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ABSTRACT
Threshold signatures are a crucial tool for many distributed proto-

cols. As shown byCachin, Kursawe, and Shoup (PODC ‘00), schemes

with unique signatures are of particular importance, as they allow

to implement distributed coin flipping very efficiently and without

any timing assumptions. This makes them an ideal building block

for (inherently randomized) asynchronous consensus protocols.

The threshold-BLS signature of Boldyreva (PKC ‘03) is both unique

and very compact, but unfortunately lacks a security proof against

adaptive adversaries. Thus, current consensus protocols either rely

on less efficient alternatives or are not adaptively secure. In this

work, we revisit the security of the threshold BLS signature by

showing the following results, assuming t adaptive corruptions:
- We give a modular security proof that follows a two-step approach:

1)We introduce a new security notion for distributed key generation

protocols (DKG). We show that it is satisfied by several protocols

that previously only had a static security proof. 2) Assuming any
DKG protocol with this property, we then prove unforgeability of

the threshold BLS scheme. Our reductions are tight and can be used

to substantiate real-world parameter choices.

- To justify our use of strong assumptions such as the algebraic group

model (AGM) and the hardness of one-more-discrete logarithm

(OMDL), we prove two impossibility results: 1) Without the AGM,

there is no tight security reduction from (t + 1)-OMDL. 2) Even in
the AGM, (t + 1)-OMDL is the weakest assumption from which any
(possibly loose) security reduction exists.
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1 INTRODUCTION
Threshold signatures are a special type of digital signature that

allows a sufficiently large set of t + 1 signers to jointly create a

compact signature σ on a messagem. At the same time, it should

be infeasible for t or less signers to create a signature onm. For

this reason, t is usually referred to as the threshold of the scheme.

In this manner, one can create a very size-efficient proof that at

least t + 1 parties have signedm. This makes threshold signatures

an important building block for storage-sensitive systems such as

blockchain protocols. Another intriguing application of threshold

signatures is distributed coin flipping. Using a threshold signature

scheme with unique signatures (per messagem and public key pk)
and a non-interactive signing procedure, one can efficiently agree

on an unpredictable and unbiasable coin b ∈ {0, 1} among n parties

P1, ..., Pn as follows:

• Each party Pi (non-interactively) creates a share σi of some

predetermined messagem and sends σi to everybody.

• Upon collecting t + 1 shares σi , a party locally reconstructs
the signature σ form.

• All parties can now derive the coin via b := LSB(H(σ )),
where H is a suitable randomness extractor, e.g., a hash

function (modelled as a random oracle).

Note that in the above construction, the uniqueness property is

crucially used in two places. First, it ensures that all parties agree

on the same signature σ , and, by extension, on the same coin b.
Second, uniqueness prevents a malicious adversary from biasing

the outcome of the coin b by sending or withholding particular

signature shares. Finally, σ (and therefore b) remains unpredictable

to an adversary controlling at most t parties up until the point

where the first honest party Pi participates in the coin flip by send-

ing its share σi . These combined features make (unique and non-

interactive) threshold signatures a crucial tool for the design of

efficient randomized consensus protocols [3, 5, 16, 34, 47]. This ap-

plies particularly to the fully asynchronous network setting, where

consensus is known to be impossible unless randomized protocols

are used [28].

Static vs. Adaptive Corruptions. Cachin et al. [16] were the first

to realize the enormous potential of unique threshold signatures for

building efficient asynchronous consensus algorithms. Their signa-

ture of choice was the threshold version of the full-domain-hash

RSA signature [54]. However, this scheme is only secure against

a static adversary who chooses all corrupted parties at the begin-

ning of the protocol (after observing their public keys). Modern

systems, on the other hand, often require security against a much

more powerful adaptive adversary who dynamically corrupts par-

ties over time by observing the flow of the protocol execution.

In addition, RSA signatures are rather large, taking up an order

of magnitude more storage space than schemes based on elliptic

curve cryptography. Therefore, an appealing alternative is the much

more size-efficient scheme of Boldyreva [12], which is based on

the BLS signature scheme. Unfortunately, however, Boldyreva’s

scheme also lacks an adaptive security proof. To overcome these

limitations, Libert et al. [41] proposed an adaptively secure con-

struction based on Boldyreva’s scheme, which, thus far, has served

as the state-of-the-art for building adaptively secure consensus

protocols [3, 5, 34, 47]. While their construction is still far more

size-efficient than an RSA signature, it is roughly twice as expensive

to store and verify as signatures in Boldyreva’s original scheme. In

addition, while Boldyreva’s signature is compatible with modern

BLS libraries [1], Libert et al.’s scheme lacks such a compatibility.

(There is, however, an efficient implementation of their scheme

available at [50].) Motivated by the above discussion, we ask:What
are the adaptive security guarantees of the threshold BLS signature
scheme?
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1.1 Handling Adaptive Corruptions
Our starting point is the construction of Libert et al. who gave

the first adaptively secure, non-interactive, and unique threshold

signature scheme in the random oracle model. Their adaptive secu-

rity argument also extends to the distributed key generation (DKG)

phase that sets up the shared keys for parties in the system. The

established way of proving security for a DKG protocol is to ar-

gue that the messages that are exchanged as part of the protocol

reveal nothing further about the distributed secret key sk (beyond

what is already revealed by pk) [33]. This can be done by providing

an efficient simulator Sim that, on input pk, provides a properly
distributed view of an execution of the DKG protocol in which

parties agree on the public key pk. In case corruptions are static,

Sim also gets the set of corrupted parties as input. Assuming that

Sim provides a perfect simulation (as indeed is often the case), this

technique works even against an information-theoretic adversary

who can compute sk from pk by brute force. Clearly, such an ad-

versary could easily forge a signature with respect to sk, so what
does this mean?

The Challenge of Adaptive Corruptions. One of the main in-

sights of Libert et al. is to prove unforgeability of their scheme

directly by reducing from a computational assumption. In this man-

ner, their proof bypasses many of the issues encountered in the DKG

literature when having to deal with adaptive corruptions. However,

one central issue still remains: Sim needs to simulate correctly

distributed internal states (including secret keys) of parties upon

corruption. Existing DKG protocols overcome this problem by rely-

ing on heavy tools such as non-committing encryption and erasures

[19], [35]. This is a common and often frustrating issue to deal with

in the context of simulation based security proofs. Namely, even if

a statically secure protocol can not be simulated, it is far from clear

wether it would actually be insecure in the presence of adaptive

corruptions. This issue is also quite prominent in the context of

Threshold BLS signatures, even when a trusted dealer distributes

the keys. Recall that in order to create a signature share σi on mes-

sagem, party Pi computes H(m)ski . Here, H : {0, 1}∗ → G is a hash

function that is modelled as a random oracle, G is a cyclic group of

known prime order p, and ski ∈ Zp denotes Pi ’s secret key share.

The corresponding public key shares of parties are дski , where д is

a known generator of G. Now, assume that keys have been set up

in such a way that for all i ∈ [n], ski = f (i) and sk = f (0) for some

suitable polynomial f ∈ Zp [X ] of degree t . Then one can compute

a signature σ that verifies relative to pk = дsk from t + 1 shares

σ1, ...,σt+1 by interpolating f in the exponent ofд. It can be verified
by checking the symmetric pairing equation e(σ ,д) = e(H(m), pk).
When dealing with adaptive corruptions, the issue is now that by

sending a share σi = H(m)ski an honest party Pi commits itself to
its secret key ski . Hence, the simulator Sim must output ski upon
Pi being adaptively corrupted. This, however, is challenging: if Sim
knew ski for all i ∈ [n], then it would also know sk. On the other

hand, if it does not know at least n − t of the ski , then it might fail

during simulation.

Libert et al.’s Approach. Libert et al. circumvent this problem as

follows. Their scheme uses asymmetric pairing groups (G, ˆG,GT ) of
orderp. They define their secret keys as ski = (f (i),д(i),h(i), j(i)) ∈

Z4

p , where f ,д,h, j are independent polynomials of degree t . A

signature share on m is then computed as σi = (zi , ri ) ∈ G
2
,

where zi = Hf (i)
1
(m) · Hд(i)

2
(m) and ri = Hh(i)

1
(m) · Hj(i)

2
(m) and

H1,H2 are independent random oracles. pk is correspondingly set

as (д1,д2) =
(
д
f (0)
z · д

д(0)
r ,д

h(0)
z · д

j(0)
r

)
∈ ˆG2

, where дz and дr are

two random generators of
ˆG. Similar as for threshold BLS, one

can can compute a signature σ = (z, r ) from t + 1 shares by in-

terpolation in the exponent and verify it by checking whether

e(z,дz ) ·e(r ,дr ) ·e(H1(m),д1) ·e(H2(m),д2) = 1. In this manner, Lib-

ert et al.’s signature is computationally unique under the so-called
double-pairing assumption (see [46] for a proof). The latter implies

that it should be hard to find (z′, r ′) , (z, r ) which also satisfies the

above equation for the samem. At the same time, this flexibility

is what allows their reduction (to the symmetric external Diffie-

Hellman assumption) to go through. Namely, as their signatures do

not commit the signer to a secret key, they can efficiently simulate

a secret key at the appropriate point in the simulation where a

party becomes corrupted. Unfortunately, the technique of Libert

et al. does not work in the context of the original threshold BLS

signature. Hence, to deal with adaptive corruptions, a completely

new approach is required.

1.2 Adaptive Security from Oracle-Aided
Simulatability

We begin by describing our idea for the simplified case when a

trusted dealer computes and distributes the keys according to

Boldyreva’s original description of the threshold BLS scheme. Let

us briefly recall our desired security notion of unforgeability under
chosen message attacks in the context of threshold signatures. In

this game, the adversary first observes the public key shares pki
of all parties Pi . (In case the keys are distributed via some DKG

protocol, the adversary also observes its execution as part of the

game). Next, it repeatedly gets access to a signing oracle, which

takes in a pair (i,m) and returns a signature share σi that is valid
under pki . The adversary can also adaptively corrupt any hitherto

uncorrupted party Pi , upon which it learns Pi ’s secret key ski (and
any other internal variables held by Pi at the point of corruption).
The adversary is considered successful if it can produce a forgery

on a messagem∗ for which it has observed a total of fewer than

t + 1 shares from corruptions and signing queries.

Reducing from One-More Discrete Logarithm. As already ex-

plained, the critical difficulty is to simulate the values of ski upon
an adaptive corruption. Our key idea is to aid the simulator by

giving it t-time access to a discrete logarithm oracle DLд(·) which,
on input h = дx ∈ G, returns the discrete logarithm x of h to base

д. To facilitate such an oracle in our simulation, we reduce from

the one-more discrete logarithm (OMDL) assumption of degree t + 1.

