
He-HTLC: Revisiting Incentives in HTLC

Sarisht Wadhwa§

Duke University
sarisht.wadhwa@duke.edu

Jannis Stöter§

Duke University
jannis.stoeter@alumni.duke.edu

Fan Zhang
Duke University

fan.zhang@duke.edu

Kartik Nayak
Duke University

kartik@cs.duke.edu

Abstract—Hashed Time-Locked Contracts (HTLCs) are a
widely used primitive in blockchain systems. Unfortunately,
HTLC is incentive-incompatible and is vulnerable to bribery
attacks. MAD-HTLC (Oakland’21) is an elegant solution aim-
ing to address the incentive incompatibility of HTLC.

In this paper, we show that MAD-HTLC is also incentive-
incompatible. The crux of the issue is that MAD-HTLC only
considers passively rational miners. We argue that such a
model fails to capture active rational behaviors. We demon-
strate the importance of taking actively rational behaviors into
consideration by showing three novel reverse-bribery attacks
against MAD-HTLC that can be implemented using Trusted
Execution Environments (TEEs) or zero-knowledge proofs
(ZKPs). We further show that reverse bribery can be combined
with original delaying attacks to render MAD-HTLC insecure
regardless of the relationship between vcol and vdep. Based on
the learnings from our attacks, we devise a new smart contract
specification, He-HTLC,1 that meets the HTLC specification
even in the presence of actively rational miners.

1. Introduction

Blockchain-based cryptocurrencies like Bitcoin [1] and
Ethereum [2] enable secure transfer of tokens without
a central authority and allow users to set elaborate and
programmable smart contracts to govern token transfers.
Hashed Time-Locked Contract (HTLC) [3] is a widely
used smart contract implementable both on Ethereum and
Bitcoin. HTLC is prominently used in the Lightning net-
work [4], [5] to securely route payments through multiple
payment channels, but HTLC is also essential to contingent
payments [6], atomic swaps [7], etc. At a high level, an
HTLC is parameterized with a timelock T and a hash lock
H (hence the name), enforcing a conditional transfer of v
tokens from a payer (Bob) to a payee (Alice): Before timeout
T , Alice can spend the v tokens by sending a transaction
embedding a pre-image of H to the blockchain; after the
time T , Bob can spend the tokens.

Unfortunately, as shown by previous works [8], [9]
HTLC is vulnerable to incentive manipulation. In order for
Alice to be able to spend the tokens, HTLC assumes that

§. Equal contribution
1. Our specification is lightweight and inert to incentive manipulation

attacks. Hence, we call it He-HTLC where He stands for Helium.

miners will include Alice’s transaction to the blockchain in
a timely fashion before the timeout T . However, as rational
agents seeking to maximize profit, miners may not adhere
to the desired behavior when properly incentivized by a
malicious Bob. For example, Winzer et al. [8] showed that
Bob can set up a smart contract to reward (or bribe) miners
if they ignore Alice’s transaction until after the timeout,
causing Alice to lose the tokens. Indeed, not only a problem
for HTLC, generic bribery attacks where the adversary
corrupts participants with money (potentially in a creditable
fashion with the help of a smart contract) is a real concern in
consensus security [10], [11], blockchain oracles [12], [13],
on-chain voting [14], etc.

As a solution to incentive manipulation in HTLC,
Tsabary et al. [9] proposed an elegant solution called MAD-
HTLC. The key idea is to require the payer to deposit
collateral, and any misbehavior by the payer will lead to
the collateral becoming spendable (thus can be confiscated)
by miners. MAD-HTLC ensures that rational miners will
always penalize cheating payer, thus deterring the payer
from misbehaving.

While MAD-HTLC explicitly takes miners’ rationality
into account—a step forward compared to the original
HTLC scheme—its analysis only considers a narrow set
of possible strategies by the miners. Specifically, the only
allowed action is transaction placement optimization where
miners choose from the mempool the best transactions to
include in a block. In other words, MAD-HTLC modeled
miners as passively rational in that miners will pick the
best opportunities made available by the environment, but
will not actively create better opportunities by themselves. In
reality, however, there are no such constraints on the miners’
action space. Sophisticated miners might actively engage in
external protocols (in addition to mining) to further increase
their gains. As an example, a significant faction of Ethereum
miners now offer for-profit “private relay” services [15]–[17]
as an additional source of revenue [18].

We refer to miners’ strategies beyond simple transac-
tion placement optimization as actively rational. Motivated
by the rise of actively rational strategies in real-world
blockchains (e.g., [15]–[17]), we aim to understand their
security implications for HTLC. Unfortunately, we show
that MAD-HTLC—the state-of-the-art bribery-resistant real-
ization of HTLC—is insecure with the presence of actively
rational miners. On the other hand, we also show a modified

1

contract He-HTLC that satisfies the HTLC specification even
in the presence of actively rational miners.

1.1. Reverse bribery attacks against MAD-HTLC

We introduce a family of novel attacks in the presence
of actively rational miners. Specifically, we propose reverse
bribery where the miner bribes the payer to divulge certain
information in a way that both the miner and the payer are
better off, at the expense of the payee. Reverse bribery is
an example of an actively rational action because a miner
initiates the attack. Since the role of parties sending and
receiving bribes has reversed compared to the original attack
by Winzer et al. [8] and MAD-HTLC [9], we call this a
reverse bribery attack.

Key intuition. To understand the intuition behind our at-
tacks, we briefly review the design of MAD-HTLC. It has
the same functionality as HTLC with two key changes. First,
in a transaction where Bob pays Alice vdep tokens, Bob also
deposits collateral of vcol tokens. Second, upon any bribery
attempt of Bob, miners will confiscate both vdep and vcol.
In other words, in honest executions, Bob gets back vcol; if
Bob attempts to bribe, Bob gets 0 (Alice too), and miners
earn vdep and vcol. The design goal is to disincentivize Bob
from bribery, which this accomplishes. However, we observe
that it leads to another attacking opportunity because miners
and Bob together can earn more than they would in honest
executions; by “dividing up the loot”, both may be better
off attacking.

Specifically, in a reverse bribery attack, the miners will
agree with Bob on the following deal: Bob will divulge
certain information to the miners (thus forgoing the col-
lateral vcol), but the miners will compensate Bob with
bribe = vcol+ϵ in a separate payment. Both, the miners and
Bob, will earn more than they would in honest executions:
miners will earn vdep − ϵ more,2 and Bob will earn ϵ more.

Challenges. While we establish the feasibility of an attack
with the above intuition, there are two key challenges that
we need to overcome to make these attacks work.

First, we need to establish whether there exists a feasible
range of values such that both Bob and the miner are better
off. Observe that if there was only one miner, then any bribe
value br ∈ (vcol, vcol+vdep) would allow Bob and the miner
to be better off. However, when we have multiple miners
competing, each with different mining power, each of them
being either passively or actively rational, it is unclear if any
of them or all of them should bribe Bob and what amount
should be bribed.

Second, of course, the miners and Bob do not trust
each other. The way they would “divide up the loot” in a
mutually distrusting fashion poses a technical challenge. The
problem resembles that of a fair exchange where the miners
offer a bribe in exchange for certain information from Bob,
but existing blockchain-based fair exchange protocols (such

2. We currently ignore transaction fees, but consider them in later
sections.

as [19]–[21]) do not apply to our setting because they focus
on fair exchanges between two non-mining parties, and rely
on miners as trusted parties to facilitate the exchange. In our
setting, however, the exchange takes place between Bob and
the miners where there is an imbalance of power; miners can
choose which transactions to (and not to) include on-chain
while Bob cannot, so miners can easily censor undesirable
transactions (e.g., payment to Bob).

At a high level, we address the first challenge by propos-
ing three different attacks and analyzing their properties
through rigorous game-theoretic analyses. To address the
second challenge, we construct fair exchange protocols be-
tween Bob and a miner.

1.2. Fixing HTLC with He-HTLC

Our attacks exploit two key aspects of MAD-HTLC.
First, MAD-HTLC overly compensates miners with vdep +
vcol tokens when preb is available. Second, since all of these
tokens can be redeemed in a single transaction, it enables a
reverse bribery attack through a fair exchange between Bob
and the miners even if they do not trust each other.

To design our incentive-compatible protocol He-HTLC,
we first appropriately reduce the amount of tokens that
miners can confiscate as enforcers of the contract. Then,
we enforce that, in honest executions, Bob can redeem
vdep+vcol in two separate transactions that are some blocks
apart. By introducing this separation and revealing the secret
preb in the first of the two transactions, we utilize the distrust
between Bob and the miners to force both parties to follow
the protocol. There are several subtleties in determining
the amount of tokens that miners can confiscate as well
as ensuring Bob is unable to bribe the intermediate miners
within these blocks.

1.3. Summary of Contributions

In summary, this paper revisits the incentive attacks
against HTLC and makes the following contributions:
• To the best of our knowledge, we propose the first model

that captures miners’ actively rational actions. While ob-
served in practice [15]–[17], miners’ strategic actions
besides mining have not been captured by existing models,
leaving a gap in game theoretic analyses that makes our
attacks possible.

• We introduce novel reverse bribery attacks which allow
actively rational miners to profitably deviate from MAD-
HTLC. We analyze the profitability of our attacks in
a rigorous game theory model and outline their imple-
mentation using trusted execution environments or zero-
knowledge proofs. We further show that reverse bribery
can be combined with ordinary delay attacks (e.g., those
in [8]) to form a hybrid attack that renders MAD-HTLC
insecure regardless of the relationship between vcol and
vdep with constant probability.

• We present He-HTLC, the first HTLC scheme that is secure
in the presence of actively rational miners.

2

2. Overview of Results

2.1. HTLC, Delay Attacks, and Proposed Fixes

To aid understanding, before describing our results, we
start by reviewing Hash Time-Locked Contracts (HTLC),
concerns with the existing protocol, and attempts to fix it.

HTLC. As introduced earlier, an HTLC where Bob pays
Alice vdep tokens is specified by (pkA, pkB , v

dep, prea, T),
where pkA and pkB are public keys of Alice and Bob,
prea is a secret value picked by Bob whose hash is on-
chain, and T is the agreed-upon timeout. The above HTLC
stipulates that Bob’s deposit of vdep tokens can be spent (or
redeemed) in two ways: (i) Alice can spend if she obtains
prea from Bob and broadcasts a signed transaction tx dep

A
including prea, or (ii) Bob can spend by broadcasting a
signed transaction tx dep

B after time T (i.e., Bob gets his
money back if Alice is inactive for T time).

In practice, there are several variants of HTLC. The
above description abstracts away implementation- and
application-specific details and allows us to focus on the
core issues (similar to HTLC-Spec in MAD-HTLC [9]). We
refer readers to [9] for a survey of applications of HTLC.

M3 M1 M2 M1 M2

Alice Bob M3M1 M2

vdep � fdep
A

fdep
A

U
til

ity

Utility of involved parties

Alice broadcasts
<latexit sha1_base64="k+Czx6fNTlBl3yKH/CxNN170Uus=">AAAConicdZHPb9MwFMfd8GMjA9bBEQ4W7SQOURVn3To4DTiAdtoG3SY1pXKcl9aaY0e2g6iiXPhruLL/Zv8NbpfD1sKTnvTV931sP7+XFIIbG4Y3Le/Bw0ePNzaf+FtPnz3fbu+8ODeq1AyGTAmlLxNqQHAJQ8utgMtCA80TARfJ1adF/eIHaMOV/GbnBYxzOpU844xaZ03ar+PlHZXSbMbTuuran9+rFIp68qFbT9qdsBcuA68L0ogOauJkstOScapYmYO0TFBjRiQs7Lii2nImoPbj0kBB2RWdwshJSXMw42rZQo13nZPiTGmX0uKle/dERXNj5nniyJzamVmtLcx/1UalzQ7HFZdFaUGy24eyUmCr8GImOOUamBVzJyjT3PWK2YxqyqybnO/vxilkbr73J3X2+WNdkWgQLDLa33ef+z8WRgE+JAEm/XWOyik0XBS9C0h/EIQrEBPKLbGBQofsBXuO8X23IbK6j3VxHvXIQa9/GnWO3je72kSv0Bv0FhE0QEfoCzpBQ8TQL/Qb/UHXXtc79k69r7eo12rOvET3wov/AknTy18=</latexit>

txdep
A

Timeout T

Events on the blockchain

Figure 1. An honest execution of HTLC where miner M3 includes Alice’s
transaction before timeout. In terms of utility, Alice gets the funds minus
the fees paid to the miner.

We refer to executions of HTLC where Alice redeems
vdep before T as honest executions. Figure 1 depicts an hon-
est execution, showing the relevant events on the blockchain
and the utility of involved parties in the end. We assume
there are three miners {Mi}3i=1, and the blocks are labeled
by the miner mining it. We assume Alice obtains prea from
Bob through off-chain channels and Alice releases tx dep

A

(paying a transaction fee f dep
A) at some time before T . A

miner, say M3, includes the transaction before T and earns
f dep
A ; Alice earns the rest vdep − f dep

A .

Bribery attacks on HTLC. Winzer et al. [8] and Tsabary
et al. [9] showed attacks where Bob bribes miners to censor
tx dep

A so that Bob can redeem vdep for himself at time T .
Figure 2 depicts the attack, showing the relevant events on
the blockchain and the utility of involved parties in the end.
We assume there are three miners {Mi}3i=1, and the blocks
are labeled by the miner of it. We assume Alice obtains
prea from Bob through off-chain channels and Alice releases
tx dep

A (paying a transaction fee f dep
A) at some time before T .

As shown in Fig. 2, Bob can bribe b tokens (represented as
circles) to each of the miners before timeout T to exclude

M3 M1 M2 M1 M2

Alice

Bob

M3M1 M2

fdep
B + b

vdep � fdep
B

Alice broadcasts
<latexit sha1_base64="k+Czx6fNTlBl3yKH/CxNN170Uus=">AAAConicdZHPb9MwFMfd8GMjA9bBEQ4W7SQOURVn3To4DTiAdtoG3SY1pXKcl9aaY0e2g6iiXPhruLL/Zv8NbpfD1sKTnvTV931sP7+XFIIbG4Y3Le/Bw0ePNzaf+FtPnz3fbu+8ODeq1AyGTAmlLxNqQHAJQ8utgMtCA80TARfJ1adF/eIHaMOV/GbnBYxzOpU844xaZ03ar+PlHZXSbMbTuuran9+rFIp68qFbT9qdsBcuA68L0ogOauJkstOScapYmYO0TFBjRiQs7Lii2nImoPbj0kBB2RWdwshJSXMw42rZQo13nZPiTGmX0uKle/dERXNj5nniyJzamVmtLcx/1UalzQ7HFZdFaUGy24eyUmCr8GImOOUamBVzJyjT3PWK2YxqyqybnO/vxilkbr73J3X2+WNdkWgQLDLa33ef+z8WRgE+JAEm/XWOyik0XBS9C0h/EIQrEBPKLbGBQofsBXuO8X23IbK6j3VxHvXIQa9/GnWO3je72kSv0Bv0FhE0QEfoCzpBQ8TQL/Qb/UHXXtc79k69r7eo12rOvET3wov/AknTy18=</latexit>

txdep
A

Timeout T

Utility of involved partiesEvents on the blockchain

U
til

ityBob

txdep
BBribe b

Figure 2. A delaying attack by Bob on HTLC. Bob bribes miners to censor
tx dep
A until the timeout, and then broadcasts tx dep

B . In terms of utility, miners
earn fees and bribes, and Bob earns vdep at the expense of Alice (dashed
rectangle denotes Alice’s expected gain in honest executions).

tx dep
A . The bribe can be paid offline or enforced through a

separate contract. Then, Bob can create tx dep
B at time T ,

which is included by M2. As depicted in Fig. 2, Alice does
not receive her expected gain whereas Bob gains vdep −
f dep
B − 4× b. (The figure shows a party’s earning above the
x axis and the cost below it. The net gain is the difference
between the two.)

MAD-HTLC. To make HTLC bribery-resistant, [9] pro-
posed a modified HTLC protocol called MAD-HTLC (where
MAD stands for mutually assured destruction).

