
Rubato: Noisy Ciphers for Approximate
Homomorphic Encryption

(Full Version)

Jincheol Ha1, Seongkwang Kim2⋆, Byeonghak Lee1, Jooyoung Lee1⋆⋆, and
Mincheol Son1

1 KAIST, Daejeon, Korea,
{smilecjf,lbh0307,hicalf,encrypted.def}@kaist.ac.kr

2 Samsung SDS, Seoul, Korea,
seongkwang.kim23@gmail.com

Abstract. A transciphering framework converts a symmetric cipher-
text into a homomorphic ciphertext on the server-side, reducing com-
putational and communication overload on the client-side. In Asiacrypt
2021, Cho et al. proposed the RtF framework that supports approximate
computation.
In this paper, we propose a family of noisy ciphers, dubbed Rubato, with
a novel design strategy of introducing noise to a symmetric cipher of a low
algebraic degree. With this strategy, the multiplicative complexity of the
cipher is significantly reduced, compared to existing HE-friendly ciphers,
without degrading the overall security. More precisely, given a moderate
block size (16 to 64), Rubato enjoys a low multiplicative depth (2 to 5) and
a small number of multiplications per encrypted word (2.1 to 6.25) at the
cost of slightly larger ciphertext expansion (1.26 to 1.31). The security
of Rubato is supported by comprehensive analysis including symmetric
and LWE cryptanalysis. Compared to HERA within the RtF framework,
client-side and server-side throughput is improved by 22.9% and 32.2%,
respectively, at the cost of only 1.6% larger ciphertext expansion.

Keywords: homomorphic encryption, transciphering framework, stream cipher,
HE-friendly cipher

1 Introduction

Real-world data typically contain some errors from their true values since they
are represented by real numbers rather than bits or integers. Even in the case that
input data are represented by exact numbers without approximation, one might
have to approximate intermediate values during data processing for efficiency.
Therefore, it would be practically relevant to support approximate computation

⋆ This work was done while S. Kim was a PhD student at KAIST.
⋆⋆ This work was supported by the National Research Foundation of Korea (NRF)

grant funded by the Korea government (MSIT) (No.2021R1F1A1047146).

over encrypted data. The CKKS encryption scheme [24] provides the desirable
feature using an efficient encoder for real numbers. Due to this feature, CKKS
achieves good performance in various applications, for example, to securely eval-
uate machine learning algorithms on a real dataset [17,56].

Unfortunately, current HE schemes including CKKS commonly suffer from
heavy computational and memory overload. The encryption/decryption speed
is relatively slow compared to conventional encryption schemes, and it implies
that HE is inadequate for bulk encryption. Also, ciphertext expansion seems to
be an intrinsic problem of homomorphic encryption due to the noise used in the
encryption algorithm. Although the ciphertext expansion has been significantly
reduced down to the order of hundreds in terms of the ratio of a ciphertext size
to its plaintext size since the invention of the batching technique [38], it does
not seem to be acceptable from a practical viewpoint. Furthermore, this ratio
becomes even worse when it comes to encryption of a short message; encryption
of a single bit might result in a ciphertext of a few megabytes.

1.1 Transciphering and HE-friendly Ciphers

Transciphering Framework. To address the issue of computational over-
load and the ciphertext expansion, a hybrid framework, also called a transcipher-
ing framework, has been proposed for exact computation [55]. It basically con-
verts a symmetric ciphertext c = Ek(m) to a homomorphic ciphertext EncHE(m)
by homomorphically evaluating the cipher. For approximate computation, Cho
et al. [25] proposed a new transciphering framework, dubbed the RtF frame-
work (see Figure 1). We give a brief description of the RtF framework in the
following.

For a given message vector m ∈ Rn, a client encrypts an encoded message
⌊∆ ·m⌉ ∈ Zn

q using a symmetric cipher E over Zq with a secret key k ∈ Zn
q and a

nonce nc; this secret key is encrypted using the FV encryption algorithm EncFV.
The resulting ciphertexts c = Ek(m), the FV-encrypted symmetric key EncFV(k),
and the nonce nc are stored in the server. When the server wants to compute
EncCKKS(m) (for computation over encrypted data), the server homomorphically
evaluates the server-side conversion of the RtF framework, securely obtaining
EncCKKS(m).

Given a symmetric cipher with low multiplicative depth and complexity, a
transciphering framework provides the following advantages on the client-side.

– A client does not need to encrypt all its data using an HE algorithm (except
the symmetric key). All the data can be encrypted using only a symmetric
cipher, significantly saving computational resources in terms of time and
memory.

– Symmetric encryption does not result in ciphertext expansion, so the com-
munication overload between the client and the server will be significantly
low compared to using any homomorphic encryption scheme alone.

2

m ∈ Rn

q

⌊Scale(·)⌉

Ek

nc

EncFV

k

RtF(E)

EncCKKS(m)

Client Server

Fig. 1: A simplified diagram of the RtF transciphering framework. Homomorphic
operations are performed in the boxes with thick lines.

All these merits come at the cost of computational overload on the server-side.
That said, this trade-off would be worth considering in practice since servers are
typically more powerful than clients.

Although a transciphering framework can be considered at any place where
HE is used, it is not a panacea for every privacy problem since it takes more time
than HE-only until EncHE(m) is finally obtained. We suggest two appropriate
scenarios for transciphering frameworks in Appendix A.

HE-friendly Ciphers. Symmetric ciphers are built on top of linear and non-
linear layers, and in a conventional environment, there has been no need to take
different design principles for the two types of layers with respect to their imple-
mentation cost. However, when a symmetric cipher is combined with BGV/FV-
style HE schemes [18,34] in a transciphering framework, homomorphic addition
becomes way cheaper than homomorphic multiplication in terms of computation
time and noise growth. With this observation, the efficiency of an HE-friendly
cipher is evaluated by its multiplicative complexity and depth. In an arithmetic
circuit, its multiplicative complexity is represented by the number of multipli-
cations (ANDs in the binary case). Multiplicative depth is the depth of the
tree that represents the arithmetic circuit, closely related to the noise growth
in the HE-ciphertexts. These two metrics have brought a new direction in the
design of symmetric ciphers: to use simple nonlinear layers at the cost of highly
randomized linear layers as adopted in the design of FLIP [53] and Rasta [27].

1.2 Our Contribution

Designing a symmetric cipher can be seen as a trade-off between security and
efficiency. A designer should identify important cost metrics of the targeted plat-
form (e.g., x86, ARM, and HE), and focus on optimizing them within a given
security level. When it comes to HE-friendly ciphers, one of the most impor-

3

tant cost metrics is the time for evaluating the cipher while homomorphically
encrypted, typically translated to multiplicative depth and complexity in the
literature. To optimize such metrics, quadratic S-boxes [6], random linear lay-
ers [53], and nonlinear layers with high-degree inverses [27] have been used.

In this regard, the LWE encryption has promising properties as an HE-
friendly cipher since it is based on a linear combination of key material, while
noise prevents algebraic attacks. However, straightforward application of the
LWE encryption has a disadvantage on the client-side; in the LWE encryption,
(a, b = ⟨a, s⟩+e) is sampled from an LWE distribution, where a should be freshly
generated by a pseudorandom function for every encryption. It makes the LWE
encryption too costly on the client-side compared to conventional symmetric
encryption.

In this work, we propose a new HE-friendly cipher, dubbed Rubato, as a
cost-effective trade-off between the LWE encryption and conventional symmetric
encryption in a transciphering framework for approximate homomorphic encryp-
tion. In particular, when the RtF transciphering framework [25] is used, we can
add noise only with a partial loss of precision. For a low-degree keyed function
Ek : Zk

q → Zℓ
q, each sample is of the form

(a,Ek(a) + e)

where e ∈ Zℓ
q is sampled from a discrete Gaussian distribution, and a is generated

by an extendable output function (XOF) with a nonce. We remark that such a
noisy cipher is not suitable for transciphering of exact data since the server might
lose some information on the original message after transciphering. In Table 1, we
compare Rubato to existing HE-friendly ciphers operating on modular domains
assuming 128-bit security and the same modulus q.

Cipher Masta HERA Pasta LWE Rubato

#(Key words) 16 16 64 1024 64

Multiplicative depth 7 10 5 0 2

#(Multiplications) 7 10 9.81 0 2.1

Random bits 400 150 250 25600 80

Source [42] [25] [30] [59] This work

Table 1: Comparison of HE-friendly ciphers operating on modular domains,
where the modulus q is set to 25 bits. “#(Key words)” is the number of key
words in Zq and “#(Multiplications)” (resp. “Random bits”) is the number of
multiplications (resp. random bits) required to generate a single component of
a ciphertext.

Since Rubato is a combination of a conventional symmetric cipher and the
LWE encryption, we analyze its security in two ways: symmetric cryptanalysis
and LWE cryptanalysis. We apply the symmetric cryptanalysis by guessing all

4

the noise, while LWE cryptanalysis is considered by linearizing monomials to
new variables. From extensive analysis, we recommend a set of parameters for
various applications.

Our implementation of Rubato combined with the RtF transciphering frame-
work can be found in a public repository both for the client side3 and the server
side4. When Rubato and HERA are compared in the RtF framework, client-side
and server-side throughput is improved by 22.9% and 32.2%, respectively, at the
cost of only 1.6% larger ciphertext expansion.

1.3 Related Work

Since the transciphering framework has been introduced [55], early works have
been focused on the homomorphic evaluation of popular symmetric ciphers (e.g.,
AES [38], SIMON [48], and PRINCE [31]). Such ciphers have been designed with-
out any consideration of their arithmetic complexity, so the performance of their
homomorphic evaluation was not satisfactory.

LowMC [6], being the first HE-friendly cipher, aims to minimize the depth and
the number of AND gates, but its low multiplicative depth makes it vulnerable
to algebraic attacks [26,28,58]. Due to these attacks, its parameters have been
updated, and the resulting cipher is now called LowMCv3. Canteaut et al. [19]
claimed that stream ciphers would be advantageous in terms of online complex-
ity compared to block ciphers, and proposed a new stream cipher Kreyvium.
However, its practical relevance is limited since the multiplicative depth (with
respect to the secret key) keeps growing as keystreams are generated.

The FLIP stream cipher [53] is based on a novel design strategy that its
permutation layer is randomly generated for every encryption without increasing
the algebraic degree in its secret key. Furthermore, it has been reported that
FiLIP [52], a generalized instantiation of FLIP, can be efficiently evaluated with
the TFHE scheme [44]. Rasta [27] is a stream cipher aiming at higher throughput
at the cost of high latency using random linear layers, which are generated by an
extendable output function. Dasta [43], a variant of Rasta using affine layers with
lower entropy, boosts up the client-side computation. Masta [42], another variant
of Rasta operating on a modular domain, improves upon Rasta in terms of the
throughput on both the client and server side. Dobraunig et al. [30] formally
defined hybrid homomorphic encryption and proposed another variant Pasta of
Rasta operating on a modular domain, improving performance upon Masta.

Cho et al. [25] proposed a transciphering framework for approximate ho-
momorphic encryption, called RtF, which is composed of a stream cipher over
modular domain and conversion from FV to CKKS. The stream cipher HERA
was proposed in the same paper as a building block of the RtF framework. The
HERA cipher is based on a new design strategy – the key schedule is randomized
while linear layers are fixed – which is claimed to be efficient on both sides.

