
Aura: private voting with reduced trust on

tallying authorities

Aram Jivanyan∗1,2 and Aaron Feickert3

1Firo
2Yerevan State University

3Cypher Stack

May 3, 2022

Abstract

Electronic voting has long been an area of active and challenging re-
search. Security properties relevant to physical voting in elections with a
variety of threat models and priorities are often difficult to reproduce in
cryptographic systems and protocols. Existing work in this space often
focuses on the privacy of ballot contents, assurances to voters that their
votes are tabulated, and verification that election results are correct; how-
ever, privacy of voter identity is often offloaded to trust requirements on
election organizers or tallying authorities, or implies other kinds of trust
related to cryptographic construction instantiation. Here we introduce
Aura, an election protocol that reduces trust on tallying authorities and
organizers while ensuring voter privacy. Ballots in Aura are dissociated
from voter identity cryptographically, use verifiable encryption and thresh-
old decryption to diffuse trust in tallying authorities, require no trusted
setup for cryptographic primitives, and use efficient proving systems to re-
duce computation and communication complexity. These properties make
Aura a competitive candidate for use in a variety of applications where
trust minimization is desirable or necessary.

1 Introduction

Electronic voting poses unique and systemic challenges in research, development,
implementation, and deployment. Unfortunately, most device-based voting ma-
chine methods currently in common use are commercial products developed
without public expert input, broad auditing, documented protocols, or track
records of security that hold up to close examination.

∗Corresponding author: aram@firo.org

1



Accountable online voting, where a so-called “bulletin board” of public bal-
lots is employed for transparency and auditability, has inherently different trust
and security requirements than closed machine-based techniques; in this case,
ballot and election properties and tabulation methods must be secured crypto-
graphically in order to achieve the required goals of a particular application.

Requirements, risks, and threat models in elections are complex. Voter
anonymity is often required and reasonably guaranteed in physical elections,
where ballots contain no identifying information about the voter at the time
of tallying. Avoidance of voter coercion and bribery may also be important in
major elections; a voter entering a voting booth privately where photography
is prohibited can prevent this in practice, but circumstances may differ signif-
icantly in the online case where ballots are publicly visible for audit purposes
and a voter may cast its ballot from the device of its choosing.

1.1 Requirements

Properties and requirements on voting protocols have long been the subject
of interesting and evolving research, but as yet there does not appear to be a
universal set of guidelines by which to analyze such constructions. Since many
properties and threat models of physical elections are challenging to precisely
map to the digital realm, it is similarly challenging to precisely specify require-
ments that meet all use cases that could arise.

Informally, we require the following properties:

• Public parameters: We require that all cryptographic constructions
be instantiated with only public verificable parameters, with no trusted
parties required for setup (aside from election-specific trust requirements
like voter registration).

• Correctness: A voter authorized for an election can cast a ballot that is
included in the election result.

• Universal verifiability: Any observer can verify that all valid ballots
are included in the final result, and that the result correctly represents
only those ballots.

• Vote privacy: It is not possible for an observer to determine the vote
associated with a valid ballot.

• Voter anonymity: It is not possible for an observer to determine the
voter associated with a valid ballot, or if a particular voter voted at all.

• Ballot soundness: It is not possible for a voter to cast a ballot included
in the election result if:

– The voter is not authorized to vote in the election.

– The voter has already cast a valid ballot.

– The vote included in the ballot is not valid according to election rules.

2



We mention separately an important but subtle property:

• Coercion resistance: It is possible for a voter to privately cast multiple
ballots that each invalidate any previous ballots.

At face value, this appears to contradict ballot soundness. However, we show
later that it is possible to construct algorithms that permit voters to privately
cast multiple ballots that are initially judged as valid by participants during the
election, but later can be verifiably identified by talliers as re-votes, such that
only the most recent ballot cast by the voter is included in the result. Further,
this process does not reveal the identity of the voter, so voter anonymity is
maintained. It is also possible to construct algorithms that do not allow for this
type of coercion-resistant re-voting, should election rules or situations prohibit
it.

This property assumes the possibility that a voter may be bribed or coerced
into voting a particular choice, but may be outside adversarial influence at a
later time prior to the election ending. Coercion resistance is often related to
the idea of a receipt-free election, where a voter is not able to provide evidence
of its vote to a third party at any time; while Aura does not have this property
(a voter can store its randomness and recreate a ballot to show the third party),
we consider the listed form of coercion resistance to be useful nonetheless.

1.2 Prior work

There is a large and growing body of research over several decades relating to
security models and instantiations of electronic voting protocols using a variety
of cryptographic techniques, but we do not attempt to provide a comprehensive
review here.

Arguably the most relevant comparison to our current work is Helios, a
popular deployed protocol for so-called “boardroom” elections where many risks
relevant to large-scale public elections are not present. The original Helios
protocol [1] relies heavily on talliers, election organizers, and a central server;
ballots are publicly linked to voter identity, and talliers act as a mixnet to
shuffle ballots prior to decryption. Later work proposed an informally-described
protocol update to Helios [2] that replaces expensive verifiable shuffling with
homomorphic ballot decryption and a set of proofs of ballot validity; however,
individual ballots are still linked to voter identity. The research of [6] introduces
a straightforward verifiable ElGamal threshold cryptosystem for talliers that
does not require a trusted dealer, and augments Helios to include this; however,
the method provided is vulnerable to key cancellation and provides no particular
guarantees on key validity.

