Distributed (Correlation) Samplers: How to
Remove a Trusted Dealer in One Round*

Damiano Abram, Peter Scholl, and Sophia Yakoubov

Aarhus University, Aarhus, Denmark

Abstract. Structured random strings (SRSs) and correlated random-
ness are important for many cryptographic protocols. In settings where
interaction is expensive, it is desirable to obtain such randomness in as
few rounds of communication as possible; ideally, simply by exchanging
one reusable round of messages which can be considered public keys.

In this paper, we describe how to generate any SRS or correlated random-
ness in such a single round of communication, using, among other things,
indistinguishability obfuscation. We introduce what we call a distributed
sampler, which enables n parties to sample a single public value (SRS)
from any distribution. We construct a semi-malicious distributed sampler
in the plain model, and use it to build a semi-malicious public-key PCF
(Boyle et al., FOCS 2020) in the plain model. A public-key PCF can be
thought of as a distributed correlation sampler; instead of producing a
public SRS, it gives each party a private random value (where the values
satisfy some correlation).

We introduce a general technique called an anti-rusher which compiles
any one-round protocol with semi-malicious security without inputs to
a similar one-round protocol with active security by making use of a
programmable random oracle. This gets us actively secure distributed
samplers and public-key PCF's in the random oracle model.

Finally, we explore some tradeoffs. Our first PCF construction is limited
to reverse-sampleable correlations (where the random outputs of honest
parties must be simulatable given the random outputs of corrupt parties);
we additionally show a different construction without this limitation, but
which does not allow parties to hold secret parameters of the correlation.
We also describe how to avoid the use of a random oracle at the cost of
relying on sub-exponentially secure indistinguishability obfuscation.

* Supported by the Independent Research Fund Denmark (DFF) under project num-
ber 0165-00107B (C3PO), the European Research Council (ERC) under the Euro-
pean Unions’s Horizon 2020 research and innovation programme under grant agree-
ment No 803096 (SPEC), and a starting grant from Aarhus University Research
Foundation.

Table of Contents

Distributed (Correlation) Samplers: How to Remove a Trusted Dealer

inOne Round
Damiano Abram, Peter Scholl, and Sophia Yakoubov

1 Introduction.......o

1.1 Related Work
1.2 Our Contributions
1.3 Technical Overview,
2 Preliminariest
2.1 Indistinguishability Obfuscation
2.2 Puncturable PRFs.
2.3 Simulation-Extractable NIZKs
2.4 MHE with Private Evaluation...............
2.5 Somewhere Statistically Binding Hash Functions
2.6 Universal Samplers
3 Defining Distributed Samplers i i i
31 SeCUrTEY - o vt
4 A Construction with Semi-Malicious Security
5 Upgrading to Active Securityuviiuniiineiinnenn ..
5.1 Defeating Rushing i
6 Public-Key PCF's for Reverse-Samplable Correlations...............
6.1 Correlation Functions and their Properties....................
6.2 Defining Public Key PCFs...... i i
6.3 Public-Key PCF with Trusted Setup................
6.4 Our Public-Key PCFs i
7 Ideal Public Key PCFs and Distributed Universal Samplers
7.1 Distributed Universal Samplers
7.2 Building Ideal Public Key PCFs upon Distributed Universal
SAMPLETS .« . .ot
A Proof of Theorem 5.2
B Proof of Theorem 6.7 ot e
C Proof of Theorem 6.10t

1 Introduction

Randomness is crucial for many cryptographic protocols. Participants can gen-
erate some randomness locally (e.g. by flipping coins), but the generation of
other forms of randomness is more involved. For instance, a uniform reference
string (URS) must be produced in such a way that a coalition of corrupt proto-
col participants — controlled by the adversary — cannot bias it too much. Even
more complex is the generation of a structured reference string (SRS, such as an
RSA modulus), which can depend on secrets that should not be known to any-
one. For instance, constructions such as cryptographic accumulators [Bd94] use
an RSA modulus whose factorization is known to nobody, while many succinct
zero-knowledge proofs such as SNARKs [BCCT12] require a more complex form
of SRS.

In contrast to common reference strings, which are public, some protocols
demand correlated randomness, where each participant holds a secret random
value, but because the values must satisfy some relationship, they cannot be
generated locally by the participants. An example of correlated randomness is
random oblivious transfer, where one participant has a list of random strings, and
another has one of those strings as well as its index in the list. Such correlated
randomness often allows cryptographic protocols to run with a more efficient
online phase.

Typically, in order to set up an SRS or correlated randomness without mak-
ing additional trust assumptions, the parties must run a secure multi-party com-
putation protocol, which takes several rounds of interaction. This is the case, for
instance, in “setup ceremonies” [BGG19, BGM17] that have been designed to
generate trusted SNARK parameters for applications. In this paper, we explore
techniques that let parties sample any common reference string or correlation
in just one round of interaction.

1.1 Related Work

There are a number of lines of work that can be used to generate randomness
in different ways.

Universal samplers. A universal sampler [HJK ' 16] is a kind of SRS which can be
used to obliviously sample from any distribution that has an efficient sampling
algorithm. That is, after a one-time trusted setup to generate the universal sam-
pler, it can be used to generate arbitrary other SRSs. Hofheinz et al. [HJK'16]
show how to build universal samplers from indistinguishability obfuscation and
a random oracle, while allowing an unbounded number of adaptive queries. They
also show how to build weaker forms of universal sampler in the standard model,
from single-key functional encryption [LZ17]. A universal sampler is a very pow-
erful tool, but in many cases impractical, due to the need for a trusted setup.

Non-interactive multiparty computation (NIMPC). Non-interactive multiparty
computation (NIMPC, [BGI*14a]) is a kind of one-round protocol that allows

n parties to compute any function of their secret inputs in just one round
of communication. However, NIMPC requires that the parties know one an-
other’s public keys before that one round, so there is another implicit round
of communication.! NIMPC for general functions can be constructed based on
subexponentially-secure indistinguishability obfuscation [HIJT17].

Spooky encryption. Spooky encryption [DHRW16] is a kind of encryption which
enables parties to learn joint functions of ciphertexts encrypted under indepen-
dent public keys (given one of the corresponding secret keys). In order for se-
mantic security to hold, what party ¢ learns using her secret key should reveal
nothing about the value encrypted to party j’s public key; so, spooky encryp-
tion only supports the evaluation of non-signaling functions. An example of a
non-signaling function is any function where the parties’ outputs are an additive
secret sharing. Dodis et al. [DHRW16] show how to build spooky encryption for
any such additive function from the LWE assumption with a URS (this also im-
plies multi-party homomorphic secret sharing for general functions). In the two-
party setting, they also show how to build spooky encryption for a larger class
of non-signaling functions from (among other things) sub-exponentially hard in-
distinguishability obfuscation.

Pseudorandom Correlation Generators and Functions (PCGs and PCFs). Pseu-
dorandom correlation generators [BCGT19a, BCGT19b, BCGT20b] and func-
tions [BCGT20a, OSY21] let parties take a small amount of specially correlated
randomness (called the seed randomness) and expand it non-interactively, ob-
taining a large sample from a target correlation. Pseudorandom correlation gen-
erators (PCGs) support only a fixed, polynomial expansion; pseudorandom cor-
relation functions (PCFs) allow the parties to produce exponentially many in-
stances of the correlation (via evaluation of the function on any of exponentially
many inputs).

PCGs and PCFs can be built for any additively secret shared correlation
(where the parties obtain additive shares of a sample from some distribution) us-
ing LWE-based spooky encryption mentioned above. Similarly, with two parties,
we can build PCGs and PCFs for more general reverse-samplable correlations by
relying on spooky encryption from subexponentially secure iO. PCGs and PCF's
with better concrete efficiency can be obtained under different flavours of the
LPN assumption, for simpler correlations such as vector oblivious linear evalua-
tion [BCGI18], oblivious transfer [BCGT19b] and others [BCGT20b, BCG*20a].

Of course, in order to use PCGs or PCFs, the parties must somehow get
the correlated seed randomness. Public-key PCGs and PCFs allow the par-
ties to instead derive outputs using their independently generated public keys,
which can be published in a single round of communication. The above, spooky

! This requirement is inherent; otherwise, an adversary would be able to take the
message an honest party sent, and recompute the function with that party’s input
while varying the other inputs. NIMPC does allow similar recomputation attacks,
but only with all honest party inputs fixed, which a PKI can be used to enforce.

encryption-based PCGs and PCFs are public-key, while the LPN-based ones are
not. Public-key PCF's for OT and vector-OLE were recently built based on DCR
and QR [OSY21]; however, these require a structured reference string consisting
of a public RSA modulus with hidden factorization.

1.2 Owur Contributions

In this paper, we leverage indistinguishability obfuscation to build public-key
PCFs for any correlation. On the way to realizing this, we define several other
primitives, described in Fig. 1. One of these primitives is a distributed sampler,
which is a weaker form of public-key PCF which only allows the sampling of pub-
lic randomness. (A public-key PCF can be thought of as a distributed correlation
sampler.) Our constructions, and the assumptions they use, are mapped out in
Fig. 2. We pay particular attention to avoiding the use of sub-exponentially se-
cure primitives where possible (which rules out strong tools such as probabilis-
tic 10 [CLTV15)]).

[Primitive [Distribution [Output|
Distributed Sampler (DS, Def. 3.1) fixed public
Reusable Distributed Universal Sampler (Def. 7.6) any public
Public-key PCF (pk-PCF, [OSY21]) fixed, reverse-samplable| private
Ideal pk-PCF (Def. 7.2) any private

Fig.1. In this table we describe one-round n-party primitives that can be used for
sampling randomness. They differ in terms of whether a given execution enables sam-
pling from any distribution (or just a fixed one), and in terms of whether they only
output public randomness (in the form of a URS or SRS) or also return private corre-
lated randomness to the parties.

We begin by exploring constructions secure against semi-malicious adver-
saries, where corrupt parties are assumed to follow the protocol other than in
their choice of random coins. We build a semi-malicious distributed sampler, and
use it to build a semi-malicious public-key PCF. We then compile those proto-
cols to be secure against active adversaries. This leads to a public-key PCF that
requires a random oracle, and supports the broad class of reverse-sampleable
correlations (where, given only corrupt parties’ values in a given sample, honest
parties’ values can be simulated in such a way that they are indistinguishable
from the ones in the original sample).

We also show two other routes to public-key PCFs with active security. One
of these avoids the use of a random oracle, but requires sub-exponentially secure
building blocks. The other requires a random oracle, but can support general
correlations, not just reverse-sampleable ones. (The downside is that it does not
support correlations with master secrets, which allow parties to have secret input
parameters to the correlation.)

These are valuable trade-offs, as described below.

US
with
Anti- RO, SRS
3SB NIZK Rusher
with URS with RO
Theorem 5.2 | ™| DS Reusable
MHE DS with RO 'Ft)lUl'S{()
Theorem 4.1 Theorem 5.3 M
\ Theorem 7.7
pk-PCF pk-PCF]\ p-PCF Tdeal
with SRS [—>| with RO
Th o Theorem 6.8 T a8 pk—PCF
/ eorem 6. R — eorem 6. with RO
PKE Tl - Theorem 7.8
"k PCE
with URS
Theorem 6.10)

Fig. 2. In this table we describe the constructions in this paper. In pink are assump-
tions: they include somewhere statistically binding hash functions (SSB), multiparty
homomorphic encryption with private evaluation (pMHE [AJIJM20], a weaker form of
multi-key FHE), indistinguishability obfuscation (iO), non-interactive zero knowledge
proofs (NIZK), and universal samplers (US). In blue are constructions of distributed
samplers (DS, Def. 3.1), reusable distributed universal samplers (reusable DUS,
Def. 7.6) and public-key pseudorandom correlation functions (pk-PCFs, [OSY21]). Con-
structions with bold outlines are secure against active adversaries; the rest are secure
against semi-malicious adversaries. In magenta are necessary setup assumptions. (Note
that the availability of a random oracle (RO) immediately implies the additional avail-
ability of a URS.) Dashed lines denote the use of sub-exponentially secure tools.

On the importance of realizing general correlations: There are many valu-
able correlation that are not reverse-sampleable. An example of such a cor-
relation gives a garbled circuit to one party, and all the wire labels to an-
other. Since the labels cannot be reverse-sampled from the circuit (without
violating the security properties of the garbling scheme), such a correlation
is not reverse-sampleable; however, it is a valuable form of pre-processing for
secure two-party computation.

On the importance of avoiding a random oracle: Random oracles are an
idealized assumption with no known realization; there is a large gap between
a random oracle and a hash function, which is often substituted for a random
oracle in practice.

On the importance of avoiding sub-exponential assumptions: It may
seem strange to want to avoid sub-exponentially secure primitives,? when
many candidates for indistinguishability obfuscation itself are based on subex-
ponential assumptions [JLS21]. However, despite informal arguments [LZ17],
this is not known to be inherent: earlier iO candidates are based on polyno-
mial hardness [GGHT13] (albeit for an exponential family of assumptions),
and in future we may obtain iO from a single, polynomial hardness assump-
tion. In general, it is always preferable to require a weaker form of security
from a primitive, and this also leads to better parameters in practice. The
problem of removing sub-exponential assumptions from iO, or applications
of 10, has been studied previously in various settings [GPSZ17, LZ17].

1.3 Technical Overview

Distributed Samplers We start by introducing a new tool called a distributed
sampler (DS, Section 3). A distributed sampler allows n parties to sample a
single, public output from an efficiently sampleable distribution D with just one
round of communication (which is modelled by the exchange of public keys).

Semi-malicious distributed samplers. We use multiparty homomorphic encryp-
tion with private evaluation (pMHE [AJIM20], a weaker, setup-free version of
multi-key FHE) and indistinguishability obfuscation to build semi-malicious dis-
tributed samplers in the plain model (Section 4). In our distributed sampler con-
struction, all parties can compute an encryption of the sample from everyones’
public keys (using, among other things, the homomorphic properties of the en-
cryption scheme), and then use an obfuscated program in party i’s public key to
get party i’s partial decryption of the sample. The partial decryptions can then
be combined to recover the sample itself. The tricky thing is that, in the proof,
we must ensure that we can replace the real sample with an ideal sample. To do
this, we must remove all information about the real sample from the public keys.
However, pMHE secret keys are not puncturable; that is, there is no way to en-
sure that they do not reveal any information about the contents of one cipher-

2 By sub-exponential security, we mean that no PPT adversary cannot break the
security of that primitive with probability better than 27*" for a constant c.

text, while correctly decrypting all others. We could, in different hybrids, hard-
code the correct partial decryption for each of the exponentially many possible
ciphertexts, but this would blow up the size of the obfuscated program. There-
fore, instead of directly including a pMHE ciphertext in each party’s DS public
key, we have each party obfuscate an additional program which produces a new
PMHE ciphertext each time it is used. This way, when we need to remove all in-
formation about a given sample, we can remove the entire corresponding secret
key (via the appropriate use of puncturable PRFs and hardcoded values). This
technique may be useful for other primitives, such as NIMPC [BGI*14a] and
probabilistic i0 [CLTV15], to avoid the use of an exponential number of hybrids.

Achieving active security with a random oracle. Upgrading to active security is
challenging because we need to protect against two types of attacks: malformed
messages, and rushing adversaries, who wait for honest parties’ messages be-
fore sending their own. We protect against the former using non-interactive zero
knowledge proofs. (This requires a URS which, though it is a form of setup, is
much weaker than an SRS.) We protect against the latter via a generic trans-
formation that we call an anti-rusher (Section 5.1). To use our anti-rusher, each
party includes in her public key an obfuscated program which takes as input a
hash (i.e. a random oracle output) of all parties’ public keys. It then samples
new (DS) public keys, using this hash as a PRF nonce. This ensures that even
an adversary who selects her public keys after seeing the honest party public
keys cannot influence the selected sample other than by re-sampling polynomi-
ally many times.

Public-key PCFs We start by building a public-key PCF that requires an
SRS (Section 6.3). The SRS consists of an obfuscated program that, given a
nonce and n parties’ public encryption keys, uses a PRF to generate correlated
randomness, and encrypts each party’s random output to its public key. We can
then eliminate the need for a pre-distributed SRS by instead using a distributed
sampler to sample it (Section 6.4).

Public-key PCFs without random oracles. The proofs of security for the construc-
tions sketched above only require polynomially many hybrids, roughly speaking
because the random oracle allows the simulator to predict and control the in-
puts to the obfuscated programs. We can avoid the use of the random oracle, at
the cost of going through exponentially many hybrids in the proof of security,
and thus requiring sub-exponentially secure primitives.

Public-key PCF's for any correlation with a random oracle. Boyle et al. [BCGT19b]
prove that a public-key PCF in the plain model that can handle any correlation
(not just reverse-sampleable ones) must have keys at least as large as all the
correlated randomness it yields. We observe that we can use a random oracle to
sidestep this lower bound by deriving additional randomness from the oracle.
As a stepping stone, we introduce a different flavour of the distributed sam-
pler, which we call the reusable distributed universal sampler (reusable DUS).

It is reusable because it can be queried multiple times (without the need for
additional communication), and it is universal because each query can produce
a sample from a different distribution (specified by the querier). We build a
reusable distributed universal sampler from a universal sampler, a random oracle
and a distributed sampler (by using the distributed sampler to produce the uni-
versal sampler). Our last public-key PCF (Section 7) then uses the reusable dis-
tributed universal sampler to sample from a distribution that first picks the cor-
related randomness and then encrypts each party’s share under her public key.

2 Preliminaries

Notation. We denote the security parameter by A and the set {1,2,...,m} by
[m]. Our constructions are designed for an ordered group of n parties Py, Pa, ..., P,.
We will denote the set of (indexes of) corrupted parties by C', whereas its com-
plementary, the set of honest players, is H.

We indicate the probability of an event E by P[E]. We use the term noticeable
to refer to a non-negligible quantity. A probability p is instead overwhelming if
1 — p is negligible. We say that a cryptographic primitive is sub-exponentially
secure, if the advantage of the adversary is bounded by 2=° for some constant
¢ > 0. When the advantage is negligible, we say that it is polynomially secure.

We use the simple arrow < to assign the output of a deterministic algorithm
Alg(z) or a specific value a to a variable y, i.e. y « Alg(x) or y < a. If Alg is
instead probabilistic, we write y < Alg(z) and we assume that the random tape
is sampled uniformly. If the latter is set to a particular value r, we write however
y < Alg(z; 7). We use & also if we sample the value of y uniformly over a set
X, ie y & X. Finally, we refer to algorithms having no input as distributions.
The latter are in most cases parametrised by A. The terms circuit and program
are used interchangeably.

2.1 Indistinguishability Obfuscation

We recall the formal definition of indistinguishability obfuscation (10) [BGIT01,
GGH™13]. Informally speaking an obfuscator is an efficient algorithm that “scram-
bles” any given circuit Cr until it is impossible to extract any information about
Cr except its original input-output behaviour. Furthermore, the result of the op-
eration is another program computing exactly the same function as Cr. We pro-
vide a formal definition.

Definition 2.1 (Indistinguishability Obfuscator). Let (Li)ren be a class
of circuits such that every Cr € Ly maps a inp(A\)-bit input into a out(\)-bit
output.

An indistinguishability obfuscator for (Lx)xen is a PPT algorithm iO with
the following properties.

— Correctness. For every \ € N, circuit Cr € Ly and input x € {0,1}"PX)

P[Cr'(z) = Cr(z)| Cr &i0(1*, Cr)] =1

— Security. For every pair of circuits Cro, Cr1 € Ly such that Cro(z) = Cry(x)
for each z € {0,1}"N) | the distributions given by iO(1*, Cro) and iO(1*, Cry)
are computationally indistinguishable.

Observe that the obfuscator is tailored to a specific class of circuits. The
latter often affects the size of the obfuscated programs, increasing it as the class
becomes larger.

The first candidate indistinguishability obfuscator was presented in 2013 by
Garg et al. [GGHT13]. The construction relies on subexponentially secure prim-
itives. Subsequent work has more and more weakened the requirements under
which it is possible to build obfuscation. However, all known constructions still
rely on sub-exponentially secure primitives or exponentially-many assumptions.
Indistinguishability obfuscators not suffering from these problems are still pur-
pose of research.

2.2 Puncturable PRFs

We recall the formal definition of puncturable PRF [KPTZ13, BW13, BGI14b]. A
punturable PRF is a PRF construction F' in which the keys K have an additional
property: we can puncture them in any position x, obtaining a possibly longer
key containing no information about Fi (x) but still allowing computing Fk (y)
for every y # x.

Definition 2.2 (Puncturable PRF). A puncturable PRF with output space
(X\)aen is a pair of PPT algorithms (F, Punct) with the following properties.

— Correctness. For every A € N, key K € {0,1}* and values x,y € {0,1}*
with x # y R
P[Fx(y) = Fg(y)| K < Punct(K,z) | =1

— Security. For every value x € {0,1}*, the following two distributions are

indistinguishable.
K & {01} K & {01}
(K,r)| K « Punct(K, x) (K,r)| K + Punct(K, z)
T FK(m) r <i X)\

As noticed in [BW13], it easy to build puncturable PRFs by relying on the
GGM construction [GGMS6].

2.3 Simulation-Extractable NIZKs

We recall the formal definition of simulation-extractable NIZK [GOO07]. Let R
be an efficiently computable relation consisting of pairs (z,w), where z is called
statement and w witness. As widely known, a NIZK for R is a construction that
allows a party to prove the knowledge of a witness w for a statement x with

10

only one message and without revealing any information about w itself (zero-
knowledge). The procedure relies on a CRS, which, depending on the construc-
tion, can be structured or unstructured. Zero-knowledge is formulated by re-
quiring the existence of two PPT simulators: the first one generates a fake CRS
embedding a trapdoor 7 into it, the second one leverages the knowledge of 7 to
produce valid proofs for various statements without needing the corresponding
witnesses.

