
Aura: private voting with reduced trust on
tallying authorities

Aram Jivanyan1,2⋆ and Aaron Feickert3

1 Firo
2 Yerevan State University

3 Cypher Stack

Abstract. Electronic voting has long been an area of active and chal-
lenging research. Security properties relevant to physical voting in elec-
tions with a variety of threat models and priorities are often difficult to
reproduce in cryptographic systems and protocols. Even in voting sys-
tems where ballot contents are private and results are verifiable, ballot
anonymity is often offloaded to requirements of trusted parties. Here we
introduce Aura, an election protocol that reduces trust on tallying au-
thorities and organizers while ensuring voter privacy. Ballots in Aura
are dissociated from voter identity cryptographically and use verifiable
encryption and threshold decryption to mitigate trust in tallying au-
thorities Aura requires no trusted setups for cryptographic primitives
and uses efficient proving systems to reduce computation and communi-
cation complexity. These properties make Aura a competitive candidate
for use in a variety of applications where verifiable trust minimization is
desirable or necessary.

1 Introduction

Electronic voting poses unique and systemic challenges in research, development,
implementation, and deployment. Verifiable electronic voting, where a public
election record is employed for transparency and auditability, has inherently dif-
ferent trust and security requirements than other legacy techniques; in this case,
ballot and election properties and tabulation methods must be secured crypto-
graphically in order to achieve the required goals of a particular application.

Requirements, risks, and threat models in elections are complex and varied.
Ballot anonymity is often required and reasonably guaranteed in physical elec-
tions, where ballots contain no identifying information about the voter at the
time of tallying. Avoidance of voter coercion and bribery may also be important
in major elections; a voter entering a voting booth alone where photography
is prohibited can prevent this in practice, but this may not be the case if the
election is conducted online.

⋆ Corresponding author: aram@firo.org



1.1 Requirements

Properties and requirements on voting protocols have long been the subject
of interesting and evolving research, but as yet there does not appear to be a
universal set of guidelines by which to analyze such constructions.

Informally, we require the following properties:

– Public parameters: Aside from election-specific trust requirements, all
cryptographic constructions must use publicly-verifiable parameters.

– Correctness: A voter authorized for an election can cast a ballot that is
included in the election result.

– Universal verifiability: Any observer can verify that all valid ballots are
included in the final result, and that the result correctly represents only
those ballots.

– Ballot privacy: It is not possible for an observer to determine the choices
associated with a valid ballot.

– Voter anonymity: It is not possible for an observer to determine the voter
associated with a valid ballot, or if a particular voter voted at all.

– Coercion resistance: It is possible for a voter to privately cast multiple
ballots that each invalidate any previous ballots.

Coercion resistance assumes the possibility that a voter may be bribed or
coerced into voting a particular choice, but is outside adversarial influence at a
later time prior to the election ending. It is often related to the idea of a receipt-
free election, where a voter is not able to provide evidence of its vote to a third
party at any time; while Aura does not have this property, we consider the listed
form of coercion resistance to be useful nonetheless.

1.2 Prior work

There is a large and growing body of research over several decades relating to
security models and instantiations of electronic voting protocols using a variety
of cryptographic techniques, but we do not attempt to provide a comprehensive
review here.

Arguably one of the most relevant comparisons to our current work is Helios,
a popular deployed protocol for so-called “boardroom” elections where many
risks relevant to large-scale public elections are not present. The original Helios
protocol [1] relies heavily on talliers, election organizers, and a central server;
ballots are publicly linked to voter identity, and talliers act as a mixnet to shuffle
ballots prior to decryption. Later work proposed an informally-described proto-
col update to Helios [2] that replaces expensive verifiable shuffling with homo-
morphic ballot decryption and a set of proofs of ballot validity; however, indi-
vidual ballots are still linked to voter identity. The research of [7] introduces a
straightforward verifiable ElGamal threshold cryptosystem for talliers that does
not require a trusted dealer, and augments Helios to include this; however, the
method provided is vulnerable to key cancellation and provides no particular
guarantees on key validity. Another relevant comparison is ElectionGuard, a

2



well-specified protocol for verifiable elections [4] that includes more robust veri-
fiable key generation and decryption. However, it does not provide any particular
verifiable guarantees on ballot anonymity, relying on election administrators to
assert voter eligibility and decouple voter identity from ballot data. Addition-
ally, although it provides an option for ballot spoiling, this requires individual
decryption of such ballots for verification.

More recent work supports complete voter privacy with different trust re-
quirements, primarily using encrypted ballots and generic circuit-based proving
systems, to dissociate ballots from voter identity. For example, [8] uses a zk-
SNARK construction to anonymize ballots, and relies on organizer-supplied to-
ken randomizers as a form of coercion resistance; however, soundness and voter
anonymity are compromised in the case of a malicious organizer producing the
proving system common reference string. In Vote-SAVER [12], voter anonymity
is similarly provided by a zk-SNARK construction, and coercion resistance is
achieved by having untrusted third parties conduct provable re-randomization;
however, this crucially relies on proving system malleability, and therefore is cur-
rently limited (to our knowledge) to proving systems where soundness depends
on a trusted organizer to produce a non-malicious common reference string.
More recent work like Kryvos [9] examines more complex voting methods and
adds partial or full hiding of tally details, but soundness depends on trusted
organizers and proofs are large.

