client-server model and propose a concept
of a hierarchical rotation key system that can solve these problems.

– To implement a hierarchical rotation key system, fundamental algorithms
that can convert the public key into rotation keys were designed to allow the
server to generate arbitrary rotation keys from the public key.

– We propose optimization methods that can effectively reduce the computa-
tion amount of the server when it needs to generate many kinds of rotation
keys.

– We conduct the simulations showing that we can reduce the computational
and communication volumes of clients needed for the machine learning ser-
vices with the ResNet models for the CIFAR-10 or the ImageNet by ×4 ∼
×75.

1.3 Related Works

Benes Network and Composition of Rotation Operations Halevi and
Shoup [17] suggested a method for any permutation on ciphertext with only
log n types of rotation cyclic shift, where n is the number of slots. It uses the
fact that all permutations can be represented as a weighted sum of the log n
number of shifted vectors with fixed different cyclic shifts. If the server has
only log n types of rotation keys for different cyclic shifts, all permutations on
ciphertext can be performed with the weighted sum of the log n number of
ciphertexts performed by rotation operation with different corresponding cyclic
shifts. Thus, if we want to rotate the ciphertext with a specific cyclic shift that
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is different from the designated cyclic shift from the rotation keys the server has,
we can deal with this rotation as a type of permutation so that this can also be
performed with the above operation.

However, this simple technique has a crucial drawback in the latency for ho-
momorphic computation. Since the rotation operation is one of the most time-
consuming homomorphic operations among the elementary homomorphic op-
erations, the number of rotation operations is very sensitive in that it has a
direct effect on the whole latency. If there are many required types of cyclic shift
for the rotation operation in the homomorphic computation and the server has
whole corresponding types of rotation keys, the server may perform only one
rotation operation for each cyclic shift. But if the server has only log n types of
rotation keys with the same situation, the server should perform several rota-
tion operations on average for each cyclic shift. For the simple experiment for
the ResNet-20 network model in [26] performed with CPU, the latency of this
model becomes 1471.2s with Benes network while the latency of this model is
646.8s without Benes, which is a ×2.27 slower result. As the reduction of the
long runtime in homomorphic operation is the most sensitive issue in PPML
on HE, the simple application of technique in [17] is not desirable. This point
is actually the key motivation for this proposal of the hierarchical rotation key
concepts.

Our proposed technique solves this issue, in that the clients may generate
and send only log n rotation keys rather than all required rotation keys, and the
server can perform only one rotation operation for any cyclic shifts as the server
generates any required rotation keys by itself. Since any previous techniques
cannot replace this proposed technique for this purpose, the proposed technique
is novel in the PPML on HE research area.

Similarly, there are many other techniques in which a slot vector in a cipher-
text is rotated or permuted only with a fixed set of rotation keys. Note that the
proposed technique does not correspond to this situation but is for the situation
that each rotation operation for the ciphertext has to be performed with only
one corresponding rotation key because of the efficient latency for ciphertext
processing. We perform the key-switching operation with a fixed set of high-
level rotation keys to the “rotation keys”, not to the “ciphertexts”, which are
essentially different techniques.

Transciphering technique The aim of this work is very similar to the works
for the transciphering technique [12, 16]. These two studies aimed to reduce the
computational burden and communication burden of the client by making the
server bear the computational load of the client. These studies focused on the
client’s encryption process and the transmission of ciphertexts. In the case of
FHE, it is burdensome for clients to encrypt their data and transmit ciphertexts
because the amount of computation used in the encryption process is larger and
the size of the ciphertext is larger than that of the symmetric key encryption
system. Therefore, these studies proposed algorithms to convert symmetric key
ciphertexts into ciphertexts in FHE without a secret key. If the client encrypts
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data through the encryption process of the symmetric key encryption system and
sends it to the server, the server can convert the symmetric key ciphertext into
the ciphertext in FHE, reducing the client’s computation and communication
burden. These studies also mainly mention that the computational power of
servers is overwhelmingly stronger than that of clients.

Our paper is the first to note that the same problem is prominent in the
rotation keys in homomorphic encryption and to present a solution. In particular,
when implementing a privacy-preserving machine learning system using FHE,
the size of the encrypted image is hundreds of MB, but the size of the rotation
keys required to perform one advanced machine learning system is hundreds of
GB. Therefore, in order to apply the machine learning system using FHE to the
industry, it is much more important to study the solution to a similar problem
as in the transciphering technique. In this respect, our work is consistent with
recent research directions in designing FHE systems suitable for client-server
systems.

Privacy-preserving deep neural networks on FHE CNN models were im-
plemented using only leveled HE that does not use bootstrapping. The types
and numbers of operations available on these CNNs were very limited. The op-
erations used in the model were forced to be modified to be easy to compute on
FHE, and the number of layers used was also very limited. Recently, the results
of successfully implementing the deep neural network on FHE by actively utiliz-
ing bootstrapping operations have been presented [26, 27]. In these studies, the
ResNet model, a renowned CNN model with verified classification performance
in plaintext, was performed on FHE using the same pre-trained parameters. In
particular, in the study of Lee et al. [26], a ResNet model with 110 layers was
also successfully implemented on the CKKS scheme.

We find that the massive size of the rotation key is a major obstacle to mak-
ing this privacy-preserving machine learning system practical when implement-
ing such a complex advanced machine learning system with FHE. Previously,
the size of the rotation keys was not a problem because only simple computa-
tion models were used. However, bootstrapping operations and various kinds of
convolution operations were used in the advanced computation model, which
greatly increased the size of the rotation keys to hundreds of GB. Our work can
be seen as the study that solves the most significant problem at this point in
time when the study of performing advanced computational models with FHE
began.

1.4 Outline

Section 2 formalizes the concept of the hierarchical rotation key system and
its application to the specific rotation key management. Section 3 deals with
the proposed hierarchical rotation key generation algorithm for CKKS and BFV
schemes. Section 4 proposes algorithms for efficiently generating a set of rotation
keys with the given set of rotation keys in the higher levels. Section 5 suggests
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a concrete example of the rotation key management protocol and shows the
numerical simulation results with ResNet models. Section 6 concludes the paper
and suggests future work.5

2 Concept of Hierarchical Rotation Key System

In this section, we provide an overview of the proposed hierarchical rotation key
system. Specific procedures in this system will be described in Sections 3 and 4.

2.1 Definition of Hierarchical Rotation Key System

We define the hierarchical rotation key system in the cloud computing using
FHE. In a k-level hierarchical rotation key system, there are k sets of rotation
keys with a hierarchy from a key level k − 1 to 0. Each rotation key can be
used to generate rotation keys in the lower levels. The additional algorithms
for the hierarchical rotation key system are InitRotKeyGen and RotKeyGen. The
algorithm InitRotKeyGen generates a set of the highest key-level rotation keys,
performed by the client with the secret key. The algorithm RotKeyGen generates
a set of intermediate or zero key-level rotation keys using the public key and the
set of higher key-level rotation keys. This algorithm is performed by the server
or the key management server (KMS) having no secret key. We now assume
that the public key and hierarchical rotation keys are managed by the KMS
collocated with or separated from the server, and all protocols in the paper also
make sense when the KMS and the server are united. These two algorithms are
defined as follows, where k denotes the total number of key levels.

– InitRotKeyGen(s, Tk−1)→ {gk(k−1)
i }i∈Tk−1

: Given a secret key s and a set of
cyclic shifts Tk−1, generate the rotation keys with cyclic shifts in Tk−1 in the
highest key level in the client.

– RotKeyGen(ℓ,Uℓ, {gk(ℓi)i }i∈Uℓ
, pk, Tℓ) → {gk(ℓ)i }i∈Tℓ

: Given a public key pk,

a set of the rotation keys {gk(ℓi)i }i∈Uℓ
with cyclic shifts in Uℓ in the key level

ℓi higher that ℓ, and a set of cyclic shifts Tℓ, generate the rotation keys with
cyclic shifts in Tℓ in key level ℓ in the KMS.

The rotation key gk
(ℓ)
i denotes the rotation key for the cyclic shift i in the

key level ℓ, whose specific definition will be dealt with in Section 3. Although
the public key pk is represented separately from the rotation keys, the rotation
keys are also public in that these keys can be opened to the public. The set of
cyclic shifts for each key level, which is an integer set, is denoted by T0, · · · , Tk−1,
respectively. These sets are pairwisely disjoint. The set of cyclic shifts for each
key level higher than ℓ whose rotation keys are generated in advance, is denoted
by Uℓ. If all desired rotation keys in the key level higher than ℓ are all generated,

5 The appendix includes the preliminaries, the proofs of the theorems, and the required
cyclic shifts for ResNet models.
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Algorithm 1: Key Management of Hierarchical Rotation Key System
with the k Key Levels

Input: Encryption parameters params for k-level rotation key system (client
and server), a set of cyclic shifts for rotation keys in the highest key
level Tk−1 (client), sets of cyclic shifts for intermediate key-level
rotation keys Tk−2, · · · , T1 (server), and a homomorphic service S
(server)

Output: A set of rotation keys {gk(0)
i }i∈T0 (server)

Key generation and transmission in client
1. sk ← SecGen(1λ, params)
2. pk ← PubGen(sk)

3. {gk(k−1)
i }i∈Tk−1 ← InitRotKeyGen(s, Tk−1)

4. Transmit (pk, {gk(k−1)
i }i∈Tk−1) to the server and let G = {gk(k−1)

i }i∈Tk−1

Inactive phase: generating rotation keys in the key level ℓ(> 1)

1. {gk(ℓ)
i }i∈Tℓ ← RotKeyGen(ℓ,Uℓ, {gk(ℓi)

i }i∈Uℓ , pk, Tℓ)
2. G ← G ∪ {gk(ℓ)

i : i ∈ Tℓ}

Active phase: generating level-0 rotation keys in server

1. T0 ← ExtractRotSet(S)
2. {gk(0)

i }i∈T0 ← RotKeyGen(0,Uℓ, {gk(1)
i }i∈Tℓ , pk, T0)

Uℓ is equal to
⋃k−1

i=ℓ+1 Ti. The conventional rotation key system can be seen as
a special case of the proposed hierarchical rotation key system, where there is
only the algorithm InitRotKeyGen, and the number of key levels in the hierarchy
is one.

2.2 Rotation Key Generation Protocol in Hierarchical Rotation
Key System

In our k-level hierarchical rotation key system, we consider both of the following
cases: (1) active case when a client frequently requests a service and (2) inactive
case when a service is not used often by a client or what service to be used is
not determined. In the active case, since the generation of level-0 rotation keys
repetitively for each service is inefficient, it is better to generate level-0 rotation
keys in advance to reduce latency. In this case, the server should hold level-0
rotation keys, which takes up some memory. On the other hand, in the case of
inactive, it is desirable to generate only rotation keys of level 1 to k−1 in advance
to remove unnecessary memory usage of level-0 rotation keys. In this way, our
system can finely control the trade-off of memory and latency according to the
frequency of service. The specific protocols are described in Algorithm 1.
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3 Proposed Hierarchical Rotation Key System for CKKS
and BFV Schemes

In this section, the hierarchical rotation key system for CKKS and BFV schemes
is proposed. The CKKS and BFV schemes differ only in the packing structure,
the decryption method, and the role of each operation for the encrypted data,
but the key-switching operation itself is exactly the same. Thus, we will deal
with them at once.

We use the term ciphertext as a pair of ring elements (b, a) ∈ R2
q for some

modulus q. A ciphertext (b, a) ∈ R2
q is defined to be a valid ciphertext of m with

the secret key s if b+ a · s = m+ e mod q, where e is a polynomial with small
coefficients compared to q.

Let Q =
∏dnum−1

i=0 Qi be a product of several coprime positive integers Qi’s,
and P be a positive integer which is coprime to and larger than Qi’s. A rotation
key gkr = {gkr,i}i=0,··· ,dnum−1 for cyclic shift r with the secret key polynomial
s ∈ R is defined to be valid if each gkr,i = (br,i, ar,i) ∈ R2

PQ is a valid ciphertext

of P · Q̂i · [Q̂−1
i ]Qi · s(X5r ) with the secret key s, where Q̂i =

∏
j ̸=i Qj . This

can be used for the key-switching operation to the ciphertext in the modulus q,
where q is a divisor of Q. We call Q the evaluation modulus and P the special
modulus.

These rotation keys are used in the rotation operation. The rotation opera-
tion of the CKKS scheme is an operation mapping (vi) 7→ (vi+r) while encrypted,
where the addition operation of the subscript is in modulo N/2 and N is the
polynomial modulus degree. The rotation operation in the BFV scheme is an
operation mapping (vi,j) 7→ (vi,(j+r)) while encrypted. In terms of ring ele-

ments, these operations can be unified as operations mapping m(X) 7→ m(X5r ).
For these operations, we first perform an operation of (b(X), a(X)) 7→ (b(X5r ),
a(X5r )). This processed ciphertext satisfies b(X5r )+a(X5r ) ·s(X5r ) ≈ m(X5r ),
which means that it is a ciphertext of a plaintext polynomial m(X5r ) with the
secret key s(X5r ). We have to convert this ciphertext to a ciphertext of the same
plaintext with the original secret key. This is done by taking the key-switching
operation from s(X5r ) to s(X) using the rotation key for cyclic shift r.

