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CRYSTALS-Dilithium and Falcon are digital signature algorithms based on cryptographic lattices, that are
considered secure even if large-scale quantum computers will be able to break conventional public-key
cryptography. Both schemes are third round candidates in the ongoing NIST post-quantum competition. In
this work, we present a RISC-V HW/SW codesign that aims to combine the advantages of software- and
hardware implementations, i.e. flexibility and performance. It shows the use of flexible hardware accelerators,
which have been previously used for Public-Key Encryption (PKE) and Key-Encapsulation Mechanism (KEM),
for post-quantum signatures. It is optimized for Dilithium as a generic signature scheme but also accelerates
applications that require fast verification of Falcon’s compact signatures. We provide a comparison with
previous works showing that for Dilithium and Falcon, cycle counts are significantly reduced, such that our
design is faster than previous software implementations or other HW/SW codesigns. In addition to that, we
present a compact Globalfoundries 22 nm ASIC design that runs at 800MHz. By using hardware acceleration,
energy consumption for Dilithium is reduced by up to 92.2%, and up to 67.5% for Falcon’s signature verification.
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1 INTRODUCTION
In 1994, Peter Shor presented an algorithm that severely threatens today’s cryptography under the
assumption that large-scale quantum computers are available [28]. This algorithm, simply known
as Shor’s algorithm, allows to solve the problems of discrete logarithm and integer factorization
within feasible time. These problems are the basis for today’s public-key cryptography and thus,
new ways must be found to provide secure communication. One class of algorithms that fulfills
these requirements is called lattice-based cryptography. Due to their efficiency with respect to
performance and parameter sizes, these algorithms seem to be well suited for constrained devices.
In order to evaluate the different options and define new standards for post-quantum secure

algorithms, the National Institute of Standards and Technology (NIST) initiated the Post-Quantum
Cryptography (PQC) competition1. The process started in 2016 and consists of two tracks. The
1https://csrc.nist.gov/projects/post-quantum-cryptography
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first track contains PKE and KEMs and is currently in its third and final round. It is expected that
NIST will announce the winners of this track in early 2022. The second track contains Digital
Signature Algorithms (DSAs) and NIST decided to extend this competition to a fourth round, whose
candidates will also be expected to be announced early 2022.

Among the third roundDSA candidates are two lattice-based schemes, i.e. CRYSTALS-Dilithium [22]
and Falcon [10]. Dilithium is built on the Fiat-Shamir with Aborts [21] principle and bases its
security on the Module Learning with Errors (M-LWE) and Module Short Integer Solution (M-SIS)
problem. Falcon, however, is a hash-and-sign signature scheme that operates on NTRU lattices
and requires a trapdoor sampler for signature generation. Similar to Dilithium, Falcon’s security
is based on the Shortest Integer Solution (SIS) problem for NTRU lattices. Both schemes have
different advantages. An advantage of Dilithium is that its operations are quite simple compared to
Falcon’s operations. More concretely, Dilithium performs polynomial multiplication with integer
coefficients, whereas Falcon also operates on complex polynomials. In addition to that, Dilithium
only requires uniform sampling, whereas Falcon requires Gaussian sampling with varying center
and standard deviation. However, an advantage of Falcon is its compactness and performance of
signature verification, which can be crucial for certain applications like authenticated firmware
updates. Therefore, a unified design with Dilithium as a signature scheme and Falcon for fast
signature verification is a desirable goal for a wide range of applications.

Related Works: Several designs implementing Dilithium on embedded systems have been pre-
sented in the past. Round 2 versions of the NIST submissions have been implemented in soft-
ware [15, 16, 26], in hardware [3, 4, 27, 29, 30] or as a HW/SW codesign [32]. For round 2 Falcon
versions, the verification procedure has been implemented in [29]. For the final round versions,
several implementations for Dilithium [1, 2, 5, 6, 17, 20, 31] and Falcon [6, 24, 25] were published.
In [7], Bos et al. optimized a platform independent C implementation of Dilithium with the goal of
low memory consumption. Most of these designs are either pure SW implementations benefiting
from its flexibility, or HW implementations benefiting from high performance, but lacking flexibility.
Combining both advantages by integrating specific hardware accelerators into RISC-V platforms
has previously been applied to several lattice-based KEMs e.g. [11, 12]. Inspired by this, Nannipieri
et al. integrate a Dilithium-tailored ALU that supports several operations required for polynomial
arithmetic into an open-source 64 bit RISC-V processor [23].

Contribution: In this work, we present a hardware accelerated RISC-V platform for efficient
signature generation and verification. The design integrates accelerators that fully support the
Dilithium signature scheme but also speed up signature verification for Falcon signatures. This
combines the advantages of both schemes, i.e. an overall efficient signature scheme (Dilithium)
with application-specific fast verification of compact signatures (Falcon). Additionally, supporting
flexible signature verification of two different schemes allows for authenticated firmware updates
even if the security of one scheme is threatened. This increases the confidence in the system when
migrating towards post-quantum cryptography. In contrast to the 64 bit design in [23], our design
is based on a 32 bit RISC-V platform and also accelerates the Keccak-based shake functions that
are used in several lattice-based NIST submissions. We therefore provide:
• An assembled HW/SW codesign supporting all parameter sets of 1) the full Dilithium scheme
and 2) Falcon verification in a unified design.
• A step towards a crypto-agile system by supporting accelerated verification of two different
signature schemes for authentication.
• A comparison of cycle counts with previous work showing improvements over previous SW
implementations for embedded systems and HW/SW codesigns.
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• An analysis of resource cost in terms of memory consumption using hardware acceleration
for signature schemes.
• A 22nm Globalfoundries chip design running at 800MHz including numbers for area, power,
and energy consumption. The design shows significant reduction in energy consumption by
making use of hardware acceleration.

Organization: Section 2 gives an introduction of the signature schemes and some mathematical
notation is introduced. The system architecture and integrated accelerators are presented in Sec-
tion 3. The results with respect to performance and area numbers are discussed in Section 4 and
the 22 nm ASIC design is presented. Finally, Section 5 concludes this work.

2 PRELIMINARIES
2.1 Polynomial Notation and Number Theoretic Transform (NTT)
Let R𝑞 = Z𝑞/𝜙 (𝑥) denote a polynomial ring with an integer modulus 𝑞 and the cyclotomic
polynomial 𝜙 (𝑥). Dilithium and Falcon are both specified for 𝜙 (𝑥) = 𝑥𝑛 + 1. Let 𝑎 ∈ R𝑞 be a single
polynomial. Vectors of polynomials are written in bold lowercase letters, i.e. 𝒃 ∈ R𝑙𝑞 and matrices
of polynomials in bold uppercase 𝑨 ∈ R𝑘×𝑙𝑞 for dimensions 𝑘 and 𝑙 . We denote with← U the
sampling of uniformly distributed random bits.