1.3 Contribution

Aura presents a protocol combining several useful properties that improve on
earlier work.

We minimize the trust on election participants, including tally authorities
with the joint capability to decrypt ballot results. In Aura, all cryptographic
components may be instantiated with public verifiable parameters. Keys used
to authenticate ballots can be generated by voters themselves, and the key used
for decrypting election results is constructed by tally authorities in a distributed
and verifiable manner that does not require a trusted dealer.

Ballots are dissociated from voter identity using voter-produced proofs, and
ballot validity is asserted by a combination of verifiable ElGamal encryption and
a bit vector proving system. Even in the case of collusion between talliers (and
organizers) to decrypt individual ballots, voter anonymity is perfectly retained;
and while multiple vote attempts by a voter can be reliably detected, this process
occurs after the close of the election, and allows for safer mitigation of voter
coercion by permitting such a voter to invalidate a coerced ballot anonymously
and without revealing its contents.

Aura uses constructions supporting efficient operations. The proving system
used to assert voter anonymity supports batch verification that greatly reduces
the marginal complexity of verification, and scales extremely well in proof size
even with a large number of voters. Further, a single commitment proving system
is used to assert that a set of vote ciphertexts are valid, both with valid ElGamal
vote messages and the overall number of choices selected by a voter; this proving

3



system also supports batch verification and scales more efficiently than previous
work, while remaining flexible for single- and multi-choice election rules.

We show a comparison between Aura and other designs in Table 1. While
no generic circuit-based design appears to be in common use, we reference Vote-
SAVER [12] as it is well specified as an example of such a construction.

Table 1. Comparison of properties of Aura to other systems; here, a trust-free setup
means participant collusion during parameter generation cannot forge ballots or break
voter privacy

Protocol Ballot privacy Voter privacy Trust-free setup

ElectionGuard [4] ✓ ✗ ✓

Helios [2] ✓ ✗ ✓

Vote-SAVER [12] ✓ ✓ ✗

Aura [this work] ✓ ✓ ✓

While we use well-studied techniques and provably-secure cryptographic com-
ponents to build Aura, we stress that the overall protocol analysis is informal,
and we defer a formal security model and protocol-level proofs to future work.

2 Cryptographic primitives

In this section, we describe the cryptographic constructions required for the Aura
election protocol. Throughout these descriptions, let G be a prime-order group
where the discrete logarithm and decisional Diffie-Hellman problems are hard,
and let F be its scalar field.

2.1 Distributed verifiable threshold ElGamal encryption

Aura requires a distributed verifiable threshold ElGamal cryptosystem, where
a cohort of designated parties is required to decrypt messages. In such a con-
struction, we require that key generation be fully distributed with no trusted
parties. Further, the validity of key generation, encryption, and decryption must
be verifiable.

The construction we describe here is based on that of [7], which describes a
distributed threshold design intended for use in Helios. However, that construc-
tion is vulnerable to key cancellation attacks, does not assert proper joint key
representation, and uses verification keys that (if maliciously crafted) do not
allow for publicly-verifiable decryption. Further, the design is generic to sup-
port arbitrary group elements as messages, which is not secure in general [5];
while its overlying protocol does not fall victim to this problem by the nature
of its construction, the general design is vulnerable. We modify the design to
address these shortcomings, specify abort points in the protocol, and indicate
simplifications where possible.

4



Let ppenc = (G,F, G, {Hi}k−1
i=0 , k, t, ν) be the public parameters for the con-

struction, where G, {Hi}k−1
i=0 ∈ G are independent generators, k > 0 is the

number of valid message generators, t is the threshold of keyholders required
for decryption, and ν is the total number of keyholders (so 1 ≤ t ≤ ν). The
algorithms we define here rely on several auxiliary proving systems; these are
introduced and defined shortly, but we reference them now. We assume that
ppenc is available to all algorithms, which we describe now:

– KeyGen(α) 7→ (Yα, Π
key
α ): The function takes as input a player index 1 ≤

α ≤ ν. It does the following:
1. Chooses a set {aα,j}t−1

j=0 ⊂ F of scalars uniformly at random, and defines
the polynomial

fα(x) =

t−1∑
j=0

aα,jx
j

and vector Cα = {Cα,j}t−1
j=0 = {aα,jG}t−1

j=0 using these values.
2. Produces a proof of representation Πrep

α = RepProve(G,Cα,0; aα,0), and
sends the tuple (Cα, Π

rep
α ) to all other players.