More recent investigations introduce complete voter privacy with different
trust requirements, primarily using combinations of encrypted ballots and gen-
eral zero-knowledge proving systems, to dissociate ballots from voter identity.
For example, [7] uses a zk-SNARK construction to anonymize ballots, and re-
lies on organizer-supplied token randomizers as a form of coercion resistance;

3



however, soundness and voter anonymity are compromised in the case of a ma-
licious organizer producing the proving system common reference string. In
Vote-SAVER [10], voter anonymity is similarly provided by a zk-SNARK con-
struction, and coercion resistance is achieved by having untrusted third parties
conduct provable re-randomization; however, this crucially relies on proving
system malleability, and therefore is currently limited (to our knowledge) to
proving systems where soundness depends on a trusted organizer to produce a
non-malicious common reference string.

1.3 Contribution

Aura presents a protocol combining several useful properties that improve on
earlier work.

First, we minimize the trust on election participants, including tally authori-
ties with the joint capability to decrypt ballot results. In Aura, all cryptographic
components may be instantiated with public verifiable parameters. Keys used
by voters can be generated by voters themselves, and the key used for decrypting
election results is constructed by tally authorities in a distributed and verifiable
manner that does not require a trusted dealer. Ballots are dissociated from voter
identity using voter-produced provable re-randomization and a set membership
proof, and ballot validity is asserted by a combination of verifiable ElGamal en-
cryption and a bit vector proving system. Even in the case of collusion between
talliers (and even organizers) to decrypt individual ballots, voter anonymity is
perfectly retained; and while multiple vote attempts by a voter can be reliably
detected, this process occurs after the close of the election, and allows for safer
mitigation of voter coercion by permitting such a voter to invalidate a coerced
ballot anonymously.

Aura uses constructions supporting efficient operations. The one-of-many
proving system used to assert voter anonymity supports batch verification that
greatly reduces the marginal complexity of verification, and scales extremely well
in proof size even with a large number of voters. Further, a single bit vector
commitment proving system is used to assert that a set of vote ciphertexts are
valid, both with valid ElGamal vote messages and the overall number of choices
selected by a voter; this proving system also supports batch verification and
scales more efficiently than previous work, while remaining flexible for single-
and multi-choice election rules.

While we use well-studied techniques and cryptographic components to build
Aura, we stress that the overall protocol analysis is informal, and we defer a
formal security model and proofs to future work.

2 Cryptographic primitives

In this section, we describe the cryptographic constructions required for the
Aura election protocol.

4



2.1 Distributed verifiable threshold ElGamal encryption

Aura requires a distributed verifiable threshold ElGamal cryptosystem. Such a
system requires several important properties. Unlike in some threshold cryp-
tosystems, key generation must be fully distributed and not require a trusted
dealer. Additionally, the validity of the key generation must be publicly veri-
fiable, such that distributed knowledge of valid key shares is asserted. Finally,
it must be possible to produce proofs of valid encryption and decryption of
messages with public verification.

There are several algorithms used in such a construction:

• KeyGen: This algorithm is run by each keyholder to generate a key share
and a proof of validity.

• VerifyKeyGen: This algorithm is run by any verifier to assert the validity
of key shares and use them to assemble the corresponding group key.

• Encrypt: This algorithm is run by any entity, and encrypts a scalar-valued
message for a given public ElGamal key. It also produces a proof that the
encryption is valid for the public key.

• VerifyEncrypt: This algorithm is run by any verifier, and asserts that a
given encryption is valid.

• PartialDecrypt: This algorithm is run by a keyholder. It produces a partial
decryption of an ElGamal ciphertext message, and a proof of validity.

• VerifyDecrypt: This algorithm is run by any verifier. It uses partial de-
cryptions to produce a plaintext message, and asserts that each partial
decryption is valid.

We note that while these algorithms need not be specific to threshold operations,
our construction is, and requires a given threshold of keyholders to produce a
successful decryption.

The construction we describe here is based on that of [6], which describes a
distributed threshold design intended for use in Helios. However, that construc-
tion is vulnerable to key cancellation attacks, does not assert proper joint key
representation, and uses verification keys that (if maliciously crafted) do not al-
low for publicly-verifiable decryption. Further, the design is generic to support
arbitrary group elements as messages, which is not secure in general [4]; while
its overlying protocol does not fall victim to this problem by the nature of its
construction, the general design is vulnerable. Fortunately, the nature of Aura
ballots is such that small scalar-valued messages are required, so recovery of
such messages after decryption is trivial using brute-force methods not subject
to denial-of-service attacks. We therefore modify the design to address these
shortcomings, specify abort points in the protocol, and indicate simplifications
where possible.