Polynomial arithmetic is often performed in Number Theoretic Transform (NTT) domain, which
is efficient for polynomial multiplication. It can be seen as a variant of the Fast Fourier Transform
(FFT) operating in the finite field Z𝑞 instead of C. Using the NTT transformation effectively
reduces the complexity of polynomial multiplication from O(𝑛2) down to O(𝑛 log2 𝑛). That is,
for two polynomials 𝑎, 𝑏 ∈ R𝑞/𝜙 (𝑥), the product 𝑐 = 𝑎 · 𝑏 can be efficiently calculated as 𝑐 =

𝑁𝑇𝑇 −1 (𝑁𝑇𝑇 (𝑎) ⊙ 𝑁𝑇𝑇 (𝑏)), where ⊙ denotes the coefficient wise multiplication and 𝑁𝑇𝑇 () and
𝑁𝑇𝑇 −1 () the transformation to and from NTT domain, respectively.
Let 𝑎 be a polynomial of degree 𝑛 − 1, the transformation 𝑎 = 𝑁𝑇𝑇 (𝑎) and 𝑎𝑖 (resp. 𝑎𝑖 ) denote

the 𝑖-th coefficient of 𝑎 (resp. 𝑎). Then the functions 𝑁𝑇𝑇 () and 𝑁𝑇𝑇 −1 () are defined as follows:

𝑁𝑇𝑇 (𝑎) : 𝑎𝑖 =

𝑛−1∑
𝑗=0
𝛾 𝑗 · 𝜔𝑖 𝑗

𝑛 · 𝑎 𝑗 𝑁𝑇𝑇 −1 (𝑎) : 𝑎𝑖 =
1
𝑛
· 𝛾−𝑖

𝑛−1∑
𝑗=0

𝜔
−𝑖 𝑗
𝑛 · 𝑎 𝑗 (1)

𝜔𝑛 ∈ Z𝑞 is called the 𝑛-th root of unity such that 𝜔𝑛
𝑛 = 1𝑚𝑜𝑑 𝑞 and 𝜔𝑘

𝑛 ≠ 1𝑚𝑜𝑑 𝑞, ∀𝑘 ∈ [1, 𝑛 − 1].
The powers of 𝜔𝑛 are usually called twiddle factors and can either be precomputed and stored in
memory, or can be computed on-the-fly when needed. Furthermore, 𝛾𝑛 is the 2𝑛-th root of unity
and allows to use a length-𝑛 NTT instead of a length-2𝑛 NTT. They can also be precomputed and
merged into the twiddle factors.

For realizing the NTT transformations, there exist mainly two algorithms, i.e. Cooley-Tukey [8]
and Gentleman-Sande [14]. Due to the structure of their equations as shown in Eqs. (2) and (3),
they are usually referred to as butterfly units.

𝑥 ′ = 𝑥 + 𝑦𝜔𝑛

𝑦 ′ = 𝑥 − 𝑦𝜔𝑛

(2)

Eq. 2. Cooley-Tukey butterfly

𝑥 ′ = 𝑥 + 𝑦
𝑦 ′ = (𝑥 − 𝑦)𝜔𝑛

(3)

Eq. 3. Gentleman-Sande butterfly

Both signature schemes Dilithium and Falcon have parameters chosen such that NTT can be
efficiently used. Therefore, the rest of this work assumes NTTmultiplications whenever polynomials
or vectors of polynomials are multiplied.
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2.2 CRYSTALS-Dilithium
In the following, an introduction of Dilithium according to the official NIST submission specification
is given [22]. The signature scheme is based on the Fiat Shamir with Aborts principle [21] and is a
third round candidate in the ongoing NIST PQC competition. The latest version provides parameter
sets for three NIST security levels: Dilithium-II, Dilithium-III and Dilithium-V for security levels 2,
3 and 5. The underlying security is based on the M-LWE and M-SIS problem operating on vectors
of polynomials. In Dilithium, the M-LWE distribution is denoted as (𝑨, 𝒕 = 𝑨𝒔1 + 𝒔2) for 𝑨 ∈ R𝑘×𝑙𝑞 ,
𝒔1 ∈ R𝑙𝑞 and 𝒔2 ∈ R𝑘𝑞 , whereas all elements 𝑨, 𝒔1 and 𝒔2 are uniformly distributed and 𝒔1. The M-SIS
problem is defined as finding an 𝒙 ∈ R𝑙𝑞 such that 𝑨𝒙 = 0 for 𝑨 ∈ R𝑘×𝑙𝑞 and the norm of 𝒙 is below
some predefined boundary 𝛽 .
The polynomials have dimension 𝑛 = 256 for all security levels. Similarly, the modulus 𝑞 =

223 − 213 + 1 = 8, 380, 417 is the same for each parameter set. All operations for seed extension,
sampling and hashing are performed using the Keccak based functions shake128 or shake256. The
dimensions 𝑘 and 𝑙 are set to (4, 4), (6, 5) and (8, 7) for the three security levels.

Key Generation: Algorithm 1 provides a simplified version of the key generation procedure. In a
first step, the seeds 𝜌 and 𝜌 ′ as well as the secret 𝐾 are sampled uniformly random. Note, that in
the official document, they are not directly sampled, but are derived from a hash function seeded
with a truly random seed. As these details are not necessarily relevant for our work, we omit them
from Algorithm 1 for simplicity. In line 2 of Algorithm 1, the public matrix 𝑨 ∈ 𝑅𝑘×𝑙𝑞 is expanded
from 𝜌 . All sampled coefficients that are not in the range of [0, 𝑞 − 1] are rejected. As 𝑨 is used
for multiplications later on, it is directly sampled and stored in NTT representation. The secret
polynomial vectors 𝒔1 and 𝒔2 are expanded from 𝜌 ′ via rejection sampling, i.e. only the coefficients
in the range [−𝜂, 𝜂] are kept. The multiplication 𝑨𝒔1 is performed in NTT domain and as 𝑨 is
already sampled in NTT domain, only 𝒔1 has to be converted. Finally, Power2Round() splits 𝒕 into
an upper part and lower part, which are then part of public key and secret key. This also serves as
a compression of the public key, as only the upper part 𝒕1 of 𝒕 has to be transmitted. The lower part
𝒕0 is then recovered during verification by the use of a hint. 𝑡𝑟 is the hash of the public key (𝜌, 𝒕1)
computed by the hash function 𝐻 .

Algorithm 1 Dilithium KeyGen
Require: -
Ensure: (𝑝𝑘, 𝑠𝑘)
1: 𝜌, 𝜌 ′, 𝐾 ←U ⊲ Uniformly sampled
2: 𝑨← ExpandA(𝜌) ⊲ 𝑨 ∈ 𝑅𝑘×𝑙𝑞 , sampled in NTT domain
3: (𝒔1, 𝒔2) ← ExpandS(𝜌 ′) ⊲ 𝒔1, 𝒔2 ∈ 𝑆𝑙𝜂 × 𝑆𝑘𝜂
4: 𝒕 ← 𝑨𝒔1 + 𝒔2
5: (𝒕1, 𝒕0) ← Power2Round(𝒕)
6: 𝑡𝑟 ← 𝐻 (𝜌 ∥ 𝒕1)
7: return 𝑝𝑘 = (𝜌, 𝒕1), 𝑠𝑘 = (𝜌, 𝐾, 𝑡𝑟, 𝒔1, 𝒔2, 𝒕0)

