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Abstract—Hashed Time-Locked Contracts (HTLCs) are a
widely used primitive in blockchain systems such as payment
channels, atomic swaps, etc. Unfortunately, HTLC is incentive-
incompatible and is vulnerable to bribery attacks. The state-of-
the-art solution is MAD-HTLC (Oakland’21), which proposes an
elegant idea that leverages miners’ profit-driven nature to defeat
bribery attacks.

In this paper, we show that MAD-HTLC is still vulnerable as
it only considers a somewhat narrow set of passive strategies by
miners. Through a family of novel reverse-bribery attacks, we
show concrete active strategies that miners can take to break
MAD-HTLC and profit at the loss of MAD-HTLC users. For these
attacks, we present their implementation and game-theoretical
profitability analysis.

Based on the learnings from our attacks, we propose a new
HTLC realization, He-HTLC,1 that is provably secure against
all possible strategic manipulation (passive and active). In ad-
dition to being secure in a stronger adversary model, He-HTLC
achieves other desirable features such as low and user-adjustable
collateral, making it more practical to implement and use that
proposed schemes. We implemented He-HTLC on Bitcoin and the
transaction cost of He-HTLC is comparative to average Bitcoin
transaction fees.

I. INTRODUCTION

Blockchain-based cryptocurrencies like Bitcoin [1] and
Ethereum [2] enable secure transfer of tokens without a central
authority and allow users to set elaborate and programmable
smart contracts to govern token transfers. Hashed Time-
Locked Contract (HTLC) [3] is a widely used smart contract
implementable both on Ethereum and Bitcoin. HTLC is promi-
nently used in the Lightning network [4], [5] to securely route
payments through multiple payment channels, but HTLC is
also essential to contingent payments [6], atomic swaps [7],
etc. At a high level, an HTLC is parameterized with a timelock
T and a hash lock H (hence the name), enforcing a conditional
transfer of v tokens from a payer (Bob) to a payee (Alice):
Before timeout T , Alice can spend the v tokens by sending
a transaction embedding a pre-image of H to the blockchain;
after the time T , Bob can spend the tokens.

Unfortunately, as shown by previous works [8], [9] HTLC
is vulnerable to bribery attacks. HTLC assumes that miners
will include Alice’s transaction to the blockchain in a timely
fashion before the timeout T . However, as rational agents
seeking to maximize profit, miners may not adhere to the
desired behavior when properly incentivized by a malicious
Bob. For example, Winzer et al. [8] showed that Bob can set
up a smart contract to reward (or bribe) miners if they ignore
Alice’s transaction until after the timeout, violating the contract
terms in HTLC and causing Alice to lose the tokens.

1Our specification is lightweight and inert to incentive manipulation attacks.
Hence, we call it He-HTLC where He stands for Helium.

Tsabary et al. [9] proposed an elegant solution called MAD-
HTLC that aims to defend HTLC from bribery attacks. The
key idea is to require the payer to deposit collateral, and any
misbehavior by the payer will lead to the collateral being
confiscated by miners. MAD-HTLC ensures that rational miners
will always penalize the cheating payer, thus deterring the
payer from misbehaving.

However, while MAD-HTLC treats miners as rational and
strategic agents (instead of assuming they are honest), it only
considers a narrow set of possible strategies. Specifically, it as-
sumes miners will confirm the most profitable transactions, but
will not engage in other activities. This assumption, however,
is often violated in reality. Due to their special position in the
ecosystem, miners might be able to reap additional gains by
taking strategic actions on top of mining. A notable example is
miners’ fast-growing involvement in MEV extraction [10]. In
the year 2021, almost all dominant Ethereum miners (99.9%
of Ethereum hashrate according to [11]) started to engage in
for-profit “private relay” services [12]–[14] as an additional
source of revenue [15].

We refer to miners’ strategic actions beyond mining as
actively rational strategies—in contrast we refer to miners per-
forming only standard mining as passive since they passively
pick the best opportunity made available to them, instead of
creating better ones by themselves.

Motivated by the rise of actively rational strategies in real-
world blockchains (e.g., [12]–[14]), we aim to understand their
security implications for HTLC. Our results are twofold:

• We discover a family of attacks that render the state-of-
the-art bribery-resistant realization of HTLC, MAD-HTLC,
insecure with the presence of actively rational miners.

• We propose a new HTLC realization, He-HTLC, that is
provably secure against all possible strategic manipulation
by actively rational miners.

A. Reverse bribery attacks against MAD-HTLC

The damaging power of active rational miners is showcased
through a family of novel reverse bribery attacks against MAD-
HTLC. In these attacks, the miner bribes the payer—hence the
bribery is “reverse”—to divulge certain information in a way
that both the miner and the payer are better off, at the expense
of the payee. Reverse bribery is an example of actively rational
actions because miners initiate the attack.

Key intuition. To understand the intuition behind our attacks,
we briefly review the design of MAD-HTLC. It has the same
functionality as HTLC with two key changes. First, in a
transaction where Bob pays Alice vdep tokens, Bob also
deposits collateral of vcol tokens. Second, upon any bribery
attempt of Bob, miners will confiscate both vdep and vcol. In
other words, in honest executions, Bob gets back vcol; if Bob
attempts to bribe, Bob gets 0 (Alice too), and miners earn
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vdep and vcol. The design goal is to disincentivize Bob from
bribery, which this accomplishes. However, we observe that it
leads to another attacking opportunity because miners and Bob
together can earn more than they would in honest executions;
by “dividing up the loot”, both may be better off attacking.

Specifically, the miners will agree with Bob on the follow-
ing deal: Bob will divulge certain information to enable miners
to confiscate vdep and vcol, but the miners will compensate Bob
with vcol+ϵ in a separate payment. Both, the miners and Bob,
will earn more than they would in honest executions: miners
will earn vdep − ϵ more,2 and Bob will earn ϵ more.

Challenges. While we establish the feasibility of an attack
with the above intuition, there are two key challenges that we
need to overcome to make these attacks work.

First, the above intuition assumes there was only one miner,
but when we have multiple miners competing, each with
different mining power, each of them being either passively
or actively rational, it is unclear if any of them or all of them
should bribe Bob and what amount should be bribed. We need
to establish whether there exists a feasible range of values such
that both Bob and the miner are better off through rigorous
game-theoretic analyses.

Second, of course, the miners and Bob do not trust each
other. The way they would “divide up the loot” in a mutually
distrusting fashion poses a technical challenge. Unlike other
blockchain-based fair exchange problems (such as [16]–[18])
where miners are trusted to facilitate the exchange, we must
not trust miners. To address this, we must carefully balance the
power between Bob and miners to achieve desired properties.

B. Fixing HTLC with He-HTLC

Since the state-of-the-art HTLC scheme is proven insecure
in the presence of actively rational miners, whether it is
possible to realize HTLC securely in this stronger adversary
model becomes an open question. With He-HTLC, we answer
the question positively.

Intuition behind He-HTLC. Our attacks exploit two critical
aspects of MAD-HTLC. First, MAD-HTLC overly compensates
miners with vdep+vcol tokens when preb is available. Second,
since all of these tokens can be redeemed in a single transac-
tion, we can execute an exchange between Bob and the miners
even if they do not trust each other.

To design our incentive-compatible protocol He-HTLC, we
need to ensure that a combination of (i) Alice and miners,
or (ii) Bob and miners, are not incentivized to deviate from
the protocol. To address the first combination, He-HTLC does
not allow Alice and miners together to retrieve an amount
greater than vdep; this elicits an honest execution from Alice.
To address the second combination, the key challenge is to
ensure that neither bribery from Bob to miners (for which
MAD-HTLC was introduced) nor reverse-bribery from miners
to Bob (introduced in this work) is possible.

To disincentivize reverse bribery, we reduce the amount of
tokens that miners can confiscate as enforcers of the contract.
Thus, miners do not earn enough to divide up the loot with

2We currently ignore transaction fees, but consider them in later sections.

Bob. However, as is, this does not solve the concern for bribery
attacks (for which MAD-HTLC was introduced) — the HTLC
specification requires that Bob can spend all of the deposited
tokens after time T . Thus, there is an imbalance between what
Bob can earn in this situation (i.e., vdep+vcol), and the largest
amount miners can confiscate. Consequently, miners would
still be receptive to bribes higher than the confiscation amount.
To disincentivize bribery, we break the ability to atomically
perform a fair exchange and utilize a combination of distrust
between the miners and Bob and the ability of each of the
miners to confiscate, albeit a lower amount, as enforcers. In
particular, we require that Bob reveals the secret required
for miners to confiscate, several blocks before he can spend
the amount. Now, even if he bribes miners larger than the
confiscation amount, if the number of blocks in the interim is
sufficiently large, at some point he would run out of budget
to bribe all of them. This ensures that Bob would follow the
HTLC specification.

Practical benefits. Not only is our protocol secure in a
stronger adversary model with actively rational miners, but
it also achieves several other desirable features. Even setting
aside the strong security guarantees, these improvements alone
make it more practical to implement and deploy than other
proposed schemes (e.g., MAD-HTLC and Ponyta [19]). First,
our protocol specifies how much collateral the payer has to
put down to render the protocol secure, which helps payers
to avoid making heuristic decisions. Furthermore, it provides
a knob (looking ahead, the ℓ parameter) that the payer can
turn to trade-off between the collateral amount vcol and the
time duration that the collateral must be locked for. Choosing
a longer lock period allows the payer to lock less collateral,
and vice versa. Thanks to this, the required collateral can be
made much lower than vdep which is friendly to users with
low capital (whereas [19] requires collateral to be 2 × vdep).
Finally, stronger security is not achieved through much more
complexity. Our protocol is simple to understand and its
security analysis is clean. It can be implemented on current
blockchains without requiring any changes. We report on the
implementation in Bitcoin and the experiment results show that
the transaction costs are below average.

C. Summary of Contributions

In summary, this paper revisits the incentive attacks against
HTLC and makes the following contributions:

• To the best of our knowledge, we propose the first model that
captures miners’ actively rational actions. While observed in
practice [12]–[14], miners’ strategic actions besides mining
have not been captured by existing models, leaving a gap
in game theoretic analyses that make our attacks possible.

• We introduce novel reverse bribery attacks which allows
actively rational miners to profitably deviate from MAD-
HTLC. We analyze the profitability of our attacks in a
rigorous game-theoretic model and outline their imple-
mentation using trusted execution environments or zero-
knowledge proofs. We further show that reverse bribery can
be combined with ordinary delay attacks (e.g., those in [8])
to form a hybrid attack that renders MAD-HTLC insecure
regardless of the relationship between vcol and vdep with
constant probability.
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• We present He-HTLC, the first HTLC scheme that is secure
in the presence of actively rational miners. In addition to
stronger security guarantees, He-HTLC also achieves desir-
able features such as low and user-adjustable collateral. We
implemented He-HTLC on Bitcoin and the transaction costs
are comparable to average Bitcoin transaction fees.

II. OVERVIEW OF RESULTS

A. HTLC, Delay Attacks, and Proposed Fixes

To aid understanding, before describing our results, we start
by reviewing Hash Time-Locked Contracts (HTLC), concerns
with the existing protocol, and attempts to fix it.

HTLC. As introduced earlier, an HTLC where Bob pays Alice
vdep tokens is specified by (pkA, pkB , v

dep, prea, T ), where
pkA and pkB are public keys of Alice and Bob, prea is a
secret value whose hash is on-chain, and T is the agreed-
upon timeout. The above HTLC stipulates that Bob’s deposit
of vdep tokens can be spent (or redeemed) in two ways: (i)
Alice can spend if she obtains prea from Bob and broadcasts
a signed transaction tx dep

A including prea, or (ii) Bob can spend
by broadcasting a signed transaction tx dep

B after time T (i.e., a
refund mechanism if Alice is inactive for T time).

In practice, there are several variants of HTLC. The above
description abstracts away implementation- and application-
specific details and allows us to focus on the core issues
(similar to HTLC-Spec in MAD-HTLC [9]). We refer readers
to [9] for a survey of applications of HTLC.

Bribery attacks on HTLC. Winzer et al. [8] and Tsabary et
al. [9] showed attacks where Bob bribes miners to censor tx dep

A

so that Bob can redeem vdep for himself at time T . Figure 1
depicts one of the attacks, showing the relevant events on the
blockchain and the utility of involved parties in the end. We
assume there are three miners {Mi}3i=1, and the blocks are
labeled by the miner mining it. We assume Alice obtains prea
from Bob through an off-chain channel and Alice releases
tx dep

A (paying a transaction fee f dep
A ) at some time before T .