3 https://github.com/KAIST-CryptLab/Rubato
4 https://github.com/KAIST-CryptLab/RtF-Transciphering

5

https://github.com/KAIST-CryptLab/Rubato
https://github.com/KAIST-CryptLab/RtF-Transciphering

In order to reduce the ciphertext expansion when encrypting short messages,
Chen et al. [21] proposed an efficient LWEs-to-RLWE conversion method which
enables transciphering to the HE-ciphertexts (including CKKS): small messages
can be encrypted by LWE-based symmetric encryption with a smaller ciphertext
size (compared to RLWE-based encryption), and a collection of LWE ciphertexts
can be repacked to an RLWE ciphertext to perform a homomorphic evaluation.
Lu et al. [50] proposed a faster LWEs-to-RLWE conversion algorithm in a hybrid
construction of FHEW [32] and CKKS, dubbed PEGASUS, where the conversion
is possible for a larger number of slots.

2 Preliminaries

2.1 Notations

Throughout the paper, bold lowercase letters (resp. bold uppercase letters) de-
note vectors (resp. matrices). For a real number r, ⌊r⌉ denotes the nearest integer
to r, rounding upwards in case of a tie. For an integer q, we identify Zq with
Z ∩ (−q/2, q/2], and for any real number z, [z]q denotes the mod q reduction of
z into (−q/2, q/2]. The notation ⌊·⌉ and [·]q are extended to vectors (resp. poly-
nomials) to denote their component-wise (resp. coefficient-wise) reduction. For
a complex vector x, its ℓp-norm is denoted by ∥x∥p. When we say ℓp-norm of a
polynomial, it means that the ℓp-norm of the coefficient vector of the polynomial.
For a measurable subset S ⊂ Rd, vol(S) is the volume of S.

Usual dot products of vectors are denoted by ⟨·, ·⟩. We denote the multiplica-
tive group of Zq by Z×q . The set of strings of arbitrary length over a set S is
denoted by S∗. For two vectors (strings) a and b, their concatenation is denoted
by a∥b. For a set S, we will write a ← S to denote that a is chosen from S
uniformly at random. For a probability distribution D, a← D denotes that a is
sampled according to the distribution D. Unless stated otherwise, all logarithms
are to the base 2.

2.2 Lattice Background

Let B ∈ Rm×n be a full rank matrix. The lattice L(B) generated by B is defined
by L(B) = {B · x : x ∈ Zn}. The matrix B is called a basis of L(B). The i-th
successive minimum λi(L) of a lattice L is the smallest value t such that at
least i linearly independent lattice vectors of length ≤ t exist in L. The shortest
vector problem (SVP) is finding a shortest non-zero vector of L from a given
basis. The γ-unique shortest vector problem (γ-uSVP) is finding the shortest
non-zero vector of L provided that λ2(L) > γλ1(L). The γ-bounded distance
decoding (BDDγ) problem is finding a lattice point in L closest to a target
vector t provided that dist(t, L) := minx∈L dist(t,x) ≤ γ · λ1(L).

Hermite Factor. Given an n-dimensional lattice L with a basis B, a root-
Hermite factor δ of the basis B is defined by δn−1 = ∥b1∥/(det(L(B))1/n where

6

b1 is the shortest vector of the basis and det(L(B)) =
√
B⊺B. If δ is smaller,

then the basis includes a shorter vector in the lattice.

Gaussian Heuristic. Gaussian heuristic (GH) is a heuristic on how many
lattice points are contained in a nice object. Given a measurable set S ⊂ Rn and
a full-rank lattice L ⊂ Rn, the number of lattice points of L in S is approximated
by #(S ∩ L) = vol(S)/ det(L). If S is an n-dimension ball of radius R, then the
equation becomes #(S ∩ L) = vnR

n/det(L) where vn is the volume of the
unit n-ball. With this heuristic, the norm of the shortest vector of L can be
approximated by

GH(L) =
(
v−1n det(L)

) 1
n .

For random lattices, GH is precise within the error at most 5% [37].

Geometric Series Assumption. Schnorr claimed that the Gram-Schmidt
orthogonalized norm of a BKZ-reduced basis behaves as a geometric series,
which is called geometric series assumption (GSA) [61]. For a BKZ-reduced basis
B = [b1, · · · ,bn] and its orthogonalization B∗ = [b∗1, · · · ,b∗n], it satisfies that
∥b∗1∥/∥b∗i ∥ = ri−1 for all 1 ≤ i ≤ n where r is a constant.

2.3 Learning with Errors

Let n and q be positive integers. Let χ be a probability distribution over Z. For
an unknown vector s ∈ Zn

q , the LWE (learning with errors) distribution Ls,χ

over Zn
q × Zq is obtained by sampling a vector a← Zn

q and an error e← χ, and
outputting

(a, b = [⟨a, s⟩+ e]q) ∈ Zn
q × Zq.

The search-LWE problem is to find s ∈ Zn
q when independent samples (ai, bi)

are obtained according to Ls,χ. The decision-LWE problem is to distinguish the
distribution Ls,χ from the uniform distribution over Zn

q × Zq.
For a positive real α > 0, the discrete Gaussian distribution Dαq is a proba-

bility distribution on Z defined by

Pr [y ← Dαq : y = x] ∝ exp
(
−πx2/(αq)2

)
for each x ∈ Z. The discrete Gaussian distribution is a popular candidate of the
distribution χ.

2.4 RtF Transciphering Framework

We briefly introduce the RtF framework [25], which enables the transciphering
of approximate data. The RtF framework works as follows. On the client-side,
a real message vector m ∈ Rn is scaled up and rounded off into Zq. Then, the
client encrypts the scaled message m̃ ∈ Zn

q using a stream cipher E over Zq. This
“E-ciphertext” will be sent to the server with a nonce nc and an FV-encrypted
secret key K of E.

7

On the server-side, it first evaluates the stream cipher E homomorphically
from nonces {nci}i and the FV-encrypted key K. Then the server performs the
linear transformation SlotToCoeffFV, obtaining the resulting FV-ciphertext Z
that contains the keystreams of E in its coefficients. This process is called the
offline phase since evaluating Z is possible only with nonces and K.

After receiving E-ciphertexts {ci = Ek(m̃i)}i, the server starts its online
phase. Computing an FV-ciphertext C having the E-ciphertexts on its coefficients
and subtracting Z from C, the server obtains the FV-ciphertext X of {m̃i}i
in its coefficients. Finally, the server CKKS-bootstraps X to translate it into
the corresponding CKKS-ciphertext of {mi}i in its slots. Since the messages
{mi}i should be moved from the coefficients to the slots, the last step of the
bootstrapping, SlotToCoeffCKKS, can be omitted. As a result, the server will be
able to approximately evaluate any circuit on the CKKS-ciphertexts. The detailed
description of the RtF framework can be found in Appendix B.

3 Rubato: A Family of Noisy Ciphers

3.1 Specification

The Rubato cipher is designed to be flexible in block size so that it offers a more
suitable choice of parameters for various applications. The block size n is the
square of a positive integer v, which defines the size of matrices in linear layers.
The stream cipher Rubato for λ-bit security takes as input a symmetric key
k ∈ Zn

q , a nonce nc ∈ {0, 1}λ, and returns a keystream knc ∈ Zℓ
q for some ℓ < n,

where the nonce is fed to the underlying extendable output function (XOF) that
outputs an element in (Zn

q)
∗. In a nutshell, Rubato is defined as follows.

Rubato[k, nc] = AGN◦Fin[k, nc, r]◦RF[k, nc, r−1]◦· · ·◦RF[k, nc, 1]◦ARK[k, nc, 0]

where the i-th round function RF[k, nc, i] is defined as

RF[k, nc, i] = ARK[k, nc, i] ◦ Feistel ◦MixRows ◦MixColumns

and the final round function Fin is defined as

Fin[k, nc, r] =

Trn,ℓ ◦ ARK[k, nc, r] ◦MixRows ◦MixColumns ◦ Feistel ◦MixRows ◦MixColumns

for i = 1, 2, . . . , r − 1 (see Figure 2).

Key Schedule. The round key schedule can be simply seen as a component-
wise product between random values and the master key k, where the uniformly
random values in Z×q are obtained from a certain extendable output function
XOF with an input nc. Given a sequence of the outputs from XOF, say rc =
(rc0, . . . , rcr) ∈ (Zn

q)
r+1, ARK is defined as follows.

ARK[k, nc, i](x) = x+ k • rci

8

XOFnc

MC MR

Feistel

q

X2

X2

...

q

q

k

Fig. 2: The round function of Rubato. Operations in the box with dotted (resp.
thick) lines are public (resp. secret). “MC” and “MR” represent MixColumns and
MixRows, respectively.

for i = 0, . . . , r, and x ∈ Zn
q , where • (resp. +) denotes component-wise multi-

plication (resp. addition) modulo q. The extendable output function XOF might
be instantiated with a sponge-type hash function SHAKE [33].

Linear Layers. Each linear layer is the composition ofMixColumns andMixRows.
Similarly to HERA, MixColumns (resp. MixRows) multiplies a certain v× v MDS
matrix Mv to each column (resp. row) of the state as in Figure 4a and Figure 4b,
where the state of Rubato is also viewed as a v×v-matrix over Zq (see Figure 3).
The MDS matrix Mv for v = 4, 6, 8 is defined as follows.

y4 = [2, 3, 1, 1]

y6 = [4, 2, 4, 3, 1, 1]

y8 = [5, 3, 4, 3, 6, 2, 1, 1]

Mv =


yv

ROT1(yv)
...

ROTv−1(yv)


where ROTi(y) is the rotation to the right of y by i components. Therefore, Mv

is a circulant matrix derived from yv.

Nonlinear Layers. The nonlinear map Feistel is a Feistel network in a row,
which was proposed in [30]. For x = (x1, . . . , xn) ∈ Zn

q , we have

Feistel(x) = (x1, x2 + x2
1, x3 + x2

2, . . . , xn + x2
n−1).

9

x1,1

x2,1

...

xv,1

x1,2

x2,2

...

xv,2

· · ·

· · ·

. . .

· · ·

x1,v

x2,v

...

xv,v

Fig. 3: State of Rubato. Each square stands for the component in Zq.
y1,c
y2,c
...

yv,c

 = Mv ·


x1,c

x2,c

...
xv,c


(a) MixColumns


yc,1
yc,2
...

yc,v

 = Mv ·


xc,1

xc,2

...
xc,v


(b) MixRows

Fig. 4: Definition of MixColumns and MixRows. For c ∈ {1, 2, . . . , v}, xij and yij
are defined as in Figure 3.

It is naturally bijective and of degree 2.

Truncation. The truncation function Trn,ℓ : Zn
q → Zℓ

q is just a truncation of
the last n− ℓ words. For x = (x1, . . . , xn) ∈ Zn

q , we have

Trn,ℓ(x) = (x1, . . . , xℓ).

Although we know that the truncation function makes some part of the last ARK
and MixRows meaningless, we write it in this way for brevity. We recommend to
instantiate Trn,ℓ ◦ ARK[k, nc, r] ◦MixRows as a whole in real implementation.

Adding Gaussian Noise. At the very last of the cipher, we add Gaussian noise
to every component. From an one-dimensional discrete Gaussian distribution
Dαq with zero mean and variance (αq)2/2π, we sample ℓ elements e1, . . . , eℓ ←
Dαq independently. For x = (x1, . . . , xℓ) ∈ Zℓ

q, we have

AGN(x) = (x1 + e1, . . . , xℓ + eℓ).

Encryption Mode. When a keystream of k blocks (in (Zℓ
q)

k) is needed for
some k > 0, the “inner-counter mode” can be used; for ctr = 0, 1, . . . , k− 1, one
computes

z[ctr] = Rubato [k, nc∥ctr] (ic),
where ic denotes a constant (1, 2, . . . , n) ∈ Zn

q . For a given message vector m ∈
(Rℓ)k, encryption by Rubato is defined by

c = ⌊∆ ·m⌉+ z (mod q)

where ∆ ∈ R is a scaling factor.