Signature Generation: Algorithm 2 provides an overview of the signature generation process in
Dilithium. The core part is the rejection loop starting at line 5. On an abstract level, a candidate
signature 𝒛 is generated for a challenge 𝑐 and has to pass two security checks in line 13. The first
security check verifies that the norm of 𝒛 is sufficiently small and does not leak information about
the secret 𝒔1. The second check is required for security but also for correctness: As 𝒕0 is not part of
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the public key due to compression, a hint must specify which parts of 𝒕1 require carry bits during
signature verification. If too many carry bits would be required, no hint can be generated. As a
result, if one of these checks fail, i.e. the 𝑖 𝑓 -branch is taken, the rejection loop must restart and a
new candidate signature is generated. On success, the hint 𝒉 is generated, and the signature tuple
(𝑐, 𝒛,𝒉) is returned.
Inspecting Algorithm 2, it shows that there are several hash operations and seed expansions again

using shake128 and shake256. Furthermore, the multiplications 𝑨𝒚, 𝑐𝒔1, 𝑐𝒔2 and 𝑐𝒕0 are performed
in NTT domain. For definitions of the functions HighBits(), LowBits(), SampleInBall() or
MakeHint, we refer to the official specification [22].

Algorithm 2 Dilithium Sign
Require: Secret key 𝑠𝑘 , message𝑀
Ensure: Signature 𝜎
1: 𝑨← ExpandA(𝜌) ⊲ 𝑨 ∈ 𝑅𝑘×𝑙𝑞 , sampled in NTT domain
2: 𝜇 ← 𝐻 (𝑡𝑟 ∥ 𝑀)
3: 𝜌 ′← 𝐻 (𝐾 ∥ 𝜇)
4: (𝒛,𝒉) = ⊥, 𝜅 = 0
5: while (𝒛,𝒉) = ⊥ do ⊲ Start of rejection loop
6: 𝒚 ← ExpandMask(𝜌 ′, 𝜅) ⊲ 𝒚 ∈ 𝑆𝑙𝛾1
7: 𝒘 ← 𝑨𝒚
8: 𝒘1 ← HighBits(𝒘)
9: 𝑐 ← 𝐻 (𝜇 ∥ 𝒘1)
10: 𝑐 ← SampleInBall(𝑐)
11: 𝒛 ← 𝒚 + 𝑐𝒔1
12: 𝒓0 ← LowBits(𝒘 − 𝑐𝒔2)
13: if ∥𝒛∥∞ ≥ 𝛾1 − 𝛽 OR ∥𝒓0∥∞ ≥ 𝛾2 − 𝛽 then
14: (𝒛,𝒉) = ⊥ ⊲ Bad signature, reiterate
15: else
16: 𝒉← MakeHint(−𝑐𝒕0,𝒘 − 𝑐𝒔2 + 𝑐𝒕0) ⊲ Good signature
17: end if
18: 𝜅 ← 𝜅 + 𝑙
19: end while
20: return 𝜎 = (𝑐, 𝒛,𝒉)

Signature Verification: Finally, Algorithm 3 provides an overview of the Dilithium signature
generation. In lines 3-4, the challenge 𝑐 is recovered from the signature and the hint 𝒉 is used to
recreate 𝒘 ′

1. Both parts are then used to perform several checks in line 5. At first, it is checked
whether the norm of the received signature part 𝒛 is within its defined boundary 𝛾1 − 𝛽 . In addition
to that,𝒘 ′

1 is hashed with 𝜇 and the result is compared to match the transmitted challenge 𝑐 . Finally,
the correct format of the hint 𝒉 is verified. Only if all of these checks are valid, the signature is
accepted, otherwise it is rejected.

2.3 Falcon
Falcon is a hash-and-sign signature scheme that operates on NTRU lattices and makes use of a
trapdoor sampler. It also operates on polynomial rings. However, Falcon partially computes on
complex numbers and requires double-precision floating point arithmetic. This makes the scheme
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Algorithm 3 Dilithium Verify
Require: Public Key 𝑝𝑘 , message𝑀 , signature 𝜎 = (𝑐, 𝒛,𝒉)
Ensure: Accept or reject
1: 𝑨← ExpandA(𝜌) ⊲ 𝑨 ∈ 𝑅𝑘×𝑙𝑞 , sampled in NTT domain
2: 𝜇 ← 𝐻 ( 𝐻 (𝜌 ∥ 𝒕1) ∥ 𝑀)
3: 𝑐 ← SampleInBall(𝑐)
4: 𝒘 ′

1 ← UseHint(𝒉,𝑨𝒛 − 𝑐𝒕1 · 2𝑑 )
5: if ∥𝒛∥∞ < 𝛾1 − 𝛽 AND 𝑐 = 𝐻 (𝜇 ∥ 𝒘 ′

1) AND # of 1’s in 𝒉 ≤ 𝜔 then
6: return 𝑎𝑐𝑐𝑒𝑝𝑡
7: else
8: return 𝑟𝑒 𝑗𝑒𝑐𝑡
9: end if

less efficient for embedded devices that usually don’t provide a Floating Point Unit (FPU), let
alone with double-precision. In such cases, floating point operations must be emulated with integer
arithmetic, which is even less efficient. The effect of the FPU emulation for Falcon has been analyzed
in [18] in more detail. Falcon is specified for the two parameter sets Falcon-512 and Falcon-1024 for
NIST security levels 1 and 5. The lattice dimensions are 𝑛 = 512 for Falcon-512 and 𝑛 = 1024 for
Falcon-1024. The modulus 𝑞 = 12, 289 is the same for both parameter sets. In contrast to Dilithium,
Falcon does require Gaussian sampling in addition to uniform sampling.
Algorithm 4 provides a simplified version of the signature verification procedure according

to [10]. Note, that in the original specification, the Falcon signature is (𝑟, 𝑠) where 𝑠 is a compressed
version of 𝑠2. Therefore, 𝑠 has to be decompressed before being processed. We omitted this step as
it is not relevant for the remainder of this work and assume that 𝑠2 is directly part of the signature.
Falcon’s verification routine is only operates on integer polynomials and is compact by design.
It consists of basically three steps: At first, the message 𝑀 is hashed with the salt 𝑟 to a point
𝑐 . Then, the signature polynomial 𝑠1 is recovered from 𝑐 , 𝑠2 and the public key polynomial ℎ.
Finally, it is checked whether the norm of the signature tuple (𝑠1, 𝑠2) is within its defined boundary
⌊𝛽2⌋. Therefore, the verification only consists of hashing, a single NTT multiplication and some
straightforward polynomial operations (i.e. addition/subtraction, norm computation).