A simulation-extractable NIZK has also an additional property: there exists
a PPT algorithm that, in conjunction with the two simulators, is able to extract
the witness from any valid proof generated by the adversary. Such algorithm is
called extractor and exploits the knowledge of the trapdoor in the CRS. We now
formalise the syntax and the security properties of what we have just described.

Definition 2.3 (Non-Interactive Proof). A non-interactive proof for a rela-
tion R is a triple of PPT algorithms (Gen, Prove, Verify) with the following syn-
tax.

— Gen takes as input the security parameter 1 and outputs a CRS.

— Prove takes as input the security parameter 1%, the CRS, a statement x and
a witness w. The output is a proof w for x.

— Verify takes as input a CRS, a proof m and a statement x. The output is a
bit indicating whether the proof has been accepted or not.

Definition 2.4 (Simulation-Extractable NIZK). A non-interactive proof
(Gen, Prove, Verify) for the relation R is a simulation extractable NIZK if it sat-
isfies the following properties.

— Completeness. For every (x,w) € R,

P | Verify(crs, m,z) = 1

crs & Gen(1%))
7 & Prove(1*, crs, 2, w)
— Multi-Theorem Zero Knowledge. There exist PPT simulators Sim; and

Simy such that, for every set of pairs {(x;, w;) }icpm] in R, no PPT adversary
is able to distinguish between the following distributions.

crs & Gen(17)
(CFS7 (xiﬂri)ie[m])) s A
Viem]: m < Prove(1”, crs, z;, w;)
(crs, 7) < Simy (1)
(CFS, (xiaﬂ'i)ie[m])) s .
Vi € [m]: m < Simg(crs, T, x;)

— Stmulation-Extractability. There exists a PPT extractor Extract such
that, for every set of statements {x;};c(m) and PPT adversary A, we have

11

that
(crs, 7) & Simy (1)
Vi€ [m]: (n',2") # (mi, x;)
P Verify(crs, 7', 2") =1
(x/’ w/) ¢ R (.Z'/, 7'['/) (i A(]l/\7 Crs, (.’IJ’L‘, Wl)ze[m])
w' « Extract(crs, 7,2, 7')

Vi€ [m]: m & Simg(ers,mya;) | negl(\)

Observe that simulation-extractability and zero-knowledge imply soundness.

NIZKs can be classified based on the type of CRS. When the latter is a uni-
form string of bits, we talk about NIZK with URS (uniform reference string).
When the CRS is instead structured and possibly depends on secrets that must
not be revealed to the parties, we talk about NIZKs with SRS (structured ref-
erence string).

2.4 MHE with Private Evaluation

We recall the definition of MHE with private evaluation [AJJM?20]. This is a con-
struction that permits any party P; to encrypt a value z; obtaining a ciphertext
¢; and the corresponding partial decryption key sk;. Once given the ciphertexts
of the other parties, P; can apply a circuit Cr on (c;);e[n], obtaining the i-th par-
tial decryption d; by means of pk;. By pooling the partial plaintexts (d;) ;e[it
is then possible to obtain Cr(zy,...,z,) without learning any additional infor-
mation on the inputs. The construction differs from multi-key FHE as there ac-
tually exists no public key but only a private one that changes from ciphertext
to ciphertext. Furthermore, the encryption algorithm needs to be provided with
the parameters (input size, output size and depth) of the circuits we are going
to apply on the ciphertexts. The final decryption needs instead to know the ex-
act circuit that was used to produce the partial plaintext it is provided with. It
is possible to build MHE schemes with private evaluation from polynomially se-
cure LWE [AJJM20].

Definition 2.5 (Multiparty Homomorphic Encryption with Private Eval-
uation). A multiparty homomorphic encryption scheme with private evaluation
(pMHE) is a triple of PPT algorithms (Enc, PrivEval, FinDec) with the following
syntaz.

— Enc is a randomised algorithm that takes as input the security parameter]1)‘,
the parameters of a circuit (input size, output size and depth), an index i and
a message x;. The output is a ciphertext c; and a partial decryption key sk;.

— PrivEval is a randomised algorithm. It takes as input a partial decryption key
sk;, the description of a circuit Cr mapping n inputs into a single output and
n cipherterts c1,ca, ..., c,. The output is a partial plaintext d;.

— FinDec is a deterministic algorithm taking as input a circuit Cr and the
corresponding n partial decryptions di,da,...,d,. The output is a plaintext

d.

12

Definition 2.6 (Reusable Semi-Malicious Security). We say that « pMHE
scheme satisfies reusable semi-malicious security if it satisfies the following prop-
erties.

— Correctness. For every security parameter A € N, circuit Cr mapping n
iputs into one output and inputs x1,Ts,...,T,, we have

Vien]: (¢, ski) & Enc(1*,Cr.params, i, z;)

Pld=res| Vi€ [n]: d; & Eval(sk;, Cr,cq,ca,. .., cn) 1
d < FinDec(Cr,dy,ds, ... ,dy,)
res <— Cr(z1,22,...,Zn)

— Reusable Semi-Malicious Security. There exist PPT simulators Sim;
and Simgy such that, for every n € N, set of corrupted parties C, circuit Cr,

inputs of the honest parties (xp)nem, no PPT adversary is able to win the

game QZ?]{;ESEZ”)*”EH()\) (see Fig. 8) with noticeable advantage.

C,Cr,(xp)
Gonai "< (V)

Initialisation.
1. b&{0,1}
2. Vhe H: (c),sk?) & Enc(1*, Cr.params, h, x,)
3. (7, (ch)ner) & Simi(1*, H, Cr.params)
4. Activate the adversary with input (]1’\, (CZ)heH)-
5. Receive the inputs (z;)iec and the randomness (r;);ec of the corrupted par-
ties from the adversary.
6. Vie C: (c?,sk?) « Enc(1*, Cr.params, i, x;; 7;)
Decryption Queries. On input (Decrypt, Cr’) where Cr’.params = Cr.params.
1. Vhe H: d & PrivEval(skn, Cr', ¢}, c3,...,c%)
2. (7, (dp)nen) & Sims (7,Cr, Cr'(z1, @2, ..., an), (@i, 7i)icc)
3. Reply with (d%)nen.
Output. The adversary wins if the final output is b.

Fig. 3. The pMHE Security Game

Observe that correctness states that if we evaluate a circuit Cr over en-
crypted values x1,xs,...,%, and we pool the partial decryptions, we obtain
C(x1, 2, ...,Ty,). Security instead declares that if we publish the encryption of
a value x; and we later on disclose the partial plaintext corresponding to a cer-
tain circuit Cr, we reveal nothing more than the output of Cr.

2.5 Somewhere Statistically Binding Hash Functions

We recall the formal definition of somewhere statistically binding hashing (SSB)
[HW15], which can be regarded as a more powerful, obfuscation-friendly version

13

of hash functions. The notion was first introduced by Hubacek and Wichs in
[HW15] and can be constructed from FHE [HW15].

The primitive is composed of two algorithms Gen and Hash. The first one is
used to generate a key hiding a special index 7. The second one instead produces
a digest after receiving the key and a message as inputs. The interesting property
of SSB hashing is that there exists no pair of messages with different i-th block
but same digest. We provide now formal definitions.

Definition 2.7 (Somewhere Statistically Binding Hash Function). A
somewhere statistically binding hash function (SSB) with block alphabet X is a
pair of PPT algorithms (Gen, Hash) with the following syntaz.

— Gen is a randomised procedure taking as input the security parameter 11)‘, the
mazimum number of blocks B and an index | € [B]. The output is a hash
key hk.

— Hash is a deterministic procedure taking as input a hash key hk and a message
x € XB where B is the mazimum number of blocks supported by hk. The
output is a digest y.

Definition 2.8 (Security of SSB Hashing). A somewhere statistically bind-
ing hash function is secure if it satisfies the following properties.

— Index Hiding. For every B € N and i,j € [B], no PPT adversary can
distinguish between Gen(]l’\7 B,i) and Gen(]l’\7 B, j).
— Somewhere Statistically Binding. For every B € N and i € [B],

Jz,2’ e X8
P T; # T hk < Gen(1*, B, i) | = negl(\).
Hash(hk, x) = Hash(hk, z")

Observe that the SSB property, in conjunction with index hiding, implies the
collision resistance of the hash function.

The definition described above is actually weaker than the original one. In
[HW15], an SSB hash function featured two additional algorithms Prove and
Verify. The first one was used to generate short openings of the j-th preimage
block of a digest, for any j € [B]. The second one was used to verify them. These
two algorithms are not used in this work.

2.6 Universal Samplers

We recall the definitions of universal sampler (US) [HJK*16], describing the
syntax and the various security notions. Informally speaking, a US is a trusted-
dealer-based construction that permits to deterministically derive samples from
any distribution, learning no information about the corresponding randomness.
This primitive is fundamental for the construction of our distributed universal
samplers (see Section 7.1 and Section 7.1).

14

Definition 2.9 (Universal Sampler). Let £(\), r(X) and t(\) be polynomials.
A universal sampler for (€, r,t)-distributions is a pair of PPT algorithms (Setup,
Sample) with the following syntax.

1. Setup is a randomised algorithm taking as input the security parameter 1
and outputting a sampler U.

2. Sample is a deterministic procedure possibly interacting with a random or-
acle H. It takes as input a sampler U and the description D of an (¢,r,t)-
distribution, outputting a sample R.

Observe that in the above definition, we ask that Setup does not interact with
any random oracle. If that was not the case, it would be impossible to generate
a universal sampler inside an obfuscated program. The original definition of
US [HJK'16] was not as restrictive. However, all the constructions presented
in [HJKT16] satisfy the property described above, including those on which we
rely in this work.

One-time universal samplers. We now formalise the weaker security notion of
the primitive. In particular, we require that the samples look random only for
one specific distribution selected ahead of time. In [HJKT16], the authors present
a construction satisfying this definition without random oracle.

Definition 2.10 (One-Time Universal Sampler). A universal sampler (Setup,
Sample) for (¢,r,t)-distributions satisfies one-time security if there exists a PPT
simulator Sim such that, for every (¢, r,t)-distribution D, the following two dis-
tributions are computationally indistinguishable

3 A
{U7R U < Setup(17) } {U,R

R < Sample(U, D)
Notice that security states that one-time USs can be programmed to output
ideal samples from the distribution D, without the adversary noticing it.

R&ED
U & Sim(1Y, D, R)

Adaptively secure universal samplers. We present the stronger security notion
of universal samplers. We now ask that the samples look random for every dis-
tribution adaptively chosen by the adversary. In particular, we do not care only
about one distribution, but multiple ones. This definition can only be satisfied
in the random oracle model. Hofheinz et al. presented an example of such con-
struction in [HJK*16].

Definition 2.11 (Adaptively Secure Universal Sampler). A universal sam-
pler (Setup, Sample) for (¢,r,t)-distributions satisfies adaptive security if there
exist PPT simulators SimGen and SimRO such that no PPT adversary can win
the game Gys(\) (see Fig. 4) with noticeable advantage.

As for the one-time case, security states that the sampler U and the random
oracle H could be programmed to output ideal samples, without the adversary
noticing it. The only difference is that now the adversary can adaptively choose
the distribution multiple times.

15

Gus(A)
Initialisation. The challenger samples a random bit b & {0,1} and computes
Up & Setup(]lA). Then, it instantiates a random oracle H and a sampling oracle O.
Upon receiving an (¢, r, t)-distribution D, the latter replies with D(F(D)) where F
is a truly random function outputting r(\) bits. Finally, the challenger computes
(7,U1) & SimGen® (1") and provides the adversary with Up.
Oracle query. Upon receiving any query (RO, z) from the adversary, the chal-
lenger computes 7o < H(z) and (7,71) €& SimRO® (1%, z, 7). It replies with 7.
Sample. Upon receiving any query (Sample, D), the challenger computes Ry <+
Sample™ (Up, D) and Ry < O(D). Then, it replies with Ry.
Output. The adversary wins if its output is equal to b.

Fig. 4. The Universal Sampler Game

3 Defining Distributed Samplers

Informally speaking, a distributed sampler (DS) for the distribution D is a con-
struction that allows n parties to obtain a random sample R from D with just
one round of communication and without revealing any additional information
about the randomness used for the generation of R. The output of the procedure
can be derived given only the public transcript, so we do not aim to protect the
privacy of the result against passive adversaries eavesdropping the communica-
tions between the parties.

If we assume an arbitrary trusted setup, building a DS becomes straightfor-
ward; we can consider the trivial setup that directly provides the parties with a
random sample from D. Obtaining solutions with a weaker (or no) trusted setup
is much more challenging.

The structure and syntax of distributed samplers is formalised as follows. We
then analyse different flavours of security definitions.

Definition 3.1 (n-party Distributed Sampler for the Distribution D).
An n-party distributed sampler for the distribution D is a pair of PPT algorithms
(Gen, Sample) with the following syntax:

1. Gen is a probabilistic algorithm taking as input the security parameter 1
and a party index i € [n] and outputting a sampler share U; for party i.
Let {0, 1}L(’\) be the space from which the randomness of the algorithm is
sampled.

2. Sample is a deterministic algorithm taking as input n shares of the sampler
Uy,Us, ..., U, and outputting a sample R.

In some of our security definitions, we will refer to the one-round protocol
IIps that is induced by the distributed sampler DS = (Gen, Sample). This is the
natural protocol obtained from DS, where each party first broadcasts a message
output by Gen, and then runs Sample on input all the parties’ messages.

16

3.1 Security

In this section we formalise the definition of distributed samplers with relation to
different security flavours, namely, semi-malicious and active. We always assume
that we deal with a static adversary who can corrupt up to n — 1 out of the n
parties. We recall that a protocol has semi-malicious security if it remains secure
even if the corrupt parties behave semi-honestly, but the adversary can select
their random tapes.

Definition 3.2 (Distributed Sampler with Semi-Malicious Security). A
distributed sampler (Gen,Sample) has semi-malicious security if there exists a
PPT simulator Sim such that, for every set of corrupt parties C C [n] and corre-
sponding randomness (p;)icc, the following two distributions are computation-
ally indistinguishable:

pi & {0, 11X Vie H
U; + Gen(1*,i; p;) Vi € [n] and
R+ Sample(Uy,Us, ..., U,)
Uiiey | RE DAY
{ (pi)icc, R ‘ (Ui)ien & Sim(1*,C, R, (pi)ieC)}

(Uz)1€[n]
(pi)iECa R

Observe that this definition implies that, even in the simulation, the relation
R = Sample(Uy,Us, ..., Up,)

holds with overwhelming probability. In other words, security requires that
(Gen, Sample) securely implements the functionality that samples from D and
outputs the result to all of the parties.

Observe that the previous definition can be adapted to passive security by
simply sampling the randomness of the corrupted parties inside the game in the
real world and generating it using the simulator in the ideal world.

We now define actively secure distributed samplers. Here, to handle the chal-
lenges introduced by a rushing adversary, we model security by defining an ideal
functionality in the universal composability (UC) framework [Can01], and re-
quire that the protocol IIps securely implements this functionality.

Definition 3.3 (Distributed Sampler with Active Security). Let DS =
(Gen,Sample) be a distributed sampler for the distribution D. We say that DS
has active security if the one-round protocol Ilps securely implements the func-
tionality Fp (see Fig. 5) against a static and active adversary corrupting up to
n — 1 parties.

Remark 3.4 (Distributed Samplers with a CRS or Random Oracle). Our con-
structions with active security rely on a setup assumption in the form of a com-
mon reference string (CRS) and random oracle. For a CRS, we assume the al-
gorithms Gen, Sample are implicitly given the CRS as input, which is modelled

17

Fo
Initialisation. On input Init from every honest party and the adversary, the
functionality activates and sets @ :=). (Q will be used to keep track of queries.)
If all the parties are honest, the functionality outputs R & D(]IA) to every honest
party and sends R to the adversary, then it halts.
Query. On input Query from the adversary, the functionality samples R & D(]lA)
and creates a fresh label id. It sends (id, R) to the adversary and adds the pair to Q.
Output. On input (Output, |/c\i) from the adversary, the functionality retrieves the
only pair (id, R) € @ with id = id. If such pair does not exist, the functionality
does nothing. Otherwise, it outputs R to every honest party and terminates.
Abort. On input Abort from the adversary, the functionality outputs L to every
honest party and terminates.

Fig. 5. Distributed Sampler Functionality

as being sampled by an ideal setup functionality. As usual, the random oracle is
modelled as an external oracle that may be queried by any algorithm or party,
and programmed by the simulator in the security proof.

Observe that this definition allows the adversary to request several samples
R from the functionality, and then select the one it likes the most. Our definition
must allow this in order to deal with a rushing adversary who might wait for the
messages (U;);ep of all the honest parties and then locally re-generate the cor-
rupt parties’ messages (U;);ec, obtaining a wide range of possible outputs. Fi-
nally, it can broadcast the corrupt parties’ messages that lead to the output it
likes the most. This makes distributed samplers with active security rather use-
less when the distribution D has low entropy, i.e. when there exists a polynomial-
size set S such that D(1") € S with overwhelming probability. Indeed, in such
cases, the adversary is able to select its favourite element in the image of D.

On the usefulness of distributed samplers with a CRS. Our distributed samplers
with active security require a CRS for NIZK proofs. Since one of the main goals
of the construction is avoid trusted setup in multiparty protocols, assuming the
existence of a CRS, which itself is some form of setup, may seem wrong.

We highlight, however, that some types of CRS are much easier to generate
than others. A CRS that depends on values which must remain secret (e.g. an
RSA modulus with unknown factorization, or an obfuscated program which con-
tains a secret key) is difficult to generate. However, assuming the security of trap-
door permutations [FLS90], bilinear maps [GOS06], learning with errors [PS19]
or indistinguishability obfuscation [BP15], we can construct NIZK proofs where
the CRS is just a random string of bits, i.e. a URS. In the random oracle model,
such a CRS can even be generated without any interaction. So, the CRS re-
quired by our constructions is the simplest, weakest kind of CRS setup.

18

4 A Construction with Semi-Malicious Security

We now present the main construction of this paper: a distributed sampler with
semi-malicious security based on polynomially secure MHE with private evalu-
ation and indistinguishability obfuscation. In Section 5, we explain how to up-
grade this construction to achieve active security.

The basic idea. Our goal is to generate a random sample R from the distribution
D. The natural way to do it is to produce a random bit string s and feed it into
D. We want to perform the operation in an encrypted way as we need to preserve
the privacy of s. A DS implements the functionality that provides samples from
the underlying distribution, but not the randomness used to obtain them, so no
information about s can be leaked.

We guarantee that any adversary corrupting up to n — 1 parties is not able
to influence the choice of s by XORing n bit strings of the same length, the i-
th one of which is independently sampled by the i-th party P;. Observe that we
are dealing with a semi-malicious adversary, so we do not need to worry about
corrupted parties adaptively choosing their shares after seeing those of the honest
players.

Preserving the privacy of the random string. To preserve the privacy of s, we
rely on an MHE scheme with private evaluation pMHE = (Enc, PrivEval, FinDec).
Each party P; encrypts s;, publishing the corresponding ciphertext ¢; and keep-
ing the private key sk; secret. As long as the honest players do not reveal their
partial decryption keys, the privacy of the random string s is preserved. Using
the homomorphic properties of the MHE scheme, the parties are also able to ob-
tain partial plaintexts of R without any interactions. However, we run into an
issue: in order to finalise the decryption, the construction would require an ad-
ditional round of communication where the partial plaintexts are broadcast.

Reverting to a one-round construction. We need to find a way to perform the
final decryption without additional interaction, while at the same time preserving
the privacy of the random string s. That means revealing a very limited amount
of information about the private keys ski, sk, ..., sk;,, so that it is only possible
to retrieve R, revealing nothing more.

Inspired by [HIJT17], we build such a precise tool by relying on indistin-
guishability obfuscation: in the only round of interaction, each party P; addi-
tionally publishes an obfuscated evaluation program EvProg, containing the pri-
vate key sk,. When given the ciphertexts of the other parties, EvProg, evaluates
the circuit producing the final result R and outputs the partial decryption with
relation to sk;. Using the evaluation programs, the players are thus able to re-
trieve R by feeding the partial plaintexts into pMHE.FinDec.

Dealing with the leakage about the secret keys. At first glance, the solution out-

lined in the previous paragraph seems to be secure. However, there are some
sneaky issues we need to deal with.

19

In this warm-up construction, we aim to protect the privacy of the random
string s by means of the reusable semi-malicious security of the MHE scheme
with private evaluation. To rely on this assumption, no information on the secret
keys must be leaked. However, this is not the case here, as the private keys are
part of the evaluation programs.

In the security proof, we are therefore forced to proceed in two steps: first,
we must remove the secret keys from the programs using obfuscation, and then
we can apply reusable semi-malicious security. The first task is actually trickier
than it may seem. iO states we cannot distinguish between the obfuscation of two
equivalent programs. Finding a program with the same input-output behaviour
as EvProg, without it containing any information about sk; is actually impossible,
as any output of the program depends on the private key. We cannot even hard-
code the partial decryptions under sk; for all possible inputs into the obfuscated
program as that would require storing an exponential amount of information,
blowing up the size of EvProg,.

In [HIJ™17], while constructing an NI-MPC protocol based on multi-key FHE
and 0, the authors deal with an analogous issue by progressively changing the
behaviour of the program input by input, first hard-coding the output corre-
sponding to a specific input and then using the simulatability of partial decryp-
tions to remove any dependency on the multi-key FHE secret key. Unfortunately,
in our context, this approach raises additional problems. First of all, in contrast
with some multi-key FHE definitions, MHE does not support simulatability of
partial decryptions. Additionally, since the procedure of [HIJT17] is applied in-
put by input, the security proof would require exponentially many hybrids. In
that case, security can be argued only if transitions between subsequent hybrids
cause a subexponentially small increase in the adversary’s advantage. In other
words, we would need to rely on subexponentially secure primitives even if fu-
ture research shows that iO does not. Finally, we would still allow the adversary
to compute several outputs without changing the random strings (sp)ney se-
lected by the honest parties. Each of the obtained values leaks some additional
information about the final output of the distributed sampler. In [HIJ*17], this
fact did not constitute an issue as this type of leakage is intrinsically connected
to the notion of NI-MPC.

