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Abstract

Byzantine reliable broadcast (BRB) is one of the most fundamental primitives in fault-
tolerant distributed computing. It is well-known that the best BRB protocol one can hope for
has O(nL+ n2) communication. It is unclear if this bound is achievable.

This paper provides a novel BRB protocol—BRB1, which achieves O(nL + kn + n2) com-
munication, where n, L, and k are the number of replicas, the message length, and the security
parameter, respectively. Our protocol is efficient, because the only building blocks we need are
threshold signatures which have been used in various Byzantine fault-tolerant (BFT) protocols
(e.g., SBFT, HoneyBadgerBFT, HotStuff). Clearly, our BRB protocol is optimal at least for
messages of length L ≥ k. Namely, if the length of the message to be broadcast is no less than
the security parameter (e.g., 128 bit), our BRB protocol is optimal.

1 Introduction

Byzantine reliable broadcast (BRB) [12] is a fundamental tool in fault-tolerant distributed comput-
ing, ensuring that all replicas in a distributed system deliver the same message from a designated
sender (even if some replicas, including the sender, are Byzantine). First, BRB itself is powerful
enough to build killer applications such as online payment systems [16, 26]. More importantly, BRB
is a popular building block for high-level protocols, such as Byzantine fault-tolerant state machine
replication (BFT) protocols (e.g., HoneyBadgerBFT [38], BEAT [19], Dumbo [27], DAG-Rider [32],
PACE [20], WaterBear [21], MiB [34]), and multi-party computation [35]. This paper introduces a
novel BRB protocol reducing the communication complexity of BRB protocols, thereby improving
upon all the above-mentioned protocols immediately.

A brief history of BRB. Bracha’s broadcast [11, 12] is the first BRB protocol proposed and
is one of the most classic protocols in fault-tolerant distributed computing. It has 3 steps, O(n2)
messages, and achieves O(nL2) communication. Bracha’s broadcast is information-theoretically
secure (assuming authenticated channels only). Note the message complexity of O(n2) for Bracha’s
broadcast is optimal, and one cannot expect to achieve anything better. Hence, the epicenter of
BRB research is to reduce the communication complexity of BRB protocols.

Assuming hash functions, Cachin, Kursawe, Petzold, and Shoup [14] describe a BRB protocol
aiming to improve Bracha’s BRB in an optimistic manner: if faulty replicas are not actively inter-
fering with the protocol execution, the communication complexity of the protocol is O(nL+ kn2),
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where k is the size of the hash function output; in the worst case, it has O(n2(L+k)) communication
(no better than Bracha’s broadcast).

Still assuming hash functions, Cachin and Tessaro (CT) design an erasure-coded BRB protocol
that achieves O(nL + kn2 log n) communication. CT BRB is highly efficient, as it assumes hash
functions and has been widely used in many practical asynchronous BFT protocols using BRB
(e.g., HoneyBadgerBFT [38], BEAT [19], Dumbo [27]).

Assuming trusted setup, Nayak, Ren, Shi, Vaidya, and Xiang (NRSVX) propose an erasure-
coded BRB protocol achieving a communication cost of O(Ln + kn2) [39]. Recently, Das, Xiang,
and Ren (DXR) propose a new BRB protocol achieving the same communication, assuming hash
functions only [17]. DXR BRB explores the idea of online error correction (OEC) due to Ben-Or,
Canetti, and Goldreich [6]. Later, Alhaddad, Duan, Varia, and Zhang (ADVZ) have shown another
BRB protocol using erasure coding proof system [3]. ADVZ BRB achieves the same communication
as DXR BRB but assumes trusted setup. The benefit of this ADVZ BRB, however, is that it uses
fewer steps than NRSVX but slightly less concrete communication than DXR BRB.

What we can hope for BRB? BRB requires validity and agreement. Validity means that if
a correct replica p broadcasts a message M of length L, then all replicas eventually delivers M .
Agreements means that if some correct replica delivers a message M , then every correct replica
eventually delivers M . Validity implies the need of transmitting at least nL bits, as all replicas
need to possess M . Agreement implies the need of broadcast (i.e., n2 messages and at least n2 bits
needed), as a linear communication would not be possible to ensure agreement in the presence of
failures in a constant number of rounds. Therefore, the best communication complexity can hope
for a BRB protocol is O(nL+ n2).