As shown in Fig. 1, Bob can bribe b tokens (represented as
circles) to each of the miners before timeout T to exclude
tx dep

A . The bribe can be paid offline or enforced through a
separate contract. Then, Bob can create tx dep

B at time T , which
is included by M2. As depicted in Fig. 1, Alice does not receive
her expected gain whereas Bob gains vdep−f dep

B −4×b. (The
figure shows a party’s earning above the x axis and the cost
below it. The net gain is the difference between the two.)

MAD-HTLC. To make HTLC bribery-resistant, Tsabary et
al. [9] proposed a modified HTLC protocol called MAD-HTLC
(where MAD stands for mutually assured destruction).

As introduced above, MAD-HTLC implements the same
functionality as HTLC, but with two key changes. First, it
introduces a second hash lock (whose pre-image is denoted
preb) and an additional redemption path where miners can
redeem vdep if they have access to both prea and preb. Second,
MAD-HTLC introduces an additional collateral contract initiated
by Bob which contains some collateral tokens vcol that can
also be confiscated by miners if they know (prea, preb). These
modifications aim to disincentivize Bob from revealing preb

M3 M1 M2 M1 M2

Alice

Bob

M3M1 M2

fdep
B + b

vdep � fdep
B

Alice broadcasts
<latexit sha1_base64="k+Czx6fNTlBl3yKH/CxNN170Uus="></latexit>

txdep
A

Timeout T

Utility of involved partiesEvents on the blockchain

U
til

ityBob

txdep
BBribe b

Figure 1: A delaying attack by Bob on HTLC. Bob bribes
miners to censor tx dep

A until the timeout, and then broadcasts
tx dep

B . In terms of utility, miners earn fees and bribes, and Bob
earns vdep at the expense of Alice (dashed rectangle denotes
Alice’s expected gain in honest executions).

unless he needs to be truly refunded, in situations where prea
is not released.

To recall notations in [9], Bob’s payment of vdep tokens is
deposited in a contract called MH-Dep, which stipulates that
vdep can be redeemed in one of the following three paths (we
use “paths” and “transactions” interchangeably, and to redeem
through dep-A is the same as broadcasting tx dep

A ; the notation
t ≥ T indicates that this transaction is invalid until T ):

tx dep
A = (prea, siga) // dep-A: Alice can spend with prea

tx dep
B = (preb, sigb, t ≥ T ) // dep-B: Bob can spend after T

tx dep
M = (prea, preb) // dep-M : Anyone can spend with

both pre-images
(1)

Bob’s collateral vcol in contract MH-Col [9] can be redeemed
in two ways:

tx col
B = (sigb, t ≥ T ) // col-B: Bob can spend after T

tx col
M = (prea, preb, t ≥ T ) // col-M :Anyone can spend

with both pre-images
(2)

Figures 2a and 2b present two example scenarios in MAD-
HTLC. In Fig. 2a, Bob is honest and he broadcasts tx col

B after
the timeout to get back the collateral. Figure 2b illustrates
how MAD-HTLC prevents Bob’s bribery attempts. At time T ,
rational miners will not let Bob spend vdep via tx dep

B , but
instead, they will confiscate both vdep and vcol. Thus, Bob
loses not only vcol but also all bribes. Miners earn Bob’s bribe
b, and the miner who confiscates also earns vdep and vcol.
MAD-HTLC strongly disincentivizes Bob from pulling off the
delaying attack described earlier and incentivizes miners to act
as the enforcers.

B. Reverse Bribery: Revisiting Incentives in MAD-HTLC

Our key observation in this work is that MAD-HTLC is
secure only assuming passively rational miners or miners who
would maximize their utility in terms of the number of tokens
based on transactions available in the mempool. However, if
(some) miners are actively rational, i.e., they can actively seek
out other users in the system and bribe them to obtain a
higher utility, then this additional available action enables a
new vector of attacks.

To intuitively see why this is possible, compare the two
scenarios in Fig. 2a and Fig. 2b, and observe that in MAD-
HTLC, Bob only redeems his collateral vcol at the end of
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(b) In MAD-HTLC, Bob’s bribery attempt will be penalized by miners.
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Figure 2: Example execution scenarios in MAD-HTLC where tx dep
A is broadcast and reverse bribery attacks against MAD-HTLC.

an honest execution whereas miners do not earn any tokens
other than transaction fees. However, the contract allows the
miners and Bob to together redeem vcol + vdep if they can
amicably find a way to retrieve it without necessarily trusting
another party (but only relying on rationality assumptions). In
a successful attack, this total gain can be split such that Bob
and miners are individually better off (at least in expectation)
than following the protocol. We present two different attacks
to achieve such reverse bribery.

SDRBA: Success-dependent reverse bribery attack. Our first
attack essentially shows that when vdep > vcol, Bob and miners
can successfully engage in a reverse bribery attack. We call this
a success-dependent reverse bribery attack (in Section III-B)
since in this attack a miner will only pay a bribe to Bob if it
has the opportunity to redeem vdep through dep-M . However,
in the process, preb is revealed when vdep is redeemed for a
miner; thus, all miners will engage in a competition to redeem
vcol at time T . As shown in Fig. 2c, the winning miner M3

exchanges some bribe vcol + ϵ where ϵ > 0 for a gain of
vdep−(vcol+ϵ). However, in this execution, miner M2 redeems
vcol. (The double arrows with a circle between M3 and Bob
indicate a fair exchange of the bribe for redeeming vdep.)

There are two key challenges to realizing this attack. The
first is the game-theoretic formulation to show that there
exists a set of bribe values under which all parties (except
Alice) are better off in performing this attack under any
given distribution of actively and passively rational miners
and the action spaces available to them. The second challenge
is to show that there exists a mechanism to perform a fair
exchange between a bribing Mi and Bob. We show two
realizations of this attack: the first relies on using trusted
execution environments (TEEs) [20], [21] and the second uses
zero-knowledge proofs [22].

HyDRA: Hybrid delay-reverse bribery attack. Observe that

SDRBA reduces risk w.r.t. mining vdep but not w.r.t. vcol. In
the example described earlier, the bribing miner earns vdep −
(vcol + ϵ). Thus, if vdep ≤ vcol, then the attack is not always
beneficial. This concern can be eliminated if the same miner
redeems both vdep and vcol together (possibly in the same
transaction). However, since MAD-HTLC requires vcol to be
redeemed at time ≥ T , it is necessary to delay redeeming
vdep until then.

This brings us to our second attack (Section IV) where we
use a combination of delay attacks similar to Winzer et al. [8]
and SDRBA. Thus, we call this attack a hybrid bribery attack.
As shown in Fig. 2d, in this attack, miners are first bribed
to exclude transaction tx dep

A until time T . Subsequently, miner
M2 at time T engages in SDRBA where it exchanges vcol + ϵ
for redeeming vdep + vcol. This attack works for any value of
vdep and vcol so far as the cost for the original delay attack
(e.g., those in [8]) is < vdep − ϵ.

C. Fixing HTLC (Once Again) with He-HTLC

Finally, we devise a new HTLC protocol, called He-HTLC,
that is incentive-compatible even against actively rational min-
ers. Intuitively, any such solution needs to protect against both
bribery attacks and reverse bribery attacks. More precisely, the
solution needs to satisfy the following constraints:

(i) when prea is not available to the miners within round T ,
Bob must be able to redeem vdep + vcol.

(ii) when prea is available to the miners within round T , Alice
must receive vdep and Bob must receive vcol, i.e., Bob
and miners together must not be incentivized to form a
coalition and cheat Alice.

(iii) Alice must not be able to collude with miners and earn
more than vdep.

Observe that since the availability of prea is not recorded
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> vcol

T + l

Figure 3: An attempted bribery attack by Bob on He-HTLC.
Bob reveals preb through dep-B at time T , and attempts to
incentivize not taking col-M by bribing an amount > vcol to
each miner until time T + ℓ. Since Bob earns vdep + vcol but
loses > 3vcol, Bob’s attack fails.

on the chain, miners may be willing to ignore prea even if
it is available if they stand to gain more in the process. This
creates a tension between achieving both constraints (i) and
(ii). Indeed, this is exactly what our attacks exploited over
MAD-HTLC in the previous sections. Two key ingredients of
the attacks are: (a) Bob and miners together can get high
earnings vdep+vcol through dep-M + col-M or dep-B + col-B,
and (b) these redemptions could happen atomically in a single
transaction. He-HTLC introduces the following two contracts
to achieve incentive compatibility.

Description of He-HTLC[ℓ] between Alice and Bob

He-Dep:

dep-A: If Alice reveals prea, send vdep to Alice and vcol to Bob

dep-B: If Bob reveals preb after T , send vdep + vcol to He-Col

He-Col:

col-B: After ℓ blocks of the funding of He-Col, send vdep + vcol to Bob

col-M : If both prea, preb are revealed, send vcol to miner and vdep to ⊥

At a high level, our solution breaks the atomicity of
redemption by Bob, and for some paths, burns some tokens.
To address miners’ high earnings (through dep-M + col-M
in MAD-HTLC), in He-HTLC, we ensure that miners can never
confiscate the complete amount, vdep +vcol. We partially burn
some of these tokens so that they earn only up to vcol tokens
(through path col-M in He-HTLC). Thus, Bob has no incentive
to obtain a reverse bribe from miners. To address Bob’s high
earnings through dep-B + col-B (when prea is available), we
break the atomicity of redemption by Bob, by requiring Bob
to reveal the secret preb (through path dep-B) for some ℓ
blocks (where ℓ is a parameter) before he can receive dep-B
+ col-B (through path col-B). This separation provides two
guarantees. First, if prea is not available, Bob would indeed
receive vdep + vcol after ℓ blocks of delay. Second, if prea is
known, then miners have the option of either (i) confiscating
vcol through col-M or (ii) letting Bob receive vdep + vcol and
potentially earning more than vcol through a bribe from Bob.
By setting the value of the delay ℓ appropriately, and since
every distinct miner would have to make this choice, we ensure
that Bob cannot bribe all the miners. Such a situation where
Bob attempts to bribe miners is depicted in Fig. 3; the net
earnings for Bob are lower than the honest execution path.
Thus, it is advantageous for Bob to just follow the protocol.

Finally, to achieve constraint (iii), i.e., Alice and miners

combined cannot cheat Bob, we ensure that when vcol ≤ vdep,
through any combination of paths, miners and Alice together
earn ≤ vdep. Thus, redeeming vdep through dep-A is the ideal
path for Alice.

III. REVERSE BRIBERY ATTACKS

In this section, we present the system model and the
success-dependent reverse bribery attack (SDRBA), and ana-
lyze its feasibility through game-theoretical analysis.

A. System Model

Our system model is similar to that in MAD-HTLC [9]. We
assume the existence of a blockchain-based cryptocurrency that
facilitates transactions of tokens among a set of participants.
In our model, the participants are Alice, Bob, other users, and
a fixed set of n miners, denoted by M = {M1, . . ., Mn}.

Blockchain. We model a blockchain as an append-only ledger
consisting of an ordered sequence of blocks containing trans-
actions. Miners create blocks whereas other participants create
transactions to be submitted. We denote the j-th block as bj .
We consider block-creation as a discrete-time, memory-less
stochastic process. In each round, only one miner creates a
block. For simplicity, we assume that the blockchain does not
fork (discussed in Section VII). The probability with which a
miner Mi creates a block in a round is given by its mining
power λi. We assume λi < 0.5 for each Mi and

∑n
i=1 λi = 1.

We assume λi’s are fixed and known to everyone.

We consider a transaction as confirmed once it has been
included in a block. Miners receive a fee for including
transactions in their block. For simplicity, we assume that
there are always unrelated transactions in the mempool and
that all transactions, unless specified otherwise, pay the same
transaction fee f .

Rationality: active and passive. We consider all participants
rational, risk-neutral, and non-myopic, and will break tie
randomly (i.e., they act to maximize their expected utility at the
end of the game). We assume no discount factor in the utility
of a rational player, i.e., payment of x today has the same
utility as payment of x after a long time. These assumptions
are consistent with MAD-HTLC.

