
Băhēm
Provably Secure Symmetric Cipher

M. Rajululkahf 1

May 3, 2022

Overview

This paper proposes Băhēm; a symmetric cipher that,
when given a random-looking key k, a true random
number generator (TRNG) and a cleartext message
m to encrypt, no cryptanalysis can degrade its se-
curity below min[H(m),H(k)] bits of entropy, even
under Grover’s algorithm [1] or even if it turned out
that P = NP.

Aside from the cost of memory access and in-
put/output processing, Băhēm requires only three
additions (one per-session, two per-block) and one
bitwise exclusive-or operation (XOR) in order to en-
crypt or decrypt, and is also highly parallelise-able.

Despite Băhēm’s 1-bit overhead per cleartext bit,
its early prototype, Alyal, achieved similar run-time
speeds to OpenSSL’s ChaCha20 [2]; slightly faster
decryption, while slightly slower encryption when the
TRNG was prepared in a file in advance. This demon-
strates that Băhēm is practicality usable for many
real-world application scenarios.

Later implementations, with better TRNG optimi-
sations and parallelism, must allow the prototype a
faster run-time for both, encryption and decryption.

Notation

H(x): Shannon’s entropy of random variable x.

x + y mod 2128: Unsigned 128-bit addition.

random(128): A sequence of 128 many random bits
generated by a TRNG.

k: A 128-bit pre-shared secret key with enough H(k)
that looks random. Ideally k = random(128).

m: A cleartext message of |m| many bits.

d |m|
128 e: Number of 128-bit blocks in cleartext m.

mb: The bth 128-bit block from m. In other words:
m0‖m1‖ . . . ‖md |m|

128 e
= m.

s = random(128): Session key.

pb = random(128): Pad key of the bth block.

ŝ, p̂b, m̂b: Encrypted s, pb and mb, respectively.

1Author’s e-mail address: {last name}@pm.me

Contents

1 Proposed Algorithm 1

2 Security Analysis 2

3 Implementation Examples 3

3.1 C Functions 3

3.2 A File Encryption Tool 3

3.2.1 Installation 3

3.2.2 Usage 3

3.2.3 Benchmark 4

4 Conclusions 4

1 Proposed Algorithm

Algorithms 1 and 2 show Băhēm’s encryption and de-
cryption by which the process is repeated over every
128-bit blocks of m: m0,m1, . . . ,md |m|

128 e
.

Algorithm 1: Băhēm encryption

input : k,m0,m1, . . .
output: ŝ, (p̂0, m̂0), (p̂1, m̂1), . . .

s← random(128)
ŝ← s + k mod 2128

for b ∈ (0, 1, . . . , d |m|
128 e − 1) do

pb ← random(128)
p̂b ← pb + k mod 2128

m̂b ←mb ⊕ (pb + s mod 2128)

Algorithm 2: Băhēm decryption

input : k, ŝ, (p̂0, m̂0), (p̂1, m̂1), . . .
output: m0,m1, . . .

s← ŝ− k mod 2128

for b ∈ (0, 1, . . . , d |m|
128 e − 1) do

pb ← p̂b − k mod 2128

mb ← m̂b ⊕ (pb + s mod 2128)

This work is licensed under a Cre-
ative Commons “Attribution 4.0 In-
ternational” license.

1

https://orcid.org/0000-0001-9061-2921
@pm.me
https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en

2 Security Analysis

The Băhēm encryption is essentially the XOR cryp-
tosystem:

m̂b ←mb ⊕ (pb + s mod 2128)︸ ︷︷ ︸
One-time encryption pad

It trivially follows from Shannon’s perfect secrecy
proof of the one-time pad (OTP) [3] that Băhēm is
secure if its encryption pad maintains its security.

To simplify the analysis, suppose that the size of a
block in Băhēm is 3 bits only, and that the cleartext
block mb is known to the adversary, which implies
that the adversary can trivially know that:

pb + s mod 23 = m̂b ⊕mb

in addition to adversary’s knowledge of the public
variables ŝ and p̂b. More specifically, suppose that
the adversary found that:

0 = ŝ = s + k mod 23

3 = p̂b = pb + k mod 23

5 = m̂b ⊕mb = pb + s mod 23

Then, the question is: will this information reduce
the space from which the key k is chosen from? In
other words, what are the possible values of k that
can lead to the outputs 0, 3 and 5 above? Table 1
visualises this.

Y
0 1 2 3 4 5 6 7

0 0 1 2 3 4 5 6 7
1 1 2 3 4 5 6 7 0
2 2 3 4 5 6 7 0 1

X 3 3 4 5 6 7 0 1 2
4 4 5 6 7 0 1 2 3
5 5 6 7 0 1 2 3 4
6 6 7 0 1 2 3 4 5
7 7 0 1 2 3 4 5 6

Table 1: Exhaustive unsigned 3-bit addition. For a
given output x+y mod 23, there are 23 many possible
input values of (x,y) ∈ X ×Y that map to x+y mod
23.