3. On receipt of such a tuple (Cβ , Π
rep
β ) from another player β, verifies that

RepVerify(Πrep
β , G,Cβ,0) = 1, and aborts otherwise.

4. For each 1 ≤ β ≤ ν, computes a value yα,β = fα(β) and sends it to
player β (using a private and secure side channel).

5. On receipt of such a value yβ,α from another player β, checks that

t−1∑
j=0

αjCβ,j = yβ,αG

and aborts otherwise.
6. Computes its private key share

yα =

ν∑
β=1

yβ,α

and public key share Yα = yαG and public group key

Y =

ν∑
β=1

Cβ,0.

7. Produces a proof of representation Πkey
α = RepProve(G, Yα; yα).

The function outputs (Yα, Π
key
α ).

– VerifyKeyGen({Yα, Π
key
α }να=1) 7→ Y : The function takes as input a set of key

shares and proofs from a set of ν players. It does the following:
1. For each 1 ≤ α ≤ ν, checks that RepVerify(Πkey

α , G, Yα) = 1, and aborts
otherwise.

2. Sets Y =
∑ν

α=1 Yα.

5



The function outputs Y .
– Encrypt(m, i, Y ) 7→ (D,E,Πenc): The function takes as input a message m ∈

F, a message generator index 0 ≤ i < k, and a public key Y . It does the
following:
1. Chooses a nonce r ∈ F uniformly at random.
2. Sets D = rG and E = rY +mHi.
3. Produces a proof of encryption:

Πenc = EncValProve(G, Y,Hi, D,E; (r,m))

The function outputs (D,E,Πenc).
– VerifyEncrypt(Y, i,D,E,Πenc) 7→ {0, 1}: The function takes as input an El-

Gamal public key Y , message generator index 0 ≤ i < k, ElGamal ciphertext
(D,E), and a proof of encryption. If

EncValVerify(Πenc, G, Y,Hi, D,E) = 1

it outputs 1; otherwise, it outputs 0.
– PartialDecrypt(yα, D,E) 7→ (Rα, Π

dec
α ): The function takes as input a private

key share yα and ElGamal ciphertext (D,E). It does the following:
1. Computes Rα = yαD.
2. Produces a proof of discrete logarithm equality:

Πdec
α = EqProve(D,G,Rα, yαG; yα)

The function outputs (Rα, Π
dec
α ).

– VerifyDecrypt(D,E, {j, Yj , Rj , Π
dec
j }tj=1) 7→ m: The function takes as input

ElGamal ciphertext (D,E), a threshold set of t player indices, corresponding
public key shares, and associated partial decryption data. We note that for
the sake of notation convenience, the set of players is reindexed here; in
practice, any threshold of players may be used with their corresponding
indices. It does the following:
1. For each 1 ≤ j ≤ t, checks that EqVerify(Πdec

j , D,G,Rj , Yj) = 1, and
aborts otherwise.

2. For each 1 ≤ j ≤ t, computes the corresponding Lagrange coefficient:

λj =

t∏
i=1,i̸=j

i

i− j

3. Computes the following:

M = E −
t∑

j=1

λjRj

4. Uses brute force (or another appropriate computational method) to find
m ∈ F such that mH = M .

The function outputs m.

6



2.2 Proving systems

We require several proving systems for use in Aura. Each can be instantiated
non-interactively, either by instantiations cited, or using standard Schnorr-type
representation proof techniques. Each is provable to be complete, special sound,
and special honest-verifier zero knowledge. For each proving system, we list the
public parameters, relevant relation, and prover and verifier functions; we omit
the specific instantiations.

Bit vector commitment proving system This proving system asserts that
a given group element is a Pedersen vector commitment to elements in the
set {0, 1} whose sum is a specified value. The public parameters are ppbit =(
G,F, w, k, {Gi}k−1

i=0 , H
)
, where w, k > 0 and {Gi}k−1

i=0 , H ∈ G are independent
generators. The relation is the following:

Rbit =

{
ppbit, B ∈ G; {bi}k−1

i=0 , r ∈ F : B = rH +

k−1∑
i=0

biGi,

bi ∈ {0, 1}∀i ∈ [0, k),

k−1∑
i=0

bi = w

}

The relevant algorithms are the following:

– BitProve
(
B; {bi}k−1

i=0 , r
)
7→ Πbit

– BitVerify (Πbit, B) 7→ {0, 1}

A simple generalization of an existing proving system by Bootle et al. may be
used as an instantiation of the required proving system [6]. For completeness,
we include a full description of the generalization in Appendix A.