Bounding the leakage: key generation programs. To avoid the problems described
above, we introduce the idea of key generation programs. Each party P; pub-
lishes an obfuscated program KGProg,; which encrypts a freshly chosen string s;,
keeping the corresponding partial decryption key secret.

The randomness used by KGProg, is produced via a puncturable PRF F
taking as a nonce the key generation programs of the other parties. In this way,
any slight change in the programs of the other parties leads to a completely
unrelated string s;, ciphertext ¢; and key sk;. It is therefore possible to protect
the privacy of s; using a polynomial number of hybrids, as we need only worry
about a single combination of inputs. Specifically, we can remove any information
about sk; from EvProg, and hard-code the partial plaintext d; corresponding to
(¢j)jeln)- At that point, we can rely on the reusable semi-malicious security of the

20

MHE scheme with private evaluation, removing any information about s; from
¢; and d; and programming the final output to be a random sample R from D.

The introduction of the key generation programs requires minimal modifi-
cations to the evaluation programs. In order to retrieve the MHE private key,
EvProg; needs to know the same PRF key K; used by KGProg,. Moreover, it now
takes as input the key generation programs of the other parties, from which it
will derive the MHE ciphertexts needed for the computation of R. Observe that
EvProg, will also contain KGProg,, which will be fed into the other key genera-
tion programs in a nested execution of obfuscated circuits.

Compressing the inputs. The only problem with the construction above, is that
we now have a circularity issue: we cannot actually feed one key generation
program as input to another key generation program, since the programs are of
the same size. This holds even if we relied on obfuscation for Turing machines,
since to prove security, we would need to puncture the PRF keys in the nonces,
i.e. the key generation programs of the other parties. The point at which the i-
th key is punctured, which is at least as big as the program itself, must be hard-
coded into KGProg;, which is clearly too small.

Instead of feeding entire key generation programs into KGProg,, we can input
their hash, which is much smaller. This of course means that there now exist
different combinations of key generation programs leading to the same MHE
ciphertext-key pair (c;,sk;), and the adversary could try to extract information
about sk; by looking for collisions. The security of the hash function should,
however, prevent this attack. The only issue is that iO does not really get along
with this kind of argument based on collision-resistant hashing. We instead rely
on the more iO-friendly notion of a somewhere statistically binding hash function
SSB = (Gen, Hash) [HW15].

Final construction. We now present the formal description of our semi-maliciously
secure DS. The algorithms Gen and Sample, as well as the unobfuscated key
generation program Pkg and evaluation program Pg,a, can be found in Fig. 6.
In the description, we assume that the puncturable PRF F' outputs pseudoran-
dom strings (r1,72,73) where each of r1, 5 and r3 is as long as the randomness
needed by D, pMHE.Enc, and HE.PrivEval respectively. Moreover, we denote by
B the maximum number of blocks in the messages fed into SSB.Hash.

Theorem 4.1. If SSB = (Gen,Hash) is a somewhere statistically binding hash
function, pMHE = (Enc, PrivEval, FinDec) is a MHE scheme with private eval-
uation, 10 is an indistinguishability obfuscator and (F,Punct) is a puncturable
PRF, the construction in Fig. 6 is an n-party distributed sampler with semi-
malicious security for the distribution D.

Proof. We prove the security of the construction in Fig. 6 in a sequence of
hybrids. In the initial hybrid (hybrid 0), we start with the real game; in the last
hybrid (hybrid 6), we produce a simulated sampler share on behalf of one of the
honest parties, which leads the parties to output an R sampled at random from

21

Distributed Sampler with Semi-Malicious Security

Gen(1*,4) :
1. K& {0,117
2. hk & SSB.Gen(1*, B, 0)
3. KGProg & i0(1*, PuelK, i])
4. EvProg & i0(1*, Peva K, i, hk, KGProg])
5. Output U := (hk, KGProg, EvProg).

Sample((Ui = (hk;, KGProg,, EvProgi))

ie[n])
1. Vie[n]: di+ EvProg,((hk;, KGProg;);x:)
2. Output R < pMHE.FinDec(D, (d:)ic[n))

The algorithm D.
Given a set of n random strings si, Sa, . .., Sp, perform the following operations.

l. s 51Ps52D---Dsn
2. Output R < D(1*;s)

Prc[K,i]: the key generation program

Hard-coded. The private key K and the index ¢ of the party.
Input. A hash y.

1. (7'1,7‘2,1”3) <« FK(y)

2. 81

3. (¢, sk) < pMHE.Enc(1*, D.params, i, s; 2)
4. Output c.

Peval[K, i, hk;, KGProg;]: the evaluation program

Hard-coded. The private key K, the index i of the party, the hash key hk,,
and the obfuscated key generation program KGProg,.

Input. A set of n — 1 pairs (hk;, KGProg;);.; where the first element is a hash
key and the second is an obfuscated key generation program.

Vj €[n]: y; + SSB.Hash(hk;, (hk;, KGProg,)i;)
Vj#i: c; < KGProg,(y;)

(r1,72,73) < Fr(y:)

S; <11

(csiysks) pMHE.Enc(IlA,ﬁ.params,i,si; r2)

di + pMHE.PrivEval(ski, D, ¢1, ¢z, . . ., Cn; T3)
Output d;.

Nt W=

Fig. 6. A Distributed Sampler with Semi-Malicious Security

22

D. We choose one honest party h, and throughout hybrids 1 — 6, we modify only
how the sampler share U}, is produced. The rest of the honest parties continue
to produce their sampler shares as per the Gen protocol in Fig. 6.

Because the simulator has access to all parties’ random tapes, it of course
knows all their secrets. In the following, we refer to U; = (hk;, KGProg,, EvProg;)
as the sampler share produced by party i for ¢ # h. We also refer to the secret
keys K; contained in those programs (also known to the simulator). For whatever
values Uy, = (hky,, KGProg;,, EvProg;,) the simulator produces on behalf of party
h in a given hybrid, we let §; denote the share of the randomness generated by
KGProg; (on the appropriate nonce y), and (¢;, sAkz-) denote the encryption of that
randomness and the corresponding partial decryption key produced by KGProg,.
Finally, we let 7% denote the random string input in pMHE.Enc by KGProg, for
the generation of ¢;.

Hybrid 0: This is the initial hybrid, where the simulator, on behalf of every
honest party i, generates a sampler share U; as per the Gen algorithm in Fig. 6.

Hybrid 1: In this hybrid, the simulator, on behalf of honest party A, punc-
tures the key K} at the relevant point (the hash of (hk;, KGProg;);., produced
by the other parties j), but programs the appropriate output at that point into
the programs. By the correctness of F' puncturing, the input-output behaviour
of both programs is the same as it was in the previous hybrid. Therefore, by the
security of iO, this hybrid is indistinguishable from the previous one.

More specifically, let (hk;, KGProg;);xx be the hash key and obfuscated key
generation program of every other party. (The simulator knows these — even for
corrupt parties — since she gets to see the randomness tape of corrupt parties
in the definition of semi-malicious security.) The simulator does the following
during Gen on behalf of party h, where the text in red indicates what changed
since the previous hybrid:

Ky & {0,1}*

hky < SSB.Gen(1*, B, 0)

Jn < SSB.Hash(hk;L, (hk;, KGProgj).#/l,)

R’h — Punct(Kh,Qh)

(8n,72,73) < Fr, (Un)

((:h,sAkh) — pI\/IHEAEnc(]lA,b.params., hy $p; 72)

KGProg), < i0 (1%, Pic[Kn, by in, ¢1]) (see Fig. 7)

EvProg, < i0(1*, PL [, h, hky, KGProgy,, i, ¢n, sk, 73]) (see Fig. 8)
Output Uy, := (hkp, KGProg;,, EvProg;,).

© X N ot W=

Next, for every [from 0 to the length of the input to SSB.Hash, we proceed
first to Hybrid 2.0.1, then to Hybrid 2.1.2.

Hybrid 2.[.1: In this hybrid, the simulator, on behalf of honest party h,
makes the hash key hk;, statistically binding at index ! (whereas before it was
statistically binding at index ! — 1). This hybrid is indistinguishable from the
previous one by the index hiding property of SSB.

Hybrid 2.[.2: In this hybrid, the simulator, on behalf of honest party h,
changes the evaluation program EvProg;, to only use the hardcoded key and

23

Hard-coded. The private key K, the index i of the party, as well as a nonce
9, and a ciphertext ¢.
Input. A nonce y.

1.
2.
3.
4.
5.
6.

If y = g, output ¢.

Otherwise, continue executing Pxe[K]:
(’I‘l, T2, T3) — FK(y)

ST

(¢,sk) < pMHE.Enc(1*, D.params, i, s; 72)
Output c.

Fig. 7. The Key Generation Program

Péval [[(7 17 hkir KGPl’Ogi,

Hard-coded. The private key K, the index i of the party, the hash key hk;, the
obfuscated key generation program KGProg,, as well as a nonce g, a ciphertext
¢, a secret key sk, and randomness 7.

Input. A set of n — 1 pairs (hk;, KGProg;),;; where the first element is a hash
key and the second is an obfuscated key generation program.

Vj € [n]: y; + SSB.Hash(hk;, (hki, KGProg,):+;)
Vj#i: c; < KGProg,(y;)

If y; = 4, set sk; < sk, ¢; < ¢ and r3 « 7.
Otherwise,

(a) (r1,r2,73) < Fr(y:)

(b) S; <11

(¢) (csysks) « pMHE.Enc(]l)‘,ﬁ.params,i,si; r2)
5. d; < pMHE.PrivEval(sk;, D, ¢1, ¢z, . . ., Cn; T3)

6. Output d;.

=W e

Fig. 8. The Evaluation Program

24

ciphertext if the first [blocks of the input coincide with a hardcoded reference
input. (The simulated party h now obfuscates PZ, (Fig. 9) instead of Pg,,
(Fig. 8).) By the fact that SSB.Hash is statistically binding at [, the input-
output behaviour of both programs is the same as it was in the previous hybrid.
Therefore, by the security of iO, this hybrid is indistinguishable from the previous
one.

More specifically, the simulator does the following during Gen on behalf of
party h, where the text in red indicates what changed since the previous hybrid:

1. Kj, & {0,1}*

2. hkj, & SSB.Gen(1*, B, 1)

3. Qh < SSB.Hash (hkh, (hkj7 KGPI’Ogj)j?gh)

4. Ky + Punct(Kp, i)

5. (§h,f'2, 7A’3) — FKh (Qh)

6. (éh,sAkh) — pMHE.Enc(]l)‘,@.params,h,éh; 2

7. KGProg, < iO(1*, Pc[Kn, b, in, én]) (see Fig. 7)

8. w < (hk;, KGProgj)j;,gh

9. EvProg;, & i0(1*, P2, [Kn, h, hky,, KGProg,,, i, ¢n, skn, 73, 1)) (see Fig. 9)
10. Output Uy, := (hky,, KGProg;,, EvProg,,).

P2,.K, i, hki, KGProg,, i, pk, é, sk, 7,]

Hard-coded. The private key K, the index i of the party, the hash key hk;, the
obfuscated key generation program KGProg,, as well as a nonce g, a ciphertext
¢, a secret key sAk, randomness 7, and a hardcoded input w.

Input. A set of n—1 pairs (hk;, KGProg;);.2; where the first element is a hash
key and the second is an obfuscated key generation program.

1. Vj € [n]: y; < SSB.Hash(hk;, (hki, KGProg,):;)
2. Vj#i: c¢; + KGProg;(y;)
3. If y; = ¢ and the first I blocks of @ and (hk;, KGProg;). coincide, set
ski < sk, ¢; < ¢ and 73 < 7.
4. Otherwise,
(a) (ri,72,73) < Fr(ys)
(b) S; <11
(¢) (csiysks) « pMHE.Enc(]l)‘,ﬁ.params,i,si; r2)
5. d; < pMHE.PrivEval(sk;, f), C1,C2,...,Cn; T3)
6. Output d;.

Fig. 9. The Evaluation Program

Hybrid 3: At this point, EvProg;, only uses the hardcoded key and ciphertext
if the entire input matches the hardcoded reference input. Since that is the case,

25

EvProg;, will only ever use the hardcoded decryption key on one ciphertext; so,
we can remove the hardcoded decryption key entirely, and instead hardcode a
partial decryption value. In this hybrid, the simulator, on behalf of party h,
replaces P2, (Fig. 9) with P ., (Fig. 10) which does exactly this. This hybrid
is indistinguishable from the previous one by the security of iO.

More specifically, the simulator does the following during Gen on behalf of
party h, where the text in red indicates what changed since the previous hybrid:

LK & {0,130

. hky, & SSB.Gen(1*, B, B)

. Un + SSB.Hash (hkh, (hk;, KGProgj)j;,gh)

Ky, + Punct(Kp, i)

- (8n,72,73) < Fk,, (Un)

. (éh,sAkh) — pMHE.Enc(]lA,ﬁ.params,h,éh; 2

. KGProg;, <~ i0(1*, P (K, hyJn, ¢n)) (see Fig. 7)
. dp, < pMHE.PrivEval(sky, D, &1, és, . . ., én; T'3)
LW (hkj, KGPI’Ogj)j7gh

. EvProg), < i0(1*,PZ,.[Kp, h, hky, KGProg,,, 1, dy)) (see Fig. 10)
. Output Uy, := (hkp, KGProg,,, EvProgy,).

—_ =

PE,a[K, i, hk;, KGProg,,), |

Hard-coded. The private key K, the index i of the party, the hash key hk;,
the obfuscated key generation program KGProg,, as well as a hardcoded input
w and a partial decryption d.

Input. A set of n — 1 pairs (hk;, KGProg;);; where the first element is a hash
key and the second is an obfuscated key generation program.

If (hk;, KGProg;) i = w, output d.

Otherwise, Vj € [n] : y; SSB.Hash (hk;, (hk;, KGProg;)i;)
Vj#i: c; < KGProg,(y;)

(r1,72,73) < Fre(ys)

S; <11

(¢i,sk;) < pMHE.Enc(1*, D.params, i, s;; r2)

d; < pMHE.PrivEval(ski, D, ¢1, ¢a, . . ., Cn; T3)

Output d;.

PN DO WD

Fig. 10. The Evaluation Program

Hybrid 4. In this hybrid, the simulator computes the final output R directly
as R < D(1%;s) where s = §; @ 82 @ --- @ 8,,. (The simulator of course has
all these values, as it has access to all parties’ random tapes.) This hybrid is
indistinguishable from the previous one by the correctness of obfuscation and
MHE with private evaluation.

26

Hybrid 5. In this hybrid, the simulator, on behalf of party h, replaces the
hardcoded output of F' at g with a truly random one. This hybrid is indistin-
guishable from the previous one by the security of F'.

More specifically, the simulator does the following during Gen on behalf of
party h, where the text in red indicates what changed since the previous hybrid:

LKy & {01

. hkj, & SSB.Gen(1*, B, B)

. gn < SSB.Hash (hkh7 (hk;, KGProgj)jih)

Kh — Punct(Kh,gjh)

. Sample (8,72, 73) at random from the appropriate space
. (én,skp) « pMHE.Enc(1*, D.params, h, 85,; 72)

. KGProg), & i0(1, Pis[Kn, h, §n, én]) (see Fig. 7)

. dj, < pMHE.PrivEval(sky,, D, é1,éa, . . ., én; 73)

. W < (hk;, KGPrOgj)j;ﬁh

. EvProg), < i0(1*,PE,[Kp, h, hky, KGProg,,, 1), dy)) (see Fig. 10)
. Output Uy, := (hky, KGProg;,, EvProg;,).

Hybrid 6. In this hybrid, the simulator replaces the real ciphertext ¢, and
partial decryption dj, with simulated ones. The production of this simulated
values does not require party h’s secret decryption key nor the plaintext §p; it
forces the final decryption to output the value R. Since the view of the adversary
contains now no information about §,, the simulator can sample R at random
from D. This hybrid is indistinguishable from the previous one by the reusable
semi-malicious security of the MHE scheme with private evaluation.

More specifically, the simulator does the following during Gen on behalf of
party h, where the text in red indicates what changed since the previous hybrid:

1. K, & {0,1}*
. hky, & SSB.Gen(1*, B, B)
. yih < SSB.Hash (hkh, (hkj, KGPI’Ogj)j?gh)
Ky Punct(Kh,gjh)
. (7,¢é,) < pMHE.Sim, (1*, {h}, D.params)
. KGProg), & iO(]l)‘,P&G[IA(h,h, n, ¢n)) (see Fig. 7)
. R&E DAY _
. Retrieve the values (§;);»;, and the randomness (f%) j=n used by the other
parties for the generation of (&;);£n
9. (,dp) € pMHE.Simy (7, D, R, (3;,73) 21
10. w « (hkj, KGPrOgj)j7gh
11. EvProg, & iO(]l’\,PE’val[Kh, h, hkp,, KGProg,,, w,dh]) (see Fig. 10)
12. Output Uy, := (hky,, KGProg;,, EvProg,,).
Since this hybrid gives us exactly the distribution we want our original Hybrid
0 to be indistinguishable from, this completes the proof.

—

0= O U W

O

Observe that a distributed sampler with semi-malicious security also has
passive security.

27

5 Upgrading to Active Security

When moving from semi-malicious to active security, there are two main issues
we need to tackle: corrupt parties publishing malformed shares of the sampler,
and rushing adversaries. The former can be easily dealt with by adding NIZK
proofs of well-formedness to the sampler shares (for this reason, our solution
relies on a URS). Rushing adversaries are a more challenging problem, and to
deal with this, we rely on a random oracle.

The problem of rushing. In the semi-maliciously secure construction described
in Section 4, the randomness used to generate an honest party’s MHE cipher-
texts and private keys is output by a PRF, which takes as input a nonce that de-
pends on the key generation programs of all parties (including the corrupt ones).
To prove security, we need to puncture the PRF key at that nonce, erasing any
correlation between the MHE ciphertext and the PRF key. This can be done in
the semi-malicious case, as the simulator knows the programs of the corrupted
parties before it must produce those of the honest parties. In the actively secure
case, we run into an issue. The adversary is able to adaptively choose the pro-
grams of the corrupted parties after seeing those of the other players, in what is
called rushing behaviour. In the security proof, we would therefore need to punc-
ture a PRF key without knowing the actual position where puncturing is needed.

Although the issue we described above is very specific, dealing with rushing
behaviour is a general problem. In a secure distributed sampler, we can program
the shares of the honest parties to output an ideal sample when used in con-
junction with the shares of the corrupted players. Since the latter are unknown
upon generation of the honest players’ shares, the immediate approach would be
to program the outputs for every possible choice of the adversary. We run how-
ever into an incompressibility problem as we would need to store exponentially
many ideal outputs in the polynomial-sized sampler shares.

5.1 Defeating Rushing

In this section, we present a compiler that allows us to deal with rushing be-
haviour without adding any additional rounds of interaction. This tool handles
rushing behaviour not only for distributed samplers, but for a wide range of ap-
plications (including our public-key PCF in Section 6). Consider any single-round
protocol with no private inputs, where SendMsg is the algorithm which party i
runs to choose a message to send, and Output is an algorithm that determines
each party’s output (from party i’s state and all the messages sent). More con-
cretely, we can describe any such one-round protocol using the following syntax:

SendMsg(]lA, i;7;) — g generates party ¢’s message g;, and
Output(i, 74, (gj)jen)) — res; produces party 4’s output res;.

(In the case of distributed samplers, SendMsg corresponds to Gen, and Output
corresponds to Sample.)

28

We define modified algorithms (ARMsg, AROutput) such that the associated
one-round protocol realizes an ideal functionality that first waits for the cor-
rupted parties’ randomness, and then generates the randomness and messages
of the honest parties.

This functionality clearly denies the adversary the full power of rushing: the
ability to choose corrupt parties’ messages based on honest parties’ messages. For
this reason, we call it the no-rush functionality Fnorush- However, we do allow
the adversary a weaker form of rushing behaviour: selective sampling. The func-
tionality allows the adversary to re-submit corrupt parties’ messages as many
times as it wants, and gives the adversary the honest parties’ messages in re-
sponse (while hiding the honest parties’ randomness). At the end, the adversary
can select which execution she likes the most.

Definition 5.1 (Anti-Rusher). Let (SendMsg, Output) be a one-round n-party
protocol where SendMsg needs L(\) bits of randomness to generate a message.
An anti-rusher for SendMsg is a one-round protocol (ARMsg, AROutput) imple-
menting the functionality Fnorush (See Fig. 11) for SendMsg against an active
adversary.

]:NoRush

Initialisation. Upon receiving Init from every party and the adversary, the func-
tionality activates and enters the querying phase.

Querying phase. Upon receiving the id-th Query from the adversary, the func-
tionality waits for r; from every corrupted party P;. Then, for every h € H, it
samples 7, < {0,132 and computes gy, < SendMsg(1*, h; r1,). Finally, it stores
(ri)iein) as the id-th set of randomness and sends (gn)rnen back to the adversary.
Output. Upon receiving Output from the adversary, the functionality waits for
a value id from the adversary, and retrieves the corresponding tuple (7;);c[n) (or
outputs L if there is no such tuple). It then outputs r, to P, for every h € H.

Fig. 11. The Anti-Rushing Functionality FnoRush

If (SendMsg, Output) = (Gen,Sample) is a distributed sampler with semi-
malicious security, applying this transformation gives a distributed sampler with
active security.