3.1 Generation of Public Key and Rotation Keys in Client

The conventional schemes generate a public key (b, a) with the modulus Q =∏L
i=0 qi because the special modulus is only used in the key-switching operation.

In contrast, the proposed hierarchical rotation key generation scheme generates

a public key (b, a) with Qk−1 =
∏Lk−2

i=0 qi to prepare to use it to generate rotation
keys with key levels smaller than k − 1. The highest key-level rotation keys are
generated by the client. The set of cyclic shifts Uℓ of rotation keys in the key
level higher than ℓ should be the set that can generate all cyclic shifts Tℓ of
rotation keys with the key level ℓ by the sum allowing repetition. The small size
of Tk−1 for the highest key level can reduce the computational burden and the
communication cost of the client.
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In the InitRotKeyGen operation for the proposed scheme, a single highest-
level rotation key for cyclic shift r with the secret key polynomial s ∈ R is the

form of gk(k−1)
r = {gk(k−1)

r,i }i=0,··· ,hdnumk−1−1, where gk
(k−1)
r,i = (b

(k−1)
r,i , a

(k−1)
r,i ) ∈

R2
Qk−1Pk−1

such that a
(k−1)
r,i ← RQk−1Pk−1

and b
(k−1)
r,i = −a(k−1)

r,i · s + e
(k−1)
r,i +

Pk−1 · Q̂k−1,i · [Q̂−1
k−1,i]Qk−1,i

· s(X5r ) for e
(k−1)
r,i ← χ. The RNS bases for gkr,i

are C ∪
⋃k−1

j=0 Bj . Note that the distribution and the form of the rotation keys
generated by the client are the same as those in the conventional rotation key
generation.

3.2 RotToRot and PubToRot Operations

Two types of operations are required to make the level-ℓ rotation keys for ℓ less
than k−1. One is the operation PubToRot, which generates a level-ℓ rotation key
from the public key, and the other is the operation RotToRot, which generates
a level-ℓ rotation key from the existing level-ℓ rotation keys for the other cyclic
shifts. The combination of PubToRot operation and RotToRot operation will
generate all rotation keys with only the public key and rotation keys in the key
level higher than ℓ.

Let the shift-r rotation key be defined as the rotation key for cyclic shift r,
and let (r, ℓ) rotation key be defined as the rotation key for cyclic shift r in the
key level ℓ. For the convenience of explanation, we will first explain the operation
RotToRot. The operation RotToRot is an operation that generates a (r + r′, ℓ)
rotation key from a (r, ℓ) rotation key in the key level ℓ with a shift-r′ rotation
key in the key level higher than ℓ. To understand this operation, keep in mind
that the rotation operation is a map m(X) 7→ m(X5r ) from the perspective of
the plaintext polynomial. In other words, the rotation operation can be seen as
an operation that generates a ciphertext of m(X5r ) from a ciphertext of m(X)

[11]. We note that the rotation key for cyclic shift r is a set of ciphertexts gk(ℓ)r =

{gk(ℓ)r,i}i=0,··· ,hdnumℓ−1, where gk
(ℓ)
r,i = (b

(ℓ)
r,i , a

(ℓ)
r,i ) ∈ R2

QℓPℓ
and b

(ℓ)
r,i = −a

(ℓ)
r,i ·s+e

(ℓ)
r,i+

Pℓ ·Q̂ℓ,i ·[Q̂−1
ℓ,i ]Qℓ,i

·s(X5r ). Each gk
(ℓ)
r,i is a ciphertext of Pℓ ·Q̂ℓ,i ·[Q̂−1

ℓ,i ]Qℓ,i
·s(X5r ).

If we perform the rotation operation with cyclic shift r′ on gk
(ℓ)
r,i , the output is

a ciphertext of the following polynomial,

Pℓ · Q̂ℓ,i · [Q̂−1
ℓ,i ]Qℓ,i

· s((X5r
′

)5
r

)

= Pℓ · Q̂ℓ,i · [Q̂−1
ℓ,i ]Qℓ,i

· s(X5r+r′

).

This rotation operation requires an (r′, ℓ′) rotation key gk
(ℓ′)
r′ , where ℓ′ is higher

than ℓ. If we define this output as gk
(ℓ)
r+r′,i, the set gk

(ℓ)
r+r′ = {gk

(ℓ)
r+r′,i}i=0,··· ,hdnumℓ−1

is a valid (r+ r′, ℓ) rotation key. We will call this operation RotToRot, as shown
in Algorithm 2. The following theorem shows the correctness of RotToRot oper-
ation.6

6 The proof of the theorem is in Appendix B.
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Theorem 1. The output of Algorithm 2 is a valid rotation key for the rotation
operation for cyclic shift r + r′.

Next, we will describe the operation PubToRot. Note that the above operation
is useful only when some rotation keys exist. However, since the server receives
no rotation key in the key level lower than k − 1 from the client, the rotation
key should be generated first with the public key and rotation keys in the higher
levels in the server. To this end, we can think of a formal shift-0 rotation key.
If a shift-0 rotation key can be generated from a public key, a shift-r′ rotation
key can be generated by adding a RotToRot operation to the shift-0 rotation
key for cyclic shift r′. By definition, the shift-0 rotation key should be the form

of gk
(ℓ)
0 = {gk(ℓ)0,i}i=0,··· ,hdnumℓ−1, where gk

(ℓ)
0,i = (b

(ℓ)
0,i , a

(ℓ)
0,i) ∈ R2

QℓPℓ
and b

(ℓ)
0,i =

−a(ℓ)0,i · s+ e
(ℓ)
0,i + Pℓ · Q̂ℓ,i · [Q̂−1

ℓ,i ]Qℓ,i
· s.

To generate gk
(ℓ)
0,i from the public key (b, a) ∈ R2

Qk−1
, we first reduce the

public key to (b′, a′) = (b mod QℓPℓ, a mod QℓPℓ) ∈ R2
QℓPℓ

by simply extract-

ing values for corresponding RNS moduli. Then, we set as b
(ℓ)
0,i = b′ and a

(ℓ)
0,i =

a′+Pℓ·Q̂ℓ,i·[Q̂−1
ℓ,i ]Qℓ,i

. Then, we can have b
(ℓ)
0,i = −a

(ℓ)
0,i ·s+e

(ℓ)
0,i+Pℓ·Q̂ℓ,i·[Q̂−1

ℓ,i ]Qℓ,i
·s.

If we define (b
(ℓ)
0,i , a

(ℓ)
0,i) as gk

(ℓ)
0,i , the set gk

(ℓ)
0 = {gk(ℓ)0,i}i=0,··· ,hdnumℓ−1 is a valid for-

mal (0, ℓ) rotation key. Then we can generate a shift-r rotation key by performing
a RotToRot operation on it with the (r, ℓ) rotation key.

In addition, we can optimize the operations further by combining the decom-
position processes in the key-switching operation. Trivially, the decomposition
process is performed hdnumℓ times if all the key-switching operations are per-
formed in a black-box manner like RotToRot. Since the decomposition process is
the heaviest operation in the key-switching operation [3], reducing the number of
these processes is desirable. Rather than performing the decomposition process
after adding Pℓ · Q̂ℓ,i · [Q̂−1

ℓ,i ]Qℓ,i
to a′ for each i, we perform the decomposition

process to a′ only once and add [Pℓ · Q̂ℓ,i · [Q̂−1
ℓ,i ]Qℓ,i

]Qℓ′,j to the j-th decomposed
component for each i, where this added value can be pre-computed. Since the
number of the decomposition processes is reduced to one, this optimization effec-
tively improves the running time performance. The PubToRot operation is shown
in Algorithm 3. The correctness of this optimization is shown in the following
theorem,7 where PℓQℓ = Qℓ+1 = (

∏µ−2
j=0 Qℓ′,j) · Q̄ℓ′,µ−1, Q̄ℓ′,µ−1 is a divisor of

Qℓ′,µ−1, and µ ≤ hdnumℓ′ .

Theorem 2. The output of Algorithm 3 is a valid rotation key for the rotation
operation for cyclic shift r.

3.3 Rotation Key Generation in the Lower Key Level

We can generate the desired level-ℓ rotation keys with only the public key and
the rotation keys in the key level higher than ℓ through RotToRot and PubToRot

7 The proof of the theorem is in Appendix C.
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Algorithm 2: RotToRot

Input: An (r, ℓ) rotation key, gk(ℓ)r = {(b(ℓ)r,i , a
(ℓ)
r,i )}i=0,··· ,hdnumℓ−1 ∈ (R2

QℓPℓ
)hdnumℓ

and an (r′, ℓ′) rotation key, where ℓ′ is higher than ℓ,

gk
(ℓ′)
r′ = {(b(ℓ

′)
r′,i, a

(ℓ′)
r′,i)}i=0,··· ,hdnumℓ−1 ∈ (R2

Qℓ′Pℓ′
)hdnumℓ′

Output: An (r + r′, ℓ) rotation key,

gk
(ℓ)

r+r′ = {b
(ℓ)

r+r′,i, a
(ℓ)

r+r′,i}i=0,··· ,hdnumℓ−1 ∈ (R2
QℓPℓ

)hdnumℓ

1 for i = 0 to hdnumℓ − 1 do

2 (b̃, ã)← (b
(ℓ)
r,i (X

5r
′
), a

(ℓ)
r,i (X

5r
′
))

3 (b
(ℓ)

r+r′,i, a
(ℓ)

r+r′,i)← key-switching operation to (b̃, ã) with the rotation key

gk
(ℓ′)
r′ .

4 return {(b(ℓ)r+r′,i, a
(ℓ)

r+r′,i)}i=0,··· ,hdnumℓ−1

described in Algorithm 4. It is assumed that a cyclic shift r of a required rotation
key can be represented as r0 + · · · + rt−1, where each ri is an element in Uℓ,
and we deal with the case when only one level-ℓ rotation key is generated. To
generate the (r, ℓ) rotation key, we first perform the operation PubToRot with the
shift-r0 rotation key and the public key. Then we perform a RotToRot operation
iteratively with the shift-ri rotation key and the shift-

∑i−1
j=0 rj rotation key to

generate a shift-
∑i

j=0 rj rotation key for i = 1, · · · , t−1, which outputs the (r, ℓ)
rotation key at last. The generation algorithm for one rotation key is described
in Algorithm 4.

We usually have to generate a bundle of rotation keys rather than only one
rotation key for a specific service. We will deal with the more efficient method
for the case when we need to make a set of rotation keys at once in Section 4.

3.4 Security Aspects

One can be concerned that the server may be able to obtain some information
about the secret key using the fact that the rotation keys for any cyclic shifts
can be generated by the server indefinitely. However, according to the argument
often used in the simulation paradigm in cryptography, if any new information
can be efficiently obtained from existing information, this new information is
considered to tell us nothing beyond the existing information [30]. Thus, even if
new rotation keys are generated indefinitely with the proposed algorithms from
the rotation keys sent by the client, these new rotation keys do not give the
server any new information beyond the public keys and the rotation keys in the
highest key level sent by the client.

Thus, we only need to consider the security of the public key and the rotation
keys at the highest key level sent by the client. As mentioned in Section 3.1, the
generating method for the public key and the highest key-level rotation key by
the client is exactly the same as those of the conventional FHE schemes. Just as
the conventional FHE schemes are based on the circular security assumption, the
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Algorithm 3: PubToRot

Input: A public key (b, a) ∈ R2
Qk−1

, a (r, ℓ′) rotation key,

gk(ℓ
′)

r = {b(ℓ
′)

r,j , a
(ℓ′)
r,j }j=0,··· ,hdnumℓ′−1 ∈ (R2

Qℓ′Pℓ′
)hdnumℓ′ , and the key level

ℓ
Output: A (r, ℓ) rotation key, gk(ℓ)r = {b(ℓ)r,i , a

(ℓ)
r,i}i=0,··· ,hdnumℓ−1 ∈ (R2

QℓPℓ
)hdnumℓ

1 (b′, a′)← ([b(X5r )]QℓPℓ , [a(X
5r )]QℓPℓ) ∈ R2

QℓPℓ

2 Decompose a′ into a vector (a0, · · · , aµ−1) ∈ Rµ
Pℓ′Qℓ+1

, where

aj = [a′]Qℓ′,j +Qℓ′,j · ẽj for small ẽj ’s for 0 ≤ j ≤ µ− 2 and

aµ−1 = [a′]Q̄ℓ′,µ−1
+ Q̄ℓ′,µ−1 · ẽµ−1 for small ẽµ−1.