Let ppenc = (G,F, G, {Hi}k−1
i=0 , k, t, ν) be the public parameters for such a

cryptosystem, where G is a prime-order group where the discrete logarithm

5



problem is hard, F is its scalar field, G, {Hi}k−1
i=0 ∈ G are generators with no

efficiently-computable discrete logarithm relationship, k > 0 is the number of
valid message generators, t is the threshold of keyholders required for decryption,
and ν is the total number of keyholders (so 1 ≤ t ≤ ν). We assume that ppenc
is available to all algorithms, which we describe now:

• KeyGen(α) 7→ (Yα,Π
key
α ): The function takes as input a player index 1 ≤

α ≤ ν. It does the following:

1. Chooses a set {aα,j}t−1
j=0 ⊂ F of scalars uniformly at random, and

defines the polynomial

fα(x) =

t−1∑
j=0

aα,jx
j

and vector Cα = {Cα,j}t−1
j=0 = {aα,jG}t−1

j=0 using these values.

2. Produces a proof of representation Πrep
α = RepProve(G,Cα,0; aα,0),

and sends the tuple (Cα,Π
rep
α ) to all other players.

3. On receipt of such a tuple (Cβ ,Π
rep
β ) from another player β, verifies

that RepVerify(Πrep
β , G,Cβ) = 1, and aborts otherwise.

4. For each 1 ≤ β ≤ ν, computes a value yα,β = fα(β) and sends it to
player β.

5. On receipt of such a value yβ,α from another player β, checks that

t−1∑
j=0

Cβ,j = yβ,αG

and aborts otherwise.

6. Computes its private key share

yα =

ν∑
β=1

yβ,α

and public key share Yα = yαG and public group key

Y =

ν∑
β=1

Cβ,0.

7. Produces a proof of representation Πkey
α = RepProve(G, Yα; yα).

The function outputs (Yα,Π
key
α ).

• VerifyKeyGen({Yα,Π
key
α }να=1) 7→ Y : The function takes as input a set of

key shares and proofs from a set of ν players. It does the following:

6



1. For each 1 ≤ α ≤ ν, checks that RepVerify(Πkey
α , G, Yα) = 1, and

aborts otherwise.

2. Sets Y =
∑ν

α=1 Yα.

The function outputs Y .

• Encrypt(m, i, Y ) 7→ (D,E,Πenc): The function takes as input a message
m ∈ F, a message generator index 0 ≤ i < k, and a public key Y . It does
the following:

1. Chooses a nonce r ∈ F uniformly at random.

2. Sets D = rG and E = rY +mHi.

3. Produces a proof of encryption:

Πenc = EncValProve(G, Y,Hi, D,E; (r,m))

The function outputs (D,E,Πenc).

• VerifyEncrypt(Y, i,D,E,Πenc) 7→ {0, 1}: The function takes as input an
ElGamal public key Y , message generator index 0 ≤ i < k, ElGamal
ciphertext (D,E), and a proof of encryption. If

EncValVerify(Πenc, G, Y,Hi, D,E) = 1

it outputs 1; otherwise, it outputs 0.

• PartialDecrypt(yα, D,E) 7→ (Rα,Π
dec
α ): The function takes as input a pri-

vate key share yα and ElGamal ciphertext (D,E). It does the following:

1. Computes Rα = yαD.

2. Produces a proof of discrete logarithm equality:

Πdec
α = EqProve(D,G,Rα, yαG; yα)

The function outputs (Rα,Π
dec
α ).

• VerifyDecrypt(D,E, {j, Yj , Rj ,Π
dec
j }tj=1) 7→ m: The function takes as in-

put ElGamal ciphertext (D,E), a threshold set of t player indices, corre-
sponding public key shares, and associated partial decryption data. We
note that for the sake of notation convenience, the set of players is rein-
dexed here; in practice, any threshold of players may be used with their
corresponding indices. It does the following:

1. For each 1 ≤ j ≤ t, checks that EqVerify(Πdec
j , D,G,Rj , Yj) = 1, and

aborts otherwise.

2. For each 1 ≤ j ≤ t, computes the corresponding Lagrange coefficient:

λj =

t∏
i=1,i̸=j

i

i− j

7



3. Computes the following:

M = E −
t∑

j=1

λjRj

4. Uses brute force (or another appropriate computational method) to
find m ∈ F such that mH = M .

The function outputs m.

2.2 Bit vector commitment proving system

We require a proving system that, given a group element, proves in zero knowl-
edge that it is a Pedersen vector commitment to a “bit sequence” of field ele-
ments in the set {0, 1} whose sum is a given value. In the context of the Aura
protocol, this proving system efficiently shows that a set of ballot ciphertexts
encrypt valid choices according to election rules, described later.

Let ppbit =
(
G,F, w, k, {Gi}k−1

i=0 , H
)
be the public parameters for such a

proving system. Here G is a prime-order group where the discrete logarithm
problem is hard, F is its scalar field, w and k are positive integers, and the
elements {Gi}k−1

i=0 , H ∈ G are generators with no efficiently-computable discrete
logarithm relationship. The proving system itself is a sigma protocol for the
relation

Rbit =

{
ppbit, B ∈ G; {bi}k−1

i=0 , r ∈ F : B = rH +

k−1∑
i=0

biGi,

bi ∈ {0, 1}∀i ∈ [0, k),

k−1∑
i=0

bi = w

}

that is complete, special honest-verifier zero knowledge, and special sound.
Any public-coin instantiation of an interactive protocol for this relation can

be made non-interactive by applying the (strong) Fiat-Shamir transform. For
the non-interactive protocol, define the following prover and verifier algorithms
for Rbit, assuming fixed parameters ppbit have already been selected:

• BitProve
(
B; {bi}k−1

i=0 , r
)
7→ Πbit accepts as input statement and witness

elements, and outputs a proof.