Intuition Behind our Anti-Rushing Compiler. We define (ARMsg, AROut-
put) as follows. When called by party i, ARMsg outputs an obfuscated program
S;; this program takes as input a response of the random oracle, and uses it
as a nonce for a PRF Fk,. The program then feeds the resulting pseudoran-
dom string r into SendMsg, and outputs whatever message SendMsg generates.
Our techniques are inspired by the delayed backdoor programming technique of
Hofheinz et al. [HJK'16], used for adaptively secure universal samplers.

29

The trapdoor. In order to prove that our compiler realizes Fnorush for SendMsg,
a simulator must be able to force the compiled protocol to return given outputs
of SendMsg, even after sending messages (outputs of ARMsg) on behalf of the
honest parties.

Behind its usual innocent behaviour, the program S; hides a trapdoor that
allows it to secretly communicate with the random oracle. S; owns a key k; for a
special authenticated encryption scheme based on puncturable PRFs. Every time
it receives a random oracle response as input, S; parses it as a ciphertext-nonce
pair and tries to decrypt it. If decryption succeeds, S; outputs the corresponding
plaintext; otherwise, it resumes the usual innocent behaviour, and runs SendMsg.
(The encryption scheme guarantees that the decryption of random strings fails
with overwhelming probability; this trapdoor is never used accidentally, but it
will play a crucial role in the proof.) Obfuscation conceals how the result has
been computed as long as it is indistinguishable from a random SendMsg output.

The inputs fed into (S;);e[n) are generated by querying the random oracle
with the programs themselves and NIZKs proving their well-formedness. The
random oracle response consists of a random nonce v and additional n blocks
(44)ie[m], the i-th one of which is addressed to S;. The input to S; will be the
pair (u;,v). When the oracle tries to secretly communicate a message to S;, u;
will be a ciphertext, whereas v will be the corresponding nonce.

Given a random oracle query, using the simulation-extractability of the NIZKs,
the simulator can retrieve the secrets (in particular, the PRF keys) of the cor-
rupted parties. It can then use this information to learn the randomness used
to generate the corrupted parties’ messages (i.e. their outputs of SendMsg). The
simulator then needs only to encrypt these messages received from Fyorush US-
ing (k;)icn, and include these ciphertexts in the oracle response.

Formal Description of our Anti-Rushing Compiler. We now formalise
the ideas we presented in the previous paragraphs. Our anti-rushing compiler is
described in Fig. 13. The unobfuscated program Pag is available in Fig. 12. We
assume that its obfuscation needs M (\) bits of randomness. Observe that Pagr
is based on two puncturable PRFs F' and F”, the first one of which is used to
generate the randomness fed into SendMsg.

The second puncturable PRF is part of the authenticated encryption scheme
used in the trapdoor. We assume that its outputs are naturally split into 2m \-
bit blocks, where m(\) is the size of an output of SendMsg (after padding). To
encrypt a plaintext (z!,...,2™) € {0,1}™ using the key k and nonce v € {0, 1}*,
we first expand v using F}. The ciphertext consists of m A-bit blocks, the j-th
one of which coincides with the (2 + z7)-th block output by F’. Decryption is
done by reversing these operations. For this reason, we assume that the values
(43);ie[m) in the oracle responses are naturally split into m A-bit chunks. Observe
that if the j-th block of the ciphertext is different from both the 2j-th and the
(24 + 1)-th block output by the PRF, decryption fails.

Finally, let NIZK = (Gen, Prove, Verify, Simy, Simg, Extract) be a simulation-
extractable NIZK for the relation R describing the well-formedness of the ob-

30

fuscated programs (S;);c[n). Formally, a statement consists of the pair (S;,14),
whereas the corresponding witness is the triple containing the PRF keys k; and
K; hard-coded in S; and the randomness used for the obfuscation of the latter.

Par[SendMsg, k, K,]

Hard-coded. The algorithm SendMsg, PRF keys k& and K and the index ¢ of
the party.
Input. Oracle responses (u,v) € {0,1}*™™ x {0,1}*.

—

W1, Y1, 3, Y2, -, Y Ym) < Fi(v)
. For every j € [m] set

[\V]

0 ify) =1,
¥ =1 ify; =,

1 otherwise.
3. If 27 # 1 for every j € [m], output (z*,22,...,2™).
4. Set r + Fx(u,v).
5. Output g; < SendMsg(1*,14; 7).

Fig.12. The Anti-Rushing Program

Theorem 5.2. If (SendMsg, Output) is a one-round n-party protocol, NIZK =
(Gen, Prove, Verify, Simy, Simo, Extract) is a simulation-extractable NIZK with URS
for the relation R, iO is an indistinguishability obfuscator and (F,Punct) and
(F',Punct’) are two puncturable PRFs satisfying the properties described above,
the protocol Inorush = (ARMsg, AROutput) described in Fig. 13 realizes FnoRush
for SendMsg in the random oracle model with a URS.

We prove Theorem 5.2 in Appendix A.

Theorem 5.3. Suppose that DS = (Gen,Sample) is a semi-maliciously secure
distributed sampler for the distribution D. Assume that there exists an anti-
rusher for DS.Gen. Then, there exists an actively secure distributed sampler for
D.

On the novelty of this compiler. Observe that the idea of a compiler converting
passive protocols into actively secure ones is not new. The most famous example
is GMW [GMW8T7], which achieves this by adding ZK proofs proving the well-
formedness of all the messages in the protocol. The novelty of our construction
consists of doing this without increasing the number of rounds. GMW deals with
rushing by requiring all the parties to commit to their randomness at the begin-
ning of the protocol and then prove that all the messages in the interaction are
consistent with the initial commitments. A passively secure one-round protocol
would therefore be compiled, in the best case, into a 2-round one.

31

Anti-Rushing Compiler ITyorush

URS. The protocol needs a URS urs < NIZK.Gen(1*) for the NIZK proofs.
ARMsg(1*, 4, urs):

ki & {0,1}*

K; & {0,1}*

w; (i {O, 1}]\/10‘)

S; + iO(]lA,PAR[SendMsg, ki,Ki,i];wi) (see Fig. 12)
o Prove(]lA, urs, (Si,1), (ki, K, wz))

Output armsg, := (S, m;).

AT el

AROutput((armsg; = (Sj,ﬁj))je[n]7urs) :

1. If there exists j € [n] such that Verify(urs, 7;, (S;,5)) = 0, output L.
2. Query (S;,7;);en to the random oracle H to get (v, (wi)ic(n))-

3. Vien]: g « Si(ui,v).

4. Output (g5) cn)-

Fig. 13. Anti-Rushing Compiler

Although the techniques were inspired by [HJK'16], this work employs the
ideas in a new context, generalising them to multiple players and applying them
in multiparty protocols. Observe indeed that [HJKT16] devised the techniques
to construct adaptively secure universal samplers. To some extent, we still use
them to prevent the adversary from making adaptive choices.

6 Public-Key PCF's for Reverse-Samplable Correlations

We now consider the concept of a distributed correlation sampler, where the
distribution D produces private, correlated outputs Ry, Ro, ..., R,, where R; is
given only to the i-th party. This can also model the case where the distribution
D has only one output R = Ry = --- = R,,, which must be accessible only to
the parties that took part in the computation (but not to outsiders; unlike with
a distributed sampler).

PCGs and PCFs. The concept of distributed correlation samplers has been
previously studied in the form of pseudorandom correlation generators (PCGs)
[BCGI18, BCGT19a, BCGT19b, BCG'20b] and pseudorandom correlation func-
tions (PCFs)[BCGT20a, OSY21]. These are tailored to distributions with n
outputs, each one addressed to a different player. Specifically, they consist of
two algorithms (Gen, Eval): Gen is used to generate n short correlated seeds or
keys, one for each party. Eval is then used to locally expand the keys and non-

32

interactively produce a large amount of correlated randomness, analogously to
the non-correlated setting of a PRG (for PCG) or PRF (for PCF).

Both PCGs and PCFs implicitly rely on a trusted dealer for the generation
and distribution of the output of Gen, which in practice can be realized using
a secure multiparty protocol. The communication overhead of this computation
should be small, compared with the amount of correlated randomness obtained
from Eval.

If we consider a one-round protocol to distribute the output of Gen, the
message of the i-th party and the corresponding randomness r; act now as a kind
of public/private key pair (r; is necessary to retrieve the i-th output.) Such a
primitive is called a public-key PCF [OSY21]. Orlandi et al. [OSY21] built public-
key PCFs for the random OT and vector-OLE correlations based on Paillier
encryption with a common reference string (a trusted RSA modulus). In this
section, we will build public-key PCFs for general correlations, while avoiding
trusted setups.

6.1 Correlation Functions and their Properties

Instead of considering singe-output distributions D, we now consider n-output
correlations C. We also allow different samples from C to themselves be correlated
by some secret parameters, which allows handling correlations such as vector-
OLE and authenticated multiplication triples (where each sample depends on
some fixed MAC keys). This is modelled by allowing each party ¢ to input a
master secret mk; into C. These additional inputs are independently sampled by
each party using an algorithm Secret.

Some example correlations. Previous works have focussed on a simple class
of additive correlations, where the outputs Ry,..., R, form an additive secret
sharing of values sampled from a distribution. This captures, for instance, obliv-
ious transfer, (vector) oblivious linear evaluation and (authenticated) multipli-
cation triples, which are all useful correlations for secure computation tasks.
Vector OLE and authenticated triples are also examples requiring a master se-
cret, which is used to fix a secret scalar or secret MAC keys used to produce
samples. Assuming LWE, we can construct public-key PCFs for any additive
correlation [BCG120a], using homomorphic secret-sharing based on multi-key
FHE [DHRW16]. However, we do not know how to build PCFs for broader classes
of correlations, except for in the two-party setting and relying on subexponen-
tially secure iO [DHRW16].

As motivation, consider the following important types of non-additive corre-
lations:

— Pseudorandom secret sharing. This can be seen as a correlation that sam-
ples sharings of uniformly random values under some linear secret sharing
scheme. Even for simple t-out-of-n threshold schemes such as Shamir, the
best previous construction requires (:‘) complexity [CDIO5].

33

— Garbled circuits. In the two-party setting, one can consider a natural garbled
circuit correlation, which for some circuit C, gives a garbling of C' to one
party, and all pairs of input wire labels to the other party. Having such a
correlation allows preprocessing for secure 2-PC, where in the online phase,
the parties just use oblivious transfer to transmit the appropriate input wire
labels.® Similarly, this can be extended to the multi-party setting, by for
instance, giving n parties the garbled circuit together with a secret-sharing
of the input wire labels.

For garbled circuits, it may also be useful to consider a variant that uses a
master secret, if e.g. we want each garbled circuit to be sampled with a fixed
offset used in the free-XOR technique [KS08].

Reverse-Samplable Correlations. The natural way to define a public-key
PCF would be a one-round protocol implementing the functionality that samples
from the correlation function C and distributes the outputs. However, Boyle et
al. [BCGT19b] prove that for PCGs, any construction satisfying this definition
in the plain model would require that the messages be at least as long as the
randomness generated, which negates one of the main advantages of using a
PCF. Following the approach of Boyle et al., in this section we adopt a weaker
definition. We require that no adversary can distinguish the real samples of
the honest parties from simulated ones which are reverse sampled based on
the outputs of the corrupted players. This choice restricts the set of correlation
functions to those whose outputs are efficiently reverse-samplable?*. We formalise
this property below.

Definition 6.1 (Reverse Samplable Correlation Function with Master
Secrets). An n-party correlation function with master secrets is a pair of PPT
algorithms (Secret, C) with the following syntax:

— Secret takes as input the security parameter 1 and the index of a party
1 € [n]. It outputs the i-th party’s master correlation secret mk;.

— C takes as input the security parameter 1* and the master secrets mky, ..., mk,.
It outputs n correlated values Ry, R, ..., Ry, one for each party.

We say that (Secret,C) is reverse samplable if there exists a PPT algorithm
RSample such that, for every set of corrupted parties C C [n] and master secrets
(mk;)ien) and (mky)pen in the image of Secret, no PPT adversary is able to

3 Note that formally, in the presence of malicious adversaries, preprocessing garbled
circuits in this way requires the garbling scheme to be adaptively secure [BHR12].

4 In the examples above, reverse-samplability is possible for pseudorandom secret-
sharing, but not for garbled circuits, since we should not be able to find valid input
wire labels when given only a garbled circuit.

34

distinguish between C(]lA7 mky, mka, ..., mk,) and

Vie C: mk; < mk;

(R, Ry, Ry) & C(1, mKy, mk), ... ,mk),)

VieC: R;<« R,

(Ru)nen < RSample(1*, C, (Ry)icc, (mki)icc, (Mknp)nen)

Notice that indistinguishability cannot rely on the secrecy of the master
secrets (mk;);epn and (mk),)per, since the adversary could know their values.
Furthermore, RSample does not take as input the same master secrets that were
used for the generation of the outputs of the corrupted parties. The fact that
indistinguishability holds in spite of this implies that the elements (R;);cc leak
no information about the master secrets of the honest players.

6.2 Defining Public Key PCFs

We now formalise the definition of public key PCF as it was sketched at the
beginning of the section. We start by specifying the syntax, we will then focus our
attention on security, in particular against semi-malicious and active adversaries.

Definition 6.2 (Public-Key PCF with Master Secrets). A public-key PCF
for the n-party correlation function with master secrets (Secret,C) is a pair of
PPT algorithms (Gen, Eval) with the following syntaz:

— Gen takes as input the security parameter 1 and the index of a party i € n),
and outputs the PCF key pair (sk;, pk;) of the i-th party. Gen needs L(\) bits
of randomness.

— Eval takes as input an index i € [n], n PCF public keys, the i-th PCF private
key sk; and a nonce z € {0, l}l(’\). It outputs a value R; corresponding to
the i-th output of C.

Every public-key PCF (Gen, Eval) for C induces a one-round protocol Ilc.
This is the natural construction in which every party broadcasts pk; output by
Gen, and then runs Eval on all the parties’ messages, its own private key and
various nonces.

Definition 6.3 (Semi-Maliciously Secure Public-Key PCF for Reverse
Samplable Correlation). Let (Secret,C) be an n-party, reverse samplable cor-
relation function with master secrets. A public-key PCF (Gen, Eval) for (Secret, C)
is semi-maliciously secure if the following properties are satisfied.

— Correctness. No PPT adversary can win the game Gpor. corr(A) (see Fig. 14)
with noticeable advantage.

— Security. There exists a PPT extractor Extract such that for every set of
corrupted parties C C [n] and corresponding randomness (p;)icc, no PPT
adversary can win the game ggéﬁgff@) (see Fig. 15) with noticeable ad-
vantage.

35

GpCF-Corr ()
Initialisation.

1. b<&{0,1}

2. Vie[n]: (ski,pk;) & Gen(1",i)

3. Vie[n]: mk] < Secret(1),4)

4. Activate the adversary with input (1%, (pk;)icfn))-
Repeated querying. On input (Correlation, z) from the adversary where z €
{0, 1} compute

1. Vi€ [n]: R < Eval(i,pky,...,pk,,ski,z)

2. (RY)iern & C(1*, mk}, ..., mK,)

3. Give (RS, R5,..., R%) to the adversary.
Output. The adversary wins if its final output is b.

Fig. 14. Correctness Game for the Public-Key PCF

Correctness requires that the samples output by the PCF are indistinguish-
able from those produced by C even if the adversary receives all the public keys.
Security instead states that a semi-malicious adversary learns no information
about the samples and the master secrets of the honest players except what can
be deduced from the outputs of the corrupted parties themselves.

Like for distributed samplers, the above definition can be adapted to passive
security by modifying the security game. Specifically, it would be sufficient to
sample the randomness of the corrupted parties inside the game, perhaps relying
on a simulator when b = 1.

In our definition, nonces are adaptively chosen by the adversary; however, in
a weak PCF [BCGT20a], the nonces are sampled randomly or selected by the
adversary ahead of time. We can define a weak public-key PCF similarly, and
use the same techniques as Boyle et al. [BCG120a] to convert a weak public-key
PCF into a public-key PCF by means of a random oracle.

Active security. We define actively secure public-key PCF's using an ideal func-
tionality, similarly to how we defined actively secure distributed samplers.

Definition 6.4 (Actively Secure Public-Key PCF for Reverse Sam-
plable Correlation). Let (Secret,C) be an n-party reverse samplable correla-
tion function with master secrets. A public-key PCF (Gen, Eval) for (Secret,C) is
actively secure if the corresponding one-round protocol Ilc implements the func-
tionality fcRsample (see Fig. 16) against a static and active adversary corrupting
up to n — 1 parties.

Any protocol that implements .7-"5 Sample i1l require either a CRS or a ran-
dom oracle; this is inherent for meaningful correlation functions, since the simu-
lator needs to retrieve the values (R;);ec in order to forward them to .7-'5 Sample,
Therefore, some kind of trapdoor is needed.

36

Gpcrsie®)

Initialisation.

1. b<& 0,1}
Vhe H: pné&{0,1}F™
Vi€ n]: (ski,pk;) < Gen(1*,4; p;)
(mk;)icc < Extract(C, p1,p2,...,pn)-
Vhe H: mkj & Secret(1), h)
. Activate the adversary with 1* and provide it with (pk;)ic(n) and (pi)icc-
Repeated querying. On input (Correlation, z) from the adversary where x €
{0, 1} compute

1. Vi€ [n]: RY < Eval(i,pk,,...,pk,,sk,z)

2.VieC: R}« R}

3. (RMnew & RSample(1*, C, (RY)icc, (mki)icc, (MK}) ne)

4. Give (R, RS, ..., Rb) to the adversary.
Output. The adversary wins if its final output is b.

AR

Fig. 15. Security Game for the Public-Key PCF

Notice also that the algorithm RSample takes as input the master secrets of
the corrupted parties. We can therefore assume that whenever the values (R;);cc
chosen by the adversary are inconsistent with (mk;);cc or with C itself, the
output of the reverse sampler is L. As a consequence, an actively secure public-
key PCF must not allow the corrupted parties to select these irregular outputs;
otherwise distinguishing between real world and ideal world would be trivial.

6.3 Public-Key PCF with Trusted Setup

We will build our semi-maliciously secure public-key PCF by first relying on a
trusted setup and then removing it by means of a distributed sampler. A public-
key PCF with trusted setup is defined by Def. 6.2 to include an algorithm Setup
that takes as input the security parameter 1* and outputs a CRS. The CRS is
then provided as an additional input to the evaluation algorithm Eval, but not
to the generation algorithm Gen. (If Gen required the CRS, then substituting
Setup with a distributed sampler would give us a two-round protocol, not a one-
round protocol.)

We say that a public-key PCF with trusted setup is semi-maliciously se-
cure if it satisfies Def. 6.3, after minor tweaks to the games Gpcr corr(A) and
Qgégéeecc()\) to account for the modified syntax. Notice that in the latter, the
extractor needs to be provided with the CRS but not with the randomness used
to produce it. If that was not the case, we would not be able to use a distributed
sampler to remove the CRS.

Definition of public key PCF with trusted setup. We formalise the concept of
public key PCF with trusted setup describing its syntax and security proper-

37

]_—RSampIe
c
Initialisation. On input Init from every honest party and the adversary, the

functionality samples mkp, & Secret(]l>‘, h) for every h € H and waits for (mk;)iec
from the adversary.

Correlation. On input a fresh nonce z € {0, 1}1(” from a party Pj, the func-
tionality waits for (R;)iec from the adversary. Then, it computes

(Ri)nerr & RSample(1*, C, (Ri)icc, (mk;)iec, (mki)nerm),

sends R; to P; and stores (z, (Ri)ic[n)). If = has already been queried, the func-
tionality retrieves the stored tuple (, (R:)ic(n;) and outputs R; to P;.

Fig.16. The Actively Secure Public-Key PCF Functionality for Reverse Samplable
Correlation

ties. The definitions closely resemble those of public key PCF (see Def. 6.2 and
Def. 6.3). The only difference consists in the CRS generated by the setup al-
gorithm, which is now provided as an additional input to Eval and Extract and
whose value is always disclosed to the adversary in the security games.

Definition 6.5 (Public Key PCF with Trusted Setup). A public key PCF
with trusted setup for the n-party correlation function with master secret (Secret, C)
is a triple of PPT algorithms (Setup, Gen, Eval) with the following syntaz:

— Setup takes as input the security parameter 1" and outputs a CRS S.

— Gen takes as input the security parameter 1* and the index of a party i € [n],
outputting the PCF key pair (sk;, pk;) of the i-th party. The algorithm needs
L(\) bits of randomness.

— Eval takes as input an index i € [n], a CRS S, n PCF public keys, one
for each party, the PCF private key sk; of the i-th party and a nonce x €
{0, l}l()‘). The output is a value R; corresponding to the i-th output of C.

Definition 6.6 (Semi-Maliciously Secure Public Key PCF with Trusted
Setup for Reverse Samplable Correlation). Let (Secret,C) be an n-party,
reverse samplable correlation function with master secret. A public key PCF with
trusted setup (Setup, Gen, Eval) for (Secret,C) is semi-maliciously secure if the
following properties are satisfied.

— Correctness. No PPT adversary can win the game Gsetupcorr(X) (see Fig. 17)
with noticeable advantage.

— Security. There exists a PPT extractor Extract such that for every set of
corrupted parties C C [n] and corresponding randomness (p;)icc, no PPT
adversary can win the game ggeizp)sjf()\) (see Fig. 18) with noticeable ad-
vantage.

38

gSetupCorr (>\)
Initialisation.

1. b<&{0,1}

2. S & Setup(1)

3. Vieln]: (ski,pk;) < Gen(1*,4)

4. Vieln]: mk] <& Secret(17,4)

5. Activate the adversary with 1* and provide it with (pk;);c[n and S.
Repeated querying. On input (Correlation, z) from the adversary where x €
{0, 1} compute

1. Vi€ [n]: RY < Eval(i, S, pky,pks, ..., pk,,ski,z)

2. (RY)icp) & C(1*, mky, ..., mkl,)

3. Give (RS, RS,..., R%) to the adversary.

Output. The adversary wins if its final output is b.