As introduced above, MAD-HTLC implements the same
functionality as HTLC, but with two key changes. First, it
introduces a second hash lock (whose pre-image is denoted
preb) and an additional redemption path where miners can
redeem vdep if they have access to both prea and preb.
Second, MAD-HTLC introduces an additional collateral con-
tract initiated by Bob which contains some collateral tokens
vcol that can also be confiscated by miners if they know
(prea, preb). These modifications aim to disincentivize Bob
from revealing preb unless he needs to be truly refunded, in
situations where prea is not released.

To recall notations in [9], Bob’s payment of vdep tokens
is deposited in a contract called MH-Dep, which stipulates
that vdep can be redeemed in one of the following three
paths (we use “paths” and “transactions” interchangeably,
and to redeem through dep-A is the same as broadcasting
tx dep

A ; the notation t ≥ T indicates that this transaction is
invalid until T):

tx dep
A = (prea, siga) // dep-A: Alice can spend with prea

tx dep
B = (preb, sigb, t ≥ T) // dep-B: Bob can spend after T

tx dep
M = (prea, preb) // dep-M : Anyone can spend with

both pre-images
(1)

Bob’s collateral vcol in contract MH-Col [9] can be re-
deemed in two ways:

tx col
B = (sigb, t ≥ T) // col-B: Bob can spend after T

tx col
M = (prea, preb, t ≥ T) // col-M :Anyone can spend

with both pre-images
(2)

Figures 3a and 3b present two example scenarios in MAD-
HTLC. In Fig. 3a, Bob is honest and he broadcasts tx col

B after

3

the timeout to get back the collateral. Figure 3b illustrates
how MAD-HTLC prevents Bob’s bribery attempts. At time
T , rational miners will not let Bob spend vdep via tx dep

B , but
instead, they will confiscate both vdep and vcol. Thus, Bob
loses not only vcol but also all bribes. Miners earn Bob’s
bribe b, and the miner who confiscates also earns vdep and
vcol. MAD-HTLC strongly disincentivizes Bob from pulling
off the delaying attack described earlier and incentivizes
miners to act as the enforcers.

Events on the blockchain Utility of involved parties

Alice Bob M3M1 M2

U
til

ity

M3 M1 M2 M1 M2

Alice broadcasts
<latexit sha1_base64="k+Czx6fNTlBl3yKH/CxNN170Uus=">AAAConicdZHPb9MwFMfd8GMjA9bBEQ4W7SQOURVn3To4DTiAdtoG3SY1pXKcl9aaY0e2g6iiXPhruLL/Zv8NbpfD1sKTnvTV931sP7+XFIIbG4Y3Le/Bw0ePNzaf+FtPnz3fbu+8ODeq1AyGTAmlLxNqQHAJQ8utgMtCA80TARfJ1adF/eIHaMOV/GbnBYxzOpU844xaZ03ar+PlHZXSbMbTuuran9+rFIp68qFbT9qdsBcuA68L0ogOauJkstOScapYmYO0TFBjRiQs7Lii2nImoPbj0kBB2RWdwshJSXMw42rZQo13nZPiTGmX0uKle/dERXNj5nniyJzamVmtLcx/1UalzQ7HFZdFaUGy24eyUmCr8GImOOUamBVzJyjT3PWK2YxqyqybnO/vxilkbr73J3X2+WNdkWgQLDLa33ef+z8WRgE+JAEm/XWOyik0XBS9C0h/EIQrEBPKLbGBQofsBXuO8X23IbK6j3VxHvXIQa9/GnWO3je72kSv0Bv0FhE0QEfoCzpBQ8TQL/Qb/UHXXtc79k69r7eo12rOvET3wov/AknTy18=</latexit>

txdep
A

Timeout T

Bob

fdep
A

<latexit sha1_base64="Oqm/3PW0X0RN2j/ZPCAf9rEe/B4=">AAAC+HicdZJLj9MwEMfd8FrKYx8cuVhUK3GIqjhNtuW2Wg5wXBDdrtSWletMWquOE9lOpW6UD8EVLtwQV74N4svgtGHFpjCSpb9mfp4Zz3iWCa6N5/1sOXfu3rv/YO9h+9HjJ0/3Dw6PLnSaKwZDlopUXc6oBsElDA03Ai4zBTSZCRjNlq+r+GgFSvNUfjDrDKYJnUsec0aNdY1WH4sIsvLqoON1vY3hXUFq0UG1nV8dtn5NopTlCUjDBNV6TLzMTAuqDGcCyvYk15BRtqRzGFspaQJ6Wmz6LfGx9UQ4TpU90uCN9+8bBU20XiczSybULHQzVjn/FRvnJh5MCy6z3IBk20JxLrBJcfV4HHEFzIi1FZQpbnvFbEEVZcaOqN0+nkQQ20FuGipSxRY8Kov3b87Kgvh9tzp+GNrH/R/zfBcPiItJsMtROYea8/1XLgn6rteAmEjttmrIs0jP7VnmNqRhBfJPojC0xfzAxSf9Rq5kPVdwA26TNevFfHXTEvHdgaV6YfUdSHP5u+LC75KTbvAu6Jye1R9jDz1HL9BLRFAfnaK36BwNEUNL9Al9Rl+ca+er8835vkWdVn3nGbplzo/fRU/q7w==</latexit>

vdep

<latexit sha1_base64="9MftfHXflaScf+/F3UCiEGVfQ/8=">AAAC+HicdZJLj9MwEMfd8FrKYx8cuVhUK3GIqjhNtuW2Wg5wXBDdrtSWleNOWquOE9lOpW6UD8EVLtwQV74N4svgtGHFpjCSpb9mfp4ZzzjKBNfG8362nDt3791/sPew/ejxk6f7B4dHFzrNFYMhS0WqLiOqQXAJQ8ONgMtMAU0iAaNo+bqKj1agNE/lB7POYJrQueQxZ9RY12j1sbA5yquDjtf1NoZ3BalFB9V2fnXY+jWZpSxPQBomqNZj4mVmWlBlOBNQtie5hoyyJZ3D2EpJE9DTYtNviY+tZ4bjVNkjDd54/75R0ETrdRJZMqFmoZuxyvmv2Dg38WBacJnlBiTbFopzgU2Kq8fjGVfAjFhbQZnitlfMFlRRZuyI2u3jyQxiO8hNQ0Wq2ILPyuL9m7OyIH7frY4fhvZx/8c838UD4mIS7HJUzqHmfP+VS4K+6zUgJlK7rRryLNJze5a5DWlYgfyTKAxtMT9w8Um/kStZzxXcgNtkzXoxX920RHx3YKleWH0H0lz+rrjwu+SkG7wLOqdn9cfYQ8/RC/QSEdRHp+gtOkdDxNASfUKf0Rfn2vnqfHO+b1GnVd95hm6Z8+M3UiLq9A==</latexit>

vcol

<latexit sha1_base64="ja7qKNOEegJeyY+niEU8xjBDkWM=">AAAC+nicdZLNjtMwEMfdLB9L+dqFIxeLaiUOURWnybbcVuUAxwXR3UVtqRx30lrrOJHtVKqyeQqucOGGuPIyiJfBacOKTWEkS3/N/DwznnGUCa6N5/1sOXu3bt+5u3+vff/Bw0ePDw6fnOk0VwxGLBWpuoioBsEljAw3Ai4yBTSJBJxHl6+q+PkKlOapfG/WGUwTupA85owa6/oQz4YfC5ulnB10vK63MbwrSC06qLbT2WHr12SesjwBaZigWo+Jl5lpQZXhTEDZnuQaMsou6QLGVkqagJ4Wm45LfGQ9cxynyh5p8Mb7942CJlqvk8iSCTVL3YxVzn/FxrmJB9OCyyw3INm2UJwLbFJcPR/PuQJmxNoKyhS3vWK2pIoyY4fUbh9N5hDbUW4aKlLFlnxeFu9eD8uC+H23On4Y2sf9H/N8Fw+Ii0mwy1G5gJrz/ZcuCfqu14CYSO2+asizSM/tWeYmpGEF8k+iMLTF/MDFx/1GrmS9UHANbpM168V8dd0S8d2BpXph9R1Ic/m74szvkuNu8DbonAzrj7GPnqHn6AUiqI9O0Bt0ikaIoQR9Qp/RF+fK+ep8c75vUadV33mKbpjz4zcVNeuZ</latexit>

f col
B

<latexit sha1_base64="yaH8t27t6kesIU5bjB6J19Kl+ec=">AAADD3icdZLPi9NAFMen8dcaf3X1pgiDZUEklEzabrueSvegx1Xs7kJby3Ty0g6bTMLMpFhCwH/Bf8KjevMmXj169OD/4jTpLm6qDwa+fN9n3nt5k1kScqVd91fNunL12vUbOzftW7fv3L1X371/rOJUMhiyOIzl6YwqCLmAoeY6hNNEAo1mIZzMzg7X+ZMlSMVj8UavEphEdC54wBnVxprWH46LGlksqZhDnul3bzPj5NNBPq033KZbBN4WZCMa/cfPBp9+HhweTXdrv8d+zNIIhGYhVWpE3ERPMio1ZyHk9jhVkFB2RucwMlLQCNQkKwbI8Z5xfBzE0hyhceH+fSOjkVKraGbIiOqFqubW5r9yo1QHvUnGRZJqEKxsFKQh1jFebwT7XALT4coIyiQ3s2K2oJIybfZm23tjHwKz3fM9sQX38+z1i0GeEa/rrI/X6ZiP+z/meg7uEQeT9jZXrr3gPO/AIe2u41YgFsbmCTeQa5CW0zLMZUjBEsR5oU7HNPPaDt7vVmpFq7mEC7AsVu0X8OXFSMRzeoZqmcFt80OQ6vNvi2OvSfab7Vek0X+OythBj9AT9BQR1EV99BIdoSFi6D36iD6jL9YH66v1zfpeolZtc+cBuhTWjz8Yo/a6</latexit>

txcol
B

(a) An honest execution in MAD-HTLC.

Alice

Bob

M3M1 M2

vdep + vcol + b

U
til

ity

Miner confirms
<latexit sha1_base64="scS+vGlCkkp87IFbT445v1aKrgQ=">AAADC3icdZLdbtMwFMfdjI9RPtbBDRJCsqgmIRRVcdqsHVfVdgE3SAPRbVJbKtc5aa0lTmQ71aoovAFvwS274Q5xywNwiXgZnKYglsKRLP19zs//kxx7moRcacf5UbO2rl2/cXP7Vv32nbv3dhq7909UnEoGAxaHsTybUgUhFzDQXIdwlkig0TSE0+n5UVE/XYBUPBZv9TKBcURnggecUW1Sk8bD0cojC/gC8kxfvMvMPp+8yieNptNyVoE3BVmLZv/xs8PL7wdHx5Pd2s+RH7M0AqFZSJUaEifR44xKzVkIeX2UKkgoO6czGBopaARqnK3a53jPZHwcxNIsofEq+/eJjEZKLaOpISOq56paK5L/qg1THfTGGRdJqkGwslGQhljHuJgH9rkEpsOlEZRJbr4VszmVlGkztXp9b+RDYGZbTimWbM79PHvz4jDPiNu1i+V6nvm5/2OOa+MesTHpbHJUzGDNue6BTTpd26lALIzNBa4hxyBtu22Yq5CCBYjfRp5nmrkdG+93K17RcibhD1iaVfuVL6F0Iq7dM1TbK54DqV7+pjhxW2S/1XlNmv3nqIxt9Ag9QU8RQV3URy/RMRoght6jj+gTurQ+WJ+tL9bXErVq6zMP0JWwvv0C4kb1vw==</latexit>

txcol
M

<latexit sha1_base64="hJPziUQbGXeEGdvtxmF9s5qq0g0=">AAADDnicdZLNbtNAEMc3Lh8lfDQFISH1wIqoEgcr8jpxEzhFcIALUkGkrZSEaLMeJ6vaa2t3HTWyfODIjbfgChduFVfEGyBehnUcVa0DI63018xvZ2ZndpqEXGnH+V2ztq5dv3Fz+1b99p2793Yau/ePVJxKBgMWh7E8mVIFIRcw0FyHcJJIoNE0hOPp6csifrwAqXgs3utlAuOIzgQPOKPauCaNvdEqRxYtZxJA5Jk++5D5kOSTN/mk0XRazsrwpiBr0ew/frj49OvR+eFkt/Zn5McsjUBoFlKlhsRJ9DijUnMWQl4fpQoSyk7pDIZGChqBGmerDnK8bzw+DmJpjtB45b18I6ORUstoasiI6rmqxgrnv2LDVAe9ccZFkmoQrCwUpCHWMS5Ggn0ugelwaQRlkpteMZtTSZk2g6vX90c+BGa85aBiyebcz7N3r17kGXG7dnFczzOP+z/muDbuERuTziZHxQzWnOs+s0mnazsViIWx2eEacgzSttuGuQopWBT7KxN5ninmdmx80K3kulj0pWTVegFfXLREXLtnqLZXfAdSXf6mOHJb5KDVeUua/eeotG20h56gp4igLuqj1+gQDRBDH9EX9BV9sz5b361z60eJWrX1nQfoilk//wJ0QPdz</latexit>

txdep
Mand

M3 M1 M2 M1 M2

Alice broadcasts
<latexit sha1_base64="k+Czx6fNTlBl3yKH/CxNN170Uus=">AAAConicdZHPb9MwFMfd8GMjA9bBEQ4W7SQOURVn3To4DTiAdtoG3SY1pXKcl9aaY0e2g6iiXPhruLL/Zv8NbpfD1sKTnvTV931sP7+XFIIbG4Y3Le/Bw0ePNzaf+FtPnz3fbu+8ODeq1AyGTAmlLxNqQHAJQ8utgMtCA80TARfJ1adF/eIHaMOV/GbnBYxzOpU844xaZ03ar+PlHZXSbMbTuuran9+rFIp68qFbT9qdsBcuA68L0ogOauJkstOScapYmYO0TFBjRiQs7Lii2nImoPbj0kBB2RWdwshJSXMw42rZQo13nZPiTGmX0uKle/dERXNj5nniyJzamVmtLcx/1UalzQ7HFZdFaUGy24eyUmCr8GImOOUamBVzJyjT3PWK2YxqyqybnO/vxilkbr73J3X2+WNdkWgQLDLa33ef+z8WRgE+JAEm/XWOyik0XBS9C0h/EIQrEBPKLbGBQofsBXuO8X23IbK6j3VxHvXIQa9/GnWO3je72kSv0Bv0FhE0QEfoCzpBQ8TQL/Qb/UHXXtc79k69r7eo12rOvET3wov/AknTy18=</latexit>

txdep
A

Timeout T

Bob

txdep
BBribe b

(b) In MAD-HTLC, Bob’s bribery attempt will be penalized by miners.

