
Post Quantum Noise
Yawning Angel∗ Benjamin Dowling† Andreas Hülsing‡ Peter Schwabe§

Florian Weber¶

May 10, 2022

Abstract
We introduce PQNoise, a post-quantum variant of the
Noise framework. We demonstrate that it is possible to
replace the Diffie-Hellman key-exchanges in Noise with
KEMs in a secure way. A challenge is the inability to com-
bine key pairs of KEMs, which can be resolved by certain
forms of randomness-hardening for which we introduce a
formal abstraction. We provide a generic recipe to turn
classical Noise patterns into PQNoise patterns. We prove
that the resulting PQNoise patterns achieve confidential-
ity and authenticity in the fACCE-model. Moreover we
show that for those classical Noise-patterns that have
been conjectured or proven secure in the fACCE-model
our matching PQNoise-patterns eventually achieve the
same security. Our security proof is generic and applies
to any valid PQNoise pattern. This is made possible by
another abstraction, called a hash-object, which hides the
exact workings of how keying material is processed in an
abstract stateful object that outputs pseudorandom keys
under different corruption patterns. We also show that
the hash chains used in Noise are a secure hash-object.
Finally, we demonstrate the practicality of PQNoise de-
livering benchmarks for several base patterns.

1. Introduction
In 2014, Perrin set out to simplify the process of de-
signing, describing, analyzing, and securely implement-
ing secure-channel protocols through the Noise Protocol
Framework [Per]. At the heart of Noise is the idea of
using Diffie-Hellman (DH) key exchange [DH76] as the
only asymmetric primitive – forward secrecy is achieved
through DH with ephemeral keys, authentication of par-
ties is achieved through static DH keys. Perrin informally
described this concept of authenticated key agreement
without signatures used by Noise as “Hash all these DHs
together to get a final key” [Per17].
What DH operations are performed and what exactly is

“hashed together” is expressed in handshake patterns, that

∗Oasis Labs, Email: yawning@oasislabs.com
†University of Sheffield, Email: b.dowling@sheffield.ac.uk
‡TU Eindhoven, E-mail: andreas@huelsing.net
§MPI-SP, E-mail: peter@cryptojedi.org
¶TU Eindhoven, E-mail: mail@florianjw.de

Author list in alphabetical order, see: https://www.ams.
org/profession/leaders/culture/CultureStatement04.pdf

Noise specifies in a concise and easy-to-parse language. As
one example, consider the “KN” pattern:
-> s
...
-> e
<- e, ee, se

On a high level what this pattern means is that the re-
sponder (on the right side of the arrows) is aware of the
static public DH key (-> s) of the initiator (on the left
side of the arrows) before the online phase of the protocol
starts (-> s is before ...). In the online phase the initia-
tor first generates an ephemeral DH key pair and sends
the ephemeral public key to the responder (-> e). The
responder then also generates an ephemeral key pair (e)
and sends the public key to the initiator (<- e). Both par-
ties then combine their respective ephemeral secret keys
with the ephemeral public key of the peer to obtain a
shared ephemeral-ephemeral DH key ee and additionally
compute the static-ephemeral DH se using the initiator’s
static secret key and the responder’s ephemeral public
key on the initator’s side and the initiator’s static pub-
lic key and the responder’s ephemeral secret key on the
responder’s side. For a more detailed description of how
patterns translate into cryptographic operations and pro-
tocols messages, and in particular how public and shared
keys are absorbed into protocol state, see the Noise Pro-
tocol Framework specification [Per]; for the cryptographic
protocol implementing the KN pattern, see Figure 1.
The KN pattern is an example of a named pattern in

Noise; a subset of these named patterns are the so-called
fundamental patterns. There exist twelve interactive and
three non-interactive fundamental patterns. These pat-
terns exist for every combination of each party having 1)
No static public key, 2) a static public key Known to their
peer, or 3) a static public key that has to be transmitted
(X) during the interaction. For the initiator there is fur-
thermore the possibility that 4) he has a static public key
that he is willing to send with the Initial message, even
if this may reduce anonymity. For each of the resulting
12 cases, Noise defines a fixed pattern, named by the two
letter combination derived from concatenating the letters
indicating the case for the initiators key and that for the
responders key, giving: NN, NK, NX, KN, KK, KX, XN,
XK, XX, IN, IK and IX. E.g., NN deals with the case
where neither party has a static public key, whereas IK
applies to the case where the initiator’s key is not initially
known to the responder, but the responder’s key is known

1

to the initiator upfront and the initiator is willing to send
his public key with the first message.
One interesting feature of secure-channel protocols in

Noise is that they do not separate the key-agreement
or handshake phase from the data-transmission phase:
in fact, Noise allows to send early payload messages to-
gether with every handshake message. These early pay-
load messages are encrypted under whatever shared key
material has already been established, but they typi-
cally do not enjoy the full security properties estab-
lished by the end of the handshake. This means that
we cannot analyze the security of Noise handshakes as
standalone, monolithic authenticated-key-agreement pro-
tocols in, for example, the CK [CK01], eCK [LLM07],
or CK+ [Kra05] model. This issue was addressed
by Dowling, Rösler, and Schwenk with the introduc-
tion of the fACCE model [DRS20], a multi-stage vari-
ant of the ACCE model introduced for the analysis of
TLS [JKSS17].
The design decision to rely on Diffie-Hellman as the

only asymmetric primitive in Noise leads to elegant pro-
tocols offering extensive security and privacy proper-
ties; the instantiation of DH with X25519 [Ber06] in
Noise also leads to efficient implementations of these
protocols in multiple programming languages. However,
the strong reliance on DH also comes with a down-
side: Noise does not have any straight-forward migration
path to post-quantum cryptography. Indeed, DH is of-
fering the functionality of non-interactive key exchange
(NIKE) [FHKP12], and no efficient post-quantum instan-
tiation of this functionality is known today. The most
plausible candidate is CSIDH [CLM+18], but unfortu-
nately even at bleeding-edge security levels and with all
state-of-the-art optimizations it is about three orders of
magnitude slower than X25519 [BBC+21]. Also, the con-
crete security against quantum attackers is still subject of
heavy debate [BS20, Pei20, BLMP19].

Our Contribution. The closest primitive to DH that
does have efficient post-quantum instantiations is key-
encapsulation mechanisms (KEMs). For specific DH-
based authenticated key-exchange protocols, KEMs have
been used before to replace DH, e.g., in PQWire-
Guard [HNS+21]; in this paper we generalize this ap-
proach and investigate what a purely KEM-based, post-
quantum Noise framework looks like.
While it is straightforward to replace DH by a KEM in

some cases, in others it is not, for a multitude of reasons:
First, authentication with KEMs can only be done in an
interactive challenge-response fashion, whereas it is possi-
ble to view any DH public key as an already existing chal-
lenge, allowing for non-interactive authentication. Sec-
ondly, it is possible to combine arbitrary DH key-shares,
which is not the case for KEMs as public keys cannot be
combined. This causes issues in the cases where Noise
combines two static shares. Thirdly, Noise is extremely
flexible and offers a huge amount of possible patterns. So
far, computational security proofs are given for individual
patterns which results in a large number of individual se-
curity proofs, and many patterns without computational
proofs of security at all, though a number of symbolic

analyses of Noise exists [KNB19, GHS+20].
We resolve all of these issues. We provide a recipe to

translate a Noise-pattern into a PQNoise pattern that,
at the possible cost of additional roundtrips, achieves
the same confidentiality and authenticity as the origi-
nal pattern. In some cases we can do better than ap-
plying our generic translation. We provide optimized
PQNoise-alternatives for all 12 interactive fundamental
patterns and for the non-interactive N-pattern (The K-
and X-patterns don’t have non-interactive equivalents in
PQNoise). Our recipes solve the second issue by noting
that approaches like the NAXOS trick provide a way to
mix a static secret into the randomness effectively guar-
anteeing that the result is secret as long as either the
randomness or the static secrets are uncorrupted. We in-
troduce static-ephemeral entropy combination (SEEC) as
an abstraction of these approaches, which is suitable for
the security analysis of PQNoise, is met by many exist-
ing constructions, and allows the implementer to chose a
suitable instantiation for their respective target system.

We give a generic proof of security in the computational
model resolving issue three. This is enabled by the intro-
duction of another abstraction termed “hash-object”, a
formalization of the “Hash all these DHs together to get
a final key” idea. A hash-object is a stateful object into
which values can be fed and from which keys can be ex-
tracted. When using this to analyze PQNoise, we require
that the outputs of this object are pseudorandom as long
as at least one random input was absorbed into the object
before that is unknown to the adversary. We provide a
formal definition of this primitive and prove that the way
Noise hashes key shares into a hash-chain instantiates it.
This abstraction allows to remove a lot of pattern-specific
complexity from the security-proofs, which in turn allows
us to write them in a generic manner. We conjecture that
this approach is fully applicable to all versions of classical
Noise, allowing for a more comprehensive computational
analysis than what currently exists, though we leave that
for future work. We remark here that our proof does in
fact not just apply to the specific PQNoise patterns that
we specify, but to every PQNoise-protocol, including for
example hybrid ones (which we don’t specify here).

Our security-analysis is performed in the fACCE-
model [DRS20], that was already used in the analysis of
Noise, though we modify the model in a few places. First,
there are some cosmetic changes that we believe make
both the model and the resulting statements more ac-
cessible, such as renaming confusingly named operations.
Second, we provide the resulting security-statements as a
simple table that maps uncorrupted secrets to achieved
security goals in a given stage instead of providing a list
of named security-goals that are also not necessarily inde-
pendent. This allows to simplify the freshness conditions
significantly.
Finally we present a proof-of-concept implementation

of PQNoise in Go and report on benchmarking results.
The results clearly demonstrate the practicability of post-
quantum key-exchanges in a wide variety of settings.
We remark here that providing a post-quantum version
of Noise essentially provides a solution for all applica-
tions that need key-exchanges that are requiring neither

2

backwards-compatibility nor crypto-agility at runtime;
naturally the former is not a problem that can be solved
generically and the later is a property whose desirability is
getting called increasingly into question. The software is
available from https://gitlab.com/yawning/nyquist/
-/tree/experimental/pqnoise.

2. PQNoise
In this section we present our design for PQNoise. We
start with a description of PQNoise. Afterwards, we in-
troduce SEEC (Static-Ephemeral Entropy Combination),
our abstraction of methods that mix a static key into the
randomness source to guarantee security in a bad ran-
domness setting. With this we then present our recipe
to translate Noise patterns into PQNoise patterns. We
conclude with a discussion of the optimized fundamental-
patterns for PQNoise.

2.1. PQNoise
PQNoise aims to be the post-quantum counterpart to
Noise and shares many of its characteristics. One of these
is the generic approach of providing a large number of
possible patterns whose description is similar to that of
Noise patterns. However, given that PQNoise uses KEMs
for key exchange, some tokens are different. The single-
letter tokens (s and e) stand for the sending of public
keys, just as before. The four tokens (ee, se, es and ss)
representing combination of DH-key-shares are dropped.
In their place PQNoise introduces ekem and skem, that in-
dicate the sending of a ciphertext that was encapsulated
to the ephemeral/static public key of the receiving party
and the mixing of the encapsulated secret into the hash-
object (our abstraction of the hash-chains used in Noise)
similar to the old two-letter tokens.
On a lower abstraction-level PQNoise intentionally

works essentially exactly like classical Noise, with the ex-
ceptions that we replace the asymmetric primitives and
use SEEC for the entropy of all probabilistic algorithms,
except the generation of static keys. Noise starts mixing
shared keys into its hash chain as soon as they are avail-
able, extracts a session key from it and starts encrypting
all further messages, except the ephemeral key shares, us-
ing an AEAD scheme. We stick to this approach.
Noise and PQNoise maintain effectively two hash-

chains (one of which we will later model as a hash-object):
The first one, h, is initialized as the hash of a pattern-
label. Whenever a value x needs to be added to it, the
party in question computes H(h, x) and replaces h with it.
The first thing that is added to h are unspecified associ-
ated data that can be chosen freely by the application.
Following that all public keys are added as soon as they
are transmitted (if they are Known, they get added at
the very start). Furthermore all AEAD-ciphertexts are
added after they are sent/successfully decrypted. In turn
h is used directly (without further hashing) as associated
data whenever an AEAD-ciphertext is created and is in-
tended to be usable as a unique handshake-hash after the
completion of the handshake-phase.

The second hash-chain ck is the one from which the
protocol derives its encryption-keys. The key-chain ck is
initialized by the hash of the pattern-label as well. Af-
terwards, whenever both parties establish a shared se-
cret ki (in classical Noise a Diffie-Hellman shared se-
cret, in PQNoise the key that is encapsulated in a KEM-
ciphertext), Noise computes a temporary value (which we
will refer to as tmp) as HMAC-HASH(ck, ki) and derives a
new value for ck and whatever keys it needs by computing
HMAC-HASH(tmp, ctr), where ctr is set to 0 for the new
value of ck and to 1 for the derived key. There is one
exception to this with the last addition of a shared secret,
where the two produced values are not used as a new value
for ck and a session-key, but instead as the initiator’s and
responder’s session keys for the remaining session. For
the purposes of our analysis we model this as hash-object
and refer to Section 4.1 for more details.
The actual encryption in PQNoise is done via an

AEAD-scheme, where the key is the session-key derived
from ck, h is used as associated data and the nonce is a
simple counter, that is initially set to zero, increases by
1 with every use and is reset to zero once a new session-
key is established. To send an ephemeral key (e), the
sender creates a new ephemeral keypair 𝑝𝑘𝑒, 𝑠𝑘𝑒 using the
key-generation-algorithm with the output of SEEC as en-
tropy and adds 𝑝𝑘𝑒 to the current payload and ℎ. To send
a static key (s), the sender adds their static public key to
the current payload and ℎ.

Sending of KEM-ciphertexts (ekem, skem) is where
the largest differences between Noise and PQNoise are:
Firstly we differentiate between the ephemeral (EKEM),
the initiator’s (IKEM) and the responder’s (RKEM)
KEM. This allows the use of different KEMs in the same
protocol in a similar manner to PQWireguard [HNS+21]
which can allow for more efficient protocols and enable
a “poor man’s hybrid encryption”, where even a catas-
trophic break of one scheme preservers confidentiality if
there is no additional corruption.) As depicted in Algo-
rithm 1, during Send the sender encapsulates a key 𝑘𝒳
to the receiver’s public key 𝑝𝑘𝒳 using hardened random-
ness (see Section 2.2). If the KEM in question is not
ephemeral (for compatibility with Noise) and there is al-
ready a shared key 𝑘𝑖 (which by the requirements of Noise
has to be at least partially derived from EKEM) the re-
sulting ciphertext 𝑐𝑡𝒳 (together with possible further pay-
load pl that doesn’t further affect the KEM-operation, see
Appendix G) is encrypted with the AEAD-scheme under
𝑘𝑖 using the current nonce 𝑛 and the current handshake-
hash ℎ as associated data and the resulting ciphertext is
added to the send-buffer. Otherwise 𝑐𝑡𝒳 is added directly
to the send-buffer. In either case ℎ is updated by hash-
ing the previous value with whatever was added to the
send-buffer and 𝑘𝒳 is added to the keychain by calling
𝑐𝑘. in(𝑘𝒳), producing the next secret key 𝑘𝑖+1. Lastly the
sender sets the nonce 𝑛 to 0.
The actions by the receiver during Recv mirror those

of the sender: After either decrypting or receiving 𝑐𝑡𝒳 he
adds what he received to ℎ, decapsulates it with his secret
key 𝑠𝑘𝒳 and inputs the resulting key into the key-chain
𝑐𝑘 producing 𝑘𝑖+1 and resets the nonce 𝑛 to 0.
We refrain from providing detailed pseudocode for the

3

https://gitlab.com/yawning/nyquist/-/tree/experimental/pqnoise
https://gitlab.com/yawning/nyquist/-/tree/experimental/pqnoise

Algorithm 1: Transmission of KEM-cipher-
texts.
1 Function Send:
2 …
3 𝑟 ← 𝑆𝐸𝐸𝐶. GenRand(𝑠𝑒𝑒𝑐_𝑠𝑘)
4 𝑐𝑡𝒳, 𝑘𝑘𝒳 ≔ 𝑋𝐾𝐸𝑀. encaps(𝑝𝑘𝒳, 𝑟)
5 if 𝑋𝐾𝐸𝑀 ≠ 𝐸𝐾𝐸𝑀 ∧ 𝑘𝑖 ≠ ⊥:
6 𝑐𝑖 ≔ 𝐴𝐸𝐴𝐷.𝑒𝑛𝑐(𝑘𝑖, 𝑛, ℎ, pl)
7 ℎ ≔ H(ℎ, 𝑐𝑖)
8 else:
9 ℎ ≔ H(ℎ, 𝑐𝑡𝒳)

10 𝑘𝑖+1 ≔ 𝑐𝑘. in(𝑘𝑘𝒳), 𝑛 = 0
11 …
12 Function Recv:
13 …
14 if 𝑋𝐾𝐸𝑀 ≠ 𝐸𝐾𝐸𝑀 ∧ 𝑘𝑖 ≠ ⊥:
15 …||𝑐𝑡𝒳 ≔ 𝐴𝐸𝐴𝐷.𝑑𝑒𝑐(𝑘𝑖, 𝑛, ℎ, 𝑐𝑖)
16 ℎ ≔ H(ℎ, 𝑐𝑖)
17 else:
18 ℎ ≔ H(ℎ, 𝑐𝑡𝒳)
19 𝑘𝑘𝒳 ≔ 𝑋𝐾𝐸𝑀. decaps(𝑠𝑘𝒳, 𝑐𝑡𝒳)
20 𝑘𝑖+1 ≔ 𝑐𝑘. in(𝑘𝑘𝒳), 𝑛 = 0
21 …

other operations here as they are essentially identical to
classical Noise and refer to Appendix G instead. We
note however that we implemented a compiler that trans-
forms any PQNoise-pattern into such detailed pseudocode
while also performing some basic soundness-checks (for
example that there is no use of keys that are not yet
known) on the input and full type-checking on the pro-
duced code (though the types are not displayed as part of
the LaTeX-output). We provide the pseudocode resulting
from the thirteen fundamental PQNoise-patterns (see be-
low) as part of Appendix G and the compiler at https://
florianjw.de/diverses/pqnoise-codegen.tar.bz2.
To give an illustrative example of how PQNoise and

Noise differ we refer to Figure 1, which displays the KN-
pattern of classical Noise and its PQNoise-counterpart.
The main differences can be seen around the use of KEMs:
Since KEM-keys cannot be combined, PQNoise requires
the sending of additional ciphertexts (𝑐𝑡𝑒 and 𝑐𝑡ℐ instead
of just 𝑔𝑏) which also have to be encrypted (𝑐0) and added
to ℎ. That (and the use of SEEC) aside, the protocols
are however remarkably similar. Overall these similarities
and differences are representative for the other patterns.

2.2. SEEC
Bad random number generators are a real-world issue.
And it does not matter for this whether they are inten-
tionally broken by malicious governments [BLN16] or ac-
cidentally by well-meaning individuals [DP08]. Hence,
this is covered in modern definitions of security for pro-
tocols, introducing the corruption of ephemeral secrets as
a valid attack.
The Noise-framework itself considers this an issue that

should be solved on system level instead of per-protocol

and does not include any countermeasures for this case.
Nonetheless the KK- and the IK-patterns derive their key
among other sources from a static-static Diffie-Hellman
exchange. The intention behind this was purely to
achieve initiator-authenticity earlier than otherwise pos-
sible. However, later academic analysis [DRS20] came to
rely upon it to achieve protection from so called Maximal
Exposure (or MEX-) attacks [Kra05], where the adversary
can learn the randomness of parties.

Removing this protection from PQNoise would there-
fore weaken the patterns compared to the security that
published analysis promises for their classical counter-
parts, even if those properties were never promised by the
designers of these patterns. As we outlined above, there
is no direct replacement for the Static-Static exchange
when using KEMs. Nevertheless, similar security proper-
ties can be achieved when combining a static secret with
the random coins used in the encapsulation algorithm.

The first time something like this was proposed was
as part of the NAXOS-protocol [LLM07]. Later Fu-
jioka, Suzuki, Xagawa and Yoneyama [FSXY12] used
“twisted PRFs” to achieve a similar result. Later still
Akhmetzyanova, Cremers, Garratt, Smyshlyaev and Sul-
livan [ACG+20] proposed to use hashed signatures of ran-
dom messages, arguing that the secret keys for signature-
schemes often reside in special protected hardware to be-
gin with, making this a practical match. This was then
standardized by the IETF as RFC 8937 [CGS+20].

Since the exact choice of such a system should be trans-
parent for all peers, we consider it an implementation de-
tail and refrain from specifying any concrete technique.
Instead we introduce the notion of Static-Ephemeral En-
tropy Combination (SEEC) as an abstraction of all of
these and similar approaches and base our analysis on
this abstract notion. This allows us to generically analyze
PQNoise without forcing implementers to use any specific
system. Indeed, SEEC also covers cases where the mixing
is done on system level, matching well with the philoso-
phy of Noise while formally describing the requirements
to achieve security also under MEX attacks.

Intuitively a SEEC-scheme consists of a pair of algo-
rithms GenKey and GenRand. GenKey is a probabilistic
algorithm that returns a long-term key sk. GenRand then
takes sk and some random coins and returns a pseudo-
random value r, where r is indistinguishable from a true
random value if either sk is uncorrupted and the random-
coins fresh (but possibly known to the adversary) or if
the random-coins are uncorrupted. Additionally we allow
but do not require GenRand to modify sk. The reason is
that this is necessary to allow SEEC-schemes to imple-
ment pre- and post-compromise security. This is a
weaker notion than one could strive for, but most exist-
ing schemes would not instantiate a stronger notion which
would therefore undermine our goal of allowing the imple-
menter to choose freely which one to use. We provide a
more formal definition in Appendix C and “PRP-SEEC”
as a simple, exemplary instantiation in Appendix E.

4

https://florianjw.de/diverses/pqnoise-codegen.tar.bz2
https://florianjw.de/diverses/pqnoise-codegen.tar.bz2

Initiator Responder

ck, ℎ ← H(KN_label)
ℎ ← H(ℎ‖𝑎𝑑), 𝑛 ← 0

ℎ ← H(ℎ‖𝑔𝐴)
𝑎 ←$ ℤ𝑝

ℎ ← H(ℎ‖𝑔𝑎)
𝑔𝑎

𝑏 ←$ ℤ𝑝
𝑘𝑎𝑏 ← 𝑔𝑎𝑏

ℎ ← H(ℎ‖𝑔𝑏)
ck, 𝑘0 ← KDF(ck, 𝑘𝑎𝑏, 2)

𝑘𝐴𝑏 ← 𝑔𝐴𝑏

ck, 𝑘1 ← KDF(ck, 𝑘𝐴𝑏, 2), 𝑛 ← 0
𝑐0 ← enc(𝑘1, 𝑛, ℎ, 𝑚0)

𝑔𝑏, 𝑐0

𝑘𝑎𝑏 ← 𝑔𝑎𝑏

𝑘𝐴𝑏 ← 𝑔𝐴𝑏

𝑚0 ∶= dec(𝑘1, 𝑛, ℎ, 𝑐0)
ℎ ← H(ℎ‖𝑐0)

𝑘𝑖, 𝑘𝑟 ← KDF(𝑐𝑘1, 𝜖, 2), 𝑛 ← 0
Payload Data

Initiator Responder

ck, ℎ ← H(KN_label)
ℎ ← H(ℎ‖𝑎𝑑), 𝑛 ← 0

ℎ ← H(ℎ‖pk𝐴)
𝑟0 ← GenRand(𝑠𝑒𝑒𝑐𝑠𝑘𝐴)
pk𝑒, sk𝑒 ← KEM. KGen(1𝜆; 𝑟0)

ℎ ← H(ℎ‖pk𝑒)
𝑝𝑘𝑒

𝑟1 ← GenRand(𝑠𝑒𝑒𝑐𝑠𝑘𝐵)
𝑐𝑡𝑒, 𝑘𝑒 ← KEM.Encap(pk𝑒; 𝑟1)

ℎ ← H(ℎ‖𝑐𝑡𝑒)
ck, 𝑘0 ← KDF(ck, 𝑘𝑒, 2)

𝑟2 ← GenRand(𝑠𝑒𝑒𝑐𝑠𝑘𝐵)
𝑐𝑡ℐ, 𝑘ℐ ← KEM.Encap(pkℐ; 𝑟2)

𝑐0 ← enc(𝑘0, 𝑛, ℎ, 𝑐𝑡ℐ)
ℎ ← H(ℎ‖𝑐0)

ck, 𝑘1 ← KDF(ck, 𝑘ℐ, 2), 𝑛 ← 0
𝑐1 ← enc(𝑘1, 𝑛, ℎ, 𝑚0)

𝑐𝑡𝑒, 𝑐0, 𝑐1

𝑘𝑒 ← KEM.Decap(sk𝑒, 𝑐𝑡𝑒)
𝑐𝑡ℐ ← dec(𝑘0, 𝑛, ℎ, 𝑐0)
𝑘ℐ ← KEM.Decap(skℐ, 𝑐𝑡ℐ)
𝑚0 ← dec(𝑘1, 𝑛, ℎ, 𝑐1)

ℎ ← H(ℎ‖𝑐0)
𝑘𝑖, 𝑘𝑟 ← KDF(𝑐𝑘1, 𝜖, 2), 𝑛 ← 0

Payload Data

Figure 1: The KN patterns of classical Noise (left) and PQNoise (right). For reasons of space we use the following
conventions here: highlighted actions are performed by both parties as soon as they receive all necessary
values to perform the computations in question. If any decryption- or decapsulation-algorithm returns ⊥,
the party in question aborts the protocol.

2.3. Translating Patterns

Given the general description of PQNoise, it remains to
be shown how we move from a Noise pattern to a PQNoise
pattern, generically. While the translation of most steps is
straightforward, there are two non-trivial cases that have
to be handled with care. The first one is any instance of
a Static-Ephemeral or Ephemeral-Static exchange, where
the sending-party is the owner of the static key. In the
DH case they immediately prove the identity of the sender
(assuming the static key is uncorrupted), establishing au-
thenticity right away. This does not work with KEMs, as
the owner of the static public key cannot combine their
secret key with their peer’s ephemeral public key. The
obvious workaround of having their peer create and send
the ciphertext (as in the case where the sending party is
owner of the ephemeral key) is not equivalent as it does
not yet confirm the authenticity of the owner of the static
key. Instead, the owner has to send an additional key-
confirmation message (i.e., if this was the last message,
another AEAD ciphertext from the static key owner using
a key derived from the encapsulated value is necessary).

In effect this adds up to one roundtrip.
The second one is replacing a Static-Static exchange,

as there is no direct equivalent for it. However, using and
extending the technique from the previous paragraph we
can create a workaround that achieves similar security.
In Noise the Static-Static exchange establishes authen-
ticity for both parties and confidentiality (assuming un-
corrupted static keys). Sending encapsulations for both
static KEMs would almost establish the same properties
as long as we secure the coins used by the encapsulat-
ing party using SEEC with a static secret. The resulting
shared secrets are unknown to the adversary as long as the
static keys are uncompromised. Afterwards, a key confir-
mation is necessary by the initial sender. Given that this
adds a full roundtrip and that ss is usually used to get an
early shared secret before a roundtrip, it may sometimes
be more reasonable to drop this combination entirely, us-
ing se and es for authenticity.

Everything else can usually stay as it is, with the excep-
tion that the transmission of the responder’s ephemeral
public key can be dropped entirely. (This is under the
assumption that the initiator sends an ephemeral public

5

key before the responder does; otherwise the initiators
ephemeral public key gets dropped. As it would delay the
arrival at forward secrecy, we see little reason to deviate
from that convention and are unaware of any proposals
to use such patterns.)
This gives us the following recipe to translate patterns

in a manner that we conjecture to preserve the security
(“conjecture” because while we prove the security of the
PQNoise patterns, we lack a generic proof of classical
Noise to compare the results to):

Ephemeral-Ephemeral exchanges (ee) can be directly
replaced by sending a ciphertext for the ephemeral
KEM (ekem).

Ephemeral-Static exchanges (es) sent by the initiator
and Static-Ephemeral exchanges (se) sent by the re-
sponder can be directly replaced by sending a cipher-
text for the receiving parties KEM (skem).

Ephemeral-Static exchanges (es) sent by the responder
and Static-Ephemeral exchanges (se) sent by the ini-
tiator are more complicated: When the initiator in
Noise sends se, we replace this by the initiator fin-
ishing his current turn, following to which the re-
sponder sends skem, the initiator replies with a key-
confirmation that may also contain the remaining op-
erations given in the line of the original pattern. The
same approach is used for es sent by the responder,
with reversed roles.

Static-Static exchanges (ss) where the initiator is the
original sender, are replaced as follows. The initiator
sends skem, computing her coins using SEEC with
a static secret and ends her turn. The responder
responds with skem, the coins also obtained using
SEEC with a static secret, and ends his term. Lastly
the initiator has to send another message for key con-
firmation. If the responder is the original sender,
roles are reversed.

After removing duplicate actions (usually multiple
uses of skem), we conjecture the resulting pattern to
achieve the same confidentiality, authenticity, integrity,
anonymity and deniability as the original one; While we
don’t further analyze the later three goals, the lack of a
generic analysis of classical noise (which is out of scope
for this work) prevents us from proving the first two. Our
generic analysis does however show that PQNoise matches
(or exceeds) the conjectured / proven security [DRS20] for
those original Noise-patterns, that have been analyzed in
the fACCE-model. This may come at the disadvantage of
only achieving that security at a later point in the inter-
action, due to the additional roundtrips.
One property that cannot be preserved by this

translation-approach is that the ephemeral key-share of
a party is used with both shares of their peer; Because of
this the peer could be certain that the derived keys belong
to the same ephemeral key using DH. This is no longer
the case with KEMs since there is in general no way to
derive useful information about the used ephemeral en-
tropy from the ciphertext and reusing entropy may even
introduce vulnerabilities. In our formal analysis this does

not cause problems for confidentiality and authenticity.
However, protocol designers who rely upon the dual-use
of the ephemeral keys in Noise for other purposes need to
be aware of this.

2.4. Fundamental Patterns
With the above recipe we can convert any Noise pattern
into a PQNoise-pattern. The result of this transformation
is however not always optimal in terms of roundtrips. For
this reason we hand-picked a PQNoise-pattern to match
each of the twelve fundamental classical Noise-patterns
({𝐼, 𝑁, 𝐾, 𝑋}×{𝑁, 𝐾, 𝑋}). These PQNoise patterns are
designed to not only achieve at least the same amount
of confidentiality and authenticity, put to also do that
as efficient as possible. (The equivalent security follows
from the use of the same KEMs, for which our proofs
show that each KEM will introduce some degree of secu-
rity independent of the order of their use, but possibly at
different protocol-stages.)

All of them ended up having a direct equivalent in clas-
sical Noise when looking beyond its own fundamental pat-
terns from which they result as part of the generic trans-
lation: The IK and the KK patterns are equivalent to
IKnoss and KKnoss [PC18]. All patterns that involve
(non-early) transmitted keys are equivalent to the de-
ferred patterns where the transmitted key sees deferred
use (every “X” becomes “X1”), for example IX is equiv-
alent to IX1 and XX is equivalent to X1X1. All other
patterns are equivalent to their namesakes.
While some of these patterns require more roundtrips

than their classical counterparts and may achieve cer-
tain degrees of security at a slightly later point, they all
eventually end up achieving the same degree of security
that was conjectured or proven [DRS20] for their classical
counterparts.
While we initially hand-picked the fundamental

PQNoise-patterns and eventually found them equivalent
to certain classical patterns, we also identified the fol-
lowing process to arrive at them, that only considers the
scenario in which the keys are used:

• When a party knows a public key that belongs to
their peer, that party’s next message will always in-
clude a ciphertext for that public key, if none has
been sent already.

• ℐ sends an ephemeral public key in the first message.

• If ℛ has a static public key that is not known to ℐ,
it is sent in the second message.

• If ℐ has a static public key that is not known to ℛ
and does not require anonymity (I*-pattern), that
public key is sent as part of the first message.

• If ℐ has a static public key that is not known to ℛ
and does require anonymity, it is sent as part of the
third message.

• Within a message ekem always precedes skem which
always precedes all public keys and the payload.

6

We include it here as it may be useful for the design of
extended versions of PQNoise that may for example make
use of signatures.
Noise also provides three non-interactive patterns ({𝑁,

𝐾, 𝑋}). The authenticated 𝐾- and 𝑋-patterns cannot
be translated into non-interactive versions of PQNoise, as
the initiator cannot prove his identity in a non-interactive
way using only KEMs. The unauthenticated 𝑁 -pattern
can however be translated trivially and essentially results
in the standard KEM/DEM-construction. We note that
our analysis applies to the 𝑁 -pattern as well and therefore
include it in the list of the thirteen fundamental PQNoise
patterns.
We depict the interactive ones of these in Figure 2 and

provide more detailed descriptions and a comparison with
their Noise counterparts in the Appendices G and H.

pqNN:
-> e
<- ekem

pqNK:
<- s
...
-> skem, e
<- ekem

pqNX:
-> e
<- ekem, s
-> skem

pqKN:
-> s
...
-> e
<- ekem, skem

pqKK:
-> s
<- s
...
-> skem, e
<- ekem, skem

pqKX:
-> s
...
-> e
<- ekem, skem, s
-> skem

pqXN:
-> e
<- ekem
-> s
<- skem

pqXK:
<- s
...
-> skem, e
<- ekem
-> s
<- skem

pqXX:
-> e
<- ekem, s
-> skem, s
<- skem

pqIN:
-> e, s
<- ekem, skem

pqIK:
<- s
...
-> skem, e, s
<- ekem, skem

pqIX:
-> e, s
<- ekem, skem, s
-> skem

Figure 2: The interactive fundamental PQNoise patterns.

3. Overview of the Flexible ACCE
Framework

We analyze the security of PQNoise in the flexible authen-
ticated and confidential channel establishment (fACCE)
framework [DRS20] which was developed for the analysis
of Noise. Here we give a high-level overview of the cryp-
tographic primitive fACCE, and define fACCE security,
highlighting areas that we have modified for our specific
setting of post-quantum channel-establishment protocols.
The main divergence between the original fACCE

model and our version is how we structure and represent
freshness conditions. These allow the protocol analyser
to determine in which settings an attack is valid, i.e. af-
ter what set of compromises or adversary actions is the

adversary considered to win the game. This is largely de-
termined by a definition of when a protocol is supposed
to achieve a certain security goal. In the original fACCE
model, this was represented as a series of freshness coun-
ters, which captured confidentiality or authentication un-
der certain types of attacks e.g. au𝜌 defines when the
party with role 𝜌 authenticates itself, and thus when it
is considered a non-trivial attack that the adversary can
inject or modify messages from the 𝜌-party. This resulted
(in their full model) in ten counters, each capturing a
specific type of attack and compromise paradigm.

We instead represent all combinations of secrets (long-
term, ephemeral) for each session as rows in a security ta-
ble (ST), with authentication and confidentiality columns.
For each combination of secrets, we indicate in which
stage(s) authentication and confidentiality hold if the ad-
versary has not corrupted those secrets. This results in a
simpler, more intuitive representation as it focuses on the
natural question: under any given compromise strategy,
when does the protocol achieve (if at all) confidentiality
and authenticity? instead of requiring the reader (or pro-
tocol designer) to understand and interpret cryptographic
history (e.g., the eck counter describes an adversary that
can compromise either session’s ephemeral randomness).
We also use copies of ST (which we denote the freshness
table or FT) as a tool within our formalism, serving to sim-
plify our freshness conditions: each session begins with a
full FT, and whenever an adversary compromises a par-
ticular type of secret, the rows with that secret are re-
moved from FT. An adversary that attempts to break
the security of stages that are not associated with some
combination of secrets are considered invalid as the result
of trivial attacks. In addition to this, we make a small
number of mostly aesthetic changes:

• We rename Enc and Dec as Send and Recv. We note
that this better matches their semantics, as Send and
Recv also transmit channel-establishment material,
and potentially do not perform encryption and de-
cryption at all, depending on the protocol.

• We require that each Send operation increments the
stage counter of the channel. The original fACCE
model only incremented the stage counter when new
(and increased) security properties are reached. This
change ties the stage of the channel to its flow in the
channel communication. As a result, we modify the
definition of fACCE protocols to no longer output
the stage counter 𝜍 when sending or receiving mes-
sages, as it is sufficient to count the messages between
communicating parties.