Fig. 17. Correctness Game for Public Key PCFs with Setup

Gscimpe”)
Initialisation.
1. b<&{0,1}
. sE Setup(1*)
Vhe H: p; & {0,1} ™
Vi€ [n]: (sks,pk;) < Gen(1*,4; p;)
(mk;)iec < Extract(C, S, p1,p2,. .., pn)-
VYhe H: mk) <& Secret(1*, h)
. Activate the adversary with 1* and provide it with (pk;)ic[n], S and (pi)icc-
Repeated querying. On input (Correlation, z) from the adversary where x €
{0, 1}1(”7 compute
1. Vi€ [n]: R? < Eval(i, S, pky,...,pk,,ski,z)
2.VieC: R}« R
3. (RMner & RSample(1*, C, (R})icc, (mki)icc, (MK} nem)
4. Give (RS, R5,..., RY) to the adversary.
Output. The adversary wins if its final output is b.

RIS RN

Fig. 18. Security Game for Public Key PCFs with Setup

39

Our public-key PCF with trusted setup. Our construction is based once again
on i0. The key of every party i is a simple PKE pair (sk;, pk;). The generation
of the correlated samples and their distribution is handled by the CRS, which
is an obfuscated program. Specifically, the latter takes as input the public keys
of the parties and a nonce z € {0, 1}5(/\). After generating the master secrets
mky, mks, ..., mk, using Secret and the correlated samples R1, Ro, ..., R, using
C, the program protects their privacy by encrypting them under the provided
public keys. Specifically, R; and mk; are encrypted using pk;, making the i-th
party the only one able to retrieve the underlying plaintext.

The randomness used for the generation of the samples, the master secrets
and the encryption is produced by means of two puncturable PRF keys k and
K, known to the CRS program. The CRS program is equipped with two keys:
k and K. The first one is used to generate the master secrets; the input to the
PRF is the sequence of all public keys (pky, pks, ..., pk,)). The master secrets
remain the same if the nonce z varies. The second PRF key is used to generate
the randomness fed into C and the encryption algorithm; here, the PRF input
consists of all the program inputs. As a result, any slight change in the inputs
leads to completely unrelated ciphertexts and samples.

On the size of the nonce space. Unfortunately, in order to obtain semi-maliciously
security, we need to assume that the nonce space is of polynomial size. In the
security proof, we need to change the behaviour of the CRS program for all
nonces. This is due to the fact that we cannot rely on the reverse samplability of
the correlation function as long as the program contains information about the
real samples of the honest players. If the number of nonces is exponential, our
security proof would rely on a non-polynomial number of hybrids and therefore
we would need to assume the existence of sub-exponentially secure primitives.

The formal description of our solution. Our public-key PCF with trusted setup
for (Secret,C) is described in Fig. 19 together with the program Pcg used as a
CRS.

Our solution relies on an IND-CPA PKE scheme PKE = (Gen, Enc, Dec) and
two puncturable PRFs F' and F’. We assume that the output of the first one is
naturally split into n 4 1 blocks, the initial one as big as the randomness needed
by C, the remaining ones the same size as the random tape of PKE.Enc. We also
assume that the output of F” is split into n blocks as big as the randomness used
by Secret.

Theorem 6.7 (Public Key PCFs with Trusted Setup). Let (Secret,C) be
an n-party, reverse samplable correlation function with master secrets. If PKE =
(Gen, Enc, Dec) is an IND-CPA PKE scheme, i0 is an indistinguishability obfus-
cator, (F,Punct) and (F’,Punct’) are puncturable PRFs with the properties de-
scribed above and l(X\) is polylog(A), the construction presented in Fig. 19 is a
semi-maliciously secure public-key PCF with trusted setup for (Secret,C).
Furthermore, if PKE, iO, (F,Punct) and (F’,Punct’) are sub-exponentially
secure, the public-key PCF with trusted setup is semi-maliciously secure even if

1(A) is poly()).

40

Public-Key PCF with Trusted Setup

Setup(1*)

1L k<& {0,107
2. K& {0,1}*
3. Output CGP & iO(1*, Peg[k, K))

Gen(1*,14)
1. Output (sk;, pk;) & PKE.Gen(1%)
Eval(i, CGP, pky, . .., pk,,, skq, z)

(c1,¢2,...,¢n) < CGP(pky,...,pk,,z)
(Ri, mk;) + PKE.Dec(sk;, ¢;)

1.
2.
3. Output R;.

Pcclk, K]

Hard-coded. Two puncturable PRF keys k and K.
Input. n public keys pk,, ..., pk, and a nonce = € {0, 1}}®.

1. (ryr1,72,...,m0) < Fr(pky,...,pk,,).

2. (81,82,...,8n) + F(pky, ..., pk,)

3. Vi€[n]: mk; ¢ Secret(1*,i;s;)

4. (R1,Ra,...,Ry) < C(1*, mky, ..., mky;7)
5. Vi€ [n]: ¢ + PKE.Enc(pk;, (Ri, mki);r;)
6. Output ci1,c2,...,cn.

Fig.19. A Public-Key PCF with Trusted Setup

In both cases, the size of the CRS and the PCF keys is poly(l).

We prove Theorem 6.7 in Appendix B.

6.4 Our Public-Key PCFs

As mentioned in the previous section, once we obtain a semi-maliciously secure
public-key PCF with trusted setup, we can easily remove the CRS using a dis-
tributed sampler. We therefore obtain a public-key PCF with security against
semi-malicious adversaries. If the size of the CRS and the keys of the initial con-
struction is logarithmic in the size of the nonce space, the key length after re-
moving the setup is still polynomial in I(X).

Theorem 6.8 (Semi-Maliciously Secure Public Key PCFs). Let (Secret, C)
be an n-party, reverse samplable correlation function with master secrets. Sup-
pose that pkPCFS = (Setup, Gen, Eval) is a semi-maliciously secure public-key

41

PCF with trusted setup for (Secret, C). Moreover, assume that there exists a semi-
maliciously secure n-party distributed sampler for pkPCFS.Setup. Then, public-
key PCFs for (Secret,C) with semi-malicious security exist.

We will not prove Theorem 6.8 formally. Security follows from the fact that
distributed samplers implement the functionality that samples directly from the
underlying distribution. From this point of view, it is fundamental that the
randomness input into Setup is not given as input to the extractor of the public-
key PCF pkPCFS.

Active security in the random oracle model. If we rely on a random oracle,
it is easy to upgrade a semi-maliciously secure public-key PCF to active security.
We can use an anti-rusher (see Section 5.1) to deal with rushing and malformed
messages. If the key size of the semi-malicious construction is polynomial in (),
after compiling with the anti-rusher, the key length is still poly(Z). The technique
described above allows us to deduce the security of our solution from the semi-
malicious security of the initial public-key PCF. The result is formalised by the
following theorem. Again, we will not provide a formal proof.

Theorem 6.9 (Actively Secure Public Key PCFs in the Random Or-
acle Model). Let (Secret,C) be an n-party, reverse samplable correlation func-
tion with master secret. Assume that pkPCF = (Gen, Eval) is a semi-maliciously
secure public-key PCF's for (Secret,C) and suppose there exists an anti-rusher
for the associated protocol. Then, actively secure public-key PCFs for (Secret, C)
exst.

Active security from sub-exponentially secure primitives. So far, all our
constructions rely on polynomially secure primitives. However, we often work in
the random oracle model. We now show that it is possible to build actively secure
public-key PCFs in the URS model assuming the existence of sub-exponentially
secure primitives. Furthermore, these constructions come with no restrictions on
the size of the nonce space.

Our solution is obtained by assembling a sub-exponentially and semimali-
ciously secure public-key PCF with trusted setup with a sub-exponentially and
semi-maliciously secure distributed sampler. We add witness-extractable NIZKs
proving the well-formedness of the messages. Like for our semi-malicious con-
struction, if the size of the CRS and the keys of the public-key PCF with trusted
setup is polynomial in the nonce length {(\), after composing with the DS, the
key size remains poly(l).

Theorem 6.10 (Actively Secure Public Key PCFs from Subexponen-
tially Secure Primitives). Let (Secret,C) be an n-party, reverse samplable cor-
relation function with master secret. Suppose that pkPCFS = (Setup, Gen, Eval)
is a sub-exponentially and semi-maliciously secure public-key PCF with trusted
setup for (Secret,C). Assume that there exists a sub-exponentially and semi-
maliciously secure n-party distributed sampler for pkPCFS.Setup. If there exist

42

simulation-extractable NIZKs with URS proving the well-formedness of the sam-
pler shares and the PCF public keys, there exists an actively secure public-key
PCF for (Secret,C) in the URS model.

We prove Theorem 6.10 in Appendix C.

7 1Ideal Public Key PCFs and Distributed Universal
Samplers

We now inspect the feasibility of ideal public key PCFs. The term is used to de-
note one-round constructions implementing the functionality that directly sam-
ples the outputs from adaptively chosen correlations and distributes them to the
parties. In contrast with the other PCF's we described, ideal public key PCFs are
not tailored to any specific correlation function; instead, the correlation func-
tion can be chosen on the fly. However, they can exist only in the random oracle
model.

Defining ideal public key PCFs. We deal with generic correlations C without
master secrets. C takes no inputs, and generates n correlated outputs. It does not
need to satisfy any specific properties (in particular it is not required to be reverse
samplable). Since the correlations supported by an ideal public key PCF are
restricted to those whose description is polynomially bounded, we define the class
of (n,¢,r,t)-correlations as the set of functions mapping r bits of randomness
into n t-bit outputs and having an ¢-bit description as a circuit.

The syntax of ideal public key PCF's is derived from that of their non-ideal
counterparts (see Def. 6.2). The only difference is that the evaluation algorithm
Eval takes as input the description of an (n, ¢, r, t)-correlation instead of a nonce.

Definition 7.1 (Ideal Public-Key PCF). Let ¢(\), r(\) and t()\) be polyno-
mials. An ideal public-key PCF for (n, £, r,t)-correlations is a pair of PPT algo-
rithms (Gen, Eval) with the following syntaz:

— Gen takes as input the security parameter 1" and the index of a party i € [n],
and outputs the PCF key pair (sk;, pk;) of the i-th party.

— Eval takes as input an index i € [n], n PCF public keys, the i-th PCF private
key sk; and the description of an (n,£,r,t)-correlation C. It oulputs a value
R; corresponding to the i-th output of C.

Definition 7.2 (Ideal Public Key PCF with Active Security). An ideal
public key PCF (Gen, Eval) for (n,¢,r,t)-correlations satisfies active security if
the corresponding one-round protocol Il¢ implements the functionality]—'édea' (see

Fig. 20) against a static and active adversary corrupting up to n — 1 parties.

Like in the definition of the actively secure distributed sampler (see Def. 3.3),
the adversary is allowed to request different samples stored under different la-
bels. Afterwards, the adversary can specify a label of its choice, forcing the func-
tionality to output the associated values to the honest players. We must allow

43

]_-cheal
Initialisation. On input Init from every honest party and the adversary, the
functionality activates and enters the querying phase.
Querying phase.

— On input (Query,id,C) from the adversary where C is a (n, ¢, r,t)-correlation
that has not been queried previously, the functionality samples (R:);cn) &
C(1*), sends (R:)icc to the adversary and stores the tuple (id,C, (7:)ic(n))-

— On input (Choice, |2:|) from the adversary, the functionality stores ia, ends the
querying phase and begins the correlation phase. If id = Abort, the function-
ality outputs L to every honest party and halts.

Correlation phase. On input a (n, £, 7, t)-correlation C from party P;, where
a tuple (id7C, (Ri),-e[n]) has not been stored previously, the functionality sam-
ples (R1, R2,...,Rn) & C(1%), stores (ia,C7 (Ri)ie[n]) and outputs R; to P;. If
(ia, C, (Ri)ic[n)) has been previously stored (in either the querying or correlation
phase), the functionality outputs R; to P;.

Fig. 20. The Functionality for Ideal Public Key PCFs with Active Security

this kind of influence in order to model rushing; an active adversary can always
wait for the messages of the honest parties and adaptively choose the reply of
the corrupted players. She is allowed to rerun the procedure as many time as it
desire, repeatedly re-generating the messages of the corrupted parties and ob-
taining different collections of samples. The adversary can then use the messages
that led to the most favourable results.

We will build our ideal public key PCFs upon a new primitive called a dis-
tributed universal sampler. We will present and analyse it in the following sub-
section.

7.1 Distributed Universal Samplers

A distributed universal sampler (DUS) generalises the concept of distributed
sampler. Recall that a distributed sampler is tailored to output a single sample
from some fixed distribution D. In some applications, for instance when we
need to sample from multiple distributions, chosen on-the-fly, this may be too
restrictive.

What we want instead is analogous to a universal sampler (US) [HJKT16],
where a trusted dealer first generates and publishes a sampler U. Later, the par-
ties can use U to sample from arbitrary distributions, learning no additional in-
formation about the randomness used to generate the output. With a distributed
universal sampler, we aim to remove the trusted dealer, sampling from generic
distributions in a distributed way and with only one round of interaction.

Formally, (distributed) universal samplers do not support completely generic
distributions, but are instead restricted to those whose descriptions are polynomially-

44

bounded. We therefore define the class of (¢, r,t)-distributions as the set of all
distributions converting r bits of randomness into a t¢-bit output and having an
£-bit description as a circuit.

The syntax of a DUS is obtained by augmenting the Sample algorithm of a
DS with an additional input, namely the description of the distribution from
which to sample the output.

Definition 7.3 (Distributed Universal Sampler). Let £(\), r(\) and t()\)
be polynomials. An n-party distributed universal sampler for (¢, r,t)-distributions
consists of a pair of PPT algorithms (Gen, Sample) with the following syntax.

1. Gen is a probabilistic algorithm taking as input the security parameter 1% and
a party indez i € [n] and outputting a sampler share U; for party i. Suppose
that the procedure needs L(X) bits of randomness.

2. Sample is a deterministic algorithm taking as input n shares of the sampler
Ui,Us,...,U, and the description of an (¢,r,t)-distribution D, outputting a
sample R.

Similarly to a DS, any distributed universal sampler DUS = (Gen, Sample)
naturally corresponds to a one-round protocol IIpys, where each party first
broadcasts a message output by Gen, and then, for every required sample, runs
Sample on input all the parties’ messages and the desired distribution D.

As in the setting of universal samplers [HJK16], we can classify a DUS in two
main ways: security for distributions chosen selectively by the adversary ahead
of time, and security for adversaries who can adaptively choose distributions on-
the-fly. We refer to the first class as one-time security, and the latter as reusable
security.

One-Time Distributed Universal Samplers While reusable distributed uni-
versal samplers need a random oracle independently of the power of the adver-
sary, it is possible to build one-time DUSs with semi-malicious security in the
plain model. Indeed, we now consider a one-time, selective security definition,
where the sampler may only be queried once, and on a distribution D that is
fixed ahead of time. We formalise the idea.

Definition 7.4 (Distributed Universal Sampler with One-Time Semi-
Malicious Security). A distributed universal sampler (Gen,Sample) satisfies
one-time semi-malicious security if there exists a PPT simulator Sim such that,
for every set of corrupted parties C C [n], corresponding randomness (p;)icc
and (¢, r,t)-distribution D, the following two distributions are computationally
indistinguishable.

Vie H: p;& {0,130

Vie[n]: U+ Gen(1Y,4; p;)

R < Sample(U,Us,...,U,, D)

{(Ui)z‘e[n]a (pi)ico| RED }
R (Uz)’be[n] <$; Slm(]l/\v 07 Da R7 (Pi)iec)

(Ui)ie[n]a (pi)icc
R

45

Just as with a DS, we can adapt the above definition to passive security
by sampling the randomness of the corrupted parties inside the game in the
real world and by generating it using the simulator in the ideal world. In a
definition for active security, we must also account for a rushing adversary, who
may adaptively choose the sampler shares of the corrupted parties after seeing
those of the honest parties. In other words, in the ideal world, the adversary
would be allowed to select the final output R from a list of samples generated
by the functionality. We do not consider this notion here, since our actively
secure construction actually satisfies the stronger notion of a reusable DUS (see
Section 7.1).

Universal samplers. We will build our one-time DUSs starting from their non-
distributed version [HJK'16]. The corresponding definition is available in Sec-
tion 2.6. A one-time universal sampler is a pair of PPT algorithms (US.Setup,
US.Sample) with the same syntax as the reusable case. The main difference is
that the random oracle is no longer needed. Security is defined by stating that no
PPT adversary can distinguish the real samplers from fake ones specifically pro-
grammed to output an ideal sample R when used in conjunction with a distribu-
tion D selected ahead of time. The property is required to hold for every (¢, r,t)-
distribution D. In other words, the main novelty is that we now program the sam-
pler for one specific distribution selected ahead of time, whereas in the reusable
case, we did that for multiple distributions adaptively chosen by the adversary.

Construction of a one-time DUS. Given distributed samplers and a one-time
universal sampler, it is quite straightforward to build a semi-maliciously secure
one-time DUS. We can simply substitute the trusted dealer generating the one-
time sampler U with a semi-maliciously secure DS for US.Setup. Security follows
from the programmability of one-time universal samplers and the fact that, by
definition, a DS implements the functionality that directly samples from the
underlying distribution. This idea is formalised in the following theorem. We will
not, however, provide a formal proof.

Theorem 7.5 (One-Time Distributed Universal Samplers). Suppose that
(US.Setup, US.Sample) is a one-time universal sampler for (¢,r,t)-distributions.
Assume that (DS.Gen, DS.Sample) is a semi-maliciously secure distributed sam-
pler for US.Setup. Then, there exists a one-time distributed universal samplers
for (¢, r,t)-distributions with semi-malicious security.

Reusable Distributed Universal Samplers. In a reusable DUS, the shares
output by Gen can be reused to obtain an arbitrary number of samples, from
distributions that are chosen adaptively by the adversary. Note that, as is the
case for (non-distributed) universal samplers [HJK*16], this notion is impossible
to realize in the standard model, and our construction will use a random oracle.

We model security by requiring that the sampler can be used to obtain a
one-round protocol that securely realizes an ideal sampling functionality, which
can be queried adaptively.

46

Definition 7.6 (Reusable Distributed Universal Sampler). A distributed
universal sampler DUS = (Gen, Sample) for (¢,r, t)-distributions satisfies reusable
active security if the corresponding one-round protocol Ilpys implements the
functionality Fpus (see Fig. 21) against a static and active PPT adversary.

Fous
Initialisation. On input Init from every honest party and the adversary, the
functionality activates and enters the querying phase.
Querying phase.

— On input (Query, id, D) from the adversary, where D is an (¢, r, t)-distribution
and the pair (id, D) has not been queried previously, the functionality samples
R&E D, sends R to the adversary and stores (id, D, R).

— On input (Choice, ;1) from the adversary, the functionality stores id, ends the
querying phase and begins the sampling phase. If id = Abort, the functionality
outputs L to every honest party and halts.

Sampling phase. On input an (¢,r,t)-distribution D from party P;, where a
tuple (B, D, R) has not been stored previously, the functionality samples R & D,
stores (i/(\i,D, R) and outputs R to P;. If (ia,D, R) has been previously stored (in
either the querying or sampling phase), the functionality outputs R to P;.

Fig. 21. The Reusable Distributed Universal Sampler Functionality for Active Security

Adaptively secure universal samplers. We construct a reusable DUS starting
from an adaptively secure universal sampler. We briefly recall the correspond-
ing definition [HJK"16], the formal version of which is available in Section 2.6.
An adaptively secure universal sampler is a pair of PPT algorithms (US.Setup,
US.Sample), the first one of which is used by a trusted dealer to generate a sam-
pler U. By feeding U and (¢, r,t)-distributions D to the second algorithm (and
using the random oracle), anyone can obtain a sample R. Importantly, US.Sample
is deterministic, so a set of parties can use U to generate public samples non-
interactively. Security requires that no PPT adversary A can distinguish the
real sampler U and the original oracle responses from fake ones specifically pro-
grammed to output ideal samples from the (¢, r, t)-distributions chosen by A on-
the-fly. Hofheinz et al. [HJKT16] present an adaptively secure universal sampler
for (¢, r,t)-distributions whose size is poly(¢,r,t).

Our reusable distributed universal sampler. It turns out that designing a reusable
DUS is rather straightforward. It suffices to generate the adaptively secure sam-
pler U using a DS for US.Setup. Observe that if we use the construction of
[HJK™16], the size of the sampler shares is poly (¢, r,). Security follows from the

47

adaptive programmability of US and the fact that the DS implements the func-
tionality that directly samples from the associated distribution. We formalise
this in the theorem below, again, given without proof.

Theorem 7.7 (Reusable Distributed Universal Samplers in the Ran-
dom Oracle Model). Suppose that (US.Setup, US.Sample) is an adaptively se-
cure universal sampler for (¢,r,t)-distributions using a random oracle H. As-
sume that there exists an actively secure distributed sampler for US.Setup. Then,
there exists a reusable distributed universal sampler for (¢,r,t)-distributions with
active security.

7.2 Building Ideal Public Key PCFs upon Distributed Universal
Samplers

If reusable distributed universal samplers exist, constructing ideal public key
PCFs becomes easy. We can use the reusable DUS to produce correlated samples
(Rj)jem) and then protect their privacy using a PKE scheme. Specifically, each
party P; can generate a PKE pair (sk;, pk;) and broadcast the public counterpart
along with a reusable DUS share. In order to produce and deal correlated outputs
(Rj)jeln from a correlation function C, it is sufficient to query the DUS with
the distribution that samples from C and outputs the encryption of R; under
pk; for every j € [n]. In this way, only the party j can retrieve the value of the
j-th sample R;. If we rely on the DUS built on top of the US of Hotheinz et al.
[HIJK™16], the key size of our public key PCF is poly(¢,r,n - t).