As shown in table 1, the total number of horizontal,
or vertical, intersections that simultaneously cross all
of the outputs 0, 3 and 5, remain 23. Meaning, the
total number of values of k that could lead to the
outputs remains 23.

This 3-bit example can be trivially extended by in-
duction to show that the same conclusions hold even

with a 128-bit unsigned addition and any other out-
put numbers than 0, 3 and 5.

Therefore, we can conclude that adversary’s knowl-
edge of the public variables ŝ, p̂b, m̂b and the clear-
text mb, which leads to deducing pb + s mod 2128,
can not reduce the space from which k, s and pb are
sampled.

If k, s and pb are generated by a TRNG, then
any of the 2128 many possiblities are equally likely to
correspond to the actual values of k, s and pb. In
other words:

H(k, s,pb |̂s, p̂b, m̂b,mb) = 128

However, since k could be derived from a pass-
word, such that it looks random, but with an entropy
H(k) ≤ 128, and since finding any of the numbers k,
s and pb deterministically leads to finding the others,
therefore it follows that:

H(k, s,pb |̂s, p̂b, m̂b,mb) = H(k)

The numbers s and pb are generated by a TRNG
by definition, therefore the weakest element in the
chain can only be k.

Since the public variables ŝ, p̂b and m̂b, and the
cleartext mb are exhaustively all of the outputs of
Băhēm that can be accessible to an adversary, and
since they can not reduce Băhēm’s private variables’
space below H(k), therefore no cryptanalysis can re-
duce their entropy below H(k).

Lemma 1 (Secure private values).

H(k, s,pb |̂s, p̂b, m̂b,mb) = H(k)

It is trivially implied from lemma 1 that, since the
private values s and pb maintain an entropy of H(k),
so does their 128-bit summation s + pb mod 2128,
which is Băhēm’s XOR encryption pad. Therefore,
Băhēm’s encryption pad has to be secure as well.

Lemma 2 (Secure encryption pad).

H(s + pb mod 2128 |̂s, p̂b, m̂b) = min[H(mb),H(k)]

Since Băhēm is an XOR cryptosystem, and since its
encryption pad is H(k)-bits secure (lemma 2), there-
fore it necessarily follows by Shannon’s perfect se-
crecy [3] that Băhēm’s encryption is either H(k)-bits
secure, or H(mb)-bits secure, whichever is smaller.

Theorem 1 (Secure encryption).

H(mb |̂s, p̂b, m̂b) = min[H(mb),H(k)]

2

Note: Băhēm does not aim at achieving perfect
secrecy, as perfect secrecy requires a usually-
impractical key that is as long as the length |m|
of the cleartext message m itself, with an unnec-
essarily too large upper security bound that is
worth |m| many bits of entropy.

Băhēm rather aims at achieving a security that is
worth min[H(mb),H(k)] entropy bits. Unlike the
OTP, this is practically secure and only requires
pre-sharing a small 128-bit key.

Shannon’s proof of perfect secrecy of the OTP
is cited only for its relevance as an XOR cryp-
tosystem.

3 Implementation Examples

3.1 C Functions

Listings 1 and 2 show example C functions for en-
crypting and decrypting session keys.

Listings 3 and 4 show the same but for encrypt-
ing and decrypting cleartext and ciphertext blocks,
respectively.

In these examples, all encryptions and decryptions
happen in-place whenever possible, so the caller does
not have to allocate separate memory for the out-
put. The only excepton is listing 1, where the unen-
crypted session key is required to encrypt the subse-
quent cleartext blocks. Also, since 128-bit wide CPU
instructions are not common, the examples operate
in 64-bit basis, each time with a different 64-bit part
of the pre-shared and session keys.

Listing 1: Session key encryption function example.

void baheem_session_enc(

uint64_t *k, /* pre-shared key */

uint64_t *s, /* session key */

uint64_t *s_enc /* encrypted s */

) {

s_enc[0] = s[0] + k[0];

s_enc[1] = s[1] + k[1];

}

Listing 2: Session key decryption function example.

void baheem_session_dec(

uint64_t *k, /* pre-shared key */

uint64_t *s /* session key */

) {

s[0] -= k[0];

s[1] -= k[1];

}

Listing 3: Block encryption function example.

void baheem_block_enc(

uint64_t *k, /* pre-shared key */

uint64_t *s, /* session key */

uint64_t *p, /* pad keys */

uint64_t *m, /* message */

size_t len /* length of m and p */

) {

size_t i;

for (i = 0; i < len; i += 2) {

m[i] ^= p[i] + s[0];

m[i+1] ^= p[i+1] + s[1];

p[i] += k[0];

p[i+1] += k[1];

}

}

Listing 4: Block decryption function example.

void baheem_block_dec(

uint64_t *k, /* pre-shared key */

uint64_t *s, /* session key */

uint64_t *p, /* pad keys */

uint64_t *m, /* message */

size_t len /* length of m and p */

) {

size_t i;

for (i = 0; i < len; i += 2) {

p[i] -= k[0];

p[i+1] -= k[1];

m[i] ^= p[i] + s[0];

m[i+1] ^= p[i+1] + s[1];

}

}

3.2 A File Encryption Tool

Alyal is an single-threaded implementation to demon-
strate Băhēm’s practical utility with real-world sce-
narios. Internally, Alyal uses the functions in list-
ings 1 to 4.