We now turn to describing the fACCE primitive and se-
curity framework on a high-level, and give some additional
insight into the changes made to the freshness conditions.
The full model can be found in Appendix D.

fACCE Primitive Description. On a high-level,
fACCE is a cryptographic protocol that both establishes
a secure channel and provides authenticated and confi-
dential communication between two parties. Eschewing
a modular approach, channel establishment and payload

7

transmission are handled by the same algorithms – where
Send sends channel establishment information and (poten-
tially encrypted) payload data, and Recv receives. These
functions may also update the internal state of the ses-
sions.

Definition 1 (Flexible ACCE). A flexible ACCE proto-
col fACCE is a tuple of four algorithms KGen, Init, Send,
Recv associated with a long-term secret key space ℒ𝒮𝒦,
a long-term public key space ℒ𝒫𝒦, an ephemeral secret
key space ℰ𝒮𝒦 an ephemeral public key space ℰ𝒫𝒦, and
a state space 𝒮𝒯. The definition of fACCE algorithms
are as follows:
KGen →$ (sk, pk) generates long-term keys where sk ∈

ℒ𝒮𝒦, pk ∈ ℒ𝒫𝒦. Note that this captures both long-
term asymmetric key pairs, as well as potential long-
term symmetric secrets (which we consider a part of
sk).

Init(sk, ppk, 𝜌, ad) →$ st initializes a session to begin com-
munication, where sk (optionally) are the initiator’s
long-term secret keys, ppk (optionally) is the long-
term public key of the intended session partner,
𝜌 ∈ {i, r} is the session’s role (i.e., initiator or re-
sponder), ad is data associated with this session, and
sk ∈ ℒ𝒮𝒦∪{⊥}, ppk ∈ ℒ𝒫𝒦∪{⊥}, ad ∈ {0, 1}∗, st ∈
𝒮𝒯.

Send(sk, st, 𝑚) →$ (st′, 𝑐) continues the protocol execu-
tion in a session and takes message 𝑚 to output
new state st′, and messages 𝑐1, where sk ∈ ℒ𝒮𝒦 ∪
{⊥}, st, st′ ∈ 𝒮𝒯, 𝑚, 𝑐 ∈ {0, 1}∗. Note that Send may
generate additional ephemeral key pairs (epk, esk) ∈
ℰ𝒫𝒦 × ℰ𝒮𝒦2.

Recv(sk, st, 𝑐) →$ (st′, 𝑚) processes the protocol execu-
tion in a session triggered by 𝑐 and outputs new state
st′, and message 𝑚, where sk ∈ ℒ𝒮𝒦 ∪ {⊥}, st ∈
𝒮𝒯, st′ ∈ 𝒮𝒯 ∪ {⊥}, 𝑚, 𝑐 ∈ {0, 1}∗. If st′ = ⊥ is out-
put, then this denotes a rejection of this ciphertext.

We assume messages sent in fACCE are sent in a ping-
pong fashion, i.e., the initiator sends a message to the
responder, who replies to the initiator, and so on. Multi-
ple messages in a single flow are thus extensions of a single
message. Each message monotonically increases the stage
of the protocol, i.e., the first message sent from initiator
to responder is stage one, the first message sent from re-
sponder to initiator is stage two, etc. This differs from
the original fACCE, which only increments stages when
achieving new security properties.
We define the correctness of an fACCE protocol in Ap-

pendix D, Definition 17. Intuitively an fACCE protocol
is correct if messages sent from the established channel
were equally accepted by their partner.

Execution Environment. Here we describe (on a high-
level) the execution environment for our fACCE security
experiment. We consider a set of 𝑛𝑃 parties each (po-
tentially) maintaining a long-term key pair {(sk1, pk1),

1Note that messages here may consist of channel establishment
data (such as keying material), encrypted payload data, or even
plaintext payload data. In what follows, we refer to these gener-
ically as “ciphertexts”, even when sending plaintext data.

2In the security experiment, these are stored within state st

… , (sk𝑛𝑃
, pk𝑛𝑃

)}, (sk𝑖, pk𝑖) ∈ ℒ𝒮𝒦 × ℒ𝒫𝒦. Each party
can participate in up to 𝑛𝑆 sessions, with each session
potentially lasting 𝑛𝑇 stages. Each session samples per-
session randomness rand used throughout the protocol ex-
ecution. We denote both the set of variables that are spe-
cific for a session 𝑠 of party 𝑖 as well as the identifier of
this session as 𝜋𝑠

𝑖 . Further details on the session state can
be found in Appendix D.
Honest partnering is defined over the transcript sent

between two sessions. Intuitively, a session has an hon-
est partner if all ciphertexts the honest partner received
were sent by the session (without modification) and vice
versa, and at least one party received a ciphertext at least
once. The full definition of honest partner can be found
in Definition 18 in Appendix D.

The fACCE model can capture authentication and con-
fidentiality under various compromise paradigms, similar
to the levels of authentication and confidentiality encoded
by the original fACCE’s various counters. We also high-
light that this approach aligns with the typical structures
of proofs of fACCE protocols – when one of the right-hand
columns is not ∞, this represents a case distinction in the
proof. This proof structure is common in the analysis
of authenticated key exchange protocols, especially those
in the extended-Canetti-Krawczyk (eCK) model [LLM07],
such as the proofs of WireGuard [DP18] and PQWire-
Guard [HNS+21].
To facilitate the security game, the challenger main-

tains for each session 𝜋𝑠
𝑖 a set 𝕊𝜋𝑠

𝑖
that contains labels

of all secrets that each session (and its honest part-
ner) maintains – the long-term secret values sk𝑖, sk𝑗
(both asymmetric and symmetric), all ephemeral se-
cret values sampled during the 𝑛𝑇 stages of the pro-
tocol execution esk1

𝑠, esk1
𝑡 … , 𝑒𝑠𝑘𝑛𝑇𝑠 , esk𝑛𝑇

𝑡 and the state
maintained during the protocol executions at each
stage st1

𝑠, st1
𝑡 … , st𝑛𝑇𝑠 , st𝑛𝑇

𝑡 . Thus 𝕊𝜋𝑠
𝑖

= (sk𝑖, sk𝑗, esk1
𝑠,

esk1
𝑡 , … , esk𝑛𝑇

𝑠 , esk𝑛𝑇
𝑠 , st1

𝑠, st1
𝑡 … , st𝑛𝑇𝑠 , st𝑛𝑇

𝑡).
Each session in an fACCE experiment is associated with

a four column freshness table FT (a copy of the original
ST), with each element of the powerset of 𝕊𝜋𝑠

𝑖
(labels for

each secret for itself and its honest partner) contained in
the left column, and stage counters / tuples in the Con-
fidentiality, Authenticity of Initiator, and Authenticity of
Responder columns. The intuition here is that the table
declares at which stages confidentiality and authenticity
(for each role) are achieved under the assumption that the
associated combinations of secrets have not been compro-
mised by an attacker.

Consider the NK Noise Pattern ST displayed in Table 1
(see Appendix H for the full protocol). In the table we
denote the ephemeral Diffie-Hellman secret value that the
initiator samples as 𝑒ℐ and the responder samples as 𝑒ℛ,
and the long-term Diffie-Hellman secret value that the re-
sponder maintains (𝐵) as 𝑠ℛ. If (at least) the long-term
key of the responder 𝑠ℛ and the ephemeral key of the ini-
tiator 𝑒ℐ remain uncompromised the NK Pattern achieves
responder authentication in stage 𝜍 = 2, and does not
achieve initiator authentication. If 𝑒ℛ, 𝑒ℐ remain uncom-
promised, NK achieves confidentiality in stage 𝜍 = 2, and
if 𝑠ℛ and 𝑒ℐ remain uncompromised then NK achieves

8

Table 1: The NK Noise Pattern (<-s \\... \\->e,
es \\<-e, ee) and associated fACCE security
table.

Secrets Conf Auth - i Auth - r
𝑠ℛ ∞ ∞ ∞
𝑠ℛ, 𝑒ℐ 1 ∞ 2
𝑠ℛ, 𝑒ℛ ∞ ∞ ∞
𝑒ℐ, 𝑒ℛ 2 ∞ ∞
𝑠ℛ, 𝑒ℐ, 𝑒ℛ 1 ∞ 2

confidentiality of messages in stage 𝜍 = 1. The intuition
on an attacker’s winning condition is that if the adversary
breaks security in any stages associated with a particular
combination of secrets that have not been compromised,
the adversary wins.

Adversarial Model. In order to model active attacks
in our environment, the security experiment provides
the OInit, OSend, ORecv oracles to an adversary 𝒜, who
can use them to control communication among ses-
sions, together with the oracles OCorrupt, OReveal and
ORevealRandomness.
Following the direction of the original fACCE work,

we treat the authentication and confidentiality prop-
erties similarly to the original AEAD notion of Rog-
away [Rog02]: the game maintains a win flag (to indi-
cate whether the adversary broke authenticity or integrity
of ciphertexts) and changes encryption behaviour based
on randomly sampled challenge bits (to model indistin-
guishability of ciphertexts). In order to win the security
game, adversary 𝒜 either has to trigger win ← 1 or output
the correct challenge bit 𝜋𝑠

𝑖 .𝑏𝜍 of a specific session stage 𝜍
at the end of the game.
In addition, the challenger maintains a set of fresh-

ness flags 𝜋𝑠
𝑖 .fr𝜍 for each stage 𝜍 of each session 𝜋𝑠

𝑖 .
When 𝒜 makes a query to OCorrupt, OReveal or
ORevealRandomness, then 𝒞 deletes all rows in the fresh-
ness table FT that contain the secret revealed to 𝒜. All
stages for all sessions that are not an element of the right-
hand columns are now considered un-fresh, and the corre-
sponding freshness flags are set to 0. When 𝒜 terminates
and outputs a session 𝜋𝑠

𝑖 and a stage counter 𝜍 such that
the freshness flag associated with 𝜋𝑠

𝑖 .𝜍 is 0, then 𝒞 simply
outputs a random bit 𝑏∗ instead of 𝜋𝑠

𝑖 .𝑏𝜍 = 𝑏′.
We describe the function of each oracle below. The

details on excluding trivial attacks as the result of these
oracles can be found in Appendix D.
OInit(𝑖, pk𝑗, 𝜌, ad) initializes a new session 𝜋𝑠

𝑖 (if not yet
initialized) of party 𝑖 to be partnered with party 𝑗, in-
voking fACCE. Init(sk𝑖, pk𝑗, 𝜌, ad) →[𝜋𝑠

𝑖 .rand] 𝜋𝑠
𝑖 .st us-

ing randomness 𝜋𝑠
𝑖 .rand and returning the index of

the session 𝑠.
OSend(𝑖, 𝑠, 𝑚0, 𝑚1) triggers the encryption of the

message 𝑚𝑏 where 𝑏 = 𝜋𝑠
𝑖 .𝑏𝜍 by invoking

Send(sk𝑖, 𝜋𝑠
𝑖 .st, 𝑚𝑏) →[𝜋𝑠

𝑖 .rand] (st′, 𝑐) for an ini-
tialized 𝜋𝑠

𝑖 if |𝑚0| = |𝑚1|. Note that 𝑐 contains both
the explicit ciphertext encryption of the message 𝑚𝑏

and any channel establishment messages that are
sent in this stage. Finally 𝑐 is appended to 𝜋𝑠

𝑖 .𝑇𝑠.
ORecv(𝑖, 𝑠, 𝑐) triggers invocation of Recv(sk𝑖, 𝜋𝑠

𝑖 .st, 𝑐)
→[𝜋𝑠

𝑖 .rand] (st′, 𝑚) for an initialized 𝜋𝑠
𝑖 and returns

(𝑚, 𝜍) only if 𝜋𝑠
𝑖 has no honest partner, and returns

𝜍 if an honest partner exists. If an honest partner
exists, and the session is currently fresh, then out-
putting the plaintext message 𝑚 would leak the chal-
lenge bit, so we must prevent this leakage. The ad-
versary breaks authentication (and thereby win ← 1
is set) if the received ciphertext was not sent by a
session of the intended partner but was successfully
received (i.e., there exists no honest partner and the
output state is st′ ≠ ⊥), and 𝒜 has not issued queries
that trivially break authentication in this stage. Fi-
nally 𝑐 is appended to 𝜋𝑠

𝑖 .𝑇𝑟 if decryption succeeds.
ORevealRandomness(𝑖, 𝑠) → rand outputs the ephemeral

randomness rand sampled by session 𝜋𝑠
𝑖 . The fresh-

ness table FT and freshness flags are updated by the
challenger.

OCorrupt(𝑖) → sk𝑖 outputs the long-term secret key sk𝑖
of party 𝑖 and updates the freshness table FT and
freshness flags.

OReveal(𝑖, 𝑠) → 𝜋𝑠
𝑖 .st outputs the current session state

𝜋𝑠
𝑖 .st, and updates the freshness table FT and fresh-

ness flags.
Finally, we formalise the security of an fACCE primi-

tive in Appendix D. A flexible ACCE protocol fACCE is
post-quantum secure if it is correct and AdvfACCE

𝒬 is negli-
gible for all quantum algorithms 𝒬 running in polynomial-
time.

4. Analysis
In this section we present our security analysis of
PQNoise. To begin, we model Noise’s use of key-
derivation-functions as a “hash-object”. This allows us
to separate the analysis of Noise into the analysis of the
hash-object, which focuses on the local key derivation ac-
tivities of a user, and the analysis of the key exchange
executed between users.
We note that besides the key-derivation-chain (“key-

chain”) Noise also computes a second hash-chain ℎ to
create a handshake-hash; the modelling and analysis in
the following section do not apply to that chain.

4.1. Hash-Object
Noise has a somewhat convoluted key derivation process
as it derives fresh symmetric keys every time it computes
a new shared key. Towards this end, Noise makes use
of a key-chain into which all shared secrets are absorbed
and from which all session-keys are extracted. This chain
effectively is a PRF chain in which a previous chaining
value is used as key, and any new input is used as input.
The output is split into an output and a new chaining
value. In an analysis this can be treated as a series of
independent pseudorandom function calls. However, the
proofs that result from this approach tend to have a long
sequence of game hops applying the dual-PRF assumption

9

to replace PRF outputs by random values based on the
chaining value or the input being pseudorandom. These
are shared by many proof-steps and distract from the core
part of the different proofs. Because of this, we introduce
an abstraction that allows us to treat such chains as a sin-
gle object with new security properties that allow to prove
security of protocols like (PQ)Noise. We call the new ob-
ject a hash-object, provide a definition of pseudorandom-
ness for such objects, and prove that the construction of
a hash-object used in Noise achieves this property.
Noise usually creates multiple outputs whenever it in-

puts a new value into its hash-chain, the first of which is
usually used as a form of a state that we model as the
state 𝑠 of our hash-object. At the end of the handshake-
phase Noise uses the first result directly as output and
forgoes the creation of a new state. To model this we in-
troduced a function finalize that mostly behaves like the
regular input-function, except that it does not return a
new state.

Definition 2 (Hash-Object). Formally a hash-object is
a tuple of three deterministic algorithms: create, input,
finalize, and an integer-constant 𝑛.
create(1𝜆) → 𝑠 takes a security-parameter 𝜆 and returns

a state 𝑠.
input(𝑠, 𝑚) → 𝑠′, ℎ takes a state 𝑠 and message 𝑚 ∈

{0, 1}∗ and returns a new state 𝑠′ and a list ℎ ∈
({0, 1}𝜆)𝑛 of hashes of length 𝑛 .

finalize(𝑠, 𝑚) → ℎ works like input, except that it does not
return a state.

For convenience sake we will use class-style notation
(i.e. ℎ ∶= 𝑠. input(𝑚) instead of 𝑠, ℎ ∶= input(𝑠, 𝑚)).
Definition 3 (Pseudorandom Hash-Object). We say that
a hash-object HO is a pseudorandom hash-object if and
only if ∀𝒜 ∈ QPT, 𝜆 ∈ ℕ:

∣ Pr [Exp𝑃𝑅𝐻𝑂
HO,𝒜,0 (1𝜆) = 1]

−Pr [Exp𝑃𝑅𝐻𝑂
HO,𝒜,1 (1𝜆) = 1] ∣ =∶ Adv𝑃𝑅𝐻𝑂

HO, 𝒜 (1𝜆) ≤

negl (𝜆) where Exp𝑃𝑅𝐻𝑂
HO,𝒜 is defined as in Experiment 1.

The core idea behind this definition is that the adver-
sary receives oracle-access to an arbitrary number of hash-
objects into which he can feed whatever values he likes.
At any point in time he can request to add the random
secret 𝑟 that is sampled once at the start of the game
to any oracle by invoking Rand. From that point on-
wards all the outputs from the randomized hash-object
will either be true random values or real, depending on
the challenge-bit. Everything else in this definition is just
there to prevent trivial attacks: history keeps track of the
exact queries performed on each hash-object. queries is a
dictionary that saves the set of queries that were previ-
ously performed on hash-objects with a given history to
prevent running both In and Fin on objects in the same
state, as the later would reveal the resulting state of the
former. cache is a dictionary that is used to ensure that
two hash-objects with the same history always return the
same results even if they have been randomized and re-
turn truly random values.

With this we define the Noise Hash Object as depicted
in Algorithm 2. This is more or less a direct recreation of
how Noise defines HKDF, except that it distinguishes the
case where the first argument is then used as state from
the case where no state is maintained and everything is
returned as output.

Theorem 1. A Noise Hash Object NHO
is a secure pseudo-random Hash-Object if
HMAC-HASH is a dual-prf with: Adv𝑃𝑅𝐻𝑂

NHO, 𝒜,qi
(1𝜆) ≤

⎛⎜⎜
⎝

AdvCollRes
HMAC-HASH, 𝒜′ (1𝜆) +

AdvPRF-SWAP
HMAC-HASH, 𝒜′ (1𝜆) +

(2 ⋅ q) ⋅ AdvPRF
HMAC-HASH, 𝒜′ (1𝜆)

⎞⎟⎟
⎠

where q refers to the

total number of oracle-queries.

We refer to Appendix A for a proof. Intuitively the
collision-resistance of HMAC-HASH implies that only
identical histories result in equal states and the HMAC-
HASH being a dual-PRF (see Appendix B.2) ensures that
once r has been added to a chain, its first state becomes
pseudorandom which is retained upon subsequent calls.

4.2. PQNoise
At this point we can now start the analysis of PQNoise
itself. We consider PQNoise with and without the use
of SEEC. The reason for analyzing both is that Noise
has traditionally considered bad RNGs a problem of the
operating system which combined with the fact that the
use of SEEC is (if there is no corruption) unobservable
from the outside, suggests that the Noise-project may
refuse to specify the use of SEEC and leave it as an
implementation-detail.
Let Π be a PQNoise-protocol and Π′ be the same pro-

tocol without the use of SEEC. Let #𝐼 , #𝑅 and #𝐸 refer
to the stage of Π/Π′ during which the KEM-ciphertexts
for the initiators/responders/ephemeral public keys are
sent and ∞ if they are not sent. Let 𝑛𝑃 be the number of
parties participating in a protocol, 𝑛𝑆 be the maximum
number of sessions a party participates in, and 𝑛𝐾 the to-
tal number of session-keys that a party uses. We are using
standard-definitions for AEAD, PRFs, PRF-SWAPs, and
KEMs (see Appendix B). On top of that we use the defini-
tion of pseudo-random hash-object (PRHO) from above.
Intuitively the following four theorems can be summa-

rized like this: In PQ-Noise, authenticity for a party 𝒫 is
established once it sends a valid reply to a message that
was encrypted with uncorrupted randomness under 𝒫’s
uncorrupted public key. This is because 𝒫’s peer 𝒰 is by
the definition and requirements of this case an honest peer
whose KEM-ciphertext is fresh and can only be decrypted
by 𝒫. 𝒫’s response contains an AEAD-ciphertext whose
key is derived from the shared secret that only 𝒫 and 𝒰
have access too. As AEAD-ciphertexts cannot be forged
without the key, and 𝒰 knows that the reply was not cre-
ated by her, she can, by the corruption-setting, conclude
that she is talking to 𝒫.

Theorem 2. Π achieves initiator-authenticity in stage
#𝐼 + 1 if the initiators static key and either
of the responders keys have not been corrupted

10

Experiment 1: Exp𝑃𝑅𝐻𝑂
HO,𝒜,b, the pseudo-randomness experiment for a hash-object HO.

1 𝑟 ←$ {0, 1}𝜆

2 hashes ∶= [], history ∶= [], j ∶= 0
3 randomized ∶= [0, … , 0]
4 finalized ∶= [0, … , 0]
5 queries ∶= ∅
6 cache ∶= dict()
7 Oracle Create:
8 i, j ∶= j, j + 1
9 hashes[𝑖] ∶= create(1𝜆)

10 history[𝑖] ∶= []
11 return 𝑖
12 Oracle Rand(𝑖, finalize):
13 randomized[𝑖] ∶= 1
14 if finalize:
15 return Fin(𝑖, 𝑟)
16 else:
17 return In(𝑖, 𝑟)

18 Oracle In(𝑖, 𝑚):
19 abort_if(finalized[𝑖]

∨ (history[𝑖] | |(“Fin”, 𝑚)) ∈
queries)

20 history[𝑖]. append(“In”, 𝑚)
21 queries ∪ =history[𝑖]
22 if randomized [i]:
23 if cache[history[𝑖]] ≠ ⊥:
24 return cache[history[𝑖]]
25 ℎ0 ∶= hashes[𝑖]. input(𝑚)
26 ℎ1 ←$ ({0, 1}𝜆)𝑛

27 cache[history[𝑖]] ∶= ℎ𝑏
28 return ℎ𝑏
29 else:
30 return hashes[𝑖]. input(𝑚)

31 Oracle Fin(𝑖, m):
32 abort_if(finalized[𝑖]

∨ (history[𝑖] | |(“In”, 𝑚)) ∈
queries)

33 finalized[𝑖] ∶= 1
34 history[𝑖]. append(“Fin”, 𝑚)
35 queries ∪ =history[𝑖]
36 if randomized [i]:
37 if cache[history[𝑖]] ≠ ⊥:
38 return cache[history[𝑖]]
39 ℎ0 ∶= hashes[𝑖]. finalize(𝑚)
40 ℎ1 ←$ ({0, 1}𝜆)𝑛

41 cache[history[𝑖]] ∶= ℎ𝑏
42 return ℎ𝑏
43 else:
44 return hashes[𝑖]. finalize(m)
45 return 𝒜Create,In,Fin,Rand(1𝜆)

Algorithm 2: Noise-compatible instantiation
for the pseudo-random hash-object.
1 Function create(1𝜆):
2 return “”
3 Function finalize(state, m):
4 (h0, [h1. … , h𝑛]) ∶= input(state, m)
5 return [h0. … , h𝑛−1])
6 Function input(state, m):
7 tmp ∶= HMAC-HASH(state, m)
8 last ∶= “”
9 for 𝑖 ∈ {0, … , 𝑛}:

10 h𝑖 ∶= HMAC-HASH(tmp, last|| byte(𝑖))
11 last ∶= h𝑖
12 return h0, [h1. … , h𝑛]

with: Adv𝑓𝐴𝐶𝐶𝐸.𝑎𝑢𝑡ℎℐ
Π, 𝒜 (1𝜆) ≤ 4(𝑛𝑃 ⋅𝑛𝑆)2

2𝜆 + 𝑛2
𝑃 ⋅ 𝑛𝑆 ⋅

(Adv𝑆𝐸𝐸𝐶
Σ, 𝒜′ (1𝜆) + AdvIND-CCA

𝐼𝐾𝐸𝑀, 𝒜′,𝑛𝑆
(1𝜆) + AdvPRHO

𝐻, 𝒜′ (1𝜆) +
Advauth

𝐴𝐸𝐴𝐷, 𝒜′ (1𝜆))

Theorem 3. Π′ achieves initiator-authenticity in
stage #𝐼 + 1 if the initiators static key and the
responders ephemeral key have not been corrupted
with: Adv𝑓𝐴𝐶𝐶𝐸.𝑎𝑢𝑡ℎℐ

Π, 𝒜 (1𝜆) ≤ 4(𝑛𝑃 ⋅𝑛𝑆)2

2𝜆 + 𝑛2
𝑃 ⋅ 𝑛𝑆 ⋅

(AdvIND-CCA
𝐼𝐾𝐸𝑀, 𝒜′,𝑛𝑆

(1𝜆)+AdvPRHO
𝐻, 𝒜′ (1𝜆)+Advauth

𝐴𝐸𝐴𝐷, 𝒜′ (1𝜆))

Theorem 4. Π achieves responder-authenticity in
stage #𝑅 + 1 if the responders static key and ei-
ther of the initiators keys have not been corrupted
with: Adv𝑓𝐴𝐶𝐶𝐸.𝑎𝑢𝑡ℎℛ

Π, 𝒜 (1𝜆) ≤ 4(𝑛𝑃 ⋅𝑛𝑆)2

2𝜆 + 𝑛2
𝑃 ⋅ 𝑛𝑆 ⋅

(Adv𝑆𝐸𝐸𝐶
Σ, 𝒜′ (1𝜆) + AdvIND-CCA

𝑅𝐾𝐸𝑀, 𝒜′,𝑛𝑆
(1𝜆) + AdvPRHO

𝐻, 𝒜′ (1𝜆) +
Advauth

𝐴𝐸𝐴𝐷, 𝒜′ (1𝜆))

Theorem 5. Π′ achieves responder-authenticity in
stage #𝑅 + 1 if the responders static key and
the initiators ephemeral key have not been corrupted
with: Adv𝑓𝐴𝐶𝐶𝐸.𝑎𝑢𝑡ℎℛ

Π, 𝒜 (1𝜆) ≤ 4(𝑛𝑃 ⋅𝑛𝑆)2

2𝜆 + 𝑛2
𝑃 ⋅ 𝑛𝑆 ⋅

(AdvIND-CCA
𝑅𝐾𝐸𝑀, 𝒜′,𝑛𝑆

(1𝜆)+AdvPRHO
𝐻, 𝒜′ (1𝜆)+Advauth

𝐴𝐸𝐴𝐷, 𝒜′ (1𝜆))

We provide a detailed proof in Appendix A. Intuitively
the security is a consequence of the ciphertext for the
initiator’s/responder’s static public key being generated
with good randomness for an uncorrupted key. The re-
sulting shared secret is then fed into the hash-object
whose outputs can be treated as random from then on.
Eventually the adversary would therefore have to break
the authenticity of the AEAD-scheme in order to create
a message as the key is essentially random at that point.
The relatively low tightness is a consequence of having to
guess the attacked session and parties.

Intuitively the next six theorems state that confidential-
ity is achieved once a KEM-ciphertext for an uncorrupted
keypair is sent. As the stage in which these are sent de-
pends on the pattern, the actual stage at which messages
are confidential depends on it too and on the corruption
in question. To get the first confidential stage, one has to
pick the lowest stage of the applicable results given below
(if the conditions for a result are unmet because of un-
acceptable corruption or non-use of the associated KEM,
that stage is ∞). The first four of these theorems deal
with uncorrupted static keys.

Theorem 6. Π achieves confidentiality in stage #𝐼 if
either of the responders and the static key of the initiator
is uncorrupted and the responder is an honest party with:
Adv𝑓𝐴𝐶𝐶𝐸.𝑐𝑜𝑛𝑓ℐ

Π, 𝒜 (1𝜆) ≤ 4(𝑛𝑃 ⋅𝑛𝑆)2

2𝜆 +AdvCollRes
H, 𝒜′ (1𝜆)+𝑛2

𝑃 ⋅𝑛2
𝑆 ⋅

(Adv𝑆𝐸𝐸𝐶
Σ, 𝒜′ (1𝜆) + AdvIND-CCA

𝐼𝐾𝐸𝑀, 𝒜′,𝑛𝑆
(1𝜆) + AdvPRHO

𝐻, 𝒜′ (1𝜆) +
(𝑛𝑆 − 1) ⋅ Advauth

𝐴𝐸𝐴𝐷, 𝒜′ (1𝜆) + 𝑛𝐾 ⋅ AdvIND$-CPA
𝐴𝐸𝐴𝐷, 𝒜′ (1𝜆))

Where 𝑛𝐾 is the total number of session-keys used in a
session and 𝑛′

𝐾 refers to the total number of session keys
that have been used before the key encapsulated in IKEM

11

has been put into the hash-object.

Theorem 7. Π′ achieves confidentiality in stage #𝐼 if the
responders ephemeral key and the static key of the initia-
tor are uncorrupted and the responder is an honest party
with: Adv𝑓𝐴𝐶𝐶𝐸.𝑐𝑜𝑛𝑓ℐ

Π, 𝒜 (1𝜆) ≤ 4(𝑛𝑃 ⋅𝑛𝑆)2

2𝜆 + AdvCollRes
H, 𝒜′ (1𝜆) +

𝑛2
𝑃 ⋅ 𝑛2

𝑆 ⋅ (AdvIND-CCA
𝐼𝐾𝐸𝑀, 𝒜′,𝑛𝑆

(1𝜆) + AdvPRHO
𝐻, 𝒜′ (1𝜆) + (𝑛𝑆 − 1) ⋅

Advauth
𝐴𝐸𝐴𝐷, 𝒜′ (1𝜆) + 𝑛𝐾 ⋅ AdvIND$-CPA

𝐴𝐸𝐴𝐷, 𝒜′ (1𝜆))
Where 𝑛𝐾 is the total number of session-keys used in a

session and 𝑛′
𝐾 refers to the total number of session keys

that have been used before the key encapsulated in IKEM
has been put into the hash-object.

Theorem 8. Π achieves confidentiality in stage #𝑅 if
either of the initiators keys and the static key of the re-
sponder is uncorrupted and the initiator is an honest party
with: Adv𝑓𝐴𝐶𝐶𝐸.𝑐𝑜𝑛𝑓ℛ

Π, 𝒜 (1𝜆) ≤ 4(𝑛𝑃 ⋅𝑛𝑆)2

2𝜆 + AdvCollRes
H, 𝒜′ (1𝜆) +

𝑛2
𝑃 ⋅ 𝑛2

𝑆 ⋅ (Adv𝑆𝐸𝐸𝐶
Σ, 𝒜′ (1𝜆) + AdvIND-CCA

𝑅𝐾𝐸𝑀, 𝒜′,𝑛𝑆
(1𝜆) +

AdvPRHO
𝐻, 𝒜′ (1𝜆) + (𝑛𝑆 − 1) ⋅ Advauth

𝐴𝐸𝐴𝐷, 𝒜′ (1𝜆) + 𝑛𝐾 ⋅
AdvIND$-CPA

𝐴𝐸𝐴𝐷, 𝒜′ (1𝜆))
Where 𝑛𝐾 is the total number of session-keys used in a

session and 𝑛′
𝐾 refers to the total number of session keys

that have been used before the key encapsulated in RKEM
has been put into the hash-object.

Theorem 9. Π′ achieves confidentiality in stage #𝑅
if the initiators ephemeral key and the static key of
the responder are uncorrupted and the initiator is an
honest party with: Adv𝑓𝐴𝐶𝐶𝐸.𝑐𝑜𝑛𝑓ℛ

Π, 𝒜 (1𝜆) ≤ 4(𝑛𝑃 ⋅𝑛𝑆)2

2𝜆 +
AdvCollRes

H, 𝒜′ (1𝜆)+𝑛2
𝑃 ⋅𝑛2

𝑆 ⋅(AdvIND-CCA
𝑅𝐾𝐸𝑀, 𝒜′,𝑛𝑆

(1𝜆)+ 4(𝑛𝑃 ⋅𝑛𝑆)2

2𝜆 +
AdvPRHO

𝐻, 𝒜′ (1𝜆) + (𝑛𝑆 − 1) ⋅ Advauth
𝐴𝐸𝐴𝐷, 𝒜′ (1𝜆) + 𝑛𝐾 ⋅

AdvIND$-CPA
𝐴𝐸𝐴𝐷, 𝒜′ (1𝜆))

Where 𝑛𝐾 is the total number of session-keys used in a
session and 𝑛′

𝐾 refers to the total number of session keys
that have been used before the key encapsulated in RKEM
has been put into the hash-object.

The proofs are largely similar to the previous ones, the
main-difference being that instead of relying on the un-
forgeability they now need to rely on the confidentiality
(IND$-CPA) of the AEAD-scheme. The increased loss in
tightness is a result of having to guess the peer’s session
and the attacked AEAD-key on top of what the previous
proofs had to guess. We provide them in Appendix A.
The last two of the six confidentiality theorems deal

with uncorrupted ephemeral keys and are largely analo-
gous to the previous four besides that.

Theorem 10. Π achieves confidentiality in stage #𝐸
if both the initiator and the responder have at least one
uncorrupted key and both are honest partners with:

Adv𝑓𝐴𝐶𝐶𝐸.𝑐𝑜𝑛𝑓𝐸
Π, 𝒜 (1𝜆) ≤ 4(𝑛𝑃 ⋅𝑛𝑆)2

2𝜆 +AdvCollRes
H, 𝒜′ (1𝜆)+𝑛2

𝑃 ⋅
𝑛2

𝑆 ⋅(2⋅Adv𝑆𝐸𝐸𝐶
Σ, 𝒜′ (1𝜆)+AdvIND-CCA

𝐸𝐾𝐸𝑀, 𝒜′,1 (1𝜆)+AdvPRHO
𝐻, 𝒜′ (1𝜆)

+ 𝑛𝐾 ⋅ AdvIND$-CPA
𝐴𝐸𝐴𝐷, 𝒜′ (1𝜆))

Where 𝑛𝐾 is the total number of session-keys used in a
session and 𝑛′

𝐾 refers to the total number of session keys
that have been used before the key encapsulated in EKEM
has been put into the hash-object.

Theorem 11. Π′ achieves confidentiality in stage #𝐸 if
neither the initiators nor the responders ephemeral keys
are uncorrupted and both are honest partners with:

Adv𝑓𝐴𝐶𝐶𝐸.𝑐𝑜𝑛𝑓𝐸
Π, 𝒜 (1𝜆) ≤ 4(𝑛𝑃 ⋅𝑛𝑆)2

2𝜆 + AdvCollRes
H, 𝒜′ (1𝜆) +

𝑛2
𝑃 ⋅ 𝑛2

𝑆 ⋅ (AdvIND-CCA
𝐸𝐾𝐸𝑀, 𝒜′,1 (1𝜆) + AdvPRHO

𝐻, 𝒜′ (1𝜆) + 𝑛𝐾 ⋅
AdvIND$-CPA

𝐴𝐸𝐴𝐷, 𝒜′ (1𝜆))
Where 𝑛𝐾 is the total number of session-keys used in a

session and 𝑛′
𝐾 refers to the total number of session keys

that have been used before the key encapsulated in EKEM
has been put into the hash-object.

The proofs for these theorems are largely analogous to
the one before, except that they require two applications
of SEEC (one on either peer). We provide them in Ap-
pendix A.
Using these results we can then easily set up the

fACCE-table for any given PQNoise protocol: The
authenticity-results can be taken as they are. For con-
fidentiality the lowest value that achieves security is the
relevant one. For the fundamental PQNoise patterns this
gives the results presented in Table 2. When compared
with the partially conjectured results for Noise [DRS20]
(see Appendix F) we see that PQNoise ends up with the
same security as classical Noise eventually.

5. Implementation
We implement PQNoise as an extension of the “nyquist”
implementation of Noise by Angel in the Go program-
ming language [Ang]. As underlying instantiation of all
KEMs we use Kyber-768 [BDK+18, ABD+21]; specifically
the highly optimized Go implementation in Cloudflare’s
Circl library [KFH19]. As Circl implements other post-
quantum KEMs, including all parameter sets of Kyber,
but also SIKE [ACC+20], it would be easy to change to a
different instantiation of the KEMs.