Security. Proving the security of this construction is an easy task. We rely on
UC composability, and substitute the DUS with the corresponding functional-
ity Fpus (see Fig. 21). Then, by the IND-CPA security of the PKE scheme, we
can substitute the ciphertexts addressed to the honest parties in the Fpys re-
sponses with the encryption of random values. We substitute the ciphertexts of
the corrupt parties with encryptions of the elements provided by the functional-
ity .Fédea' (see Fig. 20). Our result is formalised in the following theorem; we do
not provide a formal proof.

Theorem 7.8 (Ideal Public Key PCFs in the Random Oracle Model).
If there exists an IND-CPA PKE scheme and an n-party reusable distributed
universal sampler with active security, there exists an actively secure ideal public
key PCFs for (n, ¢, t)-correlations.

References

AJJM20. Prabhanjan Ananth, Abhishek Jain, Zhengzhong Jin, and Giulio Mala-
volta. Multi-key fully-homomorphic encryption in the plain model. In
Rafael Pass and Krzysztof Pietrzak, editors, TCC 2020, Part I, volume
12550 of LNCS, pages 28-57. Springer, Heidelberg, November 2020.

48

BCCT12.

BCG™19a.

BCG'19b.

BCG™20a.

BCG™20b.

BCGI18.

Bdo4.

BGG19.

BGI'01.

BGIt14a.

BGI14b.

BGM17.

Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. From
extractable collision resistance to succinct non-interactive arguments of
knowledge, and back again. In Shafi Goldwasser, editor, ITCS 2012, pages
326-349. ACM, January 2012.

Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, Peter
Rindal, and Peter Scholl. Efficient two-round OT extension and silent non-
interactive secure computation. In Lorenzo Cavallaro, Johannes Kinder,
XiaoFeng Wang, and Jonathan Katz, editors, ACM CCS 2019, pages 291—
308. ACM Press, November 2019.

Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, and
Peter Scholl. Efficient pseudorandom correlation generators: Silent OT ex-
tension and more. In Alexandra Boldyreva and Daniele Micciancio, ed-
itors, CRYPTO 2019, Part III, volume 11694 of LNCS, pages 489-518.
Springer, Heidelberg, August 2019.

Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, and
Peter Scholl. Correlated pseudorandom functions from variable-density
LPN. In 61st FOCS, pages 1069-1080. IEEE Computer Society Press,
November 2020.

Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, and Pe-
ter Scholl. Efficient pseudorandom correlation generators from ring-LPN.
In Daniele Micciancio and Thomas Ristenpart, editors, CRYPTO 2020,
Part 11, volume 12171 of LNCS, pages 387—416. Springer, Heidelberg, Au-
gust 2020.

Elette Boyle, Geoffroy Couteau, Niv Gilboa, and Yuval Ishai. Compressing
vector OLE. In David Lie, Mohammad Mannan, Michael Backes, and
XiaoFeng Wang, editors, ACM CCS 2018, pages 896-912. ACM Press,
October 2018.

Josh Cohen Benaloh and Michael de Mare. Omne-way accumulators: A
decentralized alternative to digital sinatures (extended abstract). In Tor
Helleseth, editor, EUROCRYPT’93, volume 765 of LNCS, pages 274-285.
Springer, Heidelberg, May 1994.

Sean Bowe, Ariel Gabizon, and Matthew D. Green. A multi-party proto-
col for constructing the public parameters of the pinocchio zk-SNARK. In
Aviv Zohar, Ittay Eyal, Vanessa Teague, Jeremy Clark, Andrea Bracciali,
Federico Pintore, and Massimiliano Sala, editors, F'C' 2018 Workshops, vol-
ume 10958 of LNCS, pages 64—77. Springer, Heidelberg, March 2019.
Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit
Sahai, Salil P. Vadhan, and Ke Yang. On the (im)possibility of obfuscating
programs. In Joe Kilian, editor, CRYPTO 2001, volume 2139 of LNCS,
pages 1-18. Springer, Heidelberg, August 2001.

Amos Beimel, Ariel Gabizon, Yuval Ishai, Eyal Kushilevitz, Sigurd
Meldgaard, and Anat Paskin-Cherniavsky. Non-interactive secure mul-
tiparty computation. In Juan A. Garay and Rosario Gennaro, editors,
CRYPTO 2014, Part II, volume 8617 of LNCS, pages 387—-404. Springer,
Heidelberg, August 2014.

Elette Boyle, Shafi Goldwasser, and Ioana Ivan. Functional signatures and
pseudorandom functions. In Hugo Krawczyk, editor, PKC 201/, volume
8383 of LNCS, pages 501-519. Springer, Heidelberg, March 2014.

Sean Bowe, Ariel Gabizon, and ITan Miers. Scalable multi-party compu-
tation for zk-SNARK parameters in the random beacon model. Cryptol-

49

BHR12.

BP15.

BW13.

Can01.

CDI05.

CLTV15.

DHRW16.

FLS90.

GGH™13.

GGMS86.

GMWar.

GOO07.

GOS06.

GPSZ17.

ogy ePrint Archive, Report 2017/1050, 2017. https://eprint.iacr.org/
2017/1050.

Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Adaptively secure
garbling with applications to one-time programs and secure outsourcing.
In Xiaoyun Wang and Kazue Sako, editors, ASIACRYPT 2012, volume
7658 of LNCS, pages 134-153. Springer, Heidelberg, December 2012.

Nir Bitansky and Omer Paneth. ZAPs and non-interactive witness indistin-
guishability from indistinguishability obfuscation. In Yevgeniy Dodis and
Jesper Buus Nielsen, editors, TCC 2015, Part II, volume 9015 of LNCS,
pages 401-427. Springer, Heidelberg, March 2015.

Dan Boneh and Brent Waters. Constrained pseudorandom functions
and their applications. In Kazue Sako and Palash Sarkar, editors, ASI-
ACRYPT 2013, Part II, volume 8270 of LNCS, pages 280-300. Springer,
Heidelberg, December 2013.

Ran Canetti. Universally composable security: A new paradigm for cryp-
tographic protocols. In 42nd FOCS, pages 136—145. IEEE Computer Soci-
ety Press, October 2001.

Ronald Cramer, Ivan Damgard, and Yuval Ishai. Share conversion, pseu-
dorandom secret-sharing and applications to secure computation. In Joe
Kilian, editor, TCC 2005, volume 3378 of LNCS, pages 342-362. Springer,
Heidelberg, February 2005.

Ran Canetti, Huijia Lin, Stefano Tessaro, and Vinod Vaikuntanathan. Ob-
fuscation of probabilistic circuits and applications. In Yevgeniy Dodis and
Jesper Buus Nielsen, editors, TCC 2015, Part II, volume 9015 of LNCS,
pages 468-497. Springer, Heidelberg, March 2015.

Yevgeniy Dodis, Shai Halevi, Ron D. Rothblum, and Daniel Wichs. Spooky
encryption and its applications. In Matthew Robshaw and Jonathan Katz,
editors, CRYPTO 2016, Part III, volume 9816 of LNCS, pages 93-122.
Springer, Heidelberg, August 2016.

Uriel Feige, Dror Lapidot, and Adi Shamir. Multiple non-interactive zero
knowledge proofs based on a single random string (extended abstract). In
31st FOCS, pages 308-317. IEEE Computer Society Press, October 1990.
Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai,
and Brent Waters. Candidate indistinguishability obfuscation and func-
tional encryption for all circuits. In 54th FOCS, pages 40-49. IEEE Com-
puter Society Press, October 2013.

Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct
random functions. Journal of the ACM, 33(4):792-807, October 1986.
Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental
game or A completeness theorem for protocols with honest majority. In
Alfred Aho, editor, 19th ACM STOC, pages 218-229. ACM Press, May
1987.

Jens Groth and Rafail Ostrovsky. Cryptography in the multi-string model.
In Alfred Menezes, editor, CRYPTO 2007, volume 4622 of LNCS, pages
323-341. Springer, Heidelberg, August 2007.

Jens Groth, Rafail Ostrovsky, and Amit Sahai. Non-interactive zaps and
new techniques for NIZK. In Cynthia Dwork, editor, CRYPTO 2006, vol-
ume 4117 of LNCS, pages 97-111. Springer, Heidelberg, August 2006.
Sanjam Garg, Omkant Pandey, Akshayaram Srinivasan, and Mark
Zhandry. Breaking the sub-exponential barrier in obfustopia. In Jean-
Sébastien Coron and Jesper Buus Nielsen, editors, FEUROCRYPT 2017,

50

https://eprint.iacr.org/2017/1050
https://eprint.iacr.org/2017/1050

HIJ*17.

HJIKT16.

HW15.

JLS21.

KPTZ13.

KSO08.

LZ17.

OSY21.

PS109.

Part III, volume 10212 of LNCS, pages 156-181. Springer, Heidelberg,
April / May 2017.

Shai Halevi, Yuval Ishai, Abhishek Jain, Ilan Komargodski, Amit Sahai,
and Eylon Yogev. Non-interactive multiparty computation without corre-
lated randomness. In Tsuyoshi Takagi and Thomas Peyrin, editors, ASI-
ACRYPT 2017, Part III, volume 10626 of LNCS, pages 181-211. Springer,
Heidelberg, December 2017.

Dennis Hofheinz, Tibor Jager, Dakshita Khurana, Amit Sahai, Brent Wa-
ters, and Mark Zhandry. How to generate and use universal samplers. In
Jung Hee Cheon and Tsuyoshi Takagi, editors, ASTACRYPT 2016, Part I1,
volume 10032 of LNCS, pages 715-744. Springer, Heidelberg, December
2016.

Pavel Hubacek and Daniel Wichs. On the communication complexity of
secure function evaluation with long output. In Tim Roughgarden, editor,
ITCS 2015, pages 163-172. ACM, January 2015.

Aayush Jain, Huijia Lin, and Amit Sahai. Indistinguishability obfuscation
from well-founded assumptions. In Proceedings of the 53rd Annual ACM
SIGACT Symposium on Theory of Computing, STOC 2021, page 60-73,
New York, NY, USA, 2021. Association for Computing Machinery.
Aggelos Kiayias, Stavros Papadopoulos, Nikos Triandopoulos, and Thomas
Zacharias. Delegatable pseudorandom functions and applications. In
Ahmad-Reza Sadeghi, Virgil D. Gligor, and Moti Yung, editors, ACM CCS
20183, pages 669—684. ACM Press, November 2013.

Vladimir Kolesnikov and Thomas Schneider. Improved garbled cir-
cuit: Free XOR gates and applications. In Luca Aceto, Ivan Damgard,
Leslie Ann Goldberg, Magnis M. Halldérsson, Anna Ingélfsdéttir, and Igor
Walukiewicz, editors, I[CALP 2008, Part II, volume 5126 of LNCS, pages
486-498. Springer, Heidelberg, July 2008.

Qipeng Liu and Mark Zhandry. Decomposable obfuscation: A framework
for building applications of obfuscation from polynomial hardness. In Yael
Kalai and Leonid Reyzin, editors, TCC 2017, Part I, volume 10677 of
LNCS, pages 138-169. Springer, Heidelberg, November 2017.

Claudio Orlandi, Peter Scholl, and Sophia Yakoubov. The rise of paillier:
Homomorphic secret sharing and public-key silent OT. In Anne Canteaut
and Frangois-Xavier Standaert, editors, EUROCRYPT 2021, Part I, vol-
ume 12696 of LNCS, pages 678-708. Springer, Heidelberg, October 2021.
Chris Peikert and Sina Shiehian. Noninteractive zero knowledge for NP
from (plain) learning with errors. In Alexandra Boldyreva and Daniele
Micciancio, editors, CRYPTO 2019, Part I, volume 11692 of LNCS, pages
89-114. Springer, Heidelberg, August 2019.

A Proof of Theorem 5.2

Proof. The techniques used in this proof are inspired by [HJK16]. We prove
the security of the protocol ITnorush described in Fig. 13 by showing that it
implements the functionality Fnorush (see Fig. 11) in the UC-model [Can01].
We achieve this plan through a series of hybrids allowing us to transition from
the real protocol ITnorush (Hybrid 0) to the composition of Fnorush with a PPT

51

simulator (Hybrid 14). In all the stages, we assume that the keys kj, and K}, are
uniformly sampled in {0,1}* for every h € H. Moreover, we assume, without
loss of generality, that we deal with adversaries that always query the elements
(Si,mi)ic[n) to the random oracle before broadcasting (S;, 7;)icc to the honest
parties.

Hybrid 0. This is the initial stage, corresponding to the real world. The
simulator generates the URS, the programs of the honest parties (Sp)nen, the
corresponding NIZKs and the final outputs as per the protocol IInorush. More-
over, it replies to the random oracle queries of the adversary sampling random
strings. If any value is queried multiple times, the simulator takes care to answer
always in the same way. Observe that with overwhelming probability, the final
outputs are generated without using the trapdoor of the anti-rushing programs.

Hybrid 1. In this hybrid, we substitute the URS and the NIZKs proving
the well-formedness of the programs of the honest parties with the outputs of
the simulators NIZK.Sim; and NIZK.Sims. In this way, we remove any informa-
tion concerning the keys of the honest parties from (7)pecp. Hybrid 1 is indis-
tinguishable from Hybrid 0 due to the multi-theorem zero-knowledge of NIZK.

Formally speaking, the simulator generates the URS and the anti-rushing
messages (Sp, Tp)nen as follows (the red text indicates what changed since the
last hybrid).

1. YVhe H: S, &i0(1*, Par[SendMsg, ky,, K, h])
2. (urs, 7) <& NIZK.Sim; (1)
3. Vhe H: m, <& NIZK.Simy(urs, 7, (Sh, h))

Next, for every ¢ from 1 to the number of random oracle queries issued by
the adversary, we proceed from Hybrid 2.q to Hybrid 13.q.

Hybrid 2.q. In this hybrid, we schedule the g-th oracle response (f), (ai)ie[n])
before generating the programs of the honest parties. Furthermore, for every
honest party h, we puncture the key K} in (dp,?) and we store it in Sj,. We
also program the latter to output the appropriate result when (4, ?) is input.
Observe that with overwhelming probability, such input does not activate the
trapdoor in Sy. By the correctness of puncturing, the input-output behaviour
of the honest parties’ programs is the same as in the previous hybrid. Hence,
indistinguishability holds by the security of iO.

The formal steps performed by the simulator in order to generate (S, Th)ne s
are described below.

o & {0, 13

Vie(n]: & {0,132

Vhe H: Ky« Punct(K;,,, (tp, f)))

Vhe H: 7)<+ FK;, (?7,},,, 17)

Vhe H: g, <+ SendMsg(1*, h; #1,)

Vhe H: S, <& i0(1%, Pig[SendMsg, ki, Ky, h, i, 0, €1]) (sce Fig. 22)
(urs, 7) & NIZK.Simy (1)

Vhe H: m, & NIZKSimy(urs, 7, (Sp, b))

® NS gtE o =

52

Par[SendMsg, k, K, 1,

Hard-coded. The algorithm SendMsg, the PRF keys k and K and the index
i of the party. Moreover, the scheduled oracle response (4, ?) to the ¢-th query
and the corresponding output g.

Input. Oracle responses (u,v) € {0,1}*™™ x {0,1}*.

1. If (u,v) = (4,0), output g
2. (Y1 U1, U3, U3, -+ Y Ym) < Fi(v)
3. For every j € [m] set
0 if y;v) =,
2 <1 ifyjl- =7,
1 otherwise.

4. If 27 # L for every j € [m], output (z',z?,... ™).
Set r + Fx(u,v).
6. Output g « SendMsg(1*,i; 7).

o

Fig. 22. The Anti-Rushing Program

Hybrid 3.q. In this hybrid, on behalf of every honest party h, the simulator
generates the element g;, hard-coded into S; using true randomness 75, instead
of the output of F. Moreover, if the anti-rushing messages (armsg,);cc of the
corrupted parties are valid and correspond to the ¢g-th oracle query, for every
h € H, the simulator directly outputs 7, to Py, instead of using Fx, . Observe
that this hybrid is indistinguishable from the previous one due to the security
of the puncturable PRF F.

The precise procedure used by the simulator to generate (Sy, 7)nhey is the
following.

o & {01}

Vie[n]: ;< {0,137

Vhe H: K« Punct(Kp, (in,0))

Vhe H: #, & {0,120

VYhe H: g, + SendMsg(1*, h; 7,)

VheH: S,& iO(]l’\,’P,iR[SendMsg, kn, Kp, h, @, 0,81]) (see Fig. 22)
(urs, 7) <& NIZK.Sim, (1%)

Vhe H: <& NIZK.Simy(urs, 7, (Sk, h))

®© NS e W=

Hybrid 4.q. For every honest party h, we now puncture the PRF key kj
in 9. Furthermore, we hard-code into Sy, the output of I () and we use it to
compute the result when ¢ is input. Since the input-output behaviour of the
program remains the same as in the previous hybrid, indistinguishability holds
due to the security of iO.

The formal steps performed by the simulator for the generation of the the
anti-rushing messages of the honest parties change as follows.

53

P2r[SendMsg, k, K, 4, 0, 0, &,

Hard-coded. The algorithm SendMsg, the PRF keys k£ and K and the index
i of the party. Moreover, the scheduled oracle response (4, 9) to the g-th query
and the corresponding output g. Finally, the PRF output (:L}?)jJ).

Input. Oracle responses (u,v) € {0,1}*™™ x {0,1}*.

1. If (u,v) = (@,), output g
2. If v =0, for every j € [m], set

0 if ;1)? =u’,
{1 ifgjjl- =,

1 otherwise.

3. Otherwise, compute (y9,y1,%3,y3,. .., y%, Y) < F}(v) and, for every j €
[m], set
0 if y? =,
{1 ifyjl-:uj,

1 otherwise.
4. If 27 # 1 for every j € [m], output (z*,z2,...,2™).
Set r < Fk(u,v).
6. Output g < SendMsg(1*,3; r).

o

Fig. 23. The Anti-Rushing Program

o & {011
Vi€ [n]: 4 & {0,1pm>
Vhe H: K<+ Punct(Kh, (fth,’f}))
VheH: ky+ Punct'(kp,0)
Vh e H : (?]Z.j)j.,b — F,gh (0
VheH: #, & {0,130
VheH: g+ SendMsg(1*, h;)
Vh e H : S, & i0(1Y,Pix[SendMsg, iy, Ko, b, i, 0, 8n, (1), ,);0]) (see
Fig. 23)
9. (urs, 7) & NIZK.Simy (1)
10. YVhe H: m, < NIZK.Simo (urs, 7, (Sp, h))

®© N otk Wi

Hybrid 5.q. In this hybrid, on behalf of every honest party h, the simulator
generates the values (gjg ;)4,b sampling them uniformly in {0, 1}* instead of using
the PRF F’. This hybrid is indistinguishable from the previous one due to the
security of the puncturable PRF F”.

The specific steps performed by the simulator for the generation of (Sy,, 7) her
are the following.

54

o & {011

Vi€ n]: & {0, 11mA

Vhe H: K<+ Punct(Kh, (ﬂh,f}))

Vhe H: ky + Punct'(kp,0)

.Vhe H,je[m]and be {0,1}: 172,,7‘ & {0,117

Vhe H: & {0,130

Vhe H: g, SendMsg(1*, h;)

.Vh € H: S, & i0(1* Pix[SendMsg, ky, K, b itn, 0, 8n, (5 ;)0]) (see
Fig. 23)
9. (urs, 7) <& NIZK.Sim; (1)

10. YVhe H: m, < NIZK.Simo (urs, 7, (Sp, h))

e N

Hybrid 6.q. In this hybrid, we rely on an injective double-lengthening PRG
G : {0,1}* — {0,1}?*. Instead of hard-coding the values (Q27j)j,b in Sp, the
simulator now stores their images (¢}, ;);» under the PRG G, i.e. & ; = G(3;, ;)
Furthermore, when 9 is input in Sy, the program decodes now 2/ by comparing
G(u?) to ég’j and ¢}, ;. Observe that since G is injective, u/ = gjz’j if and only if
G(u!) = élfh ;- In other words, the input-output behaviour of the programs of the
honest parties did not change with respect to the previous hybrid. Therefore,
indistinguishability holds by the security of iO.

The formal procedure performed by the simulator for the generation of
(Sh, 7h)nen is the following.

Co & {01

Vi€ n]: & {0,1}m>

Vhe H: K<+ Punct(Kh, (ﬂh,f}))

Vhe H: ky + Punct'(kp,0)
.VheH,je[mlandbe{0,1}: g, < {01}
.Vhe H,je[m]and be {0,1}: é;’l"j — G(’g;’m)
VheH: & {0,130

Vhe H: g+ SendMsg(1*, h; 71,)

. \;/;g'eml)q S & 101N, Pig[SendMsg, ki, K, o, ti, 0,81, (€5, 1) 50]) (see
10. (urs, 7) & NIZK.Simy (1)

11. YVhe H: m, < NIZK.Simo (urs, 7, (Sp, h))

© 00N DU R W

Hybrid 7.q. In this hybrid, instead of generating the values (éz’j)j,b using the
PRG G, the simulator samples them uniformly in {0,1}?* for every h € H. By
the security of G, this hybrid is therefore indistinguishable from the previous one.
Here, we are actually relying on the fact that, with overwhelming probability, the
terms (yg j) 4,» are not used for the generation the first g—1 oracle responses. This
is a consequence of the fact that, with overwhelming probability, ¢ is different
from the nonces in the first ¢ — 1 oracle answers.

The procedure used by the simulator becomes now the following.

95

Pir[SendMsg, k, K, 4, 0, 0, &,

Hard-coded. The algorithm SendMsg, PRF keys k and K and the index i of
the party. Moreover, the scheduled oracle response (4,) to the g-th query and
the corresponding output g. Finally, the PRG outputs (é)b

Input. Oracle responses (u,v) € {0,1}*™™ x {0,1}*.