Algorithm 4 Falcon Verify
Require: Public key 𝑝𝑘 = ℎ, message𝑀 , signature 𝜎 = (𝑟, 𝑠2), acceptance bound ⌊𝛽2⌋
Ensure: Accept or reject
1: 𝑐 ← HashToPoint(𝑟 ∥ 𝑀)
2: 𝑠1 ← 𝑐 − 𝑠2ℎ 𝑚𝑜𝑑 𝑞
3: if ∥ (𝑠1, 𝑠2) ∥2 ≤ ⌊𝛽2⌋ then
4: 𝑎𝑐𝑐𝑒𝑝𝑡

5: else
6: 𝑟𝑒 𝑗𝑒𝑐𝑡

7: end if

Inspecting Algorithms 1 to 4 indicates, that there are mainly two operations frequently used.
One common operation in lattice-based cryptography is the use of a hash function for hashing
or sampling. For Dilithium and Falcon this is both realized by the Keccak based shake128 and
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shake256 functions, which are part of the SHA-3 standard. The PQM4 benchmark 2 has evaluated,
that hashing makes up about 67.1%/37.3%/60.1% of the overall computation time of Dilithium-2’s
key generation, signature generation and verification, respectively. For the higher security levels,
this percentage even increases. For Falcon, the benchmark reports 29.3% and 26.9% of execution
time accounted for hash operations for security level 1 and 5.
The second frequent operation is the polynomial multiplication. Although in Falcon’s verify

function only one multiplication is performed, it is a frequent operation in Dilithium. For instance,
the matrix-vector multiplications 𝑨𝒔1, 𝑨𝒚 and 𝑨𝒛 in the keygen, sign and verify procedure involve
several polynomial multiplications.

As a result, it is an obvious choice to accelerate the NTT transformation and pointwise multiplica-
tions, as well as the functions shake128 and shake256 using dedicated hardware. The accelerators
and the resulting HW/SW system will be subject of Section 3.

2.4 Parameter Comparison of Dilithium and Falcon
A summary of the parameters of Dilithium and Falcon is provided in Table 1. It depicts the remark-
able compactness of Falcon with respect to the size of the public key and signature. Comparing
Dilithium-V with Falcon-1024, it shows that Falcon’s combined size of the public key and signature
is less then half of Dilithium’s size for the same security level. This underlines the suitability of
Falcon for applications, that mostly require fast and efficient signature verification. Therefore, our

Table 1. Parameter comparison between Dilithium and Falcon

Dilithium-II Dilithium-III Dilithium-V Falcon-512 Falcon-1024
NIST level 2 3 5 1 5
Ring degree 𝑛 256 256 256 512 1024
Modulus 𝑞 8, 380, 417 8, 380, 417 8, 380, 417 12, 289 12, 289
⌈𝑙𝑜𝑔2 (𝑞)⌉ 23 23 23 14 14
|𝑝𝑘 | (B) 1, 312 1, 952 2, 592 897 1, 793
|𝑠𝑖𝑔| (B) 2, 420 3, 293 4, 595 666 1, 280
|𝑝𝑘 | + |𝑠𝑖𝑔| (B) 3, 732 5, 245 7, 187 1, 563 3, 073

goal is to provide a generic HW/SW codesign platform that accelerates 1) Dilithium as a generic
and efficient signature scheme and 2) fast verification for compact Falcon signatures.

3 SYSTEM DESIGN AND ACCELERATORS
As a baseline for our design we chose the PULPino1 microcontroller from the Parallel Ultra-Low-
Power (PULP) project, originally developed in collaboration between ETH Zurich and the University
of Bologna. This microcontroller instantiates CV32E40P (formerly known as RI5CY), a single core
4-stage pipeline RISC-V processor [13]. As the core and the Instruction Set Architecture (ISA) is
fully open-source, it can be easily extended with further instructions and hardware accelerators.
For software compilation the corresponding PULP compilation toolchain2 with flag -O3 has been
used. A Xilinx UltraScale+ FPGA (xczu9eg-ffvb1156-2e) is used as test platform to implement the
RISC-V core.

2https://github.com/mupq/pqm4/blob/master/benchmarks.md
1https://github.com/pulp-platform/pulpino
2https://github.com/pulp-platform/pulp-riscv-gnu-toolchain

https://github.com/pulp-platform/pulpino
https://github.com/pulp-platform/pulp-riscv-gnu-toolchain
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When designing hardware accelerators, there are basically two design options. One can add
custom ISA instructions to the system and integrate the corresponding accelerators directly into
the pipeline of the processor. This form is commonly referred to as tightly-coupled accelerators and
is very well suited for lightweight operations where the accelerators have relatively low resource
consumption. A second option is to implement a dedicated, standalone accelerator that is connected
to the system bus and has its own address space. This type is often called loosely-coupled and
is suitable for large accelerators that do a lot of processing for one chunk of data. However, the
speed-up of these computations must be large enough to compensate for the communication
overhead between the processor and the accelerator.

In this work, we chose the tightly-coupled approach for accelerating the shake128/256 functions
and the loosely-coupled approach for acceleration of the NTT transformations and polynomial
arithmetic as explained in the following.

3.1 Keccak Accelerator
The functions shake128/256 are part of the SHA-3 [9] standard and use the Keccak primitive.
Keccak computes on a 1600 bit state that is permuted by a non-linear round function called
Keccak-f1600. In contrast to implementing the whole Keccak primitive with its 1600 bit state
as a separate accelerator that is connected to the system bus, we opt to take the approach pre-
sented in [12]. In this work, Fritzmann et al. propose to implement only the round function
Keccak-f1600 as a tightly-coupled accelerator that is connected to the processors register file. A
custom RISC-V instruction is implemented that performs a single round of the permutation. For
the final shake128/256 functions, a designer can use the corresponding C implementation and
simply replace the round function by the corresponding assembly instruction.
For the state, 50 registers of 32 bit are required. Therefore, [12] proposes to use the 32 Floating

Point Registers (FPRs) as well as 18 additional General Purpose Registers (GPRs). In our system,
however, we do not make use of the FPU and thus we have to enable only the FPR and corresponding
load/store instructions. Under these circumstances, one can say that the accelerator comes with 32
additional FPR registers (1024 bit) overhead, but still uses the 18 registers from the GPR (576 bit)
without area overhead. In case the complete FPU is used in the system anyway, saving the state does
not impose additional resource cost at all. Therefore, we consider the tightly-coupled accelerator
for shake128/256 as an appropriate compromise between performance and resource consumption.
Table 2 states the resource overhead introduced by the Keccak accelerator.

Table 2. Resource overhead of the Keccak accelerator measured for a Xilinx UltraScale+ FPGA

LUTs FFs BRAMs DSPs
Keccak 4, 782 1, 050 0 0

Using this tightly-coupled approach, the rejection sampling of the matrix 𝑨 can be further
optimized. As the state is stored directly in the registers, the rejection sampling can be performed
without first storing the Keccak squeeze to memory, and afterwards load it again to perform
rejection sampling.

3.2 NTT Accelerator
In order to accelerate the NTT transformations for both signature schemes, a design with a certain
amount of flexibility is required. Table 1 shows that a unified design must provide support for ring
dimensions 𝑛 = 256, 𝑛 = 512 and 𝑛 = 1024 as well as support for the prime moduli 𝑞 = 8, 380, 417
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and 𝑞 = 12, 289. One suitable approach would be to integrate a generic butterfly unit and modular
multiplier tightly-coupled into the processor pipeline and perform the control logic in pure software.
Such an approach has been chosen for instance in [12, 23]. A second option is to integrate a generic
accelerator for NTT transformation and polynomial arithmetic as a loosely-coupled solution
connected to the system bus. Such an approach was presented in [11], where a generic NTT-based
accelerator has been designed with multiple features. More concretely, it has runtime configurable
support for the following:
• Dimension 𝑛 up to 4096, modulus 𝑞 up to 39 bit
• Positive and negative wrapped convolutions
• Early abort functionality for incomplete NTTs
• Pointwise multiplication, addition and subtraction

The authors of [11] state, that their design goal was to support a wide range of parameter sets,
such that it can be used for all the lattice-based candidates of the NIST competition.