10

3.2 Parameter Selection

In this section, we recommend some sets of parameters and concrete instantiation
of Rubato. Some sets of parameters are selected in Table 2. The notations in the
table follow those in Section 3.1. We give three types of parameters: S, M, and
L. These imply the size of blocks.

Parameter λ n ℓ ⌈log q⌉ αq r

Par-80S 80 16 12 26 11.1 2

Par-80M 80 36 32 25 2.7 2

Par-80L 80 64 60 25 1.6 2

Par-128S 128 16 12 26 10.5 5

Par-128M 128 36 32 25 4.1 3

Par-128L 128 64 60 25 4.1 2

Table 2: Selected parameters of Rubato.

When choosing the modulus q, we consider the effect of noise on precision. For
a discrete Gaussian distributionDαq, the size of noise is expectedly Ee←Dαq

[|e|].
Suppose we obtain p-bit average precision while using the RtF framework with
some deterministic cipher (e.g., HERA [25]). It means that, a given message x
and the message after transciphering x′, |x−x′| < 1/2p. Then, the expected loss
of precision bits is upper bounded by

p+ log2
[
Ee←Dαq

[1/2p + e/∆]
]
.

In our instantiation, we enlarge the modulus q to compensate this loss of preci-
sion.

The choice of the scaling factor ∆ should vary along with the ∥m∥1, where
m ∈ R∗ is a message vector. In our experiment (see Section 5), we constrain
∥m∥1 ≤ 1 and choose ∆ = q/16 for the RtF framework [25]. If someone manip-
ulates a message ∥m∥1 ≤ s, it is appropriate to choose ∆ = q/(16 · s).

3.3 Design Rationale

The main observation behind our design is that adding noise increases the al-
gebraic degree of a cipher. Suppose that we are given LWE samples {(ai, bi =
⟨ai, s⟩+ ei)}i. In Arora-Ge attack [9], an attacker establishes an equation

tαq∏
e=−tαq

(bi − ⟨ai, s⟩ − e) = 0

in order to solve the LWE instance, where t ∈ R determines the adversarial
success probability. In this way, the noisy linear equation becomes a polynomial

11

equation of degree (2tαq+1). If the linear equation ⟨a, s⟩ is replaced by a poly-
nomial F (a, s) of degree d, the Arora-Ge equation becomes of degree d(2tαq+1).

We choose the discrete Gaussian distribution for sampling noise since the
cryptanalysis of LWE has been extensively studied under the discrete Gaussian
assumption. In the main body of the stream cipher, we use building blocks from
HERA [25] and Pasta [30]. For linear layers and the key schedule, we follow the
style of HERA. Although we are aware of generic ways of constructing an MDS
matrix [41,40], those approaches result in a matrix with large components. We
keep the component of matrices Mv as small as possible for efficiency. When
enlarging the block size n, we computationally find v × v MDS matrices since
we cannot keep the original linear layer of HERA.

For nonlinear layers, Cho et al. [25] claimed that a nonlinear layer whose
inverse is of a high degree mitigates algebraic MitM attacks. As there has not
been any known quadratic function with the inverse of a high degree over Zq,
a cubic S-box has been used in HERA, which leads to a larger multiplicative
depth. After truncation was proposed for an alternative countermeasure for an
algebraic MitM attack [29], Dobraunig et al. [30] proposed a Feistel structure for
HE-friendly ciphers. Since the Feistel structure is vulnerable to algebraic MitM
attacks, a cubic function for the last nonlinear layer and truncation are adopted
to Pasta. As we thought that deploying both the cubic function and truncation is
superfluous, we conclude that truncation without the cubic function is sufficient
for Rubato.

4 Security Analysis

In this section, we provide the security analysis of Rubato. We summarize the
analysis result in Table 3. We omit too costly attacks (i.e., time complexity
larger than 21000 for all the parameters) such as trivial linearization and inter-
polation attacks. We computed the complexity of each attack by using Wolfram
Mathematica and made the source codes publicly available in our repository5.
In Appendix E, we give some additional plots on the security analysis.

Assumptions and the Scope of Analysis. In this work, we will consider
the standard “secret-key model”, where an adversary arbitrarily chooses a nonce
and obtains the corresponding keystream without any information on the secret
key. The related-key and the known-key models are beyond the scope of this
paper.

Since Rubato takes as input counters, an adversary is not able to control the
differences of the inputs. Nonces can be adversarially chosen, while they are also
fed to the extendable output function, which is modeled as a random oracle.
So one cannot control the difference of the internal variables. For this reason,
we believe that our construction is secure against any type of chosen-plaintext
attacks including (higher-order) differential, truncated differential, invariant sub-
space trail, and cube attacks. A recent generalization of an integral attack [15]

5 https://github.com/KAIST-CryptLab/Rubato

12

https://github.com/KAIST-CryptLab/Rubato

Parameter GCD Gröbner LC Lattice Arora-Ge

Par-80S 393.6 80.04 155.9 760.5 80.04

Par-80M 878.6 84.55 249.9 ↑ 80.37

Par-80L ↑ 82.73 349.8 ↑ 82.73

Par-128S 411.9 128.1 311.7 ↑ 128.1

Par-128M 880.7 128.1 249.9 ↑ 128.1

Par-128L ↑ 169.6 349.8 ↑ 129.6

Table 3: The log of the complexity of the attacks on Rubato. The upward sign
(↑) implies that the complexity is larger than 21000. The linear algebra constant
ω is assumed to be 2.

requires only a small number of chosen plaintexts, while it is not applicable to
Rubato within the security bound.

4.1 Cryptanalysis Based on Symmetric Primitive Analysis

Most of the symmetric cryptanalysis assumes that a targeted cipher is a deter-
ministic algorithm. Symmetric cryptanalysis is to find some statistical or alge-
braic characteristics of the function which is distinguished from its ideal coun-
terpart. However, as the Gaussian noise is added at the end of the cipher, Rubato
should be seen as a random sampling. For this reason, most of the conventional
symmetric cryptanalyses are not directly applicable to Rubato. Nevertheless, by
guessing all the noise, an attacker can try to analyze Rubato using symmetric
key cryptanalysis. Since the noise is sampled from discrete Gaussian distribu-
tion Dαq, it is always advantageous for an attacker to guess that the noise is
zero when the data are sufficiently given. We denote the probability such that a
sample from Dαq is zero by ε0 = Pr [e← Dαq : e = 0] .

4.1.1 Trivial Linearization

Trivial linearization is to solve a system of linear equations by replacing all
monomials with new variables. When applied to the r-round Rubato cipher, the
number of monomials appearing in this system is upper bounded by

S =

2r∑
i=0

(
n+ i− 1

i

)
.

Therefore, at most S equations will be enough to solve this system of equations.
All the monomials of degree at most 2r are expected to appear after r rounds of
Rubato (as explained in detail in Appendix C). Therefore, by guessing e = 0, we
can conclude that this attack requires O(Sω/εS0) time, where 2 ≤ ω ≤ 3. Since
the success probability is too small for r ≥ 1, it will never be a dominant attack.

13

4.1.2 GCD Attack

The GCD attack seeks to compute the greatest common divisor (GCD) of uni-
variate polynomials, and it can be useful for a cipher operating on a large field
with its representation being a polynomial in a single variable. This attack can
be extended to a system of multivariate polynomial equations by guessing all the
key variables except one. For r-round Rubato, the complexity of the GCD attack
is estimated as O(qn−1r22r) even if there is no noise. For a security parameter
λ ≤ 256, Rubato will be secure against the GCD attack even with a single round
as long as n ≥ 16.

4.1.3 Gröbner Basis Attack

The Gröbner basis attack is an attack by solving a system of equations by
computing a Gröbner basis of the system. If such a Gröbner basis is found, then
the variables can be eliminated one by one after carefully converting the order of
monomials. We refer to [8] for details. In the literature, security against Gröbner
basis attack is bounded by the time complexity for Gröbner basis computing.

Suppose that an attacker wants to solve a system of m polynomial equations
in n variables over a field Fq,

f1(x1, . . . , xn) = f2(x1, . . . , xn) = · · · = fm(x1, . . . , xn) = 0.

The complexity of computing a Gröbner basis of such system is known to be

O

((
n+ dreg
dreg

)ω)
in terms of the number of operations over the base field, where 2 ≤ ω ≤ 3 and
dreg is the degree of regularity [14]. With the degree of regularity, one can see
how many degrees of polynomial multiples will be needed to find the Gröbner
basis. Unfortunately, it is hard to compute the exact degree of regularity for a
generic system of equations. When the number of equations is larger than the
number of variables, the degree of regularity of a semi-regular sequence can be
computed as the degree of the first non-positive coefficient in the Hilbert series

HS(z) =
1

(1− z)n
×

m∏
i=1

(1− zdi).

As it is conjectured that most sequences are semi-regular [35], we analyze the
security of Rubato against the Gröbner basis attack under the (semi-)regular
assumption.

Hybrid Approach. One can take a hybrid approach between the guess-and-
determine attack and the algebraic attack [13]. Guessing some variables makes
the system of equations overdetermined. An overdetermined system becomes
easier to solve; the complexity of the hybrid approach after g guesses is given as

O

(
qg
(
n− g + dg

dg

)ω)

14

where dg is the degree of regularity after g guesses.

Application to Rubato. For the Gröbner basis attack, re-arranging equations
may lead to a significant impact on the attack complexity. For example, one may
set a system of equations using only plaintext-ciphertext pairs or set a system
of equations with new variables standing for internal states. The former will be
a higher-degree system in fewer variables, while the latter will be a lower-degree
system in more variables.

From a set of nonce-plaintext-ciphertext triples {(nci,mi, ci)}i, an attacker
will be able to establish an overdetermined system of equation

f1(k1, . . . , kn) = f2(k1, . . . , kn) = · · · = fm(k1, . . . , kn) = 0

where ki ∈ Zq is the i-th component of the key variable. The degree of regularity
of the system is computed as the degree of the first non-positive coefficient in

(
1− z2

r
)m−n(2r−1∑

i=0

zi

)n

where r is the number of rounds. The larger number of equations implies a
smaller degree of regularity. Since the summation does not have any negative
term, one easily sees that the degree dreg of regularity cannot be smaller than
2r. We conservatively lower bound the time complexity when there is no noise
by

O

((
n+ 2r

2r

)ω)
regardless of the number of equations. Since at least n equations are required
for the unique root, we can conclude that this attack requires n data and

O

((
n+ 2r

2r

)ω

ε−n0

)
time. We note that the hybrid approach always has worse complexity.

Instead of a system of equations of degree 2r, one can establish a system of
((r − 1)n + ℓ)k quadratic equations in n(r − 1)k + n variables, where k is the
block length of each query. To get the unique root, it requires that k ≥ n/ℓ.
Then, the complexity is

O

((
n(r − 1)k + n+ dreg(r, k)

dreg(r, k)

)ω

ε−ℓk0

)
where the degree dreg(r, k) of regularity is computed under the semi-regular
assumption.

Although we explain that the truncation can prevent MitM attack, MitM
attack is not a “never-applicable” attack for Rubato. Suppose y = (y1, . . . , yℓ)
be a keystream. By creating new variables xℓ+1, . . . , xn, an attacker can make
n MitM equations in 2n− ℓ variables k1, . . . , kn, xℓ+1, . . . , xn. Denoting the first

15

⌊r/2⌋-round function by F and the last ⌈r/2⌉-round function except for Trn,ℓ
and AGN by G,

Rubato[k, nc1] = (y1, . . . , yℓ)

G ◦ F [k, nc1] = (y1 − e1, . . . , yℓ − eℓ, xℓ+1, . . . , xn)

F [k, nc1] = G−1(y1 − e1, . . . , yℓ − eℓ, xℓ+1, . . . , xn) (1)

where ei’s are guessed noise. Equation 1 is of degree 2⌈r/2⌉ so that the lower
bound of the degree of regularity is also 2⌈r/2⌉. Similarly as above, to get the
unique root, the queried block length k should satisfy n+ k(n− ℓ) ≤ nk. Then,
the time complexity is lower bounded by

O

((
n+ (n− ℓ)k + 2⌈r/2⌉

2⌈r/2⌉

)ω

ε−ℓk0

)
.