Recall that in the OMDL assumption of degree k , the adversary

is given an instance (дx1 , ...,дxk ) and gets (k − 1)-time access to

DLд(·). It is considered successful if it can produce the values of

x1, ..., xk ∈ Zp . Moreover, we rely on the algebraic group model

(AGM) [29] to obtain a suitable system of linear equations that allow

to solve the OMDL instance. Both of these tools have recently been

popular choices for proving involved cryptosystems [30, 37, 51, 56].

However, one might wonder whether such strong assumptions are
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truly necessary for proving adaptive security of the threshold BLS

signature.

The Necessity of Strong Assumptions.We answer this question

positively. Concretely, we show that there is no algebraic, non-

rewinding reduction from the OMDL assumption of degree t (or
lower) to the adaptive security of the threshold BLS scheme with

corruption threshold t . Our impossibility result follows the common

metareduction template [22, 36]: assuming an efficient reduction R
as above, we show that one can obtain an efficient solver M (the

metareduction) for the OMDL problem of degree t . As OMDL is

assumed to be hard for any polynomial degree t , it follows that
such a reduction R can not exist. Our metareduction also applies

to reductions which are not fully black-box. In particular, we rule

out reductions which themselves may rely on the AGM. We can

combine our result with the separation of Bauer et al. [9] who

showed that in the AGM, the OMDL assumption of any degree is a

stronger assumption than any conceivable static assumption. Hence,

our result shows that even in the AGM, the OMDL assumption of

degree t + 1 is both necessary and sufficient to prove security,

unless one uses a rewinding reduction. This, however, would have

a devastating impact on the tightness of the reduction, and would

require much larger parameters for concrete security than what

is used in real-world implementations for BLS signatures [1]. In

contrast to this, our reduction in the AGM is tight and hence justifies

parameters currently used in practice. To further justify our reliance

on the AGM, we also provide a metareduction along the lines of

Coron [22] to prove that there does not exist a tight black-box

reduction to the one-more discrete logarithm assumption of degree

t + 1 in the plain random oracle model. We remark that Coron’s

original metareduction did not consider reductions from interactive

assumptions such as OMDL. Unsurprisingly, giving a reduction R
access to the oracle DLд(·) complicates matters significantly, as we

now have to simulate DLд(·) to R as part of our metareductions.

Replacing the Trusted Dealer.We now turn our attention to the

more realistic setting in which no trusted dealer is available for

setting up keys. In this setting, existing DKG protocols are either

only statically secure or can be used exclusively with signature

schemes that do not commit a party to her secret key ski when-
ever she uses it to issue a signature share σi . Fortunately, we can
appropriately modify our ideas from above so as to handle adaptive

corruptions in the unforgeability game even when it is extended

with a DKG phase. In some more detail, we begin by proposing a

new (and rather weak) security definition for DKG protocols that

we refer to as oracle-aided simulatability. Informally, this definition

asserts the existence of an efficient simulator Sim that can simu-

late an execution of the DKG protocol (with adaptive corruptions),

given some number of queries to a discrete logarithm oracle DLд(·).
While this definition may seem somewhat artificial at first glance,

we show that it is actually sufficient to prove unforgeability against

chosen message attacks for the threshold BLS scheme with adaptive

corruptions. For the proof, we show a reduction from the OMDL as-

sumption of appropriate degree. The reduction runs Sim internally

so as to provide a simulation of the DKG protocol as part of the

broader simulation of the unforgeability experiment. To emulate

the oracle DLд(·) toward Sim, the reduction simply forwards any

query Sim directs to DLд(·) to its own discrete logarithm oracle.

We stress that oracle-aided simulatability is a security notion

for DKG protocols and can be proven completely independently

from the context of threshold BLS signatures. Thus, our definition

adds a useful layer of modularity: it allows future DKG designers

to build protocols that can be directly integrated with our (adap-

tive) security proofs. To motivate our new notion even further, we

show that for several DKG protocols from the literature that do not

satisfy full simulatability with adaptive corruptions, it is possible

to show oracle-aided simulatability. Finally, we show that all of our

metareductions also apply to DKGs with oracle-aided simulability

(recall that our above discussion was for a trusted dealer).

1.3 Related Work
Threshold signatures were first conceived by Desmedt [26]. They

have recently received significant attention [6, 8, 14, 17, 18, 23,

24, 31, 32, 39, 40, 42–44], mainly in the context of blockchain sys-

tems and cryptocurrency wallets. Most of these works focus on

the ECDSA and Schnorr threshold signatures, as these are the

most widely used schemes in major cryptocurrencies. Note how-

ever, that these schemes do not have unique signatures and hence

do not lend themselves to distributed coin flipping. A closely re-

lated (and also very active) line of research has also studied multi-
signatures [7, 10, 13, 23, 27, 51, 52]. These can be seen as a threshold

signature scheme where the threshold t is always set to n − 1, i.e.,

signing always requires all parties to contribute. In contrast to

threshold signatures, multi-signatures usually focus on obtaining

compact n-out-of-n signatures using parties’ native public keys for

signing. Thus, no trusted dealer or DKG is necessary to run these

protocols.

DistributedKeyGeneration. There are numerous DKG protocols

when the underlying network is synchronous [19, 33, 35, 53, 55].

Among these, only the protocols of Canetti et al. [19] and Jarecki and

Lysyanskaya [35] provide adaptive security. Both of these works

rely on heavy assumptions and/or cryptographic tools such as

non-committing encryption. All of these protocols (except that of

Shrestha et al. [55]) rely on public broadcast channels being avail-

able. On the other hand, the asynchronous setting has only recently

been explored by works of Kokoris-Kogias et al. [38], Abraham et

al. [4], and Das et al.[25]. Among these, only the work of Kokoris-

Kogias et al. provides adaptive security, but is substantially less

efficient than its statically secure alternatives. We also remark that

the asynchronous DKG of Abraham et al. [4] produces a group

element as the shared secret key rather than a field element and

hence can not be used for most conventional signature schemes.

This drawback was resolved by Das et al. [25] without increasing

the total communication cost of O(λn3) bits.

VRFs and Distributed Coin Flipping. Distributed randomness

generation is an integral component of many distributed protocols.

This applies in particular to the asynchronous model, where most

distributed protocols of interest are inherently randomized. Asyn-

chronous coin flips rely either on verifiable secret sharing [15, 20]

or threshold signatures [3, 5, 16, 34, 47]. Synchronous protocols [2,

3, 48] can rely on a simpler alternative of flipping coins via verifiable
random functions (VRF) [49]. On input a messagem and a secret key

sk, a VRF F produces a pseudorandom string r = F (sk,m) along
with a proof ϱ that can be used to verify correct generation of r .
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To agree on a single bit among n parties in the kth round, a party

Pi computes ri = F (ski ,k) along with a proof ϱi . It then samples

bi ← {0, 1} uniformly and sends (bi , ri , ϱi ) to everybody at the

beginning of the round. Parties wait to receive messages from other

parties until the end of the round. All parties derive the coin as

b := bj where j = mini {ri } and the minimum goes over all ri for
which ϱi correctly verified. If j belongs to an honest party, then all

honest parties indeed agree on a random bit b. Moreover, since F
produces pseudorandom outputs and there is a unique output per

party and coin flip j, this happens with probability p ≥ 1

2
when

the majority of the parties is honest, i.e., b can not be biased.
1
In

an asynchronous network, however, this approach utterly fails, as

there is no notion of a synchronous round. Note that in order to

guarantee liveness of the protocol, every honest party can only

wait for up to 2n/3 + 1 messages from other parties. But in that

case, the adversary simply delays the n/3 messages (bi , ri , ϱi ) of
honest parties with the lowest ri values. The honest parties receive
the remaining n/3 + 1 messages from honest parties and n/3 − 1

messages from the adversary. Now, with overwhelming probability

in n, the smallest ri always belong to a corrupt party and hence the

coin is almost completely under the control of the adversary. Note

that this issue does not occur for threshold signatures, as parties

can all reconstruct the same coin after receiving only t +1 messages

from other parties. Some works such as [11, 21] have shown how to

circumvent this issue by either relying on strong setup assumptions

or assuming a non-standard version of the asynchronous model in

which the adversary can not reorder messages of honest parties

arbitrarily.

2 PRELIMINARIES AND DEFINITIONS
In this chapter, we introduce basic notation, definitions, and our

model in which we will work.

2.1 General Notation
Let λ denote the security parameter. Throughout this paper, we

assume that global parameters par = (G,GT ,p,д, e) are fixed and

known to all parties. Here, G is a cyclic group of prime order p
generated by д and endowed with a symmetric bilinear pairing

e : G ×G→ GT . For concrete choices, we will assume λ = 128 and

that G is instantiated with a 256-bit elliptic curve. We denote by G∗

the set G \ {1} where 1 is the neutral element of G. We denote the

set of integers by Z, the set of positive integers by N, the group of

integers modulo p by Zp = Z/pZ and its multiplicative unit group

by Z∗p . We denote the set of integers from a to b by [a,b] and the set

of positive integers from 1 to a by [a]. We define the Vandermonde

matrix V (x1, . . . , xr ) for the r ≥ 1 numbers x1, . . . , xr ∈ Zp as

V (x1, . . . , xr ) :=
©«
1 x1

1
x2

1
· · · xr−1

1

...
...

1 x1

r x2

r · · · xr−1

r

ª®®¬ ,
which is known to be invertible if and only if the xi are pairwise
distinct. For an element x in a set S , we write x ← S to indicate that

x was sampled from S uniformly at random. All our algorithms may

1
We remark that for most consensus protocols, it is sufficient to agree on b with some

constant probability. Threshold signatures let parties agree on coins with probably

close to 1.

be randomized (unless stated otherwise) and written in uppercase

letters. By x ← A(x1, . . . , xn ) we mean running algorithm A on

inputs (x1, . . . , xn ) and uniformly random coins and then assigning

the output to x . If A has oracle access to some algorithm B during

its execution, we write x ← AB(x1, . . . , xn ). Finally, we write GA

to denote the output of the experiment G involving algorithm A.

2.2 Assumptions and Definitions
In this section, we introduce our model and the one-more discrete

logarithm assumption, which will be the hardness assumption on

which some of our results are based.

The Communication Model. We consider a set of n parties P1,

. . . , Pn (modelled as PPT machines). We assume that the parties are

connected by a complete network of bilateral private and authenti-

cated channels. Additionally, the parties have access to a dedicated

broadcast channel. We assume synchronous communication: par-

ties have access to a global clock and computation proceeds in

synchronized rounds of known length ∆. When an honest party

sends a messagem at the beginning of a round (over either a bi-

lateral channel or via broadcast), the message is guaranteed to be

received by the end of the round.

We note that we focus on synchronous protocols only in this work,

sincemany of themost well-knownDKGprotocols are synchronous.