When comparing performance between PQNoise hand-
shakes and corresponding Noise handshakes, we no-
tice that computationally, i.e., in terms of CPU cycles,
PQNoise is more efficient. This is not surprising, be-
cause Kyber-768 is considerably faster than X25519-based
DH key exchange in Noise. For example, on an Intel
Xeon E-2124 (Coffee Lake) CPU, eBACS [BL] reports
125 303 cycles for X25519 key generation and 135 390 cy-
cles for X25519 shared-key computation; on the same
CPU eBACS reports only 39 881 cycles for Kyber-768 key
generation, 53 841 cycles for encapsulation, and 42 281 cy-
cles for decapsulation. On other recent 64-bit CPUs the
absolute numbers differ, but the big picture is similar:
Kyber-768 outperforms X25519 in terms of cycle counts.
However, this advantage in computational performance

does not mean that handshake times for PQNoise are
faster than in Noise. In fact all cryptography used in
Noise or in (our instantiation of) PQNoise is so fast that
handshake times are largely determined by data transmis-
sion, and this is where two disadvantages of PQNoise kick
in: first, post-quantum KEMs have much larger public
keys and ciphertexts than (pre-quantum) ECDH. Second,
in some scenarios KEM-based AKE requires more round
trips to achieve the same security. In order to investigate

12

Table 2: Security of the fundamental PQNoise patterns. Values of the form 𝑥/∞ mean that the security is achieved
in stage 𝑥 if the party/parties that doesn’t/don’t use a static KEM still uses a static SEEC-key and never
if that is not the case. We don’t provide separate rows for authenticity without SEEC, as the 𝑠ℐ, 𝑒ℛ/𝑒ℐ,
𝑠ℛ-cases are identical, and the 𝑠ℐ, 𝑠ℛ-cases are trivially insecure and have those rows dropped entirely if
SEEC is not used.

Security Uncorr. N NN NK NX KN KK KX XN XK XX IN IK IX
Confidentiality 𝑒ℐ, 𝑒ℛ ∞ 2 2 2 2 2 2 2 2 2 2 2 2

𝑒ℐ, 𝑠ℛ 1 2/∞ 1 2 2/∞ 1 2 2/∞ 1 2 2/∞ 1 2
𝑠ℐ, 𝑒ℛ ∞ 2/∞ 2/∞ 2/∞ 2 2 2 2 2 2 2 2 2
𝑠ℐ, 𝑠ℛ 1/∞ 2/∞ 1/∞ 2/∞ 2/∞ 1 2 2/∞ 1 2 2/∞ 1 2

Confidentiality 𝑒ℐ, 𝑒ℛ ∞ 2 2 2 2 2 2 2 2 2 2 2 2
(Without SEEC) 𝑒ℐ, 𝑠ℛ 1 ∞ 1 3 ∞ 1 3 ∞ 1 3 ∞ 1 3

𝑠ℐ, 𝑒ℛ ∞ ∞ ∞ ∞ 2 2 2 4 4 4 2 2 2
Authenticity (ℐ) 𝑠ℐ, 𝑒ℛ ∞ ∞ ∞ ∞ 3 3 3 5 5 5 3 3 3

𝑠ℐ, 𝑠ℛ ∞ ∞ ∞ ∞ 3/∞ 3 3 5/∞ 5 5 3/∞ 3 3
Authenticity (ℛ) 𝑒ℐ, 𝑠ℛ ∞ ∞ 2 4 ∞ 2 4 ∞ 2 4 ∞ 2 4

𝑠ℐ, 𝑠ℛ ∞ ∞ 2/∞ 4/∞ ∞ 2 4 ∞ 2 4 ∞ 2 4

how these two factors influence real-world handshake per-
formance, we consider the KK and the XX handshake pat-
terns from Noise together with their pqKK and pqXX coun-
terparts from PQNoise. While both patterns eventually
achieve mutual authentication, for the KK and pqKK pat-
terns the amount of round trips is the same, while for the
pqXX pattern an additional message from the responder is
required compared to XX. We run benchmarks on a ma-
chine with two Intel Xeon Gold 6230 CPUs and 196GB
of RAM. The experimental setup is using the Linux ker-
nel’s network-emulation features and is largely following
the setup used in [PST20] and [SSW20]. For each of the
patterns we take 1000 measurements of the time it takes
to perform a handshake, independently for initiator and
responder. We perform this measurements once over a
fast network (1000Mbit throughput, 31.1ms round-trip
latency) and once over a slow network (10Mbit through-
put, 195.6ms round-trip latency). The results are listed
in Table 3. The KK and pqKK responder times do not in-
clude any network communication – after receiving the
first handshake message from the initiator, the responder
can perform all computations without having to wait for
a further message. These times thus show the compu-
tational advantage of Kyber-768 over X25519. We also
see that increased message sizes in PQNoise do not have
a major influence on performance in this TCP/IP-based
scenario. What does matter is the additional protocol
message in pqXX compared to XX: as expected, the initia-
tor times are slower by pretty exactly the half-roundtrip
network latency.

6. Acknowledgement
We thank Trevor Perrin and Denisa Greconici for many
helpful discussions.
This work has been supported by the Dutch Research

Council (NWO) through VIDI grant No. VI.Vidi.193.066,
by the European Research Council through Starting
Grant No. 805031 (EPOQUE), and by Deutsche

Table 3: Median handshake times in ms of KK and XX
Noise patterns and their pqKK and pqXX coun-
terparts in PQNoise.

Fast network Slow network
Init. Resp. Init. Resp.

KK 16.35 0.42 98.73 0.41
pqKK 16.07 0.25 100.28 0.27
XX 16.02 16.1 98.47 98.6

pqXX 31.83 16.1 199.31 100.36

Forschungsgemeinschaft (DFG, German Research Foun-
dation) as part of the Excellence Strategy of the Ger-
man Federal and State Governments – EXC 2092 CASA
- 390781972.

References
[ABD+21] Roberto Avanzi, Joppe Bos, Léo Ducas,

Eike Kiltz, Tancrède Lepoint, Vadim Lyuba-
shevsky, John M. Schanck, Peter Schwabe,
Gregor Seiler, and Damien Stehlé. Crystals-
kyber (version 3.02) – submission to round
3 of the nist post-quantum project, 2021.
https://pq-crystals.org/kyber/data/
kyber-specification-round3-20210804.
pdf. 12

[ACC+20] Reza Azarderakhsh, Matthew Campagna,
Craig Costello, Luca De Feo, Basil Hess,
Aaron Hutchinson, Amir Jalali, Koray Kara-
bina, Brian Koziel, Brian LaMacchia, Patrick
Longa, Michael Naehrig, Geovandro Pereira,
Joost Renes, Vladimir Soukharev, and David
Urbanik. Supersingular isogeny key encap-
sulation. Round-3 submission to the NIST

13

https://pq-crystals.org/kyber/data/kyber-specification-round3-20210804.pdf
https://pq-crystals.org/kyber/data/kyber-specification-round3-20210804.pdf
https://pq-crystals.org/kyber/data/kyber-specification-round3-20210804.pdf

PQC project, 2020. https://sike.org/
#specification. 12

[ACG+20] Liliya R. Akhmetzyanova, Cas Cremers, Luke
Garratt, Stanislav Smyshlyaev, and Nick Sul-
livan. Limiting the impact of unreliable ran-
domness in deployed security protocols. In
Limin Jia and Ralf Küsters, editors, CSF 2020
Computer Security Foundations Symposium,
pages 277–287. IEEE Computer Society Press,
2020. 4, 23

[Ang] Yawning Angel. nyquist - a Noise proto-
col framework implementation. https://
github.com/Yawning/nyquist. 12

[BBC+21] Gustavo Banegas, Daniel J. Bernstein, Fabio
Campos, Tung Chou, Tanja Lange, Michael
Michael Meyer, Benjamin Smith, and Jana
Sotáková. Ctidh: faster constant-time csidh.
IACR Transactions on Cryptographic Hard-
ware and Embedded Systems, (4):351–387,
2021. https://tches.iacr.org/index.php/
TCHES/article/view/9069. 2

[BDK+18] Joppe Bos, Léo Ducas, Eike Kiltz, Tan-
crède Lepoint, Vadim Lyubashevsky, John M.
Schanck, Peter Schwabe, and Damien Stehlé.
CRYSTALS – Kyber: a CCA-secure module-
lattice-based KEM. In 2018 IEEE Eu-
ropean Symposium on Security and Pri-
vacy, EuroS&P 2018, pages 353–367. IEEE,
2018. https://cryptojedi.org/papers/
#kyber. 12

[Ber06] Daniel J. Bernstein. Curve25519: New Diffie-
Hellman speed records. In Moti Yung, Yev-
geniy Dodis, Aggelos Kiayias, and Tal Malkin,
editors, PKC 2006, volume 3958 of LNCS,
pages 207–228. Springer, Heidelberg, April
2006. 2

[BL] Daniel J. Bernstein and Tanja Lange. eBACS:
ECRYPT benchmarking of cryptographic sys-
tems. https://bench.cr.yp.to (accessed 29
Sep 2021). 12

[BLMP19] Daniel J. Bernstein, Tanja Lange, Chloe Mar-
tindale, and Lorenz Panny. Quantum cir-
cuits for the CSIDH: Optimizing quantum
evaluation of isogenies. In Yuval Ishai and
Vincent Rijmen, editors, EUROCRYPT 2019,
Part II, volume 11477 of LNCS, pages 409–
441. Springer, Heidelberg, May 2019. 2

[BLN16] Daniel J Bernstein, Tanja Lange, and Ruben
Niederhagen. Dual ec: A standardized back
door. In The New Codebreakers, pages 256–
281. Springer, 2016. 4

[BS20] Xavier Bonnetain and André Schrottenloher.
Quantum security analysis of CSIDH. In
Anne Canteaut and Yuval Ishai, editors, EU-
ROCRYPT 2020, Part II, volume 12106 of

LNCS, pages 493–522. Springer, Heidelberg,
May 2020. 2

[CGS+20] Cas Cremers, Luke Garratt, Stanislav V.
Smyshlyaev, Nick Sullivan, and Christo-
pher A. Wood. Randomness Improvements for
Security Protocols. RFC 8937, October 2020.
4

[CK01] Ran Canetti and Hugo Krawczyk. Analysis
of key-exchange protocols and their use for
building secure channels. In Birgit Pfitzmann,
editor, EUROCRYPT 2001, volume 2045 of
LNCS, pages 453–474. Springer, Heidelberg,
May 2001. 2

[CLM+18] Wouter Castryck, Tanja Lange, Chloe Mar-
tindale, Lorenz Panny, and Joost Renes.
CSIDH: An efficient post-quantum commu-
tative group action. In Thomas Peyrin and
Steven Galbraith, editors, ASIACRYPT 2018,
Part III, volume 11274 of LNCS, pages 395–
427. Springer, Heidelberg, December 2018. 2

[DH76] Whitfield Diffie and Martin E. Hellman. New
directions in cryptography. IEEE Transac-
tions on Information Theory, 22(6):644–654,
1976. 1

[DP08] The Debian-Project. Debian Security
Advisory – DSA-1571-1 openssl – pre-
dictable random number generator, May
2008. https://www.debian.org/security/
2008/dsa-1571. 4

[DP18] Benjamin Dowling and Kenneth G. Paterson.
A cryptographic analysis of the WireGuard
protocol. In Bart Preneel and Frederik Ver-
cauteren, editors, ACNS 18, volume 10892 of
LNCS, pages 3–21. Springer, Heidelberg, July
2018. 8

[DRS20] Benjamin Dowling, Paul Rösler, and Jörg
Schwenk. Flexible authenticated and confi-
dential channel establishment (fACCE): An-
alyzing the noise protocol framework. In
Aggelos Kiayias, Markulf Kohlweiss, Pet-
ros Wallden, and Vassilis Zikas, editors,
PKC 2020, Part I, volume 12110 of LNCS,
pages 341–373. Springer, Heidelberg, May
2020. 2, 4, 6, 7, 12, 21, 23, 30, 31

[FHKP12] Eduarda S.V. Freire, Dennis Hofheinz, Eike
Kiltz, and Kenneth G. Paterson. Non-
interactive key exchange. Cryptology ePrint
Archive, Report 2012/732, 2012. https://
eprint.iacr.org/2012/732. 2

[FSXY12] Atsushi Fujioka, Koutarou Suzuki, Keita Xa-
gawa, and Kazuki Yoneyama. Strongly se-
cure authenticated key exchange from factor-
ing, codes, and lattices. In Marc Fischlin,
Johannes Buchmann, and Mark Manulis, edi-
tors, PKC 2012, volume 7293 of LNCS, pages
467–484. Springer, Heidelberg, May 2012. 4

14

https://sike.org/#specification
https://sike.org/#specification
https://github.com/Yawning/nyquist
https://github.com/Yawning/nyquist
https://tches.iacr.org/index.php/TCHES/article/view/9069
https://tches.iacr.org/index.php/TCHES/article/view/9069
https://cryptojedi.org/papers/#kyber
https://cryptojedi.org/papers/#kyber
https://bench.cr.yp.to
https://www.debian.org/security/2008/dsa-1571
https://www.debian.org/security/2008/dsa-1571
https://eprint.iacr.org/2012/732
https://eprint.iacr.org/2012/732

[GHS+20] Guillaume Girol, Lucca Hirschi, Ralf Sasse,
Dennis Jackson, Cas Cremers, and David
Basin. A spectral analysis of noise: a compre-
hensive, automated, formal analysis of diffie-
hellman protocols. In 29th {USENIX} Se-
curity Symposium ({USENIX} Security 20),
pages 1857–1874, 2020. 2

[HNS+21] Andreas Hülsing, Kai-Chun Ning, Peter
Schwabe, Florian Weber, and Philip R. Zim-
mermann. Post-quantum WireGuard. In
2021 IEEE Symposium on Security and Pri-
vacy (SP), pages 304–321. IEEE Computer
Society, 2021. https://cryptojedi.org/
papers/#pqwireguard. 2, 3, 8

[JKSS17] Tibor Jager, Florian Kohlar, Sven Schäge,
and Jörg Schwenk. Authenticated confiden-
tial channel establishment and the security of
TLS-DHE. Journal of Cryptology, 30(4):1276–
1324, October 2017. 2

[KFH19] Kris Kwiatkowski and Armando Faz-
Hernández. Introducing circl: An advanced
cryptographic library. Posting in the Cloud-
flare Blog, 2019. https://blog.cloudflare.
com/introducing-circl/. 12

[KNB19] Nadim Kobeissi, Georgio Nicolas, and
Karthikeyan Bhargavan. Noise explorer:
Fully automated modeling and verification
for arbitrary noise protocols. In 2019 IEEE
European Symposium on Security and Privacy
(EuroS&P), pages 356–370. IEEE, 2019. 2

[Kra05] Hugo Krawczyk. HMQV: A high-performance
secure Diffie-Hellman protocol. In Victor
Shoup, editor, CRYPTO 2005, volume 3621
of LNCS, pages 546–566. Springer, Heidelberg,
August 2005. 2, 4

[LLM07] Brian A. LaMacchia, Kristin Lauter, and An-
ton Mityagin. Stronger security of authenti-
cated key exchange. In Willy Susilo, Joseph K.
Liu, and Yi Mu, editors, ProvSec 2007, volume
4784 of LNCS, pages 1–16. Springer, Heidel-
berg, November 2007. 2, 4, 8

[PC18] Trevor Perrin and Justin Cormack. Static-
Static Pattern Modifiers for Noise, 2018.
Revision 1, 2018-11-18, unofficial/unstable,
https://github.com/noiseprotocol/
noise_ss_spec. 6

[Pei20] Chris Peikert. He gives C-sieves on the
CSIDH. In Anne Canteaut and Yuval Ishai,
editors, EUROCRYPT 2020, Part II, volume
12106 of LNCS, pages 463–492. Springer, Hei-
delberg, May 2020. 2

[Per] Trevor Perrin. Noise protocol frame-
work. https://noiseprotocol.org/noise.
pdf (Revision 34 vom 2018-07-11). 1

[Per17] Trevor Perrin. The noise protocol
framework, December 2017. https:
//media.ccc.de/v/34c3-9222-the_noise_
protocol_framework. 1

[PST20] Christian Paquin, Douglas Stebila, and
Goutam Tamvada. Benchmarking post-
quantum cryptography in TLS. In Jintai
Ding and Jean-Pierre Tillich, editors, Post-
Quantum Cryptography - 11th International
Conference, PQCrypto 2020, pages 72–91.
Springer, Heidelberg, 2020. 13

[Rog02] Phillip Rogaway. Authenticated-encryption
with associated-data. In Vijayalakshmi Atluri,
editor, ACM CCS 2002, pages 98–107. ACM
Press, November 2002. 9, 25

[SSW20] Peter Schwabe, Douglas Stebila, and Thom
Wiggers. Post-quantum TLS without hand-
shake signatures. In Proceedings of the
2020 ACM SIGSAC Conference on Com-
puter and Communications Security, CCS’20,
pages 1461–1480. ACM, 2020. https://
cryptojedi.org/papers/#kemtls. 13

A. Proofs
Theorem 1. A Noise Hash Object NHO
is a secure pseudo-random Hash-Object if
HMAC-HASH is a dual-prf with: Adv𝑃𝑅𝐻𝑂

NHO, 𝒜,qi
(1𝜆) ≤

⎛⎜⎜
⎝

AdvCollRes
HMAC-HASH, 𝒜′ (1𝜆) +

AdvPRF-SWAP
HMAC-HASH, 𝒜′ (1𝜆) +

(2 ⋅ q) ⋅ AdvPRF
HMAC-HASH, 𝒜′ (1𝜆)

⎞⎟⎟
⎠

where q refers to the

total number of oracle-queries.

Proof. We use game-hopping to show the claim. Let 𝑞X be
the total number of calls to the X-oracle and Pr [diff𝑌] to
the difference in probability that an adversary 𝒜 outputs
1 between game Y and the previous game.
Let Game 0 refer to the regular PRHO-game with the

challenge-bit 𝑏 being set to 0.
In Game 1 we abort if there are ever two evaluations of

HMAC-HASH that produce the same output. To see that
this modification is undetectable we initialize a collision-
resistance-challenger and use its HMAC-HASH for this
protocol. If there are ever two different histories that
produce the same output, then there have to be two dif-
ferent inputs to HMAC-HASH that share an output by the
pigeon-hole principle. We can therefore use that collision
to win the collision-resistance game and find:

Pr [diff1] ≤ AdvCollRes
HMAC-HASH, 𝒜′ (1𝜆)

In Game 2 we replace the values of tmp, that are
computed during the oracle-invocations of Rand with ran-
dom (but consistent in case of equal values for state) val-
ues. We remark that these values are always computed
in the same way, irrespectively of whether it is part of
a call to input or finalize. To show that this replace-
ment is sound we initialize a PRF-SWAP-Challenger for

15

https://cryptojedi.org/papers/#pqwireguard
https://cryptojedi.org/papers/#pqwireguard
https://blog.cloudflare.com/introducing-circl/
https://blog.cloudflare.com/introducing-circl/
https://github.com/noiseprotocol/noise_ss_spec
https://github.com/noiseprotocol/noise_ss_spec
https://noiseprotocol.org/noise.pdf
https://noiseprotocol.org/noise.pdf
https://media.ccc.de/v/34c3-9222-the_noise_protocol_framework
https://media.ccc.de/v/34c3-9222-the_noise_protocol_framework
https://media.ccc.de/v/34c3-9222-the_noise_protocol_framework
https://cryptojedi.org/papers/#kemtls
https://cryptojedi.org/papers/#kemtls

HMAC-HASH and query it with state instead of comput-
ing tmp directly. Since the message-part of the original
invocation is a truly random bitstring this replacement
is sound. If the PRF-SWAP-Challengers challenge-bit is
zero, then it samples r randomly and computes tmp as
HMAC-HASH(state, r) and we are in Game 1. Otherwise
the values for tmp are sampled at random and we are in
Game 2. Thus we find:

Pr [diff2] ≤ AdvPRF-SWAP
HMAC-HASH, 𝒜′ (1𝜆)

In Game 3 we replace the results of all invocations
of HMAC-HASH that use one of the tmp that is ran-
dom by Game 2 as key with random and independent
values. Given that we replaced 𝑞Rand different instances
of tmp that may or may not all have different values
we will now use 𝑞Rand sub-games to replace all the val-
ues that are derived from them with randomness. Let
Game 2.0 = Game 2 and tmp𝑖 be the 𝑖’th tmp that is
created in the game and has a distinct value.
Then in Game 2.𝑖 we replace all outputs of

HMAC-HASH when called with tmp𝑖 as key, with ran-
dom values if tmp𝑖 is unique. If there is more than one
instance of In, Fin, or any combination of them during
whose execution we replace values, we replace correspond-
ing values with the same random value (this works be-
cause there are no collisions by Game 1). To show that
this replacement is sound we initialize a PRF-Challenger
for HMAC-HASH and query it with m whenever we would
compute HMAC-HASH(tmp, m) in Game 2.(𝑖 − 1). By
Game 2.(𝑖 − 1), tmp𝑖 is a truly random bitstring and all
messages within an individual oracle-invocation are dif-
ferent due to the appended counter. Moreover, the game
does not allow querying input and finalize-oracles with the
same history and there are no colliding histories that pro-
duce the same tmp𝑖 by Game 1. Hence, this replacement
is sound. If the PRF-Challengers challenge-bit is zero,
then it returns HMAC-HASH(tmp𝑖, m) for each input m
and we are in Game 2.(𝑖 − 1). Otherwise the outputs are
sampled at random and we are in Game 2.𝑖. Thus we
find:

Pr [diff2.𝑖] ≤ AdvPRF
HMAC-HASH, 𝒜′ (1𝜆)

Since there are at most 𝑞Rand different sub-games, we
can conclude by setting Game 3 = Game 2.𝑞Rand and sum-
marizing the losses of all sub-games that:

Pr [diff3] ≤ 𝑞Rand ⋅ AdvPRF
HMAC-HASH, 𝒜′ (1𝜆)

In Game 4 we replace the outputs of all invocations
of In and Fin where the hash-object has been randomized
with randomness. To do so we will 𝐽 sub-games, where
𝐽 ≤ 2(𝑞In+𝑞Fin) is the total number of all such invocations
in all chains. We set Game 3.0.1 ≔ Game 3, iterate 𝑗
from 1 to 𝐽 and note that Game 3.J.1 = Game 4.
In Game 3.𝑗.0 (following Game 3.(𝑗 − 1).1) we re-

place the value of tmp that is used during the computa-
tion of input/finalize in the 𝑗’th invocation of In and Fin (≕
tmp𝑗) with a random value, except for maintaining consis-
tency between identical invocations of HMAC-HASH. To
show that this replacement is sound we initialize a PRF-
Challenger for HMAC-HASH and replace the invocation

of HMAC-HASH that produces tmp𝑗 by an invocation of
the PRF-oracle and replace all instances where tmp is pro-
duced by the same history as tmp𝑗 with the output of that
invocation. Since state[𝑖] is random and independent at
the latest by the previous game, this replacement is valid.
If the PRF-Challengers challenge-bit is zero, then the or-
acle returns HMAC-HASH(k, state[𝑖]) with a random key
r and we are in Game 3.(𝑗 − 1).1. Otherwise the returned
values are random we are in Game 3.𝑗.0. Thus we find:

Pr [diff3.𝑗.1] ≤ AdvPRF
HMAC-HASH, 𝒜′ (1𝜆)

In Game 3.𝑗.1 we replace the return-values and re-
sulting states of all invocations of input and finalize that
use the value of tmp𝑗 (as defined in the previous sub-
game) by random values, such that identical invocations
of HMAC-HASH do however use the same values. To
show that this replacement is sound we initialize a PRF-
Challenger for HMAC-HASH and replace all calls using
tmp𝑗 as key with invocations of the oracle provided by
the challenger. Since tmp𝑗 is random and independent
by the previous game, this replacement is valid. If the
PRF-Challengers challenge-bit is zero, then it answers all
queries for a value m̌ by computing HMAC-HASH(k, m)
with a random key r and we are in Game 3.𝑗 − 1.1. Oth-
erwise the returned values are random we are in Game
3.𝑗.0. Thus we find:

Pr [diff3.𝑗.1] ≤ AdvPRF
HMAC-HASH, 𝒜′ (1𝜆)

At this point all randomized outputs are truly random
as they would be if the challenge-bit 𝑏 was 1, meaning that
by noting that 𝑞 = 𝑞In + 𝑞Fin + 𝑞Rand and summarizing all
losses, we can then find the claim stated in Theorem 1.

Theorem 2. Π achieves initiator-authenticity in stage
#𝐼 + 1 if the initiators static key and either
of the responders keys have not been corrupted
with: Adv𝑓𝐴𝐶𝐶𝐸.𝑎𝑢𝑡ℎℐ

Π, 𝒜 (1𝜆) ≤ 4(𝑛𝑃 ⋅𝑛𝑆)2

2𝜆 + 𝑛2
𝑃 ⋅ 𝑛𝑆 ⋅

(Adv𝑆𝐸𝐸𝐶
Σ, 𝒜′ (1𝜆) + AdvIND-CCA

𝐼𝐾𝐸𝑀, 𝒜′,𝑛𝑆
(1𝜆) + AdvPRHO

𝐻, 𝒜′ (1𝜆) +
Advauth

𝐴𝐸𝐴𝐷, 𝒜′ (1𝜆))

Theorem 3. Π′ achieves initiator-authenticity in
stage #𝐼 + 1 if the initiators static key and the
responders ephemeral key have not been corrupted
with: Adv𝑓𝐴𝐶𝐶𝐸.𝑎𝑢𝑡ℎℐ

Π, 𝒜 (1𝜆) ≤ 4(𝑛𝑃 ⋅𝑛𝑆)2

2𝜆 + 𝑛2
𝑃 ⋅ 𝑛𝑆 ⋅

(AdvIND-CCA
𝐼𝐾𝐸𝑀, 𝒜′,𝑛𝑆

(1𝜆)+AdvPRHO
𝐻, 𝒜′ (1𝜆)+Advauth

𝐴𝐸𝐴𝐷, 𝒜′ (1𝜆))

Theorem 4. Π achieves responder-authenticity in
stage #𝑅 + 1 if the responders static key and ei-
ther of the initiators keys have not been corrupted
with: Adv𝑓𝐴𝐶𝐶𝐸.𝑎𝑢𝑡ℎℛ

Π, 𝒜 (1𝜆) ≤ 4(𝑛𝑃 ⋅𝑛𝑆)2

2𝜆 + 𝑛2
𝑃 ⋅ 𝑛𝑆 ⋅

(Adv𝑆𝐸𝐸𝐶
Σ, 𝒜′ (1𝜆) + AdvIND-CCA

𝑅𝐾𝐸𝑀, 𝒜′,𝑛𝑆
(1𝜆) + AdvPRHO

𝐻, 𝒜′ (1𝜆) +
Advauth

𝐴𝐸𝐴𝐷, 𝒜′ (1𝜆))

Theorem 5. Π′ achieves responder-authenticity in
stage #𝑅 + 1 if the responders static key and
the initiators ephemeral key have not been corrupted
with: Adv𝑓𝐴𝐶𝐶𝐸.𝑎𝑢𝑡ℎℛ

Π, 𝒜 (1𝜆) ≤ 4(𝑛𝑃 ⋅𝑛𝑆)2

2𝜆 + 𝑛2
𝑃 ⋅ 𝑛𝑆 ⋅

(AdvIND-CCA
𝑅𝐾𝐸𝑀, 𝒜′,𝑛𝑆

(1𝜆)+AdvPRHO
𝐻, 𝒜′ (1𝜆)+Advauth

𝐴𝐸𝐴𝐷, 𝒜′ (1𝜆))

16

Proof. We show the theorems by contraction, assuming
that there is an adversary that can cause win ← 1 to be
set. For this we use game hoping: Let ℬ be the honest
party and 𝒞 be the potentially impersonated party (ℬ
would be the Responder and 𝒞 would be the Initiator in
Theorem 2, and in Theorem 4 it would be the other way
around). Let XKEM refer to the KEM instance used with
𝒞’s static key and Pr [break𝑋] be the adversarial advan-
tage in winning Game X.

Game 0 refers to the original fACCE-game.
In Game 1 we abort if there is ever a collision of

the ephemeral entropy. Even though we allow for cor-
rupted randomness, we assume that it is still properly
distributed. Thus the probability of a collision is given
by a birthday-bound for two parties per session, 𝑛𝑆 ses-
sions per party (not necessarily with an honest partner)
and 𝑛𝑃 parties, giving us:

Pr [break0] ≤ Pr [break1] + (2 ⋅ 𝑛𝑃 ⋅ 𝑛𝑆)2

2𝜆

In Game 2 we guess ℬ and 𝒞 as well as the session in
which ℬ is targeted by adversary 𝒜 and win = 1 is set.
We abort if the guess is wrong and find:

Pr [break1] ≤ 𝑛2
𝑃 ⋅ 𝑛𝑆 ⋅ Pr [break2]

In Game 3 we replace the randomness used for key-
encapsulation with 𝒞’s public key with true randomness
if SEEC is used and don’t do anything otherwise. To
show that this replacement is sound, we initialize a SEEC-
challenger for the used SEEC-scheme Σ and replace all of
ℬ’s computations of GenRand in other sessions with invo-
cations of GenRand', use the getKey- and getRandomness-
oracles to answer any corruption-queries by 𝒜 and replace
the GenRand-call for the encapsulation with an invocation
of the Challenge-oracle. If the challenge-bit 𝑏 is zero, then
the encapsulation-randomness is computed via GenRand
and we are in Game 2. Otherwise, it is a true random
value and we are in Game 3. Since 𝒜 is not allowed
to corrupt both ℬ’s static key and ℬ’s ephemeral key in
the target-session, this reduction follows the rules of the
SEEC-experiment and we find:

Pr [break2] ≤ Pr [break3] + Adv𝑆𝐸𝐸𝐶
Σ, 𝒜′ (1𝜆)

Alternatively, if SEEC is not used we don’t change the
game and note that we are only considering cases where
the randomness is uncorrupted in the first place, giving
us:

Pr [break2] = Pr [break3]
In Game 4 we replace the key 𝑘𝒞 encapsulated in

the ciphertext 𝑐𝒞 under 𝒞’s public key with a uniformly
random key. To show that this replacement is sound
we initialize an IND-CCA-challenger for XKEM and re-
place 𝒞’s static public key with the challenge public key.
Whenever 𝒞 needs to perform a decapsulation we use
the decapsulation-oracle which will by definition occur at
most 𝑛𝑆 times. This substitution is valid since the encap-
sulation of the challenge-ciphertext uses true randomness
by Game 3 and the static secret key is, by the definition

of this case, not corrupted and only used for decapsu-
lations that can easily be replaced with oracle-calls. If
the challenge-bit is zero, then all operations are still per-
formed as before and we are in Game 3. Otherwise, the
key has been replaced with an independent random value
and we are in Game 4. Thus we find:

Pr [break3] ≤ Pr [break4] + AdvIND-CCA
𝑋𝐾𝐸𝑀, 𝒜′,𝑛𝑆

(1𝜆)
In Game 5 we replace all outputs of the (implicit)

hash-object after inputting 𝑘𝒞, the previously replaced
key, with random values. To show that this replacement is
sound we initialize a PRHO-challenger for HO and replace
𝒞’s direct use of HO with the oracles in the following way:
Whenever 𝒞 starts a session and would normally initialize
a hash-object, she will instead call Create and use the
returned identifier 𝑖HO for all oracle invocations in that
session. Whenever 𝒞 would normally use the input/finalize
functions of HO she will instead invoke the In/Fin oracle,
with one exception: When she would normally input 𝑘𝒞,
she will instead invoke Rand. This substitution is valid
since 𝑘𝒞 is an independent random value by Game 4. If
the challenge bit 𝑏 of the PRHO game is 0, this is a purely
conceptual change and we are in Game 4. Otherwise, all
outputs after inputting 𝑘𝒞 get replaced with independent
random values and we are in Game 5. Thus:

Pr [break4] ≤ Pr [break5] + Adv𝑃𝑅𝐻𝑂
HO, 𝒜′ (1𝜆)

(We remark here that the replaced keys may be re-
peated in later sessions in which they are consistently re-
placed as well.)

In Game 6 we abort after receiving the reply to the
message containing 𝑐𝒞. By the definition of the protocol
this reply has to contain a ciphertext ̂𝑐 encrypted under a
key �̂� that was created as an output of the hash-object af-
ter inputting 𝑘𝒞. To show that this replacement is sound
we initialize an auth-challenger for the AEAD-scheme and
replace all encryptions that ℬ would perform with �̂� as
key with calls to the encryption-oracle. This replacement
is valid since �̂� is a fresh random value since Game 5 and
the nonces of all ciphertexts under �̂� that ℬ created have
distinct nonces that have a lower value then the nonce for
which ̂𝑐 has to be valid. Thus, if ̂𝑐 is a valid ciphertext we
win the authenticity game for the AEAD-scheme. Other-
wise the game would abort anyways and 𝒜 can no longer
cause win to be set to 1. We therefore find:

Pr [break6] ≤ Advauth
𝐴𝐸𝐴𝐷, 𝒜′ (1𝜆)

Summarizing these losses we find the adversarial ad-
vantage stated in Theorems 2-5.

Theorem 6. Π achieves confidentiality in stage #𝐼 if
either of the responders and the static key of the initiator
is uncorrupted and the responder is an honest party with:
Adv𝑓𝐴𝐶𝐶𝐸.𝑐𝑜𝑛𝑓ℐ

Π, 𝒜 (1𝜆) ≤ 4(𝑛𝑃 ⋅𝑛𝑆)2

2𝜆 +AdvCollRes
H, 𝒜′ (1𝜆)+𝑛2

𝑃 ⋅𝑛2
𝑆 ⋅

(Adv𝑆𝐸𝐸𝐶
Σ, 𝒜′ (1𝜆) + AdvIND-CCA

𝐼𝐾𝐸𝑀, 𝒜′,𝑛𝑆
(1𝜆) + AdvPRHO

𝐻, 𝒜′ (1𝜆) +
(𝑛𝑆 − 1) ⋅ Advauth

𝐴𝐸𝐴𝐷, 𝒜′ (1𝜆) + 𝑛𝐾 ⋅ AdvIND$-CPA
𝐴𝐸𝐴𝐷, 𝒜′ (1𝜆))

Where 𝑛𝐾 is the total number of session-keys used in a
session and 𝑛′

𝐾 refers to the total number of session keys
that have been used before the key encapsulated in IKEM
has been put into the hash-object.

17

Theorem 7. Π′ achieves confidentiality in stage #𝐼 if the
responders ephemeral key and the static key of the initia-
tor are uncorrupted and the responder is an honest party
with: Adv𝑓𝐴𝐶𝐶𝐸.𝑐𝑜𝑛𝑓ℐ

Π, 𝒜 (1𝜆) ≤ 4(𝑛𝑃 ⋅𝑛𝑆)2

2𝜆 + AdvCollRes
H, 𝒜′ (1𝜆) +

𝑛2
𝑃 ⋅ 𝑛2

𝑆 ⋅ (AdvIND-CCA
𝐼𝐾𝐸𝑀, 𝒜′,𝑛𝑆

(1𝜆) + AdvPRHO
𝐻, 𝒜′ (1𝜆) + (𝑛𝑆 − 1) ⋅

Advauth
𝐴𝐸𝐴𝐷, 𝒜′ (1𝜆) + 𝑛𝐾 ⋅ AdvIND$-CPA

𝐴𝐸𝐴𝐷, 𝒜′ (1𝜆))
Where 𝑛𝐾 is the total number of session-keys used in a

session and 𝑛′
𝐾 refers to the total number of session keys

that have been used before the key encapsulated in IKEM
has been put into the hash-object.

Theorem 8. Π achieves confidentiality in stage #𝑅 if
either of the initiators keys and the static key of the re-
sponder is uncorrupted and the initiator is an honest party
with: Adv𝑓𝐴𝐶𝐶𝐸.𝑐𝑜𝑛𝑓ℛ

Π, 𝒜 (1𝜆) ≤ 4(𝑛𝑃 ⋅𝑛𝑆)2

2𝜆 + AdvCollRes
H, 𝒜′ (1𝜆) +

𝑛2
𝑃 ⋅ 𝑛2

𝑆 ⋅ (Adv𝑆𝐸𝐸𝐶
Σ, 𝒜′ (1𝜆) + AdvIND-CCA

𝑅𝐾𝐸𝑀, 𝒜′,𝑛𝑆
(1𝜆) +

AdvPRHO
𝐻, 𝒜′ (1𝜆) + (𝑛𝑆 − 1) ⋅ Advauth

𝐴𝐸𝐴𝐷, 𝒜′ (1𝜆) + 𝑛𝐾 ⋅
AdvIND$-CPA

𝐴𝐸𝐴𝐷, 𝒜′ (1𝜆))
Where 𝑛𝐾 is the total number of session-keys used in a

session and 𝑛′
𝐾 refers to the total number of session keys

that have been used before the key encapsulated in RKEM
has been put into the hash-object.