4.1.4 Interpolation Attack

The interpolation attack is to establish an encryption polynomial in plaintext
variables without any information on the secret key and to distinguish it from
a random permutation [46]. It is known that the data complexity of this attack
depends on the number of monomials in the polynomial representation of the
cipher.

For the r-round Rubato cipher, let rc = (rc0, . . . , rcr) ∈ (Zn
q)

r+1 be a se-
quence of the outputs from XOF. For i = 0, . . . , r, rci is evaluated by a poly-
nomial of degree 2r−i. As we expect that the r-round Rubato cipher has almost
all monomials of degree ≤ 2r in its polynomial representation, the number of
monomials is lower bounded by

r∑
j=0

2j∑
i=0

(
n+ i− 1

i

)
.

Similarly as the trivial linearization, the success probability is too small for r ≥ 1,
it will never be a dominant attack.

4.1.5 Linear Cryptanalysis

Linear cryptanalysis was originally introduced for binary spaces [51], but it can
also be applied to non-binary spaces [11]. Similarly to binary ciphers, for an odd
prime number q, the linear probability of a cipher E : Zn

q → Zn
q with respect to

input and output masks a,b ∈ Zn
q can be defined by

LPE(a,b) =

∣∣∣∣Em

[
exp

{
2πi

q

(
− ⟨a,m⟩+ ⟨b,E(m)⟩

)}]∣∣∣∣2
where m follows the uniform distribution on Zn

q . When E is a random permuta-

tion, the expected linear probability is defined by ELPE(a,b) = EE[LP
E(a,b)].

16

Then, the number of samples required for linear cryptanalysis is known to be
1/ELPE(a,b). In order to ensure the security against linear cryptanalysis, it is
sufficient to bound the maximum linear probability maxa̸=0,b ELPE(a,b).

Application to Rubato. Although it seems that the linear cryptanalysis can-
not be applied to Rubato directly because of the noise, we give a security bound
for linear cryptanalysis assuming no noise. There are two applications of linear
cryptanalysis on Rubato according to how to take the input variables: the XOF
output variables or the key variables. In the first case, unlike traditional linear
cryptanalysis, the probability of any linear trail of Rubato depends on the key
since it is multiplied by the input. It seems infeasible to make a plausible linear
trail without any information on the key material.

In the second case, the attack is reduced to solving an LWE-like problem as
follows; given pairs (nci,yi) such that Rubato(k, nci) = yi, one can establish

⟨b,yi⟩ = ⟨a,k⟩+ ei

for some vectors a ̸= 0,b ∈ Zn
q and error ei sampled according to a certain

distribution χ. An attacker requires 1/ELPE(a,b) samples to distinguish χ from
the uniform distribution [11].

Lemma 1. For any a = (a1, . . . , an) ̸= 0,b = (b1, . . . , bn) ∈ Zn
q such that

hw(b2, b3, . . . , bn) = h, the linear probability of Feistel is

LPFeistel(a,b) ≤ 1

qh
.

Proof. By the definition, we have

LPFeistel(a,b)

=

∣∣∣∣Em

[
exp

{
2πi

q
(−⟨a,m⟩+ ⟨b,Feistel(m)⟩)

}]∣∣∣∣2
=

∣∣∣∣∣Em

[
exp

{
2πi

q

(
n−1∑
k=1

(−akmk + bkmk + bk+1m
2
k) + (−an + bn)mn

)}]∣∣∣∣∣
2

=

∣∣∣∣Emn

[
exp

{
2πi

q
((−an + bn)mn)

}]∣∣∣∣2
×

n−1∏
i=1

∣∣∣∣Emi

[
exp

{
2πi

q

(
(−ai + bi)mi + bi+1m

2
i

)}]∣∣∣∣2 .
Carlitz and Uchiyama [20] proved that∣∣∣∣∣

q−1∑
x=0

exp

(
2πi

q
· p(x)

)∣∣∣∣∣ ≤ (r − 1)
√
q

for any polynomial p(x) of degree r over Zq. Therefore, we have∣∣∣∣Emi

[
exp

{
2πi

q

(
(−ai + bi)mi + bi+1m

2
i

)}]∣∣∣∣2 ≤ ∣∣∣∣1q · √q
∣∣∣∣2 ≤ 1

q

17

and it implies that

LPFeistel(a,b) ≤ 1

qh
. ⊓⊔

Since the branch number of the linear layer of Rubato is 2v (as shown in
Appendix D), we can conclude that an r-round Rubato cipher provides λ-bit
security against linear cryptanalysis when q(2v−2)·⌊

r
2 ⌋ > 2λ.

4.1.6 Differential Cryptanalysis and Its Variants

Since Rubato takes counters as input, an adversary is not able to control the dif-
ferences of its inputs. Nonces can be adversarially chosen, while they are also fed
to the extendable output function, which is modeled as a random oracle. So one
cannot control the difference of the internal variables. For this reason, we believe
that our construction will be secure against any type of chosen-plaintext attack
including (higher-order) differential, truncated differential, invariant subspace
trail, and cube attacks.

Nonetheless, to prevent an unsuspected differential-related attack, we present
a computation of a differential characteristic in the following. Given a pair a,b ∈
Zn
q , the differential probability of Feistel is defined by

DPFeistel(a,b) =
1

qn
·
∣∣{x ∈ Zn

q : Feistel(x+ a)− Feistel(x) = b}
∣∣ .

So DPFeistel(a,b) is determined by the number of solutions to Feistel(x + a) −
Feistel(x) = b.

Lemma 2. For any a = (a1, . . . , an) ̸= 0,b = (b1, . . . , bn) ∈ Zn
q such that

hw(a1, a2, . . . , an−1) = h, the differential probability of Feistel is

DPFeistel(a,b) ≤ 1

qh
.

Proof. Our goal is to find the maximum number of solutions to the equation

Feistel(x+ a)− Feistel(x) = (a1, 2a1x1 + a21 + a2, . . . , 2anxn−1 + a2n−1 + an) = b.

For i ≤ n − 1, the equation 2aixi + a2i + ai+1 = bi has a unique solution xi =
(bi − a2i − ai+1) · (2ai)−1 if ai ̸= 0 and the equation has maximally q solutions if
ai = 0. For i = n, the variable xn is free so that the maximal number of solution
is q. It implies that

DPFeistel(a,b) ≤ 1

qh
. ⊓⊔

Since the branch number of the linear layer of Rubato is 2v (as shown in
Appendix D), we can conclude that an r-round Rubato cipher provides λ-bit
security against differential cryptanalysis when q(2v−2)·⌊

r
2 ⌋ > 2λ.

18

4.2 Cryptanalysis Based on LWE Analysis

As Rubato is not an LWE instance, algorithms solving LWE are not directly ap-
plied to Rubato. However, if someone considers a single component of a keystream
block of Rubato as (

(au)u ,
∑
u

auk
u + e

)
(2)

where u = (u1, . . . , un) ∈ Zn
≥0, and ku =

∏
i k

ui
i implies a monomial with degree

u, it becomes an LWE instance with the linearized variables whose dimension is

Sn,r =

2r∑
i=1

(
n+ i− 1

i

)
where 2r < q.

In this section, we will denote notations in a linearized way. For example, we
denote Rubato samples by (A, c = As+ e) where s stands for the vector (ku)u
and A stands for a set of (au)u in a certain monomial order.

We remark that we do not explore potential vulnerabilities which can arise
from combining symmetric key cryptanalysis and LWE cryptanalysis. We an-
alyze each attack in its original way, not in a mixed way. For example, in our
analysis, all the LWE cryptanalysis except Arora-Ge attack [9] assume that (au)u
is independently sampled from the uniform distribution over Zq, which is not
the case for Rubato.

4.2.1 Exhaustive Search

The most naive approach for solving LWE is the exhaustive search. Given m
samples (A, c), an attacker guesses noise e = (e1, . . . , em) and finds s satisfying
As = c − e where A is required to have a left inverse. To attack Rubato, the
attacker needs to guess at least (2tαq + 1)Sn,r times for success probability
Pr [e← Dαq : |ei| ≤ tαq for all i] where the expected time complexity is upper

bounded by ε
Sn,r

0 . Since the success probability is too small for r ≥ 1, it will
never be a dominant attack.

There is a meet-in-the-middle (MitM) approach mentioned in [10], which is a
time-memory trade-off of the exhaustive search. For the same reason, the MitM
approach cannot be a dominant attack.

4.2.2 Lattice Attacks

Reduction to a lattice problem is one way to solve LWE. To solve a lattice
problem, an attacker needs a short enough basis of the given lattice. This short
basis is obtained by using a lattice reduction algorithm such as the BKZ algo-
rithm [60,23].

Core-SVP Hardness of BKZ Algorithms. The BKZ algorithm is a lattice
reduction algorithm that uses an (approximate-)SVP oracle of small dimension

19

β. This algorithm repeatedly calls the SVP oracle as a subroutine to find the
shortest vectors in the projected lattice of dimension β. An output from the
BKZ-β algorithm is called a “BKZβ-reduced basis”. The SVP oracle can be
instantiated using sieving algorithms or enumeration algorithms.

Unfortunately, it is difficult to predict how many calls will be made to the
SVP oracle in the BKZ algorithm. So, we analyze the security of Rubato against
the BKZ algorithm using a single call, in which case the underlying hardness
assumption is called core-SVP hardness [7]. Table 4 compares the expected time
complexity of the BKZ algorithm for various instantiations of the SVP oracle in
terms of BKZ block size β and root-Hermite factor δ. For Lindner and Peikert [49]
and Albrecht et al. [3], the time complexity is estimated by extrapolating their
experimental running time of the BKZ algorithm using enumeration methods.
For the remaining instantiations, the complexity analysis is theoretically based
on the cost of a single call to the SVP-oracle.

When it comes to the quality of a BKZβ-reduced basis, Chen [22] gave a limit

lim
N→∞

δ =

(
v
− 1

β

β

) 1
β−1

≈
(

β

2πe
(πβ)

1
β

) 1
2(β−1)

(3)

for the root-Hermite factor δ assuming the Gaussian heuristic and the geometric
series assumption. Chen also gave an experimental proof that this limit is a
reasonable choice when N is finite. As another estimate of δ for a BKZβ-reduced

basis, the lattice rule of thumb [57], which says δ = β
1
2β , is often used in the

literature. We will opt for Chen’s limit when we compute β from a fixed value
of δ.

Instantiation of the SVP oracle Complexity (in log)

Lindner and Peikert [49] 1.8
log δ − 110

Albrecht et al. [3] 0.009
log2 δ

− 27

Enumeration [2] β log β
8 − 0.654β + 25.84

Classical Sieve [12] 0.292β + o(β)

Quantum Sieve [47] 0.265β + o(β)

Table 4: Expected time complexity of the BKZ algorithm for various instantia-
tions of the SVP oracle in terms of BKZ block size β and root-Hermite factor δ.

Primal Attack. Primal attack is the strategy of solving the search-LWE
problem via solving the bounded distance decoding (BDD) problem. Given m
samples (A, c = As + e) following Ls,χ, one can see that c is near the lattice
L(A). Finding the nearest lattice point from c is equivalent to finding the secret
vector s when A is (left) invertible. If A is not invertible, it is sufficient to gather
a few more samples.

