
KK DF JGC - MARCH 2022 1

On the revision of NIST 800-22 Test Suites
We found that the revised code fails again, and we fixed it!

Katarzyna Anna Kowalska, Davide Fogliano, Jose Garcia Coello,
Crypta Labs, London, United Kingdom.

email: katarzyna@cryptalabs.com

Abstract—At Crypta Labs we are developing Quantum Ran-
dom Number Generator technology and are using different
random number test suites to assess the quality of our products.
Among these is the NIST 800-22 suite. When testing our datasets,
we found that we were consistently failing one particular test:
the Overlapping Template Matching test. This was surprising to
us, so we fed data from a known PRNG source into the same test
and discovered that NIST approved PRNG was also failing in a
similar fashion. At this point we decided to debug NIST’s code.
We did indeed find an error within the probability calculations
and, once corrected, ran the tests again and passed. The code for
this test had previously been revised by NIST due to an incorrect
calculation of the probabilities, however, later in the revised
source code the corrected calculations were calculated again using
the originally incorrect formulas, and these overwrote the revised
fix. Furthermore, the NIST 800-22 Test suite is currently under
revision and our paper is a contribution towards it.

Index Terms—NIST 800-22, RNG, probabilities, tests

I. INTRODUCTION

ANEW generation of random number generators are in
development. Quantum Random Number Generators are

recently gaining popularity for their quality, robustness and
potential speeds. Aside from being a better complement to
traditional Cryptographic applications, they are suited to new
protocols such as QKD BB84 where (due to the symmetric
nature) a high bit rate of generation is needed. The bandwidth
of these new post-quantum protocols can be limited by the bi-
trate generation of the RNGs used, which is why QRNGs have
a huge advantage over TRNGs. To ensure QRNG technology
is sufficiently tested for this application, large amounts of data
needs to be extracted from the QRNG to be scrutinized. Crypta
Labs decided to extract and perform the tests on 8 Gigabits
of Random Numbers, splitting them into one hundred streams
of 80 Mbits. We found that there was a test in the NIST 800-
22 suite for which only 72 out of 100 streams had a ’pass’
rating. The expected minimum pass-rate for the sample size
in the case of 100 streams is 95. After fixing issues with this
test we get a ’pass’ in all the streams (100).

The test in question is the ’Overlapping template matching
test’. Full details of this test can can be found in NISTs [1]
published documents. A breakdown of this test is as follows: A
random number sequence is partitioned into independent sub-
strings of length M. The number of occurrences of a template
B (an m-bit run of ones) in each of the substrings is calculated.
The chi-square statistic is then calculated on the basis of the
number of occurrences of B and occurrence probabilities πi of
number of occurrence of B in a string of M bits. If the P-value
of the chi-square statistic is less than the significance level,

the test concludes that the tested sequence appears to be non-
random. Otherwise, the test concludes that the tested sequence
appears to be random. Pass rate is defined by the proportion
of sequences that pass the test. In August 2021, NIST’s
Cryptographic Publication Review Board initiated a review
process for NIST Special Publication (SP) 800-22 Rev. 1a, A
Statistical Test Suite for Random and Pseudorandom Number
Generators for Cryptographic Applications. Specifically, point
4 reads: resolve inconsistencies with the SP 800-22 and SP
800-90 series.[2] We have written this paper in the hope it
supports this point.

II. MATERIALS AND METHODS.

In our study to determine whether the test code itself was to
blame for our data failing, we decided to extract and submit
data sets from 4 different known, high quality sources of
randomness to the same test and analyse the results. We used
our own QRNG data after conditioning with SHA256 (denoted
CL QRNG) and generated data with: NIST 800-90A approved
AES-256 CTR mode, our own modification of the AES-256
CTR mode with a higher rate of reseeding (denoted CL AES-
256 CTR) and Cha-Cha20 from the Linux kernel.