Alice M3M1 M2

Bob

Bob

vcol

vdep
vcol + ✏

M3 M1 M2 M1 M2

Alice broadcasts
<latexit sha1_base64="k+Czx6fNTlBl3yKH/CxNN170Uus=">AAAConicdZHPb9MwFMfd8GMjA9bBEQ4W7SQOURVn3To4DTiAdtoG3SY1pXKcl9aaY0e2g6iiXPhruLL/Zv8NbpfD1sKTnvTV931sP7+XFIIbG4Y3Le/Bw0ePNzaf+FtPnz3fbu+8ODeq1AyGTAmlLxNqQHAJQ8utgMtCA80TARfJ1adF/eIHaMOV/GbnBYxzOpU844xaZ03ar+PlHZXSbMbTuuran9+rFIp68qFbT9qdsBcuA68L0ogOauJkstOScapYmYO0TFBjRiQs7Lii2nImoPbj0kBB2RWdwshJSXMw42rZQo13nZPiTGmX0uKle/dERXNj5nniyJzamVmtLcx/1UalzQ7HFZdFaUGy24eyUmCr8GImOOUamBVzJyjT3PWK2YxqyqybnO/vxilkbr73J3X2+WNdkWgQLDLa33ef+z8WRgE+JAEm/XWOyik0XBS9C0h/EIQrEBPKLbGBQofsBXuO8X23IbK6j3VxHvXIQa9/GnWO3je72kSv0Bv0FhE0QEfoCzpBQ8TQL/Qb/UHXXtc79k69r7eo12rOvET3wov/AknTy18=</latexit>

txdep
A

Timeout T

<latexit sha1_base64="hK711zZdXIk/JCDp+DopPb84hX8=">AAADBXicdZLNbtNAEMc35quEr7YcuayIKiFhRV7HbsKtKgc4FkTaSkmo1utxsup6be2uIyLLZ96CK1y4Ia48B+JlWCemog6MNNLoP7+dmZ3dKBdcG8/72XFu3Lx1+87O3e69+w8ePtrd2z/VWaEYjFkmMnUeUQ2CSxgbbgSc5wpoGgk4iy5f1vmzJSjNM/nOrHKYpXQuecIZNVa62N1fvi9tlQo/x1PINRe12PP63trwdkCaoIcaO7nY6/yaxhkrUpCGCar1hHi5mZVUGc4EVN1poSGn7JLOYWJDSVPQs3I9fIUPrBLjJFPWpcFr9e8TJU21XqWRJVNqFrqdq8V/5SaFSUazksu8MCDZplFSCGwyXG8Cx1wBM2JlA8oUt7NitqCKMmP31e0eTGNI7FbXA5WZYgseV+XbV8dVSfyhW7sfhvZy/8c838Uj4mISbHNUzqHhfP+FS4Kh67UgJjL7dA3kWWTgDixzHdKwBPmnUBjaZn7g4sNhq1a6miu4AjfF2v0SvrwaifjuyFKDsLLfgbQffzs49fvksB+8CXpHx83H2EFP0FP0DBE0REfoNTpBY8TQB/QJfUZfnI/OV+eb832DOp3mzGN0zZwfvwFU6e9U</latexit>

vcol + ✏

<latexit sha1_base64="hK711zZdXIk/JCDp+DopPb84hX8=">AAADBXicdZLNbtNAEMc35quEr7YcuayIKiFhRV7HbsKtKgc4FkTaSkmo1utxsup6be2uIyLLZ96CK1y4Ia48B+JlWCemog6MNNLoP7+dmZ3dKBdcG8/72XFu3Lx1+87O3e69+w8ePtrd2z/VWaEYjFkmMnUeUQ2CSxgbbgSc5wpoGgk4iy5f1vmzJSjNM/nOrHKYpXQuecIZNVa62N1fvi9tlQo/x1PINRe12PP63trwdkCaoIcaO7nY6/yaxhkrUpCGCar1hHi5mZVUGc4EVN1poSGn7JLOYWJDSVPQs3I9fIUPrBLjJFPWpcFr9e8TJU21XqWRJVNqFrqdq8V/5SaFSUazksu8MCDZplFSCGwyXG8Cx1wBM2JlA8oUt7NitqCKMmP31e0eTGNI7FbXA5WZYgseV+XbV8dVSfyhW7sfhvZy/8c838Uj4mISbHNUzqHhfP+FS4Kh67UgJjL7dA3kWWTgDixzHdKwBPmnUBjaZn7g4sNhq1a6miu4AjfF2v0SvrwaifjuyFKDsLLfgbQffzs49fvksB+8CXpHx83H2EFP0FP0DBE0REfoNTpBY8TQB/QJfUZfnI/OV+eb832DOp3mzGN0zZwfvwFU6e9U</latexit>

vcol + ✏

U
til

ity

Keys
<latexit sha1_base64="scS+vGlCkkp87IFbT445v1aKrgQ=">AAADC3icdZLdbtMwFMfdjI9RPtbBDRJCsqgmIRRVcdqsHVfVdgE3SAPRbVJbKtc5aa0lTmQ71aoovAFvwS274Q5xywNwiXgZnKYglsKRLP19zs//kxx7moRcacf5UbO2rl2/cXP7Vv32nbv3dhq7909UnEoGAxaHsTybUgUhFzDQXIdwlkig0TSE0+n5UVE/XYBUPBZv9TKBcURnggecUW1Sk8bD0cojC/gC8kxfvMvMPp+8yieNptNyVoE3BVmLZv/xs8PL7wdHx5Pd2s+RH7M0AqFZSJUaEifR44xKzVkIeX2UKkgoO6czGBopaARqnK3a53jPZHwcxNIsofEq+/eJjEZKLaOpISOq56paK5L/qg1THfTGGRdJqkGwslGQhljHuJgH9rkEpsOlEZRJbr4VszmVlGkztXp9b+RDYGZbTimWbM79PHvz4jDPiNu1i+V6nvm5/2OOa+MesTHpbHJUzGDNue6BTTpd26lALIzNBa4hxyBtu22Yq5CCBYjfRp5nmrkdG+93K17RcibhD1iaVfuVL6F0Iq7dM1TbK54DqV7+pjhxW2S/1XlNmv3nqIxt9Ag9QU8RQV3URy/RMRoght6jj+gTurQ+WJ+tL9bXErVq6zMP0JWwvv0C4kb1vw==</latexit>

txcol
M

<latexit sha1_base64="hJPziUQbGXeEGdvtxmF9s5qq0g0=">AAADDnicdZLNbtNAEMc3Lh8lfDQFISH1wIqoEgcr8jpxEzhFcIALUkGkrZSEaLMeJ6vaa2t3HTWyfODIjbfgChduFVfEGyBehnUcVa0DI63018xvZ2ZndpqEXGnH+V2ztq5dv3Fz+1b99p2793Yau/ePVJxKBgMWh7E8mVIFIRcw0FyHcJJIoNE0hOPp6csifrwAqXgs3utlAuOIzgQPOKPauCaNvdEqRxYtZxJA5Jk++5D5kOSTN/mk0XRazsrwpiBr0ew/frj49OvR+eFkt/Zn5McsjUBoFlKlhsRJ9DijUnMWQl4fpQoSyk7pDIZGChqBGmerDnK8bzw+DmJpjtB45b18I6ORUstoasiI6rmqxgrnv2LDVAe9ccZFkmoQrCwUpCHWMS5Ggn0ugelwaQRlkpteMZtTSZk2g6vX90c+BGa85aBiyebcz7N3r17kGXG7dnFczzOP+z/muDbuERuTziZHxQzWnOs+s0mnazsViIWx2eEacgzSttuGuQopWBT7KxN5ninmdmx80K3kulj0pWTVegFfXLREXLtnqLZXfAdSXf6mOHJb5KDVeUua/eeotG20h56gp4igLuqj1+gQDRBDH9EX9BV9sz5b361z60eJWrX1nQfoilk//wJ0QPdz</latexit>

txdep
M

Fair exchange

(c) A success dependent reverse bribery attack on MAD-HTLC.

Alice M3M1

M2

Bob

vdep + vcol + b

M3 M1 M2 M1 M2

Alice broadcasts
<latexit sha1_base64="k+Czx6fNTlBl3yKH/CxNN170Uus=">AAAConicdZHPb9MwFMfd8GMjA9bBEQ4W7SQOURVn3To4DTiAdtoG3SY1pXKcl9aaY0e2g6iiXPhruLL/Zv8NbpfD1sKTnvTV931sP7+XFIIbG4Y3Le/Bw0ePNzaf+FtPnz3fbu+8ODeq1AyGTAmlLxNqQHAJQ8utgMtCA80TARfJ1adF/eIHaMOV/GbnBYxzOpU844xaZ03ar+PlHZXSbMbTuuran9+rFIp68qFbT9qdsBcuA68L0ogOauJkstOScapYmYO0TFBjRiQs7Lii2nImoPbj0kBB2RWdwshJSXMw42rZQo13nZPiTGmX0uKle/dERXNj5nniyJzamVmtLcx/1UalzQ7HFZdFaUGy24eyUmCr8GImOOUamBVzJyjT3PWK2YxqyqybnO/vxilkbr73J3X2+WNdkWgQLDLa33ef+z8WRgE+JAEm/XWOyik0XBS9C0h/EIQrEBPKLbGBQofsBXuO8X23IbK6j3VxHvXIQa9/GnWO3je72kSv0Bv0FhE0QEfoCzpBQ8TQL/Qb/UHXXtc79k69r7eo12rOvET3wov/AknTy18=</latexit>

txdep
A

Timeout T

Bob

Bribe b
vcol + ✏

<latexit sha1_base64="hK711zZdXIk/JCDp+DopPb84hX8=">AAADBXicdZLNbtNAEMc35quEr7YcuayIKiFhRV7HbsKtKgc4FkTaSkmo1utxsup6be2uIyLLZ96CK1y4Ia48B+JlWCemog6MNNLoP7+dmZ3dKBdcG8/72XFu3Lx1+87O3e69+w8ePtrd2z/VWaEYjFkmMnUeUQ2CSxgbbgSc5wpoGgk4iy5f1vmzJSjNM/nOrHKYpXQuecIZNVa62N1fvi9tlQo/x1PINRe12PP63trwdkCaoIcaO7nY6/yaxhkrUpCGCar1hHi5mZVUGc4EVN1poSGn7JLOYWJDSVPQs3I9fIUPrBLjJFPWpcFr9e8TJU21XqWRJVNqFrqdq8V/5SaFSUazksu8MCDZplFSCGwyXG8Cx1wBM2JlA8oUt7NitqCKMmP31e0eTGNI7FbXA5WZYgseV+XbV8dVSfyhW7sfhvZy/8c838Uj4mISbHNUzqHhfP+FS4Kh67UgJjL7dA3kWWTgDixzHdKwBPmnUBjaZn7g4sNhq1a6miu4AjfF2v0SvrwaifjuyFKDsLLfgbQffzs49fvksB+8CXpHx83H2EFP0FP0DBE0REfoNTpBY8TQB/QJfUZfnI/OV+eb832DOp3mzGN0zZwfvwFU6e9U</latexit>

vcol + ✏

U
til

ity

<latexit sha1_base64="hK711zZdXIk/JCDp+DopPb84hX8=">AAADBXicdZLNbtNAEMc35quEr7YcuayIKiFhRV7HbsKtKgc4FkTaSkmo1utxsup6be2uIyLLZ96CK1y4Ia48B+JlWCemog6MNNLoP7+dmZ3dKBdcG8/72XFu3Lx1+87O3e69+w8ePtrd2z/VWaEYjFkmMnUeUQ2CSxgbbgSc5wpoGgk4iy5f1vmzJSjNM/nOrHKYpXQuecIZNVa62N1fvi9tlQo/x1PINRe12PP63trwdkCaoIcaO7nY6/yaxhkrUpCGCar1hHi5mZVUGc4EVN1poSGn7JLOYWJDSVPQs3I9fIUPrBLjJFPWpcFr9e8TJU21XqWRJVNqFrqdq8V/5SaFSUazksu8MCDZplFSCGwyXG8Cx1wBM2JlA8oUt7NitqCKMmP31e0eTGNI7FbXA5WZYgseV+XbV8dVSfyhW7sfhvZy/8c838Uj4mISbHNUzqHhfP+FS4Kh67UgJjL7dA3kWWTgDixzHdKwBPmnUBjaZn7g4sNhq1a6miu4AjfF2v0SvrwaifjuyFKDsLLfgbQffzs49fvksB+8CXpHx83H2EFP0FP0DBE0REfoNTpBY8TQB/QJfUZfnI/OV+eb832DOp3mzGN0zZwfvwFU6e9U</latexit>

vcol + ✏

(d) A hybrid bribery attack on MAD-HTLC.

Figure 3. Example execution scenarios in MAD-HTLC and our reverse
bribery attacks against MAD-HTLC.

2.2. Reverse Bribery: Revisiting Incentives in
MAD-HTLC

Our key observation in this work is that MAD-HTLC is
secure only assuming passively rational miners or miners
who would maximize their utility in terms of the number
of tokens based on transactions available in the mempool.
However, if (some) miners are actively rational, i.e., they
can actively seek out other users in the system and bribe
them to obtain a higher utility, then this additional available
action enables a new vector of attacks.

To intuitively see why this is possible, compare the two
scenarios in Fig. 3a and Fig. 3b, and observe that in MAD-
HTLC, Bob only redeems his collateral vcol at the end of
an honest execution whereas miners do not earn any tokens
other than transaction fees. However, the contract allows the
miners and Bob to together redeem vcol + vdep if they can
amicably find a way to retrieve it without necessarily trusting
another party (but only relying on rationality assumptions).
In a successful attack, this total gain can be split such
that Bob and miners are individually better off (at least in
expectation) than following the protocol. We present our
attack in three parts, each of which is qualitatively different
from the others.

SIRBA: Success-independent reverse bribery attack. We
first present (in Section 3) a warm-up attack that essentially
shows that when vcol−f col

B < λi

1−λi
(vdep−f dep

A) following
MAD-HTLC is not an incentive compatible strategy for a
single actively rational miner Mi with mining power λi.

SDRBA: Success-dependent reverse bribery attack. Our
warmup attack only establishes that following MAD-HTLC
is not incentive compatible for a given miner when all other
miners are passively rational. As is, the result is not shown
to extend under all possible actions and distributions of
actively and passively rational miners (though likely there
exists an equilibrium). Moreover, in this attack, while an
actively rational miner is better off in expectation, it may
end up losing tokens if it is not elected a miner in specific
rounds of interest.

To reduce these uncertainties, we devise an attack called
success-dependent reverse bribery attack (in Section 4). As
the name suggests, in this attack, miners only pay a bribe to
Bob if it has the opportunity to redeem vdep through dep-M .
This eliminates some risk for the miner w.r.t. bribing and not
having the opportunity to redeem vdep. However, since preb
is revealed when vdep is redeemed for a miner, all miners
may engage in a competition to redeem vcol at time T . As
shown in Fig. 3c, the winning miner M3 exchanges some
bribe vcol + ϵ where ϵ > 0 for a gain of vdep − (vcol + ϵ).
However, in this execution, miner M2 redeems vcol. (The
double arrows with a circle between M3 and Bob indicate
a fair exchange of the bribe for redeeming vdep.)

There are two key challenges to realizing this attack.
The first is the game-theoretic formulation to show that there
exists a set of bribe values under which all parties (except
Alice) are better off in performing this attack under any

4

given distribution of actively and passively rational miners
and the action spaces available to them. The second chal-
lenge is to show that there exists a mechanism to perform a
fair exchange between a bribing Mi and Bob. We show two
realizations of this attack: the first relies on using trusted
execution environments (TEEs) [22], [23] and the second
uses zero-knowledge proofs [24].

HyDRA: Hybrid delay-reverse bribery attack. Observe
that SDRBA reduces risk w.r.t. mining vdep but not w.r.t. vcol.
In the example described earlier, the bribing miner earns
vdep − (vcol + ϵ). Thus, if vdep ≤ vcol, then the attack is
not always beneficial for miner M3. This concern can be
eliminated if the same miner redeems both vdep and vcol

together (possibly in the same transaction). However, since
MAD-HTLC requires vcol to be redeemed at time ≥ T , it is
necessary to delay redeeming vdep until then.

This brings us to our third attack (Section 5) where
we use a combination of delay attacks similar to Winzer
et. al. [8] and SDRBA. Thus, we call this attack a hybrid
bribery attack. As shown in Fig. 3d, in this attack, miners
are first bribed to exclude transaction tx dep

A until time T .
Subsequently, miner M2 at time T engages in SDRBA where
it exchanges vcol + ϵ for redeeming vdep + vcol. This attack
works for any value of vdep and vcol so far as the original
delay attack (e.g., those in [8]) is feasible.

2.3. Fixing HTLC (Once Again) with He-HTLC

To design any incentive-compatible HTLC protocol, we
need to satisfy the following constraints:

(i) when prea is not available to the miners within round
T , Bob must be able to redeem vdep + vcol.

(ii) when prea is available to the miners within round T ,
Alice must receive vdep and Bob must receive vcol, i.e.,
Bob and miners together must not be incentivized to
form a coalition and cheat Alice.

(iii) Alice must not be able to collude with miners and earn
more than vdep.

Observe that since the availability of prea is not recorded
on the chain, miners may be willing to ignore prea even if
it is available if they stand to gain more in the process. This
creates a tension between achieving both constraints (i) and
(ii). Indeed, this is exactly what our attacks exploited over
MAD-HTLC in the previous sections. Two key ingredients
of the attacks are: (a) Bob and miners together can get high
earnings vdep + vcol through dep-M + col-M or dep-B +
col-B, and (b) these redemptions could happen atomically
in a single transaction.