20

In order to solve the derived BDD problem, there are two approaches: enu-
meration [49,37] and reduction to unique-SVP (uSVP) [4,5]. Since the enumer-
ation method is treated as a subroutine in the BKZ algorithm, we do not take
it into account as a direct solver of the BDD problem.

The second approach, the reduction to uSVP, was firstly proposed by Al-
brecht et al. [4]. The main idea of the approach is to solve SVP of the larger
lattice L = L(B) of basis

B =

(
A c
0 u

)
where u = dist(c, L(A)). This lattice contains an unusually small vector (e,−u),
which implies the gap λ2(L)/λ1(L) is large. Assuming Gaussian heuristic and
linear independence of A, Göpfert [39] showed that an attacker can create the
λ2(L)/λ1(L)-gap greater than

min
{
q, q1−N/m

√
m
2πe

}
√
m · αq√

2π

.

As a lattice reduction satisfying λ2(L)/λ1(L) > τδm for some constant τ ≤ 1 is
sufficient to solve a uSVP instance [36], this approach requires log root-Hermite
factor

log δ =
log2(τα

√
e)

4N log q

if min
{
q, q1−N/m

√
m
2πe

}
= q1−N/m

√
m
2πe . Although experimental evidence sug-

gests τ ≤ 0.4 [36], we set τ = 1 for the conservative choice of parameters.
Alkim et al. gave an alternative success condition of the attack [7]. Denoting

d = m+N + 1 and σ = αq/
√
2π, the requirement is that

σ
√
β ≤ δ2β−dqm/d

where δ is computed by Equation 3. We take both into account along with the
parameter N = Sn,r.

Dual Attack. The dual attack, also called the short integer solution (SIS)
strategy, is an attack finding small vector w ∈ Zm

q such that w⊺A ≡ 0 (mod q).
Given m samples (A, c) from Ls,χ, finding a short vector satisfying w⊺A ≡ 0
(mod q) leads to

w⊺c = w⊺(As+ e) = w⊺e

where the last term is small. The short vector w should satisfy

∥w∥2 =
1

α

√
ln(1/ϵ)

π

in order to distinguish Ls,χ from random with advantage ϵ [49]. By the definition
of the root-Hermite factor δ, the attack requires that

log δ =

log2
(

1
α

√
ln(1/ϵ)

π

)
4N log q

21

for the LWE instance parametrized by N , α, and q. When evaluating the security
of Rubato, we set N = Sn,r and ϵ ≈ 1/23.

4.2.3 BKW Attack

The original BKW algorithm was proposed for solving the learning parity with
noise (LPN) problem [16] by Blum, Kalai, and Wasserman. Regev pointed out
that the BKW algorithm can be used for solving LWE, and Albrecht et al. [3]
gave the formal analysis of the BKW algorithm for LWE. We briefly explain the
BKW attack on LWE, and we refer to [3] for more details.

The BKW attack is a lattice-version of Gaussian elimination parametrized
by a and b. Suppose there is an LWE distribution Ls,χ where χ = Dαq is
parametrized by the dimension N and the modulus q. Given enough samples
(A, c) from Ls,χ, the BKW attack first reduces A to a kind of block diagonal
matrix. The width of the block is b and there will be an a = ⌈N/b⌉ blocks.

As samples from Ls,χ intrinsically include noise, too many additions or sub-
tractions between samples result in a useless equation. Instead, the attacker
gathers (qb−1)/2 samples having all nonzero values up to sign in the first block.
Denote this table of samples by T 1. If Ls,χ outputs a sample (ai, ci) which
has the same first block in T 1, the attacker makes (ai, ci) to have all-zero first
block by adding/subtracting the sample in T 1. Similarly, the attacker can gather
(qb − 1)/2 samples having all-zero first block and all nonzero values up to sign
in the second block. Denote this table of samples by T 2. By repeating the same
process, the attacker can construct a matrix of the form

T 1

0 . . . 0 T 2

0 . . . 0 0 . . . 0 T 3

...
. . .

...
...

. . .
...

0 . . . 0 0 . . . 0 0 . . . 0 T a−1

0 . . . 0 0 . . . 0 0 . . . 0 0 T a

0 . . . 0 0 . . . 0 0 . . . 0 . . . 0 M


.

After solving a lattice problem with respect to M , the attacker can perform back
substitution for the remaining parts.

The time complexity of this attack to solve search-LWE is(
qb − 1

2

)
·
(
a(a− 1)

s
· (N + 1)

)
+

⌈
qb

2

⌉
·
(⌈

N

d

⌉
+ 1

)
· d · a+ poly(N)

where d = N − ⌊N/b⌋. The parameter a should satisfy a ≤ log(α−2) in order
to distinguish Ls,χ from random [57]. We compute the concrete complexity by
using a = log(α−2) without the polynomial terms. As N = Sn,r for Rubato, the
complexity of the attack is at least 2Sn,r log q/(−2 logα).

22

4.2.4 Arora-Ge Attack

Arora and Ge proposed an algebraic algorithm to solve the search-LWE problem
[9]. The main idea of this attack is that, given LWE samples {(ai, bi)}i, the errors
fall into some interval [−tαq, tαq] for some large enough t so that the equations

tαq∏
e=−tαq

(bi − ⟨ai, s⟩ − e) = 0

holds. Although the complexity of this attack for LWE is well-organized in [1],
we independently describe the lower bound of complexity as the equations are
different from LWE.

When guessing noise, an attacker may control the range of guesses to mini-
mize the cost of attacks since the noise is not uniformly distributed. We denote
the probability such that a sample from discrete Gaussian Dαq lies in the interval
[−tαq, tαq] by

εt = Pr [e← Dαq : |e| ≤ tαq] .

Since this probability determines the complexity of many attacks, we find the
minimum of the complexity among {t : −3

√
2π ≤ t ≤ 3

√
2π} which is equivalent

to the range of 6 times the standard deviation.
Let Ei(·) denote the i-th component of the Rubato cipher without noise. Then,

by using Arora-Ge attack, an attacker can make a set of equations as follows.
Given m nonce-plaintext-ciphertext triples {(ncj ,mj , cj)}j ,

tαq∏
ei,j=−tαq

(cj,i − Ei(ncj ,mj)− ei,j) = 0


1≤i≤ℓ
1≤j≤m

(4)

where cj,i is the i-th component of cj . These equations are for the key variable
k of total degree 2r(2tαq + 1).

Now, we give a lower bound of the complexity of solving Equation 4 by using
Gröbner basis attack. As discussed in Section 4.1.3, we can conservatively assume
the degree of regularity of Equation 4 is 2r(2tαq + 1) regardless of the number
of nonce-plaintext-ciphertext triples. We have the time complexity at least

O

((
n+ 2r(2tαq + 1)

2r(2tαq + 1)

)ω

ε−ct

)
where c should be larger than or equal to n to get the unique root. This com-
plexity formula also lower bounds the trivial linearization approach to solving
Equation 4.

Meet-in-the-middle Approach. Similar to most of the algebraic attacks,
one can try to use the MitM approach for Arora-Ge attack. From Equation 1,
the attacker can build the Arora-Ge equations as follows. ∏

(ei,j)i∈Cj

(
Fi[k, ncj]− (G−1)i(y1 − e1,j , . . . , yℓ − eℓ,j , xℓ+1, . . . , xn)

)
= 0


1≤j≤m

23

where
Cj :=

{
(e1, . . . , eℓ) ∈ Zℓ : −tαq ≤ ei ≤ tαq for all i

}
,

Fi and (G−1)i are the i-th components of F and G−1 respectively. These equa-
tions are of degree 2⌈r/2⌉(2tαq + 1)ℓ so that the lower bound of the degree of
regularity also is 2⌈r/2⌉(2tαq + 1)ℓ. Similarly as above, to get the unique root,
the queried block length k should satisfy n + k(n − ℓ) ≤ nk. Then, the time
complexity is lower bounded by

O

((
n+ (n− ℓ)k + 2⌈r/2⌉(2tαq + 1)ℓ

2⌈r/2⌉(2tαq + 1)ℓ

)ω

ε−ℓkt

)
.

We give some plots of the complexity of the Arora-Ge attack according to the
choice of t in Appendix E.

5 Performance Evaluation

In this section, we evaluate the performance of the RtF framework combined
with the Rubato cipher in terms of encryption speed and ciphertext expansion.
The source codes of server-side computation are developed in Golang version
1.16.4 with Lattigo library6 which implements RNS (residue number system)
variants of the FV and the CKKS schemes. For the HE parameters, we use the RtF
parameter Par-128a in [25], which uses the arcsin function. For completeness,
we summarize the HE parameters in Appendix F. The source codes of client-
side computation are developed in C++17, using GNU C++ 7.5.0 compiler
with AVX2 instruction set. For the instantiation of the XOF, we use AES128
in counter-mode as well as SHAKE256 in openssl library7 and XKCP library8,
respectively. Our experiments are done in AMD Ryzen 7 2700X @ 3.70 GHz
single-threaded with 64 GB memory.

5.1 Benchmark and Comparison

We measure the performance of the RtF framework along with Rubato, distin-
guishing two different parts: the client-side and the server-side. The client-side
latency includes time for generating pseudorandom numbers (needed to generate
a single keystream in Zn

q), keystream generation from Rubato, message scaling,
rounding, and vector addition over Zq. Since generating pseudorandom numbers
from XOF takes significant time on the client-side, we measure the client-side
performance according to the instantiations of the XOF.

On the server-side, the latency is divided into offline and online phases as
described in Section 2.4. The offline latency includes time for randomized key
schedule, homomorphic evaluation of the keystreams from Rubato, and the linear

6 https://github.com/ldsec/lattigo
7 https://github.com/openssl/openssl
8 https://github.com/XKCP/XKCP

24

https://github.com/ldsec/lattigo
https://github.com/openssl/openssl
https://github.com/XKCP/XKCP

transformation SlotToCoeffFV. The online latency includes computing the FV-
ciphertext containing the symmetric ciphertexts in its coefficients, homomorphic
subtraction, and the modified CKKS-bootstrapping process in the RtF framework
(called HalfBoot). We measure the latency until the first HE-ciphertext comes
out, while the throughput is measured until all the n HE-ciphertexts come out.
Because the XOF running time does not affect the server-side performance as
significantly as it does on the client-side, we only use SHAKE256 instantiation
for a fair comparison with previous results. We note that our evaluation does
not take into account key encryption since the encrypted key will be used over
multiple sessions once it is computed. For the same reason, the initialization
process of the HE schemes is not considered.

AES128 SHAKE256

Set Latency Throughput Latency Throughput

(cycle) (C/B) (cycle) (C/B)

Par-80S 2154 72.63 5906 199.1

Par-80M 3644 49.36 11465 143.5

Par-80L 4957 32.97 16679 110.9

Par-128S 3076 103.6 10446 351.8

Par-128M 4381 55.10 14292 179.7

Par-128L 5323 35.70 16920 113.5

Table 5: Client-side performance of the RtF transciphering framework with
Rubato.

Set CER
Latency Throughput Precision

Offline (s) Online (s) (KB/s) (bits)

Par-80S 1.31 21.48 19.75 6.676 18.8

Par-80M 1.25 37.44 19.71 7.032 19.0

Par-80L 1.25 85.65 19.79 6.520 19.1

Par-128S 1.31 50.78 20.28 6.083 18.8

Par-128M 1.26 68.47 19.88 6.666 18.9

Par-128L 1.26 86.34 20.09 6.712 18.9

Table 6: Server-side performance of the RtF transciphering framework with
Rubato.