3 for i = 0 to hdnumℓ − 1 do
4 (b̄, ā)← (0, 0) ∈ R2

Pℓ′Qℓ′

5 for j ← 0 to µ− 1 do
6 if j = µ− 1 then

7 (b̄, ā)← (b̄, ā) + (aµ−1 + [Pℓ · Q̂ℓ,i · [Q̂−1
ℓ,i ]Qℓ,i ]Q̄ℓ′,µ−1

) ·

([b
(ℓ′)
r,µ−1]Pℓ′Qℓ+1 , [a

(ℓ′)
r,µ−1]Pℓ′Qℓ+1)

8 else
9 (b̄, ā)←

(b̄, ā)+(aj+[Pℓ ·Q̂ℓ,i · [Q̂−1
ℓ,i ]Qℓ,i ]Qℓ′,j ) ·([b

(ℓ′)
r,j ]Pℓ′Qℓ+1 , [a

(ℓ′)
r,j ]Pℓ′Qℓ+1)

10 (b
(ℓ)
r,i , a

(ℓ)
r,i )← (⌊P−1

ℓ′ · b̄⌉, ⌊P
−1
ℓ′ · ā⌉) ∈ R2

Qℓ+1
= R2

PℓQℓ

11 b
(ℓ)
r,i ← b

(ℓ)
r,i + b′

12 return {(b(ℓ)r,i , a
(ℓ)
r,i )}i=0,··· ,hdnumℓ−1

proposed hierarchical rotation key generation scheme also requires the circular
security assumption. The public key is an element of R2

Qk−1
, and the highest

key-level rotation key is an element of (RQk−1Pk−1
)2)hdnumk−1 . Since the main

factor that affects the security level is the maximum modulus bit-length of rings,
the value of Qk−1Pk−1 is the main factor for security. For a given polynomial
modulus degree N and the secret key Hamming weight h, we can be given the
maximum modulus bit length to guarantee the security level λ [3, 10], and the
bit-length of Qk−1Pk−1 should not exceed this bit length.

4 Efficient Generation Method of Rotation Key Set

In the previous section, we dealt with the specific algorithms needed to make a
lower key-level rotation key using the higher key-level rotation keys. However,
we often require many rotation keys at once, especially for certain services re-
quested by the client. Thus, it is necessary to efficiently generate a set of rotation
keys using the higher key-level rotation keys. We need to reduce the number of
these RotToRot operations and PubToRot operations to efficiently generate hier-
archical rotation keys. Note that there are many intermediate rotation keys in
the hierarchical rotation key system. Given a certain fixed set of higher key-level
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Algorithm 4: RotKeyGen for One Rotation Key

Input: A public key (b, a) ∈ R2
Qk−1

, a set of rotation keys GUℓ = {gk(ℓr)r =

{(b(ℓr)r,i , a
(ℓr)
r,i )}i=0,··· ,hdnumℓr−1 ∈ (R2

QℓrPℓr
)hdnumℓr |r ∈ Uℓ} for cyclic shift

generator set Uℓ in the key level higher than ℓ, and a cyclic shift
r =

∑t−1
u=0 ru for ru ∈ Uℓ

Output: An (r, ℓ) rotation key,

gk(ℓ)r = {b(ℓ)r,i , a
(ℓ)
r,i}i=0,··· ,hdnumℓ−1 ∈ (R2

QℓPℓ
)hdnumℓ

1 {(b(ℓ)r0,i
, a

(ℓ)
r0,i

)i=0,··· ,hdnumℓ} ← PubToRot with the public key and the (r0, ℓr0)
rotation key

2 for h = 1 to t− 1 do

3 {(b(ℓ)∑h
j=0 rj ,i

, a
(ℓ)∑h

j=0 rj ,i
)i=0,··· ,hdnumℓ} ← RotToRot with

{(b(ℓ)∑h−1
j=0 rj ,i

, a
(ℓ)∑h−1

j=0 rj ,i
)i=0,··· ,hdnumℓ} and the (rh, ℓrh) rotation key

4 return gkℓr = {(b(ℓ)r,i , a
(ℓ)
r,i )i=0,··· ,hdnumℓ}

rotation keys, the key problem is how to minimize the number of operations
for generating these intermediate rotation keys by systematically organizing the
generating sequence of the rotation keys.

4.1 Reduction to Minimum Spanning Arborescence Problem and
Minimum Spanning Tree Problem

Given a set Uℓ of specific fixed rotation keys in the higher key level than ℓ,
generating level-ℓ rotation keys with as few operations as possible is desirable.
In other words, it becomes important to use the least amount of operations of
RotToRot and PubToRot by arranging the order in which the rotation keys in
the set are generated. We propose an algorithm that can determine the order
of generating rotation keys in the set in the hierarchical rotation key system to
reduce the number of operations.

To this end, we reduce the problem of determining the order of generation
of rotation keys to the minimal spanning arborescence problem, a well-known
graph-theoretic computational problem. First, set the |Tℓ| + 1 nodes for each
element in the Tℓ ∪ {0}, and then set the directed edge weight between any two
nodes a, b as the minimum number of elements in Uℓ required to add up to |a−b|
allowing repetition. The method for setting this edge weight will be given in the
next subsection. There are some identical points to the minimum arborescence
problem in our ordering of the rotation key generation problem as follows.

– We need to generate each rotation key only once. This fact is related to the
property of the arborescence that any node has only one path from the root
node.

– Each rotation key can be generated by using a RotToRot or a PubToRot from
the public key or existing rotation keys. An edge from the node a to the node
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b with weight w means that the (b, ℓ) rotation key can be generated from the
(a, ℓ) rotation key with w operations of RotToRot and PubToRot.

– All rotation keys should be generated from the public key and the higher level
rotation keys. An arborescence has only one root node that is the source of
all nodes, and this root node corresponds to the public key.

– We need to minimize the total number of key-switching operations to generate
all rotation keys. The minimum spanning arborescence problem is to find the
arborescence with the minimum total weight, which corresponds to the total
number of PubToRot operations or RotToRot operations.

Therefore, the graph produced in this way can be seen as a directed graph,
and our problem is to find a spanning arborescence with a minimum sum of
edges, which is the goal of the minimum spanning arborescence problem. If we
find a spanning arborescence in the graph, we can view the node with zero as a
public key and generate the rotation keys along the obtained tree. The minimum
spanning arborescence problem can be solved by Edmonds’ algorithm [13], and
thus an answer to this problem can be efficiently obtained.

If the rotation keys in the higher key level exist in pairs of different signs of
the same absolute value, a faster and more efficient solution for generating the
rotation keys in the lower key level can be obtained by reducing to another com-
putation problem. If a shift-r1 rotation key can be generated with m operations
from a shift-r2 rotation key, we can generate the shift-r2 rotation key from that
of cyclic shift r1 with the higher-level rotation keys for cyclic shifts having the
same absolute value with a different sign. In view of the corresponding graph,
any pairs of two edges (r1, r2) and (r2, r1) exist and have the same edge weight.
Thus, we can replace the directed graph with the undirected graph with the
same nodes in which each edge has the same weight as the corresponding edge
in the directed graph. For the undirected graph, we can reduce this problem to
the minimum spanning tree problem, which can be solved by Prim’s algorithm
[33].

We note that this solution is not exactly the optimal solution since the inser-
tion of additional nodes can reduce the operations further. If we set the nodes
for all cyclic shifts (i.e., ±1,±2,±3, · · · ) in the graph, our problem is to find the
minimum Steiner tree for required cyclic shifts. The Steiner tree in a graph is
a tree connecting a subset of designated nodes, and the problem of finding the
Steiner tree is known as an NP-hard problem. Thus, we choose the near-optimal
solution using a more practically feasible algorithm. Designing a fast algorithm
to find the solution closer to the optimal solution in the proposed situation is an
important future work.

4.2 Edge Weight for p-ary Rotation Keys

We should consider a method to compute the edge of each graph, where we
need to find a way to represent the difference between two nodes as a sum
of the minimum number of elements in Uℓ, allowing repetition. In general, the
server can ask the client for a well-designed set of Uℓ so that it can be easy to
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represent any given number as the desired sum in Uℓ. Rather than proposing
the general method for unstructured Uℓ, we suggest a specific example of a key
management system with Uℓ with power-of-p integers within the desired interval.
We will discuss how to obtain edges for both cases when Uℓ consists of power-
of-p integers with both signs and when it consists of only positive power-of-p
integers.

Algorithm 5: ComputeEdgePos

Input: A power base p for the set Uℓ with only positive numbers and a
number t to be summed

Output: The minimum number of elements in Uℓ summed to t allowing
repetition

1 (t0t1 · · · tℓ−1)(p) ← p-ary representation of t

2 return
∑ℓ−1

i=0 ti

We consider the easier case, a set of positive power-of-p, in which the rotation
graph is a directed graph. In this case, each edge can be computed as follows.
First, we can find the difference between the end node and the start node of the
edge, and then express this difference in the p-ary representation, and then set
the sum of the digits as the edge weight. This algorithm is described in Algorithm
5 without proof.

Next, we consider the case of power-of-p integers with both signs in which
the rotation graph is an undirected graph, as in Section 4.1. In this case, since
the power-of-two integers with different signs can add up to the value, expressing
them with the p-ary representation is not enough to find the optimal solution.
Instead, we propose the following algorithm to obtain the edge weight between
any two nodes, which is efficient enough for the input range. Assume that r is the
difference between the two given nodes. If r is a multiple of p, then recursively
output a value of Alg(r/p), otherwise find r1 such that pr1 ≤ r < p(r1 + 1) and
recursively output min{Alg(r1) + (r − pr1),Alg(r1 + 1) + (p(r1 + 1)− r)}. This
algorithm is described in Algorithm 6. To help understand the reduction to the
graph, we depict the corresponding graph and the minimum spanning tree for
Tℓ = {1, 13, 16, 17, 19} and Uℓ = {±1,±2,±4,±8,±16} in Figure 3.

4.3 Hoisted Rotation Key Generation

The previous subsections focus on reducing the number of RotToRot and PubToRot
operations. In this subsection, we further reduce the number of the Decompose
processes by the hoisting technique. The hoisting technique minimizes the num-
ber of operations by interchanging or combining operations without changing
functionalities. This technique has been used in the linear transformation in the
FHE schemes, and optimizing the bootstrapping of the FHE schemes is one of
its important applications [3,18]. We propose the hoisting method for generating
the rotation key set in the hierarchical rotation key generation systems.
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Fig. 3: Rotation key graph for Tℓ = {1, 13, 16, 17, 19} and Uℓ =
{±1,±2,±4,±8,±16}.

Algorithm 6: ComputeEdgeBoth

Input: A power base p for the set S with both signs and the number t to be
summed

Output: The minimum number of elements in S summed to t allowing
repetition

1 if p|t then
2 return ComputeEdgeBoth(p, t/p)
3 else
4 r ← ⌊|t|/p⌋
5 if r = 0 then
6 return |t|
7 else
8 return min{ComputeEdgeBoth(p, r) + (|t| −

pr),ComputeEdgeBoth(p, r + 1) + (p(r + 1)− |t|)}

The target situation is when several level-ℓ rotation keys are generated from
the public key or one level-ℓ rotation key with rotation keys in the key level ℓ′

higher than ℓ. If we want to generate d rotation keys, we can naively perform
exactly d PubToRot operations or d RotToRot operations. As stated in Section
3.2, the decomposition process is the most time-consuming in the key-switching
operation, and thus the decomposition process is desirable to be reduced further.
To this end, we postpone the process of automorphism in line 2 of Algorithm 2 or
line 1 of Algorithm 3 to the last of the operations to combine the decomposition
processes into one process. To maintain the functionality of the operation, we
conduct the automorphism inversely to the rotation keys in the key level higher
than ℓ before the inner-product with the decomposed components. If the source
rotation key is the public key, we reduce the number of decomposition processes
from d to one for generating d rotation keys. If the source rotation key is the
other rotation key in the same key level, we reduce the number of decomposi-
tion processes from d · hdnumℓ to hdnumℓ. The hoisted version of RotToRot and
PubToRot operations are described in Algorithms 7 and 8. The whole generation
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Algorithm 7: HoistedRotToRot

Input: An (r, ℓ) rotation key, gk(ℓ)r = {(b(ℓ)r,i , a
(ℓ)
r,i )}i=0,··· ,hdnumℓ−1 ∈ (R2

QℓPℓ
)hdnumℓ

and d (r′α, ℓ
′) rotation keys, where ℓ′ is higher than ℓ,

gk
(ℓ′)
r′α

= {(b(ℓ
′)

r′α,i, a
(ℓ′)
r′α,i)}i=0,··· ,hdnumℓ−1 ∈ (R2

Qℓ′Pℓ′
)hdnumℓ′ for

α = 0, · · · , d− 1
Output: d (r + r′α, ℓ) rotation keys,

gk
(ℓ)

r+r′α
= {b(ℓ)r+r′α,i, a

(ℓ)

r+r′α,i}i=0,··· ,hdnumℓ−1 ∈ (R2
QℓPℓ

)hdnumℓ for

α = 0, · · · , d− 1
1 for i = 0 to hdnumℓ − 1 do

2 Decompose a
(ℓ)
r,j into a vector (a0, · · · , aµ−1) ∈ Rµ

Pℓ′Qℓ+1
, where

aj = [a]Qℓ′,j +Qℓ′,j · ẽj for small ẽj ’s for 0 ≤ j ≤ µ− 2 and

aµ−1 = [a]Q̄ℓ′,µ−1
+ Q̄ℓ′,µ−1 · ẽµ−1 for small ẽµ−1.