However, we stress that our methods are equally applicable to

asynchronous DKG protocols, such as the ADKG protocol of Das

et al. [25].

The Adversary. We assume an adversary (also modelled as a PPT

machine) who can corrupt up to t < n/2 out of the n parties in

the network. We consider a malicious adversary that may cause

corrupted parties to deviate from the protocol arbitrarily. Our ad-

versary is adaptive, i.e., it chooses the corrupted parties at any time

during the execution of the protocol. When it corrupts a party, we

assume that it can delete or substitute any undelivered messages

that this party previously sent (while being honest). We assume

that the adversary has full control over the network, subject to the

worst-case network delay ∆. This means that it can observe and

deliver messages sent to and from honest parties far quicker than

in time ∆. In particular, we assume the adversary to be rushing:
in any synchronous round of a protocol execution, it can observe

the messages of all the uncorrupted parties and then decide what

messages it wants to deliver to honest parties for that round.

The Random Oracle Model (ROM).We assume the random ora-

cle model. In this model, a hash function H is treated as an idealized

random function. Concretely, H is modelled as an oracle with the

following properties. The oracle internally keeps a list H for book-

keeping purposes. At the beginning, all entries of H are set to ⊥.

On inputm from the domain of H, the oracle first checks whether
H [m] , ⊥. If so, it returns H [m]. Otherwise, it sets H [m] to a

uniformly random value in the codomain of H and then returns

H [m]. We write qh to denote the maximum number of allowed

hash queries, i.e., the number of times the adversary may query the

oracle H.

The Algebraic Group Model (AGM). The algebraic group model

was introduced by Fuchsbauer, Kiltz, and Loss [29] as a model in

between the generic group model (GGM) and the standard model.
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In the AGM, all algorithms are treated as algebraic. This means that

whenever an algorithm outputs a group element, it must also output

a representation of that element relative to all of the inputs the

algorithm has received up to that point. This captures the intuition

that any reasonable algorithm should know how it computes its

outputs from its inputs.

Definition 2.1 (Algebraic algorithm). An algorithm A is called

algebraic (over group G) if for all group elements ζ ∈ G that A
outputs, it additionally outputs a vector ®z = (z0, . . . , zm ) of inte-
gers such that ζ =

∏
i д

zi
i , where (д0, . . . ,дm ) is the list of group

elements A has received so far (w.l.o.g. д0 = д).

Algebraic Black-Box Reductions. An algorithm R is called a

black-box reduction from problem P2 to problem P1 if for any algo-

rithm A solving P1, algorithm RA solves P2 with black-box/oracle

access to A during its execution. If the algorithm A happens to be

algebraic, then R (called an algebraic black-box reduction) addition-
ally has access to the representation of the output elements of A
(relative to all of the inputs A has received up to that point). We as-

sume algebraic black-box reductions for our metareduction results.

Such reductions have previously been introduced and studied, see

e.g. [9, 37].

The One-More Discrete Logarithm Assumption. A mathemat-

ical hardness assumption that finds wide-ranging application in

modern cryptography is the one-more discrete logarithm (OMDL)
assumption. It is the foundation for the security analysis of identifi-

cation protocols, blind signature and multi-signature schemes, such

as blind Schnorr signatures. Beyond that, OMDL is also assumed for

various impossibility results of certain reductions. In the following,

we denote by DLд(·) an oracle that on input h = дx ∈ G returns

the discrete logarithm x of h to base д.

Definition 2.2 (One-More Discrete Logarithm Problem). For n ∈ N
and an algorithm A, define experiment n-OMDLA as follows:

• Setup. For i ∈ [n], sample (z1, . . . , zn ) ← Znp and set

ξi := дzi ∈ G.
• Online Phase. Run A on input (par , ξ1, ..., ξn ). A gets ac-

cess to oracle DLд(·).
• Output Determination. When A returns (z′

1
, ..., z′n ), the

experiment returns 1 if the following conditions are satis-

fied (otherwise, it returns 0):

– z′i = zi for all i ∈ [n],
– DLд(·) was queried at most n − 1 times.

We say that the one-more discrete logarithm problem of degree

n is (ε,T )-hard if for all algorithms A running in time at most T ,
Pr[n-OMDLA = 1] ≤ ε . Conversely, we say that an algorithm A
(ε,T )-solves the one-more discrete logarithm problem of degree n
if it runs in time at most T and Pr[n-OMDLA = 1] > ε .

3 THRESHOLD SIGNATURES
Threshold cryptography is a fundamental multiparty paradigm

for enhancing the security and the availability of cryptographic

schemes. It achieves this by dividing secret keys into n shares dis-

tributed across a network of parties (or servers). In (t,n)-threshold
cryptosystems, secret key operations require the cooperation of at

least t + 1 out of n parties. In this way the system remains secure

against adversaries that corrupt up to t parties.

3.1 Distributed Key Generation
Distributed key generation (DKG) protocols are an essential com-

ponent of threshold cryptosystems. The purpose of a DKG protocol

is to distribute the shared keys of parties securely without relying

on a trusted dealer. At the end of the protocol, the public key is

output in the clear, whereas the secret key is kept as a virtual secret

shared among all parties. The secret key is never explicitly com-

puted, reconstructed or stored in any single location. This shared

secret key can then be used later for threshold cryptosystems, such

as threshold signatures or threshold encryption, without ever being

explicitly reconstructed.

Definition 3.1 (Distributed Key Generation Protocol). Let Π be a

protocol executed among n parties P1, . . . , Pn , where Pi outputs a
secret key share ski , a vector of public key shares (pk

1
, . . . , pkn ), a

public key pk, and parties terminate upon generating output. We

define the following security and correctness properties for Π:

• Consistency:Π is t-consistent if the following holds when-
ever at most t parties are corrupted: all honest parties out-
put the same public key y = дx and the same vector of

public key shares (pk
1
, . . . , pkn ).

• Correctness: Π is t-correct if the following holds when-

ever at most t parties are corrupted: there exists a poly-
nomial f ∈ Zp [X ] of degree t such that, for all i ∈ [n],

ski = f (i) and pki = д
ski

. Moreover, pk = дf (0).
• Oracle-aidedAlgebraic Simulatability.Π has (t,k,TA,TSim)-

oracle-aided algebraic simulatability if for every algorithm

A that runs in time at most TA and corrupts at most t par-
ties, there exists an algebraic simulator Sim that runs in

time at most TSim, makes k − 1 queries to oracle DLд(·),
and satisfies the following properties:

– On input ξ = дz1 , . . . ,дzk ∈ G, Sim simulates the

role of the honest parties in an execution of Π. At
the end of the simulation, Sim outputs the public key

pk = дx . If corruptions are static, Sim gets a set of

corrupted parties C ⊂ {1, . . . ,n} of size at most t as
an additional input.

– On input ξ = дz1 , . . . ,дzk ∈ G and for i ∈ [k −
1], let дi ∈ G denote the ith query to DLд(·). Let
(âi ,ai ,1, . . . ,ai ,k ) denote the corresponding algebraic

coefficients, i.e.,дi = д
âi ·

∏k
j=1
(дzj )ai , j and set (â,a0,1,

. . . ,a
0,k ) as the algebraic coefficients corresponding

to pk. Then the following matrix over Zp is invertible

L B

©«
a0,1 a0,2 · · · a

0,k
a1,1 a1,2 · · · a

1,k
...

...
...

ak−1,1 ak−1,2 · · · ak−1,k

ª®®®®¬
.

Whenever Sim completes a simulation of an execution

of Π, we call L the simulatability matrix of Sim (for

this particular simulation).

– Denote by viewA,y,Π the view of A in an execution of

Π conditioned on all honest parties outputting pk =
5



y. Similarly, denote by viewA,ξ ,y,Sim the view of A
when interacting with Sim on input ξ , conditioned
on Sim outputting pk = y. (For convenience, Sim’s

final output pk is omitted from viewA,ξ ,y,Sim). Then,

for all y and all ξ , viewA,ξ ,y,Sim and viewA,y,Π are

identically distributed.

Letk ∈ N be the minimum k such thatΠ has (t,k,TA,TSim)-
oracle-aided algebraic simulatability. Then we call k the

(t,TA,TSim)-simulatability factor of Π.

We say that Π has (t,k,TA,TSim)-oracle-aided algebraic security if it

is t-consistent, t-correct, and has (t,TA,TSim)-simulatability factor

k .

For informal discussions, we sometimes abbreviate our notation

by ommitting TA and TSim from our notation (we simply assume

both A and Sim to be some PPT algorithms).

Discussion.We give a brief discussion of our security properties

for distributed key generation protocols. Consistency and correct-

ness notions are in line with what is achieved by most conventional

DKG protocols.

We note that we could easily weaken the requirement of Sim
being fully algebraic to Sim behaving algebraic only with respect to

the elements pk,д1, . . . ,дk−1
. (In other words, only these elements

come with an algebraic representation.) All our results remain true

for this weaker notion of oracle-aided algebraic security. We stress

that this weaker notion is a direct generalization of the usual notion

of secrecy which requires a (not necessarily algebraic) simulator

Sim that on input y ∈ G perfectly simulates an execution of Π in

which y is determined as the public key pk. Setting k = 1 in our

(relaxed) definition, we see that Sim queriesDLд(·) exactly k−1 = 0

times, is trivially algebraic towards the output element pk (since

the input is just pk itself) and the simulatability matrix is L = (1),
which is trivially invertible. Therefore, one can view the degree k
of Π’s oracle-aided algebraic security as a measure of how far away

Π is from being fully secret.

As already observed in [41], full secrecy is not inherently required
in the context of threshold signing. This is not particularly sur-

prising, as one might expect any reasonable signature scheme to

remain unforgeable even when some information about the secret

key is leaked. This observation is also the motivation behind our

notion of oracle-aided algebraic simulatability. While this notion

might look somewhat artificial at first glance, we will show that it is

sufficient to provide unforgeability for the threshold BLS signature

scheme against an adaptive adversary (in the AGM). Moreover, we

prove in chapter 4 that several well-known DKG protocols includ-

ing JF-DKG (proposed by Pedersen [53]) and New-DKG (proposed

by Gennaro et al. [33]) have oracle-aided algebraic simulatability,

also against adaptive adversaries. We stress that neither of these

protocols satisfies secrecy against an adaptive adversary. In fact, it

has been noted many times in the literature that JF-DKG does not

even achieve full secrecy against a static adversary that corrupts a

mere two parties!

Finally, we remark that we require perfect simulatability only

for convenience; it is straight forward to adjust our definition so as

to allow for statistical or even computationally indistinguishable

simulations.

3.2 Threshold Signature Scheme
In this section, we introduce the syntax and security notions for

threshold signature schemes. We remark that we focus on non-
interactive schemes for this work.