• BitVerify (Πbit, B) 7→ {0, 1} accepts as input a proof and statement ele-
ments, and outputs a bit to indicate whether or not the proof is valid.

We describe here a simple generalization of an existing proving system by
Bootle et al. that originally was used to show that the bit sequence elements
sum to the fixed value 1, and is an instantiation of the required proving system
[5]. For completeness, we describe the full interactive protocol here.

8



1. The prover selects rA, rC , rD, {ai}k−1
i=1 ∈ F uniformly at random, and sets

a0 = −
k−1∑
i=1

ai.

2. The prover computes the Pedersen vector commitments

A = rAH +

k−1∑
i=0

aiGi

C = rCH +

k−1∑
i=0

ai(1− 2bi)Gi

D = rDH −
k−1∑
i=0

a2iGi

and sends A,C,D to the verifier.

3. The verifier selects a challenge x ∈ F uniformly at random, and sends x
to the prover.

4. For each i ∈ [1, k), the prover sets fi = bix + ai. The prover also sets
zA = rx + rA and zC = rCx + rD, and sends {fi}k−1

i=1 , zA, zC to the
verifier.

5. The verifier sets

f0 = wx−
k−1∑
i=1

fi

and accepts the proof if and only if the following hold:

A+ xB = zAH +

k−1∑
i=0

fiGi

xC +D = zCH +

k−1∑
i=0

fi(x− fi)Gi

2.3 Commitment set proving system

We require a proving system that, given a set of group elements, proves in zero
knowledge that one of them is a Pedersen commitment to zero. More specifically,
we also include an “offset” group element that is subtracted from each element
of the set first as a re-randomization of a nonzero input commitment, which
is helpful for computational efficiency in practice. In the context of the Aura
protocol, this proving system asserts that a ballot was produced by an eligible
voter without revealing the voter’s identity.1

1We stress that other forms of external information, like timing or network data, may leak
information about voter identity; here we assert voter anonymity in a cryptographic context.

9



Let ppset = (G,F, G,H, n,m) be the public parameters for such a proving
system. Here G is a prime-order group where the discrete logarithm problem is
hard, F is its scalar field, G,H ∈ G are generators with no efficiently-computable
discrete logarithm relationship, and n,m > 1 are integers. For notation con-
venience, let N = nm. The proving system itself is a sigma protocol for the
relation

Rset =
{
ppset, {Ci}N−1

i=0 , C ′ ∈ G; l ∈ [0, N), r ∈ F : Cl − C ′ = rH
}

that is complete, special honest-verifier zero knowledge, and special sound.
Any public-coin instantiation of an interactive protocol for this relation can

be made non-interactive by applying the (strong) Fiat-Shamir transform. For
the non-interactive protocol, define the following prover and verifier algorithms
for Rset, assuming fixed parameters ppset have already been selected:

• SetProve
(
{Ci}N−1

i=0 , C ′; l, r
)
7→ Πset accepts as input statement and wit-

ness elements, and outputs a proof.

• SetVerify
(
Πset, {Ci}N−1

i=0 , C ′) 7→ {0, 1} accepts as input a proof and state-
ment elements, and outputs a bit to indicate whether or not the proof is
valid.

The one-of-many proving system in [5], with a simple modification as done
in [8], may be used for this purpose.

2.4 Other proving systems

We require several other simple proving systems relating to assertions of repre-
sentation and discrete logarithm equality that are used by other cryptographic
primitives in Aura. Each such proving system has a standard Schnorr-type
non-interactive instantiation provable to be complete, special sound, and spe-
cial honest-verifier zero knowledge.

For each proving system, we list the public parameters, relevant relation,
and prover and verifier functions; we omit the specific instantiations.

2.4.1 Representation proving system

This proving system asserts knowledge of a group element representation. The
public parameters are pprep = (G,F), where G is a prime-order group where the
discrete logarithm problem is hard, and F is its scalar field. The relation is the
following:

Rrep = {pprep, {Gi}n−1
i=0 , Y ; {yi}n−1

i=0 : Y =

n−1∑
i=0

yiGi}

The relevant algorithms are the following:

• RepProve({Gi}n−1
i=0 , Y ; {yi}n−1

i=0 ) 7→ Πrep

• RepVerify(Πrep, {Gi}n−1
i=0 , Y ) 7→ {0, 1}

10



2.4.2 Encryption validity proving system

This proving system asserts a valid ElGamal encryption using a specific rep-
resentation assertion. The public parameters are ppval = (G,F), where G is a
prime-order group where the discrete logarithm problem is hard, and F is its
scalar field. The relation is the following:

Rval = {ppenc, G, Y,H,D,E; (r,m) : D = rG,E = mY + rH}

The relevant algorithms are the following:

• EncValProve(G, Y,H,D,E; r,m) 7→ Πenc

• EncValVerify(Πenc, G, Y,H,D,E) 7→ {0, 1}

2.4.3 Serial validity proving system

This proving system asserts a valid ElGamal encryption using a specific rep-
resentation assertion matches a particular partial commitment opening. The
public parameters are ppser = (G,F), where G is a prime-order group where the
discrete logarithm problem is hard, and F is its scalar field. The relation is the
following:

Rser = {ppser, F,G,H, Y, C,D,E; (s, r, r′) :

C = sG+ rH,D = r′G,E = sF + r′Y }

The relevant algorithms are the following:

• SerValProve(F,G,H, Y,C,D,E; s, r, r′) 7→ Πser

• SerValVerify(Πser, F,G,H, Y, C,D,E) 7→ {0, 1}

2.4.4 Discrete logarithm equality proving system

This proving system asserts two group elements share the same discrete loga-
rithm with respect to specified generators. The public parameters are ppeq =
(G,F), where G is a prime-order group where the discrete logarithm problem is
hard, and F is its scalar field. The relation is the following:

Req = {ppeq, G,H, Y, Y ′; y : Y = yG, Y ′ = yH}

The relevant algorithms are the following:

• EqProve(G,H, Y, Y ′; y) 7→ Πeq

• EqVerify(Πeq, G,H, Y, Y ′) 7→ {0, 1}

11



2.5 Unforgeable signature scheme

In Aura, different types of participants submit messages to a public bulletin
board. For some of the messages, observers must verify their authenticity in
order to assert they are created by the claimed entity. For other messages, this
property is not required (or even desired). We therefore assume the existence
of an unforgeable signature scheme on arbitrary messages that can be bound to
contexts to mitigate replay attacks. Constructions like context-prefixed Schnorr
digital signatures may be used for this purpose. In the protocol, we describe
which entities are assumed to possess signing and verification keys for this sig-
nature scheme.

3 Protocol

3.1 Overview

There are several types of entities in Aura that interact during the election
process.

• Organizers set up protocol parameters, elections, voters, and talliers.
This role may be separated based on specific application needs and trust
requirements.

• Voters cast ballots in elections.

• Talliers collaboratively compute and publish results at the end of elec-
tions.

• Verifiers assert that the setup, ballots, and tallier results are complete,
accurate, and valid. Any entity or participant can act as a verifier.

We also assume a public bulletin board B is used to store all public data; this
includes election parameters, keys, ballots, tally data, and other information.
The instantiation of B is especially suited for a blockchain-type construction for
which modification or erasure of posted data is infeasible.

An election consists of several steps, represented by algorithms that we de-
scribe in detail later.

• SetupElection: This algorithm is run by organizers and sets up B, out-
puts public parameters for the election, identifies authorized voters in the
election, and selects talliers.

• SetupTally: This algorithm is run by talliers and sets up the threshold keys
used for result decryption.

• SetupVoter: This algorithm is run by voters and sets up the ballot keys
used to cast ballots.

12



• VerifySetup: This algorithm can be run by any network participant to
check the correctness of the setup processes.

• Vote: This algorithm is run by voters; it produces a ballot and submits it
to B.

• VerifyBallot: This algorithm is run by voters or any other network partic-
ipant; it checks that a ballot is valid.

• Tally: This algorithm is run by talliers after the election concludes; it
produces the results of the election.

• VerifyTally: This algorithm is run by verifiers after the results are pro-
duced; it asserts that the results represent all valid ballots correctly.

In cases where the trust model for an election differs from that implied here,
the setup algorithms may differ, and yield different analysis.

3.2 Algorithms

We assume that the organizer, the talliers, and all voters possess signing keys
(with corresponding verification keys) for the unforgeable signature scheme,
which can be used to sign and verify arbitrary messages to authenticate them.
The distribution of such keys is outside the scope of this protocol.

3.2.1 SetupElection

The organizer does the following:

1. Chooses a unique election identifier I ∈ {0, 1}∗, and prepares parameter
melec as a human-readable description of the election, which may include
auxiliary information for voters as necessary by election rules.

2. Selects parameter k > 0 as the number of candidates or choices in the
election and, for each i ∈ [0, k), produces a pair (i,mi), where mi is a
human-readable description of choice i.

3. Selects parameters kmin and kmax corresponding (respectively) to the min-
imum and maximum number of choices a voter may make; we require that
1 ≤ kmin ≤ kmax ≤ k. For convenience, let k′ = k + kmax − kmin.

4. For each i ∈ [0, k′), samples a generator Hi ∈ G uniformly at random in a
publicly-verifiable way.

5. Samples group generators F,G,H ∈ G uniformly at random in a publicly-
verifiable way.

6. Prepares a list Lvoters of theNvoters voter verification keys corresponding to
authorized voters in the election, and lets n,m > 1 such thatNvoters = nm.

13



7. Prepares a list Ltally of theNtally > 0 tallier verification keys corresponding
to the authorized talliers in the election, and a threshold 1 ≤ t ≤ Ntally of
talliers required for result decryption.

8. Prepares the public parameters for required underlying cryptographic con-
structions:

• Samples a prime-order group G with a scalar field F.
• Sets ppenc = (G,F, {Hi}k

′−1
i=0 , k′, t, Ntally) as the parameters for a dis-

tributed verifiable ElGamal encryption system.