Theorem 9. Π′ achieves confidentiality in stage #𝑅
if the initiators ephemeral key and the static key of
the responder are uncorrupted and the initiator is an
honest party with: Adv𝑓𝐴𝐶𝐶𝐸.𝑐𝑜𝑛𝑓ℛ

Π, 𝒜 (1𝜆) ≤ 4(𝑛𝑃 ⋅𝑛𝑆)2

2𝜆 +
AdvCollRes

H, 𝒜′ (1𝜆)+𝑛2
𝑃 ⋅𝑛2

𝑆 ⋅(AdvIND-CCA
𝑅𝐾𝐸𝑀, 𝒜′,𝑛𝑆

(1𝜆)+ 4(𝑛𝑃 ⋅𝑛𝑆)2

2𝜆 +
AdvPRHO

𝐻, 𝒜′ (1𝜆) + (𝑛𝑆 − 1) ⋅ Advauth
𝐴𝐸𝐴𝐷, 𝒜′ (1𝜆) + 𝑛𝐾 ⋅

AdvIND$-CPA
𝐴𝐸𝐴𝐷, 𝒜′ (1𝜆))

Where 𝑛𝐾 is the total number of session-keys used in a
session and 𝑛′

𝐾 refers to the total number of session keys
that have been used before the key encapsulated in RKEM
has been put into the hash-object.

Proof. We use game hoping to show the statements. Let
ℬ be the assumed honest party and 𝒞 be the party who
owns the assumed uncorrupted key. (For Theorems 6
and 7, ℬ would be the Responder and 𝒞 would be the
Initiator, and, for Theorem 8 and 9, it would be the other
way around.) Let XKEM refer to the static KEM of 𝒞.

Game 0 refers to the original fACCE-game.
In Game 1 we abort if there is ever a hash-collision for

hash-chain H. To show that this replacement is sound we
initialize a collision-resistance-challenger for H and output
any collision to it. We find:

Pr [break0] ≤ Pr [break1] + AdvCollRes
H, 𝒜′ (1𝜆)

In Game 2 we abort if there is ever a collision of the
ephemeral entropy. The probability of this is given by a
birthday-bound and we find:

Pr [break1] ≤ Pr [break2] + (2 ⋅ 𝑛𝑃 ⋅ 𝑛𝑆)2

2𝜆

In Game 3 we guess ℬ and 𝒞 as well as the matching
sessions, that 𝒜 attacks and abort if the guess is wrong.
Thus we find:

Pr [break2] ≤ 𝑛2
𝑃 ⋅ 𝑛2

𝑆 ⋅ Pr [break3]

In Game 4 we replace the randomness used for key-
encapsulation with 𝒞’s public key with true random-
ness if SEEC is used and don’t do anything otherwise.
To show that this replacement is sound, we initialize
a SEEC-challenger for Σ and replace all of ℬ’s com-
putations of GenRand in other sessions with invocations
of GenRand', use the getKey- and getRandomness-oracles
to answer any corruption-queries by 𝒜 and replace the
GenRand-call for the encapsulation with an invocation of
the Challenge-oracle. If the challenge-bit 𝑏 is zero, then
the encapsulation-randomness is computed via GenRand
and we are in Game 3. Otherwise, it is a true random
value and we are in Game 4. Since 𝒜 is not allowed
to corrupt both ℬ’s static key and ℬ’s ephemeral key in
the target-session, this reduction follows the rules of the
SEEC-experiment and we find:

Pr [break3] ≤ Pr [break4] + Adv𝑆𝐸𝐸𝐶
Σ, 𝒜′ (1𝜆)

Alternatively, if SEEC is not used we don’t do anything
here and thus trivially find:

Pr [break3] = Pr [break4]

In Game 5 we replace the key 𝑘𝒞 encapsulated in the
ciphertext 𝑐𝒞 for 𝒞’s public key with a uniform random
key. To show that this replacement is sound we initial-
ize an IND-CCA-challenger for XKEM and replace 𝒞’s
static public key with the challenge public key. When-
ever 𝒞 needs to perform a decapsulation we use the
decapsulation-oracle instead which will by definition oc-
cur at most 𝑛𝑆 times. If the ciphertext 𝑐𝒞 is replayed in
later sessions, we use the same value for 𝑘𝒞 there, that
we use for the current session. This substitution is valid
since the encapsulation of the challenge-ciphertext uses
true randomness by Game 4 and the static secret key is,
by the definition of this case, not corrupted and only used
for decapsulations that can easily be replaced with oracle-
calls, If the challenge-bit is zero, then all operations are
still performed as before and we are in Game 4. Otherwise
the key has been replaced with an independent random
value and we are in Game 5. Thus we find:

Pr [break4] ≤ Pr [break5] + AdvIND-CCA
𝑋𝐾𝐸𝑀, 𝒜′,𝑛𝑆

(1𝜆)

In Game 6 we replace all outputs of the (implicit)
hash-object after inputting 𝑘𝒞, the previously replaced
key, with random values. To show that this replacement is
sound we initialize a PRHO-challenger for HO and replace
𝒞’s direct use of HO with the oracles in the following way:
Whenever 𝒞 starts a session and would normally initialize
a hash-object, she will instead call Create and use the
returned identifier 𝑖HO for all oracle invocations in that
session. Whenever 𝒞 would normally use the input/finalize
functions of HO she will instead invoke the In/Fin oracle,
with one exception: Whenever 𝒞 would normally use the
input/finalize functions of HO with the previously replaced
value 𝑘𝒞, she will instead invoke Rand(𝑖HO) including any
later session that reuses that key (due to replays). This
substitution is valid since 𝑘𝒞 is an independent random
value by Game 5. Therefore, If the challenge bit 𝑏 is zero,
this is a purely conceptual change and we are in Game

18

5. Otherwise all outputs after inputting 𝑘𝒞 get replaced
with independent random values and we are in Game 6.
Thus:

Pr [break5] ≤ Pr [break6] + Adv𝑃𝑅𝐻𝑂
HO, 𝒜′ (1𝜆)

In Game 7 we terminate the execution of all sessions
that recreate the state of the hash-object after 𝑘𝒞 has
been fed into it in the same way an honest party would
terminate the execution after receiving an invalid AEAD-
ciphertext. This might happen as the result of the adver-
sary replaying messages including KEM-ciphertexts in a
later session to then extract information about the target-
session from that other session. Let 𝑘† be the first AEAD-
key that is generated from the hash-object after feeding
𝑘𝒞 into it. To show that this replacement is sound we
use two sub-games during which we will first guess the
index of the first session in which the adversary sends a
successfully forged ciphertext and then argue that this
ciphertext can be used to break the authenticity of the
AEAD-scheme. Let Game 7.0 = Game 6.
In Game 7.1 we guess the index of the first session

in which the adversary creates a valid ciphertext for 𝑘† if
there is any. Given that a party may be involved in up
to ns sessions of which one is the target-session and can
therefore be ignored, we find:

Pr [break7.0] ≤ (𝑛𝑆 − 1) ⋅ Pr [break7.1]

In Game 7.2 we terminate the execution of all sessions
that recreated 𝑘†. To show that this replacement is sound,
we initialize an authenticity-challenger for our AEAD-
scheme and replace all encryptions under 𝑘† with calls to
the encryption-oracle and return the first valid ciphertext
to the challenger. This substitution is valid, since 𝑘† is
random by Game 6 and we know which ciphertext is the
first valid forgery by Game 7.1, we furthermore know by
Game 2, Game 1 and the definition of the protocol that all
of 𝒞’s sessions use a different ephemeral public key, that
therefore ℎ is different in every session and that since ℎ
is used as associated data for the AEAD-scheme that all
honestly generated ciphertexts would have to decrypt suc-
cessfully with different associated data (which would be
accepted by the authenticity-game as a successful attack).
If the ciphertext by the adversary is invalid then we are
terminating in either case and this change is perfectly un-
detectable. Otherwise we win the authenticity-game for
the AEAD-scheme and thus find:

Pr [break7.1] ≤ Pr [break7.2] + Advauth
𝐴𝐸𝐴𝐷, 𝒜′ (1𝜆)

Combining the sub-games we get:

Pr [break7.0] ≤ Pr [break7.2] + (𝑛𝑆 − 1) ⋅ Advauth
𝐴𝐸𝐴𝐷, 𝒜′ (1𝜆)

We note that the correctness of the guess in Game 7.1
only matters for Game 7.2 and there only in the event of
an authenticity-break of the AEAD-scheme, which means
that it does not affect the following games and by defining
Game 7 ∶= Game 7.2 we find:

Pr [break6] ≤ Pr [break7] + (𝑛𝑆 − 1) ⋅ Advauth
𝐴𝐸𝐴𝐷, 𝒜′ (1𝜆)

In Game 8 we guess the session key �̂� for which 𝒜
will guess the challenge-bit. There are by definition 𝑛𝐾
session keys in total, which forms a lower bound of 1

𝑛𝐾
for

guessing correctly and we find:

Pr [break7] ≤ 𝑛𝐾 ⋅ Pr [break8]

In Game 9 we use the remaining adversarial advantage
to win the IND$-CPA-game for the AEAD-scheme with
the same advantage. In order to do so we initialize an
IND$-CPA-challenger and replace all encryptions using �̂�
with oracle invocations of Enc. This substitution is valid
as �̂� is random and independent by Game 7 and because
the AEAD challenge-bit and the stage-bit are sampled
from the same distribution. We note that by the argument
given in Game 6, 𝒞 will not use a key that is not derived
from her ephemeral key to encrypt any message, and that
by Game 7 all keys that she uses to encrypt messages
in the target-session are random and independent of the
keys in all other sessions. We then forward 𝒜’s guess of
the stage-bit to the AEAD-challenger and win if and only
if 𝒜 wins, giving us:

Pr [break8] = Pr [break9] = AdvIND$-CPA
𝐴𝐸𝐴𝐷, 𝒜′ (1𝜆)

Summarizing these losses we find the adversarial ad-
vantage.

Theorem 10. Π achieves confidentiality in stage #𝐸
if both the initiator and the responder have at least one
uncorrupted key and both are honest partners with:

Adv𝑓𝐴𝐶𝐶𝐸.𝑐𝑜𝑛𝑓𝐸
Π, 𝒜 (1𝜆) ≤ 4(𝑛𝑃 ⋅𝑛𝑆)2

2𝜆 +AdvCollRes
H, 𝒜′ (1𝜆)+𝑛2

𝑃 ⋅
𝑛2

𝑆 ⋅(2⋅Adv𝑆𝐸𝐸𝐶
Σ, 𝒜′ (1𝜆)+AdvIND-CCA

𝐸𝐾𝐸𝑀, 𝒜′,1 (1𝜆)+AdvPRHO
𝐻, 𝒜′ (1𝜆)

+ 𝑛𝐾 ⋅ AdvIND$-CPA
𝐴𝐸𝐴𝐷, 𝒜′ (1𝜆))

Where 𝑛𝐾 is the total number of session-keys used in a
session and 𝑛′

𝐾 refers to the total number of session keys
that have been used before the key encapsulated in EKEM
has been put into the hash-object.

Theorem 11. Π′ achieves confidentiality in stage #𝐸 if
neither the initiators nor the responders ephemeral keys
are uncorrupted and both are honest partners with:

Adv𝑓𝐴𝐶𝐶𝐸.𝑐𝑜𝑛𝑓𝐸
Π, 𝒜 (1𝜆) ≤ 4(𝑛𝑃 ⋅𝑛𝑆)2

2𝜆 + AdvCollRes
H, 𝒜′ (1𝜆) +

𝑛2
𝑃 ⋅ 𝑛2

𝑆 ⋅ (AdvIND-CCA
𝐸𝐾𝐸𝑀, 𝒜′,1 (1𝜆) + AdvPRHO

𝐻, 𝒜′ (1𝜆) + 𝑛𝐾 ⋅
AdvIND$-CPA

𝐴𝐸𝐴𝐷, 𝒜′ (1𝜆))
Where 𝑛𝐾 is the total number of session-keys used in a

session and 𝑛′
𝐾 refers to the total number of session keys

that have been used before the key encapsulated in EKEM
has been put into the hash-object.

Proof. We use game hoping to show the statements. The
following proof assumes without loss of generality, that
the ephemeral public key is sent by the initiator. We use
this convention here as it is the case in all PQNoise base-
patterns as well as almost all sensible PQNoise patterns
in general and because simply relabeling initiator and re-
sponder is sufficient for the complimentary case.

Game 0 refers to the original fACCE-game.
In Game 1 we abort if there is ever a collision of the

ephemeral entropy. The probability of this is given by a

19

birthday-bound and we find:

Pr [break0] ≤ Pr [break1] + 4(𝑛𝑃 ⋅ 𝑛𝑆)2

2𝜆

In Game 2 we guess ℐ and ℛ as well as the matching
sessions, for which 𝒜 guesses a stage-bit and abort if we
guess wrong. Thus we find:

Pr [break1] ≤ 𝑛2
𝑃 ⋅ 𝑛2

𝑆 ⋅ Pr [break2]

In Game 3 we replace the randomness used for gen-
eration of ℐ’s ephemeral keypair with true randomness
if SEEC is used and don’t do anything otherwise. To
show that this replacement is sound, we initialize a
SEEC-challenger for Σ and replace all of ℐ’s compu-
tations of GenRand in other sessions with invocations
of GenRand', use the getKey- and getRandomness-oracles
to answer any corruption-queries by 𝒜 and replace the
GenRand-call for the encapsulation with an invocation of
the Challenge-oracle. If the challenge-bit 𝑏 is zero, then
the encapsulation-randomness is computed via GenRand
and we are in Game 2. Otherwise it is a true random
value and we are in Game 3. Since 𝒜 is not allowed
to corrupt both ℐ’s static key and ℐ’s ephemeral key in
the target-session, this reduction follows the rules of the
SEEC-experiment and we find:

Pr [break2] ≤ Pr [break3] + Adv𝑆𝐸𝐸𝐶
Σ, 𝒜′ (1𝜆)

Alternatively, if SEEC is not used we don’t do anything
here and thus trivialy find:

Pr [break2] = Pr [break3]

In Game 4 we replace the randomness used for key-
encapsulation with ℐ’s public key with true random-
ness if SEEC is used and don’t do anything otherwise.
To show that this replacement is sound, we initialize
a SEEC-challenger for Σ and replace all of ℛ’s com-
putations of GenRand in other sessions with invocations
of GenRand', use the getKey- and getRandomness-oracles
to answer any corruption-queries by 𝒜 and replace the
GenRand-call for the encapsulation with an invocation of
the Challenge-oracle. If the challenge-bit 𝑏 is zero, then
the encapsulation-randomness is computed via GenRand
and we are in Game 3. Otherwise it is a true random
value and we are in Game 4. Since 𝒜 is not allowed to
corrupt both ℛ’s static key and ℛ’s ephemeral key in
the target-session, this reduction follows the rules of the
SEEC-experiment and we find:

Pr [break3] ≤ Pr [break4] + Adv𝑆𝐸𝐸𝐶
Σ, 𝒜′ (1𝜆)

Alternatively, if SEEC is not used we don’t do anything
here and thus trivialy find:

Pr [break3] = Pr [break4]

In Game 5 we replace the key 𝑘𝐸 encapsulated in
the ephemeral ciphertext 𝑐𝐸 with a uniform random
key. To show that this replacement is sound we initial-
ize an IND-1CCA-challenger for EKem and replace the

ephemeral public key with the challenge public key. This
substitution is valid since in the case of a correctly trans-
mitted 𝑐𝐸 the ephemeral keypair is honestly generated
with true randomness by Game 3 and the encapsulation
of the challenge-ciphertext uses true randomness by Game
4. In case the 𝑐𝐸 ℐ receives (≕ 𝑐′

𝐸)) is different from the
one ℛ sent, then the two sessions no longer match, thus
the freshness bit is set to zero for all following stages which
the adversary can no longer attack in order to win.

The initiator will in this case use the decapsulation-
oracle once to decapsulate 𝑐′

𝐸 and continue the protocol
with the decapsulated key. If the challenge-bit is zero,
then all operations are still performed as before and we
are in Game 4. Otherwise the key has been replaced with
an independent random value and we are in Game 5. Thus
we find:

Pr [break4] ≤ Pr [break5] + AdvIND-CCA
𝐸𝐾𝐸𝑀, 𝒜′,1 (1𝜆)

In Game 6 we replace all outputs of the (implicit)
Hash-object after inputting the previously replaced key
with random values. To show that this replacement is
sound we initialize a PRHO-challenger for H and replace
𝒞’s direct use of H with the oracles in the following way:
Whenever 𝒞 starts a session and would normally initial-
ize a hash-object, she will instead call Create and use the
returned identifier 𝑖H for all oracle invocations in that ses-
sion. Whenever 𝒞 would normally use the input/finalize
functions of H she will instead invoke the In/Fin oracle,
except: Whenever 𝒞 would normally use the input/finalize
functions of H with the previously replaced value 𝑘𝐸, she
will instead invoke This substitution is valid since 𝑘𝐸 is an
independent random value by Game 5. Therefore, If the
challenge bit 𝑏 is zero, this is a purely conceptual change
and we are in Game 5. Otherwise all outputs after in-
putting 𝑘𝒞 get replaced with independent random values
and we are in Game 6. Thus:

Pr [break5] ≤ Pr [break6] + Adv𝑃𝑅𝐻𝑂
H, 𝒜′ (1𝜆)

In Game 7 we guess the session key �̂� for which 𝒜 will
guess the challenge-bit if 𝑐′

𝐸 = 𝑐𝐸. There are by definition
𝑛𝐾 session keys in total, which forms a lower bound of 1

𝑛𝐾
for guessing correctly and we find: If 𝑐′

𝐸 ≠ 𝑐𝐸 there is
only one stage 𝒜 can attack, in which case this guess
becomes trivial and since 1 ≤ 𝑛𝐾 we find:

Pr [break6] ≤ 𝑛𝐾 ⋅ Pr [break7]
In Game 8 we use the remaining adversarial advantage

to win the IND$-CPA-game for the AEAD-scheme with
the same advantage. In order to do so we initialize an
IND$-CPA-challenger and replace all encryptions using �̂�
with oracle invocations of Enc. This substitution is valid
as �̂� is random and independent by Game 7 and because
the AEAD challenge-bit and the stage-bit are sampled
from the same distribution. We then forward 𝒜’s guess
of the stage-bit to the AEAD-challenger and win if and
only if 𝒜 wins, giving us:

Pr [break7] = Pr [break8] = AdvIND$-CPA
𝐴𝐸𝐴𝐷, 𝒜′ (1𝜆)

Summarizing these losses we find the adversarial ad-
vantage stated in Theorems 10 and 11.

20

B. Standard Definitions
B.1. AEAD
We essentially use the same definition for AEAD that was
used by the fACCE-paper [DRS20] which covers both un-
forgability and indistinguishability in one notion, except
that we fix two minor aspects in the definition: First we
ban nonce-reuse and require that |𝑚0| = |𝑚1|. Secondly
we swap the cases of 𝑏 = 0 and 𝑏 = 1 to be more consistent
with our other definitions (which use 0 for the “real” and
1 for the “idealized” case). In addition to that we remove
an unnecessary branch from the Dec-oracle to simplify the
experiment (this is a purely cosmetic change).

Definition 4 (AEAD). An AEAD-scheme is a tuple of
three algorithms:

• Gen is a probabilistic algorithm that takes a security-
parameter 1𝜆 and returns a key k from a keyspace 𝒦.

• Enc takes a key k, a nonce ň from a nonce-space 𝒩,
a message m and associated data ad, both from a
message-space ℳ and returns a ciphertext c from a
ciphertext-space 𝒞.

• Dec takes a key k, a nonce ň, a ciphertext c and
associated data ad and returns a message m.

Definition 5 (AEAD-completeness). An AEAD-scheme
AEAD is perfectly complete if:

∀k ∈ 𝒦, n ∈ 𝒩, m, ad ∈ ℳ ∶ Dec(k, n, Enc(k, n, m, ad), ad) = m

Definition 6 (AEAD-confidentiality). An AEAD-
scheme AEAD is IND$-CPA-secure if:

∀𝒜 ∊ QPT, 𝜆 ∊ ℕ ∶

∣Pr [𝒜Enc(𝑘,⋅,⋅,⋅)(1𝜆) = 1∣𝑘 ← Gen(1𝜆)]
−Pr [𝒜$(⋅,⋅,⋅)(1𝜆) = 1] ∣

≕ AdvIND$-CPA
𝐴𝐸𝐴𝐷, 𝒜 (1𝜆) ≤ negl (𝜆)

where 𝒜 is not allowed to query the oracle with the same
nonce twice and $ is an oracle that returns randomness
on all queries.

Definition 7 (AEAD-authenticity). An AEAD-scheme
AEAD offers authenticity if:

∀𝒜 ∊ QPT, 𝜆 ∊ ℕ ∶ Pr [Exp𝑎𝑢𝑡ℎ
𝐴𝐸𝐴𝐷,𝒜 (1𝜆) = 1]

≕ Advauth
𝐴𝐸𝐴𝐷, 𝒜 (1𝜆) ≤ negl (𝜆)

Where Exp𝑎𝑢𝑡ℎ
𝐴𝐸𝐴𝐷,𝒜 is defined as in Experiment 2.

B.2. PRF
A Pseudo-Random Function (PRF) is a function that
takes two arguments k and m and returns a pseudo-
random string rand.

Experiment 2: Exp𝑎𝑢𝑡ℎ
𝐴𝐸𝐴𝐷,𝒜, the security ex-

periment for an AEAD-scheme AEAD.
1 𝑘 ≔ Gen(1𝜆)
2 𝑁 ≔ ∅
3 𝐶 ≔ ∅
4 Oracle Enc(𝑛, 𝑎𝑑, 𝑚):
5 abort_if (𝑛 ∈ N)
6 𝑐 ≔ Enc(𝑘, 𝑛, 𝑎𝑑, 𝑚0)
7 𝑁 ∪ ={𝑛}
8 𝐶 ∪ ={(𝑛, 𝑐, 𝑎𝑑)}
9 return 𝑐

10 𝑛, 𝑐, 𝑎𝑑 ≔ 𝒜Enc(1𝜆)
11 abort_if ((𝑛, 𝑐, 𝑎𝑑) ∈ 𝐶)
12 return Dec(𝑘, 𝑛, 𝑐, 𝑎𝑑) ≠ ⊥

Definition 8 (PRF). We say that a function H is a secure
Pseudo-Random Function (PRF) if and only if:

∀𝒜 ∊ QPT, 𝜆 ∊ ℕ ∶
∣Pr [ExpPRF

H,𝒜,0 (1𝜆) = 1] − Pr [ExpPRF
H,𝒜,1 (1𝜆) = 1]∣

≕ AdvPRF
H, 𝒜 (1𝜆) ≤ negl (𝜆)

Where ExpPRF
H,𝒜 is defined as in Experiment 3.

Experiment 3: ExpPRF
H,𝒜,b, the security experi-

ment for a PRF H.
1 𝑘 ←$ {0, 1}𝜆

2 queries ≔ ∅
3 Oracle H′(m):
4 abort_if (m ∈ queries)
5 queries ∪ ={m}
6 if 𝑏 = 0:
7 return H(k, m)
8 else:
9 𝑟 ←$ {0, 1}𝜆

10 return 𝑟
11 return 𝒜H '(1𝜆)

Definition 9 (PRF-SWAP). We say that a function
H is a secure swapped Pseudo-Random Function (PRF-
SWAP) if and only if it is a secure PRF if its arguments
are swapped.

Definition 10 (dual-PRF). We say that a function H is a
secure dual Pseudo-Random Function (dual-PRF) if and
only if it is both a secure PRF and a secure PRF-SWAP.

B.3. KEMs
Definition 11 (KEM). A Key -Encapsulation Mecha-
nism (KEM) is a tuple of three algorithms:

• Gen is a probabilistic algorithm that takes a security-
parameter 1𝜆 and returns a keypair (pk, sk) ∈ 𝒫𝒦 ×
𝒮𝒦.

21

• Enc is a probabilistic algorithm that takes a pub-
lic key pk ∈ 𝒫𝒦 and returns a ciphertext c from
a ciphertext-space C and a shared secret ss from a
secret-space 𝒮𝒮.

• Dec takes a secret key sk ∈ 𝒮𝒦 and a ciphertext
c ∈ 𝒞 and returns a shared secret ss ∈ 𝒮𝒮.

Definition 12 (KEM-Completeness). We say that a
KEM KEM is perfectly complete if:

∀𝜆 ∈ ℕ ∶ Pr [Dec(sk, c) = k∣pk, sk ≔ Gen(1𝜆)
c, k ≔ Enc(pk)] = 1

Definition 13 (IND-CCA). We say that a KEM KEM
offers INDistinguishability under Chosen Ciphertext At-
tacks (IND-CCA) if and only if:

∀𝒜 ∊ QPT, 𝜆 ∊ ℕ ∶ ∣Pr [ExpIND-CCA
KEM,𝒜,𝑞 (1𝜆) = 1] − 1

2∣

≕ AdvIND-CCA
KEM, 𝒜,𝑞 (1𝜆) ≤ negl (𝜆)

Where ExpIND-CCA
KEM,𝒜,𝑞 is defined as in Experiment 4.

Intuitively 𝑞 is the maximum number of oracle-queries
that the adversary may perform.

Experiment 4: ExpIND-CCA
KEM,𝒜,𝑞, the security ex-

periment for an IND-CCA-KEM KEM.
1 pk, sk ≔ KEM. gen(1𝜆)
2 c∗, 𝑘0 ≔ KEM. enc(pk)
3 queries ≔ 0
4 𝑘1 ←$ {0, 1}𝜆

5 𝑏 ←$ {0, 1}
6 Oracle Dec(c):
7 queries + =1
8 abort_if (queries > 𝑞 ∨ c = c∗)
9 return KEM. dec(sk, c)

10 𝑏′ ≔ 𝒜Dec(c∗, kb)
11 return 𝑏 = 𝑏′

C. SEEC
Definition 14 (SEEC). Formally a SEEC-scheme is a
tuple of two algorithms: GenKey and GenRand.

GenKey(1𝜆) → sk takes a security-parameter 1𝜆 and re-
turns a secret-key sk.

GenRand(sk, r) → (rand, sk) is a deterministic algorithm
that takes a secret-key sk and a random nonce r and
returns a random bit-string rand and a (potentially
updated) secret key sk.

As a convention calls to GenRand that only pass sk as
argument shall be considered a shorthand for passing a
independently sampled random r.

Definition 15 (SEEC-security). A SEEC-scheme Σ is
secure if and only if:

∀𝒜 ∈ QPT, 𝜆 ∈ ℕ ∶

Pr [Exp𝑆𝐸𝐸𝐶
Σ,𝒜 (1𝜆) = 1] − 1

2 = ∶Adv𝑆𝐸𝐸𝐶
Σ, 𝒜 (1𝜆) ≤ negl (𝜆)

Where Exp𝑆𝐸𝐸𝐶
Σ,𝒜 is defined as in Experiment 5.

Experiment 5: Exp𝑆𝐸𝐸𝐶
Σ,𝒜 , the security exper-

iment for SEEC for a scheme Σ.
1 sk ∶= GenKey(1𝜆)
2 𝑏 ←$ {0, 1}
3 randomnesses ∶= []
4 r_revealed ∶= ∅
5 keys_revealed ∶= 0
6 challenges ∶= ∅
7 keys ∶= [sk]
8 𝑖 ∶= 0
9 Oracle GenRand':

10 𝑟 ←$ {0, 1}𝜆

11 randomnesses[𝑖] ∶= 𝑟
12 𝑖 ∶= 𝑖 + 1
13 ret, sk ∶= GenRand(sk, 𝑟)
14 keys[𝑖] ∶= sk return ret
15 Oracle getKeys:
16 keys_revealed ∶= 1
17 return keys
18 Oracle getCoins (𝑗):
19 abort_if (𝑗 ∉ {0, … , 𝑖 − 1})
20 r_revealed ∪ ={𝑗}
21 return 𝑟[𝑗]
22 Oracle Challenge:
23 abort_if (challenge_index ≠ ⊥)
24 𝑟 ←$ {0, 1}𝜆

25 𝑅0, sk ∶= GenRand(sk, 𝑟)
26 𝑅1 ←$ {0, 1}𝜆

27 randomnesses[𝑖] ∶= 𝑟
28 challenges ∪ ={𝑖}
29 𝑖 ∶= 𝑖 + 1
30 return 𝑅𝑏
31 𝑏′ ∶= 𝒜GenRand',getKey,getCoins,Challenge(1𝜆)
32 if keys_revealed

∧ (r_revealed ∩ challenges ≠ ∅):
33 return 0
34 return 𝑏 = 𝑏′

On a high level this definition has similarities to that of
a dual-PRF (see Appendix B.2), as it requires the adver-
sary to distinguish the output of a function that receives
one random and one known output from randomness. A
closer look reveals several differences however: Firstly we
allow the algorithm to update the long-term secret to en-
able the use of SEEC schemes that evolve their keys. Sec-
ondly we do not allow the adversary to choose either argu-
ment himself, as we currently only aim to give protection
from predictable, but not from non-uniform randomness.

22

Lastly and most importantly we allow free mixing of real
queries and challenge-queries that may or may not return
real outputs. This is a desirable property for the use in
protocols, where a party may use both fully exposed and
partially unexposed secrets in different sessions. By al-
lowing free mixing of the queries it becomes possible to
have fully exposed outputs, while those with partially un-
known inputs can be replaced by random values.
We specify for PQNoise that a SEEC-scheme may be

used for both the generation of the ephemeral keypairs
and all randomness used in key-encapsulation with the
remark that not using it breaks security in settings where
ephemeral randomness can be corrupted; since that may
sometimes be considered acceptable, we provide a full
analysis of both cases.
We provide PRP-SEEC in the supplementary material

(Appendix E) as a simple and efficient instantiation of
SEEC, note however that since the specific scheme in
question is fully hidden from the peer and our proof is
fully generic, using a different approach such as the one
presented in RFC 8937 is viable and may sometimes be
preferable (see [ACG+20] for a discussion).

D. The (Extended) Flexible ACCE
Framework

In this section we give the full definition of the (ex-
tended) Flexible ACCE framework. We note that much of
what follows is verbatim from the original fACCE model
[DRS20], and that the differences between the two models
(and a high-level overview of the fACCE model is given
in Section 3.

D.1. fACCE Primitive Description
Recall that an fACCE protocol is a cryptographic pro-
tocol that establishes a secure channel between two par-
ties. Eschewing a modular approach, channel establish-
ment and payload transmission are handled by the same
algorithms – where Send sends channel establishment in-
formation and payload data, and Recv receives. These
functions may also update the internal state of the ses-
sions. In addition to updating state and outputting ci-
phertext / plaintext (for Send and Recv, respectively) -
these algorithms also output a stage flag 𝜍. This flag 𝜍
can be used to indicate when an invocation of the algo-
rithm reaches the next stage of security properties.

Definition 16 (Flexible ACCE). A flexible ACCE
protocol fACCE is a tuple of algorithms fACCE =
(KGen, Init, Send, Recv) associated with a long-term secret
key space ℒ𝒮𝒦, a long-term public key space ℒ𝒫𝒦, an
ephemeral secret key space ℰ𝒮𝒦 an ephemeral public key
space ℰ𝒫𝒦, and a state space 𝒮𝒯. The definition of
fACCE algorithms are as follows:
• KGen →$ (sk, pk) generates a long-term keys where

sk ∈ ℒ𝒮𝒦, pk ∈ ℒ𝒫𝒦.
• Init(sk, ppk, 𝜌, ad) →$ st initializes a session to begin

communication, where sk (optionally) are the initia-
tor’s long-term secret keys, ppk (optionally) is the

long-term public key of the intended session partner,
𝜌 ∈ {i, r} is the session’s role (i.e., initiator or re-
sponder), ad is data associated with this session, and
sk ∈ ℒ𝒮𝒦∪{⊥}, ppk ∈ ℒ𝒫𝒦∪{⊥}, ad ∈ {0, 1}∗, st ∈
𝒮𝒯.

• Send(sk, st, 𝑚) →$ (st′, 𝑐) continues the protocol ex-
ecution in a session and takes message 𝑚 to out-
put new state st′, and ciphertext 𝑐, where sk ∈
ℒ𝒮𝒦 ∪ {⊥}, st, st′ ∈ 𝒮𝒯, 𝑚, 𝑐 ∈ {0, 1}∗. Note that
Send may generate additional ephemeral key pairs
(epk, esk) ∈ ℰ𝒫𝒦 × ℰ𝒮𝒦.

• Recv(sk, st, 𝑐) →$ (st′, 𝑚) processes the protocol ex-
ecution in a session triggered by 𝑐 and outputs new
state st′, and message 𝑚, where sk ∈ ℒ𝒮𝒦∪{⊥}, st ∈
𝒮𝒯, st′ ∈ 𝒮𝒯 ∪ {⊥}, 𝑚, 𝑐 ∈ {0, 1}∗. If st′ = ⊥ is out-
put, then this denotes a rejection of this ciphertext.

As described in Section 3 we consider messages that
are sent in an fACCE protocol to be sent in a ping-pong
fashion, i.e. The initiator sends a message to the respon-
der, which then replies with a message to the initiator.
Multiple messages sent in a single flow are considered to
be an extension of a single message. Each message sent
monotonically increases the stage number of the protocol,
i.e. stage one is the first message sent from the initiator
to the responder, stage two is the first message sent from
the responder to the initiator, etc. This is opposed to the
original fACCE formulation, which only increased stage
numbers upon achieving new security properties.

Furthermore, we only consider protocols with FIFO
channels (i.e., protocols enforcing correct message order,
and aborting for message omissions).

We define the correctness of an fACCE protocol below.
Intuitively an fACCE protocol is correct if messages ac-
cepted from the established channel, were equally sent to
this channel by the partner.

Definition 17 (Correctness of fACCE). An
fACCE protocol is correct if, for any two tu-
ples (ski, pki), (skr, pkr) output from KGen or
set to (⊥, ⊥) respectively, their session states
Init(ski, pkr, i, ad) →$ sti, Init(skr, pki, r, ad) →$ str
with ad ∈ {0, 1}∗, and message-stage-ciphertext tran-
scripts MSC𝜌, MSC ̄𝜌 ← 𝜖, it holds for all sequences
of operations (op0, 𝜌0, 𝑚0), … , (op𝑛, 𝜌𝑛, 𝑚𝑛) (for all
0 ≤ 𝑙 ≤ 𝑛 with op𝑙 ∈ {𝑠, 𝑟}, 𝜌𝑙 ∈ {i, r}, 𝑚𝑙 ∈ {0, 1}∗) that
are executed as follows:
• if op𝑙 = 𝑠, invoke Send(sk𝜌𝑙 , st𝜌𝑙 , 𝑚𝑙) →$ (st𝜌𝑙 , 𝑐𝑙) and

update MSC𝜌 ← MSC𝜌‖(𝑚𝑙, 𝜍𝑙, 𝑐𝑙), or
• if op𝑙 = 𝑟, invoke Recv(sk𝜌𝑙 , st𝜌𝑙 , 𝑐𝑙) →$ (st𝜌𝑙 , 𝑚𝑙

∗)
on (𝑚𝑙

∘, 𝜍𝑙
∘ , 𝑐𝑙)‖MSC ̄𝜌 ← MSC ̄𝜌 and update it accord-

ingly,
that if 𝑚𝑙

∗ ≠ ⊥, then sent and received messages equal
𝑚𝑙

∗ = 𝑚𝑙
∘.

D.2. Execution Environment
Here we describe the execution environment for our
fACCE security experiment.
We consider a set of 𝑛𝑃 parties each (potentially) main-

taining a long-term key pair {(sk1, pk1), … , (sk𝑛𝑃
, pk𝑛𝑃

)},

23

(sk𝑖, pk𝑖) ∈ ℒ𝒮𝒦 × ℒ𝒫𝒦. Note that the long-term secret
sk could encapsulate both asymmetric secrets (such as
long-term signing keys) and symmetric secrets (such as
long-term preshared keys).
Each party can participate in up to 𝑛𝑆 sessions, with

each session potentially lasting 𝑛𝑇 stages. Each session
samples per-session randomness rand used throughout the
protocol execution. We denote both the set of variables
that are specific for a session 𝑠 of party 𝑖 as well as the
identifier of this session as 𝜋𝑠

𝑖 . In addition to the local
variables specific to each protocol, we list the set of per-
session variables that we require for our model below. In
order to derive or modify a variable 𝑥 of session 𝜋 we write
𝜋.𝑥 to specify this variable.

• 𝜌 ∈ {i, r}: The role of the session in the protocol
execution (i.e., initiator or responder).

• 𝜍 ∈ ℕ: The current stage of the session.

• pid ∈ [𝑛𝑃]: The session partner’s identifier.