The key difference from MAD-HTLC is that we consider
an extended action space for miners. MAD-HTLC assumes that
miners will maximize their utility (in terms of the number
of tokens earned) only based on transactions and information
available in the mempool. We refer to this type of miners
as passively rational miners because they passively act upon
information provided by other players. Our model, however,
permits miners to reach out to other players and engage in
external protocols with them (hence we call them actively
rational miners). For instance, miners can engage in bribing
Alice or Bob if doing so increases their utility. Formally, we
divide the set of miners M = {M1, M2, . . ., Mn} into two
fixed-size mutually disjoint subsets MP and MA, where MP

refers to the set of passively rational miners and MA refers to
the set of actively rational miners. We refer to the total mining
power of all miners in MP as λpa and miners in MA as λac.
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Practicality considerations. In our attacks, miners and Bob
need to communicate through some off-chain channel to nego-
tiate offers and run the exchange protocol. Though they do not
exist today, such channels can be built in several ways. E.g.,
like [14], miners could open up channels for Bob to indicate
interests. Alternatively, platforms like [23] might emerge to
connect miners and malicious Bob.

B. Success Dependent Reverse-Bribery Attack

The intuition behind SDRBA is described in Section II-B.
We now describe its realization in detail.

The key property of SDRBA is success-dependence in that a
miner only pays Bob if she can successfully attack, i.e., having
tx dep

M confirmed on-chain. At a high level, in order to construct
tx dep

M , the miner needs to know preb, and the miner needs to
pay Bob for an agreed-upon bribe. However, performing this
exchange fairly is challenging: as soon as Bob releases preb
to Mi, it is in the best interest of Mi to not pay Bob, and vice
versa. On the other hand, though, if Bob does not release preb,
how could Mi construct tx dep

M and have it confirmed on-chain?

Our key observation is that, in most blockchain implemen-
tations, miners need not know the content of transactions to
mine a block that includes them. Specifically, PoW mining
is typically done over a block header, which only includes
a compact representation of the transaction (e.g., a Merkle
root). Therefore a miner can start mining knowing only the
hashes of all transactions (from which the Merkle root can
be calculated). In PoS, transactions bind to the block header
via a signature from Mi, which again can be generated from
transaction hashes.

Protocol skeleton. With this idea in mind, we can achieve
fair exchange as follows: Bob prepares a transaction tx dep

M

that redeems MH-Dep for Mi, and sends h = H(tx dep
M ) to

the miner, along with a proof π showing its correctness.
For instance, Bob and the miner can agree on a transaction
template with preb missing, and in π, Bob proves that the
hash of the template filled with a particular preb matches
h. Such proofs can be produced with zero-knowledge proofs
(e.g., [22]) or Trusted Executed Environment (TEE) such as
Intel SGX [24]. The miner verifies the proof and mines a
partial block B including: 1) the hash of tx dep

M (again, the miner
only needs the hash h for mining), 2) a bribing transaction that
pays Bob br tokens from the coinbase. ( Paying Bob from the
coinbase ensures that the validity of the payment does not
depend on other transactions.) and 3) any other transactions
from the mempool. The miner sends B to Bob, who verifies
that the block includes intended transactions, fills in tx dep

M ,
and broadcasts the completed block. For ease of argument,
we assume vdep is smaller than the block reward (current
6.25BTC in Bitcoin), to disincentivize Mi from forking B
(e.g., replacing it with a block without payment to Bob). In
the Lightning network, there have been only 4 (past) payment
channels with capacity greater than 6.25 BTC [25]).

An instantiation with TEEs. Below we present a concrete
instantiation using TEEs. We assume Bob has access to a
TEE (e.g., Intel SGX) that guarantees integrity and supports
remote attestation. However, we do not require confidentiality
guarantees (i.e., it only requires transparent execution envi-
ronments [26]) since Bob knows the secret anyway. There

Pseudocode of the TEE enclave for success-dependent bribery

1 : Hardcoded:
2 : addrMiner: Miner’s address to receive tx dep

M

3 : Hashpreb : the hash of preb
4 : Hashprea : the hash of prea
5 : Function GetHashOfTxn(tx dep

M ):

6 : Assert that tx dep
M is redemption to addrMiner

7 : Assert that tx dep
M contains (prea, preb), s.t.

8 : H(preb) = Hashpreb ∧H(prea) = Hashprea
9 : h = H(tx dep

M )

10 : σTEE = TEE.attestation(h) // σTEE binds h to the code

11 : return (h, σTEE)

Figure 4: TEE enclave program for SDRBA implementation

is extensive literature on SGX and we refer readers to [27]
for background. For ease of exposition, we state the protocol
assuming Bitcoin, but it can be easily adapted to other PoW
or PoS blockchains.

1) Setup: Bob and Mi negotiate the details of the bribery,
including the miner’s address to receive the redemption
of MH-Dep, addrMiner, the amount of bribe Amount,
Hashpre

b
, and Hashpre

a
. Bob instantiates a TEE running

code in Fig. 4. For ease of exposition, the bribery param-
eters are hardcoded in Fig. 4, so they are covered by TEE
attestations. Bob shares the source code with the miner who
can verify its correctness. This can happen well before the
timeout T of MAD-HTLC.

2) Bob: When Alice releases prea, Bob constructs the redemp-
tion transaction tx dep

M , and calls GetHashOfTxn in TEE
(Fig. 4) to compute a hash h = H(tx dep

M ) along with an
attestation σTEE proving that h is computed by the specific
code that Bob shared with the miner earlier. Bob sends
(h, σTEE) to the miner.

3) Miner: Miner verifies σTEE against its copy of the source
code and checks that h is certified by σTEE. Then the miner
builds a Merkle tree as described before. Then Mi starts
mining. After finding a valid block B, Mi sends B to Bob.

4) Bob: After receiving B, Bob verifies that 1) B includes a
proper payment to him and then 2) completes B with tx dep

M
to the peer-to-peer network.

The above protocol realizes SDRBA. We argue that the above
protocol realizes SDRBA, i.e., a bribing miner only pays Bob
if and only if tx dep

M is confirmed on-chain. The “if” direction
holds because both tx dep

M and the bribe transaction are included
in B. Since the miner is disincentivized to fork B, if tx dep

M is
confirmed, so will the bribery.

The “only if” direction holds as follows. Under the as-
sumption that TEE protects integrity and the remote attestation
scheme is secure, the attestation σTEE guarantees that the
provided hash is indeed a hash of tx dep

M . Therefore if B

is broadcast, then the miner will receive vdep from tx dep
M .

Moreover, Bob cannot withhold the block but only send the
bribe transaction because the bribe transaction is only valid
if B is confirmed on-chain, as it spends the coinbase of B.
Finally, we just need to argue that Bob will broadcast B when
bribed for more than vcol, which follows from the rationality
assumption (if not, Bob forges the bribe and only gets vcol).
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Figure 5: Timeline of the SDRBA game.

In the next sections, we analyze the feasibility of SDRBA
through a rigorous game-theoretical analysis.

C. Game Setup

To derive the condition under which SDRBA is feasible,
we model it as a game Gdep between Alice, Bob, and miners
M1,M2, . . . ,Mn as follows.

1) Timeline of the game: Like in [9], without loss of
generality, we say the game begins when MH-Dep and MH-
Col contracts are initiated in some block b0. It spans T rounds,
corresponding to the creation of blocks b1 through bT . We
denote the special round in which Alice publishes prea as tpub.

Figure 5 visualizes the timeline of the SDRBA game. Every
round before tpub consists of two steps.

• send: Users, including Alice and Bob, send transactions to
the mempool.

• mine: A miner Mi is chosen at random according to its
mining power λi and creates a block with transactions of
its choice, including ones created by itself.

In all rounds after tpub, there is an intermediate step in
between: as soon as Alice reveals prea in a “send” step, an
actively rational miner can engage in reverse bribery with
Bob to obtain preb, followed by a “mine” step as above. We
will elaborate on reverse bribery when specifying Bob’s and
miners’ action spaces.

States. In a given round k, the game can be in one of three
states: 1) red: MH-Dep is still redeemable; 2) irred-nrev:
MH-Dep has already been redeemed, but preb is not known
to the miners, and 3) irred-rev: MH-Dep has already been
redeemed, and preb is known to some miners. We define States
as {red, irred-nrev, irred-rev}.

Subgames. We define a subgame for each round k ∈ [1, T ].
We denote the subgame starting at the beginning of round k
as Gdep(k, s), where s ∈ States. T − k more blocks are to
be created after this subgame. We use · as wildcard when
denoting subsets of games, e.g., Gdep(·, red) refers to the set
of all subgames in which MH-Dep is still redeemable.

2) Action spaces: Now we specify the action space of
Alice, Bob, and two types of rational miners.

Alice and Bob. Alice follows the MAD-HTLC protocol. Specif-
ically, Alice can choose a round tpub ∈ [1, T ) to publish
tx dep

A (c.f., Eq. (1)) with a fee f dep
A of her choice. Note that

f < f dep
A < vdep is necessary for Alice’s transaction to outbid

all other transactions in the mempool.

After tx dep
A (and prea) has been revealed by Alice, Bob’s

action is limited to those that do not reveal preb on-chain since
otherwise his collateral will be confiscated by miners. One

possible action is to get back vcol in round T , by publishing
tx col

B offering a fee f col
B > f of his choice. For ease of

exposition, we assume Bob always publishes tx col
B in round T

even if he accepts bribes (see below). This does not change the
game because tx col

B does not reveal any information about preb.
Another possible action is for Bob to engage in reverse bribery
with actively rational miners, as we will describe shortly.

Passively rational miners. We recall the definition of pas-
sively rational miners from Section III-A. Passively rational
miners will strategically choose transactions to mine to max-
imize utility. The transactions available to miners depend on
the round k as well as miners’ knowledge of prea and preb.

In any subgame Gdep(·, ·), Mi can include unrelated trans-
actions from the mempool for fee f . In subgames Gdep(k, red),
where k ≥ tpub, Mi can include tx dep

A for fee f dep
A . In

subgames Gdep(k, ·), where k ≥ T , Mi can include tx col
B for

fee f col
B if tx col

B has not already been included.

In addition, if Mi has knowledge of prea and preb, then
in subgames Gdep(k, red), where k ≥ tpub, Mi can create and
include a transaction tx dep

M that redeems MH-Dep for itself via
path dep-M . In any subgame Gdep(T, ·), Mi can create and
include a transaction tx col

M that redeems MH-Col for itself via
path col-M .

Actively rational miners and reverse bribery. We recall the
definition of actively rational miners from Section III-A. In this
game, actively rational miners can perform reverse bribery. As
soon as Alice reveals prea, actively rational miners can decide
to pay a pre-agreed bri to Bob in exchange for allowing it
to redeem MH-Dep. For ease of exposition, we assume that
Bob and a bribing miner have reached an agreement about the
value of bri before tpub.

Bob can independently decide whether or not to accept
each bribe bri, however, he receives only one of these bribes
in case the corresponding miner, Mi, is able to mine the
block (due to the fairness guarantee of SDRBA). For the game
theoretic analysis we show that a fair exchange between a
bribing miner Mi and Bob (such that Mi pays Bob an agreed-
upon bribe bri if and only if Mi can include tx dep

M containing
preb in a block) is a dominant strategy over following MAD-
HTLC protocol.

As a corollary of the fairness guarantee, the fair exchange
process ensures the privacy of preb until it is revealed on
the blockchain3. Therefore either all miners know the preb
or none of them does. Formally, in game Gdep(k, st) with
st = irred-rev, every miner has the information about preb,
whereas in st = irred-nrev, no miner does.

3) Utility: For each player, the utility function ui : Action×
(Z, States) → R is the number of tokens they can earn at
the end of the game. We refer to Alice’s utility as uA, Bob’s
utility as uB , and miner Mi’s utility as ui. To account for the
stochastic nature of the game, we consider expected utilities
at the end of the game.

We refer to player j’s utility in G when action s̄ is taken
by j as uj(s̄, G). Further, we refer to the maximum utility a

3Otherwise a miner can abort the fair exchange protocol, avoiding paying
the bribe, yet is still able to redeem vdep using preb
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player can end up with in G as ūj(G). We assume that the
utility from a block containing only unrelated transactions is
0. Thus, if a transaction related to MAD-HTLC with utility x
is included in exchange for an unrelated transaction, it would
have a utility of x− f .

D. Incentive incompatibility of MAD-HTLC.

Having presented SDRBA and its game theoretical model
Gdep, we are ready to analyze the feasibility of SDRBA.

In this section, we will show in Theorem 1 that if
vcol −f col

B < vdep −f dep
A , all active miners are incentivized to

mount SDRBA against MAD-HTLC as soon as given a chance
to mine a block. Below we state a series of lemmas leading
to the theorem, while deferring the proofs of the lemma and
the theorem to Appendix B due to space constraints.