Definition 3.2 (Non-Interactive Threshold Signature). A non-inter-
active (t,n)-threshold signature scheme is a tuple of efficient algo-

rithms Σ = (DKG, SSign, SVer,Ver,Comb) with the following prop-

erties:

• DKG: This is a distributed key generation protocol in the

sense of Definition 3.1.

• SSign: The share signing algorithm is a possibly randomized

algorithm that takes as input a messagem and a secret key

share ski . It outputs a signature share σi .
• SVer: The signature share verification algorithm is a deter-

ministic algorithm that takes as input a messagem, a public

key share pki , and a signature share σi . It outputs 1 (accept)
or 0 (reject).

• Comb: The signature share combining algorithm is a deter-

ministic algorithm that takes as input the public key pk,
a vector of public key shares (pk

1
, . . . , pkn ), a messagem,

and a set S of t + 1 signature shares (σi , i) (with corre-

sponding indices). It outputs either a signature σ or ⊥.

• Ver: The signature verification algorithm is a deterministic

algorithm that takes as input a public key pk, a message

m, and a signature σ . It outputs 1 (accept) or 0 (reject).

Let H : {0, 1}∗ → G be a cryptographic hash function (modelled

as a random oracle). We define the security of a non-interactive

threshold signature scheme in the adaptive corruption setting as

follows.

Definition 3.3 (Unforgeability Under Chosen Message Attack). Let
Σ = (DKG, SSign, SVer,Ver,Comb) be a non-interactive (t,n)-threshold
signature scheme. For an algorithmA, define experimentUF-CMAA

Σ,t
as follows:

• Setup. Initialize sets H := {1, . . . ,n}, C := ∅. Run A on

input par .
• Corruption Queries. At any point of the experiment, A

may corrupt a party Pi by submitting an index i . In this

case, return the internal state of Pi and setH = H \ {i},
C = C ∪ {i}. Henceforth, A controls Pi .

• Distributed Key Generation. Initiate an execution of

DKG among parties P1, ..., Pn . Denote by (sk1, . . . , skn ),
pk, and (pk

1
, . . . , pkn ) the secret and public key shares

determined by DKG. ({ski }i ∈C are known to A.)
• Online Phase. During this phase, A gets additional access

to oracles that answer queries of the following types:

– Signing Queries. When A submits a pair (i,m) for
i ∈ H , return σ ← SSign(ski ,m).

– Random Oracle Queries.When A submits a query

m, check ifH [m] = ⊥ and if so, setH [m] ← G. Return
H [m].

• Output Determination.When A outputs a messagem∗

and a signature σ ∗, let S ⊂ {1, . . . ,n} denote the subset
of parties for which A made a signing query of the form

(i,m∗). Output 1 if |C ∪S| ≤ t + 1 and Ver(pk,m∗,σ ∗) = 1.

Otherwise, output 0.
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We say that Σ is (ε,T ,qh,qs )-unforgeable under chosen message at-
tacks (UF-CMA) if for all algorithms A running in time at most

T , making at most qh random oracle queries, and making at most

qs signing queries, Pr[UF-CMAA
Σ,t = 1] ≤ ε . Conversely, we say

that A (ε,T ,qh,qs )-breaks unforgeability of Σ under chosen mes-

sage attacks if it runs in time at most T , makes at most qh to the

random oracle, makes at most qs queries to the signing oracle, and

Pr[UF-CMAA
Σ,t = 1] > ε

3.3 Threshold BLS Signature Scheme Th-BLSDKG
In this section, we recall Boldyreva’s BLS-based threshold signature
scheme. We write Th-BLSDKG to denote the scheme when setup is

done using the distributed key generation algorithm DKG.

Definition 3.4 (Threshold BLS Signature Scheme [12].). Let DKG
be a distributed key generation protocol. The algorithms of the

(t,n)-threshold signature scheme Th-BLSDKG = (DKG, SSignBLS,
SVerBLS,CombBLS,VerBLS) are defined as follows:

• SSignBLS: On input a secret key share ski ∈ Zp and a

message m ∈ {0, 1}∗ return the signature share σi :=

H(m)ski ∈ G.
• SVerBLS: On input a public key share pki ∈ G, a sig-

nature share σi , and a message m, return 1 if e(д,σi ) =
e(pki ,H(m)) and 0 otherwise.

• CombBLS: On input a vector of public key shares (pk1
, ..., pkn ),

a set S of t + 1 signature shares (and corresponding in-

dices) (σi , i), and a messagem, run SVerBLS(σi , pki ) for all
i ∈ S0 := {i ∈ [n] | (σi , i) ∈ S}. If any of these calls re-

turns 0, return⊥. Otherwise, return σ =
∏

i ∈S0
σLii , where

Li =
∏

j ∈S0\{i }

(
j
j−i

)
denotes the ith Lagrange coefficient

for the set S0.

• VerBLS: On input a public key pk, a signature σ , and a mes-

sagem, return 1 if e(д,σ ) = e(pk,H(m)) and 0 otherwise.

4 SECURITY ANALYSIS OF Th-BLSDKG
In this chapter, we analyze the security of Th-BLSDKG in the case

whereDKG has (t,k)-oracle-aided algebraic security. First, we show
a tight reduction to the OMDL assumption of degree k . Second, we
show that there is no algebraic black-box reduction to the OMDL

assumption of degree t (or lower) to the security of Th-BLSDKG with

corruption threshold t . On the other hand, we show that the trusted

dealer key generation algorithm TD-DKG [see Appendix A.1] has

(t,k)-oracle-aided algebraic security with k = t + 1. In particular,

there is a reduction to the (t + 1)-OMDL assumption to the security

of Th-BLSTD-DKG (with corruption threshold t ). Apart from that,

we show oracle-aided algebraic security for JF-DKG andNew-DKG,
but stress that several other DKG protocols such as ADKG [25] also

have this security.
2
Finally, we show that any algebraic black-box

reduction from the security of Th-BLSDKG to the (t + 1)-OMDL

assumption loses a factor of qs and can not possibly be improved,

in the plain ROM.

For DKG with (t,k)-oracle-aided algebraic security, our first

theorem asserts the security of Th-BLSDKG (in the AGM+ROM)

2
In fact, the proof for the oracle-aided algebraic security of ADKG easily follows from

the security of JF-DKG.

under the assumption that the k-OMDL problem is hard. Our proof

follows the tight security proof for the (standard) BLS scheme [29,

45]. The key idea is to embed an OMDL challenge ξ in either the

secret key shares or inside the random oracle queries, a choice that

remains hidden from the adversary. In the former case, we simulate

by using the oracle-aided algebraic simulator coming from DKG.
In the latter case, we solve ξ directly from the algebraic equation

that comes from the forgery (with its representation).

Theorem 4.1. If k-OMDL is (ε,T )-hard in the AGM and DKG
has (t,k,T ′,TSim)-oracle-aided algebraic security, then Th-BLSDKG
is (ε ′,T ′,qh,qs )-secure in the AGM+ROM, where

ε ≥
ε ′

4

−
q2

h
4p
, T ≤ T ′ +TSim + 3qh + qs .

Proof. We prove the theorem via a sequence of games. Let A
be an algebraic algorithm that (ε ′,T ′,qh,qs )-breaks unforgeability
of Th-BLSDKG under chosen message attacks. W.l.o.g. we assume

that A always queries the random oracle H before any signing

query for the same messagem. (Note that the challenger can always

enforce this by making appropriate random oracle queries for itself.)

Similarly, we may assume that queries to the random oracle are

distinct and that A queries the random oracle H onm∗ (the forgery
message) before producing its forgery.

GameG0: This is the real game. The challenger runsDKG on behalf

of the honest parties. Whenever A decides to corrupt a party Pi , the
challenger faithfully returns the internal state of that party and sets

C = C∪{i},H = H\{i}. In addition, A gets full control over Pi . For
all i ∈ [n], let yi ∈ G denote the public key share assigned to Pi by
DKG and let xi denote Pi ’s secret key share. Moreover, let x ∈ Zp
and y = дx denote the secret key and public key, respectively.

Random oracle queries are answered by sampling ri ← Z
∗
p and

returning hi = д
ri ∈ G. Partial signing queries (j,m) are answered

by returning H [m]x j . At the end of the game, A outputs a message-

signature pair (m∗,σ ∗).
Game G1: This game is identical to the game before, except that

the game aborts and the adversary loses when there is a collision

H [m1] = H [m2] among distinct random oracle queriesm1 , m2

from A. By a standard argument, Pr[GA
0
= 1] ≤ Pr[GA

1
= 1] + q2

h/p.

Let V = C ∪ S, where S ⊂ {1, . . . ,n} is the subset of parties
for which A made a signing query of the form (i,m∗). As A is an

algebraic adversary, at the end of G1 it returns a forgery σ ∗ on a

messagem∗ together with a representation

a = (â,a′, ă1, . . . , ăn, ā1, . . . , āqh , ã1,1, . . . , ã1,n, . . . , ãqs ,1, . . . , ãqs ,n )

of elements in Zp such that

σ ∗ = H [m∗] = дâ · ya
′

· yă1

1
· . . . · yănn ·

qh∏
i=1

hāii ·

qs∏
i=1

σ
ãi ,1
i ,1 · . . . · σ

ãi ,n
i ,n .

Here, the representation is split (from left to right) into powers of the

generator д, the public key y = дx , the public key shares yj = д
x j
,

j ∈ [n], all of the answers to hash queries hi , i ∈ [qh ], and the

partial signatures σi , j , i ∈ [qs ] and j ∈ [n], returned by the random

oracle and the partial signing oracle, respectively. Note that we have

tacitly combined the other elements that are publicly communicated

during the key generation phase into the term дâ . We will clarify

later why this is possible. In the following, letmi denote the ith
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query to H and let i∗ ∈ [qh ] denote the index corresponding to the

forgery messagem∗. Recall that we write r∗ and ri for i ∈ [qh ] to

denote the values such that H [m∗] = дr
∗

and H [mi ] = д
ri
. Having

said that, the above equation is equivalent to

r∗x = â + xa′ +
n∑
i=1

ăixi +

qh∑
i=1

ri āi +

qs∑
i=1

ri (ãi ,1x1 + . . . + ãi ,nxn )

= â + xa′ +
n∑
i=1

ăixi +
∑
i ∈Qh

ri āi +
∑
i ∈Qs

ri (ãi ,1x1 + . . . + ãi ,nxn )

+ r∗ā∗ + r∗(ã∗
1
x1 + . . . + ã

∗
nxn ), (♠)

where in the last equation we split the answers to the (hash and

partial signing) queries form∗ from those of the other messages,

with appropriate setsQh andQs (to be precise,Qh = [qh ]\ {i
∗} and

Qs = [qs ] \ {i
∗}) and the notation ã∗j = ã∗i∗, j for all j ∈ [n]. Since A

wins G1, we remark that neither

∑
i ∈Qh

ri āi nor
∑
i ∈Qs ri (ãi ,1x1 +

. . . + ãi ,nxn ) may include the terms r∗ā∗ or r∗(ã∗
1
x1 + . . . + ã

∗
nxn ),

respectively.
3
We define event E as the event that x , ā∗ + ã∗

1
x1 +

. . . + ã∗nxn . We have the following lemma.