At a high level, our solution breaks the atomicity and
for some paths, burns some tokens. To address miners’
high earnings through dep-M + col-M , we ensure that
miners can never confiscate the total amount vdep+vcol. We
partially burn some of these tokens so that they earn only
an “appropriate amount” of tokens. To address Bob’s high
earnings through dep-B + col-B (when prea is available),
we break the atomicity of redemption by Bob by requiring
Bob to redeem vdep and vcol in separate steps: in the first

step, Bob reveals preb to miners to redeem vdep. In a second
step, at least ℓ blocks later (where ℓ is a parameter), Bob
can redeem vcol using col-B. This separation provides two
guarantees. First, if prea is not available, miners would
include the transaction redeeming vcol and Bob receives
vcol. Second, if prea is known, then miners can be (and are)
presented with an incentive-compatible path where they can
confiscate an “appropriate amount” of tokens for themselves
using (prea, preb).

We now address the value of the “appropriate amount”,
namely how much miners should confiscate (and the rest
will be burnt). Observe that if this amount is too high, then
reverse bribery attacks become feasible (as is the case in
MAD-HTLC). If the amount is too low, miners might be
easily bribed to not confiscate. We set this amount to vcol −
vdep. This ensures that neither reverse nor ordinary bribery
is feasible. First, observe that in all redemption paths, the
combined earnings of a miner and Bob cannot exceed vcol.
Thus the miner cannot afford to reverse bribe more than vcol.
Since Bob would have earned vcol if he participated in the
protocol honestly in the first place, miners will never have
enough earnings to reverse bribe Bob. Second, to prevent
Bob from bribing miners out of confiscation, we introduced
the ℓ block separation between the two steps of redemption.
The idea is to force Bob to have to bribe multiple miners
that mine blocks between the two steps of redemption. Since
every distinct miner needs to be paid more than vcol − vdep

(the amount they earn from following the protocol honestly),
Bob cannot afford to bribe all of them if there are sufficiently
many distinct miners in between. For instance, if ℓ is large
enough so that there are κ distinct miners in ℓ blocks on
average, then for vcol = κ

κ−1v
dep, it would not be incentive

compatible for Bob to pay more than vcol − vdep to all the
κ miners, since the total bribe κ × (vcol − vdep) he has to
pay will exceed his earning vcol.

Finally, to achieve constraint (iii), i.e., Alice and miners
combined cannot cheat Bob, we ensure that when vcol ≤
2vdep, through any combination of paths, miners and Alice
together earn ≤ vdep. Thus, redeeming vdep through dep-A
is the ideal path for Alice.

3. System Model and a Success-Independent
Reverse Bribery Attack

In this section, we present the system model and the
game-theoretical framework in which we analyse our at-
tacks. As a warm-up, we present success-independent re-
verse bribery attack (SIRBA) and rigorous game-theoretical
analysis to showcase our proof techniques.

3.1. System Model

We will use a model similar to the one in MAD-
HTLC [8], [9]. We assume the existence of a blockchain-
based cryptocurrency that facilitates transactions of tokens
among a set of participants. In our model, the participants
are Alice, Bob, other users, and a fixed set of n miners,

5

denoted by M = {M1, . . ., Mn}. Below, we detail the
modeling assumptions about blockchains and participants.

Blockchain. We model a blockchain as an append-only
ledger consisting of an ordered sequence of blocks contain-
ing transactions. Miners create blocks whereas other par-
ticipants create transactions to be submitted. We denote the
j-th block as bj . We consider block-creation as a discrete-
time, memory-less stochastic process. In each round, only
one miner creates a block. For simplicity, we assume that
the blockchain does not fork (discussed in Section 8). The
probability with which a miner Mi creates a block in a round
is given by its mining power λi. We assume λi < 0.5 for
each Mi and

∑n
i=1 λi = 1. We assume λi’s are fixed and

known to everyone.
We consider a transaction as confirmed once it has been

included in a block. Miners receive a fee for including
transactions in their block. For simplicity, we assume that
there are always unrelated transactions in the mempool and
that all transactions, unless specified otherwise, pay the same
transaction fee f .

Rationality: active and passive. We consider all partici-
pants rational, risk-neutral, and non-myopic, and will break
tie randomly (i.e., they act to maximize their expected utility
at the end of the game). We assume no discount factor in
the utility of a rational player, i.e., payment of x today has
the same utility as payment of x after a long time. These
assumptions are consistent with MAD-HTLC.

The key difference from MAD-HTLC is that we consider
an extended action space for miners. MAD-HTLC assumes
that miners will maximize their utility (in terms of the
number of tokens earned) only based on transactions and in-
formation available in the mempool. We refer to this type of
miners as passively rational miners because they passively
act upon information provided by other players. Our model,
however, permits miners to reach out to other players and
engage in external protocols with them (hence we call them
actively rational miners). For instance, miners can engage
in bribing Alice or Bob if doing so increases their utility.
Formally, we divide the set of miners M = {M1, M2, . . .,
Mn} into two fixed-size mutually disjoint subsets MP and
MA, where MP refers to the set of passively rational miners
and MA refers to the set of actively rational miners. We
refer to the total mining power of all miners in MP as λpa
and miners in MA as λac.

3.2. Success-Independent Reverse Bribery Attack

As a warmup, we now present success-independent re-
verse bribery attack (SIRBA), the first of the three reverse
bribery attacks. Intuitively, the SIRBA attack is straightfor-
ward. Recall that in MAD-HTLC, Bob deposits vdep tokens
to contract MH-Dep (Eq. (1)), along with vcol tokens of
collateral to contract MH-Col (Eq. (2)). The attack proceeds
as follows: once Alice tries to redeem MH-Dep and reveals
prea, miners pay a bribe to Bob in exchange for preb and try
to redeem MH-Dep and MH-Col for themselves via paths
dep-M and col-M .

Time

… Send Bob
decides

MAD-HTLC
initialization

Round 1

Send Mine
b1

Mine
b0

Round tpub

Mine
bpub

Round T

Send Mine
bT

…

Miners
contact Bob

and offer
bribes

Alice
publishes
txADep

Miners start
redeeming vdep

via dep-M

Miners start
redeeming vcol

via col-M

Figure 4. Timeline of the SIRBA game. The game starts after MAD-HTLC
are initialized and proceeds in T rounds. Each round consists of a send
step and a mine step, except for the round tpub which in addition has an
intermediate step for Bob to decide if he accepts miners’ offers.

To establish its feasibility, we need to answer two ques-
tions: (i) how does SIRBA change the incentives for parties?
Specifically, is following MAD-HTLC an equilibrium? and
(ii) how can we enable a fair exchange between two mutu-
ally distrusting parties?

We answer the first question through a rigorous game-
theoretical analysis. At a high level, we will prove that
everyone following the MAD-HTLC protocol is not an
equilibrium. In particular, we will show in the following
subsections that there exists a scenario where the existence
of even a single actively rational miner can render SIRBA
a preferred strategy over honest execution. To answer the
second question, we present a practical implementation
leveraging trusted execution environments (TEEs) or zero-
knowledge proofs (Section 3.5).

3.3. Game Setup

To analyze SIRBA, we construct a game Gind between
Alice, Bob, and miners M1,M2, . . . ,Mn as follows. Note
that ind refers to success-independent.

3.3.1. Timeline of the SIRBA game. Like in [9], without
loss of generality, we say the game begins when MH-Dep
and MH-Col contracts are initiated in some block b0. It spans
T rounds, corresponding to the creation of blocks b1 through
bT . We denote the special round in which Alice publishes
prea as tpub.

Figure 4 visualizes the timeline of the SIRBA game.
Every round except tpub consists of two steps.
• send: Users, including Alice and Bob, send transactions

to the mempool.
• mine: A miner Mi is chosen at random according to its

mining power λi and creates a block with transactions
of its choice, including ones created by itself.

In round tpub, there is an intermediate step in between:
as soon as Alice reveals prea in a “send” step, an actively
rational miner can engage in reverse bribery with Bob to
obtain preb, followed by a “ming” step as above. We will
elaborate on reverse bribery when specifying Bob’s and
miners’ action spaces.

States. In a given round k, the game can be in one of three
states: 1) red: MH-Dep is still redeemable; 2) irred-nrev:
MH-Dep has already been redeemed, but preb is not known
to the miners, and 3) irred-rev: MH-Dep has already been

6

redeemed, and preb is known to some miners. We define
States as {red, irred-nrev, irred-rev}.

Subgames. We define a subgame for each round k ∈ [1, T].
We denote the subgame starting at the beginning of round
k as Gind(k, s), where s ∈ States. T −k more blocks are to
be created after this subgame. We use · as wildcard when
denoting subsets of games, e.g., Gind(·, red) refers to the set
of all subgames in which MH-Dep is still redeemable.

3.3.2. Action spaces. Now we specify the action space of
Alice, Bob, and two types of rational miners.

Alice and Bob. Alice follows the MAD-HTLC protocol.
Specifically, Alice can choose a round tpub ∈ [1, T) to pub-
lish tx dep

A (c.f., Eq. (1)) with a fee f dep
A of her choice. Note

that f < f dep
A < vdep is necessary for Alice’s transaction to

outbid all other transactions in the mempool.
After tx dep

A (and prea) has been revealed by Alice, Bob’s
action is limited to those that do not reveal preb on-chain
since otherwise his collateral will be confiscated by miners.
One possible action is to get back vcol in round T , by
publishing tx col

B offering a fee f col
B > f of his choice.

For ease of exposition, we assume Bob always publishes
tx col

B in round T even if he accepts bribes (see below). This
does not change the game because tx col

B does not reveal any
information about preb.

Another possible action of Bob is to engage in reverse
bribery with actively rational miners, as we will elaborate
on shortly.

Passively rational miners. The standard rationality assump-
tions (as in [9]) state that miners will strategically choose
transactions to mine to maximize utility. We refer to this type
of miner as passively rational. The transactions available to
miners depend on the round k as well as miners’ knowledge
of prea and preb.

In any subgame Gind(·, ·), Mi can include unrelated
transactions from the mempool for fee f . In subgames
Gind(k, red), where k ≥ tpub, Mi can include tx dep

A for fee
f dep
A . In subgames Gind(k, ·), where k ≥ T , Mi can include

tx col
B for fee f col

B if tx col
B has not already been included.

In addition, if Mi has knowledge of prea and preb, then
in subgames Gind(k, red), where k ≥ tpub, Mi can create
and include a transaction tx dep

M that redeems MH-Dep for
itself via path dep-M . In any subgame Gind(T, ·), Mi can
create and include a transaction tx col

M that redeems MH-Col
for itself via path col-M .

Actively rational miners and reverse bribery. A key
difference from the model in [9] is that we permit miners to
actively reach out to other players. We hence refer to such
miners as actively rational. Specifically, we allow miners
to perform reverse bribery. As soon as Alice reveals prea,
actively rational miners can decide to pay a pre-agreed bri to
Bob in exchange for preb. For ease of exposition, we assume
that Bob and a bribing miner have reached an agreement
about the value of bri before tpub.

In SIRBA, Bob can independently decide whether to
accept or reject each bribe bri (the corresponding action
is denoted accepti and rejecti). In case Bob accepts, he
will share preb with the briber before the creation of block
btpub . Since Bob does not trust miners (and vice versa),
they need to exchange through a fair exchange mechanism
which guarantees that Bob gets the bribe if and only if the
miner gets preb. To focus on the analysis, we defer the
implementation of fair exchange to Section 3.5.

We assume the exchange is instantaneous and that a
miner cannot resell preb to other miners. For this section,
we further assume that Bob will only accept bribes in round
tpub. So a miner can obtain preb in three ways:
1) through reverse bribery with Bob in round tpub;
2) when Bob redeems MH-Dep via dep-B;
3) when some other miner Mj , j ̸= i, reveals preb on the

blockchain, e.g., when redeeming MH-Dep via dep-M
or MH-Col via col-M .

3.3.3. Utility. For each player, the utility function ui :
Action × (Z, States) → R is the number of tokens they can
earn at the end of the game. We refer to Alice’s utility as
uA, Bob’s utility as uB , and miner Mi’s utility as ui. To
account for the stochastic nature of the game, we consider
expected utilities at the end of the game.

We refer to player j’s utility in G when action s̄ is taken
by j as uj(s̄, G). Further, we refer to the maximum utility a
player can end up with in G as ūj(G). We assume that the
utility from a block containing only unrelated transactions is
0. Thus, if a transaction related to MAD-HTLC with utility
x is included in exchange for an unrelated transaction, it
would have a utility of x− f .

3.4. MAD-HTLC Incentive Incompatibility

We will now show that if there is a single actively
rational miner Mi, then Mi and Bob will prefer engaging
in reverse bribery to following the MAD-HTLC protocol
(Theorem 1).

Lemma 1. In subgame Gind(T, ·), if chosen to create block
bT , a miner with knowledge of preb will redeem MH-Col
via path col-M and a miner without knowledge of preb will
redeem MH-Col via path col-B.

Proof: Note that MH-Col cannot be redeemed before
round T by definition so redeeming MH-Col is a viable
action in round T . By assumption, tx col

B is always available
in round T . Since vcol > f col

B > f , if Mi knows preb then
including tx col

M in bT is strongly dominant for Mi. Also,
note that we assume prea has been revealed in tpub < T .

If Mi does not know preb in round T , we will argue that
Mi will have no chance to redeem MH-Col in the future, so
including tx col

B in bT is the best strategy. We have argued
that miners have three ways to learn preb (in Section 3.3.2).
If Mi does not know preb in round T , it follows that Mi

would not learn preb from Bob in the future (since Bob
only accepts bribery in tpub by assumption, and Bob will

7

not volunteer preb since prea has been revealed.) The only
other possibility for Mi to learn preb is from other miners.
But since any miner can redeem MH-Col, by the time preb
is revealed, MH-Col would already have been redeemed.

Consequently, since f col
B > f , including tx col

B in bT is
strongly dominant for Mi if it does not know preb.

Lemma 2. In subgame Gind(T, red), if chosen to create
block bT , a miner with knowledge of preb will redeem MH-
Dep via path dep-M and a miner without knowledge of preb
will redeem MH-Dep via path dep-A.

Proof: The argument is analogous to Lemma 1, given
that vdep > f dep

A > f .

Lemma 3. In any subgame Gind(k, red), where k ≥ tpub
and k < T , if chosen to create block bk, a miner with
knowledge of preb will redeem MH-Dep via path dep-M .

Proof: Let Mi be some miner in round k with knowl-
edge of preb chosen to create bk. From Lemma 1, it follows
that MH-Col will be redeemed in round T . Consequently,
Mi’s expected utility with respect to the redemption of MH-
Col is given by λi(v

col−f) independent of how many other
miners know preb. In particular, revealing preb by including
tx dep

M in block bk before round T does not negatively affect
Mi’s expected utility with respect to the redemption of MH-
Col. Given no negative effects with respect to the later
redemption of MH-Col, it follows from vdep > f dep

A > f

that including tx dep
M in block bk is strongly dominant for Mi.

Lemma 4. In subgame Gind(tpub, red), when all other min-
ers are passively rational, offering a bri < λi(v

dep−f dep
A)+

λi(v
col−f col

B) strongly dominates any other action available
to a single actively rational Mi.

Proof: Let Mi be an actively rational miner in sub-
game Gind(tpub, red) facing the decision of whether or not
to offer bri to Bob. If Mi chooses to bribe, supposing Bob
accepts, it follows from Lemma 2 and Lemma 3 that Mi

will redeem MH-Dep via path dep-M if chosen to create a
block in any subgame Gind(k, red), where k ≥ tpub.