• Sets ppbit = (G,F, kmax, k
′, {Hi}k

′−1
i=0 ,−) as the parameters for a bit

vector commitment proving system, where we leave the final param-
eter undefined (to be set at a later step).

• Sets ppset = (G,F, G,H, n,m) as the parameters for a commitment
set proving system.

• Sets pprep = (G,F) as the parameters for a representation proving
system.

• Sets ppval = (G,F) as the parameters for an encryption validity prov-
ing system.

• Sets ppser = (G,F) as the parameters for a serial validity proving
system.

• Sets ppeq = (G,F) as the parameters for a discrete logarithm equality
proving system.

9. Assembles the protocol public parameters

pp = (I,melec, k, {i,mi}k−1
i=0 , kmin, kmax,G,F, {Hi}k

′−1
i=0 , F,G,H,

Lvoters, Nvoters, n,m,Ltally, Ntally, t)

and posts them to B as an authenticated message signed with the organizer
signing key.

The public parameters pp are assumed to be available to all participants and
algorithms; further, all other subprotocol public parameters can be determinis-
tically produced from pp.

3.2.2 SetupTally

Each tallier with index 1 ≤ α ≤ Ntally does the following:

1. Verifies the authenticated organizer message on B containing pp, and
checks the validity of the parameters.

2. Runs KeyGen(α) 7→ (Yα,Π
key
α ) interactively with the other talliers.

3. Posts the values (α, Yα,Π
key
α ) to B as an authenticated message signed

with its tallier signing key from Ltally.

14



3.2.3 SetupVoter

Each voter with index 0 ≤ i < Nvoters does the following:

1. Verifies the authenticated organizer message on B containing pp, and
checks the validity of the parameters.

2. Selects si, ri ∈ F uniformly at random, and privately stores these values.

3. Computes a ballot key Ci = siG+ riH.

4. Generates a proof of representation RepProve({G,H}, Ci; {s, r}) 7→ Πrep,i.

5. Posts (i, Ci,Πrep,i) to B as an authenticated message signed with its voter
signing key from Lvoters.

We note that it is safe for a voter to reuse their ballot key across multiple
elections.

3.2.4 VerifySetup

The verifier does the following:

1. Verifies the unique authenticated organizer message on B containing pp,
and checks the validity of the parameters.

2. For each 1 ≤ α ≤ Ntally, verifies the unique authenticated tallier message
on B containing (α, Yα,Π

key
α ) using the corresponding verification key from

Ltally.

3. Verifies the tally keys by running VerifyKeyGen({Yα,Π
key
α }να=1) 7→ Y .

4. For each 0 ≤ i < Nvoters, verifies the unique authenticated voter message
on B containing (i, Ci,Πrep,i), and verifies the ballot key by checking that
RepVerify(Πrep,i, {G,H}, Ci} 7→ 1.

At this point, all participants use Y as the undetermined parameter in ppbit.

3.2.5 Vote

Each voter with index 0 ≤ i < Nvoters does the following:

1. Constructs a vector ci = (ci,j)
k−1
j=0 representing its choices among the k

options, where

ci,j =

{
1 if the voter chooses option j
0 otherwise

and kmin ≤
∑k−1

j=0 ci,j ≤ kmax.

2. For j ∈ [0, k), encrypts each choice by setting (Di,j , Ei,j ,Πenc,i,j) =
Encrypt(ci,j , j, Y ).

15



3. For j ∈ [k, k′), extends the vector ci by setting

ci,j =

{
1 if j < k + kmax −

∑k−1
j=0 ci,j

0 otherwise

for padding purposes, and computes encryptions (Di,j , Ei,j ,Πenc,i,j) =
Encrypt(ci,j , j, Y ).

4. Computes a bit vector commitment proof

Πbit,i = BitProve

k′−1∑
j=0

Ei,j ; {ci,j}k
′−1

j=0 , r

 ,

where r is the sum of all nonces used in encryption proofs for j ∈ [0, k′−1).

5. Chooses a nonce r′i ∈ F uniformly at random, and computes the serial
offset C ′

i = siG+ r′iH.

6. Encrypts the ballot serial number by choosing a nonce r′′i ∈ F uniformly
at random and computing D′

i = r′′i G and E′
i = siF + r′′i Y .

7. Assembles C to be the set of all voter commitments {Ci} corresponding
to voter verification keys in Lvoters, and generates a commitment set proof

Πset,i = SetProve
(
C,C ′

i; li, ri − r′i
)

where Cli = Ci.

8. Assembles a ballot tuple:

Bi =
(
pp, (Di,j , Ei,j ,Πenc,i,j)

k′−1
j=0 ,Πbit,i, C

′
i, D

′
i, E

′
i,Πset,i

)
9. Generates a proof of serial number validity

Πser,i = SerValProve(F,G,H, Y,C ′
i, D

′
i, E

′
i; si, r

′
i, r

′′
i )

that binds Bi to its initial transcript.

10. Posts the ballot tuple Bi and binding proof Πser,i to B as the voter’s
anonymized and authenticated ballot.

If the voter is coerced or bribed to submit a ballot of an adversary’s choice,
the voter may cast another ballot once outside of the adversary’s influence by
repeating these steps. As shown below, such duplicate ballots will be accepted
to B, but will be excluded from the final tally except for the last such ballot cast
by the voter. This is intended to provide a weak form of coercion resistance.