In Lemma 1, we show that in round T , if MH-Dep has
not been redeemed by Alice, then bribing Bob with bri <
vdep + vcol − f dep

A − f col
B yields more utility than any other

actions. Intuitively, if the miner bribes and is chosen to create a
block in round T , she can redeem both vdep and vcol together.

Lemma 1. In Gdep(T, red), for an actively rational miner,
paying a bribe bri to Bob strongly dominates any other
available action if bri < vdep + vcol − f dep

A − f col
B . In this

case, ūi(G
dep(T, red)) = λi(v

dep + vcol − 2f − bri).

In any round before T , suppose MH-Dep has not been
redeemed yet, if a miner Mi bribes and is chosen to mine a
block, she can redeem vdep immediately and redeem vcol in
round T with probability λi. By comparing to this expected
utility, we can derive bounds on the bribe value so that bribing
Bob dominates other actions.

Lemma 2. In any subgame Gdep(k, red) where tpub ≤ k < T ,
as long as bri < vdep −f dep

A +λi(v
col −f col

B ), for an actively
rational miner, bribing Bob and redeeming MH-Dep via path
dep-M in round k strongly dominates redeeming MH-Dep via
path dep-A.

Lemma 3. In any subgame Gdep(k, red) where tpub ≤ k < T ,
as long as bri < vdep − f dep

A , for an actively rational miner,
bribing Bob and redeeming MH-Dep via path dep-M in round
k strongly dominates including only unrelated transactions.

Finally, we observe that Bob will accept any bribe value
higher than vcol − f col

B , the amount he will gain by following
the MAD-HTLC protocol.

Lemma 4. In any subgame Gdep(k, ·) where k ≥ tpub, Bob
will have higher utility from accepting any bri > vcol − f col

B
than from following the MAD-HTLC protocol.

With above lemmas, we are ready to show that if vcol −
f col
B < vdep−f dep

A , all active miners are incentivized to mount
SDRBA than following MAD-HTLC.

Theorem 1. If vcol − f col
B < vdep − f dep

A then there exists a
bribe value for every actively rational miner Mi, such that in
any subgame Gdep(k, red), where k ≥ tpub, both Mi and Bob
have higher expected utility from SDRBA redeeming MH-Dep
via path dep-M than from following the MAD-HTLC protocol.

Proof: Let Mi be some actively rational miner in
Gdep(k, red). When bri < vdep−f dep

A , we observe that bribing
Bob dominates (i) all other actions in round T (Lemma 1),
(ii) including Alice’s transaction (dep-A) in round < T
(Lemma 2), (iii) including unrelated transactions in round < T
(Lemma 3).

By Lemma 4, we further know that Bob will have higher
utility from accepting bri than from following the MAD-HTLC
protocol if bri > vcol − f col

B . Consequently, for bribery to
result in higher utility for both Mi and Bob, we would need
vcol − f col

B < bri < vdep − f dep
A . Thus, we know that there

always exists a value for bri that meets both constraints as
long as vcol − f col

B < vdep − f dep
A .

However, this does not mean that MAD-HTLC is safe given
that vcol − f col

B > vdep − f dep
A . We refer to Appendix B for

the safety constraints required for MAD-HTLC.

IV. HYBRID DELAY-REVERSE BRIBERY ATTACK

In this section, we present the HyDRA attack against MAD-
HTLC. HyDRA combines a classic delay attack (e.g., [8], [28])
and SDRBA. HyDRA is a stronger attack than SDRBA because
it works regardless of relative sizes of vdep and vcol. We present
the attack in this section with a “pay per block” delay strategy
similar to [8] but with simplified upper bound bribe, under
which for each block, Bob offers miner a bribe which offers
greater utility than the transaction fee offered by Alice.

A. The HyDRA attack

Let’s say a MAD-HTLC is established between Bob and
Alice, with Bob depositing vdep and vcol to MH-Dep and MH-
Col respectively. Bob tries to attack Alice (who we assume
knows prea, and can thus redeem the deposit contract) in order
to receive any amount greater than vcol. There are two steps
to Bob’s attack: censoring Alice’s transaction and an SDRBA
attack between Bob and miner. Below we go through the two
steps. Figure 7 specifies the protocol more formally.

Step 1: Censoring tx dep
A : As soon as Alice posts the redemp-

tion transaction tx dep
A in tpub, Bob sets up a contract that issues

promised rewards to miners who censor tx dep
A (Fig. 6). The

intuition is that given a promise of receiving enough amount
in the future, miners would prefer to not include tx dep

A .

The attack can be facilitated with a smart contract.4 We
outline a possible implementation in Fig. 6. At a high level,
for each subsequent block, after tx dep

A is published, its miner
can call getToken to get special tokens that can be redeemed
only after the second step of the attack succeeds (at which
point Bob pays the cost of censoring tx dep

A using the bribe
he receives). The total cost of censoring tx dep

A is denoted by
Cdelay. This step continues until some miner takes Step 2.

Step 2: Mounting SDRBA: After time T , any miner can
mount an SDRBA to move the attack to the second step. The
second part of the attack is similar to the SDRBA attack (Sec-
tion III-B) except that the fair exchange is slightly modified

4This does not mean that the HTLC needs to be on the same chain. Bribery
on one chain can be facilitated by smart contracts on another chain through
cross-chain bridges, assuming passive miners are mining on both chains.
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SCHyDRA: delay contract for HyDRA

1 : Variables:
2 : MH-Dep, MH-Col: Address of MAD-HTLC contracts

3 : For i ∈ {1, 2}, ni = 0 // total # of Ti tokens issued

4 : For i ∈ {1, 2}, Bali = {} // mapping from address to balances of Ti

5 : // ci is the exchange rate between Ti and native currency.

6 : c1 =
f

dep
A

1−(1−λac)1/λac
+ ϵ1 // ϵi is any small positive number.

7 : c2 =
f

dep
A
λac + ϵ2

8 : Setup:
9 : Bob deposits vdep in the contract

10 : Function getToken():

11 : Abort if the caller is not the miner of the current block
12 : Abort if this function has been called in this block
13 : Let i be the current block number
14 : if i < T

15 : n1 ← n1 + 1; Bal1[caller]← Bal1[caller] + 1

16 : else

17 : n2 ← n2 + 1; Bal2[caller]← Bal2[caller] + 1

18 : Function redeemToken():

19 : Assert that vdep − n1 · c1 − n2 · c2 > 0

20 : Check that MH-Dep and MH-Col were redeemed through

21 : dep-M and col-M in this block.

22 : for (addr, bal) in Bal1
23 : Send c1 · bal native tokens to addr

24 : for (addr, bal) in Bal2
25 : Send c2 · bal native tokens to addr

26 : // Send leftover to Bob
27 : Send vdep − n1 · c1 − n2 · c2 to Bob

28 : Function refundToken():

29 : If MH-Dep has been redeemed by Alice through dep-A, send vdep to Bob.

Figure 6: A smart contract (sketch) that facilitates the delay
phase of HyDRA.

so that a miner Mi pays the bribe if and only if both MH-Dep
and MH-Col are redeemed by Mi in the same block (whereas
in the original SDRBA attack, Mi pays bribe if and only if
MH-Dep is redeemed).

Note that Step 1 is a continuous process and lasts until
a miner takes Step 2. Following a successful SDRBA attack,
anyone can call redeemToken to trigger the distribution of
payouts. redeemToken will verify that SDRBA indeed suc-
ceeded (i.e., both MH-Dep and MH-Col have been redeemed
after timeout via dep-M ), and then redeem tokens issued
earlier at a pre-specified exchange rate (c1 for tokens issued
before the timeout T , and c2 otherwise as specified in Fig. 6),
and send the remaining balance to Bob. The reason we choose
the specific values will become clear shortly in the analysis.

B. Incentive incompatibility of MAD-HTLC

Game setup. The game for HyDRA is the same as that Sec-
tion III-C except that the action to censor tx dep

A is always
available for all rational miners—active or passive—in all
rounds (including rounds before and after the timeout T ). In
rounds t ≥ T , active miners can choose to mount SDRBA.
We consider every miner to be rational and some of them are
active (λac > 0). The values of c1 and c2 are described in the
contract Fig. 6.

Protocol for HyDRA

Setup and Init:
Bob sets up a facilitating smart contract SCHyDRA as described in Fig. 6

Before round T :

Miners of blocks between tpub and T censor tx dep
A and call getToken in SCHyDRA

to get tokens.
In and after round T :

If a miner is active, bribe Bob with br = vcol + n1 · c1 + n2 · c2 to mount
the modified SDRBA attack (see the description of step 2). If the attack succeeds, call
redeemToken to distribute payouts.

If a miner is passive, keep censoring tx dep
A (same as above) until SDRBA succeeds.

Figure 7: Protocol followed during HyDRA attack

Analysis. To analyze the incentive compatibility of HyDRA,
we first show that an active miner would always choose
to mount SDRBA (moving to Step 2) over censoring tx dep

A
(remaining in Step 1) if chosen to create a block. The intuition
is that ultimately the cost of censoring tx dep

A is covered by the
active miner who successfully mounts an SDRBA attack. Thus,
stopping the censorship attack as soon as possible is in the best
interest of the said miner. We prove the statements claimed in
lemmas in Appendix D

Lemma 5. For an active rational miner in round t ≥ T ,
where mounting SDRBA is an available action (i.e., MH-Dep
and MH-Col are still redeemable) and vdep − (T − tpub − 1) ·
c1− (t−T ) · c2 > f dep

A , mounting SDRBA (Step 2) dominates
censoring tx dep

A (Step 1).

In the next two lemmas, we show that no rational miner
would ever include tx dep

A in presence of such a contract, before
or after the timeout.

Lemma 6. For any rational miner of round t ≥ T , where MH-
Dep and MH-Col are not yet redeemed and vdep− (T − tpub−
1) · c1 − (t − T ) · c2 > f dep

A , censoring tx dep
A and accepting

delay bribe (Step 1) dominates over including tx dep
A .

With the above Lemma 5 and Lemma 6, we have looked
at the actions available for all rational miners after timeout T .
Next, we need to show that it would be rational for miners
before timeout to censor tx dep

A . Since after timeout T , the
probability of active miner mining a block is λac, the expected
number of blocks required for an active miner to create a block
after timeout is 1/λac.

Lemma 7. For any rational miner of round t < T , where
MH-Dep has not yet been redeemed and vdep − (T − tpub −
1) · c1 + (1/λac) · c2 > f dep

A , censoring tx dep
A and accepting

delay bribe (Step 1) dominates over including tx dep
A .

With above lemmas, we can show that HyDRA will be
preferred by all rational miners unless Alice pays a transaction
fee for tx dep

A higher than vdep−(T−tpub−1) ·c1+(1/λac) ·c2.

Theorem 2. All rational miners are better off from following
strategy outlined in HyDRA, than behaving honestly and
redeeming transaction tx dep

A for Alice, given vdep−(T−tpub−
1) · c1 + (1/λac) · c2 > f dep

A .

Proof: From lemmas 6 and 7, if vdep − (T − tpub − 1) ·
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c1 + (1/λac) · c2 > f dep
A , censoring tx dep

A dominates including
tx dep

A . After timeout T , the censoring bribe needs to be paid
for an expected 1

λac blocks. With the same condition vdep −
(T − tpub − 1) · c1 − 1

λac · c2 > f dep
A by Lemma 5, all active

miners prefer to participate in SDRBA over censoring tx dep
A

and by extension including tx dep
A . Thus, all rational miners

will follow the HyDRA strategy.

Success probability. As shown in Theorem 2, the success
probability is 1−(1−λac)

1/λac , since at least one block needs
to be mined by an active rational miner in 1

λac blocks. How-
ever, HyDRA is incentive-compatible regardless—all rational
miners are better off from following HyDRA as long as c1 and
c2 are set accordingly.

Cost of defending the hybrid attack. One way to defend
against HyDRA is for Alice to pay a high fee, and publish tx dep

A
early. We provide a rough estimation of the cost. Consider
an HTLC contract with a complete capacity of the payment
channel vdep = 2 BTC. Estimating λac accurately is hard, but
the adoption rate of MEV-geth [23] among Ethereum miners
can provide a ballpark reference because only active miners (by
our definition) will prefer MEV-geth over geth. As of March
2022, the adoption rate is about 78% [29]. We conservatively
set λac to 50%. If the channel is closed one day prior to its
timeout, then T − tpub = 24 × 60/10 = 144 blocks and thus
the transaction fee cost f dep

A to Alice in order to violate the
condition in Theorem 2 must be f dep

A = vdep − (T − tpub −
1) ·c1− 1

λac ·c2, where c1 = f dep
A /0.75, c2 = f dep

A /0.5, which
makes f dep

A ≈ 0.01 BTC which is about 4550× the average
closing cost of 2.2e-6 BTC [9].