We ran the test from the software provided by NIST at
https://csrc.nist.gov/publications/detail/sp/800-22/rev-1a/final

RNG # of streams passing the test
CL QRNG 72
Cha-Cha20 75

AES-256 CTR 75
CL AES-256 CTR 77

TABLE I
RESULTS BASED ON THE NUMBER OF 80 MBIT STREAMS THAT PASSED

THE OVERLAPPING TEST. NOTE: THE MINIMUM PASS-RATE ON 100
STREAMS IS 95, THEREFORE ALL DATASETS FAILED THE TEST.

As we can see, the results are consistent and all datasets
fail the test by similar proportions.

We decided to start looking back into the NIST literature
and found that the original Overlapping test is not accurate
enough due to the probabilities being estimated in a too
simplistic manner. NIST briefly mentions this in a section
describing the technicalities of the overlapping test [1] and
it transpires that the original code for this test was revised
following the correction of probabilities proposed in a paper
by K. Hamano and T. Kaneko [3]. In this revision, a new set
of probabilities are calculated for the initial set of parameters
(line 22 of the overlappingTemplateMatchings.c). However,
even using this revised version of the test, all data still fails

https://csrc.nist.gov/publications/detail/sp/800-22/rev-1a/final

KK DF JGC - MARCH 2022 2

in the same way. We decided to debug the code and found
that in lines 40-44 of the overlappingTemplateMatchings.c
file, the code re-calculates and overwrites the previously
corrected probabilities with the imprecise probabilities again.
We therefore commented out lines 40-44 so the probabilities
set in the initialization of probability values are retained.

III. RESULTS

We carried out tests on our four datasets using our modified
test code. We present the results in the table below.

RNG # of streams passing the test
CL QRNG 100
Cha-cha20 99

AES-256 CTR 99
CL AES-256 CTR 100

TABLE II
RESULTS BASED ON THE NUMBER OF 80 MBIT STREAMS THAT PASSED
THE OVERLAPPING TEST. CLEARLY, AFTER THE CORRECTION OF THE

PROBABILITIES, ALL THE DATASETS PASS THE TEST.

IV. REVISION OF THE STATISTICAL TEST SUITE
SOFTWARE

With the revised test code (Rev1A), the test seems to
function correctly when bitstreams of ∼1Mbit are tested.
However, if the bitstream tested is ∼100Mbit, this will lead
to failing data.

The hard-coded Hamano and Kaneko correction found in
Rev1A is only suitable for use in the specific case of datasets
containing 1032 bit substrings and 5 degrees of freedom,
which limits flexibility when testing larger bitstreams.

We have further extended the code (Rev1A-CL) to improve
the capabilities of the test to allow for any bitstream length,
length of ’String M’ as well as length of ’Runs B’. This code is
provided in Appendix A with a belief it should be incorporated
in a future revision of the Statistical Test Suite.

We have tested our implementation and it gives the correct
estimates of the probabilities in double precision variables.
This is very important as, when the bitsream size increases,
as does the need for precision on the decimal places of the
probability calculation. We have increased the decimal places
from 6 in Rev1A to 16. We have tested the performance for
the initial case with M=1032, k=6 and m=9 and we point out
the Hamano Kaneko method implementation is slower than the
original NIST estimation (8.136 ms vs. 0.079 ms respectively,
100 times difference in this particular case). This however
is not concerning as, for a given dataset, we calculate the
probabilities only once; holding them in memory for using
with each substring under testing.

We performed the additional tests using NIST approved
AES-256 CTR data. The total size of the dataset was 8 Gbit,
however the number of bitstreams within the datasets differ for
each test run. We split the dataset into shorter bitstreams of 8
Mbit 1000 bistreams) and later 1.01 Mbit (7000 bitstreams).
Below We present the percentage of bitstreams passing the
test for Rev1A vs Rev1A-CL.

1Mbit 8Mbit 80 Mbit
0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Pa
ss
in
g
ra
te

Proportion of passes adjusted to sample sizes

threshold for pass
REV1A
REV1A CL

Fig. 1. Proportion of bitstreams passing the test compared to the necessary
pass-rate for the whole dataset. It is important to note at this point that,
within the test documentation, it states to use bitstreams of 1Mbit or more
when testing. Notice that we use a dataset with a total size of 8 Gbit. Each
dataset contains a different number of bitstreams and the longer the bitstream
length, the smaller the pass-rate threshold proportion.