Lemma 4.2. Let G1 and E be as defined above. Then there exist
(algebraic) algorithms A1 and A2 playing in game k-OMDL that run
in time at most T such that:

Pr[k-OMDLA1 = 1] = Pr[GA
1
= 1 ∧ ¬E],

Pr[k-OMDLA2 = 1] ≥

(
1 −

1

p

)
· Pr[GA

1
= 1 ∧ E].

Moreover, T ≤ T ′ +TSim + 3qh + qs .

Proof. Let ξ = ξ1, . . . , ξk ∈ G with ξi = дzi , i ∈ [k], be the
OMDL instance. A1 and A2 both have access to a discrete logarithm

oracle DLд(·) which they can query at most k − 1 times. Both

simulate G1, as we now describe.

Algorithm A1(ξ ,par ): Algorithm A1 works as follows. Since DKG
has (t,k,T ′,TSim)-oracle-aided algebraic security, there exists an

algebraic simulator Sim that runs in time at mostTSim with (k − 1)-

time access to a discrete logarithm oracle. Sim takes as input the k-
OMDL instance ξ1 = д

z1 , . . . , ξk = д
zk ∈ G and perfectly simulates

an execution of DKG, where at most t parties can be corrupted.

A1 simulates the key generation phase by running Sim on input ξ .
Whenever Sim queries its discrete logarithm oracle, A1 forwards

this query to its own oracle DLд(·). Random oracle queries are

answered by sampling ri ← Z
∗
p and returning hi = дri ∈ G. A1

aborts when there is a collision H [m1] = H [m2] among different

random oracle queriesm1 ,m2 from A. Signing queries (j,mi ) are

answered by returning h
x j
i via the algebraic identity

H [mi ]
x j =

(
дri

)x j = (
дx j

)ri = yrij .
Corruption queries are handled by Sim, which allows A1 to return

the internal state of up to t parties correctly. It is not hard to see that
A1’s simulation of G1 is perfect and that A1 can correctly answer

Sim’s (at most) k − 1 oracle queries.

Suppose that A wins G1 and that event ¬E happens, i.e. x = ā∗ +

3
Here, we consider r ∗ and ri , i ∈ [n] as formal variables over Zp rather than the

concrete value that they may take. Note that it is indeed possible that for some i ,
ri āi = r ∗ā∗ or r ∗(ã∗

1
x1+ . . .+ã∗nxn ) = ri (ãi ,1x1+ . . .+ãi ,nxn )when considering

concrete values in Zp for r ∗, ri .

ã∗
1
x1 + . . . + ã∗nxn . We note that the partial signing queries of

the form (i,m∗) do not reveal any more information than if the

challenger were simply handing over the corresponding private

key share xi . We thus treat these partial signing queries for m∗

as corruption queries. We may also assume w.l.o.g. that |C| = t .
Otherwise, A1 simulates, for itself, t − |C| corruption queries for

random parties from the set of uncorrupted parties H after re-

ceiving the forgery, as if these were regular queries from A. (It
does so by querying Sim.) Since A1 knows all values {xi }i ∈V ,
it can compute the secret key x efficiently via the identity x =
ā∗ + ã∗

1
x1 + . . . + ã

∗
nxn . Let д

a1 , . . . ,дak−1 denote the discrete loga-

rithm oracle queries made by Sim. As Sim is algebraic, it also out-

puts a representation (âi ,ai ,1, . . . ,ai ,k ) for each of these queries,

i ∈ [k − 1]. Similarly, let y = дx be the public key output by Sim to-

gether with its representation (â0,a0,1, . . . ,a0,k ). Then A1 obtains

the following system of linear equations in the variables z1, . . . , zk :

x = â0 + a0,1z1 + . . . + a0,kzk

a1 = â1 + a1,1z1 + . . . + a1,kzk

...

ak−1
= âk−1

+ ak−1,1z1 + . . . + ak−1,kzk ,

which in matrix form is equivalent to

©«
x − â0

a1 − â1

...

ak−1
− âk−1

ª®®®®¬
=

©«
a0,1 a0,2 · · · a

0,k
a1,1 a1,2 · · · a

1,k
...

...
...

ak−1,1 ak−1,2 · · · ak−1,k

ª®®®®¬
©«
z1

z2

...

zk

ª®®®®¬
.

By definition, the simulatability matrix of Sim is invertible and

hence A1 can efficiently compute (z1, . . . , zk ) and solve the OMDL

instance. Overall, we obtain

Pr[k-OMDLA1 = 1] = Pr[GA
1
= 1 ∧ ¬E].

The bound on the running time of A1 (number of group operations

and exponentiations) comes from running the simulator Sim once,

one exponentiation for each random oracle query and one expo-

nentiation for each signing query.

Algorithm A2(ξ ,par ): Algorithm A2 works as follows. It runsDKG
correctly on behalf of the honest parties. In particular, it knows

all the secret key shares x j . Whenever the adversary A decides to

corrupt a party, A2 faithfully reveals the internal state of that party.

Random oracle queries are answered by sampling bi ,di ← Z
∗
p and

returning hi = дri = ξbi
1
дdi , which implicitly sets ri = z1bi + di .

A2 aborts in case it detects a collision among answers in the list

H . Partial signing queries (j,mi ) are answered by returning h
x j
i .

Again, it is not hard to see that A2’s simulation of G1 is perfect.

In case A2 does not abort, let Ãi := ãi ,1x1 + . . . + ãi ,nxn for

all i , where we write Ã∗ for Ãi∗ . Suppose that A wins G1 and that

event E happens, i.e. x , ā∗ + Ã∗. With our notation, equation (♠)

is equivalent to

z1b
∗x + d∗x = â + xa′ +

n∑
i=1

ăixi +
∑
i ∈Qh

di āi +
∑
i ∈Qs

di Ãi + d
∗ā + d∗Ã∗

+ z1

©«
∑
i ∈Qh

bi āi +
∑
i ∈Qs

bi Ãi + b
∗ā∗ + b∗Ã∗

ª®¬ .
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With the further notations

B := b∗x −
©«
∑
i ∈Qh

bi āi +
∑
i ∈Qs

bi Ãi + b
∗ā∗ + b∗Ã∗

ª®¬ ,
D := â + xa′ +

n∑
i=1

ăixi +
∑
i ∈Qh

di āi +
∑
i ∈Qs

di Ãi + d
∗ā + d∗Ã∗ − d∗x,

this reduces to Bz1 = D. Recall that we have tacitly combined the

other group elements that were publicly communicated during the

key generation phase into the term дâ . This is possible because A2

faithfully runs DKG on behalf of the honest parties and therefore

has knowledge of the exponents of those elements relative to the

base д and can combine them into the value â. Let us now con-

sider the case where B = 0. With the E defining inequality this is

equivalent to

0 = b∗x −
©«
∑
i ∈Qh

bi āi +
∑
i ∈Qs

bi Ãi + b
∗ā∗ + b∗Ã∗

ª®¬
⇐⇒ b∗(x − ā∗ − Ã∗) =

∑
i ∈Qh

bi āi +
∑
i ∈Qs

bi Ãi

⇐⇒ b∗ =
©«
∑
i ∈Qh

bi āi +
∑
i ∈Qs

bi Ãi
ª®¬ ·

(
x − ā∗ − Ã∗

)−1

.

As already noted,

∑
i ∈Qh

ri āi and
∑
i ∈Qs ri Ãi do not include the

terms r∗ā∗ and r∗Ã∗, respectively. Hence,
∑
i ∈Qh

bi āi and
∑
i ∈Qs bi Ãi

do not include b∗ā∗ and b∗Ã∗, respectively.4 As defined by the iden-

tityH [m∗] = дz1b∗+d∗
,b∗ remains information-theoretically hidden

from A. This implies that the right-hand side of the equation is sta-

tistically independent of the uniform value b∗. Therefore, with
probability 1 − 1/p we have B , 0, and thus A2 can compute z1

efficiently as z1 := B−1D. Overall, we obtain

Pr[k-OMDLA2 = 1] ≥

(
1 −

1

p

)
· Pr[GA

1
= 1 ∧ E].

The bound on the running time of A2 comes from running the

simulator Sim once, three operations for each random oracle query

and one operation for each signing query. □

Consider algorithm B playing in k-OMDL as follows: B samples

i∗ ← [2] and then internally emulates Ai∗ . Clearly, B is an algebraic

algorithm running in time at most T (the running time of A1,A2).

An application of the law of total probability yields for p ≥ 2,

Pr[k-OMDLB = 1] =

2∑
i=1

Pr[k-OMDLB = 1 | i∗ = 1] · Pr[i∗ = 1]

=
1

2

2∑
i=1

Pr[k-OMDLAi = 1]

≥
1

2

(
1 −

1

p

) (
Pr[GA

1
= 1 ∧ E] + Pr[GA

1
= 1 ∧ ¬E]

)
=

1

2

(
1 −

1

p

)
Pr[GA

1
= 1] ≥

1

4

Pr[GA
1
= 1]

≥
1

4

· Pr[GA
0
= 1] − q2

h/p.

4
Here, we consider b∗ as a formal variable over Zp rather than its concrete value.

□

Our next theorem asserts that the security of Th-BLSDKG (for

DKG with (t,k)-oracle-aided algebraic security) can not be derived

from the OMDL assumption of degree t , even in the AGM+ROM. In

particular, the security of Th-BLSDKG has to rely on some stronger

mathematical assumption such as OMDL of degree t + 1 or higher.

Our proof of this impossibility result follows Coron’s metareduction

technique [22]. The idea behind the proof is the following. Upon

receiving an OMDL challenge ξ of degree t , the metareduction

M runs the reduction R providing it with (par , ξ ). The discrete

logarithm oracle for R is simulated byM’s own oracle DLд(·). At
the end of the key generation phase, R outputs the public key shares

and the public key with their respective algebraic coefficients. The

coefficient of the public key shares form a (n×t) - matrixQ over Zp
(disregarding the coefficients corresponding to д). SinceQ has rank

at most t , the metareduction can find t rows ®r1, . . . , ®rt that span the

row space of Q . This eventually allows M to compute all the secret

key shares (and hence the secret key x) after corrupting certain

t parties. With the knowledge of x , it can forge on any message

and perfectly simulate an algebraic adversary F for the reduction.

We point out that in this step, it is crucial for the adversary to be

allowed to corrupt parties adaptively, i.e., even after the termination

of the DKG protocol. If the adversary were a static one, R would get

the set of corrupted parties as an input and could take the algebraic

coefficients of these parties in such a way that the corresponding

vectors do not span the row space ofQ . This results inM not being

able to compute the secret key and the proof would fail.