Note that Mi’s expected utility with respect to the re-
demption of MH-Dep is lowest if all passively rational min-
ers try to redeem MH-Dep via path dep-A in all subgames
Gind(k, red), where k ≥ tpub. In this case, Mi’s expected
utility from knowing preb with respect to the redemption
of MH-Dep is given by λi(v

dep − f). From Lemma 1, it
follows that Mi’s expected utility from knowing preb with
respect to the redemption of MH-Col is always given by
λi(v

col −f). Consequently, Mi’s total expected utility from
offering bri to Bob is lower bounded by:

λi(v
dep − f) + λi(v

col − f)− bri (3)

Now suppose Mi chooses not to bribe. Then, since all
other miners are passively rational, no one will bribe. In
this case, preb will never be revealed. In this case, since
f dep
A > f and since there is no benefit from waiting for

preb to be revealed, in a perfect information game, every

passively rational miner and Mi will redeem MH-Dep via
path dep-A if chosen to create a block in any subgame
Gind(k, red), where k ≥ tpub. Consequently, Mi’s expected
utility with respect to the redemption of MH-Dep if choosing
not to bribe is given by λi(f

dep
A − f). It further follows

from Lemma 1 that Mi’s expected utility with respect to
the redemption of MH-Col is given by λi(f

col
B − f) in this

case. Therefore, Mi’s total expected utility from choosing
not to bribe in round tpub is given by:

λi(f
dep

A − f) + λi(f
col

B − f) . (4)

Given the expected utilities in Eq. (3) and Eq. (4), we
can see that when no other miner bribes, for Mi offering
bri to Bob strictly dominates not bribing in round tpub as
long as bri < λi(v

dep − f dep
A) + λi(v

col − f col
B).

Lemma 5. In subgame Gind(tpub, red), when all miners
except Mi are passively rational, Bob will strictly have
higher utility from accepting Mi’s bribe as long as bri >
(1− (1− λi)

T−tpub+1)(vcol − f col
B).

Proof: Once Alice publishes prea in tpub, the most
Bob stands to gain from following the protocol is vcol−f col

B .
If Bob shares preb with Mi, then it follows from

Lemma 3 that Mi will try to mine a block containing tx dep
M

to redeem MH-Dep via path dep-M . Denote the event that
Mi can successfully mine a block with tx dep

M between time
tpub and T as E. If E happens, Bob’s utility from MH-Col
will be 0, since miners will take col-M using preb revealed
by E. If E does not happen, Bob gets to redeem MH-Col
unless Mi is elected in round T , since Mi is the only
miner that can confiscate Bob’s collateral. So Bob’s utility
is Pr[¬E](1 − λi)(v

col − f col
B) + bri. Pr[E] depends on

Mi’s mining power as well as the actions of other (passively
rational) miners.

We consider the extreme case in which all passively
rational miners only include unrelated transactions. This is
the worst-case scenario for Bob since it maximizes the prob-
ability that Mi gets dep-M , and thus correspondingly some
miner gets col-M . So E happens as long as Mi is elected
in any round between tpub and T . Therefore Pr[¬E] =

(1− λi)
T−tpub and Bob’s utility is (1− λi)

T−tpub+1(vcol −
f col
B) + bri.

In this case, Bob would have strictly higher util-
ity from accepting Mi’s bribe if vcol − f col

B < (1 −
λi)

T−tpub+1(vcol − f col
B) + bri which is equivalent to:

(1− (1− λi)
T−tpub+1)(vcol − f col

B) < bri.

Theorem 1. Let Mi be the single active miner. Assuming
that all miners are rational and non-myopic, then as long
as vcol − f col

B < λi

1−λi
(vdep − f dep

A), there always exists a
value for bri, such that Mi and Bob have higher expected
utility from mounting SIRBA with bri than from following
the MAD-HTLC protocol, when all other miners are passive.

Proof: From Lemma 5 it follows that in the case
in which all other miners are passively rational, Bob will

8

have strictly higher utility from accepting bri if bri <
(1 − (1 − λi)

T−tpub+1)(vcol − f col
B) independent of the

action that passively rational miners choose before round
T . From Lemma 4, we further know that Mi would have
strictly higher expected utility from paying any bri <
λi(v

dep−f dep
A)+λi(v

col−f col
B) to Bob in exchange for preb.

Clearly, a feasible bribe value that results in higher expected
utility for both Bob and Mi will always exist if (1 − (1 −
λi)

T−tpub+1)(vcol−f col
B) < λi(v

dep−f dep
A)+λi(v

col−f col
B).

It is simple to see that if vcol − f col
B < λi

1−λi
(vdep − f dep

A),
such a value will always exist.

Now that we know that participation in an SIRBA scheme
is the action preferred by Rational Miners, we present a
protocol that fairly achieves the fair exchange required for
SIRBA.

3.5. Realising SIRBA

In this section, we present a practical implementation of
the success independent attack. The challenge is to realize
a fair exchange between Bob and a miner Mi, such that
the Mi learns preb if and only if a payment to Bob of an
agreed-upon amount is confirmed on the blockchain (the
payment need not happen on the same blockchain as the
MAD-HTLC). We show a solution using Trusted Execution
Environments (TEEs).

We assume the bribing miner Mi and Bob have access
to a TEE that guarantees integrity and confidentiality and
supports remote attestation. We have seen one use of the
same in Section 4.4 Further, we have assumed that they
can access a secure Proof-of-Work based blockchain for
payment (e.g., Bitcoin or Ethereum). We also assume that
the difficulty does not vary between the time of bribe setup
and the completion (e.g., the timeout of the HTLC). Our
description below is specific to Bitcoin, but it can be adapted
to any PoW blockchain.

Setup. Bob and Mi negotiate the details of the bribery, in-
cluding Bob’s address to receive bribe AddrBob, the amount
of bribe Amount, the hash of preb Hashpre

b
, as well as a

lower bound for PoW difficult diffl used by the contingent
decryption protocol below. This can happen well before the
timeout of the the HTLC.

Mi runs the TEE code shown in Fig. 5. For ease of
exposition the above parameters are hardcoded in Fig. 5, so
they are covered by TEE attestation. Mi shares the code
with Bob, who can review and verify its correctness.

To initialize, Mi calls init(λ) to generate a pair of
keys protected by TEE. Specifically, TEE samples a key
and returns pk along with an attestation σTEE, binding pk
to the TEE code, while the secret key is kept in TEE so that
the miner cannot access.

Mi sends (pk, σTEE) to Bob, who verifies that the attes-
tation σTEE is consistent with the source code he has ob-
tained from the miner (including the parameters hardcoded
therein), and that pk is certified by σTEE.

Bob provisions preb to TEE. Having verified the cor-
rectness of pk, Bob sends preb encrypted to the miner in

Pseudocode of the TEE enclave for success-independent bribery

1 : Hardcoded:
2 : AddrBob: Bob’s address to receive bribe

3 : Amount: The amount of bribe
4 : Hashpreb : the hash of preb
5 : ℓ: number confirmations required (e.g., in Bitcoin ℓ = 6)

6 : diffl: Difficulty lower bar

7 : Function Init(λ):

8 : (sk, pk)← KGen(1λ) // generate a pair of keys in TEE
9 : σTEE = TEE.attestation(pk) // σTEE binds pk to the code

10 : return (pk, σTEE)

11 : Function VerifyMsgFromBob(m):

12 : // Verify that encrypted message from Bob has the right preimage

13 : return H(Decsk(m)) = Hashpreb

14 : Function Decrypt(TXbribe, MerkleProof, h1, . . . , hℓ):

15 : Assert (h1, . . . , hℓ) forms a valid blockchain

16 : Assert that the difficulty in hi is at least diffl for all i

17 : Assert that TXbribe is in h1 by checking MerkleProof

18 : Assert that TXbribe pays an amount of Amount to AddrBob

19 : return Decsk(m)

Figure 5. TEE enclave program for SIRBA

c = Encpk(preb). Mi then calls VerifyMsgFromBob to
verify that the ciphertext encrypts the correct preimage.

Contingent decryption. The key idea is that the TEE code
enforces contingent decryption of c upon receiving a proof
of payment to Bob. Specifically, upon receiving a Bitcoin
transaction TXbribe, a Merkle proof, and a sequence of block
headers (h1, . . . , hn), the TEE code will verify that the
block headers form a hash chain with sufficient difficulty,
and that TXbribe is included in one of the block hj that
has been buried sufficiently deep (e.g., n − j ≥ ℓ, where
ℓ is the number of confirmations required for TXbribe to be
considered final with high probability), and that TXbribe pays
the agreed upon amount to Bob’ specified address. If all
checks pass, TEE will decrypt c and reveal preb. Therefore,
to obtain preb, Mi makes the payment on-chain, waits for
ℓ confirmations, and presents the required information to
TEE.

Security arguments. Assuming that TEE guarantees in-
tegrity and confidentiality, and that the PoW difficulty does
not increase significantly beyond diffl before the timeout of
the HTLC in question, and that bribe amount is smaller than
the block rewards (6.25 BTC ∼ $236, 000 as of January
2022), we argue that the miner cannot learn preb without
paying the bribe (or more).

First, via remote attestation, Bob establishes that he
is interacting with an genuine TEE running the expected
source code in Fig. 5. According to Fig. 5, the only way
for Mi to obtain preb without paying the bribe is to feed
the enclave with a forged chain of headers. Hardcoding the
lower watermark for PoW difficulty prevents the miner from
forking an old block with low difficulty. To pass the checks
enforced by TEE, the miner must generate at least 6 blocks

9

Time

… Send Bob
decides

MAD-HTLC
initialization

Round 1

Send Mine
b1

Mine
b0

Round tpub

Mine
bpub

…

Miners
contact Bob

and offer
bribes

Alice
publishes
txADep

Miners start
redeeming vdep

via dep-M

Miners start
redeeming vcol

via col-M

Send Bob
decides

Round T

Mine
bT

Figure 6. The timeline of the SDRBA game is the same as that of SIRBA
except that bribes can be offered in all rounds after tpub.

that could have been accepted by the blockchain, which is
prohibitively expensive and irrational since the bribe amount
is smaller.

4. Success Dependent Reverse Bribery Attack

A primary limitation of SIRBA is that the bribe is paid
to Bob before gaining any profit, so the attackers (miners)
bear a risk. In fact, if multiple miners attempt to bribe Bob,
except for the two miners (and potentially one) who manage
to redeem MH-Dep and MH-Col, everyone else loses their
bribe, even though they were better off in expectation. To
remove this risk, we propose the success-dependent reverse
bribery attack (SDRBA), which guarantees that the miner
only pays the bribe if it successfully completes the attack,
i.e., redeeming MH-Dep via path dep-M . Below we present
a game-theoretical analysis, as well as two implementation
options to enable exchange between the bribe and redemp-
tion by miners.

4.1. Game Setup

To analyze SDRBA, we construct a game Gdep where dep
refers to success-dependent. The game setup is the same
as that for SIRBA (Section 3.3) with one modification: in
Gdep miners can offer bribes in all subgames Gdep(k, red)
for k ≥ tpub. Therefore all rounds k > tpub have an
intermediate step where Bob decides if he accepts the offers.
Figure 6 illustrates the timeline and the differences from that
of SIRBA. For our analysis, we assume miners do not change
their bribes bri across rounds.

As before, to focus on the analysis, we assume a fair
exchange mechanism between a bribing miner Mi and Bob,
such that Mi pays Bob an agreed-upon bribe bri if and only
if Mi can include tx dep

M (which contains preb) in a block. We
construct such a fair exchange mechanism in Section 4.4.

Note that in a game Gdep(k, st) with st = irred-rev,
every miner has the information about preb, whereas in st =
irred-nrev, no miner has the information about preb. This is
different from Section 3.3, where some miners could have
information about preb, whereas other would not.

4.2. MAD-HTLC Incentive Incompatibility

In this section, we will show that any active rational
miner Mi and Bob will prefer engaging in SDRBA over fol-
lowing the MAD-HTLC protocol for a range of parameters
depending on mining share of active rational miners.

Lemma 6. In subgame g = Gdep(T, st), for each miner
Mi ∈ M with mining power λi, if st = irred-rev, ūi(g) =
λi(v

col − f), and if st = irred-nrev, ūi(g) = λi(f
col

B − f).

Proof: Since MH-Dep has been redeemed in both
irred-rev and irred-nrev, the miner of round T can choose
between three actions in round T have three actions: re-
deem MH-Col via col-B, redeem MH-Col via col-M , or do
nothing (including unrelated transactions).

We discuss based on how MH-Dep might have been
redeemed. Since dep-B cannot happen before round T , MH-
Dep must have been redeemed through dep-M or dep-A.

Suppose the path dep-M was taken, i.e. st = irred-rev.
As a result, preb has been publicly revealed to all miners.
Consequently, since vcol > f col

B > f , Mi will strictly prefer
to redeem MH-Col via path col-M over any other action.
Consequently, since every miner is trying to redeem MH-Col
in this subgame, ūi(G

dep(T, irred-rev)) = λi(v
col − f).

Now suppose the path dep-A was taken i.e. st =
irred-nrev. In this case, preb is only known to Bob. Since
a miner can at most earn the value of MH-Col (i.e., vcol)
through reverse bribery, it cannot bribe more than vcol. How-
ever, since Bob gets back vcol anyway, Bob has no incentive
to accept the inferior bribes. So preb will never be revealed.
Consequently, Mi will include tx col

B (instead of unrelated
transactions since f col

B > f by assumption). The utility is
the fees, i.e., ūi(G

dep(T, irred-nrev)) = λi(f
col

B − f).

Lemma 7. For any subgame g = Gdep(k, st) where tpub <

k ≤ T and st ̸= red, ūi(g) = ūi(G
dep(T, st)).

Proof: In all subgames in which MH-Dep has been
redeemed, players can only expect additional utility from
the redemption of MH-Col. As a consequence of Lemma 6,
which shows the dominance of MH-Col redemption over
waiting for unrelated transactions, we know that if MH-Dep
is no longer redeemable, then MH-Col will be redeemed in
round T .

Following the proof of Lemma 6, the expected utility
from MH-Col solely depends on miners’ knowledge of
preb and mining power. Since MH-Dep has already been
redeemed in some round prior to k, it follows that preb is
either known to all miners if MH-Dep has been redeemed
via path dep-M or will never be known if MH-Dep has been
redeemed via path dep-A. By assumption, the mining power
does not change. It follows that ūi(g) = ūi(G

dep(T, st)).

Lemma 8. In Gdep(T, red), a passively rational miner will
redeem MH-Dep and MH-Col via path dep-A and col-B.

Proof: The proof is similar to lemmas 1 and 2 where
the passively rational miner does not know preb in round T .

Lemma 9. In Gdep(T, red), for an actively rational miner,
paying a bribe bri to Bob strongly dominates any other
available action if bri < vdep + vcol − f dep

A − f col
B . In this

case, ūi(G
dep(T, red)) = λi(v

dep + vcol − 2f − bri).

Proof: Let Mi be some actively rational miner in
Gdep(T, red). In this game, both MH-Dep and MH-Col are

10

redeemable. First, note that the immediate utility to Mi from
round T if chosen to create block bT is strictly greater from
including tx dep

A and tx col
B than from including only unrelated

transactions. However, if Mi chose to include only unrelated
transactions in block bT , then MH-Dep and MH-Col could
still be redeemed in a later round. Clearly, given that Mi

would need to be chosen again to propose a block in some
later round, which happens with probability λi < 1, and
since the reward would be the same, it is strictly inferior
for Mi to redeem MH-Dep and MH-Col by including tx dep

A
and tx col

B in a later round.
Now suppose miner Mi were to bribe bri. Then Mi’s ex-

pected utility from bribery, conditional on Bob’s acceptance
of bri, is given by

λi(v
dep − f + vcol − f − bri) (5)

since Mi can earn vdep + vcol with probability? λi. On the
other hand, Mi’s utility from not bribing (i.e., including
transactions from Alice and Bob instead) is λi(f

dep
A − f +

f col
B −f). Thus, if bri < vdep −f dep

A +vcol −f col
B , then Mi

prefers paying bribe bri to Bob.

Lemma 10. In any subgame Gdep(k, red) where tpub ≤ k <

T , as long as bri < vdep − f dep
A + λi(v

col − f col
B), for an

actively rational miner, bribing Bob and redeeming MH-Dep
via path dep-M in round k strongly dominates redeeming
MH-Dep via path dep-A.