V. HE-HTLC: AN INCENTIVE COMPATIBLE HTLC

We now present He-HTLC, an incentive-compatible imple-
mentation of the HTLC spec. Our protocol is inspired by the
learnings of our attacks on MAD-HTLC. In particular, we ensure
that (i) the miners are not overcompensated when acting as
enforces, and (ii) we break the atomicity by separating so that
vdep and vcol cannot be redeemed in one block.

An overview of the protocol has been presented in Sec-
tion II-C. In this section, we describe the protocol in detail
in Section V-A. The incentive compatibility of He-HTLC is
proven in Section V-B. Finally, in Section V-C, we report on
a Bitcoin implementation.

A. The Protocol

Our protocol He-HTLC[ℓ] is parameterized by ℓ, the number
of blocks between the redemption of vdep and vcol. This
parameter adjusts the tradeoff between Bob’s collateral amount
and the time duration that the collateral must be locked for.
Setting a large ℓ allows Bob to lock less collateral but for a
longer period of time, and vice versa. He-HTLC[ℓ] involves two
contracts, He-Dep, and He-Col, as described below.

He-Dep. To initiate an HTLC with Alice, Bob deposits vdep +
vcol tokens to He-Dep. As with MAD-HTLC, vdep is intended to
be paid to Alice and vcol is Bob’s collateral. He-Dep stipulates
that the tokens can be spent in one of the two ways:

• dep-A: If Alice knows prea, then she can transfer vcol to
Bob and rest to herself by revealing prea.

• dep-B: If tokens are still unspent after the timeout T , Bob
can transfer vdep + vcol to the collateral contract He-Col, as
specified below, by revealing preb.

He-Col. The collateral contract He-Col stipulates that the
tokens can be spent in one of the two ways:

• col-B: Bob can spend vdep + vcol after ℓ blocks of the
formation of He-Col.

• col-M : Anyone revealing both prea and preb can spend vcol

tokens while rendering the rest vdep permanently unspend-
able (aka burnt).

We would show that if Alice is rational and knows the
secret prea, then she would reveal prea before the timeout
expires (Lemma 8). In the case that Alice fails to reveal the
secret until the timeout, Bob can get refunded in two steps.
First, Bob will transfer vdep + vcol tokens to the collateral
contract He-Col (through path dep-B). Then, after ℓ blocks,
Bob can spend vdep + vcol.

B. Security Analysis

We analyze the security of He-HTLC in the model described
in Section III-A.

We will show that He-HTLC is incentive-compatible for
any vcol ∈ (f, vdep] (we require this throughout this section).
To be specific, we will show for any 0 < ϵ ≤ 1 − f

vdep and

vcol = ϵvdep+f , there always exists a sufficiently large ℓ such
that all parties are incentivized to follow He-HTLC[ℓ]. In the
analysis below, we assume that Alice pays a transaction fee
f dep
A slightly higher than f , but to reduce clutter we replace
f dep
A = f .

First, we show that the scheme is safe if Bob is following
the protocol, whereas Alice who knows prea is trying to
maximize her profits.

Lemma 8. Suppose Alice knows prea in some round r <
T . Withholding prea until after T gives Alice a strictly lower
utility than revealing prea in a round tpub < T to miners.

Proof: In case Alice withholds prea until after Bob reveals
preb, Alice can get an amount of vcol shared with the miner if
the miner takes the path col-M , out of which the miner takes
a fee of at least f in order to compensate for the block space.
However, revealing earlier leads to her receiving vdep − f by
taking the path dep-A. Since vcol ≤ vdep, Alice would prefer
to reveal prea before Bob reveals preb. Since Bob can reveal
preb at any time after T in accordance with the protocol, Alice
would reveal prea before T .

In case Alice does not know prea, the only path that can be
taken is dep-B followed by col-B and Alice cannot take any
action. Now that we have ensured that if Bob acts honestly,
Alice cannot gain a utility greater than her honest execution,
we show that if Alice acts honestly, then Bob cannot gain any
more utility than his honest execution.

Lemma 9. Suppose prea has been revealed to the miners; Bob
successfully funds He-Col through dep-B in round r ≥ T , and
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He-Col redemption paths are not yet taken. Then, each miner
in round > r, unless bribed with an amount > vcol − f , has
a higher utility in taking col-M in comparison to including
unrelated transactions.

Proof: Since Alice has revealed prea to the miner and Bob
has revealed preb through dep-B, all the subsequent miners
know both prea and preb. If the miner follows path col-M
instead of including unrelated transactions, it receives a utility
of vcol−f . Since vcol > f , the miner would prefer col-M than
including unrelated transactions unless bribed with an amount
> vcol − f to include unrelated transactions.

Now, we show an upper bound on how much Bob can pay
after a successful dep-B.

Lemma 10. Once He-Col is funded from He-Dep through
dep-B, Bob would never choose to bribe more than a sum
of vdep + vcol − f to the miners in order to incentivize them
into not taking path col-M .

Proof: This follows from the fact that Bob can only earn
vdep + vcol through the path col-B, paying a fee of f to the
miner in the process. Thus, paying a higher amount as a bribe
strictly reduces Bob’s utility.

Lemma 11. Suppose prea and preb have been revealed to the
miners and He-Col has been funded in some round r > T ;
the parameter ℓ is such that the expected number of distinct
miners within ℓ blocks is κ. Then, among these distinct miners,
there exists a miner who has a higher utility in taking the path
col-M when vcol ≥ ( v

dep
κ−1 ) + f .

Proof: Since both prea and preb are available to the miner,
path col-M can be taken which leads to burning the deposit.
Alternatively, path col-B can be taken ℓ blocks after dep-B.

There are κ distinct miners in expectation deciding be-
tween choosing col-M , col-B or not taking either path. From
Lemma 9, we know that col-B can only be taken if each of
the κ miners is offered a bribe > vcol − f . Moreover, from
Lemma 10, we know that Bob can offer a maximum bribe
of vdep + vcol − f distributed among all the κ miners. By
Pigeon-Hole principle, at least one of these bribes to some

miner needs to be ≤ vdep+vcol−f
κ ≤ vcol − f . Let Mi be

the first such miner. All miners before Mi cannot take col-B
(since they are within ℓ blocks from the funding of He-Col).
Since the bribe is not large enough, as per Lemma 9, Mi is
incentivized to take col-M .

Theorem 3. Assuming all parties are (actively or passively)
rational, and ( 1

κ−1 )v
dep + f ≤ vcol ≤ vdep for κ ≥ 2, ℓ is set

such that expected number of distinct miners across ℓ blocks
is κ, He-HTLC[ℓ] guarantees:

1) If Alice reveals prea via path dep-A at round t < T , then
all parties prefer taking dep-A.

2) If Alice does not reveal prea in any round t < T , then all
parties prefer dep-B followed by col-B.

Proof: We prove the two guarantees separately.

Part 1. If prea is available to miners at round t < T , Bob can
take one of the two options.

1) Bob never reveals preb.
2) Bob reveals preb to miners in some round.

First, we will show that Bob will always prefer the first option
over the second.

If Bob never reveals preb to the miners, Alice redeems vdep

through dep-A, and Bob gets back vcol. The utility of Alice
and Bob are vdep−f and vcol (Alice pays the transaction fee),
respectively. The miner can earn a fee of f .

In the second option, Bob reveals preb to miners. The miner
can either take path dep-A or dep-B if a path amongst them
has not already been taken. The path dep-B can be followed by
col-B after ℓ blocks or by col-M possibly in the same block.
With path dep-B, we know that the miner gets a utility ≥ vcol

by taking both dep-B and col-M in the same block (transaction
fee f and the utility for taking the path col-M ) whereas it will
get f from dep-A. Since vcol > f , dep-B would be preferred.
Since prea has been revealed and ( 1

κ−1 )v
dep + f ≤ vcol (by

assumption), it follows from Lemma 11 that He-Col would
be redeemed by some miner via path col-M . In this case, the
sum of Bob’s and all miners’ expected amount received would
be vcol. Since the minimum amount miner expects is f , the
maximum amount Bob can expect is vcol − f (which is less
than Bob’s expected utility in case 1). Therefore, Bob will
always choose not to reveal preb when prea is already known.

Thus, if prea is available to miners at round t < T , then
all parties are incentivized to take the path dep-A.

Part 2. Let us consider that Alice does not reveal prea at any
time < T . By Lemma 8, we know that if Alice knows prea,
then she would have revealed it in a round < T . Thus, if prea
is not available to miners in any round t < T , it must be the
case that Alice does not have access to it either. Thus, the only
available path is dep-B followed by col-B.

C. Implementation in Bitcoin

Implementing He-HTLC for blockchains with smart con-
tract support (e.g., Ethereum) is straightforward. In this section,
we report on the implementation of He-HTLC for Bitcoin.

Bitcoin scripts. An He-HTLC contract is instantiated as a
pair of Bitcoin UTXOs (UTXOdep and UTXOcol respectively)
with scripts shown in Table I. Note that currently Bitcoin
script only enforces when a UTXO can be spent, it cannot,
however, enforce how a UTXO will be spent in the future
(e.g., an authorized spender of a UTXO can send it to any
address she wishes; Covenant [30] will change this but it is
not yet available in Bitcoin). Therefore, our implementation
combines Bitcoin script with pre-signed transactions to enforce
that UTXOdep and UTXOcol can only be spent in specific ways.
Namely, spending UTXOdep or UTXOcol requires signatures
from both Alice and Bob, so that both parties can ensure that
the funds can only be spent in the following ways.

• UTXOdep can be spent by two transactions: tx dep
A spends it

and sends vcol to Bob, and vdep to Alice; tx dep
B spends it

and creates UTXOcol with amount vdep + vcol.
• UTXOcol can be spent by two transactions: tx col

B spends it
and sends vdep + vcol to Bob; tx col

M spends it and creates
a UTXO with amount vdep and script OP_RETURN (the
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Table I: Bitcoin scripts for He-Dep and He-Col

He-Dep He-Col

2 2
pka pka
pkb pkb
2 2
OP_CHECKMULTISIGVERIFY OP_CHECKMULTISIGVERIFY
OP_HASH160 OP_HASH160
diga diga
OP_EQUAL OP_EQUAL
OP_IF OP_IF

OP_TRUE OP_HASH160
OP_ELSE digb

T OP_EQUAL
OP_CHECKSEQUENCEVERIFY OP_ELSE
OP_DROP ℓ
OP_HASH160 OP_CHECKSEQUENCEVERIFY
digb OP_DROP
OP_EQUAL OP_TRUE

OP_ENDIF OP_ENDIF

standard way to render vdep provably unspendable). The rest
will be taken by the miner as transaction fees.

Note that all of the transactions must be prepared and
signed before a He-HTLC contract is instantiated, otherwise
whoever acts first is at a disadvantage. For instance, if Bob
creates UTXOdep before obtaining a tx dep

B signed by Alice,
then there is no guarantee that Alice will sign, thus Bob’s
money might get stuck.

Transaction pre-signing. The above transactions can be pre-
signed securely as follows. First, Bob creates a transaction
that deposits vdep+vcol (out of his pocket) to create UTXOdep.
He keeps the transactions private and creates tx dep

A , tx dep
B , tx col

B ,
and tx col

M . Bob attaches his signatures to tx dep
A and tx col

M and
sends all of them to Alice. Note that transactions tx col

B and
tx col

M rely on a UTXO to be created by tx dep
B . To avoid

malleability issues, tx dep
B must be SegWit [31]. Alice checks

that all transactions are properly formed, and attaches her
signatures to tx dep

B , tx col
B , and tx col

M and sends them back to
Bob. To ensure that tx col

M is accessible to all miners, Alice
puts tx col

M on chain using an OP_RETURN script. Alice then
waits for UTXOdep to be created on-chain, at which point the
timeout T starts. If UTXOdep does not appear on chain, the
contract is canceled.

Operation. After Bob receives and verifies pre-signed trans-
actions from Alice, he funds UTXOdep. Post this Alice can
take path dep-A by adding prea and her signature to tx dep

A and
broadcast. If Alice does not reveal the transaction until timeout,
Bob can add preb and sigb to tx dep

B to create UTXOcol. After
waiting for another ℓ blocks, Bob can spend UTXOcol.