Theorem 4.3. Let DKG have (t,k,TFalg ,TSim)-oracle-aided alge-
braic security. Let R be an algebraic reduction such that for every al-
gebraic forger Falg that (εFalg ,TFalg ,qh,qs )-breaks Th-BLSDKG, R

Falg

is an algorithm that (εR,TR)-breaks t-OMDL. Then there exists an
algorithmM such thatMR (εM,TM)-breaks t-OMDL with εM ≥ εR,
TM ≤ TR+TFalg . In particular,DKG has simulatability factork ≥ t+1.

Proof. Assume that R is an algebraic reduction as defined above.

We will now build an efficient solverM against t-OMDL. Let ξ =
дz1 , . . . ,дzt ∈ G be the OMDL instance. M gets access to DLд(·) at
most t − 1 times and his goal is to return (z1, . . . , zt ). AlgorithmM
works as follows.

1. M runs the reduction R providing it with (par , ξ ). The
discrete logarithm oracle for R is simulated by M’s own

oracle DLд(·). As R is an algebraic reduction, at the end

of the key generation phase, it returns a vector of public

key shares (дx1 , . . . ,дxn ) together with a representation

(âi ,ai ,1, . . . ,ai ,t ) for all i ∈ [n] such that

дxi = дâi ·
t∏
j=1

(
дzj

)ai , j = дâi · (дz1

)ai ,1 · . . . · (дzt )ai ,t .
2. After termination of the key generation protocol,M chooses

a random subset S ⊂ {1, . . . ,n} of parties of order t + 1.

W.l.o.g. we may assume S = {1, . . . , t + 1}. Then M forms

9



the (t + 1) × t - matrix over the field Zp

Q B

©«
a1,1 a1,2 · · · a1,t
a2,1 a2,2 · · · a2,t
...

...
...

at+1,1 at+1,2 · · · at+1,t

ª®®®®¬
and computes its rank efficiently via Gaussian elimination.

We may assume that the rank of this matrix is t . The other
cases where the rank of Q is less than t work analogously.

For all i ∈ [t + 1], we let ®ai := (ai ,1, . . . ,ai ,t ) and denote

by Ui the linear subspace of Z
t
p generated by the vectors

®a1, . . . , ®ai . By repeatedly computing the rank ofU1,U2, . . . ,

M is able to identify a vector ®aj ∈ {®a1, . . . , ®at+1} that is lin-

early dependent from the other t vectors of that set. W.l.o.g.

we may assume j = t + 1. This yields a linear system of

equations λ1 ®a1 + . . . + λt ®at = ®at+1, where λi ∈ Zp for

all i ∈ [t]. Again via Gaussian elimination,M determines

the linear coefficients λ1, . . . , λt of this system of equa-

tions. Note that this approach would not work in the static

corruption model, as previously explained.

3. Having done this, M queries R, on behalf of a simulated al-

gebraic forger Fsimalg , for corruptions of the parties P1, . . . , Pt

corresponding to the linearly independent vectors ®a1, . . . , ®at .
Reduction R returns the internal states of these parties and

M additionally gets full control over them. We stress that

the secret key shares of parties P1, . . . , Pt returned by R
are all correct, which can be checked using the public key

shares. As a result,M obtains the following system of linear

equations in the variables z1, . . . , zt :

x1 = â1 + a1,1z1 + . . . + a1,tzt

x2 = â2 + a2,1z1 + . . . + a2,tzt

...

xt = ât + at ,1z1 + . . . + at ,tzt ,

which in matrix form is equivalent to

©«
x1 − â1

x2 − â2

...

xt − ât

ª®®®®¬
=

©«
a1,1 a1,2 · · · a1,t
a2,1 a2,2 · · · a2,t
...

...
...

at ,1 at ,2 · · · at ,t

ª®®®®¬
©«
z1

z2

...

zt

ª®®®®¬
.

Multiplying the i-th row of the matrix with λi for all i ∈ [t]
and adding up the equations yields

t∑
i=1

λi (xi − âi ) = ®at+1 ·
©«
z1

...

zt

ª®®¬ =
t∑
i=1

at+1,izi .

Since

∑t
i=1

at+1,izi = xt+1 − ât+1, M efficiently computes

xt+1 via the identity xt+1 = ât+1 +
∑t
i=1

λi (xi − âi ). Using

Lagrange interpolation, M determines the secret key x .5

5
Note that we could also simply invert the matrix with row vectors ®a1, . . . , ®at in

order to determine the values z1, . . . , zt . However, this matrix inversion approach

does not work for the cases where the rank ofQ is less than t . But the approach taken

here simply carries over to lower-ranked matrices Q .

4. M picks a setM ⊂ {0, 1}∗ of qh arbitrary messages (e.g.,

at random or the lexicographically first). Then it samples

m∗ ←M and (m1, . . . ,mqs ) ← (M \ {m
∗})qs .

5. M queries the signing oracle, with implicit hash queries,

on the messagesm1, . . . ,mqs . Thereafter, M makes a hash

query on m∗ and qh − qs − 1 additional messages from

the setM. In total, M has made exactly qh hash queries,

including the implicit hash queries from signing, and ex-

actly qs signing queries, so that it corresponds to what the

reduction expects.

6. M then tosses a biased coin ζ ∈ {0, 1} that takes the value
1 with probability εFalg and the value 0 with probability

1 − εFalg . If ζ = 0, then M sends ⊥ to R. And if ζ = 1,

then M computes σ ∗ = H [m∗]x and submits (m∗,σ ∗) as a
forgery with algebraic representation (x, 0, . . . , 0), so that

σ ∗ = дx
0
·
∏

i≥1
д0

i where (д0,д1, . . . ,дr ) is the list of all
group elementsM has received during the execution of R
and we assume w.l.o.g. д0 = H [m∗]. This is done in time

TFalg in order to correctly simulate an algebraic forger.

7. We see that this constitutes a valid forgery as follows. First,

m∗ was not queried to the signing oracle and σ ∗ is indeed
a valid signature onm∗. Second, consider (as a thought-

experiment) an unbounded algebraic forger Falg = Funbalg
that brute-forces the secret key x from the public key дx

and outputs a valid forgery σ ∗ onm∗ with probability εFalg .

By assertion of the theorem, R has to work even against

such an unbounded forger. Clearly, the view of R when

interacting with Fsimalg is indistinguishable from its view

when interacting with Funbalg . Hence, σ
∗
is a valid signature

onm∗. R will then return (z1, . . . , zt ) with probability εR,
whichM submits as its solution against t-OMDL.

Since Fsimalg perfectly simulates a real algebraic forger for R, the
bound on A’s success probability in breaking t-OMDL is clear. The

bound on M’s time comes from running the reduction R once and

simulating the forger. The bound on DKG’s simulatability factor

follows in combination with Theorem 4.1. □

Remark 4.1. An important implication of this theorem is that the

security of Th-BLSDKG can not be derived from a static mathemati-

cal assumption in the AGM (and in particular not in the plain ROM).

This follows from the separation results in [9].

Before we proceed with our impossibility result on the tight-

ness of a security proof for Th-BLSDKG under the (t + 1)-OMDL

assumption, we focus on some concrete DKG protocols. Concretely,

we show the (t,k)-oracle-aided algebraic security of several well-

known DKG protocols, so that these can be safely employed into

Th-BLSDKG. We begin our excursion with TD-DKG, which serves

as a DKG protocol that represents the traditional trusted dealer

scheme. In this protocol, a trusted dealer TD chooses a random

polynomial f ∈ Zp [X ] of degree t . Then, for all i ∈ [n], it secretly
sends the secret key share ski = f (i), the vector of public key shares

(pk
1
, . . . , pkn ) = (д

f (1), . . . ,дf (n)), and the public key pk = дf (0)

to party Pi .
Our strategy for the proof is by building an (t,k)-oracle-aided

algebraic simulator Sim with k = t + 1 that simulates the role

10



of the trusted dealer TD in an execution of TD-DKG. On input

t + 1 elements ξ = ξ0, . . . , ξt ∈ G, Sim defines the polynomial

f ∈ Zp [X ] of degree t by embedding ξi into the ith coefficient of f
for all i ∈ [0, t]. Corruption queries are answered with the oracle

DLд(·).

Theorem 4.4. Protocol TD-DKG has (t,k,TA,TSim)-oracle-aided
algebraic security with k = t + 1 and TSim ≤ TA + 2n(t + 1).

Proof. Let A be an adversary that runs in time at most TA and

corrupts at most t parties during an execution of the protocol.

Clearly, TD-DKG is t-consistent and t-correct. It remains to show

(t,k,TA,TSim)-oracle-aided algebraic simulatability for k = t + 1.

Theorem 4.3 then implies the simulatability factor t + 1. For this,

we build an (t, t + 1,T )-oracle-aided algebraic simulator Sim as

follows. On input t + 1 elements ξ0 = дz0 , . . . , ξt = дzt ∈ G
with t-time access to an oracle DLд(·), Sim lets the polynomial

f =
∑t
i=0

aiX
i ∈ Zp [X ] of degree t be such that дai = ξi for all

i ∈ [0, t], which implicitly sets ai = zi . Then, for all i ∈ [n], Sim
computes дf (i) as

дf (i) = д
∑t
j=0

aj i j =

t∏
j=0

(дaj )i
j
=

t∏
j=0

ξ i
j

j

and sends the public key shares (pk
1
, . . . , pkn ) = (д

f (1), . . . ,дf (n))

along with the public key pk = дf (0) = ξ0 to party Pi . Whenever A
decides to corrupt a party Pj , Sim queries DLд(дf (j)) and returns

skj = f (j). Since A makes at most t corruption queries, Sim ac-

cesses the oracle DLд(·) at most t times and hence is a well-defined

simulator. Let C ⊂ {1, . . . ,n} denote the subset of corrupted par-

ties at the end of an execution of Sim. W.l.o.g. we may assume that

|C| = t . By construction, the simulatability matrix of Sim is the

square Vandermonde matrix V (. . . ) for the t + 1 distinct numbers

in C ∪ {0}, which is invertible. Finally, f is indistinguishable from

a random polynomial over Zp of degree t and Sim’s simulation

of TD-DKG is perfect. The claim on the running time is easy to

verify. □

Now we turn to Pedersen’s JF-DKG protocol [see Appendix A.2].