3.2.1 Installation

git clone \

https://codeberg.org/rajululkahf/alyal

cd alyal

make

make test

3.2.2 Usage

alyal (enc|dec) IN OUT [TRNG]

alyal help

3

To encrypt a cleartext file a and save it as file b:

alyal enc a b

To decrypt the latter back to its cleartext form and
save it as file c:

alyal dec b c

3.2.3 Benchmark

This is a benchmark that was performed on a com-
puter with a 3.4GHz Intel Core i5-3570K CPU, 32GB
RAM, 7200 RPM hard disks, Linux 5.17.4-gentoo-
x86-64, and OpenSSL 1.1.1n.

OpenSSL Alyal
ChaCha20 Băhēm

/dev/random file.rand

Encrypt 0.90 secs 2.58 secs 1.38 secs
500MB 1.06 secs 2.60 secs 1.35 secs

1.04 secs 2.58 secs 1.35 secs
Decrypt 0.89 secs 0.82 secs
500MB 1.12 secs 0.87 secs

1.06 secs 0.82 secs

Table 2: Wall-clock run-time comparison between
OpenSSL’s ChaCha20, and Alyal’s Băhēm implemen-
tation with two sources as the TRNG: /dev/random
and file.rand; the latter is simply /dev/random

that was prepared in advance.

Table 2 shows that, while the early Băhēm pro-
totype, Alyal, has a faster decryption run-time than
OpenSSL’s ChaCha20, it has a slower encryption run-
time. However:

1. The differences in run-time are insignificant for
most applications, which proves Băhēm’s practi-
cal utility in the real world.

2. Băhēm’s provable security should arguably jus-
tify waiting the extra seconds, or fractions of sec-
onds in case the TRNG is prepared in advance,
for the 500MB data, specially that many user ap-
plications involve encrypting much smaller data
sizes with unnoticeable time difference

3. Preparing the random bits in advance signifi-
cantly reduces the encryption time as shown with
the file.rand case in table 2, and can be opti-
mised further should it be prepared in memory.

4. Alyal is currently single-threaded despite
Băhēm’s capacity for high parallelism as all
blocks are independent. This gives room for
future versions to be significantly faster.

4 Conclusions

This paper proposed Băhēm with the following prop-
erties:

Provably secure: No cryptanalysis can degrade its
security below min[H(m),H(k)] bits.

Fast: Requires only three additions (one per-session,
two per-block) and a single XOR per encryption
or decryption alike.

Highly parallelisable as the encryption, or de-
cryption, of any bit is independent of other bits.

Băhēm’s single-threaded prototype, Alyal, out-
performed OpenSSL’s ChaCha20 when decrypt-
ing files, despite Băhēm’s 1-bit overhead, which
demonstrates that such overhead is negligible in
practice.

While the prototype has a slower encryption run-
time due to its use of a TRNG, optimising it is
trivial by preparing the TRNG in advance.

Simple: Băhēm’s simplicity implies fewer expected
number of implementation bugs, and therefore
higher practical security.

Another interesting advantage of this simplicity
is that it allows Băhēm to be used with a mere
pen and a paper should one lack a computer,
such as the case with post-apocalyptic scenarios.

For example, in a post-apocalyptic scenario, one
can generate the random numbers pb and qb by
rolling dies enough number of times until ade-
quate entropy is obtained, and then using a pen
and a paper to calculate the ciphertext as per
algorithm 1.

Since Băhēm does not require repeating rounds
over and over, Băhēm is significantly simpler
to perform using a pen and a paper than, say,
ChaCha20, AES [4], etc, which require many re-
peated rounds that make it too tedious for a hu-
man to perform by the pen and paper method.

Declarations

All data generated or analysed during this study are
included in this published article. Implementation
code is available in the following repository:
https://codeberg.org/rajululkahf/alyal

References

[1] Lov K. Grover. A fast quantum mechanical algo-
rithm for database search. In Proceedings of the

4

https://codeberg.org/rajululkahf/alyal

Twenty-Eighth Annual ACM Symposium on The-
ory of Computing, STOC ’96, page 212–219, New
York, NY, USA, 1996. Association for Computing
Machinery.

[2] Daniel Bernstein. ChaCha, a variant of Salsa20.
01 2008.

[3] C. E. Shannon. Communication theory of se-
crecy systems. The Bell System Technical Jour-
nal, 28(4):656–715, 1949.

[4] Joan Daemen and Vincent Rijmen. AES Pro-
posal: Rijndael, 1999.

5

	Proposed Algorithm
	Security Analysis
	Implementation Examples
	C Functions
	A File Encryption Tool
	Installation
	Usage
	Benchmark

	Conclusions