Testnet deployment. We developed a prototype He-HTLC
client in Golang [32] to automatically generate transactions.
We deployed He-HTLC on testnet to verify the correctness
of our implementation. Table II shows the example testnet
transactions corresponding to four protocol paths. The last
column shows the estimated transaction fees at various fee
rates. Even at a generous rate of 20 Satoshi per vByte,
transactions costs of He-HTLC is at below $1 (for reference,
the average Bitcoin transaction fee fluctuates between $1 to $5
from August 2021 to August 2022).

Comparison with MAD-HTLC. We compare the transaction
sizes of MAD-HTLC [9]. The following table compares the
transaction cost incurred by each party. The row for miner
stands for the cost of confiscation. Cells with a + sign mean
that action requires two transactions. In He-HTLC, since Alice
redeeming vdep also refunds Bob with vcol, Bob does not pay
a transaction fee.

He-HTLC (vB) MAD-HTLC (B) Reduction

Alice 190 323 41%
Bob (refund vcol) 0 248 100%
Bob (refund both) 172 + 152 322 + 248 43%

Miner 172 + 168 282 + 241 54%

In general, He-HTLC transactions are significantly smaller.
It is imperative to note that MAD-HTLC transaction sizes can
be reduced if implemented using SegWit transactions.

VI. RELATED WORK

Incentive attacks in blockchains. Bribery attacks specifically
against HTLC have been proposed. [8] proposes temporary
censorship attacks where attackers can censor transactions
from a victim until a timeout. Their attacks apply to HTLC
and would enable Bob to censor Alice’s transaction and
revert the payment. Attacks in [8], require expressive smart
contracts languages such as Solidity in Ethereum. [9] proposed
a variant that works with the Bitcoin script, along with other
improvements.

In general, the incentive compatibility of blockchain pro-
tocols has been studied extensively. E.g., selfish mining at-
tack [33] shows that Bitcoin is not incentive-compatible and
miners may gain more by strategically withholding blocks.
External forces can also affect miners’ behaviors. Bonneau
et al. [34] shows how to bribe miners, possibly using the
blockchain itself, to take over the system for a short duration.
McCorry et al. [28] use smart contacts to enable expres-
sive bribery attacks, such as censoring transactions and even
rewriting the history. Other ways to implement bribery have
been proposed. E.g., [35] shows that one can embed bribes in
transaction fees to incentivize history rewrite attacks.

However, these works did not consider the possibility
that miners may be incentivized to initiate reverse bribery
attacks. Also, our attacks require a more sophisticated bribery
mechanism, since miners initiate the attack.

Fair exchanges solutions using blockchains. We devised new
fair exchange protocols to enable reverse bribery. Compared
to various fair exchange protocols proposed in other con-
texts [16]–[18], what our attacks require is more challenging to
achieve because of the power asymmetry between the partici-
pants of the exchanges: miners have much more control of the
blockchain than Bob. First, proposed fair exchange protocols
focus on the fair exchanges between two non-mining parties,
whereas in our setting the exchange takes place between Bob
and miners. Second, existing solutions typically rely on miners
as trusted parties to facilitate the exchange, while in our setting
rational miners may try to compromise the exchange in order
to maximize their gain.

Actively rational miners and MEV. Miners are typically
modeled as rational agents that pick the most profitable trans-
actions to include in blocks (e.g., [9], [28], [34], [35]). We

12



Table II: Example transactions on-chain result. Fees are calculated at 23,894 USD/BTC.

Path Transaction ID Size Estimated fee (USD) @ 2/10/20 Sat/vB

dep-A 5dbb7c677b3177700a541ecc23604bbfdb5ddd5a463e924428ae096646214180 190 vbyte $0.09 / $0.45 / $0.91
dep-B e80fcfb0a1ce936fcb9b514f03d2d78d4c8f06a0657e3a9f54411dee636d1ce6 172 vbyte $0.08 / $0.41 / $0.82
col-B a3f2902a3e7d3bd81295fc020a2a211dbf00b428f7bc6e93c4cfc12f7a55a628 152 vbyte $0.07 / $0.36 / $0.73

col-M 78b7ec346dc7ef75295ba26d1705cb791da23a97ff1511e28321e2b62f5de689 168 vbyte $0.08 / $0.40 / $0.80

show that they can do better if they actively create more
opportunities. In a sense, our model is a generalization of
that in [10], which points out that miners can gain significant
profit by manipulating transaction orderings and mounting,
e.g., frontrunning attacks. This surplus is referred to as Miners
Extractable Value or MEV. In practice, miners do initiate
protocols on top of regular mining to get MEV, e.g., by
joining MEV extraction networks such as Flashbots and Eden
Network [12], [13] or offer direct RPC channels for a fee [14].
The reverse bribery attacks we show are a different avenue of
MEV from influencing other (non-mining) participants.

Concurrent and independent work. Recently, there has been
a concurrent work titled PONYTA [19], which identifies the
same incentive compatibility concern with MAD-HTLC and
proposes an incentive compatible solution. Our works differ
in the following ways. First, they only present an intuition
towards the existence of an attack in MAD-HTLC. We discuss
the challenges of making such an attack work and present
a game-theoretic proof and an implementation to implement
such an attack using TEEs and ZKPs (Section III-B). Second,
their solution to disincentivize collusion between Alice and
miner or Bob and miner requires Alice to provide collateral of
vdep and Bob to provide collateral of 2vdep. In He-HTLC, Alice
does not pay collateral, and Bob can choose small collateral
of vdep/κ where κ, chosen by Bob, determines how early he
receives his collateral back after the timeout. On the other
hand, their work does consider parties may start with some
external incentives, which is not considered in our work. Note
that their work does consider collusion between miners (even
more than 50%) and one of the parties; in our work, such
collusion only requires us to set the value of κ appropriately
(under the same assumption that the coalition of miners will
not mount consensus-level attacks).

VII. DISCUSSION AND FUTURE WORK

On actively rational miners. Miners are typically modeled
as rational agents, but our key observation is that we must
consider different aspects of rationality. MAD-HTLC, for exam-
ple, only considers passively rational miners who optimize over
passively available opportunities, whereas this paper shows that
they can do better if they actively create more opportunities.
As discussed above, reverse bribery can be viewed as another
avenue of MEV [10] through actively influencing other (non-
mining) participants.

On the other hand, assuming all miners are actively rational
is perhaps too strong and does not reflect reality. If that were
true, all miners would extort any entity trying to get a refund
from an HLTC. Clearly, we do not live in such a world
currently. Nonetheless, we do observe some miners engaging
in active MEV extraction. Identifying how reality corresponds
to the actively rational model is an interesting open question.

Comparing the attacks and our solution. We present two
different attacks. The first attack SDRBA shows there exists
a strategy that would be preferred by Bob and every actively
rational miner compared to following MAD-HTLC. However,
the attack works only when the collateral amount is small. With
HyDRA, we remove this restriction since a “winning” miner
can redeem vcol and vdep simultaneously after T . However,
the miner and Bob together need to compensate other miners
with the amount Cdelay. Thus, the preferred attack depends on
the values of vcol, vdep, and Cdelay.

Our solution He-HTLC forces Bob to get the refund in
multiple steps, which, intuitively, increases the cost Cdelay to
a large value where each miner needs to be paid > vcol. By
making this total cost larger than vdep, we ensure Bob cannot
afford to bribe. In that sense, our solution can be viewed as a
complement to the HyDRA attack. We present a solution for
vcol = ϵvdep + f , in which by increasing ℓ (and the number
of distinct miners κ) appropriately, we can reduce ϵ which
reduces the required collateral. For Bob, this can be viewed
as a trade-off between providing high collateral and receiving
a refund quickly (small ℓ) and providing small collateral and
waiting for a long time (large ℓ).

Assumption on the absence of forks. For simplicity, we
assume that the blockchain does not fork. This is reasonable
for our attacks since we only need to show that there exist
scenarios where the attacks are successful. For our solution
He-HTLC, we introduce path col-M where miners can earn
vcol. However, if Alice and Bob are rational, miners can never
use this path. Thus, the presence of forks does not influence a
miner’s utility w.r.t. our contracts, and conversely, since miners
cannot redeem through col-M , they will not create forks to
achieve higher gains through this contract.

Fair exchange as a solution? We use fair exchange protocols
to facilitate reverse bribery but can setting up fair exchanges
between Alice and the miner solve bribery attacks against
HTLC to begin with? This does not work since the fair
exchange does not solve the fundamental misalignment of
incentives. Here is a specific attack even if we assume miners
do not learn prea. Even though the knowledge of prea is
important to the miner while negotiating a bribe, it is not
required to redeem MH-Dep and MH-Col; after the timeout,
they can be redeemed using only preb and sigb. This allows
for a hybrid attack where Bob gets vdep and vcol and pays the
miner some bribe.

Extending reverse bribery to other systems. We considered
specific attacks against MAD-HTLC, but whenever application-
level protocols rely on miners (e.g., as enforcers), the possi-
bility of miners’ actively participating need to be considered.
Thus, reverse bribery might be a concern in not just HTLC-
like contracts, and there might be other attacks when miners
engage in application-level logic in addition to reverse bribery.
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[26] F. Tramèr, F. Zhang, H. Lin, J. Hubaux, A. Juels, and E. Shi, “Sealed-
glass proofs: Using transparent enclaves to prove and sell knowledge,”
in EuroS&P, 2017.

[27] V. Costan and S. Devadas, “Intel SGX explained.” IACR Cryptol. ePrint
Arch., vol. 2016, no. 86, pp. 1–118, 2016.

[28] P. McCorry, A. Hicks, and S. Meiklejohn, “Smart contracts for bribing
miners,” in International Conference on Financial Cryptography and
Data Security. Springer, 2018, pp. 3–18.

[29] Flashbots. (2022) Transparency Dashboard. [Online]. Available:
https://dashboard.flashbots.net/

[30] Checktemplateverify. [Online]. Available: https://github.com/bitcoin/
bips/blob/master/bip-0119.mediawiki

[31] bips/bip-0141.mediawiki at master · bitcoin/bips. [Online]. Available:
https://github.com/bitcoin/bips/blob/master/bip-0141.mediawiki

[32] Bitcoin in go. [Online]. Available: https://github.com/btcsuite
[33] I. Eyal and E. G. Sirer, “Majority is not enough: Bitcoin mining is

vulnerable,” in International conference on financial cryptography and
data security. Springer, 2014, pp. 436–454.

[34] J. Bonneau, “Why buy when you can rent?” in International Conference
on Financial Cryptography and Data Security. Springer, 2016, pp. 19–
26.

[35] K. Liao and J. Katz, “Incentivizing blockchain forks via whale trans-
actions,” in International Conference on Financial Cryptography and
Data Security. Springer, 2017, pp. 264–279.

APPENDIX

A. Success Independent Reverse Bribery Attack

In this section, we present another attack on the MAD-
HTLC protocol. It differs from Section III-B in that the miners
pay a fee regardless of whether or not they are able to mine
the block after tpub. Formally, the exchange between the miner
and Bob is bri for the knowledge of preb. We assume that the
miner does not sell this preb to other miners in the system.

We first present a practical implementation of the success
independent attack. The challenge is to realize a fair exchange
between Bob and a miner Mi, such that the Mi learns preb
if and only if a payment to Bob of an agreed-upon amount is
confirmed on the blockchain (the payment need not happen on
the same blockchain as the MAD-HTLC). We show a solution
using Trusted Execution Environments (TEEs).

We assume the bribing miner Mi and Bob have access to a
TEE that guarantees integrity and confidentiality and supports
remote attestation. We have seen one use of the same in
Section III-B Further, we have assumed that they can access a
secure Proof-of-Work based blockchain for payment (e.g., Bit-
coin or Ethereum). We also assume that the difficulty does not
vary between the time of bribe setup and the completion (e.g.,
the timeout of the HTLC). Our description below is specific
to Bitcoin, but it can be adapted to any PoW blockchain.