Proof: Let Mi be some actively rational miner cho-
sen to create a block in round k where tpub ≤ k < T .
If Mi chooses to bribe bri, and Bob accepts the bribe,
then Mi’s utility in subgame Gdep(k, red) is given by
vdep − f − bri + ūi(G

dep(k + 1, irred-rev)). By Lemma 6
and Lemma 7, this expression becomes:

vdep − f − bri + λi(v
col − f) (6)

If Mi chooses to include tx dep
A , then MH-Dep will be

redeemed via path dep-A. As argued in proof of Lemma 7,
we argue that in this case preb will never be released. Hence,
Mi’s expected utility from choosing to include tx dep

A if
chosen to create block bk is given by f dep

A −f+ūi(G
dep(k+

1, irred-nrev)). By Lemma 6 and Lemma 7, this expression
becomes:

f dep
A − f + λi(f

col
B − f) (7)

From Eq. (6) and Eq. (7), if bri < vdep−f dep
A +λi(v

col−
f col
B), then Mi’s expected utility from bribing is strictly

higher than from redeeming MH-Dep via path dep-A.

Lemma 11. In any subgame Gdep(k, red) where tpub ≤
k < T , as long as bri < vdep − f dep

A , for an actively
rational miner, bribing Bob and redeeming MH-Dep via
path dep-M in round k strongly dominates including only
unrelated transactions.

Proof: Let Mi be an actively rational miner creating
a block in round k where tpub ≤ k < T . As in Lemma 10,

its utility from choosing to pay bribe bri to Bob in round k
is given by vdep − f − bri + λi(v

col − f) (Eq. (6)).
Consider the case where the best action for Mi changes

to bribe Bob in some round ≥ k + 1 and < T , then if Mi

gets chosen to create a block in that round and MH-Dep is
still redeemable, the utility earned in that round would still
be given by vdep − f − bri + λi(v

col − f). Since the miner
would get chosen in such a round with probability < 1, it
follows that bribing Bob in round k strictly dominates by
deferring the bribe to some later round < T . Consequently,
the only other action for Mi would be to consider including
only unrelated transactions till timeout T .

Suppose Mi includes only unrelated transactions until
the timeout, then there are three possible cases to consider
depending on the game state in the timeout round:

Case 1: Gdep(T, red). In this case, MH-Dep has not been
redeemed until the timeout round. Mi’s expected utility is
thus given by Eq. (5) and equal to λi(v

dep+vcol−2f−bri).

Case 2: Gdep(T, irred-rev). In this case, MH-Dep has been
redeemed by some other miner via path dep-M . From
Lemma 6 it follows that Mi’s expected utility is given by
λi(v

col − f).

Case 3: Gdep(T, irred-nrev). In this case, MH-Dep has
been redeemed by some other miner via path dep-A. From
Lemma 6 it follows that Mi’s expected utility is given by
λi(f

col
B − f).

Consequently, Mi’s expected utility from
choosing to include only unrelated transac-
tions before the timeout is upper bounded by
max (λi(v

dep + vcol − 2f − bri), λi(v
col − f)). Clearly,

when bri < vdep − f , Mi’s expected utility from bribery in
round k is strictly higher than from including an unrelated
transaction.

Lemma 12. In any subgame Gdep(k, ·) where k ≥ tpub, Bob
will have higher utility from accepting any bri > vcol−f col

B
than from following the MAD-HTLC protocol.

Proof: By the same argument as in Lemma 5, once
Alice publishes prea in tpub, Bob’s highest achievable utility
from following the protocol at this point is vcol−f col

B . Given
the game setup, Bob will only release preb if the attack
succeeds. In this case, by Lemma 6 and Lemma 9, Bob
will lose vcol. Consequently, Bob will not accept any bribe
bri ≤ vcol − f col

B . On the other hand, Bob will have strictly
higher utility at the end of the game from accepting bri >
vcol − f col

B than from following the MAD-HTLC protocol.

Theorem 2. If vcol −f col
B < vdep −f dep

A then there exists a
bribe value for every actively rational miner Mi, such that
in any subgame Gdep(k, red), where k ≥ tpub, both Mi and
Bob have higher expected utility from SDRBA redeeming
MH-Dep via path dep-M than from following the MAD-
HTLC protocol.

Proof: Let Mi be some actively rational miner in
Gdep(k, red). When bri < vdep − f dep

A , we observe that

11

bribing Bob dominates (i) all other actions in round T
(Lemma 9), (ii) including Alice’s transaction (dep-A) in
round < T (Lemma 10), (iii) including unrelated transac-
tions in round < T (Lemma 11).

By Lemma 12, we further know that Bob will have
higher utility from accepting bri than from following the
MAD-HTLC protocol if bri > vcol − f col

B .
Consequently, for bribery to result in higher utility for

both Mi and Bob, we would need vcol − f col
B < bri <

vdep −f dep
A . Thus, we know that there always exists a value

for bri that meets both constraints as long as vcol − f col
B <

vdep − f dep
A .

We have shown that for all active miners it is better to
bribe as soon as given a chance to mine a block if vcol −
f col
B < vdep−f dep

A . However, this does not mean that MAD-
HTLC is safe given that vcol − f col

B > vdep − f dep
A . Next,

we show the constraints required for MAD-HTLC to be safe
against SDRBA attacks.

4.3. Safety of MAD-HTLC against SDRBA

Theorem 3. If vcol − f col
B > 1

1−λmax v
dep and f dep

A ≥
λac

T−tpub+1(vdep − f dep
A), following MAD-HTLC protocol

would be preferred by all miners over bribing Bob

Proof: From Lemma 10 and Lemma 12, it follows
that bribery would be preferred over tx dep

A before round T

only if vcol − f col
B < vdep − f dep

A + λi(v
col − f col

B), else
tx dep

A is preferred over bribing Bob. Thus, if vcol − f col
B >

1
1−λmax v

dep, then no miner Mi would choose to bribe Bob
in the current round.

From Lemma 9 and Lemma 12 it follows that if
MH-Dep is still redeemable in round T , bribery will be
strictly preferred for both an actively rational miner and
Bob if vcol − f col

B < vdep − f dep
A + vcol − f col

B . Since
vdep − f dep

A > 0, it follows that bribery will always be
preferred at that time. In case all active miners choose to
not include related transactions till T , the probability that
the game will reach the game Gdep(T, red) is given by
λac

T−tpub . Further, probability for any active miner to win in
round T would be given by λac. Thus, the probability that
any active miner receives utility from including unrelated
transactions till round T is λac

T−tpub+1 and the utility is
given by λac

T−tpub+1(vdep − f dep
A + vcol − f col

B − bri and
since bri > vcol − f col

B , the utility is upper bounded by
λac

T−tpub+1(vdep − f dep
A). If utility from including tx dep

A
exceeds the same, then all active miners would be better
off following MAD-HTLC protocol.

4.4. Realizing SDRBA

The key property of SDRBA is success-dependence in
that a miner only pays Bob if she can successfully attack,
i.e., having tx dep

M confirmed on-chain. At a high level, in
order to construct tx dep

M , the miner needs to know preb,
and the miner needs to pay Bob for an agreed-upon bribe.

However, performing this exchange fairly is challenging:
as soon as Bob releases preb to Mi, it is in the best
interest of Mi to not pay Bob, and vice versa. On the other
hand, though, if Bob does not release preb, how could Mi

construct tx dep
M and have it confirmed on-chain?

Our key observation is that, in most blockchain imple-
mentations, miners need not know the content of transac-
tions to mine a block that includes them. Specifically, PoW
mining is typically done over a block header, which only
includes a compact representation of the transaction (e.g., a
Merkle root). Therefore a miner can start mining knowing
only the hashes of all transactions (from which the Merkle
root can be calculated). In PoS, transactions bind to the
block header via a signature from Mi, which again can be
generated from transaction hashes.

Protocol skeleton. With this idea in mind, we can achieve
fair exchange as follows: Bob prepares a transaction tx dep

M

that redeems MH-Dep for Mi, and sends h = H(tx dep
M) to

the miner, along with a proof π showing its correctness.
For instance, Bob and the miner can agree on a transaction
template with preb missing, and in π, Bob proves that the
hash of the template filled with a particular preb matches h.
Such proofs can be produced with zero-knowledge proofs
(e.g., [24]) or Trusted Executed Environment (TEE) such
as Intel SGX [25]. The miner verifies the proof and mines
a partial block B including: 1) the hash of tx dep

M (again,
the miner only needs the hash h for mining), 2) a bribing
transaction that pays Bob br tokens from the coinbase. (
Paying Bob from the coinbase ensures that the validity of
the payment does not depend on other transactions.) and 3)
any other transactions from the mempool. The miner sends
B to Bob, who verifies that the block includes intended
transactions, fills in tx dep

M , and broadcasts the completed
block. For ease of argument, we assume vdep is smaller
than the block reward (current 6.25BTC in Bitcoin), to
disincentivize Mi from forking B (e.g., replacing it with a
block without payment to Bob). In practical uses of HTLC,
vdep is typically much smaller than block rewards (the
average Lightning capacity is 0.045BTC [5]).

An instantiation with TEEs. Below we present a concrete
instantiation using TEEs. We assume Bob has access to a
TEE (e.g., Intel SGX) that guarantees integrity and supports
remote attestation. However, we do not require confidential-
ity guarantees (i.e., it only requires transparent execution
environments [26]) since Bob knows the secret anyway.
There is extensive literature on SGX and we refer readers
to [27] for background. For ease of exposition, we state the
protocol assuming Bitcoin, but it can be easily adapted to
other PoW or PoS blockchains.
1) Setup: Bob and Mi negotiate the details of the bribery,

including the miner’s address to receive the redemption
of MH-Dep, addrMiner, the amount of bribe Amount,
Hashpre

b
, and Hashpre

a
. Bob instantiates a TEE run-

ning code in Fig. 7. For ease of exposition, the bribery
parameters are hardcoded in Fig. 7, so they are covered
by TEE attestations. Bob shares the source code with the

12

Pseudocode of the TEE enclave for success-dependent bribery

1 : Hardcoded:
2 : addrMiner: Miner’s address to receive tx dep

M

3 : Hashpreb : the hash of preb
4 : Hashprea : the hash of prea
5 : Function GetHashOfTxn(tx dep

M):

6 : Assert that tx dep
M is redemption to addrMiner

7 : Assert that tx dep
M contains (prea, preb), s.t.

8 : H(preb) = Hashpreb , H(prea) = Hashprea
9 : h = H(tx dep

M)

10 : σTEE = TEE.attestation(h) // σTEE binds h to the code

11 : return (h, σTEE)

Figure 7. TEE enclave program used in SDRBA implementation

miner who can verify its correctness. This can happen
well before the timeout T of MAD-HTLC.

2) Bob: When Alice releases prea, Bob constructs the re-
demption transaction tx dep

M , and calls GetHashOfTxn
in TEE (Fig. 7) to compute a hash h = H(tx dep

M) along
with an attestation σTEE proving that h is computed by
the specific code that Bob shared with the miner earlier.
Bob sends (h, σTEE) to the miner.

3) Miner: Miner verifies σTEE against its copy of the source
code and checks that h is certified by σTEE. Then the
miner builds a Merkle tree as described before. Then Mi

starts mining. After finding a valid block B, Mi sends
B to Bob

4) Bob: After receiving B, Bob verifies that 1) B includes a
proper payment to him and then completes B with tx dep

M
to the peer-to-peer network.

Security arguments. Under the assumption that TEE pro-
tects integrity and supports remote attestation, the attestation
σTEE guarantees that the provided hash is valid. When Bob
receives and verifies a partial block B from the miner, he
can choose whether to fill in the missing transaction and
broadcast it or not. If he chooses not to broadcast, he forgoes
the bribe. Thus, Bob would only receive back vcol, which
as we showed in Theorem 2, is smaller than the bribe he
receives if he chooses to broadcast. It is important to note
that Bob cannot withhold the block but only send the bribe
transaction because the bribe transaction is only valid if B
is confirmed on-chain, as it spends the coinbase of B. We
consider a few variants of SDRBA, replacing the proposed
TEE instantiation with the following constructions

ZKPs in place of TEEs. Instead of TEEs, Bob can prove
the correctness of h using zero-knowledge proof [24]. This
removes the reliance on TEE security (although we empha-
size that the presented protocol only requires integrity, not
confidentiality), but ZKPs are typically orders of magnitude
slower than equivalent implementation using TEEs.

A protocol with TEE on the miner’s side. We can also
adapt the construction in [15] to get another implementation
of SDRBA where the miner hosts the TEE. Briefly, Bob

sends encrypted preb to a TEE, which decrypts it upon
receiving a complete proof-of-work block satisfying certain
criteria. Then the miner completes the block and broad-
casts it. This variant necessarily relies on the confidentiality
guarantee of TEEs and works with PoW blockchains. The
upside, however, is that the miner does not rely on Bob’s
rationality for broadcasting. A similar construction appeared
in MEV-SGX [15] although in a different context.

5. Hybrid Delay-Reverse Bribery Attack

In this section, we present HyDRA, the third attack on
MAD-HTLC that combines a delay attack and SDRBA. Not
only does HyDRA maintain the no-risk feature of SDRBA,
but it also works regardless of relative sizes of vdep and
vcol with constant probability. We present the attack in
this section with a “pay per block” delay strategy, under
which for each block, Bob pays the miner, in expectation,
an amount greater than the transaction fee offered by Alice.

5.1. The HyDRA attack

There are two steps to the attack: censoring Alice’s
transaction and an SDRBA attack between Bob and miner.
Below we go through the two steps. Figure 9 specifies the
protocol more formally.

Step 1: Censoring tx dep
A : As soon as Alice posts the

redemption transaction tx dep
A in tpub, Bob sets up a contract

that issues promised rewards to miners who censor tx dep
A

(Fig. 8). The intuition is that given a promise of receiving
enough amount in the future, miners would prefer to not
include tx dep

A .
The attack can be facilitated with a smart contract. We

outline a possible implementation in Fig. 8. At a high
level, for each subsequent block, after tx dep

A is published,
its miner can call getToken to get special tokens that
can be redeemed only after the second step of the attack
succeeds (at which point Bob pays the cost of censoring
tx dep

A using the bribe he receives from the miner). The total
cost of censoring tx dep

A is denoted by Cdelay.

Step 2: Mounting SDRBA: The second part of the attack
is similar to the SDRBA attack (Section 4.4) except that
the fair exchange is slightly modified to guarantee that the
miner Mi pays the bribe if and only if both MH-Dep and
MH-Col are redeemed by Mi in the same block (whereas
in the original SDRBA attack, Mi pays bribe if and only if
MH-Dep is redeemed).

Following a successful SDRBA attack, anyone can
call redeemToken to trigger the distribution of payouts.
redeemToken will verify that SDRBA indeed succeeded
(i.e., both MH-Dep and MH-Col have been redeemed after
timeout via dep-M), and then redeem tokens issued earlier
at a pre-specified exchange rate (c1 for tokens issued before
the timeout T , and c2 otherwise as specified in Fig. 8), and
send the remaining balance to Bob. The reason for choosing
the specific values will become clear shortly in the analysis.

13

SCHyDRA: delay contract for HyDRA

1 : Variables:
2 : MH-Dep, MH-Col: Address of MAD-HTLC contracts

3 : n1 = 0 // total # of T1 tokens issued

4 : n2 = 0 // total # of T2 tokens issued

5 : Bal1 = {} // mapping from address to balances of T1

6 : Bal2 = {} // mapping from address to balances of T2

7 : // ci is the exchange rate between Ti and native currency.

8 : c1 =
f

dep
A

1−(1−λac)1/λac
+ ϵ1 // ϵi is any small positive number.

9 : c2 =
f

dep
A
λac + ϵ2

10 : Setup:
11 : Bob deposits vdep in the contract

12 : Function getToken():

13 : Abort if the caller is not the miner of the current block
14 : Abort if this function has been called in this block
15 : Let i be the current block number
16 : if i < T

17 : n1 ← n1 + 1

18 : Bal1[caller]← Bal1[caller] + 1

19 : else

20 : n2 ← n2 + 1

21 : Bal2[caller]← Bal2[caller] + 1

22 : Function redeemToken():

23 : Assert that vdep − n1 · c1 − n2 · c2 > 0

24 : Check that MH-Dep and MH-Col were redeemed through

25 : dep-M and col-M in this block.