3 for α = 0 to d− 1 do
4 (b̄, ā)← (0, 0) ∈ R2

PℓQℓ

5 for j ← 0 to µ− 1 do

6 (b̄, ā)← (b̄, ā) + aj · ([b(ℓ
′)

r′α,j(X
5−r′α )]Pℓ′Qℓ+1 , [a

(ℓ′)
r′α,j(X

5−r′α )]Pℓ′Qℓ+1)

7 (b
(ℓ)

r+r′α,i, a
(ℓ)

r+r′α,i)← (⌊P−1
ℓ′ · b̄⌉, ⌊P

−1
ℓ′ · ā⌉) ∈ R2

Qℓ+1

8 b
(ℓ)

r+r′α,i ← b
(ℓ)

r+r′α,i + b
(ℓ)
r,i

9 (b
(ℓ)

r+r′α,i, a
(ℓ)

r+r′α,i)← (b
(ℓ)

r+r′α,i(X
5r

′
α ), a

(ℓ)

r+r′α,i(X
5r

′
α ))

10 return {b(ℓ)r+r′α,i, a
(ℓ)

r+r′α,i}i=0,··· ,hdnumℓ−1 for α = 0, · · · , d− 1

algorithm is described in Algorithm 9. We use breath-first search when we search
each node in the output arborescence. This search method is desirable for the
hoisted generation of rotation keys.

5 Simulation Results with ResNet Models

In this section, we numerically verify the validity of the proposed hierarchical
rotation key generation method with an appropriate computing environment for
the client-server model with the ResNet standard neural network and the CKKS
scheme. In the cloud computing model, the server usually has high-performance
computing resources, and the client has only a general-purpose personal com-
puter. To simulate this environment, we use a PC with Intel(R) Core(TM) i9-
13900K CPU as a client and a high-performance server with NVIDIA GeForce
RTX 4090 GPU accelerator as a server.

As a representative example of complex computation models, we assume
that the service requested by the client requires the ResNet-20 model for the
CIFAR-10 dataset or the ResNet-18 model for the ImageNet dataset. We use
the parameters in Lee et al. [26], except that we use the generalized RNS de-
composition method [19] in our simulation and the bit lengths of some RNS
moduli are reduced with the maintained classification accuracy of the network.



Rotation Key Reduction of Deep Neural Network on FHE 23

Algorithm 8: HoistedPubToRot

Input: A public key (b, a) ∈ R2
Qk−1

, d (rα, ℓ
′) rotation keys, where ℓ′ is higher

than ℓ, gk(ℓ
′)

rα
= {(b(ℓ

′)
rα,i, a

(ℓ′)
rα,i)}i=0,··· ,hdnumℓ−1 ∈ (R2

Qℓ′Pℓ′
)hdnumℓ′ for

α = 0, · · · , d− 1, and the key level ℓ
Output: d (rα, ℓ) rotation keys,

gk(ℓ)rα
= {b(ℓ)rα,i, a

(ℓ)
rα,i}i=0,··· ,hdnumℓ−1 ∈ (R2

QℓPℓ
)hdnumℓ for

α = 0, · · · , d− 1
1 Decompose a into a vector (a0, · · · , aµ−1) ∈ Rµ

Pℓ′Qℓ+1
, where

aj = [a]Qℓ′,j +Qℓ′,j · ẽj for small ẽj ’s for 0 ≤ j ≤ µ− 2 and

aµ−1 = [a]Q̄ℓ′,µ−1
+ Q̄ℓ′,µ−1 · ẽµ−1 for small ẽµ−1.

2 for i = 0 to hdnumℓ − 1 do
3 (b̄, ā)← (0, 0) ∈ R2

PℓQℓ

4 for α = 0 to d− 1 do
5 for j ← 0 to µ− 1 do
6 if j = µ− 1 then

7 (b̄, ā)← (b̄, ā) + (aµ−1 + [Pℓ · Q̂ℓ,i · [Q̂−1
ℓ,i ]Qℓ,i ]Q̄ℓ′,µ−1

) ·

([b
(ℓ′)
rα,j(X

5−rα
)]Pℓ′Qℓ+1 , [a

(ℓ′)
rα,j(X

5−rα
)]Pℓ′Qℓ+1)

8 else

9 (b̄, ā)← (b̄, ā) + (aj + [Pℓ · Q̂ℓ,i · [Q̂−1
ℓ,i ]Qℓ,i ]Qℓ′,j ) ·

([b
(ℓ′)
rα,j(X

5−rα
)]Pℓ′Qℓ+1 , [a

(ℓ′)
rα,j(X

5−rα
)]Pℓ′Qℓ+1)

10 (b
(ℓ)
rα,i, a

(ℓ)
rα,i)← (⌊P−1

ℓ′ · b̄⌉, ⌊P
−1
ℓ′ · ā⌉) ∈ R2

Qℓ+1

11 b
(ℓ)
rα,i ← b

(ℓ)
rα,i + [b]Qℓ+1

12 (b
(ℓ)
rα,i, a

(ℓ)
rα,i)← (b

(ℓ)
rα,i(X

5rα ), a
(ℓ)
rα,i(X

5rα ))

13 return {b(ℓ)rα,i, a
(ℓ)
rα,i}i=0,··· ,hdnumℓ−1 for α = 0, · · · , d− 1

The sparse-secret encapsulation method [4] is assumed to be used for the boot-
strapping with the dense secret key with more reduced running time and higher
precision. The whole rotation steps for each model are computed with the com-
putation method in [26] 8.

The CKKS scheme is used for the simulation, and the parameters of the
CKKS scheme we use for the simulation are shown in Table 1. The lattigo

library [1] is used for the simulation, and the CUDA library by NVIDIA is used
for GPU acceleration of the rotation key generation. The rotation key generation
with the GPU processor is implemented based on [21]. In the server, algorithms
for the preparation of rotation key generation are executed on the CPU proces-
sor and all actual rotation key generation is computed by the GPU processor.
The running time for rotation key generation by the client, the communication
amount between the client and the server, the required storage for rotation keys
in the server, and the running time for rotation key generation by the server are
measured and presented in this section.

8 The specific rotation steps is shown in Appendix D.
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Algorithm 9: RotKeyGen

Input: A cyclic shift set Tℓ for the key level ℓ, a cyclic shift generator set Uℓ
for the key level higher than ℓ, a set of rotation keys GUℓ for cyclic
shifts in Uℓ in the key level higher than ℓ, and a public key
(b, a) ∈ RQk−1

Output: A set of rotation keys GTℓ for a cyclic shift set Tℓ
1 V ← T ∪ {0}
2 E ← {(v, w)|v, w ∈ V }
3 w(v, w)← the minimum number of elements in S summed to w − v allowing

repetition
4 G′ = (V,E′)← Edmonds’ algorithm with G = (V,E) ; // It can be

replaced with Prim’s algorithm when Uℓ is symmetric around zero.

5 Q[]← empty queue for nodes
6 GTℓ ← ∅
7 while Q is not empty do
8 v ← dequeue from Q
9 W ← the set of nodes adjacent to v.

10 if v = 0 then

11 Generate the set of rotation keys GW = {gk(ℓ)w |w ∈W} from (b, a)
using PubToRot or HoistedPubToRot

12 else

13 Generate the set of rotation keys GW = {gk(ℓ)w |w ∈W} from gk(ℓ)v using
RotToRot or HoistedRotToRot

14 GTℓ ← GTℓ ∪ GW
15 Enqueue elements in W to Q.

16 return GTℓ

5.1 Parameter and Simulation Setting

We now compare the various performances between the use of the conventional
system and a hierarchical rotation key system. To ensure a fair comparison, we
have selected parameters based on the following criteria. When determining each
special modulus, we first decide the value of dnum to ensure optimal rotation time.
Then, we set the special modulus that allows key-switching with that specific
dnum. In the case of a two-level hierarchical rotation key system, we assume
that the dnum or special modulus of the higher level is not considered when
determining the dnum or special modulus for each level. In other words, the
values of dnum and special modulus for ciphertext key-switching are set solely
to optimize the key-switching process. For a three-level scheme, we relax these
criteria to carefully examine trade-offs, which will be explained in detail when
discussing the results for three levels.

The bit length of the special modulus is often approximately the size of
logQ/dnum when dnum is given, where logQ is the ciphertext modulus bit length.
Therefore, we set the special modulus based on this criterion. If the sum of
the ciphertext modulus and special modulus exceeds the maximum modulus
bit length, we consider it an unfeasible dnum for the current parameters and
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Table 1: Encryption parameters in the CKKS scheme for ResNet models

Parameters
ResNet-20

for CIFAR-10
ResNet-18

for ImageNet

Polynomial modulus degree 216 217

Secret key Hamming weight 215 216

Gaussian error stand. dev. 3.2 3.2

Minimum security level 128-bit 128-bit

Maximum modulus bit-length 1714 3428

only consider larger dnum values for this simulation. Then, the special modulus
for each key level is set using the same criteria regarding the product of the
ciphertext modulus and all the special modulus for the lower key level as the
ciphertext modulus for the corresponding key level.

In the case of the ResNet-20 handling the CIFAR-10 dataset, the ciphertext
needs to hold a maximum of 214 data points, and to perform all operations of a
single layer with one bootstrapping, it is desirable to use a polynomial modulus
degree of N = 216. The maximum modulus bit length for 128-bit security is 1714
bits assuming the secret key distribution is U3 with the formula in [32]. Thus,
we ensure that the sum of ciphertext modulus bit length and all special modulus
bit lengths does not exceed 1714 bits. For ResNet-20 handling the CIFAR-10
dataset, the total ciphertext modulus bit length required is 1321 bits. For all
simulations for ResNet-20, we fix the bit length of the maximum modulus and
the ciphertext modulus as 1714 and 1321, respectively, independent of the value
of dnum and the total number of the key level. Table 2 shows the parameter sets
to be compared. In the table, dnum shows the decomposition number for the
conventional system and the pair of decomposition numbers (dnum0, dnum1) for
a two-level hierarchical system.

There might be questions about whether it is fair to compare the two-level
system parameters with the corresponding conventional system parameters using
logP0 + logP1 as one special modulus. For instance, in the case of B.i for two-
level system parameters (logQ, logP0, logP1) = (1321, 333, 60), one can argue
that the conventional scheme with logP0 + logP1 = 393 as a special modulus
needs to be compared. However, we cannot reduce dnum0 from 4 to 3 by using
logP0 + logP1 as a special modulus for a one-level scheme, because a special
modulus of approximately 440 bits would be required for dnum0 = 3, which
prevents achieving the 128-bit security. In fact, A.i parameters are more efficient
than the claimed parameters for a one-level system because the computation
amount with special modulus is reduced. In other words, the A.i parameters are
the optimal one-level system parameters in terms of the key-switching operation.
Since the A.i and B.i parameters are the optimal parameters in terms of the key-
switching operation for one-level system and two-level system, respectively, the
comparison between these parameters is valid.

In the case of the ResNet-18 handling the ImageNet dataset, the large image
size makes it difficult to accommodate intermediate values in a single ciphertext.
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Therefore, although it is possible to use a degree of 216, it is preferable to set the
degree to 217 to double the number of slots that can be accommodated in one
ciphertext for optimizing bootstrapping time. The maximum modulus bit length
for 128-bit security is 3428 bits assuming the secret key distribution is U3 with
the formula in [32]. For the ResNet-18 handling the ImageNet dataset, the total
ciphertext modulus bit length required is 1639 bits. For all simulations for the
ResNet-18, we fix the bit length of the maximum modulus and the ciphertext
modulus as 3428 and 1639, respectively, independent of the value of dnum and the
total number of the key level. Table 3 shows the parameter sets to be compared.

In the conventional scheme, the client generates all the required rotation
keys and transmits them to the server. In the two-level hierarchical rotation
key scheme, the client generates the 16-ary level-1 rotation key sets with both
signs and transmits them to the server, where the set of the cyclic shifts is
{±1,±16,±256, · · · ,±212}. Then, the server generates the required rotation
keys for the ResNet models from this 16-ary level-1 rotation key set. In the
three-level hierarchical rotation key scheme, the client generates only two level-2
rotation key set, where the set of the cyclic shifts is {1, 256}. In this system,
we assume that there is an inactive phase between key transmissions and an
active phase when the service is provided to the client. The server can gen-
erate 4-ary level-1 rotation keys using Edmonds’ algorithm for faster rotation
key generation in the inactive phase before the services so that level-1 rotation
keys constitute a 4-ary rotation key set, where the set of the cyclic shifts is
{±1,±4,±16, · · · ,±212, 214}. Then, the server generates the required level-0 ro-
tation keys for the ResNet models from this 4-ary level-1 rotation key set just
after the services are requested, which is the active phase.