Setup. Bob and Mi negotiate the details of the bribery,
including Bob’s address to receive bribe AddrBob, the amount
of bribe Amount, the hash of preb Hashpre

b
, as well as a lower

bound for PoW difficult diffl used by the contingent decryption
protocol below. This can happen well before the timeout of the
the HTLC.
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Pseudocode of the TEE enclave for success-independent bribery

1 : Hardcoded:
2 : AddrBob: Bob’s address to receive bribe

3 : Amount: The amount of bribe
4 : Hashpreb : the hash of preb
5 : ℓ: number confirmations required (e.g., in Bitcoin ℓ = 6)

6 : diffl: Difficulty lower bar

7 : Function Init(λ):

8 : (sk, pk)← KGen(1λ) // generate a pair of keys in TEE
9 : σTEE = TEE.attestation(pk) // σTEE binds pk to the code

10 : return (pk, σTEE)

11 : Function VerifyMsgFromBob(m):

12 : // Verify that encrypted message from Bob has the right preimage

13 : return H(Decsk(m)) = Hashpreb

14 : Function Decrypt(TXbribe, MerkleProof, h1, . . . , hℓ):

15 : Assert (h1, . . . , hℓ) forms a valid blockchain

16 : Assert that the difficulty in hi is at least diffl for all i

17 : Assert that TXbribe is in h1 by checking MerkleProof

18 : Assert that TXbribe pays an amount of Amount to AddrBob

19 : return Decsk(m)

Figure 8: TEE enclave program for SIRBA

Mi runs the TEE code shown in Fig. 8. For ease of
exposition the above parameters are hardcoded in Fig. 8, so
they are covered by TEE attestation. Mi shares the code with
Bob, who can review and verify its correctness.

To initialize, Mi calls init(λ) to generate a pair of keys
protected by TEE. Specifically, TEE samples a key and returns
pk along with an attestation σTEE, binding pk to the TEE code,
while the secret key is kept in TEE so that the miner cannot
access.

Mi sends (pk, σTEE) to Bob, who verifies that the attesta-
tion σTEE is consistent with the source code he has obtained
from the miner (including the parameters hardcoded therein),
and that pk is certified by σTEE.

Bob provisions preb to TEE. Having verified the correct-
ness of pk, Bob sends preb encrypted to the miner in c =
Encpk(preb). Mi then calls VerifyMsgFromBob to verify
that the ciphertext encrypts the correct preimage.

Contingent decryption. The key idea is that the TEE code
enforces contingent decryption of c upon receiving a proof
of payment to Bob. Specifically, upon receiving a Bitcoin
transaction TXbribe, a Merkle proof, and a sequence of block
headers (h1, . . . , hn), the TEE code will verify that the block
headers form a hash chain with sufficient difficulty, and that
TXbribe is included in one of the block hj that has been buried
sufficiently deep (e.g., n − j ≥ ℓ, where ℓ is the number
of confirmations required for TXbribe to be considered final
with high probability), and that TXbribe pays the agreed upon
amount to Bob’ specified address. If all checks pass, TEE will
decrypt c and reveal preb. Therefore, to obtain preb, Mi makes
the payment on-chain, waits for ℓ confirmations, and presents
the required information to TEE.

Security arguments. Assuming that TEE guarantees integrity
and confidentiality, and that the PoW difficulty does not
increase significantly beyond diffl before the timeout of the

HTLC in question, and that bribe amount is smaller than the
block rewards (6.25 BTC ∼ $236, 000 as of January 2022),
we argue that the miner cannot learn preb without paying the
bribe (or more).

First, via remote attestation, Bob establishes that he is
interacting with an genuine TEE running the expected source
code in Fig. 8. According to Fig. 8, the only way for Mi to
obtain preb without paying the bribe is to feed the enclave with
a forged chain of headers. Hardcoding the lower watermark for
PoW difficulty prevents the miner from forking an old block
with low difficulty. To pass the checks enforced by TEE, the
miner must generate at least 6 blocks that could have been
accepted by the blockchain, which is prohibitively expensive
and irrational since the bribe amount is smaller.

Analysis. We will now show that if there is a single actively
rational miner Mi, then Mi and Bob will prefer engaging in
reverse bribery to following the MAD-HTLC protocol (Theo-
rem 4). We borrow the model and setup from Section III
to construct a game Gind(·, ·) in which we change the fair
exchange as defined in this section. For ease of exposition,
we add another action for Bob. Bob always publishes tx col

B
in round T even if he accepts bribes. This does not change
the game because tx col

B does not reveal any information about
preb.

Lemma 12. In subgame Gind(T, ·), if chosen to create block
bT , a miner with knowledge of preb will redeem MH-Col via
path col-M and a miner without knowledge of preb will redeem
MH-Col via path col-B.

Proof: Note that MH-Col cannot be redeemed before
round T by definition so redeeming MH-Col is a viable action
in round T . By assumption, tx col

B is always available in round
T . Since vcol > f col

B > f , if Mi knows preb then including
tx col

M in bT is strongly dominant for Mi. Also, note that we
assume prea has been revealed in tpub < T .

If Mi does not know preb in round T , we will argue that
Mi will have no chance to redeem MH-Col in the future, so
including tx col

B in bT is the best strategy. If Mi does not know
preb in round T , it follows that Mi would not learn preb from
Bob in the future (since Bob only accepts bribery in tpub by
assumption, and Bob will not volunteer preb since prea has
been revealed.) The only other possibility for Mi to learn preb
is from other miners. But since any miner can redeem MH-
Col, by the time preb is revealed, MH-Col would already have
been redeemed.

Consequently, since f col
B > f , including tx col

B in bT is
strongly dominant for Mi if it does not know preb.

Lemma 13. In subgame Gind(T, red), if chosen to create block
bT , a miner with knowledge of preb will redeem MH-Dep
via path dep-M and a miner without knowledge of preb will
redeem MH-Dep via path dep-A.

Proof: The argument is analogous to Lemma 12, given
that vdep > f dep

A > f .

Lemma 14. In any subgame Gind(k, red), where k ≥ tpub and
k < T , if chosen to create block bk, a miner with knowledge
of preb will redeem MH-Dep via path dep-M .
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Proof: Let Mi be some miner in round k with knowledge
of preb chosen to create bk. From Lemma 12, it follows that
MH-Col will be redeemed in round T . Consequently, Mi’s
expected utility with respect to the redemption of MH-Col is
given by λi(v

col − f) independent of how many other miners
know preb. In particular, revealing preb by including tx dep

M
in block bk before round T does not negatively affect Mi’s
expected utility with respect to the redemption of MH-Col.
Given no negative effects with respect to the later redemption
of MH-Col, it follows from vdep > f dep

A > f that including
tx dep

M in block bk is strongly dominant for Mi.

Lemma 15. In subgame Gind(tpub, red), when all other miners
are passively rational, offering a bri < λi(v

dep − f dep
A ) +

λi(v
col − f col

B ) strongly dominates any other action available
to a single actively rational Mi.

Proof: Let Mi be an actively rational miner in subgame
Gind(tpub, red) facing the decision of whether or not to offer
bri to Bob. If Mi chooses to bribe, supposing Bob accepts, it
follows from Lemma 13 and Lemma 14 that Mi will redeem
MH-Dep via path dep-M if chosen to create a block in any
subgame Gind(k, red), where k ≥ tpub.

Note that Mi’s expected utility with respect to the redemp-
tion of MH-Dep is lowest if all passively rational miners try to
redeem MH-Dep via path dep-A in all subgames Gind(k, red),
where k ≥ tpub. In this case, Mi’s expected utility from
knowing preb with respect to the redemption of MH-Dep
is given by λi(v

dep − f). From Lemma 12, it follows that
Mi’s expected utility from knowing preb with respect to
the redemption of MH-Col is always given by λi(v

col − f).
Consequently, Mi’s total expected utility from offering bri to
Bob is lower bounded by:

λi(v
dep − f) + λi(v

col − f)− bri (3)

Now suppose Mi chooses not to bribe. Then, since all
other miners are passively rational, no one will bribe. In
this case, preb will never be revealed. In this case, since
f dep
A > f and since there is no benefit from waiting for preb

to be revealed, in a perfect information game, every passively
rational miner and Mi will redeem MH-Dep via path dep-A if
chosen to create a block in any subgame Gind(k, red), where
k ≥ tpub. Consequently, Mi’s expected utility with respect to
the redemption of MH-Dep if choosing not to bribe is given
by λi(f

dep
A − f). It further follows from Lemma 12 that Mi’s

expected utility with respect to the redemption of MH-Col
is given by λi(f

col
B − f) in this case. Therefore, Mi’s total

expected utility from choosing not to bribe in round tpub is
given by:

λi(f
dep

A − f) + λi(f
col

B − f) . (4)

Given the expected utilities in Eq. (3) and Eq. (4), we can
see that when no other miner bribes, for Mi offering bri to
Bob strictly dominates not bribing in round tpub as long as
bri < λi(v

dep − f dep
A ) + λi(v

col − f col
B ).

Lemma 16. In subgame Gind(tpub, red), when all miners
except Mi are passively rational, Bob will strictly have higher
utility from accepting Mi’s bribe as long as bri > (1 − (1 −
λi)

T−tpub+1)(vcol − f col
B ).

Proof: Once Alice publishes prea in tpub, the most Bob
stands to gain from following the protocol is vcol−f col

B . On the
other hand, if Bob accepts a bribe bri, his gain is at least bri;
moreover, with certain probability, Bob might also get vcol.

Observe that Bob gets to redeem vcol in round T when
two events happens: E1) preb is not revealed before round T
(or else some miner—not necessarily Mi—will redeem vcol in
round T ), and E2) the bribing miner Mi is not elected to mine
in round T (or else Mi will redeem vcol herself). Bob’s total
income when accepting the bribe is therefore bri + Pr[E1] ·
Pr[E2] · (vcol − f col

B ).

The probability depends on Mi’s mining power as well as
the actions of other (passively rational) miners. We consider
the worst case to get a lower bound. preb is revealed only
when Mi redeems vdep, the probability of which is maximized
when when all passively rational miners only include unrelated
transactions. Therefore Pr[E1] ≥ (1−λi)

T−tpub . It is not hard
to see Pr[E2] = 1− λi.

Overall, Bob’s utility is (1−λi)
T−tpub+1(vcol−f col

B )+bri.
Bob would have strictly higher utility from accepting Mi’s
bribe if vcol−f col

B < (1−λi)
T−tpub+1(vcol−f col

B )+bri which
is equivalent to: (1− (1− λi)

T−tpub+1)(vcol − f col
B ) < bri.

Theorem 4. Let Mi be the single active miner. Assuming that
all miners are rational and non-myopic, then as long as vcol−
f col
B < λi

1−λi
(vdep − f dep

A ), there always exists a value for
bri, such that Mi and Bob have higher expected utility from
mounting SIRBA with bri than from following the MAD-HTLC
protocol, when all other miners are passive.

Proof: From Lemma 16 it follows that in the case in
which all other miners are passively rational, Bob will have
strictly higher utility from accepting bri if bri < (1 −
(1 − λi)

T−tpub+1)(vcol − f col
B ) independent of the action

that passively rational miners choose before round T . From
Lemma 15, we further know that Mi would have strictly higher
expected utility from paying any bri < λi(v

dep − f dep
A ) +

λi(v
col−f col

B ) to Bob in exchange for preb. Clearly, a feasible
bribe value that results in higher expected utility for both Bob
and Mi will always exist if (1 − (1 − λi)

T−tpub+1)(vcol −
f col
B ) < λi(v

dep − f dep
A )+λi(v

col − f col
B ). It is simple to see

that if vcol − f col
B < λi

1−λi
(vdep − f dep

A ), such a value will
always exist.

B. Analysis of SDRBA

We first define some additional helpful lemmas to prove
the lemmas mentioned in the text.

Lemma 17. Suppose vdep has been redeemed in some round
before T . Consider the subgame g = Gdep(T, st) in round
T . If st = irred-nrev, redeeming vcol through dep-B is a
dominant strategy for both Bob and miners. If st = irred-rev,
redeeming vcol through col-M is a dominant strategy for
miners. Moreover, the utility of miner Mi ∈ M with mining
power λi is given by

ūi(g) =

{
λi(v

col − f) st = irred-rev
λi(f

col
B − f) st = irred-nrev

.
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Proof: Since MH-Dep has been redeemed, the miner of
round T can choose between three actions: to redeem MH-
Col via col-B, to redeem MH-Col via col-M , or to include
unrelated transactions. We analyze the utility of these options
based on how MH-Dep might have been redeemed. Since
dep-B is not possible before round T per HTLC spec, MH-Dep
must have been redeemed through dep-M or dep-A.

Case 1: If the path dep-M was taken, then preb would
have been revealed and the game will be in st = irred-rev.
Given that vcol > f col

B > f , Mi will strictly prefer to redeem
MH-Col via path col-M over any other action. The utility is
ūi(G

dep(T, irred-rev)) = λi(v
col − f).