• ad: Data associated with this session (provided as
parameter at session initialization to Init).

• 𝑇𝑠[⋅], 𝑇𝑟[⋅] ∈ {0, 1}∗: Arrays of sent or received
fACCE messages, which may consist of keying ma-
terial, ciphertexts or even plaintexts3. After every
invocation of Send or Recv of a session 𝜋𝑠

𝑖 , the re-
spective ciphertext is appended to 𝜋𝑠

𝑖 .𝑇𝑠 or 𝜋𝑠
𝑖 .𝑇𝑟 re-

spectively.

• st ∈ 𝒮𝒯: All protocol-specific local variables.

• rand ∈ {0, 1}∗: Any random coins used by 𝜋𝑠
𝑖 ’s pro-

tocol execution.

• 𝜋𝑠
𝑖 .rr ∈ {0, 1}: A flag indicating if 𝒜 has leaked the

ephemeral randomness used during the session exe-
cution.

• (𝑏1, 𝑏2, 𝑏3, ..., 𝑏𝑛𝑇
): A vector of challenge bits the ad-

versary is to guess (one bit for each stage).

• fr1, fr2, … , fr𝑛𝑇
∈ {0, 1}: Freshness flags for the se-

curity game, indicating whether the adversary has
caused the challenge bit to be trivial to guess.

• FT: A modifiable copy of the fACCE protocol’s se-
curity table ST for the session 𝜋𝑠

𝑖 .

At the beginning of the game, for all sessions 𝜋𝑠
𝑖 the

following initial values are set: 𝜋𝑠
𝑖 .𝑇𝑠, 𝜋𝑠

𝑖 .𝑇𝑟, ← 𝜖, and
𝜋𝑠

𝑖 .FT ← ST, and 𝜋𝑠
𝑖 .fr𝜍∗ ← 1 for all 𝜍∗ ∈ [0, … , 𝑛𝑇], and

𝜋𝑠
𝑖 .rand ←$ {0, 1}∗, 𝜋𝑠

𝑖 .𝑏𝜍∗ ←$ {0, 1} for all 𝜍∗ ∈ ℕ are
sampled.
Furthermore a set of ciphertexts Rpl ← ∅ is maintained

in the security game, that are declared to initiate a non-
fresh (replayed) session.

3Note that in what follows, we refer to these messages generically
as “ciphertexts”.

Partnering In order to define security in a flexible man-
ner, we need to define partnering for sessions in the envi-
ronment. Partnering is defined over the ciphertexts pro-
vided to/by the adversary via the oracles that let sessions
send and receive ciphertexts (OSend, ORecv). Intuitively,
a session has an honest partner if everything that the hon-
est partner received via ORecv was sent by the session via
OSend (without modification) and vice versa, and at least
one of the two parties received a ciphertext at least once.
This definition considers the asynchronous nature of the
established channel, leading to a matching conversation-
like partnering definition for fACCE.

Definition 18 (Honest Partner). 𝜋𝑡
𝑗 is an honest partner

of 𝜋𝑠
𝑖 if all initial variables match (𝜋𝑠

𝑖 .pid = 𝑗, 𝜋𝑡
𝑗.pid = 𝑖,

𝜋𝑠
𝑖 .𝜌 ≠ 𝜋𝑡

𝑗.𝜌, 𝜋𝑠
𝑖 .ad = 𝜋𝑡

𝑗.ad) and the received transcripts
are a prefix of the partner’s sent transcripts, where at least
one them is not empty (i.e., for 𝑎 = |𝜋𝑡

𝑗.𝑇𝑟|, 𝑏 = |𝜋𝑠
𝑖 .𝑇𝑟|

such that 𝑎 > 0 if 𝜋𝑠
𝑖 .𝜌 = i and 𝑏 > 0 if 𝜋𝑠

𝑖 .𝜌 = r then
∀ 0 ≤ 𝛼 < 𝑎 ∶ (𝜋𝑠

𝑖 .𝑇𝑠[𝛼] = 𝜋𝑡
𝑗.𝑇𝑟[𝛼]) and ∀ 0 ≤ 𝛽 < 𝑏 ∶

(𝜋𝑠
𝑖 .𝑇𝑟[𝛽] = 𝜋𝑡

𝑗.𝑇𝑠[𝛽])). If 𝜋𝑠
𝑖 already received ciphertexts

from 𝜋𝑡
𝑗, then 𝜋𝑡

𝑗 is an honest partner of 𝜋𝑠
𝑖 only if there

exists no other honest partner 𝜋∗ of 𝜋𝑠
𝑖 (i.e., if 𝑏 > 0 then

there is no 𝜋∗ such that 𝜋∗ is an honest partner of 𝜋𝑠
𝑖 and

𝜋∗ ≠ 𝜋𝑡
𝑗).

Please note that after sending a message that has not
yet been received yet, the initiator may have multiple hon-
est partners (if the resulting ciphertexts are forwarded to
multiple sessions). Due to the last requirement in Defini-
tion 18, our partnering notion requires that, after decrypt-
ing once, a session must have no more than one honest
partner. Thereby partnering necessarily becomes a 1-to-1
relation as soon as the initiator received once from the
responder.

Additional Partner Notion The reveal of ephemeral
randomness of a session does not only affect current hon-
est partners (see Definition 18) but also sessions that pre-
viously were honest partners of the session for which the
randomness was revealed. Thus we must define Previous
Honest Partner:

Definition 19 (Previous Honest Partner). We say that
𝜋𝑡

𝑗 is a previous honest partner of 𝜋𝑠
𝑖 if 𝜋𝑠

𝑖 .pid = 𝑗, 𝜋𝑡
𝑗.pid =

𝑖, 𝜋𝑠
𝑖 .𝜌 = 𝜋𝑡

𝑗. ̄𝜌, 𝜋𝑠
𝑖 .ad = 𝜋𝑡

𝑗.ad, 𝜋𝑠
𝑖 .𝑇𝑟 and 𝜋𝑡

𝑗.𝑇𝑠 have a
common prefix, and 𝜋𝑡

𝑗.𝑇𝑟 and 𝜋𝑠
𝑖 .𝑇𝑠 have a common prefix

where at least one prefix is not empty (i.e., for 𝑎 ≤ |𝜋𝑡
𝑗.𝑇𝑟|,

𝑏 ≤ |𝜋𝑠
𝑖 .𝑇𝑟| such that 𝑎 > 0 if 𝜋𝑠

𝑖 .𝜌 = i and 𝑏 > 0 if
𝜋𝑠

𝑖 .𝜌 = r then ∀ 0 ≤ 𝛼 < 𝑎 ∶ (𝜋𝑠
𝑖 .𝑇𝑠[𝛼] = 𝜋𝑡

𝑗.𝑇𝑟[𝛼]) ∧∀0 ≤
𝛽 < 𝑏 ∶ (𝜋𝑠

𝑖 .𝑇𝑟[𝛽] = 𝜋𝑡
𝑗.𝑇𝑠[𝛽])).

The main differences towards honest partner are that:
(a) In previous honest partners 𝑎 and 𝑏 can be less than
or equal |𝜋𝑡

𝑗.𝑇𝑟| and |𝜋𝑠
𝑖 .𝑇𝑟| respectively (meaning that 𝜋𝑠

𝑖
and 𝜋𝑡

𝑗 were honest partners once) and due to this; (b) It
is not (and actually cannot be) required that there exists
only one previous honest partner.

24

D.3. Flexible Security Notion
To facilitate the security game, the challenger main-
tains for each session 𝜋𝑠

𝑖 a set 𝕊𝜋𝑠
𝑖
that contains labels

of all secrets that each session (and its honest part-
ner) maintains – the long-term secret values sk𝑖, sk𝑗
(both asymmetric and symmetric), all ephemeral se-
cret values sampled during the 𝑛𝑇 stages of the pro-
tocol execution esk1

𝑠, esk1
𝑡 … , 𝑒𝑠𝑘𝑛𝑇𝑠 , esk𝑛𝑇

𝑡 and the state
maintained during the protocol executions at each
stage st1

𝑠, st1
𝑡 … , st𝑛𝑇𝑠 , st𝑛𝑇

𝑡 . Thus 𝕊𝜋𝑠
𝑖

= (sk𝑖, sk𝑗, esk1
𝑠,

esk1
𝑡 , … , esk𝑛𝑇

𝑠 , esk𝑛𝑇
𝑠 , st1

𝑠, st1
𝑡 … , st𝑛𝑇𝑠 , st𝑛𝑇

𝑡).
This 𝕊𝜋𝑠

𝑖
will be used to generate the security table

ST used to determine the security of any session of the
associated protocol under certain compromise patterns.
Note that this corresponds to the counters maintained in
previous versions of the fACCE framework - each counter
corresponded to a particular compromise query allowed
under a certain security property, and stated the stage in
which security would be reached under this compromise
pattern.
Each fACCE protocol is associated with a security ta-

ble ST, which will be copied into a freshness table FT for
each session 𝜋𝑠

𝑖 in the protocol execution. ST is made
up of 4 column rows (⃗𝑠, cf, aui, aur) where ⃗𝑠 is a vector
of some secrets maintained by the challenger during the
execution of the fACCE security game corresponding to
some element in the powerset 𝕊𝜋𝑠

𝑖
, and cf, aui, and aur

are stage counters. The intuition here is that each row
describes what stages confidentiality (cf), authentication
of initiators (aui) and authentication of responders (aur)
is achieved when the collection of secrets ⃗𝑠 remains un-
compromised by the attacker.

Replay Attacks The previously introduced partnering
notion already defines session participants unpartnered
for all but one type of replay attacks: if ciphertexts, sent
by an initiator that has already received a ciphertext once,
or sent by a responder, are replayed, the respective re-
ceiver is defined to have no honest partner. In a security
game in which state reveals are defined to be harmless for
unpartnered sessions (which is the case for our model),
this induces that such replay attacks force the protocol
to diverge respective receivers’ session states from their
previous partners’ session states. As a consequence, only
replays of ciphertexts, sent by an initiator to (multiple)
responder(s) without any reply from the latter, must be
considered harmful in our security experiment. These re-
play attacks cannot be prevented if the receiver’s long-
term secret is defined static and the initiator has never
received a ciphertext. Our definition of replay attack re-
sistance consequently focuses on the security damage that
is caused by such replay attacks: it considers how soon
the secrets, established by a (replayed) ciphertext, are in-
dependent among the sender and the (other) receivers of
this replayed ciphertext. Hence, a session’s secrets are
recovered from a replay attack if they cannot be used to
obtain information on other sessions’ secrets.
Besides the explained prevention of replay attacks due

to our partnering notion, ciphertexts that are transmitted

before a stage 𝜍 > 0 is output are (as also explained above)
authenticated as soon as authentication is reached in a
later stage. Apart from this, no security guarantees are
required for ciphertexts transmitted under 𝜍 = 0.

If a property is never reached in the specified protocol,
then the respective counter is set to ∞ (e.g., for protocol
with unauthenticated initiators, aui = ∞).

D.4. Adversarial Model
In order to model active attacks in our environment, the
security experiment provides the OInit, OSend, ORecv or-
acles to an adversary 𝒜, who can use them to control
communication among sessions, together with the oracles
OCorrupt, OReveal and ORevealRandomness.
Following the direction of the original fACCE work,

we treat the authentication and confidentiality prop-
erties similarly to the original AEAD notion of Rog-
away [Rog02]: the game maintains a win flag (to indicate
whether the adversary broke authenticity or integrity of
ciphertexts) and embeds challenge bits in the encryption
(in order to model indistinguishability of ciphertexts). In
order to win the security game, adversary 𝒜 either has to
trigger win ← 1 or output the correct challenge bit 𝜋𝑠

𝑖 .𝑏𝜍
of a specific session stage 𝜍 at the end of the game.

In addition, the Challenger maintains a set of
freshness flags 𝜋𝑠

𝑖 .fr𝜍 for each stage 𝜍 of each ses-
sion 𝜋𝑠

𝑖 . When 𝒜 makes a query to OCorrupt,
OReveal or ORevealRandomness, then 𝒞 deletes all rows
(⃗𝑠𝑗, cf𝑗, aui

𝑗 , aur
𝑗) in 𝜋𝑠

𝑖 .FT if the associated secret (esk𝑡
𝑠,

sk𝑖, etc.) of the query is in the row, i.e. esk𝑡
𝑠 ∈ ⃗𝑠𝑗. All

stages for all sessions that are not an element of the right-
hand columns are now considered un-fresh, and the cor-
responding freshness flags are set to 0. In particular, if
there does not exist a counter cf𝑗 such that 𝜍 = cf𝑗 where
(⃗𝑠𝑗, cf𝑗, aui

𝑗 , aur
𝑗 ∈ 𝜋𝑠

𝑖 .FT) for all 𝑗 ∈ {0, … |FT|} 4 , then
𝜋𝑠

𝑖 .𝜍 ← 0. When 𝒜 terminates and outputs a session 𝜋𝑠
𝑖

and a stage counter 𝜍, if the freshness flag associated with
𝜋𝑠

𝑖 .𝜍 is 0, then 𝒞 simply outputs a random bit 𝑏∗ instead
of 𝜋𝑠

𝑖 .𝑏𝜍 = 𝑏′.
• OInit(𝑖, pk𝑗, 𝜌, ad) initializes a new session 𝜋𝑠

𝑖 of
party 𝑖 to be partnered with party 𝑗, invok-
ing fACCE. Init(sk𝑖, pk𝑗, 𝜌, ad) →[𝜋𝑠

𝑖 .rand] 𝜋𝑠
𝑖 .st under

𝜋𝑠
𝑖 .rand. It also sets 𝜋𝑠

𝑖 .𝜌 ← 𝜌, 𝜋𝑠
𝑖 .pid ← 𝑗, and

𝜋𝑠
𝑖 .ad ← ad. This oracle provides the new session

index 𝑠. All subsequent invocations of Send, Recv of
this session participant use 𝜋𝑠

𝑖 .rand for obtaining ran-
domness.

• OSend(𝑖, 𝑠, 𝑚0, 𝑚1) triggers the encryption of a mes-
sage 𝑚𝑏 for 𝑏 = 𝜋𝑠

𝑖 .𝑏𝜍 by invoking Send(sk𝑖, 𝜋𝑠
𝑖 .st, 𝑚𝑏)

→[𝜋𝑠
𝑖 .rand] (st′, 𝑐) for an initialized 𝜋𝑠

𝑖 if |𝑚0| = |𝑚1|
and returns ⊥ otherwise. It updates the session spe-
cific variables 𝜋𝑠

𝑖 .st ← st′, returns (𝑐, 𝜋𝑠
𝑖 .𝜍) to the ad-

versary, and appends 𝑐 to 𝜋𝑠
𝑖 .𝑇𝑠 if 𝑐 ≠ ⊥. If 𝑐 is the

first ciphertext and 𝜋𝑠
𝑖 .𝜌 = i, then Rpl ← Rpl ∪ {𝑐}.

Note that 𝑐 contains both the explicit ciphertext en-
crypting the message 𝑚𝑏 and any channel establish-
ment messages that are send in this stage.

4For conciseness, we will say for all 𝑗 ∈ 𝜋𝑠
𝑖 .[|FT|] as shorthand for

“for all (⃗𝑠𝑗, cf𝑗, aui
𝑗 , aur

𝑗 ∈ 𝜋𝑠
𝑖 .FT) for all 𝑗 ∈ {0, … |FT|.”

25

• ORecv(𝑖, 𝑠, 𝑐) triggers invocation of Recv(sk𝑖, 𝜋𝑠
𝑖 .st, 𝑐)

→[𝜋𝑠
𝑖 .rand] (st′, 𝑚) for an initialized 𝜋𝑠

𝑖 and returns
(𝑚, 𝜋𝑠

𝑖 .𝜍) if 𝜋𝑠
𝑖 has no honest partner (since challenges

from the encryption oracle would otherwise be triv-
ially leaked), or returns 𝜋𝑠

𝑖 .𝜍 otherwise. Finally 𝑐 is
appended to 𝜋𝑠

𝑖 .𝑇𝑟 if decryption succeeds.
Excluding trivial attacks:

Conf: Since decryption can change the honesty of part-
ners, the freshness flags are updated regarding
corruptions and the reveal of ephemeral ran-
domness.

Auth: If the received ciphertext was not sent by a ses-
sion of the intended partner (i.e., there exists no
honest partner) and authentication of the part-
ner
1. was not reached yet (i.e., if 𝜍 ≠ au𝜋𝑠

𝑖 . ̄𝜌
𝑗 for all

𝑗 ∈ 𝜋𝑠
𝑖 .[|FT|]), then all following stages are

marked un-fresh until authentication will
be reached (𝜋𝑠

𝑖 .fr𝜍∗ ← 0 for all 𝜍 ≤ 𝜍∗ <
min(au𝜋𝑠

𝑖 . ̄𝜌
𝑗) for all au𝜋𝑠

𝑖 . ̄𝜌
𝑗 ∈ 𝜋𝑠

𝑖 .FT), since
this is a (temporarily) trivial impersonation
of the partner towards 𝜋𝑠

𝑖 .
2. was reached before, but 𝒜 has since made

a query that would allow trivial imperson-
ation of the partner towards 𝜋𝑠

𝑖 . In that
case, there would exist no au𝜋𝑠

𝑖 . ̄𝜌
𝑗 ≤ 𝜍 for

all 𝑗 ∈ 𝜋𝑠
𝑖 .[|FT|] (i.e., 𝒜 has made a query

to allow trivial impersonation again, which
deleted rows from 𝜋𝑠

𝑖 .FT), then all following
stages are marked un-fresh (𝜋𝑠

𝑖 .fr𝜍∗ ← 0 for
all 𝜍 ≤ min(au𝜋𝑠

𝑖 . ̄𝜌
𝑗)), since this is a trivial

impersonation of the partner towards 𝜋𝑠
𝑖 .

Rewarding real attacks:
Auth: Similarly to detecting trivial attacks, real at-

tacks are rewarded by considering the goals that
are defined to be reached by the protocol and
the corruptions of the participants’ long term
secrets.
The adversary breaks authentication (and
thereby win ← 1 is set) if the received cipher-
text was not sent by a session of the intended
partner but was successfully received (i.e., there
exists no honest partner and the output state is
st′ ≠ ⊥), the stage is still fresh (𝜋𝑠

𝑖 .fr𝜍 = 1), and
𝒜 has not issued queries that trivially break au-
thentication, i.e. there exists au𝜋𝑠

𝑖 . ̄𝜌
𝑗 ∈ ST such

that 𝜍 = au𝜋𝑠
𝑖 . ̄𝜌

𝑗 .
• ORevealRandomness(𝑖, 𝑠) → rand outputs the ran-

domness 𝜋𝑠
𝑖 .rand sampled by party 𝑖 in its session

𝜋𝑠
𝑖 . The freshness table 𝜋𝑠

𝑖 .FT is updated in the fol-
lowing way: for all 𝑗 ∈ 𝜋𝑠

𝑖 .[|FT|] if rand ∈ ⃗𝑠𝑗 where
(⃗𝑠𝑗, cf𝑗, aui

𝑗 , aur
𝑗) ∈ 𝜋𝑠

𝑖 .FT, then 𝜋𝑠
𝑖 .FT ← 𝜋𝑠

𝑖 .FT
\{(⃗𝑠𝑗, cf𝑗, aui

𝑗 , aur
𝑗)}. Freshness flags are updated

similarly: for all 𝑗 ∈ 𝜋𝑠
𝑖 .[|FT|] if ∄ cf𝑗 such that

𝜍 ≠ cf𝑗 where (⃗𝑠𝑗, cf𝑗, aui
𝑗 , aur

𝑗) ∈ 𝜋𝑠
𝑖 .FT, then

𝜋𝑠
𝑖 .fr𝜍 ← 0.

• OCorrupt(𝑖) → sk𝑖 outputs the long-term secret keys
sk𝑖 of party 𝑖, and sets corr𝑖 ← 1. The freshness table

𝜋𝑠
𝑖 .FT is updated in the following way: for all 𝑗 ∈

𝜋𝑠
𝑖 .[|FT|] if sk𝑖 ∈ ⃗𝑠𝑗 where (⃗𝑠𝑗, cf𝑗, aui

𝑗 , aur
𝑗) ∈ 𝜋𝑠

𝑖 .FT,
then 𝜋𝑠

𝑖 .FT ← 𝜋𝑠
𝑖 .FT \{(⃗𝑠𝑗, cf𝑗, aui

𝑗 , aur
𝑗)}. Freshness

flags are updated similarly: for all 𝑗 ∈ 𝜋𝑠
𝑖 .[|FT|] if

∄ cf𝑗 such that 𝜍 ≠ cf𝑗 where (⃗𝑠𝑗, cf𝑗, aui
𝑗 , aur

𝑗) ∈
𝜋𝑠

𝑖 .FT, then 𝜋𝑠
𝑖 .fr𝜍 ← 0.

• OReveal(𝑖, 𝑠) → 𝜋𝑠
𝑖 .st outputs the current session

state 𝜋𝑠
𝑖 .st. The freshness table 𝜋𝑠

𝑖 .FT is updated in
the following way: for all 𝑗 ∈ |𝜋𝑠

𝑖 .FT| if 𝜋𝑠
𝑖 .st ∈ ⃗𝑠𝑗

where (⃗𝑠𝑗, cf𝑗, aui
𝑗 , aur

𝑗) ∈ 𝜋𝑠
𝑖 .FT, then 𝜋𝑠

𝑖 .FT ←
𝜋𝑠

𝑖 .FT � {(⃗𝑠𝑗, cf𝑗, aui
𝑗 , aur

𝑗)}. Freshness flags are up-
dated similarly: for all 𝑗 ∈ |𝜋𝑠

𝑖 .FT| if ∄ cf𝑗 such
that 𝜍 ≠ cf𝑗 where (⃗𝑠𝑗, cf𝑗, aui

𝑗 , aur
𝑗) ∈ 𝜋𝑠

𝑖 .FT, then
𝜋𝑠

𝑖 .fr𝜍 ← 0.
Excluding trivial attacks:

– Revealing the session-state trivially determines
this session’s challenge bits, since the state con-
tains any used session keys5. Hence 𝜋𝑠

𝑖 .fr𝜍∗ ← 0
is set for all stages 𝜍∗.

– Similarly, sufficient information is leaked to de-
termine challenge bits embedded in ciphertexts
to and from all honest partners 𝜋𝑡

𝑗 (and to im-
personate 𝜋𝑠

𝑖 towards them). As such, for all
sessions 𝜋𝑡

𝑗 such that 𝜋𝑡
𝑗 is an honest partner or

previous honest partner of 𝜋𝑠
𝑖 , 𝜋𝑡

𝑗.fr𝜍∗ ← 0 is set
for all stages 𝜍∗.

– In case the revealed secrets enable the adversary
to obtain secrets of non-partnered sessions due
to a replay attack then the first ciphertext in
this session is declared to induce non-fresh ses-
sions via Rpl ← Rpl ∪ {𝑐} where 𝑐 ← 𝜋𝑠

𝑖 .𝑇𝑠[0]
if 𝜋𝑠

𝑖 .𝜌 = i or 𝑐 ← 𝜋𝑠
𝑖 .𝑇𝑟[0] if 𝜋𝑠

𝑖 .𝜌 = r (such
that all sessions starting with the same cipher-
text are also marked non-fresh). Afterwards,
for all sessions 𝜋𝑡

𝑗 such that 𝜋𝑡
𝑗.𝜌 = r (respec-

tively 𝜋𝑡
𝑗.𝜌 = i), 𝑐 = 𝜋𝑡

𝑗.𝑇𝑟[0] (respectively
𝑐 = 𝜋𝑡

𝑗.𝑇𝑠[0]) and 𝑐 ∈ Rpl, 𝜋𝑡
𝑗.fr𝜍 ← 0 for all

𝜍.

D.5. Security Definition
Definition 20 (Advantage in Breaking Flexible ACCE).
An adversary 𝒜 breaks a flexible ACCE protocol fACCE
with security table ST, capturing authentication, key
compromise impersonation resilience, forward-secrecy,
eCK-security, and replayability resistance, when 𝒜 plays
the fACCE game, and outputs ExpfACCE,ST

𝑛𝑃 ,𝑛𝑆,𝒜 (𝜆) = 1.
We define the advantage of an adversary 𝒜 breaking
a flexible ACCE protocol fACCE as AdvfACCE,ST

𝒜 =
Pr[ExpfACCE,ST

𝑛𝑃 ,𝑛𝑆,𝒜 (𝜆) = 1].
Intuitively, a flexible ACCE protocol fACCE is secure

if it is correct and AdvfACCE,ST
𝒜 is negligible for all proba-

bilistic algorithms 𝒜 running in polynomial-time. A flex-
ible ACCE protocol fACCE is post-quantum secure if it
is correct and AdvfACCE,ST

𝒬 is negligible for all quantum
algorithms 𝒬 running in polynomial-time.

5Since we do not consider forward-secrecy within sessions, the se-
cret session state is considered to harm security of the whole
session lifetime independent of when the state is revealed.

26

ExpfACCE,ST
𝑛𝑃 ,𝑛𝑆,𝒜 (𝜆):

1: win ← 0, Rpl ← ∅
2: for 𝑖 = 1 to 𝑛𝑃 do
3: ct𝑖 ← 1
4: corr𝑖 ← 0
5: (pk𝑖, sk𝑖) ←$ KGen(𝜆)
6: end for
7: (𝑖, 𝑠, 𝜍, 𝑏′) ←$ 𝒜OInit,…(pk1, … , pk𝑛𝑃

)
8: if win = 1 then
9: return 1

10: end if
11: if 𝜋𝑠

𝑖 .fr𝜍 = 0 then
12: return 𝑏∗ ←$ {0, 1}
13: else
14: return (𝑏′ = 𝜋𝑠

𝑖 .𝑏𝜍)
15: end if

ORecv(𝑖, 𝑠, 𝑐) → (𝜍):
1: (st′, 𝑚) ←$ fACCE. Recv(sk𝑖, 𝜋𝑠

𝑖 .st, 𝑐)
2: 𝜋𝑠

𝑖 .st ← st′

3: if 𝑚 ≠ ⊥ then
4: 𝜋𝑠

𝑖 .𝑇𝑟 ← 𝜋𝑠
𝑖 .𝑇𝑟||𝑐

5: end if
6: if (∃(𝑗, 𝑡) ∶ Part(𝜋𝑠

𝑖 , 𝜋𝑡
𝑗) = 1) then

7: if (𝜋𝑡
𝑗.rr = 1) ∧ (comb = 0) then

8: for 𝑢 = 1 to |𝜋𝑠
𝑖 .FT| do

9: (⃗𝑠𝑢, cf𝑢, aui
𝑢, aur

𝑢) ← 𝜋𝑠
𝑖 .FT[𝑢]

10: if (esk𝑗 ∈ ⃗𝑠𝑢) then
11: 𝜋𝑠

𝑖 .FT[𝑢] ← ∅
12: end if
13: end for
14: end if
15: if (𝜋𝑡

𝑗.rr = 1) ∧ (corr𝑗) ∧ (comb = 1) then
16: for 𝑢 = 1 to |𝜋𝑠

𝑖 .FT| do
17: (⃗𝑠𝑢, cf𝑢, aui

𝑢, aur
𝑢) ← 𝜋𝑠

𝑖 .FT[𝑢]
18: if (esk𝑗 ∈ ⃗𝑠𝑢) then
19: 𝜋𝑠

𝑖 .FT[𝑢] ← ∅
20: end if
21: end for
22: end if
23: end if
24: for 𝜍 = 1 to 𝑛𝑇 do
25: if (∄ cf𝑢 ∈ 𝜋𝑠

𝑖 .FT ∶ 𝜍 ≥ cf𝑢) then
26: 𝜋𝑠

𝑖 .fr𝜍 ← 0.
27: end if
28: end for
29: if (∄(𝑗, 𝑡) ∶ 𝜋𝑡

𝑗.𝑇𝑠 ⊆ 𝜋𝑠
𝑖 .𝑇𝑟) then

30: if (∄au𝜋𝑠
𝑖 . ̂𝜌

𝑢 ∈ 𝜋𝑠
𝑖 .FT ∶ au𝜋𝑠

𝑖 . ̂𝜌
𝑢 ≤ 𝜋𝑠

𝑖 .𝜍) ∧ (𝑐 ∉ Rpl) then
31: win ← 1
32: end if
33: end if
34: 𝜋𝑠

𝑖 .𝜍 + +
35: return 𝜋𝑠

𝑖 .𝜍

OInit(𝑖, pk𝑗, 𝜌, ad) → 𝑠:

1: if (pk𝑗 ∉ {𝑝𝑘1, … pk𝑛𝑃
}) then

2: return ⊥
3: end if
4: 𝑠 ← ct𝑖, ct𝑖 + +
5: 𝜋𝑠

𝑖 .𝜌 ← 𝜌, 𝜋𝑠
𝑖 .𝑇𝑠, 𝜋𝑠

𝑖 .𝑇𝑟 ← 𝜖
6: 𝜋𝑠

𝑖 .pid ← 𝑗, 𝜋𝑠
𝑖 .ad ← ad

7: for 𝜍 = 1 to 𝑛𝑇 do
8: 𝜋𝑠

𝑖 .fr𝜍 ← 1
9: 𝜋𝑠

𝑖 .rand ←$ {0, 1}∗

10: 𝜋𝑠
𝑖 .rr ← 0

11: 𝜋𝑠
𝑖 .𝑏𝜍 ←$ {0, 1}

12: end for
13: 𝜋𝑠

𝑖 .st ←$ fACCE. Init(sk𝑖, pk𝑗, 𝜌, ad)
14: 𝜋𝑠

𝑖 .FT ← ST
15: if corr𝜋𝑠

𝑖 .pid = 1 then
16: for 𝑢 = 1 to |𝜋𝑠

𝑖 .FT| do
17: (⃗𝑠𝑢, cf𝑢, aui

𝑢, aur
𝑢) ← 𝜋𝑠

𝑖 .FT[𝑢]
18: if (sk𝑗 ∈ ⃗𝑠𝑢) then
19: 𝜋𝑠

𝑖 .FT[𝑢] ← ∅
20: end if
21: end for
22: end if
23: for 𝜍 = 1 to 𝑛𝑇 do
24: if (∄ cf𝑢 ∈ 𝜋𝑠

𝑖 .FT ∶ 𝜍 ≥ cf𝑢) then
25: 𝜋𝑡

𝑗.fr𝜍 ← 0.
26: end if
27: end for
28: return 𝑠

OSend(𝑖, 𝑠, 𝑚0, 𝑚1) → (𝑐, 𝜍):
1: if |𝑚0| ≠ |𝑚1| then
2: return ⊥
3: end if
4: (st′, 𝑐) ←$ fACCE. Send(sk𝑖, 𝜋𝑠

𝑖 .st, 𝑚𝑏)
5: 𝜋𝑠

𝑖 .st ← st′

6: if (𝑐 ≠ ⊥) then
7: if (𝜋𝑠

𝑖 .𝑇𝑠 = 𝜖) ∧ (𝜋𝑠
𝑖 .𝜌 = i) then

8: Rpl ← Rpl ∪ {𝑐}
9: end if

10: end if
11: 𝜋𝑠

𝑖 .𝑇𝑠 ← 𝜋𝑠
𝑖 .𝑇𝑠||𝑐

12: return 𝑐, 𝜋𝑠
𝑖 .𝜍

Figure 3: fACCE experiment for adversary 𝒜. Note that for readability, when context is clear we use 𝑏 as shorthand
for 𝜋𝑠

𝑖 .𝑏𝜋𝑠
𝑖 .𝜍 . Part and PrevPart are functions that capture Honest Partnering and Previous Honest Partnering

definitions, respectively. Finally, comb is a variable that captures whether the protocol does randomness
hardening by combining ephemeral randomness with long-term secret information.

27

OCorrupt(𝑖) → (sk𝑖):

1: corr𝑖 ← 1
2: for 𝑠 = 1 to 𝑛𝑆 do
3: for 𝑢 = 1 to |𝜋𝑠

𝑖 .FT| do
4: (⃗𝑠𝑢, cf𝑢, aui

𝑗 , aur
𝑗) ← 𝜋𝑠

𝑖 .FT[𝑢]
5: if (sk𝑖 ∈ ⃗𝑠𝑢) then
6: 𝜋𝑠

𝑖 .FT[𝑢] ← ∅
7: end if
8: end for
9: end for

10: for 𝑗 = 1 to 𝑛𝑃 do
11: for 𝑡 = 1 to 𝑛𝑆 do
12: if (𝜋𝑡

𝑗.pid = 𝑖) then
13: for 𝑢 = 1 to |𝜋𝑡

𝑗.FT| do
14: (⃗𝑠𝑢, cf𝑢, aui

𝑗 , aur
𝑗) ← 𝜋𝑡

𝑗.FT[𝑢]
15: if (sk𝑖 ∈ ⃗𝑠𝑢) then
16: 𝜋𝑠

𝑖 .FT[𝑢] ← ∅
17: end if
18: end for
19: end if
20: for 𝜍 = 1 to 𝑛𝑇 do
21: if (∄ cf𝑢 ∈ 𝜋𝑡

𝑗.FT ∶ 𝜍 ≥ cf𝑢) then
22: 𝜋𝑡

𝑗.fr𝜍 ← 0.
23: end if
24: end for
25: end for
26: end for
27: for 𝜍 = 1 to 𝑛𝑇 do
28: if (∄ cf𝑢 ∈ 𝜋𝑠

𝑖 .FT ∶ 𝜍 ≥ cf𝑢) then
29: 𝜋𝑠

𝑖 .fr𝜍 ← 0.
30: end if
31: end for
32: if (𝜋𝑠

𝑖 .rr = 1) ∧ (comb = 1) then
33: for 𝑢 = 1 to |𝜋𝑠

𝑖 .FT| do
34: (⃗𝑠𝑢, cf𝑢, aui

𝑢, aur
𝑢) ← 𝜋𝑠

𝑖 .FT[𝑢]
35: if (esk𝑗 ∈ ⃗𝑠𝑢) then
36: 𝜋𝑠

𝑖 .FT[𝑢] ← ∅
37: end if
38: end for
39: end if
40: return sk𝑖

OReveal(𝑖, 𝑠) → 𝜋𝑠
𝑖 .st:

1: for 𝑢 = 1 to |𝜋𝑠
𝑖 .FT| do

2: (⃗𝑠𝑢, cf𝑢, aui
𝑗 , aur

𝑗) ← 𝜋𝑠
𝑖 .FT[𝑢]

3: if (𝜋𝑠
𝑖 .st ∈ ⃗𝑠𝑢) then

4: 𝜋𝑠
𝑖 .FT[𝑢] ← ∅

5: end if
6: end for
7: for 𝑗 = 1 to 𝑛𝑃 do
8: for 𝑡 = 1 to 𝑛𝑆 do
9: if (PrevPart(𝜋𝑠

𝑖 , 𝜋𝑡
𝑗)) then

10: for 𝑢 = 1 to |𝜋𝑡
𝑗.FT| do

11: (⃗𝑠𝑢, cf𝑢, aui
𝑗 , aur

𝑗) ← 𝜋𝑡
𝑗.FT[𝑢]

12: if (𝜋𝑠
𝑖 .st ∈ ⃗𝑠𝑢) then

13: 𝜋𝑠
𝑖 .FT[𝑢] ← ∅

14: end if
15: end for
16: end if
17: for 𝜍 = 1 to 𝑛𝑇 do
18: if (∄ cf𝑢 ∈ 𝜋𝑡

𝑗.FT ∶ 𝜍 ≥ cf𝑢) then
19: 𝜋𝑡

𝑗.fr𝜍 ← 0.
20: end if
21: end for
22: end for
23: end for
24: return 𝜋𝑠

𝑖 .st

ORevealRandomness(𝑖, 𝑠, 𝜍) → 𝜋𝑠
𝑖 .rand:

1: 𝜋𝑠
𝑖 .rr ← 1

2: if (comb = 0) then
3: for 𝑢 = 1 to |𝜋𝑠

𝑖 .FT| do
4: (⃗𝑠𝑢, cf𝑢, aui

𝑢, aur
𝑢) ← 𝜋𝑠

𝑖 .FT[𝑢]
5: if (esk𝑗 ∈ ⃗𝑠𝑢) then
6: 𝜋𝑠

𝑖 .FT[𝑢] ← ∅
7: end if
8: end for
9: end if

10: if (corr𝑖) ∧ (comb = 1) then
11: for 𝑢 = 1 to |𝜋𝑠

𝑖 .FT| do
12: (⃗𝑠𝑢, cf𝑢, aui

𝑢, aur
𝑢) ← 𝜋𝑠

𝑖 .FT[𝑢]
13: if (esk𝑗 ∈ ⃗𝑠𝑢) then
14: 𝜋𝑠

𝑖 .FT[𝑢] ← ∅
15: end if
16: end for
17: end if
18: for 𝑗 = 1 to 𝑛𝑃 do
19: for 𝑡 = 1 to 𝑛𝑆 do
20: if (PrevPart(𝜋𝑠

𝑖 , 𝜋𝑡
𝑗)) then

21: for 𝑢 = 1 to |𝜋𝑡
𝑗.FT| do

22: (⃗𝑠𝑢, cf𝑢, aui
𝑗 , aur

𝑗) ← 𝜋𝑡
𝑗.FT[𝑢]

23: if (esk𝑖 ∈ ⃗𝑠𝑢) ∧ (comb = 0)
then

24: 𝜋𝑠
𝑖 .FT[𝑢] ← ∅

25: end if
26: if (corr𝑖) ∧ (comb) ∧ (esk𝑖 ∈ ⃗𝑠𝑢)

then
27: 𝜋𝑡

𝑗.FT[𝑢] ← ∅
28: end if
29: end for
30: end if
31: for 𝜍 = 1 to 𝑛𝑇 do
32: if (∄ cf𝑢 ∈ 𝜋𝑡

𝑗.FT ∶ 𝜍 ≥ cf𝑢) then
33: 𝜋𝑡

𝑗.fr𝜍 ← 0.
34: end if
35: end for
36: end for
37: end for
38: for 𝜍 = 1 to 𝑛𝑇 do
39: if (∄ cf𝑢 ∈ 𝜋𝑡

𝑗.FT ∶ 𝜍 ≥ cf𝑢) then
40: 𝜋𝑡

𝑗.fr𝜍 ← 0.
41: end if
42: end for
43: return 𝜋𝑠

𝑖 .rand

Figure 4: Final queries for the fACCE experiment for adversary 𝒜.