16



3.2.6 VerifyBallot

Given a semantically-correct ballot (without explicit voter index i) of the form

B =
(
(Dj , Ej ,Πenc,j)

k′−1
j=0 ,Πbit, C

′, D′, E′,Πset

)
,

any verifier does the following:

1. Checks that SerValVerify(Πser, F,G,H, Y, C ′, D′, E′) 7→ 1 using B as a
transcript binding, and aborts otherwise.

2. For each j ∈ [0, k′), checks that VerifyEncrypt(Y, j,Dj , Ej ,Πenc,j) 7→ 1,
and aborts otherwise.

3. Checks that

BitVerify

Πbit,

k′−1∑
j=0

Ej

 7→ 1,

and aborts otherwise.

4. Assembles the set C as in Vote, checks that SetVerify(Πset, C, C ′) 7→ 1,
and aborts otherwise.

3.2.7 Tally

The talliers first verifiably decrypt all ballot serial numbers in order to complete
the assertion of their validity and discard (for coercion-resistance purposes)
recast ballots by common anonymized voters. Assume a set of t talliers indexed
1 ≤ j ≤ t. Each such tallier does the following for each valid ballot i appearing
on B:

1. Runs PartialDecrypt(yj , D
′
i, E

′
i) 7→ (Rser,i,j ,Πser,i,j), and posts the tuple

(Rser,i,j ,Π
dec
ser,i,j) to B as an authenticated message signed with its tallier

signing key from Ltally.

2. After receiving all such partial decryptions from the threshold cohort and
verifying the authenticated messages, partially (without attempting to
brute-force the final decryption) runs

VerifyDecrypt(D′
i, E

′
i, {j, Yj , R

dec
ser,i,j ,Πser,i,j}tj=1)

to obtain a serial number public key Si ∈ G.

3. Verifies the signature on the ballot i using Si as the verification public key
(against generator F ).

4. If Si appears with any other valid ballot, discard all but the most recent
such ballot, according to bulletin board ordering.

17



At this point, let there be Nvalid remaining valid ballots, indexed by i. The
talliers now verifiably produce the tally of all Nvalid such ballots. Each tallier
with index 1 ≤ j ≤ t does the following:

1. For each l ∈ [0, k), computes the ballot sums for choice l by setting

Dl =

Nvalid−1∑
i=0

Di,l

and

El =

Nvalid−1∑
i=0

Ei,l,

and partially decrypting the sums:

PartialDecrypt(yj , Dl, El) 7→ (Rl,j ,Π
dec
l,j )

2. Posts the set of tuples {(Rl,j ,Π
dec
l,j )}

k−1
l=0 to B as an authenticated message

signed with its tallier signing key from Ltally.

3.2.8 VerifyTally

Any verifier checks the authenticity of all tallier messages posted from Tally and
does the following:

1. For each valid ballot i appearing on B:

(a) Partially (without attempting to brute-force the final decryption)
runs

VerifyDecrypt(D′
i, E

′
i, {j, Yj , R

dec
ser,i,j ,Πser,i,j}tj=1)

to obtain a serial number public key Si ∈ G, and aborts if this fails.

(b) Verifies the signature on the ballot i using Si as the verification public
key (against generator F ), and aborts if this fails.

(c) If Si appears with any other valid ballot, discard all but the most
recent such ballot, according to bulletin board ordering.

2. Assembles the set of Nvalid remaining valid ballots, now indexed by i.

3. For each choice index l ∈ [0, k):

(a) Computes the ballot sums for choice l by setting

Dl =

Nvalid−1∑
i=0

Di,l

and

El =

Nvalid−1∑
i=0

Ei,l.

18



(b) Finalizes the decryption

VerifyDecrypt(Dl, El, {j, Yj , R
dec
l,j ,Πdec

l,j }tj=1) 7→ tl

to obtain the total votes tl for choice l, and aborts if this fails.

4 Remarks

We conclude with informal observations and remarks about Aura’s security and
efficiency.

4.1 Security

While we do not provide a formal security analysis here, it is relevant to discuss
how Aura’s design works toward the properties introduced earlier.

All cryptographic components in Aura are instantiated with public param-
eters. While the key generation process for talliers is inherently a multiparty
computation, this is a verifiable process that itself does not require specific trust
for its instantiation.

Correctness follows in a straightforward manner by inspection.
Universal verifiability is achieved. Any observer can check ballot validity

by running VerifyBallot on all ballots appearing on the bulletin board, and run
VerifyTally to check that these ballots all appear. The final tally validity is
further assured in VerifyTally from the use of the verifiable threshold decryption
construction.

Vote privacy follows from the properties of the primitives used in Vote. It
is possible for a threshold cohort of talliers to decrypt individual ballots, and
hence we must assume no such cohort is malicious. No observer, however, can
produce any such decryption or otherwise distinguish individual ballot contents
due to their underlying encryption and the properties of the related Vote proofs.

The use of a commitment set proof asserts voter anonymity, which follows
even if the talliers or organizer are malicious or collude.