26 : for (addr, bal) in Bal1
27 : Send c1 · bal native tokens to addr

28 : for (addr, bal) in Bal2
29 : Send c2 · bal native tokens to addr

30 : // Send leftover to Bob
31 : Send vdep − n1 · c1 − n2 · c2 to Bob

32 : Function refundToken():

33 : If MH-Dep has been redeemed by Alice through dep-A, send vdep to Bob.

Figure 8. A smart contract (sketch) that facilitates the delay phase of
HyDRA. Before the timeout T , the contract issues token T1 to miners
who censor tx dep

A , after the timeout it issues token T2. Tokens T1 and T2

can be redeemed to native tokens (e.g., Ether on Ethereum) only after the
HyDRA attack succeeds. Each Ti will be redeemed to ci native tokens.

Protocol for HyDRA

Setup and Init:
Bob sets up a facilitating smart contract SCHyDRA as described in Fig. 8

Before round T :

Miners of blocks between tpub and T censor tx dep
A and call getToken in

SCHyDRA to get tokens.

In and after round T :

If a miner is active, bribe Bob with br = vcol + n1 · c1 + n2 · c2 to mount
the modified SDRBA attack (see the description of step 2). If the attack succeeds,
call redeemToken to distribute payouts.

If a miner is passive, keep censoring tx dep
A (same as above) until SDRBA succeeds.

Figure 9. Protocol followed during HyDRA attack

5.2. Security Analysis

Game setup. The game for HyDRA is the same as that Sec-
tion 3.3 except that the action to censor tx dep

A is always
available for all rational miners—active or passive—in all
rounds (including rounds before and after the timeout T). In
rounds t > T , active miners can choose to mount SDRBA.

Analysis. We analyse the incentives of the protocol proposed
in Fig. 9, which we refer to as HyDRA. To analyze the
incentive compatibility of HyDRA, we first show that given
a choice, an active miner would always choose to mount
SDRBA (Step 2) over censoring tx dep

A (Step 1). The intuition
behind this can be explained as follows. Since Bob is always
receiving a fixed amount more than the vcol and Cdelay he
incurs, it is essentially the active miner who mounts the
SDRBA paying every other miner to censor the transaction.
If the miner chooses to get paid by the contract, it would
either be paying itself or some other miner would share
some profit with the miner. We consider every miner to be
rational and some of them are active (λac > 0). The values
of c1 and c2 are described in the contract Fig. 8.

Lemma 13. For an active rational miner in round t ≥ T ,
where mounting SDRBA is an available action (i.e., MH-Dep
and MH-Col are still redeemable) and vdep − (T − tpub −
1) · c1 − (t − T) · c2 > f dep

A , mounting SDRBA (Step 2)
dominates censoring tx dep

A (Step 1).

Proof: The total available amount for any miner of
round t is vdep − (T − tpub − 1) · c1 − (t − T) · c2. This
is also the utility for the miner who chooses to perform
SDRBA in the current round. If the miner instead chooses
to censor tx dep

A and get c2 bribe, and is chosen to build the
next block in round t′, the expected utility would be at most
c2+vdep−(T −tpub−1) ·c1−(t′−T) ·c2, even considering
that no other active miner between time t and t′ chooses to
take Step 2. Since t′ ≥ t+1, this utility is lower than or equal
to the utility earned by the active miner choosing to mount
SDRBA in round t. Thus, given that SDRBA is available,
all active rational miners will take that action, instead of
potentially sharing the revenue with other miners.

Next, we show that no rational miner would ever include
tx dep

A in presence of such a contract, before or after the
timeout.

Lemma 14. For any rational miner of round t ≥ T , where
MH-Dep and MH-Col are not yet redeemed and vdep −
(T − tpub − 1) · c1 − (t − T) · c2 > f dep

A , censoring tx dep
A

and accepting delay bribe (Step 1) dominates over including
tx dep

A .

Proof: In each round t ≥ T , given the choice
between including tx dep

A and censoring it, a rational miner,
chosen to mine the current round, would have a utility of
f dep
A if it chooses to include tx dep

A , whereas a miner who
chooses to censor tx dep

A , can call the contract with proof
of not including the transaction and get a future amount
of c2, which we have set to be > f dep

A /λac (Fig. 8),

14

with a potential to earn more in the future rounds. With
probability λac, the next block would be mined by an
active miner, who as shown in Lemma 13, will choose to
perform SDRBA step and make the attack successful. Thus,
the probability of receiving the future amount of c2 is at
least λac. Therefore, utility from censoring the transaction
is given by u > λac · (f dep

A /λac). Thus, it is rational for all
miners to censor tx dep

A than to include it on-chain.
With the above Lemma 13 and Lemma 14, we have es-

tablished the value of c2 and looked at the actions available
for all rational miners after timeout T . Next, we need to
show that it would be rational for miners before timeout to
censor tx dep

A , and establish the amount (c1) required to be
promised to do so. Since after timeout T , the probability of
active miner mining a block is λac, the expected number of
blocks required after timeout would be 1/λac.

Lemma 15. For any rational miner of round t < T , where
MH-Dep has not yet been redeemed and vdep − (T − tpub −
1) · c1 +(1/λac) · c2 > f dep

A , censoring tx dep
A and accepting

delay bribe (Step 1) dominates over including tx dep
A .

Proof: In each round, given the choice between
including tx dep

A and censoring it, a rational miner chosen
to mine the current round would have a utility of f dep

A if it
chooses to include tx dep

A , whereas a miner who chooses to
censor tx dep

A , can call the contract with proof of not including
the transaction and get a future amount of c1. Since the
expected number of blocks the attack lasts after timeout
is given by 1/λac, the probability with which the attack
succeeds until that round is given by 1 − (1 − λac)

1/λac .

We have set c1 >
f

dep
A

1−(1−λac)1/λac (Fig. 8), which gives the

miner a utility greater than f dep
A . Thus, it is rational for all

miners to censor tx dep
A than to include it on-chain.

Theorem 4. All rational miners are better off from following
strategy outlined in HyDRA, than behaving honestly and
redeeming transaction tx dep

A for Alice, given vdep − (T −
tpub − 1) · c1 + (1/λac) · c2 > f dep

A .

Proof: From lemmas 14 and 15, if vdep−(T−tpub−
1) · c1 + (1/λac) · c2 > f dep

A , censoring tx dep
A dominates in-

cluding tx dep
A . After timeout T , the censoring bribe needs to

be paid for an expected 1
λac blocks. With the same condition

vdep−(T − tpub−1) ·c1− 1
λac ·c2 > f dep

A by Lemma 13, all
active miners prefer to participate in SDRBA over censoring
tx dep

A and by extension including tx dep
A . Thus, all rational

miners will follow the HyDRA strategy.

Success probability. As shown in Theorem 4, the success
probability is 1 − (1 − λac)

1/λac , since at least one block
needs to be mined by an active rational miner in 1

λac blocks.
However, HyDRA is incentive-compatible regardless—all
rational miners are better off from following HyDRA as long
as c1 and c2 are set accordingly.

Cost of defending the hybrid attack. One way to defend
against HyDRA is for Alice to pay a high fee, and publish

tx dep
A early. We provide a rough estimation of the cost.

Consider a HTLC contract with capacity vdep = 2 BTC and
timeout T = 30 days (typical configuration in Lightning
network [5]). Estimating λac accurately is hard, but the
adoption rate of MEV-geth [28] can provide a ballpark
reference because only active miners (by our definition) will
prefer MEV-geth over geth. As of March 2022, the adoption
rate is about 85% [29]. If Alice closes the channel one week
prior to its timeout, then T − tpub = 7×24×60/10 = 1008

blocks and thus the transaction fee cost f dep
A to Alice

in order to violate the condition in Theorem 4 must be
f dep
A = vdep − (T − tpub − 1) · c1 − 1

λac · c2, where c1 =

f dep
A /0.9, c2 = f dep

A /0.85, which makes f dep
A ≈ 0.0018

BTC which is about 818× the average closing cost of 2.2e-
6 BTC [9]. The utilization of the channel lifetime is lowered
to ∼ 77%.

Optimizing the attack. We have shown a basic version of
a delay attack. Using attacks shown in [8], this bound can
be significantly reduced. We can directly use an attack that
relies on delaying till round T and use our strategy above;
alternatively delay till T+ 1

λac while allowing SDRBA action.
Further, even if the timed delay phase expires, we argue that
the following lemma holds for rational miners who have
been promised some utility in the delay phase.

Lemma 16. In round t ≥ T , if a passively rational miner
Mi with utility Ci > f dep

A −f conditional on the success of
SDRBA is chosen to create the block in round t, Mi will only
include transactions unrelated to MH-Dep and MH-Col.

Thus, they would still not choose to include tx dep
A , even

if they are not able to receive any further delay bribe.

6. He-HTLC: An Incentive Compatible HTLC

We now present He-HTLC, a protocol where all parties
are incentivized to follow the HTLC spec. Our protocol is
inspired by the learnings of our attacks on MAD-HTLC.
In particular, we ensure that (i) the miners are not over-
compensated when acting as enforces, and (ii) separate the
redemption of vdep and vcol some blocks apart. Since we
have presented a detailed intuition behind these changes in
Section 2.3, we proceed with describing the protocol.

Our protocol He-HTLC[ℓ] is parameterized by ℓ, the
number of blocks between redemption of vdep and vcol.
He-HTLC[ℓ] consists of two contracts: He-Dep and He-Col,
to which Bob deposits vdep and vcol respectively. Similar to
MAD-HTLC, vdep is intended to be paid to Alice, if Alice
reveals a secret before the timeout T , otherwise to Bob;
and vcol is refunded to Bob in case the exchange occurs
honestly. More formally, the redemption paths of He-Dep
and He-Col are specified in Eqs. (8) and (9).

15

He-Dep:

(prea, siga) // dep-A: redemption by Alice
(preb, sigb, t ≥ T) // dep-B: refunding Bob after T
(prea, preb) // dep-M : anyone can burn vdep

with prea, preb

(8)

He-Col:
(sigb, t ≥ T, πA) // col-B: refunding Bob after T
(prea, preb, πM) // col-M :max(0, vcol − vdep) redemption

for anyone, burning the rest
(9)

where,
• πA is a proof showing He-Dep has been redeemed

through either dep-A or dep-B, ℓ blocks ago.
• πM is a proof showing He-Dep has been redeemed

through dep-B or dep-M (perhaps in the same block).

At a high level, the protocol will proceed through dif-
ferent paths as follows:

• dep-A: Under an honest execution, when Alice knows
a preimage (prea) the hash lock in He-Dep, He-Dep is
redeemed for Alice.

• dep-B: In case Alice does not reveal prea within timeout,
Bob gets back the deposit by revealing preb.

• col-B: Bob receives a refund of collateral by showing
proof that He-Dep was redeemed ℓ blocks ago.

• col-M : In case both prea and preb are known, the miner
can get vcol − vdep from He-Col, by proving He-Dep has
been redeemed.

In what follows, we prove the incentive compatibility of
He-HTLC. We leave the implementation for future work.

6.1. Security Analysis

We will show that He-HTLC is incentive-compatible for
any vcol ∈ (vdep, 2vdep]. Note that the lower vcol the more
desirable He-HTLC is for Bob since he needs to put down
less collateral. To be a bit more specific, we will show for
any 0 < ϵ < 1 and vcol = (1 + ϵ)vdep, there always exists
an sufficiently large ℓ such that all parties are incentivized
to follow He-HTLC[ℓ].

Claim 1. Suppose Bob has redeemed He-Dep through
dep-B in round r ≥ T and paths col-B or col-M have
not been taken. Then, for all miners in subsequent rounds,
unless it is bribed with an amount > vcol − vdep, it has a
higher utility in taking col-M in comparison to including
unrelated transactions.

Proof: Since He-Dep was redeemed through dep-B,
subsequent miners know preb and can produce πM . If it
follows path col-M in Eq. (9), it receives a utility of vcol −
vdep. If the miner includes unrelated transactions, it would
earn a fee f . Since we assume vcol−vdep > f , all subsequent

miners would prefer col-M .3

Now, we show an upper bound on how much Bob can
pay after dep-B.

Claim 2. Once Bob redeems He-Dep through dep-B, Bob
would never choose to bribe more than a sum of vcol.

Proof: This follows from the fact that the Bob can
only earn vcol through the path col-B. Paying a higher
amount as bribe strictly reduces Bob’s utility.

Lemma 17. Suppose Alice publishes tx dep
A to redeem He-

Dep via dep-A in round tpub < T . Suppose Bob has
redeemed He-Dep via dep-B. Suppose the parameter ℓ is
such that the expected number of distinct miners within ℓ
blocks is κ. Then, among these distinct miners, there exists
a miner who has a higher utility in taking the path col-M
when vcol ≥ κ

κ−1v
dep.

Proof: Since both prea and preb are available, path
col-M can be taken. In addition, if Bob provides sigb, path
col-B can be taken ℓ blocks after dep-B. There are κ distinct
miners deciding between choosing col-M , col-B, or not
taking either path. From Claim 1, we know that col-B can
only be taken if each of the κ miners is offered a bribe
> vcol − vdep. Moreover, from Claim 2, we know that Bob
can offer a maximum bribe of vcol distributed among all the
κ miners. At least one of these bribes to some miner needs
to be ≤ vcol

κ = vcol − vdep. Let Mi be the first such miner
with the lowest round number. All miners before Mi cannot
take col-B (since they are within ℓ blocks from dep-B). As
per Claim 1, Mi is incentivized to take col-M .

Theorem 5. Assuming all parties are (actively or passively)
rational, and κ

κ−1v
dep ≤ vcol ≤ 2vdep for some integer

κ ≥ 2, ℓ is set such that expected number of miners across ℓ
blocks is κ, our protocol He-HTLC[ℓ] provides the following
guarantees:

1) If (prea, siga) is available to miners at round t < T ,
then all parties prefer taking dep-A followed by col-B.

2) If (prea, siga) is not available to miners in any round
t < T , then all parties prefer dep-B followed by col-B.

Proof: Part 1. If (prea, siga) is available to miners
at round t < T , the following two options are possible.

1) Bob does not reveal preb.
2) Bob reveals preb to miners.

First we will show that in this case Bob will always prefer
the first option over the second. If Bob does not reveal preb
to the miners, Alice redeems vdep through dep-A (since
f dep
A > f), and eventually Bob redeems vcol through col-B.

The utility of Alice and Bob are vdep and vcol respectively.

3. Observe that there may exist external mechanisms where all miners
and Bob together enter into an agreement where col-M is never taken and
together they receive and share vdep + vcol; if a miner does not follow the
agreement, it penalizes the miner. However, due to the permissionlessness
of the system, adhering to such an agreement cannot be enforced. In
particular, a miner can always mine using a new key pair and obtain
vcol − vdep through col-M .

16

Each of the winning miners can earn a fee f dep
A and f col

B
respectively.

In the second option, Bob reveals preb to miners. Ob-
serve that choosing this option offers no additional benefit
for Bob. Given that prea is already known to miners, if
MH-Dep were to be redeemed for Bob via path col-B it
follows from Lemma 17 that MH-Col would be redeemed
by some miner via path col-M . In this case, the sum of
Bob’s and all miner’s expected payoff would only be vcol

(which is the same as Bob’s expected payoff in the honest
case). If miners choose to still redeem MH-Dep for Alice
via path dep-A even though both prea and preb are known,
only then would Bob’s expected payoff be vcol, which he
could also have received from not revealing preb in the first
place. Therefore, Bob will always choose not to reveal preb
when prea is already known.

Thus, if (prea, siga) is available to miners at round
t < T , then all parties are incentivized to take paths dep-A
followed by col-B. Note that even if preb were known,
contrary to MAD-HTLC, a miner could not redeem MH-Col
via path col-M if MH-Dep was redeemed via path dep-A.

Part 2. Let us consider that Alice does not reveal prea in
any time < T . Observe that if Alice does not have access
to prea, then the only available path is dep-B followed by
col-B. Thus, we now assume Alice does know prea at round
< T . Then the following options are possible:
1) Bob reveals preb to miners at some round ≥ T . Alice

never reveals prea.
2) Bob reveals preb to miners at some round ≥ T . Alice

reveals prea in some round ≥ T possibly in exchange
for a bribe from a miner.
Observe that in the first option, the only available paths

are dep-B followed by col-B. Alice, Bob and miners have
a utility of 0, vdep + vcol and transactions fees respectively.