We note that the public key shares (дx1 , . . . ,дxn ) are not output
explicitly by JF-DKG, but can be computed from publicly available

information [33]. Therefore, we may assume that these values are

publicly known. The proof of the following theorem is essentially

just an adaption of the preceding proof to the setting where each

party Pi acts as a dealer with its own polynomial fi ∈ Zp [X ]. Con-
cretely, we build an (t,k)-oracle-aided algebraic simulator Simwith

k = n(t + 1) that simulates the role of the honest parties in an exe-

curtion of JF-DKG. On input n(t +1) elements ξ = ξ0, . . . , ξk−1
∈ G,

Sim defines the polynomials fi ∈ Zp [X ] of degree t by embedding

different t + 1 ξi0 , . . . , ξit into the coefficients of fi for all i ∈ [n]
such that

⋃
i ∈[n]{i0, . . . , it } = [n(t + 1) − 1]. This means, Sim just

evenly distributes ξ among all the polynomials fi . And corruption

queries are answered through the oracle DLд(·). By the end of the

simulation, the simulatability matrix of Sim is just a block diagonal

matrix with the ith block being the square Vandermonde matrix

for some t + 1 distinct numbers. This is due to the fact that the

ith block corresponds to the polynomial fi and these fi each hide

different ξI = ξi0 , . . . , ξit elements. Since this block diagonal matrix

is invertible, Sim is a well-defined oracle-aided algebraic simulator.

For the proof see Appendix A.4.

Theorem 4.5. Protocol JF-DKG has (t,k,TA,TSim)-oracle-aided
algebraic security with k ≤ n(t + 1) and TSim ≤ TA + 2n2(t + 1) + n.

The proof for Gennaro et al.’s New-DKG protocol [see Appen-

dix A.3] is essentially the same as the preceding one for JF-DKG,
since the „masking“ polynomials дi appearing in New-DKG do not

contribute to the secret key shares. For these, Sim simply honestly

samples дi ← Zp [X ] at random and proceeds otherwise as in the

proof for JF-DKG. For the proof see Appendix A.5.

Theorem 4.6. ProtocolNew-DKG has (t,k,TA,TSim)-oracle-aided
algebraic security with k ≤ n(t + 1) and TSim ∈ TA + O(n3).

We close this work with an impossibility result on the tightness

of a security proof for Th-BLSDKG under the (t + 1)-OMDL. As

before, our proof follows the metareduction technique. In a typical

scenario, the metareduction M rewinds the reduction R back to

a previous state, with the consequence that M gains some new

information from the second run of R which eventually allows

M to simulate a forger to R successfully. In our case, however,

the reduction has access to the DLд(·) oracle whichM also has to

simulate to R. This comes with a subtle but severe problem: after

rewinding R back to a previous state, M additionally has to answer

the same number of DLд(·) queries that R has made in its first run.

This is a non-trivial or even impossible task for M, unless R has

made none oracle queries in its first run. But a priori, M can not

predict or control R’s behaviour at all. We resolve this issue by

finding a state IR of R in which R necessarily must have queried the

DLд(·) oracle t times. This state IR will then be the state to which

we rewind R later. In fact, IR will be shortly after the termination

of DKG. The remainder of the proof proceeds as in the spirit of

[22, 36] which equally leads to a security loss linear in the number

of signing queries qs .

Theorem 4.7. LetDKG have (t,k,TF,TSim)-oracle-aided algebraic
security with k = t + 1. Let R be an algebraic reduction such that
for every forger F that (εF,TF,qh,qs )-breaks Th-BLSDKG, RF is an
algorithm that (εR,TR)-breaks (t + 1)-OMDL. Then there exists an
algorithmM such that MR (εM,TM)-breaks (t + 1)-OMDL with

εM ≥ εR − εF ·
2

eqs
, TM ≤ 2(TR +TF).

In particular, a reduction from Th-BLSDKG to (t + 1)-OMDL with a
security loss less than qs yields a solver M for (t + 1)-OMDL with
non-negative success probability εM.

Proof. Assume that R is an algebraic reduction as defined above.

We will now build an efficient solver M against (t + 1)-OMDL.
Let ξ = дz1 , . . . ,дzt+1 ∈ G be the OMDL instance. M gets access

to DLд(·) at most t times and his goal is to return (z1, . . . , zt+1).

Algorithm M works as follows.

1. M runs the reduction R providing it with (par , ξ ) and access
to DLд(·). As R is an algebraic reduction, at the end of

the key generation phase, it returns a vector of public

key shares (дx1 , . . . ,дxn ) together with a representation
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(âi ,ai ,1, . . . ,ai ,t+1) for all i ∈ [n] such that

дxi = дâi ·
t+1∏
j=1

(
дzj

)ai , j = дâi · (дz1

)ai ,1 · . . . · (дzt+1

)ai ,t+1 .

2. After termination of the key generation phase, M forms

the n × (t + 1) - matrix over the field Zp

Q B

©«
a1,1 a1,2 · · · a1,t+1

a2,1 a2,2 · · · a2,t+1

...
...

...

an,1 an,2 · · · an,t+1

ª®®®®¬
and computes its rank efficiently via Gaussian elimination.

Since any t + 1 key shares determine the remaining key

shares via Lagrange interpolation, this matrix has rank at

most t + 1. If the rank of Q is t or less, then M proceeds in

the same way as the solver in the proof of Theorem 4.3. But

this is impossible unless (t + 1)-OMDL is easy. Therefore,

we may assume that the rank of Q is t + 1.

3. M samples a random subset C ⊂ {1, . . . ,n} of parties of
order t and queries R, on behalf of a simulated forger Fsim,
for corruptions of these parties. Reduction R returns the

internal states of these parties and M additionally gets full

control over them. We stress that the secret key shares of

parties Pi ∈ C returned by R are all correct, which can be

checked using the public key shares. We denote R’s state
up to this point by IR. Suppose that R has queried DLд(·)
less than t times up to this point. In that case, M aborts

the reduction R and queries DLд(дx j∗ ) for an arbitrary

j∗ ← {1, . . . ,n} \ C. Since the matrix Q has full rank,

M efficiently computes (z1, . . . , zt+1) as usual. Therefore,

unless (t + 1)-OMDL is easy, we may assume that R has

queried DLд(·) at least t times up to this point.

4. Let q = max{qh, 2qs }.M chooses a setM ⊂ {0, 1}∗ of qh
arbitrary messages. Then it samples i ← [qs ],m

∗ ← M

and (m1, . . . ,mqs ) ← (M \ {m
∗})qs , which defines the

two sequences of messages

M1 = (m1, . . . ,mi−1,m
∗), M2 = (m1, . . . ,mqs ).

5. M queries the signing oracle, with implicit hash queries,

on the messages inM1. If R does not abort, M receives

the signature list S1 = (σ1, . . . ,σi−1,σ
∗). If any of these

signatures is invalid, which can be checked using the public

key shares, thenM aborts.

6. We rewind R back to its previous state IR. Now,M queries

the signing oracle, with implicit hash queries, on the mes-

sages inM2. If R does not abort, M receives the signature

listS2 = (σ1, . . . ,σqs ).
6
If any of these signatures is invalid,

then M aborts.

7. M makes a hash query onm∗ and qh − qs − 1 additional

messages from the setM. In total, M has made exactly qh
hash queries, including the implicit hash queries from sign-

ing, and exactly qs signing queries, so that it correspond
to what the reduction expects.

6
Here we use that Th-BLSDKG is a signature scheme with unique signatures.

8. M then tosses a biased coin ζ ∈ {0, 1} that takes the value
1 with probability εF and the value 0 with probability 1−εF.
If ζ = 0, thenM sends⊥ to R. And if ζ = 1, thenM submits

(m∗,σ ∗) as a forgery. This is done in time TF in order to

correctly simulate a forger.

9. Obviously, this constitutes a valid forgery. R will then re-

turn (z1, . . . , zt ) with probability εR, whichM submits as

its solution against t-OMDL.
In the following, we analyze M’s success probability in breaking

(t + 1)-OMDL as in the spirit of [36]. We denote by V the set

of all sequences of indices such that the corresponding signature

queries are correctly answered by R in time ≤ TR. Obviously, if
(m1, . . . ,mj ) ∈ V , then also (m1, . . . ,mj−1) ∈ V . Consider (as a

thought-experiment) an unbounded forger F = Funb that makes

hash queries to messages as Fsim, signature queries to the messages

fromM2, and outputs a valid forgery σ
∗
onm∗ with probability εF.

By assertion of the theorem, reduction R has to work even against

such an unbounded forger and outputs (z1, . . . , zt+1) with proba-

bility at least εR. After the rewind, the view of R when interacting

with Fsim is indistinguishable from its view when interacting with

Funb unlessM1 ⊈ V andM2 ⊆ V . The first condition means

that R does not answer all the signing queries before the rewind

correctly, while the second condition means that R does answer

all the signing queries after the rewind correctly. In this case, Fsim
would not output a valid signature, while Funb would output a valid
signature. This argument relies on the fact that our threshold sig-

nature scheme has unique signatures. Let ®z = (z1, . . . , zt+1) be the

solution to the OMDL instance. This discussion yields

| Pr[RFsim (par , ξ ) = ®z] − Pr[RFunb (par , ξ ) = ®z]|

≤ εF · Pr[M1 ⊈ V ∧M2 ⊆ V].

We have the following lemma by Coron [22], Appendix D.

Lemma 4.8. Let V be a set of sequences of at most qs integers
fromM with the property that for any (m1, . . . ,mj ) ∈ V , it is also
(m1, . . . ,mj−1) ∈ V . Then the following identity holds

Pr[(m1, . . . ,mqs ) ∈ V ∧ (m1, . . . ,mi−1,m
∗) < V] ≤

1

eqs

where the probability is taken over the randomness of i ← [qs ] and
(m1, . . . ,mqs ,m

∗) ← Mqs+1.

The probability that mi , m∗ for all i ∈ [qs ] is bounded by

(1 − qs/|M|). This allows us to use the above lemma and get

Pr[M1 ⊈ V ∧M2 ⊆ V] ≤
1

eqs

(
1 −

qs
|M|

)−1

.

Overall, we get

εM = Pr[RFsim (par , ξ ) = ®z]

≥ Pr[RFunb (par , ξ ) = ®z] − εF ·
1

eqs

(
1 −

qs
|M|

)−1

≥ εR − εF ·
2

eqs

where the last inequality comes from |M| ≥ 2qs , and therefore(
1 −

qs
|M |

)−1

≤ 2. Finally, the bound onM’s time comes from the

12



rewind, which is essentially the same as running both R and Fsim
twice. □
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A DKG PROTOCOLS
We describe theDKG protocols that we refer to directly in this work

and give the proofs for the (t,k)-oracle-aided algebraic security of

JF-DKG and New-DKG for k ≤ n(t + 1) (Theorem 4.5).

A.1 TD-DKG Protocol
This is the usual key generation protocol where a trusted dealer

shares a secret among n parties P1, . . . , Pn via some secret sharing

scheme. We treat this protocol as an instance of a DKG for the

purpose of our results being consistent.