For our purpose, we decided to opt for the second approachwith the loosely-coupled, generic NTT
accelerator. The reason is, that a standalone accelerator comes with dedicated memory for storing
twiddle factors and polynomial coefficients. That means, that the twiddle factors can be written
once into the accelerator’s memory and reside there, even for multiple consecutive transformations.
With a tightly-coupled solution, however, the twiddle factors reside in the system memory and
single elements must be loaded over again in consecutive computations. For Dilithium’s signing
procedure shown in Algorithm 2, there are several occasions where this effect becomes visible. That
is, in line 7, 𝒚 is transformed into NTT domain for multiplication and afterwards, the result 𝜔 is
transformed back into normal domain. The challenge 𝑐 that is used for multiplication in line 11 and
12 is transformed to NTT domain and the results 𝒛 and 𝒓0 of line 11 and 12 are transformed back.
All these transformations are computed inside the rejection loop until a valid signature is found.
Therefore, we prefer having a dedicated memory for the twiddle factors inside the accelerator and
a hardware controller for reading them from the dedicated memory. Furthermore, the standalone
solution allows to keep Dilithium’s challenge polynomial 𝑐 , that is processed several times within
one loop iteration, inside the accelerator.
Nevertheless, we do not require all the features that were integrated into the NTT accelerator

of [11]. In order to reduce the resource consumption, we modify the accelerator as follows:
(1) Reducing parameter support: The presented accelerator supports 𝑛 up to 4094 and a modulus

𝑞 up to 39 bit. However, we only require support for 𝑛 up to 1024 and a 23 bit modulus 𝑞 as
shown in Table 1. The reason for the 39 bit prime support in [11] is, that non NTT-friendly
moduli can be lifted to NTT-friendly primes 𝑞′, such that 𝑞′ > 𝑛𝑞2. In this context, [11] chose
a 39 bit Solinas prime which allows easy reduction. As Dilithium and Falcon use NTT-friendly
parameters, we do not require this feature. Therefore, the reduction circuit for the Solinas
prime can be removed.

(2) Removing support for positive wrapped convolution: Both algorithms in this work use the
reduction polynomial 𝜙 (𝑥) = 𝑥𝑛 + 1, i.e. negative wrapped convolutions.

(3) Removing support for incomplete NTTs: Dilithium and Falcon both use parameters where the
𝑛-th root as well as the 2𝑛-th root of unity exist. Therefore, complete NTT transformations
can be performed.

(4) Reducing memory size: Due to its generic character, the accelerator features two memory
blocks (one for coefficients, one for twiddle factors) each of dimension 39 × 4096. For our use
case, we resize the twiddle memory to 32 × 2048, as we need only 2𝑛 twiddle factors, i.e. at
most 2048 in the case of Falcon-1024 (1024 for forward and reverse NTT each). The coefficient
memory is configured to 32 × 3584. This allows to pack two 14 bit coefficients (stored as
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16 bit variables) of Falcon in one memory word. Dilithium’s matrix-vector multiplication
with 𝑨 is an iterative multiplication of two vectors of size 𝑙 . For efficiency reasons, we want
to have enough space in the accelerator memory to store both vectors. As Dilithium has a
23 bit modulus, we require 2 × 𝑙 × 𝑛 coefficients in the accelerator. For Dilithium-5 it is 𝑙 = 7
and thus, 2 × 7 × 256 = 3584 coefficients/words must be stored.

With these modifications, the overall size of the NTT accelerator in [11] can be reduced. Table 3
depicts the savings in terms of FPGA resources. For the baseline version, we synthesized the
accelerator as stated in [11] for our platform. The savings are mainly caused by removing the
support for the 39 bit Solinas prime, which requires some extra reduction circuit. Furthermore, the
memory consumption is reduced by a third, which represents a saving of more than 12 kB.

Table 3. Resource consumption for baseline and modified NTT on a Xilinx UltraScale+ FPGA

Version LUTs FFs BRAMs DSPs
Baseline [11] 2, 475 1, 940 9 7
Modified 1, 402 1, 192 6 7

3.3 System Overview
A system overview of the PULPino microcontroller is given in Fig. 1. The additional accelerators
are colored blue. It shows the tightly-coupled Keccak accelerator integrated into the pipeline and
directly connected to the processor’s GPR and FPR. The NTT accelerator is connected to the
system bus and can be reached via its corresponding address space. Furthermore, it is connected to
the two additional memories for storing the twiddle factors and the polynomial coefficients. The
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Fig. 1. System overview of the PULPino microcontroller and integrated accelerators in blue.

system’s instruction memory is configured to 32 kbit and the data memory is set to store 160 kbit.
As discussed later in Section 4.3.1, this is sufficient memory for both Dilithium and Falcon and also
compares to a widely used commercial microcontroller.
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4 RESULTS
4.1 Performance Gain
Table 4 compares our baseline implementation with the accelerated version and the PQM4 bench-
mark [19]. The functions have been measured over 100 iterations for a 59 B message, just as in
PQM4. For the PQM4 numbers, the clean version has been chosen as it has the same code base as
our baseline implementation, i.e. the code from PQClean3 and therefore allows for a fair comparison.
Unfortunately, PQM4 does not state results for Dilithium-5. Comparing our baseline and accelerated
implementations, we obtain speed-up factors of up to 6.31 for Dilithium. For the Falcon signature
verification, this factor is in the range of 2.6 to 2.7. This decreased speed-up is caused by the
reduced computational complexity of the verification. As there is less to compute, the speed-up
also decreases. Compared to the PQM4 numbers, the presented design is also faster, although the
PULPino platform itself is less performant in general, as can be seen by comparing our baseline
implementation with the PQM4 numbers.

Table 4. Average cycle count for 100 iterations and a 59 B message.

Keygen Sign Verify

Dilithium-II
[19] (clean) 1, 976, 311 (×3.33) 7, 465, 108 (×3.92) 2, 109, 292 (×3.24)
baseline 3, 566, 442 (×6.01) 11, 242, 911 (×5.90) 3, 854, 303 (×5.92)
accelerated 593, 403 (×1.00) 1, 905, 872 (×1.00) 651, 217 (×1.00)

Dilithium-III
[19] (clean) 3, 414, 513 (×3.20) 11, 722, 059 (×3.60) 3, 499, 388 (×3.11)
baseline 6, 432, 671 (×6.02) 20, 523, 503 (×6.31) 6, 458, 078 (×5.73)
accelerated 1, 067, 824 (×1.00) 3, 253, 378 (×1.00) 1, 126, 938 (×1.00)

Dilithium-V baseline 10, 679, 856 (×5.98) 25, 912, 136 (×5.95) 11, 016, 121 (×5.96)
accelerated 1, 784, 767 (×1.00) 4, 357, 249 (×1.00) 1, 848, 324 (×1.00)

Falcon-512
[19] (clean) – – 765, 394 (×2.43)
baseline – – 830, 597 (×2.64)
accelerated – – 314, 639 (×1.00)

Falcon-1024
[19] (clean) – – 1, 526, 901 (×2.49)
baseline – – 1, 660, 838 (×2.71)
accelerated – – 613, 911 (×1.00)

4.2 Comparison to Previous Work
Several works implemented Dilithium with the first- and second-round parameter sets of the NIST
competition targeting embedded systems. Pure software implementations for embedded systems
were presented in [15, 16, 26], hardware implementations in [3, 4, 27, 29, 30] as well as a HW/SW
codesign in [32]. For Falcon, the verification procedure of first- and second-round parameters has
been implemented in [29].