Ballot soundness is achieved through several checks. Since the commitment
set proof is sound, no unauthorized voter knows an opening to a commitment
contained in such a valid set, and hence cannot cast a valid ballot. If the voter
has already cast a valid ballot, any subsequent ballot must use the same serial
number since the proof of serial number validity is sound and the commitments
are computationally binding.

Coercion resistance, which is related to soundness, is achieved similarly.

4.2 Efficiency

Aura can operate with good efficiency.
The most computationally-expensive construction in an Aura election is the

commitment set membership proof associated to each ballot, on the assumption

19



that the number of voters Nvoters will exceed the number of talliers Ntally and
choices k in the election.

The size of this proof scales as O(log(Nvoters)) using the instantiation ref-
erenced. While verification apparently scales as O(Nvoters), the use of effi-
cient multiscalar multiplication algorithms [11] can reduce this complexity to
O(Nvoters/ log(Nvoters)).

Further, the instantiation supports batch verification. When verifying proofs
from multiple ballots, verifier weighting of common group elements in the re-
quired multiscalar multiplication evaluation makes the marginal verification
complexity constant, amortizing the overall cost across the batch. Interest-
ingly, this use of batch verification can make overall Aura ballot verification
several times more efficient than existing efficient mixnet constructions [9, 3].

Other verification steps in VerifySetup, VerifyBallot, and VerifyTally imply
lower complexity, or may be similarly batched for improved efficiency.

These observations make Aura a competitive candidate for suitable applica-
tions.

References

[1] Ben Adida. Helios: Web-based open-audit voting. In Proceedings of the
17th Conference on Security Symposium, SS’08, page 335–348, USA, 2008.
USENIX Association.

[2] Ben Adida, Olivier De Marneffe, Olivier Pereira, and Jean-Jacques
Quisquater. Electing a university president using open-audit voting: Anal-
ysis of real-world use of Helios. In Proceedings of the 2009 Confer-
ence on Electronic Voting Technology/Workshop on Trustworthy Elections,
EVT/WOTE’09, page 10, USA, 2009. USENIX Association.

[3] Stephanie Bayer and Jens Groth. Efficient zero-knowledge argument for
correctness of a shuffle. In David Pointcheval and Thomas Johansson, edi-
tors, Advances in Cryptology – EUROCRYPT 2012, pages 263–280, Berlin,
Heidelberg, 2012. Springer Berlin Heidelberg.

[4] Dan Boneh, Antoine Joux, and Phong Q. Nguyen. Why textbook ElGamal
and RSA encryption are insecure. In Tatsuaki Okamoto, editor, Advances
in Cryptology — ASIACRYPT 2000, pages 30–43, Berlin, Heidelberg, 2000.
Springer Berlin Heidelberg.

[5] Jonathan Bootle, Andrea Cerulli, Pyrros Chaidos, Essam Ghadafi, Jens
Groth, and Christophe Petit. Short accountable ring signatures based on
DDH. In Günther Pernul, Peter Y A Ryan, and Edgar Weippl, editors,
Computer Security – ESORICS 2015, pages 243–265, Cham, 2015. Springer
International Publishing.

[6] Véronique Cortier, David Galindo, Stéphane Glondu, and Malika Iz-
abachène. Distributed ElGamal à la Pedersen: Application to Helios. In

20



Proceedings of the 12th ACM Workshop on Workshop on Privacy in the
Electronic Society, WPES ’13, page 131–142, New York, NY, USA, 2013.
Association for Computing Machinery.

[7] Tassos Dimitriou. Efficient, coercion-free and universally verifiable
blockchain-based voting. Computer Networks, 174:107234, 2020.

[8] Aram Jivanyan and Aaron Feickert. Lelantus Spark: Secure and flexible
private transactions. Cryptology ePrint Archive, Report 2021/1173, 2021.
https://ia.cr/2021/1173.

[9] Toomas Krips and Helger Lipmaa. More efficient shuffle argument from
unique factorization. In Kenneth G. Paterson, editor, Topics in Cryptol-
ogy – CT-RSA 2021, pages 252–275, Cham, 2021. Springer International
Publishing.

[10] Jiwon Lee, Jaekyoung Choi, Jihye Kim, and Hyunok Oh. SAVER: SNARK-
friendly, additively-homomorphic, and verifiable encryption and decryption
with rerandomization. Cryptology ePrint Archive, Report 2019/1270, 2019.
https://ia.cr/2019/1270.

[11] Nicholas Pippenger. On the evaluation of powers and monomials. SIAM
Journal on Computing, 9(2):230–250, 1980.

21

https://ia.cr/2021/1173
https://ia.cr/2019/1270

	Introduction
	Requirements
	Prior work
	Contribution

	Cryptographic primitives
	Distributed verifiable threshold ElGamal encryption
	Bit vector commitment proving system
	Commitment set proving system
	Other proving systems
	Representation proving system
	Encryption validity proving system
	Serial validity proving system
	Discrete logarithm equality proving system

	Unforgeable signature scheme

	Protocol
	Overview
	Algorithms
	SetupElection
	SetupTally
	SetupVoter
	VerifySetup
	Vote
	VerifyBallot
	Tally
	VerifyTally


	Remarks
	Security
	Efficiency