Protocol TD-DKG:
1. The trusted dealer TD chooses a random polynomial f of

degree t with coefficients in Zp :

f = a0 + a1X + . . . + atX
t

For all k ∈ [0, t], TD broadcasts the elements Ai = д
ai
.

2. For all i ∈ [n], TD computes the public key share pki =
дf (i). It then secretly sends ski = f (i), the vector (pk

1
, . . . , pkn ),

and y = дa0
to party Pi .

3. Each party Pi verifies the share he received from the dealer

by checking the identity

дski =
t∏

k=0

Ai
k

i . (1)

If the check fails, Pi broadcasts a complaint against TD.
4. For every complaint from party Pi , the dealer reveals the

share ski = f (i) matching (1).

5. The dealer is disqualified if either

- he received more than t complaints in Step 3, or

- he answered a complaint in Step 4 with values that

do not match (1).

Upon TD being disqualified the protocol terminates and

the DKG was unsuccessful.

6. If TD is non-disqualified, every party sets his share of the

secret key as xi = ski . The vector of public key shares is

set as (pk
1
, . . . , pkn ) and the public key is set as pk = y.

The secret key x itself is not computed by any party or

sent by TD, but it is equal to x = f (0).

A.2 JF-DKG Protocol
This is Pedersen’s traditionalDKG in which it shares a secret among

n parties P1 . . . , Pn via n parallel executions of Feldman’s VSS

scheme. This protocol can be seen in [53] and [33].
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Protocol JF-DKG:
1. Each party Pi chooses a random polynomial fi of degree t

with coefficients in Zp :

fi = ai0 + ai1X + . . . + aitX
t .

For all k ∈ [0, t], Pi broadcasts Aik = дaik . Each Pi com-

putes the polynomial shares si j = fi (j) for j ∈ [n] and
sends si j secretly to party Pj .

2. Each party Pj verifies the shares he received from the other

parties by checking

дsi j =
t∏

k=0

(Aik )
jk

(1)

for all i ∈ [n]. If the check fails for an index i , Pj broadcasts
a complaint against Pi .

3. Each party Pi who received a complaint from party Pj
reveals the share si j matching (1). If any of the revealed

shares fails this equation, Pi is disqualified. We define Q ⊂

{1, . . . ,n} as the set of non-disqualified parties.

4. The public key y is computed as y =
∏

i ∈Q Ai0. The public
verification values are computed as Ak =

∏
i ∈Q Aik for

k ∈ [t]. Each party Pj sets his secret key share as x j =∑
i ∈Q si j . The secret key x itself is not computed by any

party, but is equal to x =
∑
i ∈Q ai0.

A.3 Gennaro et al.’s New-DKG Protocol
This is Gennaro et al.’s well-known DKG protocol in which the n
parties P1, . . . , Pn take part to share a secret. This protocol can be

seen in [33].

Let H′ : {0, 1}∗ → G∗ be a cryptographic hash function (mod-

elled as a random oracle).

Protocol New-DKG:
0. This step is done only once. Set h = H ′[1].
1. Each party Pi performs a Pedersen-VSS of a random value

zi as a dealer:
(a) Pi chooses two random polynomials fi ,дi of degree t

with coefficients in Zp :

fi (X ) = ai0 + ai1X + . . . + aitX
t ,

дi (X ) = bi0 + bi1X + . . . + bitX
t .

For all k ∈ [0, t], Pi broadcasts the elements Cik =

дaikhbik . Let zi = ai0. Each Pi computes the poly-

nomial shares si j = fi (j), ui j = дi (j) for j ∈ [n] and
sends (si j ,ui j ) secretly to party Pj .

(b) Each party Pj verifies the shares he received from the

other parties by checking the identity

дsi jhui j =
t∏

k=0

(Cik )
jk

(1)

for all i ∈ [n]. If the check fails for an index i , Pj
broadcasts a complaint against Pi .

(c) Each party Pi who received a complaint from party

Pj reveals the shares si j ,ui j matching (1).

(d) Each party marks as disqualified any party that either

- received more than t complaints in Step 1(b), or

- answered a complaint in Step 1(c) with values

that do not meet (1).

2. Each party then builds the set of non-disqualified parties

Q ⊂ {1, . . . ,n}.
3. Each party Pj sets his share of the secret key as x j =∑

i ∈Q si j and the value x ′j =
∑
i ∈Q ui j . The distributed

secret key x itself is not computed by any party, but it is

equal to x =
∑
i ∈Q zi .

4. Each party Pi , i ∈ Q, exposes yi = д
zi

via Feldman-VSS:

(a) Each party Pi , i ∈ Q, broadcasts the elements Aik =
дaik for all k ∈ [0, t].

(b) Each party Pj verifies the values broadcast by the

other parties in Q by checking the identity

дsi j =
t∏

k=0

(Aik )
jk

(2)

for all i ∈ Q. If the check fails for an index i , Pj com-

plains against Pi by broadcasting the values si j ,ui j
that satisfy (1) but not (2).

(c) For parties Pi who receive at least one valid com-

plaint, the other parties run the reconstruction phase

of Pedersen-VSS to compute zi , fi and Aik for k ∈
[0, t] in the clear. Let yi = дzi for i ∈ Q. The public
value y is computed as y =

∏
i ∈Q yi .

Remark A.1. Note that the New-DKG protocol requires the addi-

tional element h ∈ G∗ in order to run Pedersen’s verifiable secret

sharing (VSS). One possibility is to assume that h = H ′[1] is made

public as part of the global parameters. Another possibility is to

have h generated jointly by the parties in a preliminary phase of

the protocol, e.g. by using JF-DKG.

A.4 Proof of Theorem 4.5
Proof. Let A be an adversary that runs in time at most TA and

corrupts at most t parties during an execution of the protocol.

JF-DKG is known to be t-consist and t-correct. It remains to show

(t,k,TA,TSim)-oracle-aided algebraic simulatability for k = n(t + 1).

For this, we build an appropriate algebraic simulator Sim as follows.

Let C,H denote the dynamically evolving subsets of corrupted and

honest parties, respectively. Whenever A decides to corrupt a party

Pi , Sim returns the internal state of Pi before setting C = C ∪ {i}
and H = H \ {i}. Initially, we set C = ∅. On input k elements

ξ0 = дz0 , . . . , ξk−1
= дzk−1 with (k − 1)-time access to an oracle

DLд(·), for all i ∈ [n], Sim lets the polynomial fi =
∑t
k=0

aikX
k ∈

Zp [X ] of degree t be such that дai j = ξ(i−1)(t+1)+j for all j ∈ [0, t].
In particular, the coefficients of f1 are z0, . . . , zt , those of f2 are

zt+1, . . . , z2t+1, etc. fi is the polynomial of party Pi .

For all i, j ∈ [n], Sim computes дfi (j) as usual. We note that as

long as Sim works properly, the only elements broadcast by it are

those in Step 1. Here, for all i ∈ H , Sim broadcasts Aik = дaik

for k ∈ [0, t]. Whenever A decides to corrupt Pi , Sim samples

a subset Gi ← {1, . . . ,n} \ C of order t + 1 − |C| and queries

DLд(дfi (k )) for all k ∈ Gi . In addition, Sim queries DLд(дfj (i)) for
all j ∈ H \ {i}. (The idea here is that for each new corruption

query j, Sim already knows |C| points on the polynomial fj from
previous corruption queries. Thus, in order to return fj to the

adversary, Sim has to query DLд(·) only on some other (random)
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t + 1 − |C| points. Additionally, in order to return Pj ’s internal
state properly, Sim also has to query DLд(·) on the polynomial

shares fj (i) this party Pj is supposed to get from the other (honest)

parties). By drawing those values from previous corruption queries,

Sim determines the polynomial fi and returns the data fi and fj (i)
for j ∈ H before updating C and H . We may w.l.o.g. assume

that A corrupts exactly t parties. At the end of the simulation,

Sim samples i∗ ← H and queries DLд(дai0 ) for all i ∈ H \ {i∗}.
(This is done in order to determine an algebraic representation

for the public key). Subsequently, it outputs the public key pk =∏
i ∈Q д

ai0
with representation (

∑
i ∈Q\{i∗ } ai0, 0, . . . , 0, 1, 0, . . . 0)

such that y = д
∑
i∈Q\{i∗} ai0 · (дai∗0 )1.

First, we verify that Sim is well-defined by counting the total

number of queries to DLд(·) it has made. The jth corruption query

(on party Pi ) yields |Gi | + |H \ {i}| = t + 1 − |C| + |H | − 1 =

(t + 2 − j) + (n − j) oracle queries. Summing up these values from

j = 1 to j = t yields
∑t
j=1
(t + 2 − j) + (n − j) = t(n + 1). At the end

of the simulation, Sim makes |H | − 1 = n − t − 1 additional queries,

which gives a total number of t(n + 1) + (n − t − 1) = n(t + 1) − 1

oracle queries. Thus, Sim is a well-defined algebraic simulator.

We consider the simulatability matrix L of Sim. By construction,

Sim has eventually queried DLд(·) on дfi (·) for all i ∈ [n] \ {i∗} on
some t + 1 distinct arguments (input values) and дfi∗ (·) on some

t distinct arguments , 0 with the public key corresponding to

ai∗0 = fi∗ (0). Thus, the queried elements along with the public key

essentially correspond to t + 1 distinct arguments of the polynomi-

als f1, . . . , fn . Since the invertibility of a square matrix is invariant

under row switching transformations (corresponding to the chrono-

logical order of queries made to DLд(·) during the execution of the

DKG protocol), we may assume that we make the queries corre-

sponding to each polynomial fi at once. Individually, the matrix

corresponding to the queries дfi (·) is the square Vandermonde ma-

trix of the t+1 distinct input arguments, which is invertible. Overall,

we find that L is a block diagonal matrix

©«
V (f1)

V (f2)
. . .

V (fn )

ª®®®®¬
,

since every polynomial fi has different coefficients: f1 has coeffi-

cients z0, . . . , zt and thusV (f1) occupies the first t+1 rows/columns,

f2 has coefficients zt+1, . . . , z2t+1, etc. Each block matrix is invert-

ible and therefore L is also invertible. Finally, each fi is indistin-
guishable from a random polynomial over Zp of degree t and Sim’s

simulation of the protocol is perfect. The claim on the running time

is easy to verify. □

A.5 Proof of Theorem 4.6
Proof. This is done in the same fashion as the previous proof.

Again,New-DKG is known to be t-consist and t-correct. The (t,k,TA,TSim)-
oracle-aided algebraic simulator for k = n(t + 1) is described as

follows. Sim works in the same way as the algebraic simulator in

the previous proof, whereby honestly sampling the „masking“ poly-

nomials дi ← Zp [X ] at random, so that these are known to Sim
explicitly. The further analysis works analogously. The claim on

the running time is easy to verify. □
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