Table 2: Parameter sets with the ResNet-20 for the CIFAR-10 dataset

Rotation Key
Generation

dnum Modulus bit length

Conventional
(One-level)

A.i 4 (logQ0, logP0) = (1321, 333)
A.ii 5 (logQ0, logP0) = (1321, 273)
A.iii 6 (logQ0, logP0) = (1321, 221)

Two-level
B.i (4, 28) (logQ0, logP0, logP1) = (1321, 333, 60)
B.ii (5, 14) (logQ0, logP0, logP1) = (1321, 273, 120)
B.iii (6, 9) (logQ0, logP0, logP1) = (1321, 221, 172)

5.2 Numerical Results

Table 4 shows the number of core operations for each rotation key set generation
for ResNet models using a 16-ary rotation key set for the ResNet-20 and a 4-ary
and a 16-ary rotation key sets for the ResNet-18, and it shows the effectiveness
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Table 3: Parameter sets with ResNet-18 for ImageNet dataset

Rotation Key
Generation

dnum Modulus bit length

Conventional
(One-level)

C.i 1 (logQ0, logP0) = (1639, 1639)
C.ii 2 (logQ0, logP0) = (1639, 820)
C.iii 3 (logQ0, logP0) = (1639, 547)

Two-level
D.i (1, 22) (logQ0, logP0, logP1) = (1639, 1639, 150)
D.ii (2, 3) (logQ0, logP0, logP1) = (1639, 820, 820)
D.iii (3, 2) (logQ0, logP0, logP1) = (1639, 547, 1093)

Three-level E.iii (3, 3, 6)
(logQ0, logP0, logP1, logP2)

= (1639, 547, 729, 485)

Table 4: Number of core operations optimized by hoisted rotation key generation
and Prim’s algorithm

ResNet-20
for CIFAR-10

ResNet-18
for ImageNet

16-ary 4-ary 16-ary

No. of rotation Keys 265 617

RotToRot
Total 372 649 721

Decompose 292 347 529

PubToRot
Total 7 14 8

Decompose 1 1 1

of the hoisted rotation key generation and Prim’s algorithm. Note that the to-
tal numbers of RotToRot and PubToRot operations are close to the number of
rotation keys. Roughly speaking, 1.43 numbers of key-switching operations for
a rotation key are needed on average if we use a 16-ary level-1 rotation key set
for the ResNet-20, and 1.07 and 1.18 numbers of key-switching operations for a
rotation key are needed on average if we use 4-ary and 16-ary level-1 rotation
key set for ResNet-18, respectively. It means that most rotation keys can be gen-
erated by only one RotToRot or PubToRot operation from other rotation keys,
resulting from Prim’s algorithm.

Note that the number of the decompose processes is effectively reduced com-
pared to the total numbers of RotToRot and PubToRot operations by the hoisted
rotation key generation. The decompose processes are the most time-consuming
process in the key-switching operation. If we do not use the hoisted rotation
key generation method, the number of the decompose processes is the same as
the total number of RotToRot and PubToRot operations. For example, in the A.i
parameter, it takes 19.0s to generate all level-0 rotation keys using 16-ary level-1
rotation keys if we do not use the hoisted method. If we use the hoisted method,
it takes 16.6s to generate all level-0 rotation keys with the same level-1 rotation
keys, which is reduced by 12.8%.
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Table 5: Simulation results with various parameters with the ResNet-20 for the
CIFAR-10 dataset

CKR(ms) KGKR(ms) KGR(C)(s) CA(GB) KGR(S)(s)

Conventional
A.i 3.10 N/A 88.7 38.3 N/A
A.ii 3.38 N/A 109.5 46.6 N/A
A.iii 3.67 N/A 127.4 54.3 N/A

Two-level
B.i 3.10 12.58 18.9 8.31 16.6
B.ii 3.38 7.21 9.68 4.16 11.7
B.iii 3.67 5.18 6.30 2.67 10.2

Table 6: Simulation results with various parameters with the ResNet-18 for the
ImageNet dataset

CKR(ms) KGKR(ms) KGKR2(ms) KGR(C)(s) CA(GB) OKGR(S)(s) KGR(S)(s)

Conventional
C.i 6.50 N/A N/A 96.1 74.7 N/A N/A
C.ii 6.05 N/A N/A 145.1 115.7 N/A N/A
C.iii 6.59 N/A N/A 207.9 159.1 N/A N/A

Two-level
D.i 6.50 40.78 N/A 29.1 22.3 N/A 25.0
D.ii 6.05 9.89 N/A 3.74 2.91 N/A 12.5
D.iii 6.59 8.30 N/A 2.52 1.97 N/A 16.1

Three-level E.iii 6.59 9.02 15.62 1.93 1.54 26.9 13.9

Table 5 shows the various performances with the ResNet-20 for the CIFAR-
10 dataset when using the parameters in Table 2. Similarly, Table 6 shows the
performances with the ResNet-18 for the ImageNet dataset when using the pa-
rameters in Table 3. Each column has the following meanings.

– CKR: Ciphertext key-switching runtime
– KGKR: Key generation key-switching runtime (level-1 → level-0)
– KGKR2: Key generation key-switching runtime (level-2 → level-1)
– KGR(C): Key generation runtime (client)
– CA: Communication amount
– OKGR(S): Key generation runtime (server, offline)
– KGR(S): Key generation runtime (server)

We present Tables 7 and 8 for both cases when the rotation keys can be pre-
determined before the services are provided (Deter.) and when the rotation keys
are determined just at the time of the service (Non-Deter.). The term “offline”
means when the service is not yet provided, and the term “online” means when
the service is being provided. If the types of rotation keys are determined in ad-
vance, it is desirable to generate and transmit keys when both the conventional
and proposed hierarchical systems are offline. If it is not predetermined, a con-
ventional system cannot do anything offline, but it should generate and transmit
a large key online, which is a huge burden to the client. On the other hand, in the
proposed hierarchical system, if only a few highest-level rotation keys are gen-
erated and transmitted offline, communication costs do not occur online, and
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Table 7: Simulation results with different situations with the ResNet-20 for the
CIFAR-10 dataset. (KU: key-switching unchanged / EG: efficient gen-
eration of rotation keys)

Runtime of client Comm. amount Runtime of server
Offline Online Offline Online Offline Online

Deter.
Conventional 88.7s - 38.3GB - - -

Two-level (KU) 18.9s - 8.31GB - 16.6s -
Two-level (EG) 6.30s - 2.67GB - 10.2s -

Non-
Deter.

Conventional - 88.7s - 38.3GB - -
Two-level (KU) 18.9s - 8.31GB - - 16.6s
Two-level (EG) 6.30s - 2.67GB - - 10.2s

Table 8: Simulation results with different situations with the ResNet-18 for the
ImageNet dataset (KU: key-switching unchanged / EG: efficient gener-
ation of rotation keys)

Runtime of client Comm. amount Runtime of server
Offline Online Offline Online Offline Online

Deter.

Conventional 145.1s - 115.7GB - - -
Two-level (KU) 3.74s - 2.91GB - 12.5s -
Two-level (EG) 2.52s - 1.97GB - 16.1s -
Three-level 1.93s - 1.54GB - 40.8s -

Non-
Deter.

Conventional - 145.1s - 115.7GB - -
Two-level (KU) 3.74s - 2.91GB - - 12.5s
Two-level (EG) 2.52s - 1.97GB - - 16.1s
Three-level 1.93s - 1.54GB - 26.9s 13.9s

only a small runtime in the server is required. In other words, it shows that the
computational and communication burden of the client is significantly reduced,
and a large part of the computations goes to the high-performance server, which
balances the computation tasks and the communication amount according to the
environment. In Table 7, the parameters of the conventional system, the two-
level system with key-switching unchanged, and the two-level system with more
efficient rotation key generation are A.i,B.i, and B.iii, respectively. In Table 8, the
parameters of the conventional system, the two-level system with key-switching
unchanged, the two-level system with more efficient rotation key generation, and
the three-level system are C.ii,D.ii,D.iii, and E.iii, respectively.

5.3 Discussion

Discussion of two-level system If optimizing the key-switching operation
time for ciphertext is a top priority when setting parameters, firstly, it is desir-
able to set dnum0 to optimize the key-switching runtime and then set dnum1 that
is possible with the surplus modulus. For example, in the case of the ResNet-20,
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the optimal dnum value for key-switching operations is 4 when considering the
key-switching operation time. Therefore, irrespective of whether a hierarchical
rotation key is used or not, dnum0 would be chosen as 4. In this setting, we can
compare A.i and B.i parameters about the usage of the two-level hierarchical ro-
tation key system. While the ciphertext key-switching runtime remains the same
at 3.10ms, the client-side rotation key generation significantly reduces from 88.7s
to 18.9s (×4.69 faster), communication amount for rotation keys reduces from
38.3GB to 8.31GB (×1/4.61), and server-side rotation key generation takes 16.6s.
In the case of the ResNet-18 parameters, the optimal dnum0 for key-switching
operations is 2. Therefore, we can compare C.ii and D.ii. While the ciphertext
key-switching runtime remains the same at 6.05ms, the client-side rotation key
generation significantly reduces from 145.1s to 3.74s (×38.8 faster), the commu-
nication amount for rotation keys reduces from 115.7GB to 2.91GB (×1/39.8),
and server-side rotation key generation takes 12.5s.

In some cases, reducing the burden on the client significantly can be more
critical than the service delay. Then, we may need to make the rotation key
generation more efficient at the expense of slightly increasing the key-switching
operation time. For the ResNet-20 model, we can compare A.i and B.iii param-
eters. In other words, we can slightly increase the value of dnum0 to set a lower
logP0 and then optimize dnum1 or logP1 for more efficient key generation. While
the ciphertext key-switching runtime increases from 3.10ms to 3.67ms (×1.18
slower), the client-side rotation key generation more significantly reduces from
88.7s to 6.30s (×14.1 faster), the communication amount for rotation keys re-
duces from 38.3GB to 2.67GB (×1/14.3), and server-side rotation key generation
takes 10.2s. Therefore, if the actual service execution time is not highly sensi-
tive, using A.ii two-level parameters or A.iii two-level parameters to reduce the
client’s burden can be advantageous. For the ResNet-18 model, we can compare
C.ii and D.iii parameters. While the ciphertext key-switching runtime increases
from 6.05ms to 6.59ms (×1.08 slower), the client-side rotation key generation
more significantly reduces from 145.1s to 2.52s (×57.6 faster), the communica-
tion amount for rotation keys reduces from 115.7GB to 1.97GB (×1/58.7), and
server-side rotation key generation takes 16.1s. Using D.iii parameters to reduce
the client’s burden can be more advantageous than D.ii.

Discussion of three-level system Three-level usage can be advantageous
in scenarios where the client has sent computation keys to the server but the
computation model has not yet been agreed upon. In such cases, if there is a
waiting time for the computation model to be decided, the runtime required
to generate rotation keys for the corresponding model can be included in the
online latency. Therefore, reducing the time to generate level-0 rotation keys can
be important. However, the D.iii parameters have a larger server-side rotation
key generation runtime than the D.ii parameters. Also, in a two-level system, to
reduce the time for generating level-0 rotation keys, we may need to send more
level-1 rotation keys, increasing the client’s burden. For example, we may need to
send a 4-ary level-1 rotation key set instead of a 16-ary level-1 rotation key set,
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which would roughly double the rotation key generation time and communication
amount on the client’s side. However, by using a three-level rotation key, we can
eliminate this trade-off.

For instance, we can compare C.ii parameters with E.iii three-level parame-
ters. While the ciphertext key-switching runtime increases from 6.05ms to 6.59ms
(x1.08 slower), the client-side rotation key generation more significantly reduces
from 145.1s to 1.93s (x75.2 faster), the communication amount for rotation keys
reduces from 115.7GB to 1.54GB (x75.1 less), and server-side rotation key gener-
ation takes 13.9s. In this scenario, the server needs 26.9s to prepare more level-1
rotation keys while waiting for the computation model to be decided. It allows
less client-side rotation key generation and less communication with the similar
server-side rotation key generation runtime to the D.ii parameters. Thus, except
for the offline server-side rotation key generation, the three-level scheme shows
nearly optimal online performance overall in the rotation key generation.