1. If (u,v) = (@,), output g
2. If v =19, frevery]E[], set

0 ife) =Gu),
<1 if & = G(v)),

1 otherwise.

3. Otherwise, compute (y{,y1,y5, y3, - - -, Yo%, U) < Fr(v) and, for every j €
[m], set
0 if y;v) =,
<1 ifyjlv =7,

1 otherwise.
4. If 27 # L for every j € [m], output (z',z?,... z™).
. Set r + Fx(u,v).
6. Output g + SendMsg(1*, i; 7).

ot

9.
10.

&n

e R .

Fig. 24. The Anti-Rushing Program

o & {011

SYien]: a4 & {0,1}mA

Vhe H: K« Punct(Kp, (an,0))
Vhe H: ky + Punct'(kp,0)

.Vhe H,je[m]and be {0,1}: eh j & {0,132

VheH: <& {0,130
Vhe H: g, <« SendMsg(1*, h; 71,)

.Vh e H: S, & i0(1Y, PixlSendMsg, ky, K, b, itn, 0, &n, (4, ;);0]) (see

Fig. 24)
(urs, 7) < NIZK.Sim, (1)
Vhe H: m, & NIZKSimy(urs, 7, (Sp, b))

Hybrid 8.q. Starting from this hybrid, the program S;, generates the element
using the trapdoor mechanism. Compared to the previous stage, the only

thing that actually changes is how the values (él;h j) 4,b are generated. Specifically,
the simulator first encodes the element gj, as a bit string Z5. Then, for every

Jj € [m], it sets ehh to G(u) The remaining value é;z,_j

20
" is instead sampled

uniformly in {0, 1}2)‘ as in the previous hybrid. Observe that in this way, even

56

if we remove the first line from P3g, Si keeps outputting g, when (4, 9) is
provided as input. We call the program obtained in this way Pag.

It is possible to conclude that P3r and Pag have actually the same input-
output behaviour. The claim is trivially verifiable when the input (u, v) coincides
with the hard-coded pair (@, 9) or v # ©. If instead v = ¥ and u # 4, the matter
is a little more complex.

Observe that the image of the PRG G has 2* elements and they are embed-
ded into a space of cardinality 22*. Since the latter is much larger, with over-
whelming probability, values uniformly sampled in {0, 1}?* do not belong to the
image of G. In particular, this holds for those elements among (él,’h j) j,» that are
sampled uniformly. For such values, there is no chance that él}’h ;= G(ﬁi) As
a consequence, the output of P,i’R is never generated using the trapdoor when
v = 0. In the case of PA instead, the only input with v = © that activates the
trapdoor is (4,) due to the injectivity of G.

In this way, we have proven that Hybrid 8.¢ is indistinguishable from the
previous one due to security of iO. The formal description of the steps performed
by the simulator is available below.

L o& {01}

2. Vi€ [n]: ;< {0,1}mA

3.YVhe H: Kj <+ Punct(Kh, (ﬁh,f[)))

4. Vhe H: ky + Punct'(ky,d)

5. Vhe H: i, & {0,1}FW

6. Vhe H: g, + SendMsg(1*, h; #4)

7. For every h € H, rewrite g, as an m-bit string &y,.
8. Vhe€ H and j € [m] : é:’d%‘j — G(ﬁ,{h)

9

.Vhe Handje[m]: @,1:7% & {0,132
10. Vhe H: S, < i0(1*, PAg[SendMsg, ky, Ky, h, 0, (€} ;);u]) (see Fig. 25)
11. (urs,7) & NIZK.Simy (1Y)
12. Vhe H: m, < NIZK.Simo (urs, 7, (Sp, h))

Hybrid 9.q. In this hybrid, the simulator changes the way it generates those
values among (éz’ ;)46 that were previously sampled uniformly in {0, 1}2*. For
each of them, it indeed chooses a random A-bit seed gjg,j and sets él}’hj — G’(gjzﬁj).
This hybrid is therefore indistinguishable from the previous one by the PRG
security of G. The procedure describing the steps of the simulator is now the
following.

o & {0,131

Vien]: a; ¢ {01}

Vhe H: Kj+ Punct(Kh, (ﬁh,f)))
Vhe H: ky + Punct'(kp,0)

Vhe H: & {0,130

CL Wi =

o7

Par[SendMsg, k, K, i, 0, (€5);,5]

Hard-coded. The algorithm SendMsg, the PRF keys k£ and K and the index
1 of the party. Moreover, the scheduled nonce v for the g-th oracle query and
the values (&5);..

Input. Oracle responses (u,v) € {0,1}*™™ x {0,1}*.

1. If v = 0, for every j € [m], set

0 ifé) =G?),
) Q1 ifél = Gud),

1 otherwise.

2. Otherwise, compute (y{,y1,y5, y3, ..., Y%, U) < Fi(v) and, for every j €
[m], set
0 if y? =7,
Q1 ifyl =,

1 otherwise.

w

If 27 # L for every j € [m], output (z*,22,...,2™).
Set r + Fi(u,v).
5. Output g < SendMsg(1*,3; r).

=

Fig. 25. The Anti-Rushing Program

Vhe H: g, + SendMsg(1*, h; 71,)
For every h € H, rewrite g, as an m-bit string Zj,.
Vh € H and j € [m] : y,’,'J —a
Vh € H and j € [m] : g,l,j’; £ {0, 1
10. Vhe H,j € [m] and b € {0,1} : é’;”. — G(g);jj)
11. Vhe H: S, &i0(1Y, Pis[SendMsg, ki, K, h, 0, (éz)j)j,b]) (see Fig. 25)
12. (urs, 7) & NIZK.Simy (1)
13. Vhe H: m, < NIZK.Simy(urs, 7, (Sy, h))
Hybrid 10.q. In this hybrid, instead of hard-coding the values (éli)u j) b in
S, the simulator stores their preimages (@Z j) j,» under the PRG G. Furthermore,

© ® N

when 9 is input into Sy,, the program decodes 7 by comparing u? to ggy ; and gj}L e
Observe that since G is injective, u? = gjz’j if and only if G(u/) = éz7j. In other
words, the input-output behaviour of the programs of the honest parties did not
change with respect to the previous hybrid. Therefore, indistinguishability holds
by the security of iO.

The formal procedure performed by the simulator for the generation of
(Sh, Th)hem is the following.

Lo & {0, 1}

o8

Pir[SendMsg, k, K, 1, D,

Hard-coded. The algorithm SendMsg, the PRF keys k£ and K and the index
i of the party. Moreover, the scheduled nonce ¢ for the ¢g-th oracle query and
the values (95);,5-

Input. Oracle responses (u,v) € {0,1}*™™ x {0,1}*.

1. If v = 0, for every j € [m], set

0 if g} =1,
Q1 if gl =,

1 otherwise.

2. Otherwise, compute (y{,y1,y5, y3, ..., Y%, U) < Fi(v) and, for every j €

[m], set
0 if y? =7,
{1 ifyjl-:uj7
1 otherwise.
3. If 27 # 1 for every j € [m], output (z*,22,...,2™).
4. Set r + Fk(u,v).

5. Output g « SendMsg(1*,3; r).

© X NS AE N

H
e

—_ =
N

Fig. 26. The Anti-Rushing Program

Vien]: ;< {0,137

Vhe H: Kj <« Punct(Kh, (ﬂh,f}))

VheH: ky+ Punct'(kp,0)

Vhe H: #, & {0,120

Vhe H: g+ SendMsg(1*, h; 71,)

For every h € H, rewrite g, as an m-bit string &y,

Vhe Hand j€lm]: @, « i

VheHandje[ml: g, & (0,13

Vhe H: S, &i0(1%, PRg[SendMsg, kn, Ky, h, 0, (3} ;);.0]) (see Fig. 26)

. (urs,7) & NIZK.Sim; (1)
.VheH: < NIZKSimy(urs, 7, (Sp, h))

Hybrid 11.q. In this hybrid, we finally change the oracle response to the

g-th query of the adversary, substituting the random values (4)ncpg with the
encryption of the elements (g,)necp-

Actually, the only thing that changes is the distribution of the terms (gjg i)ib-

Indeed, they are not uniform in {0,1}* anymore, but they are generated by the

0 .
simulator as Fy, (9). Since g):hj = uy for every j € [m] and h € H, we also modify
the values (p)pen accordingly.

99

Observe that this hybrid is indistinguishable from the previous one by the
security of the puncturable PRF F’. The formal procedure used by the simula-
tor for the generation of (Sy, 7,)neny and the g-th oracle response becomes the
following.

Lo & {01}

2. VieC: d; & {0,1}mA

3. Vhe H: kp <+ Punct’(k;“ﬁ)

4. Yhe H: i, & {0,130

5.Vhe H: g, « SendMsg(1*, h; 7,)

6. For every h € H, rewrite g, as an m-bit string Zp,.
7.Vhe H: (@27]‘)3',1) «— Fy, (0)

8. Vhe H and j € [m] : 1]{1 — 7}:%

9.Vhe H: Ky, + Punct(Kp, (i, 0))

10. Vhe H: S, & iO(]l’\,P,‘:’R[SendMsg, ken, Kn, h, 0, (yglj)m]) (see Fig. 26)
11. (urs, 7) & NIZK.Simq (1)

12. Vhe H: m, < NIZK.Simy (urs, 7, (Sy, b))

Hybrid 12.q. In this hybrid, the simulator generates the programs of the
honest parties by obfuscating Pag, as in the original protocol. We however keep
replying to the g-th oracle query of the adversary as in Hybrid 11.q. Indistin-
guishability from the previous stage is guaranteed by the security of iO. As a
matter of fact, the programs PR (as in Hybrid 11.g) and Pag have the same
input-output behaviour.

Formally, the anti-rushing messages (Sp, 7,)nen are generated as follows.

1. YVhe H: S, &i0(1, Pag[SendMsg, k., K, h]) (see Fig. 12)
2. (urs, 7) & NIZK.Sim (1)
3. Vhe H: & NIZK.Simy (urs, 7, (Sp, 1))

The procedure for the generation of the g-th oracle response is instead the
following.

o & {0,117

VieC: a; & {01}

VheH: & {0,130

Vhe H: g+ SendMsg(1*, h; 71,)

For every h € H, rewrite g as an m-bit string &,
Vhe H: (J; ;)b Fy, (0)

Vhe Handj€[m): i « g

N ot W

Observe that the URS and the anti-rushing messages (armsg;,)ncp of the honest
parties can be now generated independently of the g-th oracle response. It is
therefore possible to produce the ¢-th oracle answer on the fly, after receiving
the corresponding query.

60

Hybrid 13.g. In this hybrid, the simulator generates the elements (g,)nen
hidden in the g-th oracle response using the functionality Fnorush- The opera-
tion is actually performed only if the g-th oracle query consists of n elements
(Si, mi)icin) Where the values (Sp,7n)ner coincide with the anti-rushing mes-
sages of the honest parties in the only round of interactions and, for every i € C,

NIZK.Verify (urs, 7, (Si, 7)) = 1.

In such cases, the simulator extracts the witnesses from the NIZK proofs of the
corrupted parties using NIZK.Extract, obtaining the corresponding PRF keys k;
and K;. By the extractability of NIZK, the procedure is successful with over-
whelming probability. If the ¢g-th oracle query does not satisfy the properties de-
scribed above, the response is generated as in the previous stage.

More precisely, the simulator now samples the nonce ¢ and the terms (4;)iecc
uniformly and retrieves the randomness #; used for the generation of g; =
S;(G;,0) for every i € C. Now, it is indeed possible to perform the operation as
the PRF key K; is no longer secret. Moreover, with overwhelming probability,
the pair (@;,) does not activate the trapdoor in S;. The values (g,)nen are fi-
nally generated by sending (&;, 7;)icc t0 FNoRush-

At the end, if the anti-rushing messages of the corrupted parties correspond
to the g-th oracle query, the simulator retrieves the randomness of the honest
parties (7,)nen by sending the label of the g-query to the functionality.

Observe that this hybrid is indistinguishable from the previous one by the
witness extractability of NIZK. The formal steps used for the generation of the
g-th oracle query become now the following.

1o & {0, 1}

2.VieC: ;& {0,132

3. VieC: (ki K w;) NIZK.Extract(urs,T, (Si, L)T(I)

4. VieC: 7+ F]\f’i(ﬁ,i, 7:’)

5.Vie C: g « SendMsg(1*,i; #;)

6. Send (Query, (&,7:)icc) t0 Frorush, obtaining (id, (§x)rer) as a reply.
7. For every h € H, rewrite g, as an m-bit string Zy,.

8. Vhe H : (g};,j)j’b — Fy, (9)

9

.VYhe H and j € [m]: a{b<—g,ffj

Hybrid 14. This stage corresponds to the ideal world and it just formalises
what has been achieved through the series of hybrids we described above.

At this point, the simulator generates the anti-rushing messages of the honest
parties and the URS as in Hybrid 1. Moreover, it replies to all the oracle queries
as in Hybrid 13.¢, receiving ideal (gp)nen from the functionality Fnorush- We re-
call that each of these samples is associated with a label id, so there is a one-to-
one correspondence between labels and oracle queries. When the adversary se-
lects the anti-rushing messages (S;, 7;);ec of the corrupted parties, the simulator
sends the label of the corresponding oracle query to the functionality. The latter
will take care of outputting the associated randomness to the honest parties. [

61

B Proof of Theorem 6.7

Proof. We show that the public key PCF with trusted setup described in Fig. 19
is semi-maliciously secure. We prove both correctness and security in one go. As
a matter of fact, correctness can be regarded as the special case of security in
which C =). Observe that in such case, we can always assume that RSample
samples directly from C using randomly chosen master secrets (mk;);en]-

We proceed by a sequence of 12 indistinguishable hybrids (some of them
repeated for every possible nonce value) going from the real world (Hybrid 0)
to the ideal world (Hybrid 12). The size of the nonce space will affect the proof
only on the number of reductions needed. Specifically, the number of hybrids will
be polynomial if and only if the cardinality of the nonce space is polynomial. In
the other cases, we will need to assume the existence of sub-exponentially secure
primitives.

We always assume that the PRF keys k and K hard-coded into the correlation
generation program CGP are randomly sampled in {0,1}*. Moreover, in every
stage, we assume that the PKE pairs of the parties are all generated according
to the protocol, using the randomness parametrising the game in the case of the
corrupted players. We denote the i-th pair by (sAkl-7 pAkl)

Hybrid 0. This is the initial hybrid and corresponds to the execution of
the security game with b = 0. The challenger creates the correlation generation
program by obfuscating Pcg (see Fig. 19). Also the keys of the honest parties
are generated following the protocol. Those of the corrupted players are instead
derived using the randomness parametrising the game. Finally, the challenger
replies to all the sampling queries using Eval.

Hybrid 1. In this hybrid, we puncture the PRF key k in the list of public
keys of the players. We also store, in the correlation generation program CGP,
the master secrets corresponding to the punctured position and we use them to
compute the output when the public keys of the parties are fed into it. In this way,
the input-output behaviour of CGP does not change with respect to the previous
hybrid. Therefore, indistinguishability follows from the security of obfuscation.

The formal steps performed by the challenger for the generation of CGP are
now the following (the red text highlights what changed since the last stage).

1.k« Punct’ (k, (pky, pks - - ., pAkn))

2. (‘SAl: 5A27 RS gnA) A F]i(pkl* pk27 e pkn)

3. Vi€ [n]: mk; < Secret(1*,i; ;)

4. CGP & i0(1%, Plelk, K, (pk;, mk;)ica)]) (see Fig. 27)

_Hybrid 2. In this hybrid, we change how we produce the master secrets
(mki)ic[n)- Specifically, instead of generating the randomness of Secret by means
of F}, we sample it uniformly. By the security of the puncturable PRF, this

hybrid is indistinguishable from the previous one.
Formally, the challenger generates CGP as follows.

1. k+ Punct/(kz, (;{kl, pAk27 cee pAkn))

62

Péelk, K,]

Hard-coded. The puncturable PRF keys k and K, the public keys (ﬁki)ie[n]
and the master secrets (mAki)Zve[n].
Input. A nonce z € {0,1}'® and n public keys pk, pk, . . ., pk,,.

L (r,71,72,...,7m0) < Fk(pky, pky, ..., pk,, 7).
2. If pk, = pk; for every i € [n], set mk; <— mk; for every ¢ € [n].
3. Otherwise, perform the following operations
(a) (s1,82,...,8n) < FL(pky, pky,. .., pk,)
(b) Vi€ [n]: mk; + Secret(1*,i; s;)
4. (R1,Ra,...,Ry) < C(1*, mky, mka, ..., mkn; 7)
Vi€ n]: ¢+ PKE.Enc(pki, (R, mk;); n)
6. Output ci1,c2,...,cCn.

o

Fig. 27. The Correlation Generation Program

2. Vien]: mk; & Secret(1)4)
3. CGP & i0(1*, Péclk, K, (pk;, mk;)icpn)]) (see Fig. 27)

We now consider the nonce space {0,1}*) and we order it using the lexico-
graphical order <jey. Let € denote the minimum and {2 the maximum. We apply
the series of hybrids from 3 to 10 for every nonce Z, starting from e and follow-
ing the lexicographical order.

Hybrid 3.2. In this hybrid, the challenger samples additional master secrets
(mk},)nen for the honest parties and hard-codes them into CGP along with # and
H. When the nonce x input in CGP is strictly smaller than Z and the provided
public keys coincide with the ones of the parties, the program generates the
samples (R;);e[n) substituting mk;, with mk), for every h € H. Furthermore, when
the nonce x is strictly smaller than &, the challenger replies to the correlation
queries using RSample, providing it with (rﬁki)l-e[n].

Observe that for & = €, the input-output behaviour of CGP has not changed
with respect to Hybrid 2. Moreover, the challenger never uses RSample to reply
to the correlation queries. If instead & # €, we will see that the input-output
behaviour of CGP has not changed with respect to the previous hybrid either and
the challenger replies to the correlation queries as it did before. We conclude that
indistinguishability holds in both cases due to the security of the obfuscator.

The formal steps used by the challenger for the generation of CGP are now
the following.

1. k+ Punct'(kj, (pAkl, pAkQ, cee pAkn))

2. Vie[n]: mk; & Secret(1*,4)

3. Vhe H: mkj, & Secret(1*,h)

4. CGP & 01, PLE k. K, (pkys mKs)icpnys (MK),) ner, H. 7)) (see Fig. 28)

63

P(EGZ [k, K, (pxkz.’ mAkv,j)ie[nr]a

Hard-coded. The puncturable PRF keys k and K, the public keys (pAkZ-)ie[n]
and the master secrets (rﬁki)ie[n] and (mk});cm, the set of honest parties H
and the nonce Z.

Input. A nonce z € {0, 1}10\) and n public keys pky, pky, ..., pk,.

L (r,r1,72,...,7n) < Fi(pky, pky, - . ., Pk, 7). R
2. If pk; = pk; for every i € [n] and x >1ex &, set mk; <— mk; for every ¢ € [n].
3. If pk, = p[(z- for every i € [n] and @ <jex &, set mky, <— mkj, for every h € H
and mk; + mk; for every i € C.
4. Otherwise, perform the following operations
(a) (s1,82,...,8n) + F(pky,pky, ..., pk,)
(b) Vi€ [n]: mk; + Secret(1*,i; s;)
5. (R1,Ra,...,Ryn) « C(1*, mky, mka, ..., mky,; 7)
Vi€ [n]: ¢ < PKE.Enc(pk;, (Ri,mki); 74)
7. Output c1,c2,...,Cn.

B2

Fig. 28. The Correlation Generation Program

The reply to (Correlation,) when x <jex & is instead computed as follows.

L. (¢i)iein) < CGP(pky, Py, ..., pk,,,)
2. Vie C: (R;,mk;) + PKE.Dec(sk;,c;)
3. (Rh,)hGH <i Rsample(ﬂ)\a 07 (Ri,)’i,ECv (mki)i607 (mkh)hEH>

Hybrid 4.z. In this hybrid, we puncture the PRF key K in the tuple consist-
ing of the public keys of the parties and the nonce Z, i.e. (pAkl, pAkQ, ey pAkm z).
Moreover, we program CGP to output the appropriate ciphertexts when the
punctured position is given as input. Since the input-output behaviour of the
program has not changed with respect to the previous hybrid, indistinguishabil-
ity follows from the security of iO.

The formal procedure used by the challenger for the generation of CGP is
now the following.

1. k+ Punct'(kz, (pAkl, pAk27 cee pAkn))

Vie[n]: mk; & Secret(1?,4)

Vhe H: mk), & Secret(1*,h)

K+ Punct(K, (pAkl, pAk27 o pAkn, f’))

(7,71, 72, ...,) < Fi(pky, pkos ..., pk,,)

(Ri)icpn) < C(1*, mky, mka, ..., mky; 7)

Vi€ [n]: & <« PKE.Enc(pk;, (R, mk;); 7;)

CGP & i0(1Y, P2 [k, K, (pk;y mKy)ie(n)s (MK} e, H. &, (¢1)icr]) (see Fig. 29)

Hybrid 5.%. In this hybrid, we change how we generate the samples (R;);c[n)
and encrypt them. Specifically, instead of producing the randomness using the

®© N oG

64

Pk K, (pk;, ”{ki)z‘e[nr]a (mki)nen, H, &,

Hard-coded. The puncturable PRF keys k and K, the public keys (pAkZ-)Z-E[n]
and the master secrets (n;ki)ie[n] and (mk});cm, the set of honest parties H,
the nonce & and the ciphertexts (¢;);c(n)-

Input. A nonce z € {0, l}l()‘) and n public keys pky, pks, ..., pk,-

If pk, = pk; for every i € [n] and = = &, output (€i)iem)-
(ryr1,725 ..oy Tn) <= Fr(pky, pky, - .., Pk, @). R
If pk; = pk; for every i € [n] and = >1ex &, set mk; <— mk; for every i € [n].
If pk, = pk, for every i € [n] and & <iex 2, set mky, < mk), for every h € H
and mk; + rﬁki for every i € C.
5. Otherwise, perform the following operations
(a‘) (517 52,4, STL) A Flé(pkla <] ST pkn)
(b) Vi € [n]: mk; < Secret(1*,i; s;)
6. (R1,R2,...,Ry,) « C(1*, mky, mka, ..., mky; 7)
Vi€ [n]: ¢ + PKE.Enc(pk;, (Ri, mk;); 7;)
8. Output c1,ca,...,Cn.