In the second option, hypothetically if Alice had revealed
prea at round < T , she would earn a utility of vdep. Thus,
the only reason to delay revealing prea is if she can obtain
a bribe > vdep. This may be possible if Alice is colluding
with miners to cheat Bob. However, due to the need for πM

in redeeming col-M for vcol−vdep < vdep, the paths dep-A
and col-M are exclusive. Thus, since the miner’s earnings
through this path is vcol − vdep < vdep, it is not incentive
compatible for them to pay a bribe > vdep to Alice.

Thus, if prea is known to Alice, sharing it with the
miners yields her the highest utility of vdep. Hence, if (prea,
siga) is not available to miners in any round t < T , it must
be the case that Alice does not have access to it either. Thus,
the only available path is dep-B followed by col-B.

7. Related Work

Incentive attacks in blockchains. Bribery attacks specif-
ically against HTLC have been proposed. [8] proposes
temporary censorship attacks where attackers can censor
transactions from a victim until a timeout. Their attacks
apply to HTLC and would enable Bob to censor Alice’s

transaction and revert the payment. Attacks in [8], require
expressive smart contracts languages such as Solidity in
Ethereum. [9] proposed a variant that works with Bitcoin
script, along with other improvements.

In general, the incentive compatibility of blockchain
protocols has been studied extensively. E.g., selfish mining
attack [30] show that Bitcoin is not incentive-compatible
and miners may gain more by strategically withholding
blocks. External forces can also affect miners’ behaviors.
Bonneau et al. [10] shows how to bribe miners, possibly
using the blockchain itself, to take over the system for
a short duration. McCorry et al. [11] use smart contacts
to enable expressive bribery attacks, such as censoring
transactions and even rewriting the history. Other ways to
implement bribery have been proposed. E.g., [31] shows
that one can embed bribes in transaction fees to incentivize
history rewrite attacks.

However, these works did not consider the possibility
that miners may be incentivized to initiate reverse bribery at-
tacks. Also, our attacks require a more sophisticated bribery
mechanism, since miners initiate the attack.

Fair exchanges solutions using blockchains. We devised
new fair exchange protocols to enable reverse bribery. Com-
pared to various fair exchange protocols proposed in other
contexts [19]–[21], what our attacks require is more chal-
lenging to achieve because of the power asymmetry between
the participants of the exchanges: miners have much more
control of the blockchain than Bob. First, proposed fair
exchange protocols focus on the fair exchanges between
two non-mining parties, whereas in our setting the exchange
takes place between Bob and miners. Second, existing solu-
tions typically rely on miners as trusted parties to facilitate
the exchange, while in our setting rational miners may try to
compromise the exchange in order to maximize their gain.

Actively rational miners and MEV. Miners are typically
modeled as rational agents that pick the most profitable
transactions to include in blocks (e.g., [9]–[11], [31]). We
show that they can do better if they actively create more
opportunities. In a sense, our model is a generalization of
that in [32], which points out that miners can gain significant
profit by manipulating transaction orderings and mounting,
e.g., frontrunning attacks. This surplus is referred to as
Miners Extractale Value or MEV. In practice, miners do
initiate protocols on top of regular mining to get MEV,
e.g., by joining MEV extraction networks such as Flashbots
and Eden Networ [15], [16] or offer direct RPC channels
for a fee [17]. The reverse bribery attacks we show are
a different avenue of MEV from influencing other (non-
mining) participants.

8. Discussion and Future Work

In this section, we discuss our model, attacks, and our
solution, in terms of parameter choices, implications in
practice, and interesting open questions.

17

On actively rational miners. Miners are typically mod-
eled as rational agents, but our key observation is that we
must consider different aspects of rationality. MAD-HTLC,
for example, only considers passively rational miners who
optimize over passively available opportunities, whereas this
paper shows that they can do better if they actively create
more opportunities. As discussed above, reverse bribery can
be viewed as another avenue of MEV [32] through actively
influencing other (non-mining) participants.

On the other hand, assuming all miners are actively
rational is perhaps too strong and does not reflect reality. If
that were true, all miners would extort any entity trying to
get a refund from an HLTC. Clearly, we do not live in such
a world currently. Nonetheless, we do observe some miners
engaging in active MEV extraction. Identifying how reality
corresponds to the actively rational model is an interesting
open question.

Comparing the three attacks and our solution. We present
three different attacks. The first attack SIRBA serves as
a warmup showing there exists a strategy that would be
preferred by Bob and an actively rational miner compared
to following MAD-HTLC. SDRBA improves upon this by
removing uncertainties associated with miner election —
the attack takes place only if the actively rational miner is
elected for the appropriate block. However, the attack works
only when the collateral amount is small. With HyDRA, we
remove this restriction since a “winning” miner can redeem
vcol and vdep simultaneously after T . However, the miner
and Bob together need to compensate other miners with the
amount Cdelay. Thus, the preferred attack depends on the
values of vcol, vdep, and Cdelay.

Our solution He-HTLC forces Bob to get the refund in
multiple steps, which intuitively increases the cost Cdelay to
a large value where each miner needs to be paid > vcol −
vdep (the amount they would receive otherwise). By making
this total cost larger than vcol, we ensure Bob cannot afford
to bribe. In that sense, our solution can be viewed as a
complement to the HyDRA attack. We present a solution
for vcol = 2vdep; however, this can be extended to vcol =
(1 + ϵ)vdep (where ϵ · vdep is larger than the transaction
fees) by increasing ℓ (and the number of distinct miners κ)
appropriately. For Bob, this can be viewed as a trade-off
between providing high collateral and receiving a refund
quickly (small ℓ) and providing small collateral and waiting
for a long time (large ℓ). Extending our solution to have
vcol ≤ vdep, the regime where SDRBA works is an open
question.

Assumption on the absence of forks. For simplicity, we
assume that the blockchain does not fork. This is reasonable
for our attacks since we only need to show that there exist
scenarios where the attacks are successful. For our solution
He-HTLC, we introduce the path col-M where miners can
earn vcol − vdep. However, if Alice and Bob are rational,
miners would never have the opportunity to use this path.
Thus, the presence of forks does not influence a miner’s
utility w.r.t. our contracts, and conversely, since miners

cannot redeem through col-M , they will not create forks
to achieve higher gains through this contract.

Practicality considerations. In our attacks, miners and Bob
need to communicate through some off-chain channel to
negotiate offers and run the exchange protocol. Though they
do not exist today, such channels can be built in several
ways. E.g., like [17], miners could open up channels for
Bob to indicate interests. Alternatively, platforms like [28]
might emerge to connect miners and malicious Bob.

Fair exchange as a solution? We use fair exchange pro-
tocols to facilitate reverse bribery but can setting up fair
exchanges between Alice and the miner solve bribery attacks
against HTLC to begin with? This does not work since the
fair exchange does not solve the fundamental misalignment
of incentives. Here is a specific attack even we assume
miners do not learn prea. Even though the knowledge of
prea is important to the miner while negotiating a bribe, it
is not required to redeem MH-Dep and MH-Col; after the
timeout, they can be redeemed using only preb and sigb.
This allows for a hybrid attack where Bob gets vdep and
vcol and pays the miner some bribe.

Extending reverse bribery to other systems. We con-
sidered specific attacks against MAD-HTLC, but when-
ever application-level protocols rely on miners (e.g., as
enforcers), the possibility of miners’ actively participating
need to be considered. Thus, reverse bribery might be a
concern in not just HTLC-like contracts, and there might be
other attacks when miners engage in application-level logic
in addition to reverse bribery.

18

References

[1] S. Nakamoto et al., “Bitcoin,” A peer-to-peer electronic cash system,
2008.

[2] V. Buterin et al., “A next-generation smart contract and decentralized
application platform,” white paper, vol. 3, no. 37, 2014.

[3] Hash Time Locked Contracts - Bitcoin Wiki. [Online]. Available:
https://en.bitcoin.it/wiki/Hash Time Locked Contracts

[4] J. Poon and T. Dryja, “The bitcoin lightning network: Scalable off-
chain instant payments,” 2016.

[5] Lightning network statistics — 1ML - Lightning network search
and analysis engine - Bitcoin mainnet. [Online]. Available:
https://1ml.com/statistics

[6] M. Campanelli, R. Gennaro, S. Goldfeder, and L. Nizzardo, “Zero-
knowledge contingent payments revisited: Attacks and payments for
services,” in Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, 2017, pp. 229–243.

[7] M. Herlihy, “Atomic cross-chain swaps,” in Proceedings of the 2018
ACM symposium on principles of distributed computing, 2018, pp.
245–254.

[8] F. Winzer, B. Herd, and S. Faust, “Temporary censorship attacks in
the presence of rational miners,” in 2019 IEEE European Symposium
on Security and Privacy Workshops (EuroS&PW). IEEE, 2019, pp.
357–366.

[9] I. Tsabary, M. Yechieli, A. Manuskin, and I. Eyal, “Mad-htlc: because
htlc is crazy-cheap to attack,” in 2021 IEEE Symposium on Security
and Privacy (SP). IEEE, 2021, pp. 1230–1248.

[10] J. Bonneau, “Why buy when you can rent?” in International Confer-
ence on Financial Cryptography and Data Security. Springer, 2016,
pp. 19–26.

[11] P. McCorry, A. Hicks, and S. Meiklejohn, “Smart contracts for bribing
miners,” in International Conference on Financial Cryptography and
Data Security. Springer, 2018, pp. 3–18.

[12] V. Buterin. The p + ϵ attack — Ethereum Foundation blog. [On-
line]. Available: http://web.archive.org/web/20220121082632/https:
//blog.ethereum.org/2015/01/28/p-epsilon-attack/

[13] L. Breidenbach, C. Cachin, B. Chan, A. Coventry, S. Ellis, A. Juels,
F. Koushanfar, A. Miller, B. Magauran, D. Moroz et al., “Chainlink
2.0: Next steps in the evolution of decentralized oracle networks,”
2021.

[14] P. Daia, T. Kell, I. Miers, and A. Juels. On-chain vote
buying and the rise of dark daos. [Online]. Available: https:
//hackingdistributed.com/2018/07/02/on-chain-vote-buying/

[15] Flashbots. (2021, 05) MEV-SGX: A sealed bid MEV
auction design. [Online]. Available: https://ethresear.ch/t/
mev-sgx-a-sealed-bid-mev-auction-design/9677

[16] Eden Network. [Online]. Available: https://explorer.edennetwork.io/

[17] Ethermine’s MEV Relay. [Online]. Available: https://ethermine.org/
mev-relay

[18] W. Foxley, “Ethermine adds front-running software to help
miners offset eip 1559 revenue losses,” CoinDesk, May 2021.
[Online]. Available: https://www.coindesk.com/markets/2021/03/17/
ethermine-adds-front-running-software-to-help-miners-offset-eip-1559-revenue-losses/

[19] G. Maxwell, “Zero knowledge contingent payment,” 2015.
[Online]. Available: https://en.bitcoin.it/wiki/Zero Knowledge
Contingent Payment

[20] I. Bentov, Y. Ji, F. Zhang, L. Breidenbach, P. Daian, and A. Juels,
“Tesseract: Real-time cryptocurrency exchange using trusted hard-
ware,” in Proceedings of the 2019 ACM SIGSAC Conference on
Computer and Communications Security, 2019, pp. 1521–1538.

[21] M. Herlihy, “Atomic cross-chain swaps,” in Proceedings of the 2018
ACM symposium on principles of distributed computing, 2018, pp.
245–254.

[22] I. Anati, S. Gueron, S. Johnson, and V. Scarlata, “Innovative Tech-
nology for CPU Based Attestation and Sealing,” in HASP, 2013.

[23] F. McKeen, I. Alexandrovich, A. Berenzon, C. V. Rozas, H. Shafi,
V. Shanbhogue, and U. R. Savagaonkar, “Innovative instructions and
software model for isolated execution,” in HASP, 2013.

[24] scipr-lab/libsnark: C++ library for zksnarks. [Online]. Available:
https://github.com/scipr-lab/libsnark

[25] M. Hoekstra, R. Lal, P. Pappachan, V. Phegade, and J. Del Cuvillo,
“Using innovative instructions to create trustworthy software solu-
tions,” in HASP, 2013.

[26] F. Tramèr, F. Zhang, H. Lin, J. Hubaux, A. Juels, and E. Shi, “Sealed-
glass proofs: Using transparent enclaves to prove and sell knowledge,”
in EuroS&P, 2017.

[27] V. Costan and S. Devadas, “Intel SGX explained.” IACR Cryptol.
ePrint Arch., vol. 2016, no. 86, pp. 1–118, 2016.

[28] Flashbots’ MEV Explore. [Online]. Available: https://explore.
flashbots.net/

[29] Flashbots. (2022) Transparency Dashboard. [Online]. Available:
https://dashboard.flashbots.net/

[30] I. Eyal and E. G. Sirer, “Majority is not enough: Bitcoin mining
is vulnerable,” in International conference on financial cryptography
and data security. Springer, 2014, pp. 436–454.

[31] K. Liao and J. Katz, “Incentivizing blockchain forks via whale
transactions,” in International Conference on Financial Cryptography
and Data Security. Springer, 2017, pp. 264–279.

[32] P. Daian, S. Goldfeder, T. Kell, Y. Li, X. Zhao, I. Bentov, L. Breiden-
bach, and A. Juels, “Flash boys 2.0: Frontrunning in decentralized
exchanges, miner extractable value, and consensus instability,” in
2020 IEEE Symposium on Security and Privacy (SP). IEEE, 2020,
pp. 910–927.

19

https://en.bitcoin.it/wiki/Hash_Time_Locked_Contracts
https://1ml.com/statistics
http://web.archive.org/web/20220121082632/https://blog.ethereum.org/2015/01/28/p-epsilon-attack/
http://web.archive.org/web/20220121082632/https://blog.ethereum.org/2015/01/28/p-epsilon-attack/
https://hackingdistributed.com/2018/07/02/on-chain-vote-buying/
https://hackingdistributed.com/2018/07/02/on-chain-vote-buying/
https://ethresear.ch/t/mev-sgx-a-sealed-bid-mev-auction-design/9677
https://ethresear.ch/t/mev-sgx-a-sealed-bid-mev-auction-design/9677
https://explorer.edennetwork.io/
https://ethermine.org/mev-relay
https://ethermine.org/mev-relay
https://www.coindesk.com/markets/2021/03/17/ethermine-adds-front-running-software-to-help-miners-offset-eip-1559-revenue-losses/
https://www.coindesk.com/markets/2021/03/17/ethermine-adds-front-running-software-to-help-miners-offset-eip-1559-revenue-losses/
https://en.bitcoin.it/wiki/Zero_Knowledge_Contingent_Payment
https://en.bitcoin.it/wiki/Zero_Knowledge_Contingent_Payment
https://github.com/scipr-lab/libsnark
https://explore.flashbots.net/
https://explore.flashbots.net/
https://dashboard.flashbots.net/

	Introduction
	Reverse bribery attacks against MAD-HTLC
	Fixing HTLC with He-HTLC
	Summary of Contributions

	Overview of Results
	HTLC, Delay Attacks, and Proposed Fixes
	Reverse Bribery: Revisiting Incentives in MAD-HTLC
	Fixing HTLC (Once Again) with He-HTLC

	System Model and a Success-Independent Reverse Bribery Attack
	System Model
	Success-Independent Reverse Bribery Attack
	Game Setup
	Timeline of the SIRBA game
	Action spaces
	Utility

	MAD-HTLC Incentive Incompatibility
	Realising SIRBA

	Success Dependent Reverse Bribery Attack
	Game Setup
	MAD-HTLC Incentive Incompatibility
	Safety of MAD-HTLC against SDRBA
	Realizing SDRBA

	Hybrid Delay-Reverse Bribery Attack
	The HyDRA attack
	Security Analysis

	He-HTLC: An Incentive Compatible HTLC
	Security Analysis

	Related Work
	Discussion and Future Work
	References