Commitment set proving system This proving system asserts that some
group element in a given set is, when offset by another group element, a Peder-
sen commitment to zero. The public parameteres are ppset = (G,F, G,H, n,m),
where n,m > 1 and G,H are independent generators. Let N = nm. The relation
is the following:

Rset =
{
ppset, {Ci}N−1

i=0 , C ′ ∈ G; l ∈ [0, N), r ∈ F : Cl − C ′ = rH
}

The relevant algorithms are the following:

– SetProve
(
{Ci}N−1

i=0 , C ′; l, r
)
7→ Πset

– SetVerify
(
Πset, {Ci}N−1

i=0 , C ′) 7→ {0, 1}

The proving system in [6], with a simple modification as done in [10], may be
used for this purpose.

7



Representation proving system This proving system asserts knowledge of
a group element representation. The public parameters are pprep = (G,F). The
relation is the following:

Rrep = {pprep, {Gi}n−1
i=0 , Y ; {yi}n−1

i=0 : Y =

n−1∑
i=0

yiGi}

The relevant algorithms are the following:

– RepProve({Gi}n−1
i=0 , Y ; {yi}n−1

i=0 ) 7→ Πrep

– RepVerify(Πrep, {Gi}n−1
i=0 , Y ) 7→ {0, 1}

Encryption validity proving system This proving system asserts a valid
ElGamal encryption using a specific representation assertion. The public pa-
rameters are ppval = (G,F). The relation is the following:

Rval = {ppenc, G, Y,H,D,E; (r,m) : D = rG,E = mY + rH}

The relevant algorithms are the following:

– EncValProve(G, Y,H,D,E; r,m) 7→ Πenc

– EncValVerify(Πenc, G, Y,H,D,E) 7→ {0, 1}

Serial validity proving system This proving system asserts a valid ElGamal
encryption using a specific representation assertion matches a particular partial
commitment opening. The public parameters are ppser = (G,F). The relation is
the following:

Rser = {ppser, F,G,H, Y, C,D,E; (s, r, r′) :

C = sG+ rH,D = r′G,E = sF + r′Y }

The relevant algorithms are the following:

– SerValProve(F,G,H, Y,C,D,E; s, r, r′) 7→ Πser

– SerValVerify(Πser, F,G,H, Y, C,D,E) 7→ {0, 1}

Discrete logarithm equality proving system This proving system asserts
two group elements share the same discrete logarithm with respect to speci-
fied generators. The public parameters are ppeq = (G,F). The relation is the
following:

Req = {ppeq, G,H, Y, Y ′; y : Y = yG, Y ′ = yH}

The relevant algorithms are the following:

– EqProve(G,H, Y, Y ′; y) 7→ Πeq

– EqVerify(Πeq, G,H, Y, Y ′) 7→ {0, 1}

8



2.3 Unforgeable signature scheme

In Aura, different types of participants submit messages to a public bulletin
board. For some of the messages, observers must verify their authenticity in or-
der to assert they are created by the claimed entity. For other messages, this
property is not required (or even desired). We therefore assume the existence
of an unforgeable signature scheme on arbitrary messages that can be bound to
contexts to mitigate replay attacks. Constructions like context-prefixed Schnorr
digital signatures may be used for this purpose. In the protocol, we describe
which entities are assumed to possess signing and verification keys for this sig-
nature scheme.

3 Protocol

3.1 Overview

There are several types of entities in Aura that interact during the election
process. Organizers set protocol parameters for elections, voters, and talliers.
Voters cast ballots in elections. Talliers collaboratively compute and publish
results at the end of elections. Verifiers assert that elections and results are
valid.

We assume a public bulletin board B is used to store election data. The
instantiation of B is especially suited for a blockchain-type construction for which
modification or erasure of posted data is computationally infeasible.

3.2 Algorithms

An election consists of several steps, represented by algorithms that we describe
in detail here. We assume that the organizer, the talliers, and all voters possess
signing keys (with corresponding verification keys) for the unforgeable signature
scheme, which can be used to sign and verify arbitrary messages to authenticate
them. The distribution of such keys is outside the scope of this protocol.

SetupElection The organizer does the following:

1. Chooses a unique election identifier I ∈ {0, 1}∗, and prepares parameter
melec as a human-readable description of the election, which may include
auxiliary information for voters as necessary by election rules.

2. Selects parameter k > 0 as the number of candidates or choices in the election
and, for each i ∈ [0, k), produces a pair (i,mi), wheremi is a human-readable
description of choice i.

3. Selects parameters kmin and kmax corresponding (respectively) to the min-
imum and maximum number of choices a voter may make; we require that
1 ≤ kmin ≤ kmax ≤ k. For convenience, let k′ = k + kmax − kmin.

4. For each i ∈ [0, k′), samples a generator Hi ∈ G uniformly at random in a
publicly-verifiable way.

9



5. Samples group generators F,G,H ∈ G uniformly at random in a publicly-
verifiable way.

6. Prepares a list Lvoters of the Nvoters voter verification keys corresponding to
authorized voters in the election, and lets n,m > 1 such that Nvoters = nm.

7. Prepares a list Ltally of the Ntally > 0 tallier verification keys corresponding
to the authorized talliers in the election, and a threshold 1 ≤ t ≤ Ntally of
talliers required for result decryption.