We summarize our implementation results in Table 5 and Table 6. In Ta-
ble 5, the client-side latency and throughput for each instantiation of the XOF
are given. Table 6 includes ciphertext expansion ratio (CER), time-relevant mea-

25

surements, and precision. One can see that a larger parameter implies higher
throughput at the cost of higher latency on both sides. As Rubato needs a sub-
stantial amount of random bits, the client-side performance is significantly influ-
enced by the choice of XOF. On the server-side, we note that Rubato only affects
the offline latency while the online latency is affected by the efficiency of CKKS
bootstrapping.

Comparison. We compare the result of Par-128L to the recent implementation
of HERA [25], LWEs-to-RLWE conversions [50], and CKKS itself. The comparison
is summarized in Table 7. The result of HERA is obtained from the paper. The
source codes of LWEs-to-RLWE conversion are taken from the OpenPegasus

library9. As OpenPegasus library does not include symmetric LWE encryp-
tion, we implement (seeded) symmetric LWE encryption with AVX2-optimized
SHAKE256. We use Lattigo library for CKKS encryption.

In this table, the security parameter λ is set to 128. For the fairness of com-
parison, the remaining levels after transciphering are all set to be 7. For all
experiments, we sample the domain of each component of the message vector
from the uniform distribution over (−1, 1). When computing the ciphertext ex-
pansion ratio, we use the formula log q/(p + 1), which excludes the effect of
sending a public nonce. Multiple use of different nonces can be dealt with a
counter so that the effect of a nonce to the ratio is asymptotically zero.

Since the OpenPegasus library supports only selected sets of parameters in
terms of the number of slots and the ciphertext modulus (at the point of sub-
mission), we implemented LWEs-to-RLWE for N = 216 and ℓ = 210 which does
not provide exactly the same functionality as ours with full available slots.

One can see that Rubato with the RtF framework outperforms HERA with
respect to the both-side throughput, while it has a worse CER and ciphertext
size compared to HERA. Also, Rubato outperforms the LWEs-to-RLWE conver-
sion with respect to CER, ciphertext size and client-side performance, achieving
the main purpose of the transciphering framework. Compared to the CKKS-only
environment, Rubato with the RtF framework has better CER and client-side
performance, while the CKKS-only environment requires no additional compu-
tation.

References

1. Albrecht, M., Cid, C., Faugère, J.C., Fitzpatrick, R., Perret, L.: On the Complex-
ity of the Arora-Ge Algorithm against LWE. In: SCC 2012 – Third international
conference on Symbolic Computation and Cryptography. pp. 93–99 (Jul 2012)

2. Albrecht, M.R., Bai, S., Li, J., Rowell, J.: Lattice Reduction with Approximate
Enumeration Oracles. In: Malkin, T., Peikert, C. (eds.) Advances in Cryptology –
CRYPTO 2021. pp. 732–759. Springer (2021)

3. Albrecht, M.R., Cid, C., Faugère, J.C., Fitzpatrick, R., Perret, L.: On the Com-
plexity of the BKW Algorithm on LWE. Designs, Codes and Cryptography 74(2),
325–354 (Feb 2015)

9 https://github.com/Alibaba-Gemini-Lab/OpenPEGASUS

26

https://github.com/Alibaba-Gemini-Lab/OpenPEGASUS

Scheme N ℓ

Ctxt. Exp. Client Server

Ctxt.
Ratio

Lat. Thrp. Lat. Thrp. p

(KB) (µs) (MB/s) (s) (KB/s)

RtF-Rubato 216 216 0.183 1.26 4.585 31.04 106.4 6.712 18.9

RtF-HERA [25] 216 216 0.055 1.24 1.520 25.26 141.58 5.077 19.1

LWE [50] 216(210) 210 0.007 4.84 21.91 0.051 65.88 0.010 9.3

CKKS 214 214 468 23.25 9656 2.035 none 19.1

Table 7: Comparison of the RtF transciphering framework with Rubato to previ-
ous environments supporting homomorphic encryption of approximate numbers.
All the experiments are done with 128-bit security. Parameter N in parentheses
implies the dimension of LWE. The parameter p stands for the bits of precision.

4. Albrecht, M.R., Fitzpatrick, R., Göpfert, F.: On the Efficacy of Solving LWE by
Reduction to Unique-SVP. In: Lee, H.S., Han, D.G. (eds.) Information Security
and Cryptology – ICISC 2013. pp. 293–310. Springer (2014)

5. Albrecht, M.R., Göpfert, F., Virdia, F., Wunderer, T.: Revisiting the Expected
Cost of Solving uSVP and Applications to LWE. In: Takagi, T., Peyrin, T. (eds.)
Advances in Cryptology – ASIACRYPT 2017. pp. 297–322. Springer (2017)

6. Albrecht, M.R., Rechberger, C., Schneider, T., Tiessen, T., Zohner, M.: Ciphers
for MPC and FHE. In: Oswald, E., Fischlin, M. (eds.) Advances in Cryptology –
EUROCRYPT 2015. vol. 9056, pp. 430–454. Springer (2015)

7. Alkim, E., Ducas, L., Pöppelmann, T., Schwabe, P.: Post-Quantum Key Exchange:
A New Hope. p. 327–343. SEC’16, USENIX Association, USA (2016)

8. Aly, A., Ashur, T., Ben-Sasson, E., Dhooghe, S., Szepieniec, A.: Design of
Symmetric-Key Primitives for Advanced Cryptographic Protocols. IACR Trans-
actions on Symmetric Cryptology 2020(3) (Sep 2020)

9. Arora, S., Ge, R.: New Algorithms for Learning in Presence of Errors. In: Aceto,
L., Henzinger, M., Sgall, J. (eds.) Automata, Languages and Programming. pp.
403–415. Springer (2011)

10. Bai, S., Galbraith, S.D.: Lattice Decoding Attacks on Binary LWE. In: Susilo, W.,
Mu, Y. (eds.) Information Security and Privacy. pp. 322–337. Springer (2014)

11. Baignères, T., Stern, J., Vaudenay, S.: Linear Cryptanalysis of Non Binary Ci-
phers. In: Adams, C., Miri, A., Wiener, M. (eds.) Selected Areas in Cryptography.
vol. 4876, pp. 184–211. Springer (2007)

12. Becker, A., Ducas, L., Gama, N., Laarhoven, T.: New Directions in Nearest Neigh-
bor Searching with Applications to Lattice Sieving. In: Proceedings of the twenty-
seventh annual ACM-SIAM symposium on Discrete algorithms. pp. 10–24. SIAM
(2016)

13. Bettale, L., Faugere, J.C., Perret, L.: Hybrid Approach for Solving Multivariate
Systems over Finite Fields. Journal of Mathematical Cryptology 3(3), 177–197
(2009)

14. Bettale, L., Faugère, J.C., Perret, L.: Solving Polynomial Systems over Finite
Fields: Improved Analysis of the Hybrid Approach. In: Proceedings of the 37th
International Symposium on Symbolic and Algebraic Computation. ISSAC ’12,
Association for Computing Machinery (2012)

27

15. Beyne, T., Canteaut, A., Dinur, I., Eichlseder, M., Leander, G., Leurent, G., Naya-
Plasencia, M., Perrin, L., Sasaki, Y., Todo, Y., Wiemer, F.: Out of Oddity – New
Cryptanalytic Techniques Against Symmetric Primitives Optimized for Integrity
Proof Systems. In: Micciancio, D., Ristenpart, T. (eds.) Advances in Cryptology –
CRYPTO 2020. vol. 12172, pp. 299–328. Springer (2020)

16. Blum, A., Kalai, A., Wasserman, H.: Noise-Tolerant Learning, the Parity Problem,
and the Statistical Query Model. J. ACM 50(4), 506–519 (Jul 2003)

17. Boura, C., Gama, N., Georgieva, M., Jetchev, D.: Simulating Homomorphic Eval-
uation of Deep Learning Predictions. In: Dolev, S., Hendler, D., Lodha, S., Yung,
M. (eds.) Cyber Security Cryptography and Machine Learning. vol. 11527, pp.
212–230. Springer (2019)

18. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) Fully Homomorphic En-
cryption without Bootstrapping. In: Proceedings of the 3rd Innovations in Theo-
retical Computer Science Conference. p. 309–325. ACM (2012)

19. Canteaut, A., Carpov, S., Fontaine, C., Lepoint, T., Naya-Plasencia, M., Paillier,
P., Sirdey, R.: Stream ciphers: A Practical Solution for Efficient Homomorphic-
Ciphertext Compression. Journal of Cryptology 31(3), 885–916 (2018)

20. Carlitz, L., Uchiyama, S.: Bounds for Exponential Sums. Duke mathematical Jour-
nal 24(1), 37–41 (1957)

21. Chen, H., Dai, W., Kim, M., Song, Y.: Efficient Homomorphic Conversion Be-
tween (Ring) LWE Ciphertexts. In: Sako, K., Tippenhauer, N.O. (eds.) Applied
Cryptography and Network Security. pp. 460–479. Springer (2021)

22. Chen, Y.: Réduction de Réseau et Sécurité Concrète du Chiffrement Complètement
Homomorphe. Ph.D. thesis (2013), thèse de doctorat dirigée par Nguyen, Phong-
Quang Informatique Paris 7 2013

23. Chen, Y., Nguyen, P.Q.: BKZ 2.0: Better Lattice Security Estimates. In: Lee, D.H.,
Wang, X. (eds.) Advances in Cryptology – ASIACRYPT 2011. pp. 1–20. Springer
(2011)

24. Cheon, J.H., Kim, A., Kim, M., Song, Y.: Homomorphic Encryption for Arithmetic
of Approximate Numbers. In: Takagi, T., Peyrin, T. (eds.) Advances in Cryptology
– ASIACRYPT 2017. vol. 10624, pp. 409–437. Springer (2017)

25. Cho, J., Ha, J., Kim, S., Lee, B., Lee, J., Lee, J., Moon, D., Yoon, H.: Transcipher-
ing framework for approximate homomorphic encryption. In: Tibouchi, M., Wang,
H. (eds.) Advances in Cryptology – ASIACRYPT 2021. vol. 13092, pp. 640–669.
Springer (2021)

26. Dinur, I., Liu, Y., Meier, W., Wang, Q.: Optimized Interpolation Attacks on
LowMC. In: Iwata, T., Cheon, J.H. (eds.) Advances in Cryptology – ASIACRYPT
2015. vol. 9453, pp. 535–560. Springer (2015)

27. Dobraunig, C., Eichlseder, M., Grassi, L., Lallemand, V., Leander, G., List, E.,
Mendel, F., Rechberger, C.: Rasta: A Cipher with Low ANDdepth and Few ANDs
per Bit. In: Shacham, H., Boldyreva, A. (eds.) Advances in Cryptology – CRYPTO
2018. vol. 10991, pp. 662–692. Springer (2018)

28. Dobraunig, C., Eichlseder, M., Mendel, F.: Higher-Order Cryptanalysis of LowMC.
In: Kwon, S., Yun, A. (eds.) Information Security and Cryptology – ICISC 2015.
vol. 9558, pp. 87–101. Springer (2016)

29. Dobraunig, C., Grassi, L., Guinet, A., Kuijsters, D.: Ciminion: Symmetric Encryp-
tion Based on Toffoli-Gates over Large Finite Fields. In: Canteaut, A., Standaert,
F.X. (eds.) Advances in Cryptology – EUROCRYPT 2021. pp. 3–34. Springer
(2021)

28

30. Dobraunig, C., Grassi, L., Helminger, L., Rechberger, C., Schofnegger, M., Walch,
R.: Pasta: A Case for Hybrid Homomorphic Encryption. Cryptology ePrint
Archive, Report 2021/731 (2021), https://ia.cr/2021/731