Case 2: If the path dep-A was taken, then preb is only
known to Bob (bribing miners will not learn preb directly
through the fair exchange protocol, as discussed in Sec-
tion III-C). Since a miner can at most earn the value of MH-Col
(i.e., vcol) through reverse bribery, it cannot bribe more than
vcol. However, since Bob gets back vcol anyway, it is infeasible
for miners to incentivize Bob to deviate from the honest
protocol and reveal preb. Consequently, Mi will include tx col

B
(instead of unrelated transactions since f col

B > f by assump-
tion). The utility is the fees, i.e., ūi(G

dep(T, irred-nrev)) =
λi(f

col
B − f).

Lemma 18. For any subgame g = Gdep(k, st) where tpub <

k ≤ T and st ̸= red, ūi(g) = ūi(G
dep(T, st)).

Proof: State st ̸= red means that MH-Dep has been
redeemed, so the utility change can only be gained from
redemption of MH-Col. Following the proof of Lemma 17,
the expected utility from MH-Col solely depends on miners’
knowledge of preb and mining power. We now argue that
neither changes between round k and T . If MH-Dep has been
redeemed via path dep-M , then preb has been revealed on-
chain. If MH-Dep has been redeemed via path dep-A, then
preb will never be known to any miners (following a similar
argument as the proof of Lemma 17). Thus the knowledge of
preb will not change between round k and T . By assumption,
the mining power does not change.

Lemma 19. In Gdep(T, red), a passively rational miner will
redeem MH-Dep and MH-Col via path dep-A and col-B.

Proof: The proof is similar to lemmas 12 and 13 where
the passively rational miner does not know preb in round T .

Now, we redefine and prove the lemma statements used in
Section III

Lemma 1. In Gdep(T, red), for an actively rational miner,
paying a bribe bri to Bob strongly dominates any other
available action if bri < vdep + vcol − f dep

A − f col
B . In this

case, ūi(G
dep(T, red)) = λi(v

dep + vcol − 2f − bri).

Proof: Let Mi be some actively rational miner in
Gdep(T, red). In round T , Mi has the chance to redeem both
vdep and vcol, thus Mi can choose between i) including tx dep

A
and tx col

B , ii) offering a bribe, or iii) including unrelated trans-
actions. We first observe that including unrelated transactions
realizes strictly less profit than including tx dep

A and tx col
B . Now

we compare the utility from (ii) bribing and (iii).

Suppose miner Mi were to bribe bri. Then Mi’s expected
utility from bribery, conditional on Bob’s acceptance of bri, is

λi(v
dep − f + vcol − f − bri) (5)

since Mi can earn vdep+vcol with probability λi. On the other
hand, Mi’s utility from not bribing (i.e., including transactions
from Alice and Bob instead) is λi(f

dep
A −f +f col

B −f). Thus,
if bri < vdep − f dep

A + vcol − f col
B , then Mi prefers paying

bribe bri to Bob.

Lemma 2. In any subgame Gdep(k, red) where tpub ≤ k < T ,
as long as bri < vdep −f dep

A +λi(v
col −f col

B ), for an actively
rational miner, bribing Bob and redeeming MH-Dep via path
dep-M in round k strongly dominates redeeming MH-Dep via
path dep-A.

Proof: Let Mi be some actively rational miner chosen to
create a block in round k where tpub ≤ k < T . If Mi chooses
to bribe bri, and Bob accepts the bribe, then Mi’s utility in
subgame Gdep(k, red) is given by vdep−f−bri+ūi(G

dep(k+
1, irred-rev)). By Lemma 17 and Lemma 18, this expression
becomes:

vdep − f − bri + λi(v
col − f). (6)

If Mi chooses to include tx dep
A , then MH-Dep will be

redeemed via path dep-A. As argued in proof of Lemma 18, we
argue that in this case preb will never be released. Hence, Mi’s
expected utility from choosing to include tx dep

A if chosen to cre-
ate block bk is given by f dep

A −f+ūi(G
dep(k+1, irred-nrev)).

By Lemma 17 and Lemma 18, this expression becomes:

f dep
A − f + λi(f

col
B − f) (7)

From Eq. (6) and Eq. (7), if bri < vdep − f dep
A +λi(v

col −
f col
B ), then Mi’s expected utility from bribing is strictly higher

than from redeeming MH-Dep via path dep-A.

Lemma 3. In any subgame Gdep(k, red) where tpub ≤ k < T ,
as long as bri < vdep − f dep

A , for an actively rational miner,
bribing Bob and redeeming MH-Dep via path dep-M in round
k strongly dominates including only unrelated transactions.

Proof: Let Mi be an actively rational miner creating a
block in round k where tpub ≤ k < T . As in Lemma 2, its
utility from choosing to pay bribe bri to Bob in round k is
given by vdep − f − bri + λi(v

col − f) (Eq. (6)).

Consider the case where the best action for Mi changes
to bribe Bob in some round ≥ k + 1 and < T , then if Mi

gets chosen to create a block in that round and MH-Dep is
still redeemable, the utility earned in that round would still be
given by vdep − f − bri+λi(v

col − f). Since the miner would
get chosen in such a round with probability < 1, it follows
that bribing Bob in round k strictly dominates by deferring the
bribe to some later round < T . Consequently, the only other
action for Mi would be to consider including only unrelated
transactions till timeout T .

Suppose Mi includes only unrelated transactions until
the timeout, then there are three possible cases to consider
depending on the game state in the timeout round:

17



Case 1: Gdep(T, red). In this case, MH-Dep has not been
redeemed until the timeout round. Mi’s expected utility is thus
given by Eq. (5) and equal to λi(v

dep + vcol − 2f − bri).

Case 2: Gdep(T, irred-rev). In this case, MH-Dep has
been redeemed by some other miner via path dep-M . From
Lemma 17 it follows that Mi’s expected utility is given by
λi(v

col − f).

Case 3: Gdep(T, irred-nrev). In this case, MH-Dep has
been redeemed by some other miner via path dep-A. From
Lemma 17 it follows that Mi’s expected utility is given by
λi(f

col
B − f).

Consequently, Mi’s expected utility from choosing to in-
clude only unrelated transactions before the timeout is upper
bounded by max (λi(v

dep + vcol − 2f − bri), λi(v
col − f)).

Clearly, when bri < vdep − f , Mi’s expected utility from
bribery in round k is strictly higher than from including an
unrelated transaction.

Lemma 4. In any subgame Gdep(k, ·) where k ≥ tpub, Bob
will have higher utility from accepting any bri > vcol − f col

B
than from following the MAD-HTLC protocol.

Proof: By the same argument as in Lemma 16, once Alice
publishes prea in tpub, Bob’s highest achievable utility from
following the protocol at this point is vcol − f col

B . Given the
game setup, Bob will only release preb if the attack succeeds.
In this case, by Lemma 17 and Lemma 1, Bob will lose vcol.
Consequently, Bob will not accept any bribe bri ≤ vcol−f col

B .
On the other hand, Bob will have strictly higher utility at the
end of the game from accepting bri > vcol − f col

B than from
following the MAD-HTLC protocol.

Safety of MAD-HTLC against SDRBA

Theorem 5. If vcol − f col
B > 1

1−λmax v
dep and f dep

A ≥
λac

T−tpub+1(vdep − f dep
A ), following MAD-HTLC protocol

would be preferred by all miners over bribing Bob

Proof: From Lemma 2 and Lemma 4, it follows that
bribery would be preferred over tx dep

A before round T only
if vcol − f col

B < vdep − f dep
A + λi(v

col − f col
B ), else tx dep

A is
preferred over bribing Bob. Thus, if vcol−f col

B > 1
1−λmax v

dep,
then no miner Mi would choose to bribe Bob in all rounds
before T .

From Lemma 1 and Lemma 4 it follows that if MH-Dep is
still redeemable in round T , bribery will be strictly preferred
for both an actively rational miner and Bob if vcol − f col

B <
vdep − f dep

A + vcol − f col
B . Since vdep − f dep

A > 0, it follows
that bribery will always be preferred at that time. In case all
active miners choose to not include related transactions till T ,
the probability that the game will reach the game Gdep(T, red)
is given by λac

T−tpub . Further, probability for any active miner
to win in round T would be given by λac. Thus, the probability
that any active miner receives utility from including unrelated
transactions till round T is λac

T−tpub+1 and the utility is given
by λac

T−tpub+1(vdep−f dep
A +vcol−f col

B −bri and since bri >
vcol−f col

B , the utility is upper bounded by λac
T−tpub+1(vdep−

f dep
A ). If utility from including tx dep

A exceeds the same, then

all active miners would be better off following MAD-HTLC
protocol.

C. Variants of the Protocol for Realizing SDRBA

We consider a few variants of the protocol discussed in
Section III-B.

ZKPs in place of TEEs. Instead of TEEs, Bob can prove
the correctness of h using zero-knowledge proof [22]. This
removes the reliance on TEE security (although we emphasize
that the presented protocol only requires integrity, not confi-
dentiality), but ZKPs are typically orders of magnitude slower
than equivalent implementation using TEEs.

A protocol with TEE on the miner’s side. We can also
adapt the construction in [12] to get another implementation
of SDRBA where the miner hosts the TEE. Briefly, Bob sends
encrypted preb to a TEE, which decrypts it upon receiving a
complete proof-of-work block satisfying certain criteria. Then
the miner completes the block and broadcasts it. This variant
necessarily relies on the confidentiality guarantee of TEEs and
works with PoW blockchains. The upside, however, is that the
miner does not rely on Bob’s rationality for broadcasting. A
similar construction appeared in MEV-SGX [12] although in
a different context.

D. Proof of Lemmas in HyDRA

Lemma 5. For an active rational miner in round t ≥ T ,
where mounting SDRBA is an available action (i.e., MH-Dep
and MH-Col are still redeemable) and vdep − (T − tpub − 1) ·
c1− (t−T ) · c2 > f dep

A , mounting SDRBA (Step 2) dominates
censoring tx dep

A (Step 1).

Proof: The total amount remaining in the contract for
any miner of round t to take a bribe of c1 or c2 for censorship
is vdep − (T − tpub − 1) · c1 − (t − T ) · c2. This is to be
the utility for the miner (vdep + vcol − br) who chooses
to perform SDRBA in the current round. If the miner instead
chooses to censor tx dep

A and get c2 bribe, and is chosen to build
the next block in round t′, the expected utility would be at most
c2+vdep−(T−tpub−1)·c1−(t′−T )·c2, even considering that
no other active miner between time t and t′ chooses to take
Step 2. Since t′ ≥ t+1, this utility is lower than or equal to the
utility earned by the active miner choosing to mount SDRBA in
round t. Thus, given that SDRBA is available, all active rational
miners will take that action, instead of potentially sharing the
revenue with other miners.

Lemma 6. For any rational miner of round t ≥ T , where MH-
Dep and MH-Col are not yet redeemed and vdep− (T − tpub−
1) · c1 − (t − T ) · c2 > f dep

A , censoring tx dep
A and accepting

delay bribe (Step 1) dominates over including tx dep
A .

Proof: In each round t ≥ T , given the choice between
including tx dep

A and censoring it, a rational miner, chosen to
mine the current round, would have a utility of f dep

A if it
chooses to include tx dep

A , whereas a miner who chooses to
censor tx dep

A , can call the contract with proof of not including
the transaction and get a future amount of c2, which we have
set to be > f dep

A /λac (Fig. 6), with a potential to earn more in
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the future rounds. With probability λac, the next block would
be mined by an active miner, who as shown in Lemma 5, will
choose to perform SDRBA step and make the attack successful.
Thus, the probability of receiving the future amount of c2 is
at least λac. Therefore, utility from censoring the transaction
is given by u > λac · (f dep

A /λac). Thus, it is rational for all
miners to censor tx dep

A than to include it on-chain.

Lemma 7. For any rational miner of round t < T , where
MH-Dep has not yet been redeemed and vdep − (T − tpub −
1) · c1 + (1/λac) · c2 > f dep

A , censoring tx dep
A and accepting

delay bribe (Step 1) dominates over including tx dep
A .

Proof: In each round, given the choice between including
tx dep

A and censoring it, a rational miner chosen to mine the
current round would have a utility of f dep

A if it chooses
to include tx dep

A , whereas a miner who chooses to censor
tx dep

A , can call the contract with proof of not including the
transaction and get a future amount of c1. Since the expected
number of blocks the attack lasts after timeout is given by
1/λac, the probability with which the attack succeeds until
that round is given by 1 − (1 − λac)

1/λac . We have set

c1 >
f

dep
A

1−(1−λac)1/λac (Fig. 6), which gives the miner a utility

greater than f dep
A . Thus, it is rational for all miners to censor

tx dep
A than to include it on-chain.
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