8. Prepares the public parameters for required underlying cryptographic con-
structions:

– Samples a prime-order group G with a scalar field F.
– Sets ppenc = (G,F, {Hi}k

′−1
i=0 , k′, t, Ntally) as the parameters for a dis-

tributed verifiable ElGamal encryption system.

– Sets ppbit = (G,F, kmax, k
′, {Hi}k

′−1
i=0 ,−) as the parameters for a bit vec-

tor commitment proving system, where we leave the final parameter
undefined (to be set at a later step).

– Sets ppset = (G,F, G,H, n,m) as the parameters for a commitment set
proving system.

– Sets pprep = (G,F) as the parameters for a representation proving sys-
tem.

– Sets ppval = (G,F) as the parameters for an encryption validity proving
system.

– Sets ppser = (G,F) as the parameters for a serial validity proving system.

– Sets ppeq = (G,F) as the parameters for a discrete logarithm equality
proving system.

9. Assembles the protocol public parameters

pp = (I,melec, k, {i,mi}k−1
i=0 , kmin, kmax,G,F, {Hi}k

′−1
i=0 , F,G,H,

Lvoters, Nvoters, n,m,Ltally, Ntally, t)

and posts them to B as an authenticated message signed with the organizer
signing key.

The public parameters pp are assumed to be available to all participants and
algorithms; further, all other subprotocol public parameters can be determinis-
tically produced from pp.

SetupTally Each tallier with index 1 ≤ α ≤ Ntally does the following:

1. Verifies the authenticated organizer message on B containing pp, and checks
the validity of the parameters.

2. Runs KeyGen(α) 7→ (Yα, Π
key
α ) interactively with the other talliers.

3. Posts the values (α, Yα, Π
key
α ) to B as an authenticated message signed with

its tallier signing key from Ltally.

10



SetupVoter Each voter with index 0 ≤ i < Nvoters does the following:

1. Verifies the authenticated organizer message on B containing pp, and checks
the validity of the parameters.

2. Selects si, ri ∈ F uniformly at random, and privately stores these values.
3. Computes a ballot key Ci = siG+ riH.
4. Generates a proof of representation RepProve({G,H}, Ci; {s, r}) 7→ Πrep,i.
5. Posts (i, Ci, Πrep,i) to B as an authenticated message signed with its voter

signing key from Lvoters.

We note that it is safe for a voter to reuse their ballot key across multiple
elections.

VerifySetup The verifier does the following:

1. Verifies the unique authenticated organizer message on B containing pp, and
checks the validity of the parameters.

2. For each 1 ≤ α ≤ Ntally, verifies the unique authenticated tallier message
on B containing (α, Yα, Π

key
α ) using the corresponding verification key from

Ltally.
3. Verifies the tally keys by running VerifyKeyGen({Yα, Π

key
α }να=1) 7→ Y .

4. For each 0 ≤ i < Nvoters, verifies the unique authenticated voter message
on B containing (i, Ci, Πrep,i), and verifies the ballot key by checking that
RepVerify(Πrep,i, {G,H}, Ci) 7→ 1.

At this point, all participants use Y as the undetermined parameter in ppbit.

Vote Each voter with index 0 ≤ i < Nvoters does the following:

1. Constructs a vector ci = (ci,j)
k−1
j=0 representing its choices among the k op-

tions, where

ci,j =

{
1 if the voter chooses option j
0 otherwise

and kmin ≤
∑k−1

j=0 ci,j ≤ kmax.
2. For j ∈ [0, k), encrypts each choice by setting

(Di,j , Ei,j , Πenc,i,j) = Encrypt(ci,j , j, Y ).

3. For j ∈ [k, k′), extends the vector ci by setting

ci,j =

{
1 if j < k + kmax −

∑k−1
j=0 ci,j

0 otherwise

for padding purposes, and computes encryptions

(Di,j , Ei,j , Πenc,i,j) = Encrypt(ci,j , j, Y ).

11



4. Computes a bit vector commitment proof

Πbit,i = BitProve

k′−1∑
j=0

Ei,j ; {ci,j}k
′−1

j=0 , r

 ,

where r is the sum of all nonces used in encryption proofs for j ∈ [0, k′ − 1).
5. Chooses a nonce r′i ∈ F uniformly at random, and computes the serial offset

C ′
i = siG+ r′iH.

6. Encrypts the ballot serial number by choosing a nonce r′′i ∈ F uniformly at
random and computing D′

i = r′′i G and E′
i = siF + r′′i Y .