31. Doröz, Y., Shahverdi, A., Eisenbarth, T., Sunar, B.: Toward Practical Homomor-
phic Evaluation of Block Ciphers Using Prince. In: Böhme, R., Brenner, M., Moore,
T., Smith, M. (eds.) Financial Cryptography and Data Security. vol. 8438, pp. 208–
220. Springer (2014)

32. Ducas, L., Micciancio, D.: FHEW: Bootstrapping Homomorphic Encryption in
Less Than a Second. In: Oswald, E., Fischlin, M. (eds.) Advances in Cryptology –
EUROCRYPT 2015. vol. 9056, pp. 617–640. Springer (2015)

33. Dworkin, M.J.: SHA-3 Standard: Permutation-Based Hash and Extendable-Output
Functions. Tech. rep., National Institute of Standards and Technology (2015)

34. Fan, J., Vercauteren, F.: Somewhat Practical Fully Homomorphic Encryption.
IACR Cryptology ePrint Archive, Report 2012/144 (2012), https://eprint.iacr.
org/2012/144

35. Fröberg, R.: An Inequality for Hilbert Series of Graded Algebras. MATHEMATICA
SCANDINAVICA 56 (Dec 1985)

36. Gama, N., Nguyen, P.Q.: Predicting Lattice Reduction. In: Smart, N. (ed.) Ad-
vances in Cryptology – EUROCRYPT 2008. pp. 31–51. Springer (2008)

37. Gama, N., Nguyen, P.Q., Regev, O.: Lattice Enumeration Using Extreme Pruning.
In: Gilbert, H. (ed.) Advances in Cryptology – EUROCRYPT 2010. pp. 257–278.
Springer (2010)

38. Gentry, C., Halevi, S., Smart, N.P.: Homomorphic Evaluation of the AES Circuit.
In: Safavi-Naini, R., Canetti, R. (eds.) Advances in Cryptology – CRYPTO 2012.
vol. 7417, pp. 850–867. Springer (2012)

39. Göpfert, F.: Securely Instantiating Cryptographic Schemes Based on the Learning
with Errors Assumption. Ph.D. thesis, Technische Universität, Darmstadt (2016)

40. Grassi, L., Khovratovich, D., Rechberger, C., Roy, A., Schofnegger, M.: Poseidon: A
New Hash Function for Zero-Knowledge Proof Systems. In: 30th USENIX Security
Symposium (USENIX Security 21). pp. 519–535. USENIX Association (Aug 2021)

41. Guo, J., Peyrin, T., Poschmann, A.: The PHOTON Family of Lightweight Hash
Functions. In: Rogaway, P. (ed.) Advances in Cryptology – CRYPTO 2011. pp.
222–239. Springer (2011)

42. Ha, J., Kim, S., Choi, W., Lee, J., Moon, D., Yoon, H., Cho, J.: Masta: An HE-
Friendly Cipher Using Modular Arithmetic. IEEE Access 8, 194741–194751 (2020)

43. Hebborn, P., Leander, G.: Dasta – Alternative Linear Layer for Rasta. IACR Trans-
actions on Symmetric Cryptology 2020(3), 46–86 (Sep 2020)

44. Hoffmann, C., Méaux, P., Ricosset, T.: Transciphering, Using FiLIP and TFHE
for an Efficient Delegation of Computation. In: Bhargavan, K., Oswald, E., Prab-
hakaran, M. (eds.) Progress in Cryptology – INDOCRYPT 2020. pp. 39–61.
Springer International Publishing, Cham (2020)

45. Hong, S., Lee, S., Lim, J., Sung, J., Cheon, D., Cho, I.: Provable Security against
Differential and Linear Cryptanalysis for the SPN Structure. In: Goos, G., Hart-
manis, J., van Leeuwen, J., Schneier, B. (eds.) Fast Software Encryption – FSE
2000. vol. 1978. Springer (2001)

46. Jakobsen, T., Knudsen, L.R.: The Interpolation Attack on Block Ciphers. In: Bi-
ham, E. (ed.) Fast Software Encryption – FSE ’97. vol. 1267, pp. 28–40. Springer
(1997)

47. Laarhoven, T.: Search Problems in Cryptography: from Fingerprinting to Lattice
Sieving. Ph.D. thesis, Mathematics and Computer Science (Feb 2016), proefschrift

29

https://ia.cr/2021/731
https://eprint.iacr.org/2012/144
https://eprint.iacr.org/2012/144

48. Lepoint, T., Naehrig, M.: A Comparison of the Homomorphic Encryption Schemes
FV and YASHE. In: Pointcheval, D., Vergnaud, D. (eds.) Progress in Cryptology
– AFRICACRYPT 2014. vol. 8469, pp. 318–335. Springer (2014)

49. Lindner, R., Peikert, C.: Better Key Sizes (and Attacks) for LWE-Based Encryp-
tion. In: Kiayias, A. (ed.) Topics in Cryptology – CT-RSA 2011. pp. 319–339.
Springer (2011)

50. Lu, W., Huang, Z., Hong, C., Ma, Y., Qu, H.: PEGASUS: Bridging Polynomial
and Non-polynomial Evaluations in Homomorphic Encryption. In: 2021 2021 IEEE
Symposium on Security and Privacy (SP). pp. 1057–1073. IEEE Computer Society
(May 2021)

51. Matsui, M.: Linear Cryptanalysis Method for DES Cipher. In: Helleseth, T. (ed.)
Advances in Cryptology — EUROCRYPT ’93. vol. 765, pp. 386–397. Springer
(1994)

52. Méaux, P., Carlet, C., Journault, A., Standaert, F.X.: Improved Filter Permutators
for Efficient FHE: Better Instances and Implementations. In: Hao, F., Ruj, S.,
Sen Gupta, S. (eds.) Progress in Cryptology – INDOCRYPT 2019. vol. 11898, pp.
68–91. Springer (2019)

53. Méaux, P., Journault, A., Standaert, F.X., Carlet, C.: Towards Stream Ciphers
for Efficient FHE with Low-Noise Ciphertexts. In: Fischlin, M., Coron, J.S. (eds.)
Advances in Cryptology – EUROCRYPT 2016. vol. 9665, pp. 311–343. Springer
(2016)

54. Mouchet, C., Troncoso-Pastoriza, J.R., Bossuat, J., Hubaux, J.: Multiparty Ho-
momorphic Encryption from Ring-Learning-with-Errors. Proc. Priv. Enhancing
Technol. 2021(4), 291–311 (2021)

55. Naehrig, M., Lauter, K., Vaikuntanathan, V.: Can Homomorphic Encryption be
Practical? In: Proceedings of the 3rd ACM Workshop on Cloud Computing Secu-
rity Workshop. p. 113–124. ACM (2011)

56. Park, S., Byun, J., Lee, J., Cheon, J.H., Lee, J.: HE-Friendly Algorithm for Privacy-
Preserving SVM Training. IEEE Access 8, 57414–57425 (2020)

57. Player, R.: Parameter Selection in Lattice-based Cryptography. Ph.D. thesis, Royal
Holloway, University of London (2018)

58. Rechberger, C., Soleimany, H., Tiessen, T.: Cryptanalysis of Low-Data Instances
of Full LowMCv2. IACR Transactions on Symmetric Cryptology 2018(3), 163–181
(2018)

59. Regev, O.: On Lattices, Learning with Errors, Random Linear Codes, and Cryp-
tography. J. ACM 56(6) (Sep 2009)

60. Schnorr, C.P., Euchner, M.: Lattice Basis Reduction: Improved Practical Algo-
rithms and Solving Subset Sum Problems. Mathematical Programming 66(1),
181–199 (Aug 1994)

61. Schnorr, C.P.: Lattice Reduction by Random Sampling and Birthday Methods. In:
Alt, H., Habib, M. (eds.) STACS 2003. pp. 145–156. Springer (2003)

A Scenarios for Transciphering

Two-party Scenario. In a client-server model, the main purpose of a transci-
phering framework is outsourcing computation of the client’s data to the server
while the privacy of the data is protected against the server. To this end, the
symmetric key and the secret key of the HE scheme should be generated by

30

the client. The corresponding evaluation key (and the public key if needed) is
initially transferred to the server.

As the current HE schemes still suffer from a large amount of computational
overhead, we do not recommend to use HE or a transciphering framework when
the function to be evaluated is public and simple. When the server has secret
functions to evaluate (e.g., ML inference as a service) or evaluating the function
requires too much resource compared to the capacity of the client, using a tran-
sciphering framework will be a plausible idea for (oblivious) evaluation of those
functions in the following sense.

– When data are supposed to be stored for a long time, a transciphering frame-
work can reduce the memory consumption by the encrypted data.

– When only constrained resources are available on the client side (e.g., In-
ternet of Things), a transciphering framework can alleviate the load of the
client in terms of computational power, memory, and entropy gathering.

– When data are not packed in a fixed way, since any (limited-size) collection
of symmetric ciphertexts can be transciphered into a single HE ciphertext,
a transciphering framework is more forward-compatible to process the data.

Multi-party Scenario. In this scenario, we consider three types of parties:
data providers, an evaluator, and a key holder(s). Data providers provide data,
and they want data privacy to be protected. An evaluator processes the data
from the data providers without knowing the data (as plaintext). Key holders
– may be singular or plural – have the secret key of the HE scheme. If there
are two or more key holders, then each key holder might have a share of the
secret key, while the evaluation and the public keys are generated by multi-
party computation. This method is called multi-party homomorphic encryption
(MHE) [54]. Assuming no conspiracy of the evaluator and all the key holders,
the privacy of the data will be protected. A transciphering framework in the
multi-party scenario proceeds as follows.

1. A key holder generates secret key sk, public key pk, and evaluation key evk.
2. The key holder sends pk to the data providers and (pk, evk) to the evaluator.
3. Each data provider generates its own symmetric key ki, and sends HE-

encrypted symmetric key Ki = EncHEpk (ki) to the evaluator.
4. Each data provider encrypts the data using symmetric cipher E, and sends

the symmetric ciphertext c = Eki(m) to the evaluator.
5. The evaluator transciphers c to EncHEpk (m) using Ki.

6. The evaluator homomorphically processes EncHEpk (m) and sends the result

EncHEpk (f(m)) to the key holder.

7. The key holder decrypts EncHEpk (f(m)), obtaining f(m).

This process can be used for secure data collection. The evaluator can collect
data from the public domain while preserving the data privacy, and process the
data in an offline manner. Similar to the two-party scenario, a transciphering
framework might provide better usability compared to the HE-only case, in
particular, when a small amount of data are steadily collected for a long time.

31

B Description of the RtF framework

In this section, we give a detailed description of the RtF framework. The pictorial
description of the framework can be found in Figure 5.

Initialization. The RtF transciphering framework uses both FV and CKKS
schemes. For a fixed security parameter λ, set parameters such as the degree
of the polynomial modulus and the ciphertext moduli, and generate the public-
private key pair to satisfy the desired security level λ. For a secret key k ∈ Zn

q

used for a symmetric cipher E, the client computes FV-ciphertext K of the secret
key k and sends it to the server.

Client-side Computation. Suppose that a nonce nc ∈ {0, 1}λ, a secret key
k ∈ Zn

q of the cipher E and a scaling factor ∆ > 0 are given. The client encrypts
an n-tuple of real messages m = (m0, . . . ,mn−1) ∈ Rn as follows. It first scales
up the message m by ∆ and outputs m̃ ∈ Zn

q where

m̃ = ⌊∆ ·m⌉.