Our results show that the Rev1A is not suited for large sized
bitstreams, whereas Rev1A-CL does not have the same issue.
Rev1A will only pass data with a bitstream of ∼1Mbit and
fails larger bitsreams which should otherwise be passing the
test.

Our study adds to the results presented in [3] where it
was shown that the incorrect failing of tests usually becomes
visible for datasets containing 22275 bitstreams or more. In
our case, the largest number of bitstreams tested was 7000,
smaller than the sample size causing problems in [3] and (as
expected[3] this passes. Therefore we can conclude that it was
certainly the size of the bitstreams that caused the erroneous
fails with Rev1A. We would also want to point out another
study not focused on the same issue but mentioning a fail in
the Overlapping Template Matching test. In [4] a study on the
impact of keys used in different PRGBs on the performance
under NIST tests is carried out. 10 keys are tested with 1000
bitstreams of 1Mbit length. Results for AES 128 bit key, OFB
mode are presented from which we learn that among 10 keys
one gave a fail in the Overlapping test. This suggests that even
with small bitstreams in the quantity smaller than 22275 we
could observe some issues. Therefore a careful reconsideration
of the tests is necessary.

V. DISCUSSION

We have found that the NIST revised code (Rev1A) contains
an error, and overwrites the correctly initialised probabilities
later in the code. We point out that this inaccuracy of the
calculated probabilities is crucial in the failures observed in
bitstreams of a large sizes. Following this line of thought, we
consider it useful to not only correct the probability estimates
but also study the effects of probabilities that have more than
6 decimal places. We believe for a very large bitstream (e.g.
1Gbit) the decimal place accuracy can have an impact on the
calculations of p-values, such that the currently hard-coded
6 places in Rev1A might not be enough. We notice that the
implementation of the accurate calculation of probabilities in

KK DF JGC - MARCH 2022 3

[3] has reported processing time complexity O(M2), where
M is the lengths of substrings to which we partition our
bistreams (in the standard case M=1032). We did not work on
the optimisation of this code but implemented it with minor
changes following the original version. A further research into
optimisation of the algorithm or its implementation could be
done.

VI. ACKNOWLEDGEMENTS

This research was carried out under AQuRand project. We
thank Julio Hernandez-Castro of University of Kent for his
helpful assistance and Oliver Maynard suggestions on editing.

APPENDIX A
REV1A-CL REVISION FOR

OVERLAPPINGTEMPLATEMATCHINGS.C

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <string.h>

void CalculatePiHamanoKaneko(double pi[], int k, int N,
int m);

int main(int argc, char **argv)
{
double *pis;

printf("Calculate Pi using the method by Hamano &
Kaneko\n");

int K,N,M;

K = atoi(argv[1]);
N = atoi(argv[2]);
M = atoi(argv[3]);
printf("k = %d, n = %d, m = %d\n", K, N, M);
pis = calloc(K, sizeof (double));

CalculatePiHamanoKaneko(pis, K, N, M);

for(int i = 0; i < K; i++)
{

printf("Pi[%d] = %1.60f\n", i, pis[i]);
}

}

/*
Calculate k Pi values [0:k-1] for Overlapping Template

Matching Test
with given N and m using the method from the paper:
"Correction of Overlapping Template Matching Test

Included in NIST Randomness Test Suite"
by Kenji Hamano and Toshinobu Kaneko.