7. Assembles C to be the set of all voter commitments {Ci} corresponding to
voter verification keys in Lvoters, and generates a commitment set proof

Πset,i = SetProve
(
C,C ′

i; li, ri − r′i
)

where Cli = Ci.
8. Assembles a ballot tuple:

Bi =
(
pp, (Di,j , Ei,j , Πenc,i,j)

k′−1
j=0 , Πbit,i, C

′
i, D

′
i, E

′
i, Πset,i

)
9. Generates a proof of serial number validity

Πser,i = SerValProve(F,G,H, Y,C ′
i, D

′
i, E

′
i; si, r

′
i, r

′′
i )

that binds Bi to its initial transcript.
10. Posts the ballot tuple Bi and binding proof Πser,i to B.

If the voter is coerced or bribed to submit a ballot of an adversary’s choice,
the voter may cast another ballot once outside of the adversary’s influence by
repeating these steps. As shown below, such duplicate ballots will be accepted
to B, but will be excluded from the final tally except for the last such ballot cast
by the voter. This is intended to provide a weak form of coercion resistance.

VerifyBallot Given a semantically-correct ballot (without explicit voter index i)
of the form

B =
(
(Dj , Ej , Πenc,j)

k′−1
j=0 , Πbit, C

′, D′, E′, Πset

)
,

any verifier does the following:

1. Checks that B does not already appear on B, and aborts otherwise.
2. Checks that SerValVerify(Πser, F,G,H, Y, C ′, D′, E′) 7→ 1 using B as a tran-

script binding, and aborts otherwise.
3. For each j ∈ [0, k′), checks that VerifyEncrypt(Y, j,Dj , Ej , Πenc,j) 7→ 1, and

aborts otherwise.

12



4. Checks that

BitVerify

Πbit,

k′−1∑
j=0

Ej

 7→ 1,

and aborts otherwise.
5. Assembles the set C as in Vote, checks that SetVerify(Πset, C, C ′) 7→ 1, and

aborts otherwise.

Rejection of duplicate ballots serves an important function. Specifically, it
avoids the case where a voter submits a revised ballot in the case of coercion,
and the adversary then submits the original coerced ballot to be counted instead.

While this also avoids a particular denial-of-service attack where an adversary
submits “spam” copies of existing ballots to the bulletin board, it does not
prevent an adversarial voter from submitting many revised ballots to the bulletin
board.

It also does not address the case where ballot ordering on the bulletin board
is not well defined at all times. For example, in a blockchain-type construction, it
may be the case that multiple verified ballots are added to the bulletin board at
the same time, such that their ordering is initially undefined. This could result
in a case where a voter submits a ballot and then immediately revises it; the
bulletin board ordering may not match the voter’s intent. However, this is easily
avoided if the time between ballot revisions exceeds the ordering time of the
bulletin board.

Tally The talliers first verifiably decrypt all ballot serial numbers in order to
complete the assertion of their validity and discard (for coercion-resistance pur-
poses) recast ballots by common anonymized voters. Assume a set of t talliers
indexed 1 ≤ j ≤ t. Each such tallier does the following for each valid ballot i
appearing on B:

1. Runs PartialDecrypt(yj , D
′
i, E

′
i) 7→ (Rser,i,j , Πser,i,j), and posts this tuple to

B as an authenticated message signed with its tallier signing key from Ltally.
2. After receiving all such partial decryptions from the threshold cohort and

verifying the authenticated messages, partially (without attempting to brute-
force the final decryption) runs

VerifyDecrypt(D′
i, E

′
i, {j, Yj , R

dec
ser,i,j , Πser,i,j}tj=1)

to obtain a serial number public key Si ∈ G.
3. Verifies the signature on the ballot i using Si as the verification public key

(against generator F ).
4. If Si appears with any other valid ballot, discard all but the most recent

such ballot, according to bulletin board ordering.

At this point, let there be Nvalid remaining valid ballots, indexed by i. The
talliers now verifiably produce the tally of all Nvalid such ballots. Each tallier
with index 1 ≤ j ≤ t does the following:

13



1. For each l ∈ [0, k), computes the ballot sums for choice l by setting

Dl =

Nvalid−1∑
i=0

Di,l

and

El =

Nvalid−1∑
i=0

Ei,l,

and partially decrypting the sums:

PartialDecrypt(yj , Dl, El) 7→ (Rl,j , Π
dec
l,j )

2. Posts the set of tuples {(Rl,j , Π
dec
l,j )}k−1

l=0 to B as an authenticated message
signed with its tallier signing key from Ltally.

VerifyTally Any verifier checks the authenticity of all tallier messages posted
from Tally and does the following:

1. For each valid ballot i appearing on B:
(a) Partially (without attempting to brute-force the final decryption) runs

VerifyDecrypt(D′
i, E

′
i, {j, Yj , R

dec
ser,i,j , Πser,i,j}tj=1)

to obtain a serial number public key Si ∈ G, and aborts if this fails.
(b) Verifies the signature on the ballot i using Si as the verification public

key (against generator F ), and aborts if this fails.
(c) If Si appears with any other valid ballot, discard all but the most recent

such ballot, according to bulletin board ordering.