6 Conclusion

We proposed a hierarchical rotation key system for the CKKS and BFV schemes
to significantly reduce the computational and communication costs of the client
and to make the rotation key management with the reduced memory in the
server. It allows the server to generate the rotation keys for the required cyclic
shifts using the rotation keys in the higher key level without a secret key or any
help from the clients. It can be an important future work that designs a sys-
tematic method to perform complex services with limited memory by using the
proposed method more efficiently or a fast algorithm for generating a sequence
of rotation keys closer to the optimal solution.
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A Preliminaries

A.1 Notations

Let Z,R, and C denote the set of integers, the set of real numbers, and the set
of complex numbers, respectively. Let Zp = Z/pZ, and let R and Rp denote
the rings R[X]/(XN + 1) and Zp[X]/(XN + 1), respectively. χ denotes an error
distribution with a small variance, such as a Gaussian distribution. For integer
x and positive integer p, [x]p denotes the non-negative remainder r such that
x = pq + r, where q is an integer and 0 ≤ r ≤ p− 1. For integer x coprime with
p, [x−1]p denotes the inverse element of [x]p in Zp.

A.2 CKKS and BFV Schemes

Fully homomorphic encryption (FHE), which may be abbreviated as homomor-
phic encryption, is an encryption scheme designed to enable arbitrary arithmetic
operations on encrypted data. FHE was initially defined as a bit-wise encryption
scheme capable of performing all boolean operations while encrypted. The defini-
tion was mitigated to include word-wise encryption schemes capable of arbitrary
arithmetic operations for encrypted integers or complex number data. The FHEs
covered in this paper are CKKS and BFV schemes. These FHE schemes support
arithmetic operations with the SIMD manner, allowing multiple independent
data to be encrypted and operated at once in a single ciphertext with a single
homomorphic operation. In the case of CKKS, the data storing structure is a
one-dimensional vector, and in the case of BFV, it is a matrix in which the
number of rows is two. In addition, complex numbers are encrypted in the case
of CKKS, and integers are encrypted in the case of BFV. Although each scheme
has several variants, we will address the schemes with the following encoding
and encryption methods, where (b, a) ∈ R2

Q in a ring-LWE sample such that
b = −a · s+ e for the secret key s← χ and a noise e← χ.

– CKKS scheme: The packing structure is a vector of length N/2, (vi) ∈ RN/2.
Let ζ be a 2N -th root of unity in C. We then obtain m(X) ∈ R[X]/(XN +1)
such that m(ζαi) = vi for αi = 5j mod 2N and encrypt it as u ·(b, a)+(⌊∆ ·
m⌉+ e0, e1), where u, e0, e1 ← χ and ∆ is scaling factor that determines the
precision of m.

– BFV scheme: The packing structure is a 2 × N/2-matrix (vij) ∈ Z2×N/2
t .

Let ω be a 2N -th root of unity in Zt. We then obtain m(X) ∈ Rt such that
m(ωαij ) = vij for αij = (−1)i · 5j mod 2N and encrypt as u · (b, a) + (Q/t ·
m+ e0, e1), where u, e0, e1 ← χ.

We assume that the residue number system (RNS) variants of CKKS and
BFV schemes [2, 9] are used. In this variant, the ciphertext modulus is chosen
as the product of large primes, and the ciphertext is represented as a vector of
remainders for the primes rather than one large remainder for the ciphertext
modulus. By the Chinese remainder theorem (CRT), each vector of remainders
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Algorithm 10: ModUp

Input: Two disjoint sets of primes C = {q0, · · · , qσ−1}, B = {p0, · · · , pτ−1},
where Q =

∏
i qi and P =

∏
j pj , and an RNS-form ring element

(a0, · · · , aσ−1) ∈
∏σ−1

i=0 Rqi for a ∈ RQ, where ai = a mod qi.
Output: an RNS-form ring element

(ā0, · · · , āσ−1, ã0, · · · , ãτ−1) ∈
∏σ−1

i=0 Rqi ×
∏τ−1

j=0 Rpi for a′ ∈ RPQ,

where āi = a′ mod qi, ãj = a′ mod pj , and a′ = a+Q · e for small
e.

1 INTT operation to (a0, · · · , aσ−1).
2 for i← 0 to σ − 1 do
3 āi ← ai

4 bi ← ai · [q̂−1
i ]qi ∈ Rqi

5 for j ← 0 to τ − 1 do
6 ãj ← 0
7 for i← 0 to σ − 1 do
8 ãj ← ãj + bi · [q̂i]pj ∈ Rpj

9 NTT operation to (ā0, · · · , āσ−1, ã0, · · · , ãτ−1).

10 return (ā0, · · · , āσ−1, ã0, · · · , ãτ−1) ∈
∏σ−1

i=0 Rqi ×
∏τ−1

j=0 Rpi

for the primes has a one-to-one correspondence to the large remainder of the large
modulus. The element-wise addition and multiplication between two vectors of
remainders also correspond to those between two corresponding remainders of
the product of the primes. The non-trivial operations in these RNS variants are
the ModUp and ModDown operations. The ModUp operation raises the modulus
with remaining the remainder, and the ModDown operation divides the mod-
ulus and the remainder by the product of some prime moduli and round the
output. These operations include many NTT/INTT operations and CRT merge
processes, one of the most time-consuming low-level operations in the CKKS and
BFV. Since the decomposition process in the key-switching operation requires
several ModUp processes, reducing the decomposition process is important in
minimizing homomorphic operations. The specific ModUp and ModDown oper-
ations are described in Algorithms 10 and 11, where we assume that each ring
element is in the NTT form.

This pair of ring elements (b, a) is the public key of each scheme. Although
evaluation keys for homomorphic operations are open to the public domain, we
only represent these pairs (b, a) for the encryption process as the public key
in this paper. For the CKKS scheme, the level of a ciphertext is the maximum
number of multiplications that can be performed on the ciphertext without boot-
strapping. In the RNS-CKKS scheme, if the level of a ciphertext is ℓ, there is
ℓ + 1 number of RNS moduli for the ciphertext. Each size of RNS moduli is
determined by the required precision of the multiplication in each level. Since
the other homomorphic operations rather than the rotation operation of the
CKKS and BFV schemes are not relevant to understanding this paper, we only
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Algorithm 11: ModDown

Input: Two disjoint sets of primes C = {q0, · · · , qσ−1}, B = {p0, · · · , pτ−1},
where Q =

∏
i qi and P =

∏
j pj , and an RNS-form ring element

(ā0, · · · , āσ−1, ã0, · · · , ãτ−1) ∈
∏σ−1

i=0 Rqi ×
∏τ−1

j=0 Rpi for a ∈ RPQ,
where āi = a mod qi, ãj = a mod pj .

Output: an RNS-form ring element (a′
0, · · · , a′

σ−1) ∈
∏σ−1

i=0 Rqi for a′ ∈ RQ,
where a′

i = a′ mod qi and a′ = ⌊P−1 · a⌉+ e for small e.
1 for i← 0 to σ − 1 do
2 b̄i ← āi + [⌊P/2⌋]qi ∈ Rqi

3 for j ← 0 to τ − 1 do

4 b̃j ← ãj + [⌊P/2⌋]pj ∈ Rpj

5 (b̄′0, · · · , b̄′σ−1, b̃
′
0, · · · , b̃′τ−1)← ModUp for (b̃0, · · · , b̃τ−1) from

∏τ−1
j=0 Rpi to∏σ−1

i=0 Rqi ×
∏τ−1

j=0 Rpi

6 for i← 0 to σ − 1 do
7 a′

i ← [P−1]qi · (b̄i − b̄′i) ∈ Rqi

8 return (a′
0, · · · , a′

σ−1) ∈
∏σ−1

i=0 Rqi

deal with the rotation operation for m(X) corresponding to the cyclic shift of
the message vector. Detailed explanations of other operations can be found in
[5, 9, 11,14].

A.3 Key-Switching Operation and Rotation Key

We now explain the key-switching operation [19] in CKKS and BFV schemes.
This operation converts a ciphertext (b, a) that can be decrypted by a secret
key s to another ciphertext (b′, a′) that can be decrypted by another secret
key s′ without changing the messages. It requires an evaluation key called the
key-switching key, which is constructed as follows. Suppose that we want to
perform the key-switching operation switching the secret key from s to s′. The
RNS moduli that we use for key-switching are Qi for i = 0, · · · , dnum−1 and the
special modulus is P , where dnum is defined to be the number of the RNS moduli
decomposed for the key-switching operation. In this case, the RNS bases for these
RNS moduli are Q̂i · [Q̂−1

i ]Qi
, where Q̂i means

∏
j ̸=i Qj . The special modulus P

should be set to be larger than all Qi’s because of the noise reduction in the key-
switching operation. We construct the key-switching key as dnum ciphertexts,
each of which is (bi, ai) ∈ R2

PQ, where ai ← RPQ and bi = −ai · s′ + e+ P · Q̂i ·
[Q̂−1

i ]Qi
· s. In the key-switching operation, a is first decomposed into the RNS

elements of a with the ModUp operation, which is described in Algorithm 12.
Each RNS element is multiplied by the ciphertext having the corresponding RNS
basis in the key-switching key and added with each other. Then, we divide the
ciphertext and the modulus by the special modulus with theModDown operation.
The whole algorithm for key-switching operation is described in Algorithm 13.
This process of temporarily raising and reducing the modulus prevents the noise
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from amplifying, and the special modulus should be larger than all of the dnum

RNS moduli used in the key-switching operation.

Algorithm 12: Decompose

Input: A ring element a ∈ RQ in the RNS form, where Q =
∏δ−1

i=0 Qi and Qi’s
are pairwisely coprime, and the additional modulus P coprime to Q.

Output: A vector of ring elements (a0, · · · , aδ−1) ∈ Rδ
PQ, where

ai = [a]Qi +Qi · ẽi for small ẽi’s and ai’s are in the RNS form.
1 for i← 0 to δ − 1 do
2 ai ← ModUp for [a]Qi ∈ RQi from RQi to RPQ.

3 return (a0, · · · , aδ−1) ∈ Rδ
PQ

A trade-off for various performances occurs depending on the value of dnum.
As the value of dnum increases, the computation amount in the key-switching
operation increases due to the increase in the number of NTT/INTT operations
and the amount of inner-product computation. Also, the size of the key-switching
keys increases because the number of ciphertexts in the key-switching key is dnum.
On the other hand, if the value of dnum is large, each RNS modulus used in the
key-switching operation is small, making the special modulus small. Since the
upper bound of the size of the total modulus is fixed with the specified security
level, the available modulus for homomorphic computations, except the special
modulus, can be large. This can accommodate a more deep homomorphic circuit
without the bootstrapping operation or reduce the number of the bootstrapping
operations when we perform a deep homomorphic circuit with the bootstrapping
operations. The value of dnum is selected in consideration of these trade-offs.

If we want to perform the rotation operation for cyclic shift r, the key-
switching key for this operation can be constructed as above for s′ = s(X5r ). We
will call this key-switching key a rotation key for cyclic shift r of the correspond-
ing message vector because this key is used for performing Galois automorphism

m(X) 7→ m(X5k) to encrypted message polynomial, which is equivalent to the
rotation operations. The specific algorithm for the key-switching operation is
shown in Algorithm 13.

Note that in this algorithm, we deal with a general case when the modulus Q̄
of a ciphertext is a divisor of the maximum evaluation modulus Q. We can simply
replace Q with Q̄ in the key-switching operation with the same decomposed RNS
moduli except the last RNS modulus. The non-trivial point is that

{([b(i)]PQ̄, [a
(i)]PQ̄)}i=0,··· ,µ−1 ∈ (RPQ̄)

µ

is a valid rotation key for the evaluation modulus Q̄ and the special modulus
P . For ease of understanding, we add the proof for this fact in the following
theorem.
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Theorem 3. Assume that

{(b(i), a(i))}i=0,··· ,dnum−1 ∈ (RPQ)
dnum

is a valid shift-r rotation key for the evaluation modulus Q and the special modu-
lus P . Let Q̄ = (

∏µ−2
i=0 Qi)·Q̄µ−1, where Q̄µ−1 is a divisor of Qµ−1 and µ ≤ dnum.

Then, the shift-r rotation key

{([b(i)]PQ̄, [a
(i)]PQ̄)}i=0,··· ,µ−1 ∈ (RPQ̄)

µ

is valid for the evaluation modulus Q̄ and the special modulus P .

Proof. Since the rotation key

{(b(i), a(i))}i=0,··· ,dnum−1 ∈ (RPQ)
dnum

is valid, we have

b(i) + a(i) · s = P · Q̂i · [Q̂−1
i ]Qi

· s(X5r ) + ei ∈ RPQ

for all i and small error ei’s. If we perform the modular reduction to b(i)+a(i) · s
by each Qj for 0 ≤ j ≤ µ− 1, we have

[b(i) + a(i) · s]Qj
=

{
[P ]Qi · s(X5r ) + ei if i = j

ei if i ̸= j
(1)

If we perform the modular reduction to b(i) + a(i) · s by each P , we have [b(i) +
a(i) · s]P = ei. Since Q̄µ−1 is a divisor of Qµ−1, we can replace Qµ−1 in (1) with
Q̄µ−1 for all i and j.