With the start of third round of the NIST competition, there has been a change in the parameter
sets for Dilithium as well as for Falcon. Therefore, we want to compare our results with the most
recent works that implemented the parameter sets of the round three NIST competition. As our focus
is on constrained devices for embedded systems, we omit the comparison with high performance
processors. Table 5 provides a cycle count comparison of our design and several previous round
3https://github.com/PQClean/PQClean, as of 2021-12-17

https://github.com/PQClean/PQClean
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three implementations. Optimized versions sometimes divide the signing procedures of Dilithium
into offline and online stages, as the expansion of 𝑨 can be pre-computed if a static key is assumed.
For a better comparison among all results, however, we took the numbers that perform all operations
online according to the official specification document, assuming a new key for every signing
process. For every algorithm, Table 5 is divided into three sections listing pure SW implementations,
HW/SW codesigns and pure HW implementations.

For Dilithium, it shows that our accelerated design improves cycle counts by a factor of ≈ 2.4 for
keygen, ≈ 1.9 for signing and ≈ 2.2 for verification compared to the fastest pure SW implementation
running on an ARM Cortex-M7, as presented in [18]. Note however, that we used the non-optimized
reference C code for our evaluation whereas [18] used the C code from PQM4, that highly optimize
the implementations for the Cortex-M4. The implementation in [7] also used a platform independent
C code, but optimized it with respect to memory consumption. Pure hardware implementations are
of course still much faster than our accelerated design, but are also less flexible. In addition to that,
comparing the pure cycle count of a hardware implementation is not very meaningful without
considering also the maximum frequency it can run at, as well as the resource consumption of the
design. Nevertheless, we stated the cycle counts for hardware implementation as a reference and
overview of current state-of-the-art. As our implementation runs software and only accelerates
computationally intensive operations like the Keccak round function and polynomial arithmetic,
we combine the advantages of both implementation strategies, i.e. the flexible character of SW
implementations and the performance gain by HW acceleration. In [23], Nannipieri et al. presented
a HW/SW codesign with tightly coupled accelerators for polynomial arithmetic on a 64 bit RISC-V
platform. They obtained speed-up factors of about 2.05 for NTT transformations and even less
for the whole algorithm, whereas our NTT accelerator measurements yield factors of 8.4 for NTT
transformation, including the communication overhead to and from the accelerator. Furthermore,
they did not accelerate the shake128/256 operations, which are frequently used in Dilithium. As a
result, our design is more than 3 times faster for signature generation.

For Falcon, our verification procedure is roughly 1.5 times faster than the best SW implementa-
tion listed in the PQM4 benchmark [19]. This moderate increase is due to the fact that Falcon’s
verification is inherently compact (only single hash and polynomial multiplication). The accel-
erators benefit comes from the computational speed-up. In this case, the computational effort is
inherently small and therefore less operations can benefit from the accelerators. As expected, pure
HW implementations again yield substantially higher speed-ups. We want to note, however, that
comparing clock cycles for HW implementations must be taken with care without also considering
their resource consumption. For completeness and a general overview, we nevertheless decided to
provide their numbers in Table 5.
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Table 5. Cycle count comparison with previous work for third round parameters.

Platform Keygen Sign Verify
Dilithium-II

SW
[7]3 Cortex-M4F 2, 927, 000 (×4.93) 18, 470, 000 (×9.69) 4, 036, 000 (×6.20)
[1] Cortex-M4 1, 598, 000 (×2.69) 4, 083, 000 (×2.14) 1, 572, 000 (×2.41)
[18] Cortex-M7 1, 437, 000 (×2.42) 3, 658, 000 (×1.92) 1, 429, 000 (×2.19)

HW/SW [23] CVA6 SoC 1, 592, 325 (×2.68) 5, 884, 266 (×3.09) 1, 700, 679 (×2.61)
This PULPino 593, 403 (×1.00) 1, 905, 872 (×1.00) 651, 217 (×1.00)

HW

[20] Artix-7 18, 761 76, 613 19, 687
[2] UltraScale+ 14, 183 30, 358 15, 044
[5, 6] UltraScale+ 4, 875 29, 876 6, 582
[31] Artix-7 4, 172 31, 600 4, 422

Dilithium-III

SW
[7]3 Cortex-M4F 5, 112, 000 (×4.79) 36, 303, 000 (×11.16) 7, 249, 000 (×6.43)
[1] Cortex-M4 2, 830, 000 (×2.65) 6, 624, 000 (×2.04) 2, 692, 000 (×2.39)
[18] Cortex-M7 2, 566, 000 (×2.40) 6, 009, 000 (×1.85) 2, 453, 000 (×2.18)

HW/SW [23] CVA6 SoC 2, 974, 897 (×2.79) 10, 211, 677 (×3.14) 2, 963, 936 (×2.63)
This PULPino 1, 067, 824 (×1.00) 3, 253, 378 (×1.00) 1, 126, 938 (×1.00)

HW

[20] Artix-7 33, 102 123, 218 32, 050
[2] UltraScale+ 22, 957 47, 418 25, 535
[5, 6] UltraScale+ 8, 291 49, 437 9, 724
[31] Artix-7 5, 851 49, 496 6, 181

Dilithium-V

SW
[7]3 Cortex-M4F 8, 609, 000 (×4.82) 44, 332, 000 (×10.17) 12, 616, 000 (×6.83)
[1] Cortex-M4 4, 828, 000 (×2.71) 8, 726, 000 (×2.00) 4, 707, 000 (×2.55)
[18] Cortex-M7 4, 368, 000 (×2.45) 8, 157, 000 (×1.87) 4, 287, 000 (×2.32)

HW/SW [23] CVA6 SoC 5, 001, 302 (×2.80) 13, 339, 255 (×3.06) 5, 132, 776 (×2.78)
This PULPino 1, 784, 767 (×1.00) 4, 357, 249 (×1.00) 1, 848, 324 (×1.00)

HW

[17]4 Artix-7 63, 200 113, 900 67, 900
[20] Artix-7 50, 982 145, 912 52, 712
[2] UltraScale+ 38, 841 68, 460 45, 789
[5, 6] UltraScale+ 14, 037 55, 070 13, 642
[31] Artix-7 8, 765 55, 321 9, 039

Falcon-512

SW
[18] Cortex-M7 – – 559, 000 (×1.78)
[24] Cortex-M4F – – 530, 900 (×1.69)
[25] Cortex-M4 – – 504, 051 (×1.60)
[19]1 Cortex-M4 – – 473, 061 (×1.50)