2. Assembles the set of Nvalid remaining valid ballots, now indexed by i.
3. For each choice index l ∈ [0, k):

(a) Computes the ballot sums for choice l by setting

Dl =

Nvalid−1∑
i=0

Di,l

and

El =

Nvalid−1∑
i=0

Ei,l.

(b) Finalizes the decryption

VerifyDecrypt(Dl, El, {j, Yj , R
dec
l,j , Πdec

l,j }tj=1) 7→ tl

to obtain the total votes tl for choice l, and aborts if this fails.

14



4 Remarks

While we do not provide a formal security analysis here, we note that Aura
meets our informal requirements. All cryptographic constructions use only pub-
lic parameters, and completeness properties map to overall protocol correctness.
We obtain universal verifiability since any observer can run VerifyBallot on all
ballots appearing on the bulletin board, and run VerifyTally to check that these
ballots all appear in the correct tally. Ballot privacy follows from the properties
of the cryptographic primitives used in Vote and Tally under the assumption of
no malicious threshold cohort of talliers. Voter anonymity is asserted uncondi-
tionally by the use of a commitment set proof, and coercion resistance follows
from the use of encrypted ballot serial numbers that are unique and fixed for
each voter identity.

4.1 Efficiency

We discuss overall scaling of Aura algorithms here, and provide a more concrete
comparison to ElectionGuard in Appendix B.

The most computationally-expensive construction in an Aura election is the
commitment set membership proof associated to each ballot. The size of this
proof scales as O(log(Nvoters)) using the instantiation referenced. While verifica-
tion at first appears to scale as O(Nvoters), the use of efficient multiscalar multi-
plication algorithms [13] can reduce this complexity to O(Nvoters/ log(Nvoters))
with good constants.

Further, the instantiation supports efficient batch verification. When verify-
ing proofs from multiple ballots, verifier weighting of common group elements
in the required multiscalar multiplication evaluation makes the marginal verifi-
cation complexity constant, amortizing the overall cost across the batch. Inter-
estingly, this use of batch verification can make overall Aura ballot verification
several times more efficient than existing efficient mixnet constructions [11,3].

Other verification steps in VerifySetup, VerifyBallot, and VerifyTally imply
lower complexity, or may be similarly batched for improved efficiency.

These observations make Aura a competitive candidate for suitable applica-
tions.

References

1. Adida, B.: Helios: Web-based open-audit voting. In: Proceedings of the 17th Con-
ference on Security Symposium. p. 335–348. SS’08, USENIX Association, USA
(2008)

2. Adida, B., De Marneffe, O., Pereira, O., Quisquater, J.J.: Electing a university
president using open-audit voting: Analysis of real-world use of Helios. In: Pro-
ceedings of the 2009 Conference on Electronic Voting Technology/Workshop on
Trustworthy Elections. p. 10. EVT/WOTE’09, USENIX Association, USA (2009)

3. Bayer, S., Groth, J.: Efficient zero-knowledge argument for correctness of a shuffle.
In: Pointcheval, D., Johansson, T. (eds.) Advances in Cryptology – EUROCRYPT
2012. pp. 263–280. Springer Berlin Heidelberg, Berlin, Heidelberg (2012)

15



4. Benaloh, J., Naehrig, M.: ElectionGuard specification v1.0. https://www.

electionguard.vote/spec/

5. Boneh, D., Joux, A., Nguyen, P.Q.: Why textbook ElGamal and RSA encryption
are insecure. In: Okamoto, T. (ed.) Advances in Cryptology — ASIACRYPT 2000.
pp. 30–43. Springer Berlin Heidelberg, Berlin, Heidelberg (2000)

6. Bootle, J., Cerulli, A., Chaidos, P., Ghadafi, E., Groth, J., Petit, C.: Short ac-
countable ring signatures based on DDH. In: Pernul, G., Y A Ryan, P., Weippl, E.
(eds.) Computer Security – ESORICS 2015. pp. 243–265. Springer International
Publishing, Cham (2015)

7. Cortier, V., Galindo, D., Glondu, S., Izabachène, M.: Distributed ElGamal à
la Pedersen: Application to Helios. In: Proceedings of the 12th ACM Work-
shop on Workshop on Privacy in the Electronic Society. p. 131–142. WPES
’13, Association for Computing Machinery, New York, NY, USA (2013).
https://doi.org/10.1145/2517840.2517852

8. Dimitriou, T.: Efficient, coercion-free and universally verifiable
blockchain-based voting. Computer Networks 174, 107234 (2020).
https://doi.org/10.1016/j.comnet.2020.107234

9. Huber, N., Kuesters, R., Krips, T., Liedtke, J., Mueller, J., Rausch, D., Reisert,
P., Vogt, A.: Kryvos: Publicly tally-hiding verifiable e-voting. Cryptology ePrint
Archive, Paper 2022/1132 (2022), https://ia.cr/2022/1132