28

E. PRP-SEEC
To provide a simple and efficient instantiation for SEEC
that is both practical and demonstrates the feasability of
our security-notion for SEEC, we introduce PRP-SEEC,
defined in Algorithm 3. It can be summarized as com-
bining a random static key with the ephemeral entropy
via a pseudo random permutation PRP (as defined in
Appendix E.1), where it uses the static key as key and
the ephemeral entropy as message for the PRP. The ad-
vantage of this approach is that it achieves information-
theoretical security in case of uncorrupted ephemeral
randomness and may be able to use existing hardware-
acceleration for specific PRP-schemes, such as AES.

Algorithm 3: PRP-SEEC
1 Function GenKey (1𝜆):
2 return PRP. gen ()
3 Function GenRand (sk, r):
4 return PRP. enc(sk, r), sk

Theorem 12. A PRP-SEEC-scheme Σ is a secure
SEEC-scheme with:

Adv𝑆𝐸𝐸𝐶
Σ, 𝒜 (1𝜆) ≤ 2𝑛2

2𝜆 + AdvIND-CPA
𝑃𝑅𝑃, 𝒜′ (1𝜆)

Where 𝑛 is the number of GenRand-queries that 𝒜 per-
forms.

Proof. 𝒜 can only win if he does not reveal both the static
key and the randomness of the challenge-session. We can
thus distinguish the case in which he does not receive the
challenge-randomness and the case in which he does not
receive the static key.
In the first case the challenge-randomness is random

and independent and used as input to a permutation. Ap-
plying a permutation to a random and independent value
results in a random and independent value. Thus the
adversary receives identically distributed values indepen-
dent of the challenge-bit and the adversarial advantage is
0.
In the second case we use game-hopping to show the

theorem. Let Game 0 refer to the original SEEC-game
with the provision that 𝒜 never corrupts the static key.
In Game 1 we abort if the ephemeral randomness ever

collides. Given that the ephemeral randomness consists of
truly random (though possibly known to 𝒜) and indepen-
dent bitstrings of length 𝜆, the probability of a collision
in 𝑛 queries is ≤ 𝑛2

2𝜆 . Thus we find that:

Pr [break0] ≤ Pr [break1] + 𝑛2

2𝜆

In Game 2 we return truly random bitstrings instead
of encryptions of the ephemeral randomness. To show
that this replacement is sound we initialize an IND-CPA-
challenger for PRP and use its encryption-oracle when-
ever we have to encrypt a static value and its challenge-
oracle with the ephemeral entropy and a truly random

value when answering 𝒜’s challenge-query. As the static
key is random and independent and since the queries
don’t repeat by Game 1, this substitution is valid. If the
IND-CPA-challengers challenge bit is 0 then it returns an
encryption of the ephemeral entropy and we are in Game
1. Otherwise it returns the result of applying a permuta-
tion to a random and independent value, which is in turn
a random and independent value and we are in Game 2
and find:

Pr [break1] ≤ Pr [break2] + AdvIND-CPA
𝑃𝑅𝑃, 𝒜′ (1𝜆)

In Game 3 we abort if the output-randomness ever
collides. Given that by Game 2 the output-randomness
consists of truly random and independent bitstrings of
length 𝜆, the probability of a collision in 𝑛 queries is ≤ 𝑛2

2𝜆 .
Thus we find that:

Pr [break2] ≤ Pr [break3] + 𝑛2

2𝜆

At this point the SEEC-challenger always returns ran-
dom values that don’t repeat and thus there is no more
information-flow from the challenge-bit 𝑏 to 𝒜 and we
find:

Pr [break3] = 0
By summarizing all losses we find the combined loss

stated in the theorem.

E.1. PRPs
Definition 21 (PRP). A PseudoRandom Permutation is
a tuple of three algorithms:

• Gen is a probabilistic algorithm that takes a security-
parameter 1𝜆 and returns a secret key k.

• Enc is a deterministic algorithm that takes a secret
key k and a bitstring m of a fixed length n and returns
a bitstring c of the same length.

• Dec is a deterministic algorithm that takes a secret
key k and a bitstring c of length n and returns a
bitstring m of the same length.

Definition 22 (PRP-Completeness). A PRP is perfectly
complete if:

∀𝜆 ∈ ℕ, 𝑚 ∈ {0, 1}n ∶
Pr [Dec(k, Enc(k, m)) = m∣k ≔ Gen(1𝜆)] = 1

Definition 23 (IND-CPA). We say that a PRP PRP of-
fers INDistinguishability under Chosen Plaintext Attacks
(IND-CPA) if and only if:

∀𝒜 ∈ QPT, 𝜆 ∈ ℕ ∶ ∣Pr [ExpIND-CPA
PRP,𝒜 (1𝜆) = 1] − 1

2∣

≕ AdvIND-CPA
PRP, 𝒜 (1𝜆) ≤ negl (𝜆)

Where ExpIND-CPA
PRP,𝒜 is defined as in Experiment 6.

29

Experiment 6: ExpIND-CPA
PRP,𝒜 , the security exper-

iment for an IND-CPA-PRP PRP.
1 𝑀 ∶= dict()
2 k ≔ PRP. gen(1𝜆)
3 𝑏 ←$ {0, 1}
4 Oracle Enc' (m):
5 if 𝑏 = 0:
6 return Enc(k, 𝑚)
7 else:
8 if 𝑚 ∉ 𝑀 :
9 𝑀[𝑚] ←$ {0, 1}𝑛

10 return 𝑀[𝑚]

11 𝑏′ ≔ 𝒜Enc′(1𝜆)
12 return 𝑏 = 𝑏′

F. Security of classical Noise
Previous analysis [DRS20] of noise used a version of the
fACCE model that presented its end-results in a slightly
different way, that essentially combined some rows of the
version we are using into one. In particular its notions
for authenticity and replay-protection did not distinguish
whether the peers ephemeral or static key was uncor-
rupted and its „eck“ notion was essentially defined as the
first stage in which confidentiality was achieved in all set-
tings where each party hat at least one uncorrupted secret.
Because of this we had to perform some interpretation of
those results that resulted in Table 4.

G. Detailed Patterns
As outlined in Section 2 the main-difference between clas-
sical Noise and PQNoise lies in the ekem and skem op-
erations, that we describe there. In addition to those
PQNoise inherits the ability to send ephemeral (e) and
static (s) public keys, the key-generation and the session
initialization.
The key-generation of PQNoise (Algorithm 4) consists

of up to three operations that a party may or may not
perform, depending on the setting:

• The generation of a SEEC-key, if the use of SEEC is
desired.

• The generation of a longterm static key for the parties
KEM; if IKEM and RKEM are different, all parties
that want to participate in both roles have to gener-
ate their static keys here, but we will for simplicity
assume in the following that this is not the case, and
each party just generates one key used for both pur-
poses. If a party will never authenticate itself, it may
skip this step.

• The distribution of the static public key, if one is
generated and assumed to be known to the peer in
the protocol (*K and K*-patterns). We denote this by
a call to a function Publish, with the understanding
that this is not so much an algorithm, but merely

notation to indicate actions that have to happen out
of band and are assumed to successful, by the time
the parties start interacting with each other.

Algorithm 4: Key-Generation
1 Function KGen():
2 seec_sk ← SEEC. gen_key()
3 pk, sk ← XKEM. gen()
4 Publish(pk)

The session-initialization (Algorithm 5) of PQNoise es-
sentially consists of the initialization of the hash-chains ck
and h with values derived from the name of the pattern
in question.

Algorithm 5: initialization
1 Function Init():
2 h ← H(“pq**_label”)
3 ck ← HashObject. gen(“pq**_label”)

Calls to Send and Recv (Algorithm 6) will generally be-
have differently, depending on the protocol stage. Send
will always start by setting up a payload-buffer pl and
a send-buffer buf both initially empty. pl will be used
to store any temporary values that may need to get en-
crypted, whereas buf will contain everything that has been
processed completely and will in the end be sent as is
over the network. After operations such as sending pub-
lic keys (e and s, see below) and KEM-ciphertexts (ekem
and skem, see Section 2) have been processed, the message
m (which may be empty) will be appended to the payload.
Then pl will be encrypted with the stage key if one exists,
the resulting ciphertext added to buf and the hash-object
h and the nonce n will be incremented. Otherwise pl will
be added to buf and h as is. In either case buf will be
what is finally sent over the wire. Recv largely mirrors
that behavior, except that it receives buf and will extract
one payload pl after another from it. If the first element
of buf is encrypted, the receiver will decrypt it with the
latest known AEAD-key, producing the first payload pl.
Otherwise the plaintext will serve the role as initial pl.
In the end the last element of the final payload pl will be
considered the message and returned to the receiver.
Sending and receiving of public keys (Algorithm 7) con-

sists of adding the keys in question to the current payload
pl and of reading them from the current plaintext-buffer
buf respectively. In the case of ephemeral public keys they
are also generated as part of Send, optionally using SEEC.
With this we present all fundamental PQNoise-patterns

in Algorithms 8–20. For the sake of simplicity we leave out
passing and returning the state of the involved parties and
just assume that they maintain it. For the same reason
we also provide multiple definitions of all functions, per
role and stage during the protocol-execution instead of
just one that starts with a case-distinction that selects
the appropriate version. This allows us to present the
different versions that are used during a key-exchange in
the order in which honest parties would execute them.

30

Table 4: Security of the fundamental Noise patterns, based on previous analysis [DRS20]. We remark that this is an
interpretation of those results (as the presentation of our fACCE-results differs) and that parts of this table
are only conjectured.

Security Uncorr. N NN NK NX KN KK KX XN XK XX IN IK IX
Confidentiality 𝑒ℐ, 𝑒ℛ ∞ 2 2 2 2 2 2 2 2 2 2 2 2

𝑒ℐ, 𝑠ℛ 1 ∞ 1 2 ∞ 1 2 ∞ 1 2 ∞ 1 2
𝑠ℐ, 𝑒ℛ ∞ ∞ ∞ ∞ 2 2 2 3 3 3 2 2 2
𝑠ℐ, 𝑠ℛ ∞ ∞ ∞ ∞ ∞ 1 ∞ ∞ ∞ ∞ ∞ 1 ∞

Authenticity (ℐ) 𝑠ℐ, 𝑒ℛ ∞ ∞ ∞ ∞ 3 3 3 3 3 3 3 3 3
𝑠ℐ, 𝑠ℛ ∞ ∞ ∞ ∞ ∞ 1 ∞ ∞ ∞ ∞ ∞ 1 ∞

Authenticity (ℛ) 𝑒ℐ, 𝑠ℛ ∞ ∞ 2 2 ∞ 2 2 ∞ 2 2 ∞ 2 2
𝑠ℐ, 𝑠ℛ ∞ ∞ ∞ ∞ ∞ 2 ∞ ∞ ∞ ∞ ∞ 2 ∞

Algorithm 6: Basic Send- and Receive-
operations.
1 Function Send(m):
2 pl ← String. new()
3 buf ← String. new()
4 …
5 if 𝑘𝑖 ≠ ⊥:
6 c ← AEAD. enc(ki, pl, h, n)
7 n. increment()
8 buf. add(c)
9 h ← H(h, c)

10 else:
11 buf. add(pl)
12 h ← H(h, pl)
13 return buf
14 Function Recv:
15 if 𝑘𝑖 ≠ ⊥:
16 c ← buf. parse_next()
17 pl ← AEAD. dec(k0, c, h, n)
18 h ← H(h, c)
19 n. increment()
20 else:
21 pl ← buf. parse_next()
22 h ← H(h, pl)
23 …
24 m ← pl. parse_next()
25 return m

Algorithm 7: Sending and Receiving public
keys.
1 Function Send:
2 …
3 if 𝑋𝐾𝐸𝑀 = 𝐸𝐾𝐸𝑀 :
4 𝑟 ← 𝑆𝐸𝐸𝐶. GenRand(𝑠𝑒𝑒𝑐_𝑠𝑘)
5 𝑝𝑘𝑒, 𝑠𝑘𝑒 ≔ 𝑋𝐾𝐸𝑀. gen(𝑟)
6 pl.add(𝑝𝑘𝑒)
7 …
8 Function Recv:
9 …

10 𝑝𝑘𝑒 ← pl. parse_next()
11 …

We remark that these patterns are auto-generated with
a tool that we wrote and as a result of that slightly more
verbose than strictly-speaking necessary. The advantage
of that approach is however that it ensures consistency be-
tween the patterns and allowed us to write a type-checker
that confirmed that they do not contain obvious type-
errors, such as ciphertexts being generated using one al-
gorithm and then later decrypted by another.

H. Comparison of Noise and
PQNoise

We present a detailed comparison between the classical
and PQNoise patterns in Figures 5–16.

31

Algorithm 8: pqN
1 Function KGenℐ():
2 seec_sk ← SEEC. gen_key()
3 Function KGenℛ():
4 seec_sk ← SEEC. gen_key()
5 pkℛ, skℛ ← RKem. gen()
6 Publish(pkℛ)
7 Function Initℐ():
8 h ← H(“pqN_label”)
9 ck ← HashObject. gen(“pqN_label”)

10 Function Sendℐ(m):
11 pl ← String. new()
12 buf ← String. new()
13 r ← SEEC. gen_rand(seec_sk)
14 ctℛ, kkℛ ← RKem. enc(pkℛ, r)
15 pl. add(ctℛ)
16 h ← H(h, pl)
17 buf. add(pl)
18 pl. flush()
19 prekeyℐ, prekeyℛ ←

HashObject. finalize(ck, kkℛ)
20 kℐ ← AEAD. gen(prekeyℐ)
21 kℛ ← AEAD. gen(prekeyℛ)
22 n ← AEAD. Nonce. new()
23 pl. add(m)
24 c ← AEAD. enc(kℐ, pl, h, n)
25 n. increment()
26 buf. add(c)
27 h ← H(h, c)
28 return buf

29 Function Initℛ():
30 h ← H(“pqN_label”)
31 ck ← HashObject. gen(“pqN_label”)
32 Function Recvℛ(buf):
33 pl ← buf. parse_next()
34 h ← H(h, pl)
35 ctℛ ← pl. parse_next()
36 kkℛ ← RKem. dec(skℛ, ctℛ)
37 prekeyℐ, prekeyℛ ←

HashObject. finalize(ck, kkℛ)
38 kℐ ← AEAD. gen(prekeyℐ)
39 kℛ ← AEAD. gen(prekeyℛ)
40 n ← AEAD. Nonce. new()
41 c ← buf. parse_next()
42 pl ← AEAD. dec(kℐ, c, h, n)
43 h ← H(h, c)
44 n. increment()
45 m ← pl. parse_next()
46 return m

Algorithm 9: pqNN
1 Function KGenℐ():
2 seec_sk ← SEEC. gen_key()
3 Function KGenℛ():
4 seec_sk ← SEEC. gen_key()
5 Function Initℐ():
6 h ← H(“pqNN_label”)
7 ck ← HashObject. gen(

“pqNN_label”)
8 Function Sendℐ(m):
9 pl ← String. new()

10 buf ← String. new()
11 r ← SEEC. gen_rand(seec_sk)
12 pke, ske ← EKem. gen(r)
13 pl. add(pke)
14 pl. add(m)
15 buf. add(pl)
16 h ← H(h, pl)
17 return buf
18 Function Initℛ():
19 h ← H(“pqNN_label”)
20 ck ← HashObject. gen(

“pqNN_label”)

21 Function Recvℛ(buf):
22 pl ← buf. parse_next()
23 h ← H(h, pl)
24 pke ← pl. parse_next()
25 m ← pl. parse_next()
26 return m
27 Function Sendℛ(m):
28 pl ← String. new()
29 buf ← String. new()
30 r ← SEEC. gen_rand(seec_sk)
31 cte, kke ← EKem. enc(pke, r)
32 pl. add(cte)
33 h ← H(h, pl)
34 buf. add(pl)
35 pl. flush()
36 prekeyℐ, prekeyℛ ←

HashObject. finalize(ck, kke)
37 kℐ ← AEAD. gen(prekeyℐ)
38 kℛ ← AEAD. gen(prekeyℛ)
39 n ← AEAD. Nonce. new()
40 pl. add(m)
41 c ← AEAD. enc(kℛ, pl, h, n)
42 n. increment()
43 buf. add(c)
44 h ← H(h, c)
45 return buf

46 Function Recvℐ(buf):
47 pl ← buf. parse_next()
48 h ← H(h, pl)
49 cte ← pl. parse_next()
50 kke ← EKem. dec(ske, cte)
51 prekeyℐ, prekeyℛ ←

HashObject. finalize(ck, kke)
52 kℐ ← AEAD. gen(prekeyℐ)
53 kℛ ← AEAD. gen(prekeyℛ)
54 n ← AEAD. Nonce. new()
55 c ← buf. parse_next()
56 pl ← AEAD. dec(kℛ, c, h, n)
57 h ← H(h, c)
58 n. increment()
59 m ← pl. parse_next()
60 return m

32

Algorithm 10: pqNK
1 Function KGenℐ():
2 seec_sk ← SEEC. gen_key()
3 Function KGenℛ():
4 seec_sk ← SEEC. gen_key()
5 pkℛ, skℛ ← RKem. gen()
6 Publish(pkℛ)
7 Function Initℐ():
8 h ← H(“pqNK_label”)
9 ck ← HashObject. gen(

“pqNK_label”)
10 Function Sendℐ(m):
11 pl ← String. new()
12 buf ← String. new()
13 r ← SEEC. gen_rand(seec_sk)
14 ctℛ, kkℛ ← RKem. enc(pkℛ, r)
15 pl. add(ctℛ)
16 h ← H(h, pl)
17 buf. add(pl)
18 pl. flush()
19 prekey ← ck. input(kkℛ)
20 k0 ← AEAD. gen(prekey)
21 n ← AEAD. Nonce. new()
22 r ← SEEC. gen_rand(seec_sk)
23 pke, ske ← EKem. gen(r)
24 pl. add(pke)
25 pl. add(m)
26 c ← AEAD. enc(k0, pl, h, n)
27 n. increment()
28 buf. add(c)
29 h ← H(h, c)
30 return buf
31 Function Initℛ():
32 h ← H(“pqNK_label”)
33 ck ← HashObject. gen(

“pqNK_label”)

34 Function Recvℛ(buf):
35 pl ← buf. parse_next()
36 h ← H(h, pl)
37 ctℛ ← pl. parse_next()
38 kkℛ ← RKem. dec(skℛ, ctℛ)
39 prekey ← ck. input(kkℛ)
40 k0 ← AEAD. gen(prekey)
41 n ← AEAD. Nonce. new()
42 c ← buf. parse_next()
43 pl ← AEAD. dec(k0, c, h, n)
44 h ← H(h, c)
45 n. increment()
46 pke ← pl. parse_next()
47 m ← pl. parse_next()
48 return m
49 Function Sendℛ(m):
50 pl ← String. new()
51 buf ← String. new()
52 r ← SEEC. gen_rand(seec_sk)
53 cte, kke ← EKem. enc(pke, r)
54 pl. add(cte)
55 c ← AEAD. enc(k0, pl, h, n)
56 n. increment()
57 h ← H(h, c)
58 buf. add(c)
59 pl. flush()
60 prekeyℐ, prekeyℛ ←

HashObject. finalize(ck, kke)
61 kℐ ← AEAD. gen(prekeyℐ)
62 kℛ ← AEAD. gen(prekeyℛ)
63 n ← AEAD. Nonce. new()
64 pl. add(m)
65 c ← AEAD. enc(kℛ, pl, h, n)
66 n. increment()
67 buf. add(c)
68 h ← H(h, c)
69 return buf

70 Function Recvℐ(buf):
71 c ← buf. parse_next()
72 pl ← AEAD. dec(k0, c, h, n)
73 h ← H(h, c)
74 n. increment()
75 cte ← pl. parse_next()
76 kke ← EKem. dec(ske, cte)
77 prekeyℐ, prekeyℛ ←

HashObject. finalize(ck, kke)
78 kℐ ← AEAD. gen(prekeyℐ)
79 kℛ ← AEAD. gen(prekeyℛ)
80 n ← AEAD. Nonce. new()
81 c ← buf. parse_next()
82 pl ← AEAD. dec(kℛ, c, h, n)
83 h ← H(h, c)
84 n. increment()
85 m ← pl. parse_next()
86 return m

33

Algorithm 11: pqNX
1 Function KGenℐ():
2 seec_sk ← SEEC. gen_key()
3 Function KGenℛ():
4 seec_sk ← SEEC. gen_key()
5 pkℛ, skℛ ← RKem. gen()
6 Function Initℐ():
7 h ← H(“pqNX_label”)
8 ck ← HashObject. gen(

“pqNX_label”)
9 Function Sendℐ(m):

10 pl ← String. new()
11 buf ← String. new()
12 r ← SEEC. gen_rand(seec_sk)
13 pke, ske ← EKem. gen(r)
14 pl. add(pke)
15 pl. add(m)
16 buf. add(pl)
17 h ← H(h, pl)
18 return buf
19 Function Initℛ():
20 h ← H(“pqNX_label”)
21 ck ← HashObject. gen(

“pqNX_label”)
22 Function Recvℛ(buf):
23 pl ← buf. parse_next()
24 h ← H(h, pl)
25 pke ← pl. parse_next()
26 m ← pl. parse_next()
27 return m

28 Function Sendℛ(m):
29 pl ← String. new()
30 buf ← String. new()
31 r ← SEEC. gen_rand(seec_sk)
32 cte, kke ← EKem. enc(pke, r)
33 pl. add(cte)
34 h ← H(h, pl)
35 buf. add(pl)
36 pl. flush()
37 prekey ← ck. input(kke)
38 k0 ← AEAD. gen(prekey)
39 n ← AEAD. Nonce. new()
40 pl. add(pkℛ)
41 pl. add(m)
42 c ← AEAD. enc(k0, pl, h, n)
43 n. increment()
44 buf. add(c)
45 h ← H(h, c)
46 return buf
47 Function Recvℐ(buf):
48 pl ← buf. parse_next()
49 h ← H(h, pl)
50 cte ← pl. parse_next()
51 kke ← EKem. dec(ske, cte)
52 prekey ← ck. input(kke)
53 k0 ← AEAD. gen(prekey)
54 n ← AEAD. Nonce. new()
55 c ← buf. parse_next()
56 pl ← AEAD. dec(k0, c, h, n)
57 h ← H(h, c)
58 n. increment()
59 pkℛ ← pl. parse_next()
60 m ← pl. parse_next()
61 return m

62 Function Sendℐ(m):
63 pl ← String. new()
64 buf ← String. new()
65 r ← SEEC. gen_rand(seec_sk)
66 ctℛ, kkℛ ← RKem. enc(pkℛ, r)
67 pl. add(ctℛ)
68 c ← AEAD. enc(k0, pl, h, n)
69 n. increment()
70 h ← H(h, c)
71 buf. add(c)
72 pl. flush()
73 prekeyℐ, prekeyℛ ←

HashObject. finalize(ck, kkℛ)
74 kℐ ← AEAD. gen(prekeyℐ)
75 kℛ ← AEAD. gen(prekeyℛ)
76 n ← AEAD. Nonce. new()
77 pl. add(m)
78 c ← AEAD. enc(kℐ, pl, h, n)
79 n. increment()
80 buf. add(c)
81 h ← H(h, c)
82 return buf
83 Function Recvℛ(buf):
84 c ← buf. parse_next()
85 pl ← AEAD. dec(k0, c, h, n)
86 h ← H(h, c)
87 n. increment()
88 ctℛ ← pl. parse_next()
89 kkℛ ← RKem. dec(skℛ, ctℛ)
90 prekeyℐ, prekeyℛ ←

HashObject. finalize(ck, kkℛ)
91 kℐ ← AEAD. gen(prekeyℐ)
92 kℛ ← AEAD. gen(prekeyℛ)
93 n ← AEAD. Nonce. new()
94 c ← buf. parse_next()
95 pl ← AEAD. dec(kℐ, c, h, n)
96 h ← H(h, c)
97 n. increment()
98 m ← pl. parse_next()
99 return m

34

Algorithm 12: pqKN
1 Function KGenℐ():
2 seec_sk ← SEEC. gen_key()
3 pkℐ, skℐ ← IKem. gen()
4 Publish(pkℐ)
5 Function KGenℛ():
6 seec_sk ← SEEC. gen_key()
7 Function Initℐ():
8 h ← H(“pqKN_label”)
9 ck ← HashObject. gen(

“pqKN_label”)
10 Function Sendℐ(m):
11 pl ← String. new()
12 buf ← String. new()
13 r ← SEEC. gen_rand(seec_sk)
14 pke, ske ← EKem. gen(r)
15 pl. add(pke)
16 pl. add(m)
17 buf. add(pl)
18 h ← H(h, pl)
19 return buf
20 Function Initℛ():
21 h ← H(“pqKN_label”)
22 ck ← HashObject. gen(

“pqKN_label”)
23 Function Recvℛ(buf):
24 pl ← buf. parse_next()
25 h ← H(h, pl)
26 pke ← pl. parse_next()
27 m ← pl. parse_next()
28 return m

29 Function Sendℛ(m):
30 pl ← String. new()
31 buf ← String. new()
32 r ← SEEC. gen_rand(seec_sk)
33 cte, kke ← EKem. enc(pke, r)
34 pl. add(cte)
35 h ← H(h, pl)
36 buf. add(pl)
37 pl. flush()
38 prekey ← ck. input(kke)
39 k0 ← AEAD. gen(prekey)
40 n ← AEAD. Nonce. new()
41 r ← SEEC. gen_rand(seec_sk)
42 ctℐ, kkℐ ← IKem. enc(pkℐ, r)
43 pl. add(ctℐ)
44 c ← AEAD. enc(k0, pl, h, n)
45 n. increment()
46 h ← H(h, c)
47 buf. add(c)
48 pl. flush()
49 prekeyℐ, prekeyℛ ←

HashObject. finalize(ck, kkℐ)
50 kℐ ← AEAD. gen(prekeyℐ)
51 kℛ ← AEAD. gen(prekeyℛ)
52 n ← AEAD. Nonce. new()
53 pl. add(m)
54 c ← AEAD. enc(kℛ, pl, h, n)
55 n. increment()
56 buf. add(c)
57 h ← H(h, c)
58 return buf

59 Function Recvℐ(buf):
60 pl ← buf. parse_next()
61 h ← H(h, pl)
62 cte ← pl. parse_next()
63 kke ← EKem. dec(ske, cte)
64 prekey ← ck. input(kke)
65 k0 ← AEAD. gen(prekey)
66 n ← AEAD. Nonce. new()
67 c ← buf. parse_next()
68 pl ← AEAD. dec(k0, c, h, n)
69 h ← H(h, c)
70 n. increment()
71 ctℐ ← pl. parse_next()
72 kkℐ ← IKem. dec(skℐ, ctℐ)
73 prekeyℐ, prekeyℛ ←

HashObject. finalize(ck, kkℐ)
74 kℐ ← AEAD. gen(prekeyℐ)
75 kℛ ← AEAD. gen(prekeyℛ)
76 n ← AEAD. Nonce. new()
77 c ← buf. parse_next()
78 pl ← AEAD. dec(kℛ, c, h, n)
79 h ← H(h, c)
80 n. increment()
81 m ← pl. parse_next()
82 return m

Initiator Responder

ck, ℎ ← H(NN_label)
ℎ ← H(ℎ‖𝑎𝑑), 𝑛 ← 0

𝑎 ←$ ℤ𝑝

ℎ ← H(ℎ‖𝑔𝑎)
𝑔𝑎

𝑏 ←$ ℤ𝑝

ℎ ← H(ℎ‖𝑔𝑏)
ck, 𝑘0 ← KDF(ck, 𝑔𝑎𝑏, 2)

𝑐0 ← enc(𝑘0, 𝑛, ℎ, 𝑚0)
𝑔𝑏, 𝑐0

if dec(𝑘0, 𝑛, ℎ, 𝑐0) = ⊥, abort
ℎ ← H(ℎ‖𝑐0)

𝑘𝑖, 𝑘𝑟 ← KDF(ck, 𝜖, 2), 𝑛 ← 0
Payload Data

Initiator Responder

ℎ, 𝑐𝑘 ← PRHO.create(𝑎𝜆)
ℎ. input(NN_label), 𝑐𝑘. input(NN_label)

ℎ. input(𝑎𝑑)
𝑟0 ← GenRand(𝑠𝑒𝑒𝑐𝑠𝑘𝐴)
pk𝑎, sk𝑎 ←$ KEM. KGen(1𝜆; 𝑟0)

ℎ. input(pk𝑎)
pk𝑎

𝑟1 ← GenRand(𝑠𝑒𝑒𝑐𝑠𝑘𝐵)
𝑐𝑡𝑏, 𝑘 ← KEM.Encap(pk𝑎; 𝑟1)

ℎ. input(𝑐𝑡𝑏)
ck. input(𝑘), 𝑘0 ← ck. output

𝑐0 ← enc(𝑘0, 0, ℎ. output, 𝑚0)
𝑐𝑡𝑏, 𝑐0

𝑘 ← KEM.Decap(sk𝑒, 𝑐𝑡𝑒)
if dec(𝑘0, 0, ℎ. output, 𝑐0) = ⊥, abort

ℎ. input(𝑐0)
𝑘𝑖, 𝑘𝑟 ← ck. output()

Payload Data

Figure 5: The NN patterns of classical Noise (left) and PQNoise (right). For reasons of space we use the following
conventions here: highlighted actions are performed by both parties as soon as they receive all necessary
values to perform the computations in question. If any decryption- or decapsulation-algorithm returns ⊥,
the party in question aborts the protocol.