W=

~

Fig. 29. The Correlation Generation Program

PRF Fg, we sample it uniformly. Observe that this hybrid and the previous one
are indistinguishable by the security of the puncturable PRF F.

The formal procedure used by the challenger to generate CGP becomes the
following.

k + Punct’ (k, (pky, pky, - - -, pk,,))

Vie[n]: mk; & Secret(1?,4)

Vhe H: mk), & Secret(1*,h)

K « Punct(K, (pky, pky, - . ., pk,, 2))

(Ri)icin) < C(1*, mky, mko, ..., mky,)

Vi€ [n]: & < PKE.Enc(pk;, (R;, mk;))

CGP & i0(1Y, Pk, K, (pky, MKy)ic), (MKh) nerr, H, &, (€)icin]) (see Fig. 29)

NS e

Hybrid 6.2. In this hybrid, the challenger replies to the query (Correlation, &)
directly sending the values (Ri)ie[n] sampled by C during the generation of PCG.
This hybrid is indistinguishable from the previous one by the correctness of iO
and PKE.

Hybrid 7.z. In this hybrid, we change how we produce the samples (Ri)ie[n].
Specifically, we first generate (R;);c[, using the correlation function C and sub-
stituting mk], to mky, for every h € H. Then, we obtain (Rj)sen by feeding the
original master secrets (mAkZ-)iE[n} and (R});ec into RSample. Finally, we set R;
to R} for every i € C'. Observe that this hybrid is indistinguishable from the pre-
vious one by the reverse samplability of (Secret,C).

65

The formal steps performed by the challenger for the generation of CGP
become the following.

ke «+ Punct’ (k, (pky, pkys - - -, pk,,))

K + Punct(K, (pky, pky, - . ., pk,,, 7))

Vie[n]: mk; & Secret(1*,4)

Vhe H: mk), & Secret(1*,h)

VieC: mk « mk

(R})icpn) < C(I*, mki, mK), ..., mk),)

(Rn)nen éARSamPk%(]lAa C, (RY)icc, (mki)iec, (mkp)hen)

VieC: R;+ R,

Vi€ [n]: & < PKE.Enc(pk;, (R;, mk;))

CGP & i0(17, PES [k, K, (g, mks)icn], (MK)near, H, &, (6)ieqm]) (see Fig. 29)

© 0N oA W N

H
o

Hybrid 8.%. In this stage, instead of hard-coding into CGP the encryption of
(]:Zh, n;kh), for every h € H, we store the encryption of (Rj, mk},). The challenger,
however, replies to the query (Correlation,) by feeding the actual samples of
the corrupted parties and the original master secrets (n%ki)ie[n] into RSample.
Observe that the challenger does not need to know the secret-keys of the honest
parties to reply to the queries (Correlation, z) with # Z. The knowledge of
the keys K and k permits indeed to recompute the samples (R;);c[n)- This fact
allows us to reduce the indistinguishability between Hybrid 7 and 8 to the IND-
CPA security of PKE.

The formal steps performed by the challenger for the generation of CGP
become the following.

- Punct'(k, (r;kl, pAkZ, ce, pAkn))

K« Punct(K, (pAkl, pAk27 e r;kn, :i))

Vie[n]: mk; <& Secret(1*,4)

Vhe H: mk), & Secret(1*,h)

VieC: mk« mk;

- (RDicp) < C(1Y, mK}, mkj, ..., mk],)

Vi€ [n]: & ¢ PKE.Enc(pk;, (R}, mk))

. CGP & 101, PEZ [k, K, (pky, mKi)ie(n)s (MKp) ners H, &, (¢)icin]) (see Fig. 29)

Furthermore, the response to (Correlation, &) is now computed as follows.
L. (¢i)icpn] < CGP(pAkl,pAkQ,....,pAkn,Ai",)
2. Vie(C: (Rz~ mkl) «— PKE.DGC(SkZ‘,CZ‘)
3. (Rh,)hGH <l Rsample(ﬂ)\a 07 (R/)/EC~ (mki)’iECa (mkh>hEH>
Hybrid 9.z. In this hybrid, we change how we generate the samples (Ré)z’e[n}

and we encrypt them. Specifically, instead of sampling the randomness for C and
PKE.Enc uniformly, we rely on the output of the PRF Fg when its nonce is

66

the position where we had previously punctured. Indistinguishability from the
previous stage holds by the security of the puncturable PRF F.

The formal steps performed by the challenger for the generation of CGP
become the following.

k « Punct’ (k, (pky, pka, - - -, pk,,))

K + Punct(K, (pky, pky, - - -, pky,, 7))

(7,71, 72, ..., n) < Fi(pky, pkos - .., pk,,,)

Vien]: mk; < Secret(1*,4)

Vhe H: wmkj, & Secret(1*,h)

Vie C: mk;« mk;

(R))icin < C(1*, mk}, mkh, ..., mk; #)

Vi€ [n]: & < PKE.Enc(pk;, (R}, mk}); #;)

CGP & i0(1Y, Pk, K, (pky, MKy)iepn), (MKh) ner, H, &, (&)icqn]) (see Fig. 29)

© P NS oA W

Hybrid 10.z. In this hybrid, we do not puncture K anymore and we remove
(¢i)ie[n) from CGP. When the public keys of the parties and the nonce & are input
into the program, we compute the output running the same procedure as if the
nonce was strictly smaller than #. Observe that the input-output behaviour of
the program is the same as in the previous hybrid, therefore indistinguishability
follows from the security of iO.

The formal procedure adopted by the challenger for the generation of CGP
becomes the following.

1. k « Punct’(k, (pky, pks, - - -, pky,))

2. Vien]: mk; <& Secret(1,4)

3. Vhe H: mk) & Secret(1*, h)

4. CGP & 01, PLL [k, K, (pky;, mk:)icn], (MK)) nerr, H,2)) (see Fig. 30)

The next step of the proof is to repeat Hybrid 3-10 for the following value
of the nonce Z. When the procedure has been applied to all the elements of the
nonce space, we move to Hybrid 11.

Hybrid 11. In this stage, we change how we generate the master secrets
(mK},)her and (mk;);cc. Specifically, instead of sampling the randomness fed
into Secret uniformly, we rely on the output of the PRF F] when its nonce is
the position where we had previously punctured. Observe that this hybrid is
indistinguishable from the previous one by the security of the puncturable PRF
F.

The formal procedure used by the challenger for the generation of CGP be-
comes the following.

1. k+ Punct’(k, (r;kl, pAkQ, ce pAkn))

2. ($1,82,...,8,) < FJ(pky,pky, ..., pky,)
3. Vie[n]: mkl <& Secret(1Y,4; 8;)

4. Vie C: mk; « mk

67

P&G4 [k~ 1\77 (p«kz‘a rnAki)iE["']’ (mk;l)hEH’ H, f‘]

Hard-coded. The puncturable PRF keys k and K, the public keys (pAkZ-)Z-E[n]
and the master secrets (mk;);cf,) and (mk})icr, the set of honest parties H
and the nonce Z.

Input. A nonce z € {0, 1}10‘) and n public keys pky, pky, ..., pk,,.

L (r,71,72, ..., m0) < Fk(pky, pka, ..., Pk, T). .
2. If pk; = pk; for every i € [n] and x >cx T, set mk; <— mk; for every i € [n].
3. If pk; = pk; for every i € [n] and = <i. &, set mky, <— mk), for every h € H
and mk; + rrAlki for every i € C.
4. Otherwise, perform the following operations
(a) (s1,82,...,8n) + F(pky,pky, ..., pk,)
(b) Vi€ [n]: mk; + Secret(1*,i; s;)
5. (R1,Ra,...,Ryn) « C(1*, mky, mka, ..., mky,; 7)
Vi€ [n]: ¢ < PKE.Enc(pk;, (Ri,mki); 74)
7. Output c1,c2,...,Cn.

B2

Fig. 30. The Correlation Generation Program

5. Vhe H: mky, & Secret(1*, h)
6. CGP & i0(1%, PEg [k, K, (pk;, mki)icins (MK}) nerr, H, £2]) (see Fig. 30)

Hybrid 12. This is the final stage and corresponds to the ideal world. In
this hybrid, we do not puncture k anymore and we generate CGP by obfuscating
the original program Pcg (see Fig. 19). Observe that the input-output behaviour
of CGP is the same as in Hybrid 11. Indeed, there is no x >j.x & because & has
reached the maximum. Indistinguishability holds by the security of iO.

Also notice that the challenger replies to every query (Correlation,z) using
the following procedure.

1. (cl)le[n] — CGP(pAkhpAk%'-')pAknaAm)
2. VieC: (R“ mk,) — PKE.DGC(Ski7Ci)
3. (Rp)nen < RSample(1Y, C, (R;)icc, (mki)icc, (Mkp)nen)

Furthermore, observe that the master secrets (rﬁkh) ncH are sampled at random
using Secret and they are independent of the public keys and CGP. Finally, we
formalise the operations of the extractor.

Extract(C,CGP, p1,...,pn)

L. Vi€ [n]: (ski,pk;) ¢ PKE.Gen(1%; p;)
2. (¢i)iem) + CGP(pky,pky, ..., pkn,f)

3. VieC: (R; mk;) + PKE.Dec(sk;,c;)
4. Output (mk;);ecc.

Observe that in every hybrid the size of CGP is polynomial in the length I(\)
of the nonces. Furthermore, the size of the keys is always independent of the size
of the nonce space. O

68

C Proof of Theorem 6.10

Proof. Let pkPCFS = (Setup, Gen,Eval) be the sub-exponentially and semi-
maliciously secure public key PCF with trusted setup for (Secret,C). Assume
that DS = (Gen,Sample) is a sub-exponentially and semi-maliciously secure
distributed sampler for pkPCFS.Setup. Moreover, suppose that the algorithms
DS.Gen and pkPCFS.Gen need L(\) and L’(\) bits of randomness for their exe-
cution respectively. We rely on a PRG G mapping a A-bit seed into a pseudo-
random string of L(A) 4+ L’()\) bits. We assume that the output of G is natu-
rally split into two blocks of length L(\) and L’(X) bits respectively. Finally, let
NIZK = (Gen, Prove, Verify) be a simulation-extractable NIZK proving the well-
formedness of sampler shares and PCF public keys. Specifically, in the relation
corresponding to NIZK, the statement consists of a tuple (U, pk, i), whereas the
witness is a pair (s, sk) such that

U =DS.Gen(1*,4; 7), (sk,pk) = pkPCFS.Gen(1*,4; '), (r,7") = G(s).

Our actively secure public key PCF Il ¢ is described in Fig. 31. We now
prove that no PPT adversary is able to distinguish between Ilep.c and the
composition of .FCRSE'"ple with a PPT simulator we are going to present. The
proof proceeds by a series of 6 indistinguishable hybrids (some of them repeated

multiple times) going from Iy ¢ (Hybrid 0) to the ideal world (Hybrid 6).

Hexp—C

URS. The protocol needs a URS urs <& NIZK.Gen(1*) for the NIZK proofs.
Initialisation. Each party P; performs the following steps.

s & {0, 1

(riy) < G(s4)

Ui « DS.Gen(1%,4; ;)

(ski, pk;) < pkPCFS.Gen(1%,4; 77)

i & NIZK.Prove(1*, urs, (Us, pk;, i), (s, ki)

Broadcast (Us, pk;, 7;) and wait for a similar message from every other party.
If there exists j € [n] such that NIZK.Verify (urs, 7;, (U;, pk;, j)) = 0 abort.
S+ DS.SampIe(Uh Uo,..., Un)

X NS

Correlation. On input a nonce = € {0,1}1(”, each party P, outputs R; <+
pkPCFS.Eval(i, S, (pk;) je[n], ki,).

Fig. 31. Actively Secure Public Key PCF based on Sub-Exponentially Secure Primi-
tives

Hybrid 0. This hybrid coincides with the real world. The simulator runs the
protocol Ilep.c on behalf of the honest parties. Specifically, it starts its execution
producing the URS for the NIZK proofs, it generates the sampler shares and the

69

keys of the honest parties, proves their well-formedness and sends everything
except the private keys to the adversary. Moreover, the simulator replies to the
correlation queries using pkPCFS.Eval as in [lexpc.

Hybrid 1. In this hybrid, we change how we generate the URS and the NIZK
proofs of the honest parties. Specifically, we substitute them with the output of
the simulators NIZK.Sim; and NIZK.Sims. Indistinguishability between Hybrid
0 and 1 follows from the multi-theorem zero-knowledge of NIZK. Formally, the
steps performed by the simulator for the generation of the messages of the honest
parties are the following (the red text indicates what changed since the last
hybrid).

1.YVhe H: (rp,r) < G(sp)
.YheH: U,<& DS.Gen(1*,h)
.Yhe H: (skn,pk,) < pkPCFS.Gen(1*, h; 7)
(urs, 7) < NIZK.Sim, (1)
.Vhe H: < NIZK.Simy (urs, 7, (U, pky,, h))

SN

Hybrid 2. In this hybrid, we change how we generate the randomness
(rh, 7},)hen of the honest parties. Specifically, instead of expanding the seed sy,
we sample 7, and 7, uniformly in {0, 1323 and {0, 1}L,()‘) respectively. Observe
that this hybrid is indistinguishable from the previous one by the PRG security
of G.

Next, we repeat the hybrids from 3 to 5 for every possible choice of the
seeds of the corrupted parties p := (§;);cc. We follow the lexicographical order
starting from the minimum.

Hybrid 3.p. In this hybrid, we change how we generate the sampler shares of
the honest parties. Let (7;,7;) be G(8;) for every i € C. We rely on DS.Sim, pro-
viding it with the randomness (7;);cc and an element S produced by pkPCFS.Setup.

We also change the way we reply to the correlation queries. At the begin-
ning of its execution, the simulator samples a random mkj, for every h € H.
When it receives the messages of the corrupted parties, the simulator extracts
the witnesses from the NIZK proofs, obtaining the seeds p = (s;)i;cc and the
corresponding secret keys. The operation can be performed due to simulation-
extractability. Furthermore, the simulator derives the master secrets (mk;);cc of
the corrupt parties by computing (r;,r}) < G(s;) for every i € C and running
pkPCFS.Extract on (77);e[n) and S. The reply to the correlation queries is then
computed as follows.

— If p = p, the simulator substitutes the output of DS.Sample with S in
pkPCFS.Eval. It answers with the results.

— If p >1ex p, the simulator replies as in the real protocol.

— If p <jex P, the simulator extracts the outputs of the corrupted parties by
relying on their private keys, feeds the obtained values into RSample along
with (mk;);ec and (mkj,)neq and, at the end, answers with the results.

Observe that this hybrid is indistinguishable from the previous one by the
semi-malicious security of DS. Notice that when p is minimum, the simulator

70

never relies on RSample. The formal steps used by the simulator to generate
(Un)hen become the following.

LVieC: (i, F;) « G(3)
2. S & pkPCFS.Setup(1%)
3. (Uh,)hGH & DSSIm(]l/\, C’7 Sa (fi)iec)

The reply to (Correlation, z) is instead computed as follows.

.S« DS.SampIe(Ul, Us,..., Un)

Vie C: (s;,ski) < NIZK.Extract(urs, 7, (U;, pk;, i), ;)
VieC: (ry,r]) « G(s)

(mk;)iec < pkPCFS.Extract(C, S,], rh, ...)
p < (si)iec R

If p = p, compute Ry, < kaCFS.EvaI(h, S, (pki)ie[n],skh,m) Vh € H.

. If p >1ex p, compute Ry, + kaCFS.EvaI(h, S, (pki)ie[n],skh,x) Vh € H.
. If p <jex p, compute

(a) VieC: R;<«+ kaCFS.EvaI(i,S, (pk‘j)je[n],ski.,z)

(b) (Rp)nen < RSample(1*, C, (R;)icc, (mki)icc, (MK},)new)

Hybrid 4.5. In this hybrid, we change how we generate the outputs of the
honest parties when the seeds of the corrupted players coincide with p. Specifi-
cally, we now reverse sample them. We can indeed retrieve the samples addressed
to the corrupted parties using their private keys. The latter can be extracted from
the corresponding NIZK proofs along with the seeds of the corrupted players.
Using pkPCFS.Extract, it is also possible to derive the master secrets (mk;);cc.

Observe that this hybrid is indistinguishable from the previous one by the
semi-malicious security of pkPCFS. As a matter of fact, if the randomness p
chosen by the adversary is different from p, the two stages are perfectly identical.
If instead p = p, we can reduce distinguishability between Hybrid 2.p and 3.p to

the security game Qgét(jlg)sff()\).
When p = p, the simulator replies to (Correlation, z) using the following

procedure.

1.VieC: (sisk;) <« NIZK.Extract(urs,T, (U, pki,i),m)
2.VieC: (ry,r) + G(s)
3. (mki)icc + pkPCFS.Extract(C, S,77,75,...,77,)

4. Vie C: R;+ kaCFS.EvaI(i, S, (pkj)je[,,,],sk,;,w)
. (R}l/)hGH <i Rsample(ﬂ)\a C? (RI)IEC* (mki)iEC7 (mk;L>11,6H>

e R

ot

Hybrid 5.p. In this hybrid, we revert to the original procedure for the gen-
eration of the sampler shares of the honest parties. Specifically, we do not rely
anymore on DS.Sim, but we use DS.Gen. Observe that this hybrid is indistin-
guishable from the previous one by the semi-malicious security of DS.

If p = p, the procedure used by the simulator to reply to (Correlation, x)
becomes the following.

1. S < DS.Sample(Uy,Us, ..., U,)

71

.VieC: (si,ski) « NIZK.Extract(urs, 7, (U;, pk;, 1), 7;)
NMieC:o (rqyrh) < G(si)
(mk;)iec < pkPCFS.Extract(C, S, r},75,...,7])

.VieC: R;«+ kaCFS.EvaI(i, S, (pkj)je[n],ski,x)
. (Rn)nen < RSample(1*, C, (R;)icc, (mk;)icc, (MK})her)

O Tk W N

The next step is to repeat Hybrid 3-5 for the next value p of the seeds of the
corrupted parties. If p has reached the maximum, we move to Hybrid 6.

Hybrid 6. This hybrid corresponds to the ideal world and summarises what
we have achieved so far. In this final stage, the simulator selects the sampler
shares and the keys of the honest parties as in the original protocol, using however
true randomness instead of expanding PRG seeds. The URS and the NIZK
proofs are generated by relying on the simulators NIZK.Sim; and NIZK.Sim, as
in Hybrid 1.

When the simulator receives the messages of the corrupted parties from the
adversary, it extracts their seeds and private keys from the zero-knowledge proofs
using NIZK.Extract. At that point, it has all the necessary information to retrieve
the master secrets (mk;);cc of the corrupted players by means of pkPCFS.Extract.
The values are sent to }"gsample.

Upon receiving any query (Correlation, z), the simulator is also able to com-
pute the outputs of the corrupted parties as it knows their private keys. So it
is just sufficient to forward the results to the functionality. The latter will take
care of the generation and distribution of the samples of the honest players us-
ing RSample. The formal description of the simulator is available is Fig. 32.

O

72

Sexp»C

Initialisation.
1L.VheH: r)<& {0,132’
2. Vhe H: U, <& DS.Gen(1*, h)
3. YVh€ H: (skn,pk,) < pkPCFS.Gen(1*, h; 74,)
4. (urs,7) < NIZK.Sim; (1*)
5.Vhe H: < NIZK.Sima (urs, 7, (Un, pky, h))
6. Send (U, pky,, Th)nen to the adversary and wait for (U, pk;, 7)icc as a reply.
7. If there exists ¢ € C such that NIZK.Verify(urs, i, (Ui, pk;, z)) =0, send Abort

8.
9.
10.
11.
12.

to the functionality.

S + DS.Sample(U1, Us, ..., Uy)

Vie C: (ss,ski) < NIZK.Extract(urs7 7, (Us, pki,i),m)
VieC: (ri,rg) + G(si)

(mk;)icc <+ pkPCFS.Extract(C, S, 71,75, ...,75)

Send (mk;):cc to the functionality.

Correlation. On input (Correlation, z) where = € {0, l}w‘), the simulator sends
to the functionality R; < kaCFS.EvaI(i7 S, (pk;)je(n]s sk, x) for every i € C.

Fig. 32. Simulator for Hep-c

73

	Distributed (Correlation) Samplers: How to Remove a Trusted Dealer in One Round
	Introduction
	Related Work
	Our Contributions
	Technical Overview

	Preliminaries
	Indistinguishability Obfuscation
	Puncturable PRFs
	Simulation-Extractable NIZKs
	MHE with Private Evaluation
	Somewhere Statistically Binding Hash Functions
	Universal Samplers

	Defining Distributed Samplers
	Security

	A Construction with Semi-Malicious Security
	Upgrading to Active Security
	Defeating Rushing

	Public-Key PCFs for Reverse-Samplable Correlations
	Correlation Functions and their Properties
	Defining Public Key PCFs
	Public-Key PCF with Trusted Setup
	Our Public-Key PCFs

	Ideal Public Key PCFs and Distributed Universal Samplers
	Distributed Universal Samplers
	Building Ideal Public Key PCFs upon Distributed Universal Samplers

	Proof of Theorem 5.2
	Proof of Theorem 6.7
	Proof of Theorem 6.10