Paramters:
long double *pi: pointer to array of long double to

store the generated pi values
int k : number of pi values to generate,(6 in the

paper)
int N : n value for overlapping templates matching test

,NIST recommends n = 1032
int m : m value for overlapping templates matching test

,NIST recommends m = 9

The #define _i(n) converts the index in range -1:N to
array range 0:N+1

*/
#define _i(n) (n+1)
void CalculatePiHamanoKaneko(double pi[], int k, int N,

int m)
{
// alloc memory for tables
long double **T;

T = calloc(k, sizeof(long double *));

if(T == NULL)
{

printf("\t\tTABLES: Insufficient memory, Overlapping
Template Matchings test aborted!\n");

exit(1);
}

for(int i = 0; i < k ; i++)
{

T[i] = calloc((N + 2), sizeof(long double));
if(T[i] == NULL)
{
printf("\t\tTABLES: Insufficient memory,

Overlapping Template Matchings test aborted!\n
");

exit(1);
}

}

// Compute T0(j) (j n) using Eq. (2).
for(int n = -1; n <= N; n++)
{

if(n == -1 || n == 0)
{
T[0][_i(n)] = 1;

}
else if(n <= (m - 1))
{
T[0][_i(n)] = 2 * T[0][_i(n-1)];

}
else
{
T[0][_i(n)] = 2 * T[0][_i(n-1)] - T[0][_i(n-m-1)];

}
}

// Compute T1(j) (j n) using Eq. (4) and the values
for T0.

for(int n = -1; n <= N; n++)
{

if(n <= (m-1))
{
T[1][_i(n)] = 0;

}
else if(n == m)
{
T[1][_i(n)] = 1;

}
else if(n == m + 1)
{
T[1][_i(n)] = 2;

}
else
{
long double sum = 0;
for(int j = -1; j<= (n-m-1); j++)
{

sum += T[0][_i(j)] * T[0][_i(n-m-2-j)];
}
T[1][_i(n)] = sum;

}
}

//Compute T (j) (j n) using Eq. (5) and the values
for T0, T 1 (2 4).

for(int a = 2; a <= (k-2); a++)
{

for(int n = -1; n <= N; n++)
{
long double sum = 0;
for(int j = -1; j<= (n-(2*m)-a); j++)
{

sum += T[0][_i(j)] * T[a-1][_i(n-m-2-j)];
}

T[a][_i(n)] = T[a-1][_i(n-1)] + sum;
}

}

// Compute T5(n) using Eq. (1) and the values for Ti (0
i 4)

double pi_sum = 0;
//Compute the first pi K values:
for(int i = 0; i <= (k-2); i++)
{

pi[i] = (double)(T[i][_i(N)] / powl(2, N));

KK DF JGC - MARCH 2022 4

pi_sum += pi[i];
}

pi[k-1] = 1 - pi_sum;

for(int i = 0; i < k ; i++)
{

free(T[i]);
}

free(T);
}

REFERENCES

[1] L. E. Bassham, A. L. Rukhin, J. Soto, et al., “Sp 800-22
rev. 1a. a statistical test suite for random and pseudoran-
dom number generators for cryptographic applications,”
Gaithersburg, MD, USA, Tech. Rep., 2010. [Online].
Available: https : / / nvlpubs . nist . gov / nistpubs / Legacy /
SP/nistspecialpublication800-22r1a.pdf.

[2] Proposal to revise sp 800-22 rev. 1a — csrc2022, 2022.
[Online]. Available: https : / / csrc . nist . gov / news / 2022 /
proposal-to-revise-sp-800-22-rev-1a.

[3] K. Hamano and T. Kaneko, “Correction of overlapping
template matching test included in nist randomness test
suite,” IEICE Transactions, vol. 90-A, pp. 1788–1792,
Sep. 2007. DOI: 10.1093/ietfec/e90-a.9.1788.

[4] S.-J. Kim, K. Umeno, and A. Hasegawa, Corrections of
the nist statistical test suite for randomness, Cryptology
ePrint Archive, Report 2004/018, https://ia.cr/2004/018,
2004.

https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-22r1a.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-22r1a.pdf
https://csrc.nist.gov/news/2022/proposal-to-revise-sp-800-22-rev-1a
https://csrc.nist.gov/news/2022/proposal-to-revise-sp-800-22-rev-1a
https://doi.org/10.1093/ietfec/e90-a.9.1788
https://ia.cr/2004/018

	Introduction
	Materials and Methods.
	Results
	Revision of the Statistical Test Suite Software
	Discussion
	Acknowledgements
	Appendix A: Rev1A-CL Revision for overlappingTemplateMatchings.c