35

Algorithm 13: pqKK
1 Function KGenℐ():
2 seec_sk ← SEEC. gen_key()
3 pkℐ, skℐ ← IKem. gen()
4 Publish(pkℐ)
5 Function KGenℛ():
6 seec_sk ← SEEC. gen_key()
7 pkℛ, skℛ ← RKem. gen()
8 Publish(pkℛ)
9 Function Initℐ():

10 h ← H(“pqKK_label”)
11 ck ← HashObject. gen(

“pqKK_label”)
12 Function Sendℐ(m):
13 pl ← String. new()
14 buf ← String. new()
15 r ← SEEC. gen_rand(seec_sk)
16 ctℛ, kkℛ ← RKem. enc(pkℛ, r)
17 pl. add(ctℛ)
18 h ← H(h, pl)
19 buf. add(pl)
20 pl. flush()
21 prekey ← ck. input(kkℛ)
22 k0 ← AEAD. gen(prekey)
23 n ← AEAD. Nonce. new()
24 r ← SEEC. gen_rand(seec_sk)
25 pke, ske ← EKem. gen(r)
26 pl. add(pke)
27 pl. add(m)
28 c ← AEAD. enc(k0, pl, h, n)
29 n. increment()
30 buf. add(c)
31 h ← H(h, c)
32 return buf
33 Function Initℛ():
34 h ← H(“pqKK_label”)
35 ck ← HashObject. gen(

“pqKK_label”)

36 Function Recvℛ(buf):
37 pl ← buf. parse_next()
38 h ← H(h, pl)
39 ctℛ ← pl. parse_next()
40 kkℛ ← RKem. dec(skℛ, ctℛ)
41 prekey ← ck. input(kkℛ)
42 k0 ← AEAD. gen(prekey)
43 n ← AEAD. Nonce. new()
44 c ← buf. parse_next()
45 pl ← AEAD. dec(k0, c, h, n)
46 h ← H(h, c)
47 n. increment()
48 pke ← pl. parse_next()
49 m ← pl. parse_next()
50 return m
51 Function Sendℛ(m):
52 pl ← String. new()
53 buf ← String. new()
54 r ← SEEC. gen_rand(seec_sk)
55 cte, kke ← EKem. enc(pke, r)
56 pl. add(cte)
57 c ← AEAD. enc(k0, pl, h, n)
58 n. increment()
59 h ← H(h, c)
60 buf. add(c)
61 pl. flush()
62 prekey ← ck. input(kke)
63 k1 ← AEAD. gen(prekey)
64 n ← AEAD. Nonce. new()
65 r ← SEEC. gen_rand(seec_sk)
66 ctℐ, kkℐ ← IKem. enc(pkℐ, r)
67 pl. add(ctℐ)
68 c ← AEAD. enc(k1, pl, h, n)
69 n. increment()
70 h ← H(h, c)
71 buf. add(c)
72 pl. flush()
73 prekeyℐ, prekeyℛ ←

HashObject. finalize(ck, kkℐ)
74 kℐ ← AEAD. gen(prekeyℐ)
75 kℛ ← AEAD. gen(prekeyℛ)
76 n ← AEAD. Nonce. new()
77 pl. add(m)
78 c ← AEAD. enc(kℛ, pl, h, n)
79 n. increment()
80 buf. add(c)
81 h ← H(h, c)
82 return buf

83 Function Recvℐ(buf):
84 c ← buf. parse_next()
85 pl ← AEAD. dec(k0, c, h, n)
86 h ← H(h, c)
87 n. increment()
88 cte ← pl. parse_next()
89 kke ← EKem. dec(ske, cte)
90 prekey ← ck. input(kke)
91 k1 ← AEAD. gen(prekey)
92 n ← AEAD. Nonce. new()
93 c ← buf. parse_next()
94 pl ← AEAD. dec(k0, c, h, n)
95 h ← H(h, c)
96 n. increment()
97 ctℐ ← pl. parse_next()
98 kkℐ ← IKem. dec(skℐ, ctℐ)
99 prekeyℐ, prekeyℛ ←

HashObject. finalize(ck, kkℐ)
100 kℐ ← AEAD. gen(prekeyℐ)
101 kℛ ← AEAD. gen(prekeyℛ)
102 n ← AEAD. Nonce. new()
103 c ← buf. parse_next()
104 pl ← AEAD. dec(kℛ, c, h, n)
105 h ← H(h, c)
106 n. increment()
107 m ← pl. parse_next()
108 return m

36

Algorithm 14: pqKX
1 Function KGenℐ():
2 seec_sk ← SEEC. gen_key()
3 pkℐ, skℐ ← IKem. gen()
4 Publish(pkℐ)
5 Function KGenℛ():
6 seec_sk ← SEEC. gen_key()
7 pkℛ, skℛ ← RKem. gen()
8 Function Initℐ():
9 h ← H(“pqKX_label”)

10 ck ← HashObject. gen(
“pqKX_label”)

11 Function Sendℐ(m):
12 pl ← String. new()
13 buf ← String. new()
14 r ← SEEC. gen_rand(seec_sk)
15 pke, ske ← EKem. gen(r)
16 pl. add(pke)
17 pl. add(m)
18 buf. add(pl)
19 h ← H(h, pl)
20 return buf
21 Function Initℛ():
22 h ← H(“pqKX_label”)
23 ck ← HashObject. gen(

“pqKX_label”)
24 Function Recvℛ(buf):
25 pl ← buf. parse_next()
26 h ← H(h, pl)
27 pke ← pl. parse_next()
28 m ← pl. parse_next()
29 return m

30 Function Sendℛ(m):
31 pl ← String. new()
32 buf ← String. new()
33 r ← SEEC. gen_rand(seec_sk)
34 cte, kke ← EKem. enc(pke, r)
35 pl. add(cte)
36 h ← H(h, pl)
37 buf. add(pl)
38 pl. flush()
39 prekey ← ck. input(kke)
40 k0 ← AEAD. gen(prekey)
41 n ← AEAD. Nonce. new()
42 r ← SEEC. gen_rand(seec_sk)
43 ctℐ, kkℐ ← IKem. enc(pkℐ, r)
44 pl. add(ctℐ)
45 c ← AEAD. enc(k0, pl, h, n)
46 n. increment()
47 h ← H(h, c)
48 buf. add(c)
49 pl. flush()
50 prekey ← ck. input(kkℐ)
51 k1 ← AEAD. gen(prekey)
52 n ← AEAD. Nonce. new()
53 pl. add(pkℛ)
54 pl. add(m)
55 c ← AEAD. enc(k1, pl, h, n)
56 n. increment()
57 buf. add(c)
58 h ← H(h, c)
59 return buf
60 Function Recvℐ(buf):
61 pl ← buf. parse_next()
62 h ← H(h, pl)
63 cte ← pl. parse_next()
64 kke ← EKem. dec(ske, cte)
65 prekey ← ck. input(kke)
66 k0 ← AEAD. gen(prekey)
67 n ← AEAD. Nonce. new()
68 c ← buf. parse_next()
69 pl ← AEAD. dec(k0, c, h, n)
70 h ← H(h, c)
71 n. increment()
72 ctℐ ← pl. parse_next()
73 kkℐ ← IKem. dec(skℐ, ctℐ)
74 prekey ← ck. input(kkℐ)
75 k1 ← AEAD. gen(prekey)
76 n ← AEAD. Nonce. new()
77 c ← buf. parse_next()
78 pl ← AEAD. dec(k0, c, h, n)
79 h ← H(h, c)
80 n. increment()
81 pkℛ ← pl. parse_next()
82 m ← pl. parse_next()
83 return m

84 Function Sendℐ(m):
85 pl ← String. new()
86 buf ← String. new()
87 r ← SEEC. gen_rand(seec_sk)
88 ctℛ, kkℛ ← RKem. enc(pkℛ, r)
89 pl. add(ctℛ)
90 c ← AEAD. enc(k1, pl, h, n)
91 n. increment()
92 h ← H(h, c)
93 buf. add(c)
94 pl. flush()
95 prekeyℐ, prekeyℛ ←

HashObject. finalize(ck, kkℛ)
96 kℐ ← AEAD. gen(prekeyℐ)
97 kℛ ← AEAD. gen(prekeyℛ)
98 n ← AEAD. Nonce. new()
99 pl. add(m)

100 c ← AEAD. enc(kℐ, pl, h, n)
101 n. increment()
102 buf. add(c)
103 h ← H(h, c)
104 return buf
105 Function Recvℛ(buf):
106 c ← buf. parse_next()
107 pl ← AEAD. dec(k1, c, h, n)
108 h ← H(h, c)
109 n. increment()
110 ctℛ ← pl. parse_next()
111 kkℛ ← RKem. dec(skℛ, ctℛ)
112 prekeyℐ, prekeyℛ ←

HashObject. finalize(ck, kkℛ)
113 kℐ ← AEAD. gen(prekeyℐ)
114 kℛ ← AEAD. gen(prekeyℛ)
115 n ← AEAD. Nonce. new()
116 c ← buf. parse_next()
117 pl ← AEAD. dec(kℐ, c, h, n)
118 h ← H(h, c)
119 n. increment()
120 m ← pl. parse_next()
121 return m

37

Algorithm 15: pqXN
1 Function KGenℐ():
2 seec_sk ← SEEC. gen_key()
3 pkℐ, skℐ ← IKem. gen()
4 Function KGenℛ():
5 seec_sk ← SEEC. gen_key()
6 Function Initℐ():
7 h ← H(“pqXN_label”)
8 ck ← HashObject. gen(

“pqXN_label”)
9 Function Sendℐ(m):

10 pl ← String. new()
11 buf ← String. new()
12 r ← SEEC. gen_rand(seec_sk)
13 pke, ske ← EKem. gen(r)
14 pl. add(pke)
15 pl. add(m)
16 buf. add(pl)
17 h ← H(h, pl)
18 return buf
19 Function Initℛ():
20 h ← H(“pqXN_label”)
21 ck ← HashObject. gen(

“pqXN_label”)
22 Function Recvℛ(buf):
23 pl ← buf. parse_next()
24 h ← H(h, pl)
25 pke ← pl. parse_next()
26 m ← pl. parse_next()
27 return m

28 Function Sendℛ(m):
29 pl ← String. new()
30 buf ← String. new()
31 r ← SEEC. gen_rand(seec_sk)
32 cte, kke ← EKem. enc(pke, r)
33 pl. add(cte)
34 h ← H(h, pl)
35 buf. add(pl)
36 pl. flush()
37 prekey ← ck. input(kke)
38 k0 ← AEAD. gen(prekey)
39 n ← AEAD. Nonce. new()
40 pl. add(m)
41 c ← AEAD. enc(k0, pl, h, n)
42 n. increment()
43 buf. add(c)
44 h ← H(h, c)
45 return buf
46 Function Recvℐ(buf):
47 pl ← buf. parse_next()
48 h ← H(h, pl)
49 cte ← pl. parse_next()
50 kke ← EKem. dec(ske, cte)
51 prekey ← ck. input(kke)
52 k0 ← AEAD. gen(prekey)
53 n ← AEAD. Nonce. new()
54 c ← buf. parse_next()
55 pl ← AEAD. dec(k0, c, h, n)
56 h ← H(h, c)
57 n. increment()
58 m ← pl. parse_next()
59 return m
60 Function Sendℐ(m):
61 pl ← String. new()
62 buf ← String. new()
63 pl. add(pkℐ)
64 pl. add(m)
65 c ← AEAD. enc(k0, pl, h, n)
66 n. increment()
67 buf. add(c)
68 h ← H(h, c)
69 return buf

70 Function Recvℛ(buf):
71 c ← buf. parse_next()
72 pl ← AEAD. dec(k0, c, h, n)
73 h ← H(h, c)
74 n. increment()
75 pkℐ ← pl. parse_next()
76 m ← pl. parse_next()
77 return m
78 Function Sendℛ(m):
79 pl ← String. new()
80 buf ← String. new()
81 r ← SEEC. gen_rand(seec_sk)
82 ctℐ, kkℐ ← IKem. enc(pkℐ, r)
83 pl. add(ctℐ)
84 c ← AEAD. enc(k0, pl, h, n)
85 n. increment()
86 h ← H(h, c)
87 buf. add(c)
88 pl. flush()
89 prekeyℐ, prekeyℛ ←

HashObject. finalize(ck, kkℐ)
90 kℐ ← AEAD. gen(prekeyℐ)
91 kℛ ← AEAD. gen(prekeyℛ)
92 n ← AEAD. Nonce. new()
93 pl. add(m)
94 c ← AEAD. enc(kℛ, pl, h, n)
95 n. increment()
96 buf. add(c)
97 h ← H(h, c)
98 return buf
99 Function Recvℐ(buf):

100 c ← buf. parse_next()
101 pl ← AEAD. dec(k0, c, h, n)
102 h ← H(h, c)
103 n. increment()
104 ctℐ ← pl. parse_next()
105 kkℐ ← IKem. dec(skℐ, ctℐ)
106 prekeyℐ, prekeyℛ ←

HashObject. finalize(ck, kkℐ)
107 kℐ ← AEAD. gen(prekeyℐ)
108 kℛ ← AEAD. gen(prekeyℛ)
109 n ← AEAD. Nonce. new()
110 c ← buf. parse_next()
111 pl ← AEAD. dec(kℛ, c, h, n)
112 h ← H(h, c)
113 n. increment()
114 m ← pl. parse_next()
115 return m

38

Algorithm 16: pqXK
1 Function KGenℐ():
2 seec_sk ← SEEC. gen_key()
3 pkℐ, skℐ ← IKem. gen()
4 Function KGenℛ():
5 seec_sk ← SEEC. gen_key()
6 pkℛ, skℛ ← RKem. gen()
7 Publish(pkℛ)
8 Function Initℐ():
9 h ← H(“pqXK_label”)

10 ck ← HashObject. gen(
“pqXK_label”)

11 Function Sendℐ(m):
12 pl ← String. new()
13 buf ← String. new()
14 r ← SEEC. gen_rand(seec_sk)
15 ctℛ, kkℛ ← RKem. enc(pkℛ, r)
16 pl. add(ctℛ)
17 h ← H(h, pl)
18 buf. add(pl)
19 pl. flush()
20 prekey ← ck. input(kkℛ)
21 k0 ← AEAD. gen(prekey)
22 n ← AEAD. Nonce. new()
23 r ← SEEC. gen_rand(seec_sk)
24 pke, ske ← EKem. gen(r)
25 pl. add(pke)
26 pl. add(m)
27 c ← AEAD. enc(k0, pl, h, n)
28 n. increment()
29 buf. add(c)
30 h ← H(h, c)
31 return buf
32 Function Initℛ():
33 h ← H(“pqXK_label”)
34 ck ← HashObject. gen(

“pqXK_label”)
35 Function Recvℛ(buf):
36 pl ← buf. parse_next()
37 h ← H(h, pl)
38 ctℛ ← pl. parse_next()
39 kkℛ ← RKem. dec(skℛ, ctℛ)
40 prekey ← ck. input(kkℛ)
41 k0 ← AEAD. gen(prekey)
42 n ← AEAD. Nonce. new()
43 c ← buf. parse_next()
44 pl ← AEAD. dec(k0, c, h, n)
45 h ← H(h, c)
46 n. increment()
47 pke ← pl. parse_next()
48 m ← pl. parse_next()
49 return m

50 Function Sendℛ(m):
51 pl ← String. new()
52 buf ← String. new()
53 r ← SEEC. gen_rand(seec_sk)
54 cte, kke ← EKem. enc(pke, r)
55 pl. add(cte)
56 c ← AEAD. enc(k0, pl, h, n)
57 n. increment()
58 h ← H(h, c)
59 buf. add(c)
60 pl. flush()
61 prekey ← ck. input(kke)
62 k1 ← AEAD. gen(prekey)
63 n ← AEAD. Nonce. new()
64 pl. add(m)
65 c ← AEAD. enc(k1, pl, h, n)
66 n. increment()
67 buf. add(c)
68 h ← H(h, c)
69 return buf
70 Function Recvℐ(buf):
71 c ← buf. parse_next()
72 pl ← AEAD. dec(k0, c, h, n)
73 h ← H(h, c)
74 n. increment()
75 cte ← pl. parse_next()
76 kke ← EKem. dec(ske, cte)
77 prekey ← ck. input(kke)
78 k1 ← AEAD. gen(prekey)
79 n ← AEAD. Nonce. new()
80 c ← buf. parse_next()
81 pl ← AEAD. dec(k0, c, h, n)
82 h ← H(h, c)
83 n. increment()
84 m ← pl. parse_next()
85 return m
86 Function Sendℐ(m):
87 pl ← String. new()
88 buf ← String. new()
89 pl. add(pkℐ)
90 pl. add(m)
91 c ← AEAD. enc(k1, pl, h, n)
92 n. increment()
93 buf. add(c)
94 h ← H(h, c)
95 return buf

96 Function Recvℛ(buf):
97 c ← buf. parse_next()
98 pl ← AEAD. dec(k1, c, h, n)
99 h ← H(h, c)

100 n. increment()
101 pkℐ ← pl. parse_next()
102 m ← pl. parse_next()
103 return m
104 Function Sendℛ(m):
105 pl ← String. new()
106 buf ← String. new()
107 r ← SEEC. gen_rand(seec_sk)
108 ctℐ, kkℐ ← IKem. enc(pkℐ, r)
109 pl. add(ctℐ)
110 c ← AEAD. enc(k1, pl, h, n)
111 n. increment()
112 h ← H(h, c)
113 buf. add(c)
114 pl. flush()
115 prekeyℐ, prekeyℛ ←

HashObject. finalize(ck, kkℐ)
116 kℐ ← AEAD. gen(prekeyℐ)
117 kℛ ← AEAD. gen(prekeyℛ)
118 n ← AEAD. Nonce. new()
119 pl. add(m)
120 c ← AEAD. enc(kℛ, pl, h, n)
121 n. increment()
122 buf. add(c)
123 h ← H(h, c)
124 return buf
125 Function Recvℐ(buf):
126 c ← buf. parse_next()
127 pl ← AEAD. dec(k1, c, h, n)
128 h ← H(h, c)
129 n. increment()
130 ctℐ ← pl. parse_next()
131 kkℐ ← IKem. dec(skℐ, ctℐ)
132 prekeyℐ, prekeyℛ ←

HashObject. finalize(ck, kkℐ)
133 kℐ ← AEAD. gen(prekeyℐ)
134 kℛ ← AEAD. gen(prekeyℛ)
135 n ← AEAD. Nonce. new()
136 c ← buf. parse_next()
137 pl ← AEAD. dec(kℛ, c, h, n)
138 h ← H(h, c)
139 n. increment()
140 m ← pl. parse_next()
141 return m

39

Algorithm 17: pqXX
1 Function KGenℐ():
2 seec_sk ← SEEC. gen_key()
3 pkℐ, skℐ ← IKem. gen()
4 Function KGenℛ():
5 seec_sk ← SEEC. gen_key()
6 pkℛ, skℛ ← RKem. gen()
7 Function Initℐ():
8 h ← H(“pqXX_label”)
9 ck ← HashObject. gen(

“pqXX_label”)
10 Function Sendℐ(m):
11 pl ← String. new()
12 buf ← String. new()
13 r ← SEEC. gen_rand(seec_sk)
14 pke, ske ← EKem. gen(r)
15 pl. add(pke)
16 pl. add(m)
17 buf. add(pl)
18 h ← H(h, pl)
19 return buf
20 Function Initℛ():
21 h ← H(“pqXX_label”)
22 ck ← HashObject. gen(

“pqXX_label”)
23 Function Recvℛ(buf):
24 pl ← buf. parse_next()
25 h ← H(h, pl)
26 pke ← pl. parse_next()
27 m ← pl. parse_next()
28 return m
29 Function Sendℛ(m):
30 pl ← String. new()
31 buf ← String. new()
32 r ← SEEC. gen_rand(seec_sk)
33 cte, kke ← EKem. enc(pke, r)
34 pl. add(cte)
35 h ← H(h, pl)
36 buf. add(pl)
37 pl. flush()
38 prekey ← ck. input(kke)
39 k0 ← AEAD. gen(prekey)
40 n ← AEAD. Nonce. new()
41 pl. add(pkℛ)
42 pl. add(m)
43 c ← AEAD. enc(k0, pl, h, n)
44 n. increment()
45 buf. add(c)
46 h ← H(h, c)
47 return buf

48 Function Recvℐ(buf):
49 pl ← buf. parse_next()
50 h ← H(h, pl)
51 cte ← pl. parse_next()
52 kke ← EKem. dec(ske, cte)
53 prekey ← ck. input(kke)
54 k0 ← AEAD. gen(prekey)
55 n ← AEAD. Nonce. new()
56 c ← buf. parse_next()
57 pl ← AEAD. dec(k0, c, h, n)
58 h ← H(h, c)
59 n. increment()
60 pkℛ ← pl. parse_next()
61 m ← pl. parse_next()
62 return m
63 Function Sendℐ(m):
64 pl ← String. new()
65 buf ← String. new()
66 r ← SEEC. gen_rand(seec_sk)
67 ctℛ, kkℛ ← RKem. enc(pkℛ, r)
68 pl. add(ctℛ)
69 c ← AEAD. enc(k0, pl, h, n)
70 n. increment()
71 h ← H(h, c)
72 buf. add(c)
73 pl. flush()
74 prekey ← ck. input(kkℛ)
75 k1 ← AEAD. gen(prekey)
76 n ← AEAD. Nonce. new()
77 pl. add(pkℐ)
78 pl. add(m)
79 c ← AEAD. enc(k1, pl, h, n)
80 n. increment()
81 buf. add(c)
82 h ← H(h, c)
83 return buf
84 Function Recvℛ(buf):
85 c ← buf. parse_next()
86 pl ← AEAD. dec(k0, c, h, n)
87 h ← H(h, c)
88 n. increment()
89 ctℛ ← pl. parse_next()
90 kkℛ ← RKem. dec(skℛ, ctℛ)
91 prekey ← ck. input(kkℛ)
92 k1 ← AEAD. gen(prekey)
93 n ← AEAD. Nonce. new()
94 c ← buf. parse_next()
95 pl ← AEAD. dec(k0, c, h, n)
96 h ← H(h, c)
97 n. increment()
98 pkℐ ← pl. parse_next()
99 m ← pl. parse_next()

100 return m

101 Function Sendℛ(m):
102 pl ← String. new()
103 buf ← String. new()
104 r ← SEEC. gen_rand(seec_sk)
105 ctℐ, kkℐ ← IKem. enc(pkℐ, r)
106 pl. add(ctℐ)
107 c ← AEAD. enc(k1, pl, h, n)
108 n. increment()
109 h ← H(h, c)
110 buf. add(c)
111 pl. flush()
112 prekeyℐ, prekeyℛ ←

HashObject. finalize(ck, kkℐ)
113 kℐ ← AEAD. gen(prekeyℐ)
114 kℛ ← AEAD. gen(prekeyℛ)
115 n ← AEAD. Nonce. new()
116 pl. add(m)
117 c ← AEAD. enc(kℛ, pl, h, n)
118 n. increment()
119 buf. add(c)
120 h ← H(h, c)
121 return buf
122 Function Recvℐ(buf):
123 c ← buf. parse_next()
124 pl ← AEAD. dec(k1, c, h, n)
125 h ← H(h, c)
126 n. increment()
127 ctℐ ← pl. parse_next()
128 kkℐ ← IKem. dec(skℐ, ctℐ)
129 prekeyℐ, prekeyℛ ←

HashObject. finalize(ck, kkℐ)
130 kℐ ← AEAD. gen(prekeyℐ)
131 kℛ ← AEAD. gen(prekeyℛ)
132 n ← AEAD. Nonce. new()
133 c ← buf. parse_next()
134 pl ← AEAD. dec(kℛ, c, h, n)
135 h ← H(h, c)
136 n. increment()
137 m ← pl. parse_next()
138 return m

40

Algorithm 18: pqIN
1 Function KGenℐ():
2 seec_sk ← SEEC. gen_key()
3 pkℐ, skℐ ← IKem. gen()
4 Function KGenℛ():
5 seec_sk ← SEEC. gen_key()
6 Function Initℐ():
7 h ← H(“pqIN_label”)
8 ck ← HashObject. gen(

“pqIN_label”)
9 Function Sendℐ(m):

10 pl ← String. new()
11 buf ← String. new()
12 r ← SEEC. gen_rand(seec_sk)
13 pke, ske ← EKem. gen(r)
14 pl. add(pke)
15 pl. add(pkℐ)
16 pl. add(m)
17 buf. add(pl)
18 h ← H(h, pl)
19 return buf
20 Function Initℛ():
21 h ← H(“pqIN_label”)
22 ck ← HashObject. gen(

“pqIN_label”)
23 Function Recvℛ(buf):
24 pl ← buf. parse_next()
25 h ← H(h, pl)
26 pke ← pl. parse_next()
27 pkℐ ← pl. parse_next()
28 m ← pl. parse_next()
29 return m

30 Function Sendℛ(m):
31 pl ← String. new()
32 buf ← String. new()
33 r ← SEEC. gen_rand(seec_sk)
34 cte, kke ← EKem. enc(pke, r)
35 pl. add(cte)
36 h ← H(h, pl)
37 buf. add(pl)
38 pl. flush()
39 prekey ← ck. input(kke)
40 k0 ← AEAD. gen(prekey)
41 n ← AEAD. Nonce. new()
42 r ← SEEC. gen_rand(seec_sk)
43 ctℐ, kkℐ ← IKem. enc(pkℐ, r)
44 pl. add(ctℐ)
45 c ← AEAD. enc(k0, pl, h, n)
46 n. increment()
47 h ← H(h, c)
48 buf. add(c)
49 pl. flush()
50 prekeyℐ, prekeyℛ ←

HashObject. finalize(ck, kkℐ)
51 kℐ ← AEAD. gen(prekeyℐ)
52 kℛ ← AEAD. gen(prekeyℛ)
53 n ← AEAD. Nonce. new()
54 pl. add(m)
55 c ← AEAD. enc(kℛ, pl, h, n)
56 n. increment()
57 buf. add(c)
58 h ← H(h, c)
59 return buf

60 Function Recvℐ(buf):
61 pl ← buf. parse_next()
62 h ← H(h, pl)
63 cte ← pl. parse_next()
64 kke ← EKem. dec(ske, cte)
65 prekey ← ck. input(kke)
66 k0 ← AEAD. gen(prekey)
67 n ← AEAD. Nonce. new()
68 c ← buf. parse_next()
69 pl ← AEAD. dec(k0, c, h, n)
70 h ← H(h, c)
71 n. increment()
72 ctℐ ← pl. parse_next()
73 kkℐ ← IKem. dec(skℐ, ctℐ)
74 prekeyℐ, prekeyℛ ←

HashObject. finalize(ck, kkℐ)
75 kℐ ← AEAD. gen(prekeyℐ)
76 kℛ ← AEAD. gen(prekeyℛ)
77 n ← AEAD. Nonce. new()
78 c ← buf. parse_next()
79 pl ← AEAD. dec(kℛ, c, h, n)
80 h ← H(h, c)
81 n. increment()
82 m ← pl. parse_next()
83 return m

41

Algorithm 19: pqIK
1 Function KGenℐ():
2 seec_sk ← SEEC. gen_key()
3 pkℐ, skℐ ← IKem. gen()
4 Function KGenℛ():
5 seec_sk ← SEEC. gen_key()
6 pkℛ, skℛ ← RKem. gen()
7 Publish(pkℛ)
8 Function Initℐ():
9 h ← H(“pqIK_label”)

10 ck ← HashObject. gen(
“pqIK_label”)

11 Function Sendℐ(m):
12 pl ← String. new()
13 buf ← String. new()
14 r ← SEEC. gen_rand(seec_sk)
15 ctℛ, kkℛ ← RKem. enc(pkℛ, r)
16 pl. add(ctℛ)
17 h ← H(h, pl)
18 buf. add(pl)
19 pl. flush()
20 prekey ← ck. input(kkℛ)
21 k0 ← AEAD. gen(prekey)
22 n ← AEAD. Nonce. new()
23 r ← SEEC. gen_rand(seec_sk)
24 pke, ske ← EKem. gen(r)
25 pl. add(pke)
26 pl. add(pkℐ)
27 pl. add(m)
28 c ← AEAD. enc(k0, pl, h, n)
29 n. increment()
30 buf. add(c)
31 h ← H(h, c)
32 return buf
33 Function Initℛ():
34 h ← H(“pqIK_label”)
35 ck ← HashObject. gen(

“pqIK_label”)

36 Function Recvℛ(buf):
37 pl ← buf. parse_next()
38 h ← H(h, pl)
39 ctℛ ← pl. parse_next()
40 kkℛ ← RKem. dec(skℛ, ctℛ)
41 prekey ← ck. input(kkℛ)
42 k0 ← AEAD. gen(prekey)
43 n ← AEAD. Nonce. new()
44 c ← buf. parse_next()
45 pl ← AEAD. dec(k0, c, h, n)
46 h ← H(h, c)
47 n. increment()
48 pke ← pl. parse_next()
49 pkℐ ← pl. parse_next()
50 m ← pl. parse_next()
51 return m
52 Function Sendℛ(m):
53 pl ← String. new()
54 buf ← String. new()
55 r ← SEEC. gen_rand(seec_sk)
56 cte, kke ← EKem. enc(pke, r)
57 pl. add(cte)
58 c ← AEAD. enc(k0, pl, h, n)
59 n. increment()
60 h ← H(h, c)
61 buf. add(c)
62 pl. flush()
63 prekey ← ck. input(kke)
64 k1 ← AEAD. gen(prekey)
65 n ← AEAD. Nonce. new()
66 r ← SEEC. gen_rand(seec_sk)
67 ctℐ, kkℐ ← IKem. enc(pkℐ, r)
68 pl. add(ctℐ)
69 c ← AEAD. enc(k1, pl, h, n)
70 n. increment()
71 h ← H(h, c)
72 buf. add(c)
73 pl. flush()
74 prekeyℐ, prekeyℛ ←

HashObject. finalize(ck, kkℐ)
75 kℐ ← AEAD. gen(prekeyℐ)
76 kℛ ← AEAD. gen(prekeyℛ)
77 n ← AEAD. Nonce. new()
78 pl. add(m)
79 c ← AEAD. enc(kℛ, pl, h, n)
80 n. increment()
81 buf. add(c)
82 h ← H(h, c)
83 return buf

84 Function Recvℐ(buf):
85 c ← buf. parse_next()
86 pl ← AEAD. dec(k0, c, h, n)
87 h ← H(h, c)
88 n. increment()
89 cte ← pl. parse_next()
90 kke ← EKem. dec(ske, cte)
91 prekey ← ck. input(kke)
92 k1 ← AEAD. gen(prekey)
93 n ← AEAD. Nonce. new()
94 c ← buf. parse_next()
95 pl ← AEAD. dec(k0, c, h, n)
96 h ← H(h, c)
97 n. increment()
98 ctℐ ← pl. parse_next()
99 kkℐ ← IKem. dec(skℐ, ctℐ)

100 prekeyℐ, prekeyℛ ←
HashObject. finalize(ck, kkℐ)

101 kℐ ← AEAD. gen(prekeyℐ)
102 kℛ ← AEAD. gen(prekeyℛ)
103 n ← AEAD. Nonce. new()
104 c ← buf. parse_next()
105 pl ← AEAD. dec(kℛ, c, h, n)
106 h ← H(h, c)
107 n. increment()
108 m ← pl. parse_next()
109 return m

42

Algorithm 20: pqIX
1 Function KGenℐ():
2 seec_sk ← SEEC. gen_key()
3 pkℐ, skℐ ← IKem. gen()
4 Function KGenℛ():
5 seec_sk ← SEEC. gen_key()
6 pkℛ, skℛ ← RKem. gen()
7 Function Initℐ():
8 h ← H(“pqIX_label”)
9 ck ← HashObject. gen(

“pqIX_label”)
10 Function Sendℐ(m):
11 pl ← String. new()
12 buf ← String. new()
13 r ← SEEC. gen_rand(seec_sk)
14 pke, ske ← EKem. gen(r)
15 pl. add(pke)
16 pl. add(pkℐ)
17 pl. add(m)
18 buf. add(pl)
19 h ← H(h, pl)
20 return buf
21 Function Initℛ():
22 h ← H(“pqIX_label”)
23 ck ← HashObject. gen(

“pqIX_label”)
24 Function Recvℛ(buf):
25 pl ← buf. parse_next()
26 h ← H(h, pl)
27 pke ← pl. parse_next()
28 pkℐ ← pl. parse_next()
29 m ← pl. parse_next()
30 return m

31 Function Sendℛ(m):
32 pl ← String. new()
33 buf ← String. new()
34 r ← SEEC. gen_rand(seec_sk)
35 cte, kke ← EKem. enc(pke, r)
36 pl. add(cte)
37 h ← H(h, pl)
38 buf. add(pl)
39 pl. flush()
40 prekey ← ck. input(kke)
41 k0 ← AEAD. gen(prekey)
42 n ← AEAD. Nonce. new()
43 r ← SEEC. gen_rand(seec_sk)
44 ctℐ, kkℐ ← IKem. enc(pkℐ, r)
45 pl. add(ctℐ)
46 c ← AEAD. enc(k0, pl, h, n)
47 n. increment()
48 h ← H(h, c)
49 buf. add(c)
50 pl. flush()
51 prekey ← ck. input(kkℐ)
52 k1 ← AEAD. gen(prekey)
53 n ← AEAD. Nonce. new()
54 pl. add(pkℛ)
55 pl. add(m)
56 c ← AEAD. enc(k1, pl, h, n)
57 n. increment()
58 buf. add(c)
59 h ← H(h, c)
60 return buf
61 Function Recvℐ(buf):
62 pl ← buf. parse_next()
63 h ← H(h, pl)
64 cte ← pl. parse_next()
65 kke ← EKem. dec(ske, cte)
66 prekey ← ck. input(kke)
67 k0 ← AEAD. gen(prekey)
68 n ← AEAD. Nonce. new()
69 c ← buf. parse_next()
70 pl ← AEAD. dec(k0, c, h, n)
71 h ← H(h, c)
72 n. increment()
73 ctℐ ← pl. parse_next()
74 kkℐ ← IKem. dec(skℐ, ctℐ)
75 prekey ← ck. input(kkℐ)
76 k1 ← AEAD. gen(prekey)
77 n ← AEAD. Nonce. new()
78 c ← buf. parse_next()
79 pl ← AEAD. dec(k0, c, h, n)
80 h ← H(h, c)
81 n. increment()
82 pkℛ ← pl. parse_next()
83 m ← pl. parse_next()
84 return m

85 Function Sendℐ(m):
86 pl ← String. new()
87 buf ← String. new()
88 r ← SEEC. gen_rand(seec_sk)
89 ctℛ, kkℛ ← RKem. enc(pkℛ, r)
90 pl. add(ctℛ)
91 c ← AEAD. enc(k1, pl, h, n)
92 n. increment()
93 h ← H(h, c)
94 buf. add(c)
95 pl. flush()
96 prekeyℐ, prekeyℛ ←

HashObject. finalize(ck, kkℛ)
97 kℐ ← AEAD. gen(prekeyℐ)
98 kℛ ← AEAD. gen(prekeyℛ)
99 n ← AEAD. Nonce. new()

100 pl. add(m)
101 c ← AEAD. enc(kℐ, pl, h, n)
102 n. increment()
103 buf. add(c)
104 h ← H(h, c)
105 return buf
106 Function Recvℛ(buf):
107 c ← buf. parse_next()
108 pl ← AEAD. dec(k1, c, h, n)
109 h ← H(h, c)
110 n. increment()
111 ctℛ ← pl. parse_next()
112 kkℛ ← RKem. dec(skℛ, ctℛ)
113 prekeyℐ, prekeyℛ ←

HashObject. finalize(ck, kkℛ)
114 kℐ ← AEAD. gen(prekeyℐ)
115 kℛ ← AEAD. gen(prekeyℛ)
116 n ← AEAD. Nonce. new()
117 c ← buf. parse_next()
118 pl ← AEAD. dec(kℐ, c, h, n)
119 h ← H(h, c)
120 n. increment()
121 m ← pl. parse_next()
122 return m

43

Initiator Responder
ck, ℎ ← H(NK_label)
ℎ ← H(ℎ‖𝑎𝑑), 𝑛 ← 0

ℎ ← H(ℎ‖𝑔𝐵)
𝑎 ←$ ℤ𝑝

ℎ ← H(ℎ‖𝑔𝑎)
𝑐𝑘0, 𝑘0 ← KDF(𝑐𝑘, 𝑔𝑎𝐵)

𝑐0 ← enc(𝑘0, 0, ℎ, 𝑚0)

𝑔𝑎, 𝑐0

if dec(𝑘0, 𝑛, ℎ, 𝑐0) = ⊥, abort
ℎ ← H(ℎ‖𝑐0)

𝑏 ←$ ℤ𝑝

ℎ ← H(ℎ‖𝑔𝑏)
ck1, 𝑘1 ← KDF(ck, 𝑔𝑎𝑏), 𝑛 ← 0

𝑐1 ← enc(𝑘1, 𝑛, ℎ, 𝑚1)
𝑔𝑏, 𝑐1

if dec(𝑘1, 𝑛, ℎ, 𝑐1) = ⊥, abort
ℎ ← H(ℎ‖𝑐1)

𝑘𝑖, 𝑘𝑟 ← KDF(𝑐𝑘1, 𝜖, 2), 𝑛 ← 0
Payload Data

Initiator Responder
ck, ℎ ← PRHO.create(1𝜆)

ℎ. input(NK_label), ck. input(NK_label)
ℎ. input(𝑎𝑑)
ℎ. input(pk𝐵)

𝑟0 ← GenRand(𝑠𝑒𝑒𝑐𝑠𝑘𝐴)
𝑐𝑡𝑎, 𝑘 ← KEM.Encap(pk𝐵; 𝑟0)

ℎ. input(𝑐𝑡𝑎)
ck. input(𝑘), 𝑘0 ← ck. output

𝑟1 ← GenRand(𝑠𝑒𝑒𝑐𝑠𝑘𝐴)
pk𝑎 ←$ KEM. KGen(𝜆; 𝑟1)

ℎ. input(𝑝𝑘𝑎)
𝑐0 ← enc(𝑘0, 0, ℎ. output, 𝑚0)

𝑐𝑡𝑎, 𝑝𝑘𝑎, 𝑐0

ℎ. input(𝑐0)
𝑟2 ← GenRand(𝑠𝑒𝑒𝑐𝑠𝑘𝐵)

𝑐𝑡𝑏, 𝑘 ← KEM.Encap(pk𝑎; 𝑟2)

ℎ. input(𝑐𝑡𝑏)
ck. input(𝑘), 𝑘1 ← ck. output

𝑐1 ← enc(𝑘1, 0, ℎ. output, 𝑚1)
𝑐𝑡𝑏, 𝑐1

ℎ. input(𝑐1)
𝑘𝑖, 𝑘𝑟 ← ck. output
Payload Data

Figure 6: The NK patterns of classical Noise (left) and PQNoise (right). For reasons of space we use the following
conventions here: highlighted actions are performed by both parties as soon as they receive all necessary
values to perform the computations in question. If any decryption- or decapsulation-algorithm returns ⊥,
the party in question aborts the protocol.

44

Initiator Responder

ck, ℎ ← H(NX_label)
ℎ ← H(ℎ‖𝑎𝑑), 𝑛 ← 0

𝑎 ←$ ℤ𝑝

ℎ ← H(ℎ‖𝑔𝑎)
𝑔𝑎

𝑏 ←$ ℤ𝑝

ℎ ← H(ℎ‖𝑔𝑏)
ck, 𝑘0 ← KDF(𝑐𝑘, 𝑔𝑎𝑏, 2)

𝑐0 ← enc(𝑘0, 𝑛, ℎ, 𝑔𝐵)
ℎ ← H(ℎ‖𝑐0)

ck, 𝑘1 ← KDF(𝑐𝑘0, 𝑔𝑎𝐵, 2), 𝑛 ← 0
𝑐1 ← enc(𝑘1, 𝑛, ℎ, 𝑚0)

𝑔𝑏, 𝑐0, 𝑐1

if dec(𝑘0, 𝑛, ℎ, 𝑐0),dec(𝑘1, 𝑛, ℎ, 𝑐1) = ⊥abort

ℎ ← H(ℎ‖𝑐1)
𝑘𝑖, 𝑘𝑟 ← KDF(𝑐𝑘1, 𝜖, 2), 𝑛 ← 0

Payload Data

Initiator Responder

ck, ℎ ← PRHO.create(1𝜆)
ℎ. input(NX_label), ck. input(NX_label)

ℎ. input(𝑎𝑑)
𝑟0 ← GenRand(𝑠𝑒𝑒𝑐𝑠𝑘𝐴)
pk𝑎 ← KEM. KGen(𝜆; 𝑟0)

ℎ. input(pk𝑎)
𝑝𝑘𝑎

𝑟1 ← GenRand(𝑠𝑒𝑒𝑐𝑠𝑘𝐵)
𝑐𝑡𝑏, 𝑘 ← KEM.Encap(pk𝑎; 𝑟0)

ℎ. input(𝑐𝑡𝑏)
ck. input(𝑘), 𝑘0 ← ck. output

𝑐0 ← enc(𝑘0, 0, ℎ. out, pk𝐵)
ℎ. input(𝑐0)

𝑐1 ← enc(𝑘0, 1, ℎ. out, 𝑚0)
𝑐𝑡𝑏, 𝑐0, 𝑐1

abort
ℎ. input(𝑐1)

𝑟2 ← GenRand(𝑠𝑒𝑒𝑐𝑠𝑘𝐴)
𝑐𝑡𝑎, 𝑘 ← KEM.Encap(pk𝐵; 𝑟2)
𝑐2 ← Enc(𝑘0, 2, ℎ. out, 𝑐𝑡𝑎)

ℎ. input(𝑐2)
ck. input(𝑘), 𝑘1 ← ck. output

𝑐3 ← Enc(𝑘1, 0, ℎ. out, 𝑚1)
𝑐2, 𝑐3

abort
ℎ. input(𝑐3)

𝑘𝑖, 𝑘𝑟 ← ck. output
Payload Data

Figure 7: The NX patterns of classical Noise (left) and PQNoise (right). For reasons of space we use the following
conventions here: highlighted actions are performed by both parties as soon as they receive all necessary
values to perform the computations in question. If any decryption- or decapsulation-algorithm returns ⊥,
the party in question aborts the protocol.