Then, the client generates a keystream z ∈ Zn
q from the cipher E taking the

nonce nc as an input. Adding the keystream z to the scaled message m̃ modulo
q, the client gets a symmetric ciphertext c = [m̃+ z]q and sends it to the server
with the nonce nc.

Server-side Offline Computation. In the offline phase, the server evaluates
the keystream using a tuple of nonces (nc0, . . . , ncB−1) and the FV-encrypted
symmetric key K. As a result, the server gets an FV-ciphertext V containing the
keystreams of E in its slots. Finally, the server performs a linear transformation
SlotToCoeffFV that moves the data from the slots to the coefficients, obtaining
an FV-ciphertext Z containing the keystreams of E in its coefficients. All of the
homomorphic evaluations are done in the FV scheme.

Server-side Online Computation. Given a tuple of symmetric ciphertexts,
the server scales up the data into FV-ciphertext space to obtain an FV-ciphertext
C containing the symmetric ciphertexts in its coefficients. Subtracting the ho-
momorphically evaluated keystream Z from C, the server gets an FV-ciphertext
X containing the scaled messages in its coefficients. The last step is HalfBoot, a
modified bootstrapping process used in the RtF transciphering framework. Tak-
ing the FV-ciphertext X as an input, it outputs a CKKS-ciphertextM containing
the real messages in its slots.

C Number of Monomials in Rubato

The round function of Rubato is defined by

RF[k, nc, i] = ARK[k, nc, i] ◦ Feistel ◦MixRows ◦MixColumns,

where the two linear mapsMixColumns andMixRows can be represented by n×n-
matrices over Zq. Their product represents MixRows ◦ MixColumns as follows.

32

Ek

q

ncctr

mctr ⌊Scale(·)⌉ cctr

EncFV

EcdFV

Concat

k

ScaleFV
ctr = 0, . . . , B − 1

EvalFV(E, ·)

SlotToCoeffFV

{ncctr}ctr
ctr = 0, . . . , B − 1

HalfBoot

CKKS-encrypted message

Client Server

Offline

Online

Fig. 5: The RtF transciphering framework. Homomorphic encryption and evalu-
ation is performed in the boxes with thick lines. Operations in the boxes with
rounded corners do not use any secret information. The vertical dashed line
distinguishes the client-side and the server-side computation, while the horizon-
tal dashed line distinguishes the offline and the online computation. The client
sends ciphertexts block by block, while the server gathers B ciphertext blocks
and recovers the CKKS-encrypted message of the ciphertexts.

33

Similar to HERA [25], we check that the matrix representation of MixRows ◦
MixColumns has no zero entry. It implies that MixRows ◦ MixColumns contains
all the linear monomials in its polynomial representation, and hence RF contains
all the quadratic monomials. More precisely, if ai ̸= 0 for i = 1, . . . , n, then we
have

(a1x1 + a2x2 + · · ·+ anxn + b)2 =
∑
i,j

aiajxixj +
∑
i

2aibxi + b2

=
∑
i≤j

α(i, j)aiajxixj +
∑
i

2aibxi + b2,

where

α(i, j) =

{
1 if either i = j;

2 if i < j.

Since the plaintext modulus q is prime and q > 220, every quadratic has a
nonzero coefficient.

We can estimate the number of monomials in Rubato with more rounds.
Let b = (b1, . . . , bn) be the output of the first round function. The second round
function will contain all the quadratic monomials in b. When we view the second
round function as a polynomial in b1, . . . , bn, some coefficients might become
zero, while this happens only with a probability of 1/q. Heuristically (with the
independence assumption), each monomial will remain at the second round with
probability 1− (1/q)n. This heuristic is confirmed by our computation, showing
all possible monomials at the end of the second round. We conjecture that this
property will hold for more than two rounds.

D Branch Number of the Linear Layer in Rubato

Linear branch number Bℓ and differential branch number Bd for a given a v×v-
matrix M are defined by

Bℓ(M) = min
x̸=0
{hw(x) + hw(M⊺x)},

Bd(M) = min
x̸=0
{hw(x) + hw(Mx)}

respectively, where hw denotes the word-wise hamming weight function. It is
easily seen that 2 ≤ Bℓ(M), Bd(M) ≤ v+1 for an invertible matrix M. A v× v-
matrix M is a maximum distance separable (MDS) matrix if Bℓ(M) = Bd(M) =
v + 1. It is also known that Bℓ(M) = v + 1 if and only if Bd(M) = v + 1 [45].

The branch number of the linear layer of Rubato is 8 when v = 4 [25]. In this
section, we give the branch number of the linear layer of Rubato for general v.

Theorem 1. If Mv is v × v-MDS matrix, then the linear and the differential
branch numbers of

MixRows ◦MixColumns

are all 2v where MixColumns (resp. MixRows) multiplies the matrix Mv to each
column (resp. row) of the state.

34

Proof. We will prove that the differential branch number ofMixRows◦MixColumns
is 2v. The linear branch number is computed similarly. We use the notations in

Figure 6. We define r
(x)
i , c

(x)
i , r

(y)
i , c

(y)
i , r

(z)
i , c

(z)
i as follows:

r
(x)
i = hw((xi,1, xi,2, . . . , xi,v));

c
(x)
i = hw((x1,i, x2,i, . . . , xv,i));

r
(y)
i = hw((yi,1, yi,2, . . . , yi,v));

c
(y)
i = hw((y1,i, y2,i, . . . , yv,i));

r
(z)
i = hw((zi,1, zi,2, . . . , zi,v));

c
(z)
i = hw((z1,i, z2,i, . . . , zv,i)).

Let a be the number of non-zero columns in state X. By reordering the indices,
one can get

c
(x)
1 ≥ c

(x)
2 ≥ . . . c(x)a > 0,

c
(x)
a+1 = c

(x)
a+2 = · · · = c(x)v = 0,

which implies that hw(X) =
∑v

k=1 c
(x)
k ≥ a · c(x)a .

Let b be the number of non-zero row in Y . Since the branch number of
MixColumns is v+1, c

(y)
a ≥ v+1− c

(x)
a which implies b ≥ v+1− c

(x)
a . Since the

number of non-zero columns are a, r
(y)
i ≤ a. By reordering the indices, one can

get

a ≥ r
(y)
1 ≥ r

(y)
2 · · · ≥ r

(y)
b > 0,

r
(y)
b+1 = r

(y)
b+2 = · · · = r(y)v = 0.

Then, we have

hw(Z) =

v∑
k=1

r
(z)
k =

b∑
k=1

r
(z)
k +

v∑
k=b+1

r
(z)
k

≥
b∑

k=1

(v + 1− r
(y)
k) ≥ b · (v + 1− a)

≥
(
v + 1− c(x)a

)
· (v + 1− a).

Combining the above inequalities, we have

hw(X) + hw(Z) ≥ a · c(x)a + (v + 1− c(x)a) · (v + 1− a).

The right hand side is a linear expression with respect to each variable when the
other one is fixed, so that it is enough to check(

a, c(x)a

)
∈ {(1, 1), (1, v), (v, 1), (v, v)}

35

in order to find the minimum value. By substituting those values, we have

hw(X) + hw(Z) ≥ min(v2 + 1, 2v) = 2v.

Finally, the following example in Figure 7 shows that the branch number of
MixColumns ◦MixRows is 2v. ⊓⊔

x1,1

x2,1

...

xv,1

x1,2

x2,2

...

xv,2

· · ·

· · ·

. . .

· · ·

x1,v

x2,v

...

xv,v

MixColumns

State X

y1,1

y2,1

...

yv,1

y1,2

y2,2

...

yv,2

· · ·

· · ·

. . .

· · ·

y1,v

y2,v

...

yv,v

MixRows

State Y

z1,1

z2,1

...

zv,1

z1,2

z2,2

...

zv,2

· · ·

· · ·

. . .

· · ·

z1,v

z2,v

...

zv,v

State Z

Fig. 6: Diagram of state change in Rubato.

...
...

· · ·

· · ·

. . .

· · ·

...
...

...

· · ·

· · ·

. . .

· · ·

...
...

...

· · ·

· · ·

. . .

· · ·

...

Fig. 7: Pictorial representation of an example satisfying Bd = 2v.

E Additional Plots on Security Analysis

In this section, we give some additional plots on the security analysis of Rubato.
In Figure 8, we plot a trade-off relation between the number of rounds r and the
width of the discrete Gaussian distribution αq. One can use a customized set of
parameters for various applications.

In the Arora-Ge attack, the probability such that a noise sampled from a
discrete Gaussian is denoted by

εt = Pr [e← Dαq : |e| ≤ tαq] .

36

The value tαq determines the success probability of the attacks and necessarily
affects the total complexity of the attacks. We give a plot of the complexity of
Arora-Ge attack, which is dominating attacks, according to tαq in Figure 9.

2 4 6 8 10
0

3

6

9

12

r

α
q

n = 16
n = 36
n = 64

(a) 80-bit security

2 4 6 8 10
0

20

40

60

80

100

r

α
q

n = 16
n = 36
n = 64

(b) 128-bit security

Fig. 8: The appropriate choice of the number of rounds r and the width of discrete
Gaussian distribution αq for a given security level.

F HE Parameters of the Implementation

In Section 5, we give the performance evaluation of Rubato along with the RtF
framework. We basically follow the Par-128a HE parameters in [25] in our im-
plementation. Specifically,

– the hamming weight h of the secret key is 192;
– the range K of sign evaluation is 25;
– the number R of double angle formula is 2;
– the degree of sign evaluation is 63;
– the degree of inverse sine evaluation is 7;
– the degree N of the polynomial modulus is 216;
– the number of slots in the FV scheme in the RtF framework is 216;
– the scale of the final CKKS-ciphertext is 245;
– the level of the final CKKS-ciphertext is 7;
– the bit-length of the largest ciphertext modulus including special primes is

1533;
– the ratio of the first ciphertext modulus to the bootstrapping scaling factor

is 16.

37

0 6 12 18 24
80

110

140

170

tαq

lo
g
(t
im

e)

(a) Par-80S

0 1 2 3 4 5 6 7
80

100

120

140

160

180

tαq

lo
g
(t
im

e)

(b) Par-80M

0 1 2 3 4
80

110

140

170

tαq

lo
g
(t
im

e)

(c) Par-80L

0 6 12 18 24
120

160

200

240

tαq

lo
g
(t
im

e)

(d) Par-128S

0 2 4 6 8 10
120

170

220

260

tαq

lo
g
(t
im

e)

(e) Par-128M

0 2 4 6 8 10
120

170

220

270

tαq

lo
g
(t
im

e)

(f) Par-128L

Fig. 9: The log of time complexity of the Arora-Ge attack as a function in tαq.

38

	Rubato: Noisy Ciphers for Approximate Homomorphic Encryption (Full Version)
	Introduction
	Transciphering and HE-friendly Ciphers
	Our Contribution
	Related Work

	Preliminaries
	Notations
	Lattice Background
	Learning with Errors
	RtF Transciphering Framework

	Rubato: A Family of Noisy Ciphers
	Specification
	Parameter Selection
	Design Rationale

	Security Analysis
	Cryptanalysis Based on Symmetric Primitive Analysis
	Trivial Linearization
	GCD Attack
	Gröbner Basis Attack
	Interpolation Attack
	Linear Cryptanalysis
	Differential Cryptanalysis and Its Variants

	Cryptanalysis Based on LWE Analysis
	Exhaustive Search
	Lattice Attacks
	BKW Attack
	Arora-Ge Attack

	Performance Evaluation
	Benchmark and Comparison

	Scenarios for Transciphering
	Description of the RtF framework
	Number of Monomials in Rubato
	Branch Number of the Linear Layer in Rubato
	Additional Plots on Security Analysis
	HE Parameters of the Implementation