On the other hand, we consider the following ring element

P · ˆ̄Qi · [ ˆ̄Q−1
i ]Q̄i

· s(X5r ) + ei ∈ RPQ̄,

where Q̄i = Qi for 0 ≤ i ≤ µ− 2 and ˆ̄
iQ =
∏µ−1

j=0,j ̸=i Q̄i. Note that we have

[P · ˆ̄Qi · [ ˆ̄Q−1
i ]Q̄i

· s(X5r ) + ei]Q̄j
=

{
[P ]Q̄i

· s(X5r ) + ei if i = j

ei if i ̸= j

If we perform the modular reduction to P · ˆ̄Qi · [ ˆ̄Q−1
i ]Q̄i

· s(X5r ) + ei by each P ,

we have [P · ˆ̄Qi · [ ˆ̄Q−1
i ]Q̄i

· s(X5r ) + ei]P = ei.

b(i) + a(i) · s and P · ˆ̄Qi · [ ˆ̄Q−1
i ]Q̄i

· s(X5r )+ ei has the same remainders for all
Q̄i’s and P , the two value is equal to each other in modulo PQ̄ by the Chinese
remainder theorem. Thus, we have

[b(i)]PQ̄ + [a(i)]PQ̄ · s = [b(i) + a(i) · s]PQ̄

= P · ˆ̄Qi · [ ˆ̄Q−1
i ]Q̄i

· s(X5r ) + ei

for all i’s. Thus, the shift-r rotation key

{([b(i)]PQ̄, [a
(i)]PQ̄)}i=0,··· ,µ−1 ∈ (RPQ̄)

µ

is valid for the evaluation modulus Q̄ and the special modulus P .
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Algorithm 13: Key-Switching Operation [19]

Input: A key-switching key from s to s′,
swk = {(b(i), a(i)}i=0,··· ,dnum−1 ∈ (R2

PQ)
dnum for Q =

∏dnum−1
i=0 Qi, and a

ciphertext (b, a) ∈ R2
Q̄ encrypted with secret key s ∈ R for

Q̄ = (
∏µ−2

i=0 Qi) · Q̄µ−1, where Q̄µ−1 is a divisor of Qµ−1 and µ ≤ dnum.
Output: A ciphertext (b′, a′) ∈ R2

Q̄ encrypted with secret key s′ ∈ R

1 Decompose a into a vector (a0, · · · , aµ−1) ∈ Rµ

PQ̄
, where ai = [a]Qi +Qi · ẽi for

small ẽi’s for 0 ≤ i ≤ µ− 2 and aµ−1 = [a]Q̄µ−1
+ Q̄µ−1 · ẽµ−1 for small ẽµ−1.

2 (b̄, ā)← (0, 0) ∈ R2
PQ̄

3 for i← 0 to µ− 1 do

4 (b̄, ā)← (b̄, ā) + ai · ([b(i)]PQ̄, [a
(i)]PQ̄)

5 (b′, a′)← (⌊P−1 · b̄⌉, ⌊P−1 · ā⌉) ∈ R2
Q̄

6 b′ ← b′ + b
7 return (b′, a′)

A.4 Graph-Theoretic Algorithms

An arborescence in a given directed graph is a directed subgraph in which a single
path exists on any node from a specific root node, and a spanning arborescence
is an arborescence having paths from the root node to all nodes in the graph.
The minimum spanning tree problem is the problem of finding a spanning tree
whose sum of edge weights is minimum. This problem is also known to be solved
within polynomial time, and Edmonds’ algorithm is known to solve this problem
[13], shown in Algorithm 14.

A spanning tree in a given undirected graph is a subgraph in a given graph
such that all edges and all nodes are connected and there is no cycle in the sub-
graph. The minimum spanning tree problem is the problem of finding a spanning
tree whose sum of edge weights is minimum. There are many algorithms for this,
but we will use Prim’s algorithm [33] appropriate for the dense graph in this pa-
per because we deal with a complete graph, shown in Algorithm 15.

B Proof of Theorem 1

Theorem 1. The output of Algorithm 2 is a valid rotation key for the rotation
operation for cyclic shift r + r′.

Proof. We give the proof for ℓ′ = ℓ+ 1. The proof for ℓ′ > ℓ+ 1 is the same as
the case of ℓ′ = ℓ+ 1 by Theorem 3. A rotation key

gk(ℓ)r = {(b(ℓ)r,i , a
(ℓ)
r,i )}i=0,··· ,hdnumℓ−1 ∈ (RQℓP 2

ℓ
)hdnumℓ

for cyclic shift r in the key level ℓ is valid if and only if

b
(ℓ)
r,i + a

(ℓ)
r,i · s = Pℓ · Q̂ℓ · [Q̂−1

ℓ ]Qℓ
· s(X5r ) + e

(ℓ)
r,i
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Algorithm 14: Edmonds’ Algorithm[13]

Input: A directed graph G = (V,E) with an edge weight w(e) for all e ∈ E,
the root node vr ∈ V

Output: A minimum spanning arborescence G′ = (V,E′) from the root node
vr

1 Remove all edges to the root node vr from E
2 E′ ← ∅
3 for v ∈ V \{vr} do
4 π(v)← the node such that an edge (π(v), v) ∈ E has the minimum weight

among edges to v
5 E′ ← E′ ∪ {(π(v), v)}
6 if G′ = (V,E′) has no cycle then
7 return G′ = (V,E′)
8 else
9 C = (Vc, Ec)← a cycle in G′

10 V̄ ← (V \Vc) ∪ {vc} for new node vc
11 Ē ← E\Ec

12 for (v1, v2) ∈ E such that v1 ∈ V \Vc, v2 ∈ Vc do
13 Generate an edge (v1, vc) with a weight

w(v1, vc) = w(v1, v2)− w(π(v2), v2)
14 Ē ← (Ē\{(v1, v2}) ∪ {(v1, vc)}
15 for (v1, v2) ∈ E such that v1 ∈ Vc, v2 ∈ V \Vc do
16 if (vc, v2) /∈ Ē or w(vc, v2) > w(v1, v2) then
17 Generate (or update) an edge (vc, v2) with a weight

w(vc, v2) = w(v1, v2)
18 Ē ← Ē\{(v1, v2)} ∪ {(vc, v2)}

19 Ḡ′ = (V̄ , Ē′)←Edmonds’ algorithm for (V̄ , Ē) with vr
20 E′ ← all edges in E that correspond to edges in Ē′

21 vt ← the node such that (u, vt) ∈ E′ corresponds to (u, vc) ∈ Ē′

22 E′ ← (E′ ∪ Ec)\{(π(vt), vt)}
23 return G′ ← (V,E′)

Algorithm 15: Prim’s Algorithm[33]

Input: An undirected graph G = (V,E) with an edge weight w(e) for all e ∈ E
Output: A minimum spanning tree G′ = (V,E′)

1 Initialize G′ = (V ′, E′), where V ′ ← {v}, E′ ← ∅ for randomly selected v ∈ V
2 while V ′ ̸= V do
3 Ē ← {(v1, v2)|v1 ∈ V ′, v2 ∈ V \V ′}
4 Find an edge ē = (v̄1, v̄2) ∈ Ē having the minimum edge weight among Ē
5 V ′ ← V ′ ∪ {v̄2}
6 E′ ← E′ ∪ {ē}
7 return G′ = (V,E′)
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for small errors e
(ℓ)
r,i . If we perform

(b̃r,i, ãr,i)← (b
(ℓ)
r,i (X

5r
′

), a
(ℓ)
r,i (X

5r
′

))

as in line 2 of Algorithm 2, we have

b̃r,i + ãr,i · s(X5r
′

) = b
(ℓ)
r,i (X

5r
′

) + a
(ℓ)
r,i (X

5r
′

) · s(X5r
′

)

= Pℓ · Q̂ℓ · [Q̂−1
ℓ ]Qℓ

· s((X5r
′

)5
r

) + e
(ℓ)
r,i (X

5r
′

)

= Pℓ · Q̂ℓ · [Q̂−1
ℓ ]Qℓ

· s(X5r+r′

) + e
(ℓ)
r,i (X

5r
′

).

If we perform the key-switching operation to (b̃r,i, ãr,i) from s(X5r
′

) to s(X)

as in line 3 of Algorithm 2, the output (b
(ℓ)
r+r′,i, a

(ℓ)
r+r′,i) satisfies

b
(ℓ)
r+r′,i + a

(ℓ)
r+r′,i · s = b̃r,i + ãr,i · s(X5r

′

) + e′r,i

= Pℓ · Q̂ℓ · [Q̂−1
ℓ ]Qℓ

· s(X5r+r′

) + e
(ℓ)
r,i (X

5r
′

) + e′r,i

for small errors e′r,i generated from the key-switching operation. Since e
(ℓ)
r,i (X

5r
′

)+
e′r,i is a small polynomial,

gk
(ℓ)
r+r′ = {b

(ℓ)
r+r′,i, a

(ℓ)
r+r′,i}i=0,··· ,hdnumℓ−1

is a valid rotation key for cyclic shift r + r′ in the key level ℓ.

To use the rotation key gk
(ℓ′)
r′ ∈ (R2

Qℓ′Pℓ′
)hdnumℓ′ in this key-switching oper-

ation, the modulus of the ciphertext to be key-switched should be a divisor of
Qℓ′ . Note that Qℓ = Pℓ−1Qℓ−1 for all ℓ. If the key level ℓ is less than ℓ′, PℓQℓ is

a divisor of Qℓ′ . Therefore, (b̃r,i, ãr,i) can be key-switched by gk
(ℓ′)
r′ .

C Proof of Theorem 2

Theorem 2. The output of Algorithm 3 is a valid rotation key for the rotation
operation for cyclic shift r.

Proof. We give the proof for ℓ′ = ℓ+ 1. The proof for ℓ′ > ℓ+ 1 is the same as
the case of ℓ′ = ℓ+ 1 by Theorem 3. A public key (b, a) ∈ R2

Qk−1
is valid if and

only if
b+ a · s = e

for small e ∈ RQk−1
. Note that ℓ is less than k − 1, and PℓQℓ is a divisor of

Qk−1. If we perform

(b′, a′)← ([b(X5r )]PℓQℓ
, [a(X5r )]PℓQℓ

) ∈ R2
PℓQℓ
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as in line 1 of Algorithm 3, we have

b′ + a′ · s(X5r ) = b(X5r ) + a(X5r ) · s(X5r ) = e(X5r ) ∈ RPℓQℓ
.

If we decompose a′ into a vector (a0, · · · , ahdnumℓ′−1) ∈ R
hdnumℓ′
Pℓ′Qℓ′

using ModUp

opeation, we have aj = [a′]Qℓ′,j + Qℓ′,j · ẽj for small ẽj ’s, rather than [a′]Qℓ′,j .
The reason for this is the fast basis conversion technique [2], which omits the
modular reduction by the product of moduli in the CRT merge process to remove
the need for transforming to non-RNS representation.

On the other hand, the rotation key

gk(ℓ
′)

r = {b(ℓ
′)

r,j , a
(ℓ′)
r,j }j=0,··· ,hdnumℓ′−1 ∈ (R2

Qℓ′Pℓ′
)hdnumℓ′

for cyclic shift r in the key level ℓ′ satisfies

b
(ℓ′)
r,j + a

(ℓ′)
r,j · s = Pℓ′ · Q̂ℓ′,j · [Q̂−1

ℓ′,j ]Qℓ′,j · s(X
5r ) + e

(ℓ′)
r,j

for small errors e
(ℓ′)
r,j . lines 4-7 compute

hdnumℓ′−1∑
j=0

(aj + [Pℓ · Q̂ℓ,i · [Q̂−1
ℓ,i ]Qℓ,i

]Qℓ′,j ) · (b
(ℓ′)
r,j , a

(ℓ′)
r,j ) ∈ R2

Qℓ′Pℓ′
,

which we denote as (b̄
(ℓ)
r,i , ā

(ℓ)
r,i ). The term aj + [Pℓ · Q̂ℓ,i · [Q̂−1

ℓ,i ]Qℓ,i
]Qℓ′,j can be

arranged as

aj + [Pℓ · Q̂ℓ,i · [Q̂−1
ℓ,i ]Qℓ,i

]Qℓ′,j

=[a′]Qℓ′,j +Qℓ′,j · ẽj + [Pℓ · Q̂ℓ,i · [Q̂−1
ℓ,i ]Qℓ,i

]Qℓ′,j

=[a′ + Pℓ · Q̂ℓ,i · [Q̂−1
ℓ,i ]Qℓ,i

]Qℓ′,j +Qℓ′,j · e′i,j +Qℓ′,j · ẽj
=[a′ + Pℓ · Q̂ℓ,i · [Q̂−1

ℓ,i ]Qℓ,i
]Qℓ′,j +Qℓ′,j · (e′i,j + ẽj),

where Qℓ′,j ·e′i,j denotes the difference between [a′]Qℓ′,j +[Pℓ ·Q̂ℓ,i · [Q̂−1
ℓ,i ]Qℓ,i

]Qℓ′,j

and [a′ + Pℓ · Q̂ℓ,i · [Q̂−1
ℓ,i ]Qℓ,i

]Qℓ′,j . The difference occurs because these opera-

tions are performed in RPℓ′Qℓ′ , rather than RQℓ′,j . Since [a′]Qℓ′,j and [Pℓ · Q̂ℓ,i ·
[Q̂−1

ℓ,i ]Qℓ,i
]Qℓ′,j are positive integer polynomials less than Qℓ′,j , [a

′]Qℓ′,j +[Pℓ ·Q̂ℓ,i ·
[Q̂−1

ℓ,i ]Qℓ,i
]Qℓ′,j is a positive integer polynomial less than 2Qℓ′,j . The polynomial

[a′+Pℓ · Q̂ℓ,i · [Q̂−1
ℓ,i ]Qℓ,i

]Qℓ′,j is a positive integer polynomial less than Qℓ′,j , and

[a′]Qℓ′,j +[Pℓ · Q̂ℓ,i · [Q̂−1
ℓ,i ]Qℓ,i

]Qℓ′,j and [a′+Pℓ · Q̂ℓ,i · [Q̂−1
ℓ,i ]Qℓ,i

]Qℓ′,j are the same
in modulo Qℓ′,j . Thus, the difference is the multiple of Qℓ′,j so that it has the
form of Qℓ′,j · e′i,j , and e′i,j is polynomials having zero or one as its coefficients.