HW/SW This PULPino – – 314, 639 (×1.00)

HW [6] UltraScale+ – – 2, 399
Falcon-1024

SW
[18] Cortex-M7 – – 1, 136, 000 (×1.85)
[24] Cortex-M4F – – 1, 046, 700 (×1.70)
[25] Cortex-M4 – – 1, 032, 261 (×1.68)
[19]2 Cortex-M4 – – 977, 058 (×1.59)

HW/SW This PULPino – – 613, 911 (×1.00)

HW [6] UltraScale+ – – 4, 687
1 Version denoted as m4-ct
2 Version denoted as opt-leak
3 Platform independent C code optimized for low memory consumption
4 Only numbers for best case given. Design also presented on UltraScale+ and TSCM 65nm ASIC
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4.3 Resource Consumption
4.3.1 Memory Requirements. In Table 6 the memory requirements of the baseline and accelerated
versions of the algorithms are listed. For Dilithium, the memory consumption refers to the peak
value of all three operations, i.e. key generation, signature generation and signature verification.
On the contrary for Falcon, the consumption only indicates the requirements for the signature
verification. As one can see, the required instruction size (code size) generally decreases as numerous
operations implemented in software in the reference implementation are offloaded to the hardware
accelerators and called by single custom instructions. This results in a code size decrease of ≈ 25%
for all three Dilithium security levels and ≈ 4% for the Falcon implementations. The reduction in
required data memory on the other hand is rather moderate for all three Dilithium parameter sets,
as the total amount of computational results does not change due to the used accelerators. The small
decrease is mainly caused by data representations in the NTT domain which are only stored in the
NTT accelerator, thus not contributing to the core’s data memory consumption. Concerning Falcon,
the reduction in data memory requirement is more significant (≈ 25%) as the signature verification
primarily consists of one calculation in NTT domain and the corresponding transformations, as
discussed in Section 2.3. As the data in NTT domain does not need to be stored within the data
memory when using the NTT accelerator, the resulting reduction in memory consumption is more
significant. These numbers, as shown in Table 6, define the requirements for our implementation
and follows: The core has 32 KiB instruction memory and 160 KiB of data memory, while the NTT
accelerator has 3584 B data and 2048 B twiddle factor memory. The total memory requirement of the
core (excluding the NTT accelerator) is equal to the memory required by the popular STM32F407VG
microcontroller4.

Taking the entire PULPino microcontroller and not only RISC-V core into account, the reductions
in data memory are partially canceled out by the corresponding overhead in memory necessary for
the loosely-coupled NTT accelerator. This overhead can be summed up to 5632 B.

Concurrent to this work, amemory optimized implementation of Dilithium has been published [7].
Sacrificing performance as shown in Table 5, they achieved significant memory reduction by
analyzing the lifetime of different variables. They targeted implementations with < 7 KiB (data)
memory consumption and managed to run almost all Dilithium parameter sets and functions under
this restriction on their ARM Cortex-M4F platform. Only the Dilithium-V signature generation
required slightly more memory.

4.3.2 Resource Consumption on an FPGA. The resource consumption of our design synthesized for
a Xilinx UltraScale+ FPGA is shown in Table 7. The number of LUTs and FFs increase by a factor of
≈ 1.48 and ≈ 1.33. The additional BRAM and DSP consumption is solely caused by the standalone
NTT accelerator as stated in Table 3. One may notice that the sum of the overheads stated in
Tables 2 and 3 is significantly smaller than the overhead of the assembled design stated in Table 7.
In fact, there is an additional overhead of roughly 1k LUTs and FFs each when integrating the
accelerators. This is mainly caused by the increased complexity of the AXI4-Interconnect to which
the NTT accelerator is connected. Nevertheless, we see this as a moderate overhead considering
the speed-up shown in Table 4.

Table 7 also compares our design with the tightly-coupled Dilithium design of [23]. It shows that
their design comes with a smaller absolute overhead caused by the acceleration in terms of LUTs
and FFs. This is expected as they 1) only implement small, tightly-coupled functions inside their
ALU and 2) our design does not only accelerate the NTT operations and polynomial arithmetic,
but also the Keccak-based functions shake128/256, which also require the whole FPR for storing

4https://www.st.com/resource/en/data_brief/stm32f4discovery.pdf

https://www.st.com/resource/en/data_brief/stm32f4discovery.pdf
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Table 6. Memory Consumption of the different algorithms for a 59 B message.

Instr. Mem. Data Mem. NTT Data NTT Twiddle

Dilithium-II baseline 27, 500 62, 560 – –
accelerated 20, 624 61, 216 2, 048 512

Dilithium-III baseline 26, 780 94, 064 – –
accelerated 20, 052 92, 720 2, 560 512

Dilithium-V baseline 27, 204 141, 168 – –
accelerated 20, 324 139, 840 3, 584 512

Falcon-512 baseline 7, 864 10, 604 – –
accelerated 7, 556 6, 508 1, 024 1, 024

Falcon-1024 baseline 7, 864 16, 212 – –
accelerated 7, 560 12, 116 2, 048 2, 048

the state. Furthermore, the additional overhead caused by the interconnect as mentioned above
does not apply to [23], as their design does not connect accelerators to the system bus.

Table 7. Resource consumption for baseline and modified PULPino on a Xilinx UltraScale+ FPGA (xczu9eg-
ffvb1156-2e) and comparison with CV6A-based SoC [23].

Version LUTs FFs BRAMs DSPs
PULPino base 15, 137 9, 943 48 6
PULPino accel. 22, 356 13, 181 54 13
Overhead 7, 219 3, 238 6 7
SoC base [23] 61, 349 60, 278 77 19
SoC accel. [23] 64, 855 60, 349 77.5 29
Overhead 3, 506 71 0.5 10

4.4 ASIC Design
Besides the evaluation on a FPGA platform, we also implemented the accelerated design as an ASIC.
For that, we used the Globalfoundries 22 nm FDSOI technology, which enables high performance
designs with still reasonable low energy consumption. As the main goal of this work was to
implement a high performance design, we primarily used the fastest cells with the lowest threshold
voltage available for this technology node. Nevertheless, the actual choice whether to use a faster
cell with higher leakage or a slower cell with less leakage was left to the design tools as long as the
constraints were met. The maximum frequency of the design is 800MHz and mainly constrained by
the access latency of the implemented memory macros. This design leads to Dilithium-II signature
generations within an average of 2.38ms and Falcon-512 signature verifications within 0.393ms.

4.4.1 Area overhead. By including the loosely-coupled NTT as well as the tightly-coupled Keccak
accelerator, the number of gates increased by 38%, i.e. from 52, 788 to 85, 778, when comparing
to the original PULPino design without accelerators. Numbers for logical synthesis as well as for
the placed and routed design are shown in Table 8. While this increase in gates is significant, its
impact on the actual area of the design is limited, as the total area consumption is dominated by
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the required instruction and data memories. All in all, our hardware acceleration results in an
area increase of 23 715 µm2 for the logic gates, plus an additional 66 362 µm2 for the memories of
the NTT accelerator, summing up to an increase in area requirement of 21%. As one can see in
Table 8, this increase is mainly caused by the necessary memories for the NTT (i.e. column Cell
Area Memory), which contribute 74% of the total area overhead.