10. Jivanyan, A., Feickert, A.: Lelantus Spark: Secure and flexible private transactions.
Cryptology ePrint Archive, Report 2021/1173 (2021), https://ia.cr/2021/1173

11. Krips, T., Lipmaa, H.: More efficient shuffle argument from unique factorization. In:
Paterson, K.G. (ed.) Topics in Cryptology – CT-RSA 2021. pp. 252–275. Springer
International Publishing, Cham (2021)

12. Lee, J., Choi, J., Kim, J., Oh, H.: SAVER: SNARK-friendly, additively-
homomorphic, and verifiable encryption and decryption with rerandomization.
Cryptology ePrint Archive, Report 2019/1270 (2019), https://ia.cr/2019/1270

13. Pippenger, N.: On the evaluation of powers and monomials. SIAM Journal on
Computing 9(2), 230–250 (1980)

A Bit commitment proving system

We now show an efficient instantiation of a bit commitment proving system.
This is a generalization of the construction used in [6], which in our notation
supports only w = 1. The proof of security follows similarly with only minor
straightforward modifications, so we omit it here.

While in Aura we describe a non-interactive construction, we show here the
corresponding interactive protocol, and note that the strong Fiat-Shamir tech-
nique easily applies.

1. The prover selects rA, rC , rD, {ai}k−1
i=1 ∈ F uniformly at random, and sets

a0 = −
k−1∑
i=1

ai.

16

https://www.electionguard.vote/spec/
https://www.electionguard.vote/spec/
https://doi.org/10.1145/2517840.2517852
https://doi.org/10.1016/j.comnet.2020.107234
https://ia.cr/2022/1132
https://ia.cr/2021/1173
https://ia.cr/2019/1270


2. The prover computes the Pedersen vector commitments

A = rAH +

k−1∑
i=0

aiGi

C = rCH +

k−1∑
i=0

ai(1− 2bi)Gi

D = rDH +

k−1∑
i=0

a2iGi

and sends A,C,D to the verifier.
3. The verifier selects a challenge x ∈ F \ {0} uniformly at random, and sends

x to the prover.
4. For each i ∈ [1, k), the prover sets fi = bix + ai. The prover also sets

za = rx+ rA and zC = rCx+ rD, and sends {fi}k−1
i=0 , zA, zC to the verifier.

5. The verifier sets

f0 = wx−
k−1∑
i=1

fi

and accepts the proof if and only if the following hold:

A+ xB = zAH +

k−1∑
i=0

fiGi

xC +D = zCH +

k−1∑
i=0

fi(x− fi)Gi

B Efficiency comparison to ElectionGuard

We compare the efficiency of some Aura components to those of ElectionGuard
[4], since its design is well specified. However, ElectionGuard offloads voter pri-
vacy to organizers, which Aura specifically avoids; as a result, we cannot directly
compare this.

We observe that ballot validity proofs in both protocols have two overall
goals: they must show that each option is a valid encryption against the correct
ElGamal key, and that only a specified number of options are chosen. In Aura,
we use one proof to show that an encrypted selection is a valid encryption of
some message, and another to show the validity of all such messages and the
correct selection limit. In ElectionGuard, one proof shows that an encrypted
selection is a valid encryption of a valid message, and another asserts the correct
seection limit. This difference, which arises from proving system designs, impacts
efficiency.

As before, suppose an election has k options, and that a voter must select
between kmin and kmax of them. Let k′ = k + kmax − kmin for convenience. We

17



show the total size of the ballot-related proofs in Aura and ElectionGuard in Ta-
ble 2, assuming for Aura a standard Schnorr-type instantiation of the required
encryption validity proving system. In both cases, we generalize and assume all
proof elements can be represented using a fixed and common size.4 Further,
we account for batch verification, where it is possible to present Schnorr-type
proving systems for both protocols either in a manner that supports efficient
verification of multiple proofs at the same time (by including the initial prover
messages in the proof), or in a manner not supporting this (by including the
claimed Fiat-Shamir challenge in the proof, and requiring the verifier to recon-
struct the prover messages); this affects the size of each proof and the overall
computational complexity.

Table 2. Total size of each ballot’s validity proofs for Aura and ElectionGuard, given
in proof elements, both supporting batch verification and not

Protocol Size (batching) Size (no batching)

Aura 5k′ + 4 4k′ + 4
ElectionGuard 8k′ + 3 4k′ + 2

We note an interesting tradeoff, in that the total size of a ballot varies between
the two protocols depending on the need for batch verification support. In the
case where batch verification is desired or required, Aura ballots are significantly
smaller than those of ElectionGuard; if batch verification is not used, Aura
ballots are slightly larger. Since Aura is particularly intended for efficient use
in decentralized settings where both the size of the public bulletin board and
overall verification complexity are considered limited resources, this provides a
distinct and notable advantage.

4 While Aura is presented for general groups, [4] specifies particular group parameters.

18


	Aura: private voting with reduced trust on tallying authorities