Rotation Key Reduction of Deep Neural Network on FHE 43

If we compute b̄
(ℓ)
r,i + ā

(ℓ)
r,i · s, we have

b̄
(ℓ)
r,i + ā

(ℓ)
r,i · s

=

hdnumℓ′−1∑
j=0

(aj + [Pℓ · Q̂ℓ,i · [Q̂−1
ℓ,i ]Qℓ,i

]Qℓ′,j ) · (b
(ℓ′)
r,j + a

(ℓ′)
r,j · s)

=

hdnumℓ′−1∑
j=0

([a′ + Pℓ · Q̂ℓ,i · [Q̂−1
ℓ,i ]Qℓ,i

]Qℓ′,j +Qℓ′,j · (e′i,j + ẽj))·

(Pℓ′ · Q̂ℓ′,j · [Q̂−1
ℓ′,j ]Qℓ′,j · s(X

5r ) + e
(ℓ′)
r,j )

= Pℓ′ ·

(
hdnumℓ′−1∑

j=0

[a′ + Pℓ · Q̂ℓ,i · [Q̂−1
ℓ,i ]Qℓ,i

]Qℓ′,j

· Q̂ℓ′,j · [Q̂−1
ℓ′,j ]Qℓ′,j · s(X

5r )

)
+ ([a′ + Pℓ · Q̂ℓ,i · [Q̂−1

ℓ,i ]Qℓ,i
]Qℓ′,j +Qℓ′,j · (e′i,j + ẽj)) · e(ℓ

′)
r,j

= Pℓ′ · (a′ + Pℓ · Q̂ℓ,i · [Q̂−1
ℓ,i ]Qℓ,i

) · s(X5r ) + Ei,j

= Pℓ′ · (−b′ + Pℓ · Q̂ℓ,i · [Q̂−1
ℓ,i ]Qℓ,i

· s(X5r ) + e(X5r )) + Ei,j ,

where Ei,j denotes the remaining error term.

If we perform ModDown operation to (b̄
(ℓ)
r,i , ā

(ℓ)
r,i ) to divide the terms and the

modulus by Pℓ′ and add (b′, 0), which we denotes (b
(ℓ)
r,i , a

(ℓ)
r,i ), we have

b
(ℓ)
r,i + a

(ℓ)
r,i · s

= Pℓ · Q̂ℓ,i · [Q̂−1
ℓ,i ]Qℓ,i

· s(X5r ) + e(X5r ) + ⌊P−1
ℓ′ · Ei,j⌉.

Since we choose Pℓ′ as larger than Qℓ′,j for all j, the term ⌊P−1
ℓ′ · Ei,j⌉ is only

small error. Thus,

gk(ℓ)r = {b(ℓ)r,i , a
(ℓ)
r,i}i=0,··· ,hdnumℓ−1 ∈ (R2

QℓPℓ
)hdnumℓ

is a valid rotation key for cyclic shift r in the key level ℓ.

D Required Rotation Keys for ResNet Models

The set of cyclic shifts required to perform the ResNet-20 for the CIFAR-10
dataset is enumerated as follows.

– T ResNet−20
0 = {1, -1, 2, -2, 3, 4, -4, 5, 6, 7, 8, -8, 9, 12, 16, -16, 18, 27,

28, 32, -32, 36, 45, 48, 54, 56, 63, 64, -64, 72, 80, 84, 96, -96, 112, 128,
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-128, 192, 256, 384, 512, 768, 959, 960, 990, 991, -994, 1008, 1023, 1024,
-1024, -1025, 1036, -1056, 1064, -1088, 1092, -1120, 1536, 1952, 1982, 1983,
2016, 2044, 2047, 2048, -2048, 2072, 2078, -2080, 2100, -2112, -2144, 3007,
3024, 3040, 3052, 3070, 3071, 3072, -3072, 3080, -3104, 3108, -3136, -3168,
3840, 3904, 3968, 4031, 4032, 4062, 4063, 4080, 4084, 4088, 4092, 4095,
4096, -4096, 4104, -4128, -4131, -4195, 5023, 5024, 5054, 5055, 5087, 5118,
5119, 5120, -5120, -5152, -5155, -5219, 6047, 6078, 6079, 6111, 6112, 6142,
6143, 6144, -6144, -6176, -6179, -6243, 7071, 7102, 7103, 7135, 7166, 7167,
7168, -7168, -7200, -7203, -7267, 7936, 8000, 8064, 8095, 8126, 8127, 8128,
8159, 8176, 8180, 8184, 8188, 8190, 8191, 8192, -8192, -8195, 8200, -8225,
-8226, -8227, -8259, -8290, -8291, 9149, 9183, 9184, 9213, 9215, 9216, -
9219, -9249, -9250, -9251, -9283, -9314, -9315, 10173, 10207, 10208, 10237,
10239, 10240, -10240, -10243, -10273, -10274, -10275, -10307, -10338, -10339,
11197, 11231, 11232, 11261, 11263, 11264, -11264, -11267, -11297, -11298,
-11299, -11331, -11362, -11363, 12221, 12255, 12256, 12285, 12287, 12288,
-12288, -12321, -12385, 13214, 13216, 13246, 13278, 13279, 13280, 13310,
13311, 13312, -13345, -13409, 14238, 14240, 14270, 14302, 14303, 14304,
14334, 14335, 14336, -14336, -14369, -14433, 15262, 15264, 15294, 15326,
15327, 15328, 15358, 15359, 15360, -15393, -15457, 15872, 16000, 16128,
16256, 16286, 16288, 16318, 16350, 16351, 16352, 16368, 16372, 16376, -
16376, 16380, 16382, 16383, 16384}

The set of cyclic shifts required to perform the ResNet-18 for the ImageNet
dataset is enumerated as follows.

– T ResNet−18
0 = {1, -1, 2, -2, 3, -3, 4, -4, 5, -5, 6, -6, 7, -7, 8, -8, -9, -10, -11, -12,

-13, -14, -15, 16, -16, -17, -18, -19, -20, -21, -22, -23, 24, -24, -25, -26, -27, -28,
-29, -30, -31, 32, -32, 39, 64, 78, 96, 117, 128, 156, 160, 192, 195, 221, 222,
224, -224, -225, -226, -227, -228, -229, -230, -231, -232, -233, 234, -234, -235,
-236, -237, -238, -239, -240, -241, -242, -243, -244, -245, -246, -247, -248, -249,
-250, -251, -252, -253, -254, -255, 256, -256, 273, 312, 351, 384, 390, 429, 445,
448, -448, -449, -450, -451, -452, -453, -454, -455, -456, -457, -458, -459, -460,
-461, -462, -463, -464, -465, -466, -467, 468, -468, -469, -470, -471, -472, -473,
-474, -475, -476, -477, -478, -479, 507, 512, -512, 546, 576, 585, 624, 663,
669, -672, -673, -674, -675, -676, -677, -678, -679, -680, -681, -682, -683, -684,
-685, -686, -687, -688, -689, -690, -691, -692, -693, -694, -695, -696, -697, -698,
-699, -700, -701, 702, -702, -703, 741, 768, -768, 780, 819, 858, 896, -896, 897,
-897, -898, -899, -900, -901, -902, -903, -904, -905, -906, -907, -908, -909, -910,
-911, -912, -913, -914, -915, -916, -917, -918, -919, -920, -921, -922, -923, -924,
-925, -926, -927, 936, 960, 975, -999, 1014, 1024, -1024, 1053, 1092, -1120,
-1121, -1122, -1123, -1124, -1125, -1126, -1127, -1128, -1129, -1130, 1131,
-1131, -1132, -1133, -1134, -1135, -1136, -1137, -1138, -1139, -1140, -1141, -
1142, -1143, -1144, -1145, -1146, -1147, -1148, -1149, -1150, -1151, 1152, 1170,
1209, 1248, 1287, 1326, 1344, -1344, -1345, -1346, -1347, -1348, -1349, -1350,
-1351, -1352, -1353, -1354, -1355, -1356, -1357, -1358, -1359, -1360, -1361,
-1362, -1363, -1364, 1365, -1365, -1366, -1367, -1368, -1369, -1370, -1371, -
1372, -1373, -1374, -1375, 1404, 1443, 1482, 1536, -1568, -1569, -1570, -1571,
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-1572, -1573, -1574, -1575, -1576, -1577, -1578, -1579, -1580, -1581, -1582,
-1583, -1584, -1585, -1586, -1587, -1588, -1589, -1590, -1591, -1592, -1593,
-1594, -1595, -1596, -1597, -1598, -1599, 1728, 1792, -1792, -1793, -1794, -
1795, -1796, -1797, -1798, -1799, -1800, -1801, -1802, -1803, -1804, -1805,
-1806, -1807, -1808, -1809, -1810, -1811, -1812, -1813, -1814, -1815, -1816,
-1817, -1818, -1819, -1820, -1821, -1822, -1823, 1920, -2016, -2017, -2018,
-2019, -2020, -2021, -2022, -2023, -2024, -2025, -2026, -2027, -2028, -2029,
-2030, -2031, -2032, -2033, -2034, -2035, -2036, -2037, -2038, -2039, -2040,
-2041, -2042, -2043, -2044, -2045, -2046, -2047, 2048, 2112, -2240, -2241, -
2242, -2243, -2244, -2245, -2246, -2247, -2248, -2249, -2250, -2251, -2252,
-2253, -2254, -2255, -2256, -2257, -2258, -2259, -2260, -2261, -2262, -2263,
-2264, -2265, -2266, -2267, -2268, -2269, -2270, -2271, 2304, -2464, -2465,
-2466, -2467, -2468, -2469, -2470, -2471, -2472, -2473, -2474, -2475, -2476,
-2477, -2478, -2479, -2480, -2481, -2482, -2483, -2484, -2485, -2486, -2487,
-2488, -2489, -2490, -2491, -2492, -2493, -2494, -2495, 2496, 2688, -2688, -
2689, -2690, -2691, -2692, -2693, -2694, -2695, -2696, -2697, -2698, -2699,
-2700, -2701, -2702, -2703, -2704, -2705, -2706, -2707, -2708, -2709, -2710,
-2711, -2712, -2713, -2714, -2715, -2716, -2717, -2718, -2719, 2880, -2912,
-2913, -2914, -2915, -2916, -2917, -2918, -2919, -2920, -2921, -2922, -2923,
-2924, -2925, -2926, -2927, -2928, -2929, -2930, -2931, -2932, -2933, -2934,
-2935, -2936, -2937, -2938, -2939, -2940, -2941, -2942, -2943, 3072, -3136,
-3137, -3138, -3139, -3140, -3141, -3142, -3143, -3144, -3145, -3146, -3147,
-3148, -3149, -3150, -3151, -3152, -3153, -3154, -3155, -3156, -3157, -3158,
-3159, -3160, -3161, -3162, -3163, -3164, -3165, -3166, -3167, -3360, -3361,
-3362, -3363, -3364, -3365, -3366, -3367, -3368, -3369, -3370, -3371, -3372,
-3373, -3374, -3375, -3376, -3377, -3378, -3379, -3380, -3381, -3382, -3383, -
3384, -3385, -3386, -3387, -3388, -3389, -3390, -3391, 3584, -3584, 4096, 5120,
6144, 7168, -7168, 8192, -8192, 14336, 16384, -16384, 21504, -22528, 24576,
-24576, 28672, -29696, 32768}