Table 8. Area and gate footprints of the design for Globalfoundries’ 22 nm FDSOI node

Cell Area Cell Area Cell Area
Cell Count Combinatorial Sequential Memory

[µm2] [µm2] [µm2]
Logical Synthesis
PULPino baseline 43, 984 - - -
PULPino accelerated 65, 968 - - -
Post Place & Route
PULPino baseline 52, 788 120, 393 22, 883 223, 451
PULPino accelerated 85, 778 133, 058 33, 933 289, 813

The final layout of the design after place and route is depicted in Fig. 2. The top metal layers,
which are primarily used for power routing, are omitted from the image for clarity. The blocks
marked with numbers are the different memories used in the design. Number 1 and 2 are the
data/system memories of the actual RISC-V core. They are split into two blocks to fit into a more
compact design. Memory 3 is the instruction memory of the RISC-V core storing the program
code. Memory 4 is the NTT’s twiddle factor memory and 5 is the NTT’s data/coefficient memory.
The overall size of the design is 1144 µm x 1144 µm for the core and the IO-ring. For a tapeout,
the design including additional margins for manufacturing, yields a size of 1250 µm x 1250 µm. As
one can see, the total size of the ASIC as well as the shape is primarily defined by the size of the
memories which prohibit further shrinking, although some space for logic would still be available.

4.4.2 Power and energy consumption. We furthermore compare the power and energy consumption
of the original core with our accelerated design using toggle count analysis. The toggle counts
for average runs were generated in simulation with Cadence Xcelium and further analyzed with
Cadence Joules. The operating frequency for these simulated measurements is 800MHz at an
operating temperature of 25 °C and a core voltage of 0.8V. The power and energy consumption
of the original as well as the accelerated core are shown in Table 9. As for the aforementioned
evaluation metrics, we calculated the power and energy consumption for the complete Dilithium
scheme, i.e. key generation, signing and signature verification, while for Falcon, we only evaluated
the signature verification. As can be seen, the energy consumption for the complete scheme is
reduced by more than a factor of 10 for all three Dilithium sets, which corresponds to savings of
≈ 91% up to ≈ 92.9%. The energy reduction is less significant for the Falcon parameters sets, i.e. 57%
and 67.5% as we only evaluated the signature verification. In this case, there are only few operations
benefiting from the acceleration and the static leakage dominates the total power consumption.
The work in [23] also measured the savings of energy consumption for their optimizations. When
combining all the savings for key generation, signing and verification, they end up with total
savings of ≈ 27.4%5 in total for Dilithium-II, which is much less. However, a direct comparison is
quite difficult, as they implemented their design not on ASIC technology, but on a Xilinx ZCU106
5Computed by dividing the sum of energy for the accelerated case by the sum of energy in the baseline case.
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Fig. 2. ASIC layout of the presented design after place and route implemented using the Globalfoundries
22 nm FDSOI technology.

FPGA board running at a clock frequency of 100MHz. With respect to gate optimization and
routing capabilities, FPGAs are of course less flexible.

In [3], a flexible co-processor for a variety of lattice-based schemes, called Sapphire, was presented.
The design was also evaluated for Dilithium and implemented using a 40nm TSMC low-power
technology. For their power measurements, the design was running at a frequency of 72MHz. A
comparison of latency, power and energy consumption for Dilithium running on our design as well
as Sapphire is shown in Fig. 3. For comparison, we used combined values for one key generation,
signature generation and signature verification. That is, the energy values given in [3] for all three
functions were summed-up. Similarly for the latency, the added cycle counts and corresponding
frequency of 72MHzwere taken to compute the time inms. Both values were then used to compute
an average estimate for power consumption, which is roughly in the range of the values given
in [3]. Note, however, that Sapphire was evaluated for the second round parameter sets of the NIST
competition, which slightly differ from the third round parameter sets we evaluated. In Fig. 4a, the
total latency for the different parameter sets is compared. Sapphire requires less clock cycles but
also runs much slower (72MHz compared to 800MHz), such that our implementation is faster w.r.t.
time when considering the different security levels. Although our design has slightly higher power
consumption as shown in Fig. 4b, we again require less total energy as shown in Fig. 4c. That is
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Table 9. Power and Energy of the Design for Globalfoundries’ 22 nm FDSOI node for 800MHz.

Leakage Internal Switching Tot. Power Cycles Energy
[µW] [µW] [µW] [µW] [×103] [µJ]

Dilithium-II base 994 7, 264 6, 536 14, 794 19, 036 352 (×13.2)
accel. 1, 116 5, 515 312 6, 943 3, 068 26.6 (×1.00)

Dilithium-III base 1031 12, 055 3, 674 16, 759 33, 259 697 (×11.2)
accel. 1, 116 6, 580 382 8, 078 6, 144 62.0 (×1.00)

Dilithium-V base 1, 031 14, 472 3, 988 19, 490 47, 713 1162 (×14.1)
accel. 1, 116 6, 698 289 8, 103 8, 150 82.5 (×1.00)

Falcon-512 base 992 591 683 2, 267 831 2.35 (×2.33)
accel. 1, 113 1, 403 53 2, 569 315 1.01 (×1.00)

Falcon-1024 base 992 1, 083 1, 221 3, 927 1, 661 8.15 (×3.08)
accel. 1, 137 2, 247 89 3, 450 614 2.65 (×1.00)

mainly caused by the fact that our design is faster while consuming roughly the same amount of
power.

5 CONCLUSION
Large-scale quantum computers pose a threat to cryptographic systems as they can efficiently
solve fundamental mathematical problems in cryptography. Therefore, devices must be prepared
to provide means of secure communication and switch to algorithms that are considered secure
in these scenarios. As the migration towards post-quantum secure systems will take time and the
security of corresponding schemes must be further analyzed, agile cryptosystems will play an
important role during migration. In this work, we presented a flexible, hardware accelerated RISC-V
design for lattice-based digital signature algorithms. Our design accelerates the full Dilithium
scheme as well as the verification of Falcon signatures. This allows for secure firmware updates
in case security concerns for one of the schemes arise. Computational intensive operations in
lattice-based cryptography are usually the generation of uniformly distributed polynomials and
polynomial arithmetic. Therefore, we have shown how using accelerators, that were previously
used for acceleration of PKEs and KEMs for these computational intensive operations improve the
performance of signature schemes. In fact, our design is faster than optimized embedded software
implementations or previousHW/SWcodesigns.We have further shown how the code size decreases
for the signature schemes by using hardware accelerators. Using a 22nmGlobalfoundries technology,
we presented an ASIC design of our accelerated system that can run at 800MHz. This leads to
Dilithium signature generation in only a few microseconds and Falcon signature verification in
less than half of a microsecond for the lowest security levels. Besides the performance benefits,
hardware acceleration also significantly reduces the overall power and energy consumption of the
investigated signature schemes. This is an important aspect especially for resource constrained
devices in the Internet-of-Things (IoT) context.
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Fig. 3. Comparison of latency, power and energy comparison between this work and the TSMC 40nm design
of [3].
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(b) Total power consumption.
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(c) Energy consumption.
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