45

Initiator Responder
ck, ℎ ← H(KN_label)
ℎ ← H(ℎ‖𝑎𝑑), 𝑛 ← 0

ℎ ← H(ℎ‖𝑔𝐴)
𝑎 ←$ ℤ𝑝

ℎ ← H(ℎ‖𝑔𝑎)
𝑔𝑎

𝑏 ←$ ℤ𝑝
ℎ ← H(ℎ‖𝑔𝑏)

ck, 𝑘0 ← KDF(ck, 𝑔𝑎𝑏, 2)
ck, 𝑘1 ← KDF(ck, 𝑔𝐴𝑏, 2), 𝑛 ← 0

𝑐0 ← enc(𝑘1, 𝑛, ℎ, 𝑚0)
𝑔𝑏, 𝑐0

if dec(𝑘1, 𝑛, ℎ, 𝑐0) = ⊥, abort
ℎ ← H(ℎ‖𝑐0)

𝑘𝑖, 𝑘𝑟 ← KDF(𝑐𝑘1, 𝜖, 2), 𝑛 ← 0
Payload Data

Initiator Responder
ck, ℎ ← H(KN_label)
ℎ ← H(ℎ‖𝑎𝑑), 𝑛 ← 0

ℎ ← H(ℎ‖pk𝐴)
pk𝑎 ←$ KEM. KGen(𝜆)

ℎ ← H(ℎ‖pk𝑎)
𝑝𝑘𝑎

𝑒𝐵 ← {0, 1}𝜆

𝑟0 ← PRF(𝑠𝐵, 𝑒𝐵)
𝑐𝑡𝑏, 𝑘 ← KEM.Encap(pk𝑎; 𝑟0)

ℎ ← H(ℎ‖𝑐𝑡𝑏)
ck, 𝑘0 ← KDF(ck, 𝑘, 2)

𝑒′
𝐵 ← {0, 1}𝜆

𝑟1 ← PRF(𝑠𝐵, 𝑒′
𝐵)

𝑐𝑡′
𝑏, 𝑘 ← KEM.Encap(pk𝐴; 𝑟1)

ℎ ← H(ℎ‖𝑐𝑡′
𝑏)

ck, 𝑘1 ← KDF(ck, 𝑘, 2), 𝑛 ← 0
𝑐0 ← enc(𝑘1, 𝑛, ℎ, 𝑚0)

𝑐𝑡𝑏, 𝑐𝑡′
𝑏, 𝑐0

if dec(𝑘1, 𝑛, ℎ, 𝑐0) = ⊥, abort
ℎ ← H(ℎ‖𝑐0)

𝑘𝑖, 𝑘𝑟 ← KDF(𝑐𝑘1, 𝜖, 2), 𝑛 ← 0
Payload Data

Figure 8: The KN patterns of classical Noise (left) and PQNoise (right). For reasons of space we use the following
conventions here: highlighted actions are performed by both parties as soon as they receive all necessary
values to perform the computations in question. If any decryption- or decapsulation-algorithm returns ⊥,
the party in question aborts the protocol.

46

Initiator Responder

ck, ℎ ← H(KK_label)
ℎ ← H(ℎ‖𝑎𝑑), 𝑛 ← 0

ℎ ← H(ℎ‖𝑔𝐴)
ℎ ← H(ℎ‖𝑔𝐵)

𝑎 ←$ ℤ𝑝

ℎ ← H(ℎ‖𝑔𝑎)
ck, 𝑘0 ← KDF(ck, 𝑔𝑎𝐵, 2), 𝑛 ← 0
ck, 𝑘1 ← KDF(ck, 𝑔𝐴𝐵, 2), 𝑛 ← 0

𝑐0 ← enc(𝑘1, 0, ℎ, 𝑚0)
𝑔𝑎, 𝑐0

if dec(𝑘1, 𝑛, ℎ, 𝑐0) = ⊥, abort
ℎ ← H(ℎ‖𝑐0)

𝑏 ←$ ℤ𝑝

ℎ ← H(ℎ‖𝑔𝑏)
ck, 𝑘2 ← KDF(ck, 𝑔𝑎𝑏, 2), 𝑛 ← 0

𝑐1 ← enc(𝑘2, 𝑛, ℎ, 𝑚1)
𝑔𝑏, 𝑐1

if dec(𝑘2, 𝑛, ℎ, 𝑐1) = ⊥, abort

ℎ ← H(ℎ‖𝑐1)
𝑘𝑖, 𝑘𝑟 ← KDF(𝑐𝑘2, 𝜖, 2), 𝑛 ← 0

Payload Data

Initiator Responder

ck, ℎ ← PRHO.create(1𝜆)
ℎ. input(KK_label), ck. input(KK_label)

ℎ. input(𝑎𝑑)
ℎ. input(pk𝐴)
ℎ. input(pk𝐵)

𝑟0 ← GenRand(𝑠𝑒𝑒𝑐𝑠𝑘𝐴)
𝑐𝑡𝑎, 𝑘 ← KEM.Encap(pk𝐵; 𝑟0)

ℎ. input(𝑐𝑡𝑎)
ck. input(𝑘), 𝑘0 ← ck. output

𝑟1 ← GenRand(𝑠𝑒𝑒𝑐𝑠𝑘𝐴)
pk𝑎 ←$ KEM. KGen(𝜆; 𝑟1)

ℎ. input(𝑝𝑘𝑎)
𝑐0 ← enc(𝑘0, 0, ℎ. out, 𝑚0)

𝑝𝑘𝑎, 𝑐0

ℎ. input(𝑐0)
𝑟2 ← GenRand(𝑠𝑒𝑒𝑐𝑠𝑘𝐵)

𝑐𝑡𝑏, 𝑘 ← KEM.Encap(pk𝑎; 𝑟2)
ℎ. input(𝑐𝑡𝑏)

ck. input(𝑘), 𝑘1 ← ck. output
𝑟3 ← GenRand(𝑠𝑒𝑒𝑐𝑠𝑘𝐵)

𝑐𝑡𝐵, 𝑘 ← KEM.Encap(pk𝐴; 𝑟3)
𝑐1 ← enc(𝑘1, 0, ℎ. out, 𝑐𝑡𝐵)

ℎ. input(𝑐3)
ck. input(𝑘), 𝑘2 ← ck. output

𝑐2 ← enc(𝑘2, 0, ℎ. out, 𝑚1)
𝑐𝑡𝑏, 𝑐1, 𝑐2

ℎ. input(𝑐2)
𝑘𝑖, 𝑘𝑟 ← ck. output
Payload Data

Figure 9: The KK patterns of classical Noise (left) and PQNoise (right). For reasons of space we use the following
conventions here: highlighted actions are performed by both parties as soon as they receive all necessary
values to perform the computations in question. If any decryption- or decapsulation-algorithm returns ⊥,
the party in question aborts the protocol.

47

Initiator Responder
ck, ℎ ← H(KX_label)
ℎ ← H(ℎ‖𝑎𝑑), 𝑛 ← 0

ℎ ← H(ℎ‖𝑔𝐴)
𝑎 ←$ ℤ𝑝

ℎ ← H(ℎ‖𝑔𝑎)
𝑔𝑎

𝑏 ←$ ℤ𝑝

ℎ ← H(ℎ‖𝑔𝑏)
ck, 𝑘0 ← KDF(ck, 𝑔𝑎𝑏, 2)

ck, 𝑘1 ← KDF(ck, 𝑔𝐴𝑏, 2), 𝑛 ← 0

𝑐0 ← enc(𝑘1, 𝑛, ℎ, 𝑔𝐵)
ℎ ← H(ℎ‖𝑐0)

ck, 𝑘2 ← KDF(ck, 𝑔𝑎𝐵, 2), 𝑛 ← 0
𝑐1 ← enc(𝑘2, 𝑛, ℎ, 𝑚0)

𝑔𝑏, 𝑐0, 𝑐1

if dec(𝑘1, 𝑛, ℎ, 𝑐0),dec(𝑘2, 𝑛, ℎ, 𝑐1) = ⊥abort
ℎ ← H(ℎ‖𝑐1)

𝑘𝑖, 𝑘𝑟 ← KDF(𝑐𝑘, 𝜖, 2), 𝑛 ← 0
Payload Data

Initiator Responder
ck, ℎ ← PRHO.create(1𝜆)

ℎ. input(KX_label), ck. input(KX_label)
ℎ. input(𝑎𝑑)
ℎ. input(pk𝐴)

𝑟0 ← GenRand(𝑠𝑒𝑒𝑐𝑠𝑘𝐴)
pk𝑎 ← KEM. KGen(𝜆; 𝑟0)

ℎ. input(pk𝑎)
pk𝑎

𝑟1 ← GenRand(𝑠𝑒𝑒𝑐𝑠𝑘𝐵)
𝑐𝑡𝑏, 𝑘 ← KEM.Encap(pk𝑎; 𝑟1)

ℎ. input(𝑐𝑡𝑏)
ck. input(𝑘), 𝑘0 ← ck. output

𝑟2 ← GenRand(𝑠𝑒𝑒𝑐𝑠𝑘𝐵)
𝑐𝑡𝐵, 𝑘 ← KEM.Encap(pk𝐴; 𝑟2)

𝑐0 ← enc(𝑘0, 0, ℎ. out, 𝑐𝑡𝐵)
ℎ. input(𝑐0)

ck. input(𝑘), 𝑘1 ← ck. output
𝑐1 ← enc(𝑘1, 0, ℎ. out, pk𝐵)

ℎ. input(𝑐1)
𝑐2 ← enc(𝑘1, 1, ℎ. out, 𝑚0)
𝑐𝑡𝑏, 𝑐0, 𝑐1, 𝑐2

if dec(𝑘0, 0, ℎ. out, 𝑐0),dec(𝑘1, 0, ℎ. out, 𝑐1),
dec(𝑘1, 1, ℎ. out, 𝑐2) = ⊥ abort

ℎ. input(𝑐2)
𝑟3 ← GenRand(𝑠𝑒𝑒𝑐𝑠𝑘𝐴)
𝑐𝑡𝐴, 𝑘 ← KEM.Encap(pk𝐵; 𝑟3)
𝑐3 ← enc(𝑘1, 2, ℎ. out, 𝑐𝑡𝐴)

ℎ. input(𝑐3)
ck. input(𝑘), 𝑘2 ← ck. output

𝑐4 ← enc(𝑘2, 0, ℎ. out, 𝑚1)
𝑐3, 𝑐4

if dec(𝑘1, 2, ℎ. out, 𝑐3),dec(𝑘2, 0, ℎ. out, 𝑐4) = ⊥abort
ℎ. input(𝑐2)

𝑘𝑖, 𝑘𝑟 ← ck. output
Payload Data

Figure 10: The KX patterns of classical Noise (left) and PQNoise (right). For reasons of space we use the following
conventions here: highlighted actions are performed by both parties as soon as they receive all necessary
values to perform the computations in question. If any decryption- or decapsulation-algorithm returns ⊥,
the party in question aborts the protocol.

48

Initiator Responder

ck, ℎ ← H(XN_label)
ℎ ← H(ℎ‖𝑎𝑑), 𝑛 ← 0

𝑎 ←$ ℤ𝑝

ℎ ← H(ℎ‖𝑔𝑎)
𝑔𝑎

𝑏 ←$ ℤ𝑝

ℎ ← H(ℎ‖𝑔𝑏)
ck, 𝑘0 ← KDF(𝑐𝑘, 𝑔𝑎𝑏, 2)

𝑐0 ← enc(𝑘0, 0, ℎ, 𝑚0)
𝑔𝑏, 𝑐0

if dec(𝑘0, 𝑛, ℎ, 𝑐0) = ⊥, abort
ℎ ← H(ℎ‖𝑐0)

𝑐1 ← enc(𝑘0, 1, ℎ, 𝑔𝐴)
ℎ ← H(ℎ‖𝑐1)

ck, 𝑘1 ← KDF(ck, 𝑔𝐴𝑏, 2), 𝑛 ← 0
𝑐2 ← enc(𝑘1, 0, ℎ, 𝑚1)

𝑐1, 𝑐2

if dec(𝑘0, 𝑛, ℎ, 𝑐1),dec(𝑘1, 𝑛, ℎ, 𝑐2) = ⊥abort
ℎ ← H(ℎ‖𝑐2)

𝑘𝑖, 𝑘𝑟 ← KDF(𝑐𝑘1, 𝜖, 2), 𝑛 ← 0
Payload Data

Initiator Responder

ck, ℎ ← PRHO.create(1𝜆)
ℎ. input(XN_label), ck. input(XN_label)

ℎ. input(𝑎𝑑)
𝑟0 ← GenRand(𝑠𝑒𝑒𝑐𝑠𝑘𝐴)
pk𝑎 ←$ KEM. KGen(𝜆; 𝑟0)

ℎ. input(𝑔𝑎)
pk𝑎

𝑟1 ← GenRand(𝑠𝑒𝑒𝑐𝑠𝑘𝐵)
𝑐𝑡𝑏, 𝑘 ← KEM.Encap(pk𝑎; 𝑟0)

ℎ. input(𝑐𝑡𝑏)
ck. input(𝑘), 𝑘0 ← ck. output

𝑐0 ← enc(𝑘0, 0, ℎ. out, 𝑚0)
𝑐𝑡𝑏, 𝑐0

if dec(𝑘0, 𝑛, ℎ. out, 𝑐0) = ⊥, abort
ℎ. input(𝑐0)

𝑐1 ← enc(𝑘0, 1, ℎ. out, pk𝐴)
ℎ. input(𝑐1)

𝑐2 ← enc(𝑘0, 2, ℎ. out, 𝑚1)
𝑐1, 𝑐2

if dec(𝑘0, 1, ℎ. out, 𝑐1),dec(𝑘0, 2, ℎ. out, 𝑐2) = ⊥abort
ℎ. input(𝑐2)
𝑟2 ← GenRand(𝑠𝑒𝑒𝑐𝑠𝑘𝐵)

𝑐𝑡𝐵, 𝑘 ← KEM.Encap(pk𝐴; 𝑟2)
𝑐3 ← enc(𝑘0, 3, ℎ. out, 𝑐𝑡𝐵)

ℎ. input(𝑐3)
ck. input(𝑘), 𝑘1 ← ck. output

𝑐4 ← enc(𝑘1, 0, ℎ. out, 𝑚2)
𝑐3, 𝑐4

if dec(𝑘0, 3, ℎ. out, 𝑐3),dec(𝑘1, 0, ℎ. out, 𝑐4) = ⊥, abort
ℎ. input(𝑐4)

𝑘𝑖, 𝑘𝑟 ← ck. output
Payload Data

Figure 11: The XN patterns of classical Noise (left) and PQNoise (right). For reasons of space we use the following
conventions here: highlighted actions are performed by both parties as soon as they receive all necessary
values to perform the computations in question. If any decryption- or decapsulation-algorithm returns ⊥,
the party in question aborts the protocol.

49

Initiator Responder
ck, ℎ ← H(XK_label)
ℎ ← H(ℎ‖𝑎𝑑), 𝑛 ← 0

ℎ ← H(ℎ‖𝑔𝐵)
𝑎 ←$ ℤ𝑝

ℎ ← H(ℎ‖𝑔𝑎)
𝑐𝑘, 𝑘0 ← KDF(ck, 𝑔𝑎𝐵, 2), 𝑛 ← 0

𝑐0 ← enc(𝑘0, 𝑛, ℎ, 𝑚0)
𝑔𝑎, 𝑐0

if dec(𝑘0, 𝑛, ℎ, 𝑐0) = ⊥, abort
ℎ ← H(ℎ‖𝑐0)

𝑏 ←$ ℤ𝑝

ℎ ← H(ℎ‖𝑔𝑏)
ck, 𝑘1 ← KDF(ck, 𝑔𝑎𝑏, 2)

𝑐1 ← enc(𝑘1, 𝑛, ℎ, 𝑚1)
𝑔𝑏, 𝑐1

if dec(𝑘1, 𝑛, ℎ, 𝑐1) = ⊥, abort
ℎ ← H(ℎ‖𝑐1)

𝑐2 ← enc(𝑘1, 𝑛, ℎ, 𝑔𝐴)
ℎ ← H(ℎ‖𝑐2)

ck, 𝑘2 ← KDF(ck, 𝑔𝐴𝑏, 2)
𝑐3 ← enc(𝑘2, 𝑛, ℎ, 𝑚2)

𝑐2, 𝑐3
if dec(𝑘1, 𝑛, ℎ, 𝑐2),dec(𝑘2, 𝑛, ℎ, 𝑐3) = ⊥ abort

ℎ ← H(ℎ‖𝑐3)

𝑘𝑖, 𝑘𝑟 ← KDF(𝑐𝑘2, 𝜖, 2)
Payload Data

Initiator Responder
ck, ℎ ← PRHO.create(1𝜆)

ℎ. input(XK_label), ck. input(XK_label)
ℎ. input(𝑎𝑑)
ℎ. input(pk𝐵)

𝑟0 ← GenRand(𝑠𝑒𝑒𝑐𝑠𝑘𝐴)
𝑐𝑡𝐴, 𝑘 ← KEM.Encap(pk𝐵; 𝑟0)

ℎ. input(𝑐𝑡𝐴)
ck. input(𝑘), 𝑘0 ← ck. output

𝑟1 ← GenRand(𝑠𝑒𝑒𝑐𝑠𝑘𝐴)
pk𝑎 ← KEM. KGen(1𝜆; 𝑟1)

ℎ. input(pk𝑎)
𝑐0 ← enc(𝑘0, 0, ℎ. out, 𝑚0)𝑐𝑡𝐴, pk𝑎, 𝑐0

ℎ. input(𝑐1)
𝑟2 ← GenRand(𝑠𝑒𝑒𝑐𝑠𝑘𝐵)

𝑐𝑡𝑏, 𝑘 ← KEM.Encap(pk𝑎; 𝑟2)
ℎ. input(𝑐𝑡𝑏)

ck. input(𝑘), 𝑘1 ← ck. output
𝑐1 ← enc(𝑘1, 0, ℎ. out, 𝑚1)

𝑐𝑡𝑏, 𝑐1

ℎ. input(𝑐1)
𝑐2 ← enc(𝑘1, 1, ℎ. out, pk𝐴)

ℎ. input(𝑐4)

𝑐3 ← enc(𝑘1, 2, ℎ. out, 𝑚2)
𝑐2, 𝑐3

ℎ. input(𝑐3)
𝑟3 ← GenRand(𝑠𝑒𝑒𝑐𝑠𝑘𝐵)

𝑐𝑡𝐵, 𝑘 ← KEM.Encap(pk𝐴; 𝑟3)
𝑐4 ← enc(𝑘1, 3, ℎ. out, 𝑐𝑡𝐵)

ℎ. input(𝑐4)
ck. input(𝑘), 𝑘2 ← ck. output

𝑐5 ← enc(𝑘2, 0, ℎ. out, 𝑚3)
𝑐4, 𝑐5

ℎ. input(𝑐5)
𝑘𝑖, 𝑘𝑟 ← ck. output
Payload Data

Figure 12: The XK patterns of classical Noise (left) and PQNoise (right). For reasons of space we use the following
conventions here: highlighted actions are performed by both parties as soon as they receive all necessary
values to perform the computations in question. If any decryption- or decapsulation-algorithm returns ⊥,
the party in question aborts the protocol.

50

Initiator Responder
ck, ℎ ← H(XX_label)
ℎ ← H(ℎ‖𝑎𝑑), 𝑛 ← 0

𝑎 ←$ ℤ𝑝

ℎ ← H(ℎ‖𝑔𝑎)
𝑔𝑎

𝑏 ←$ ℤ𝑝

ℎ ← H(ℎ‖𝑔𝑏)
ck, 𝑘0 ← KDF(ck, 𝑔𝑎𝑏, 2)

𝑐0 ← enc(𝑘0, 𝑛, ℎ, 𝑔𝐵)
ℎ ← H(ℎ‖𝑐0)

ck, 𝑘1 ← KDF(ck, 𝑔𝑎𝐵, 2), 𝑛 ← 0
𝑐1 ← enc(𝑘1, 𝑛, ℎ, 𝑚0)

𝑔𝑏, 𝑐0, 𝑐1

if dec(𝑘0, 𝑛, ℎ, 𝑐0),dec(𝑘1, 𝑛, ℎ, 𝑐1) = ⊥ abort
ℎ ← H(ℎ‖𝑐1)

𝑐2 ← enc(𝑘1, 𝑛, ℎ, 𝑔𝐴)
ℎ ← H(ℎ‖𝑐2)

ck, 𝑘2 ← KDF(ck, 𝑔𝐴𝑏, 2), 𝑛 ← 0
𝑐3 ← enc(𝑘2, 𝑛, ℎ, 𝑚1)

𝑐2, 𝑐3

if dec(𝑘1, 𝑛, ℎ, 𝑐2),dec(𝑘2, 𝑛, ℎ, 𝑐3) = ⊥ abort
ℎ ← H(ℎ‖𝑐3)

𝑘𝑖, 𝑘𝑟 ← KDF(ck, 𝜖, 2), 𝑛 ← 0
Payload Data

Initiator Responder
ck, ℎ ← PRHO.create(1𝜆)

ℎ. input(XX_label), ck. input(XX_label)
ℎ. input(𝑎𝑑)

𝑟0 ← GenRand(𝑠𝑒𝑒𝑐𝑠𝑘𝐴)
pk𝑎 ←$ KEM. KGen(𝜆; 𝑟0)

ℎ. input(pk𝑎)
pk𝑎

𝑟1 ← GenRand(𝑠𝑒𝑒𝑐𝑠𝑘𝐵)
𝑐𝑡𝑏, 𝑘 ← KEM.Encap(pk𝑎; 𝑟1)

ℎ. input(𝑐𝑡𝑏)
ck. input(𝑘), 𝑘0 ← ck. output

𝑐0 ← enc(𝑘0, 0, ℎ. out, pk𝐵)
ℎ. input(𝑐0)

𝑐1 ← enc(𝑘0, 1, ℎ. out, 𝑚0)
𝑐𝑡𝑏, 𝑐0, 𝑐1

ℎ. input(𝑐1)
𝑟2 ← GenRand(𝑠𝑒𝑒𝑐𝑠𝑘𝐴)
𝑐𝑡𝐴, 𝑘 ← KEM.Encap(pk𝐵; 𝑟2)
𝑐2 ← enc(𝑘0, 2, ℎ. out, 𝑐𝑡𝐴)

ℎ. input(𝑐2)
ck. input(𝑘), 𝑘1 ← ck. output

𝑐3 ← enc(𝑘1, 0, ℎ. out, pk𝐴)
ℎ. input(𝑐3)

𝑐4 ← enc(𝑘1, 1, ℎ. out, 𝑚1)
𝑐2, 𝑐3, 𝑐4

ℎ. input(𝑐4)
𝑟3 ← GenRand(𝑠𝑒𝑒𝑐𝑠𝑘𝐵)

𝑐𝑡𝐵, 𝑘 ← KEM.Encap(pk𝐴; 𝑟3)
𝑐5 ← enc(𝑘1, 2, ℎ. out, 𝑐𝑡𝐵)

ℎ. input(𝑐5)
ck. input(𝑘), 𝑘2 ← ck. output

𝑐6 ← enc(𝑘2, 0, ℎ. out, 𝑚2)
𝑐5, 𝑐6

ℎ. input(𝑐6)
𝑘𝑖, 𝑘𝑟 ←← ck. output

Payload Data

Figure 13: The XX patterns of classical Noise (left) and PQNoise (right). For reasons of space we use the following
conventions here: highlighted actions are performed by both parties as soon as they receive all necessary
values to perform the computations in question. If any decryption- or decapsulation-algorithm returns ⊥,
the party in question aborts the protocol.

51

Initiator Responder

ck, ℎ ← H(IN_label)
ℎ ← H(ℎ‖𝑎𝑑), 𝑛 ← 0

𝑎 ←$ ℤ𝑝

ℎ ← H(ℎ‖𝑔𝑎)
ℎ ← H(ℎ‖𝑔𝐴)

𝑔𝑎, 𝑔𝐴

𝑏 ←$ ℤ𝑝

ℎ ← H(ℎ‖𝑔𝑏)
ck, 𝑘0 ← KDF(𝑐𝑘, 𝑔𝑎𝑏, 2), 𝑛 ← 0

ck, 𝑘1 ← KDF(𝑐𝑘0, 𝑔𝐴𝑏, 2), 𝑛 ← 0
𝑐0 ← enc(𝑘1, 𝑛, ℎ, 𝑚0)
𝑔𝑏, 𝑐0

if dec(𝑘1, 𝑛, ℎ, 𝑐0) = ⊥, abort
ℎ ← H(ℎ‖𝑐0)

𝑘𝑖, 𝑘𝑟 ← KDF(ck, 𝜖, 2), 𝑛 ← 0
Payload Data

Initiator Responder

ck, ℎ ← PRHO.create(1𝜆)
ℎ. input(IN_label), ck. input(IN_label)

ℎ. input(𝑎𝑑)
𝑟0 ← GenRand(𝑠𝑒𝑒𝑐𝑠𝑘𝐴)
pk𝑎 ←$ KEM. KGen(𝜆; 𝑟0)

ℎ. input(pk𝑎)
ℎ. input(pk𝐴)

pk𝑎, pk𝐴

𝑟1 ← GenRand(𝑠𝑒𝑒𝑐𝑠𝑘𝐵)
𝑐𝑡𝑏, 𝑘 ← KEM.Encap(pk𝑎; 𝑟1)

ℎ. input(𝑐𝑡𝑏)
ck. input(𝑘), 𝑘0 ← ck. output

𝑟2 ← GenRand(𝑠𝑒𝑒𝑐𝑠𝑘𝐵)
𝑐𝑡𝐵, 𝑘 ← KEM.Encap(pk𝐴; 𝑟2)

𝑐0 ← enc(𝑘0, 0, ℎ. out, 𝑐𝑡𝐵)
ℎ. input(𝑐0)

ck. input(𝑘), 𝑘1 ← ck. output
𝑐1 ← enc(𝑘1, 0, ℎ. out, 𝑚0)

𝑐𝑡𝑏, 𝑐0, 𝑐1

if dec(𝑘0, 0, ℎ. out, 𝑐0),dec(𝑘1, 0, ℎ. out, 𝑐1) = ⊥, abort
ℎ. input(𝑐1)

𝑘𝑖, 𝑘𝑟 ← ck. output
Payload Data

Figure 14: The IN patterns of classical Noise (left) and PQNoise (right). For reasons of space we use the following
conventions here: highlighted actions are performed by both parties as soon as they receive all necessary
values to perform the computations in question. If any decryption- or decapsulation-algorithm returns ⊥,
the party in question aborts the protocol.

52

Initiator Responder

ck, ℎ ← H(IK_label)
ℎ ← H(ℎ‖𝑎𝑑), 𝑛 ← 0

ℎ ← H(ℎ‖𝑔𝐵)
𝑎 ←$ ℤ𝑝

ℎ ← H(ℎ‖𝑔𝑎)

ck, 𝑘0 ← KDF(𝑐𝑘, 𝑔𝑎𝐵, 2), 𝑛 ← 0
𝑐0 ← enc(𝑘0, 𝑛, ℎ, 𝑔𝐴)

ℎ ← H(ℎ‖𝑐0)
ck, 𝑘1 ← KDF(𝑐𝑘, 𝑔𝐴𝐵, 2), 𝑛 ← 0

𝑐1 ← enc(𝑘1, 𝑛, ℎ, 𝑚0)
𝑔𝑎, 𝑐0, 𝑐1

if dec(𝑘0, 𝑛, ℎ, 𝑐0),dec(𝑘1, 𝑛, ℎ, 𝑐1) = ⊥ abort
𝑏 ←$ ℤ𝑝

ℎ ← H(ℎ‖𝑔𝑏)
ck, 𝑘2 ← KDF(ck, 𝑔𝑎𝑏, 2), 𝑛 ← 0

ck, 𝑘3 ← KDF(ck, 𝑔𝐴𝑏, 2), 𝑛 ← 0
𝑐2 ← enc(𝑘3, 𝑛, ℎ, 𝑚1)
𝑔𝑏, 𝑐2

if dec(𝑘3, 𝑛, ℎ, 𝑐2) = ⊥, abort

ℎ ← H(ℎ‖𝑐2)
𝑘𝑖, 𝑘𝑟 ← KDF(ck, 𝜖, 2), 𝑛 ← 0

Payload Data

Initiator Responder

ck, ℎ ← PRHO.create(1𝜆)
ℎ. input(IK_label), ck. input(IK_label)

ℎ. input(𝑎𝑑)
ℎ. input(pk𝐵)

𝑟0 ← GenRand(𝑠𝑒𝑒𝑐𝑠𝑘𝐴)
pk𝑎 ← KEM. KGen(𝜆; 𝑟0)

ℎ. input(pk𝑎)
𝑟1 ← GenRand(𝑠𝑒𝑒𝑐𝑠𝑘𝐴)
𝑐𝑡𝐴, 𝑘 ← KEM.Encap(pk𝐵; 𝑟1)

ℎ. input(𝑐𝑡𝐴)
ck. input(𝑘), 𝑘0 ← ck. output

𝑐0 ← enc(𝑘0, 0, ℎ. out, pk𝐴)
ℎ. input(𝑐0)

𝑐1 ← enc(𝑘0, 1, ℎ. out, 𝑚0)
pk𝑎, 𝑐0, 𝑐1

𝑟2 ← GenRand(𝑠𝑒𝑒𝑐𝑠𝑘𝐵)
𝑐𝑡𝑏, 𝑘 ← KEM.Encap(pk𝑎; 𝑟2)

𝑐2 ← enc(𝑘0, 2, ℎ. out, 𝑐𝑡𝑏)
ℎ. input(𝑐2)

ck. input(𝑘), 𝑘1 ← ck. output
𝑟3 ← GenRand(𝑠𝑒𝑒𝑐𝑠𝑘𝐵)

𝑐𝑡𝐵, 𝑘 ← KEM.Encap(pk𝐴; 𝑟3)
𝑐3 ← enc(𝑘1, 0, ℎ. out, 𝑐𝑡𝐵)

ℎ. input(𝑐3)
ck. input(𝑘), 𝑘2 ← ck. output

𝑐4 ← enc(𝑘2, 0, ℎ. out, 𝑚1)
𝑐2, 𝑐3, 𝑐4

if dec(𝑘0, 2, ℎ. out, 𝑐2),dec(𝑘1, 0, ℎ. out, 𝑐3),
dec(𝑘2, 0, ℎ. out, 𝑐4) = ⊥, abort

ℎ. input(𝑐4)
𝑘𝑖, 𝑘𝑟 ← ck. output
Payload Data

Figure 15: The IK patterns of classical Noise (left) and PQNoise (right). For reasons of space we use the following
conventions here: highlighted actions are performed by both parties as soon as they receive all necessary
values to perform the computations in question. If any decryption- or decapsulation-algorithm returns ⊥,
the party in question aborts the protocol.

53

Initiator Responder

ck, ℎ ← H(IX_label)
ℎ ← H(ℎ‖𝑎𝑑), 𝑛 ← 0

𝑎 ←$ ℤ𝑝

ℎ ← H(ℎ‖𝑔𝑎)
ℎ ← H(ℎ‖𝑔𝐴)

𝑔𝑎, 𝑔𝐴

𝑏 ←$ ℤ𝑝

ℎ ← H(ℎ‖𝑔𝑏)
ck, 𝑘0 ← KDF(ck, 𝑔𝑎𝑏, 2)

ck, 𝑘1 ← KDF(𝑐𝑘0, 𝑔𝐴𝑏, 2), 𝑛 ← 0
𝑐0 ← enc(𝑘1, 𝑛, ℎ, 𝑔𝐵)

ℎ ← H(ℎ‖𝑐0)
ck, 𝑘2 ← KDF(ck, 𝑔𝑎𝐵, 2), 𝑛 ← 0

𝑐1 ← enc(𝑘2, 𝑛, ℎ, 𝑚0)
𝑔𝑏, 𝑐0, 𝑐1

if dec(𝑘1, 𝑛, ℎ, 𝑐0),dec(𝑘2, 𝑛, ℎ, 𝑐1) = ⊥abort
ℎ ← H(ℎ‖𝑐1)

𝑘𝑖, 𝑘𝑟 ← KDF(ck, 𝜖, 2), 𝑛 ← 0
Payload Data

Initiator Responder

ck, ℎ ← PRHO.create(1𝜆)
ℎ. input(IX_label), ck. input(IX_label)

ℎ. input(𝑎𝑑)
𝑟0 ← GenRand(𝑠𝑒𝑒𝑐𝑠𝑘𝐴)
pk𝑎 ←$ KEM. KGen(𝜆; 𝑟0)

ℎ. input(pk𝑎)
ℎ. input(pk𝐴)

pk𝑎, pk𝐴

𝑟1 ← GenRand(𝑠𝑒𝑒𝑐𝑠𝑘𝐵)
𝑐𝑡𝑏, 𝑘 ← KEM.Encap(pk𝑎; 𝑟1)

ℎ. input(𝑐𝑡𝑏)
ck. input(𝑘), 𝑘0 ← ck. output

𝑟2 ← GenRand(𝑠𝑒𝑒𝑐𝑠𝑘𝐵)
𝑐𝑡𝐵, 𝑘 ← KEM.Encap(pk𝐴; 𝑟2)

𝑐0 ← enc(𝑘0, 0, ℎ. out, 𝑐𝑡𝐵)
ℎ. input(𝑐0)

ck. input(𝑘), 𝑘1 ← ck. output
𝑐1 ← enc(𝑘1, 0, ℎ. out, pk𝐵)

ℎ. input(𝑐1)
𝑐2 ← enc(𝑘1, 1, ℎ. out, 𝑚0)
𝑐𝑡𝑏, 𝑐0, 𝑐1, 𝑐2

if dec(𝑘0, 0, ℎ. out, 𝑐0),dec(𝑘1, 0, ℎ. out, 𝑐1),
dec(𝑘1, 1, ℎ. out, 𝑐2), = ⊥ abort

ℎ. input(𝑐2)
𝑟3 ← GenRand(𝑠𝑒𝑒𝑐𝑠𝑘𝐴)
𝑐𝑡𝐴, 𝑘 ← KEM.Encap(pk𝐵; 𝑟3)
𝑐3 ← enc(𝑘1, 1, ℎ. out, 𝑐𝑡𝐴)

ℎ. input(𝑐3)
ck. input(𝑘), 𝑘2 ← ck. output

𝑐4 ← enc(𝑘2, 0, ℎ. out, 𝑚1)
𝑐3, 𝑐4

if dec(𝑘1, 1, ℎ. out, 𝑐3),dec(𝑘2, 0, ℎ. out, 𝑐4) = ⊥ abort
ℎ. input(𝑐4)

𝑘𝑖, 𝑘𝑟 ← ck. output
Payload Data

Figure 16: The IX patterns of classical Noise (left) and PQNoise (right). For reasons of space we use the following
conventions here: highlighted actions are performed by both parties as soon as they receive all necessary
values to perform the computations in question. If any decryption- or decapsulation-algorithm returns ⊥,
the party in question aborts the protocol.

54

	Introduction
	PQNoise
	PQNoise
	SEEC
	Translating Patterns
	Fundamental Patterns

	Overview of the Flexible ACCE Framework
	Analysis
	Hash-Object
	PQNoise

	Implementation
	Acknowledgement
	Proofs
	Standard Definitions
	AEAD
	PRF
	KEMs

	SEEC
	The (Extended) Flexible ACCE Framework
	fACCE Primitive Description
	Execution Environment
	Flexible Security Notion
	Adversarial Model
	Security Definition

	PRP-SEEC
	PRPs

	Security of classical Noise
	Detailed Patterns
	Comparison of Noise and PQNoise