However, the above “best” bound is difficult, if not impossible, to achieve, as one would typically
need to cryptography (e.g., hashes, commitments, signatures) or more advanced cryptographic
building blocks to: 1) compress input, 2) authenticate data and ensure data transferability, or
3) ensure data consistency (if just sending the erasure-coded fragments instead of the input data
itself). Doing so would seem to need agreeing on the underlying cryptographic tool, which at least
incurs kn2 communication, where k is the length of the underlying cryptographic primitive. So
intuitively, what one could reasonably hope for a practical BRB protocol achieves O(nL + kn2)
communication. Indeed, attaining O(nL + kn2) communication has already proven tricky: only
very recently (after 2020), NRSVX BRB [39], DXR BRB [17], and ADVZ BRB [3] have achieved
the goal, via different techniques (see Table 1).

This paper demonstrates a somewhat surprising result: we can construct BRB protocols with
lower communication. In particular, our BRB protocol eliminates the cubic term which may easily
dominate the communication with a large n or a small L.

1.1 Our Contributions

This paper provides a novel BRB protocol that achieves O(nL+kn+n2) communication, where n,
L, and k are the number of replicas, the message length, and the security parameter, respectively.
BRB1 breaks the symmetry in designing BRB protocols. Our protocol uses threshold signatures [9,
10] and authenticated channels. We begin with a half-baked construction satisfying validity but
not agreement. Then we present BRB1 that tackles the problem retroactively in the sense that we
simply allow the agreement problem to happen in the middle but fix the problem before the end
of the protocol.
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protocol setup asymptotic communication

Bracha’s BRB [12] none O(n2L)
CT BRB [15] none O(nL+ kn2 log n)

NRSVX BRB [39] trusted O(Ln+ kn2)
DXR BRB [17] none O(nL+ kn2)
ADVZ BRB [3] trusted O(nL+ kn2)

BRB1 (this work) trusted O(nL+ kn+ n2)

Table 1: Comparison of BRB protocols. Trusted setup means that a trusted party is responsible
for generating public parameters for the system, say, the public key for threshold signatures. PKI
means public-key infrastructure. L is the input length and k is the security parameter. Note
our BRB protocol has better communication complexity than DXR and ADVZ BRB protocols, as
k + n≪ kn (for a given k, e.g., 128).

Our BRB protocol is optimal for messages of length L ≥ k, because the best BRB one could
hope for has O(nL+ n2) communication. In practice, for major BRB applications, such as online
payment systems [16, 26] and asynchronous BFT systems [38, 19, 27, 32, 20], the message length is
much longer than the security parameter (e.g., 128 bit), as these applications use message batching
extensively for high system performance. (Meanwhile, it is possible that our BRB protocol is indeed
optimal, as it is unclear if the O(nL+ n2) bound is achievable.)

It is also trivial to replace threshold signatures using aggregate signatures, so the resulting
protocol maintains the same complexity while working in the PKI model.

Discussion. This paper provides a new BRB protocol, BRB1 that uses the trusted setup model,
relying on threshold signatures. In applications where trusted setup is permitted (for instance,
all known asynchronous BFT protocols implemented using BRB), one can directly use our BRB
protocol. In applications where trusted setup is not allowed, one may run a distributed key gener-
ation (DKG) algorithm to generate the needed public parameters: various DKG algorithms have
been proposed in the synchronous setting [5, 23, 28], the partially synchronous setting [31], and the
asynchronous setting (e.g., [17, 33, 1]).

Lastly, while our BRB protocol has better communication than DXR BRB, DXR BRB relies on
hash functions only and does not assume trusted setup or PKI. So all those protocols are interesting
and useful in their own regard.

One possible reaction to this work is to say: forget it, the improvement is small. Such a
viewpoint underestimates the importance of the work. On the one hand, our protocol removes the
cube term (i.e., kn2) which is easily the bottleneck of the protocol when n is reasonably large or L is
small. On the other hand, from the theoretical perspective, even just a “small” improvement would
prove significant for BRB, because BRB is one of the most fundamental primitives in distributed
computing: before this work, we do not even know if the bound of O(Ln+ kn2) is the best we can
hope for among BRB protocols using cryptography.

Versions of the paper. The early version of the paper contains a different BRB protocol that
has more steps than BRB1. As there is no reason to favor that one, so we remove it.
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2 System Model and Problem Statement

A Byzantine reliable broadcast (BRB) protocol consists of n replicas, where f out of them replicas
may fail arbitrarily (Byzantine failures). We assume the existence of point-to-point authenticated
channels between each pair of replicas. We consider asynchronous systems making no timing
assumptions on message processing or transmission delays.

This paper considers adaptive corruption, where the adversary can choose its set of corrupted
replicas at any moment during the execution of the protocol, based on the information it accumu-
lated thus far. Note that the static corruption is weaker, as the adversary is restricted to choose
its set of corrupted replicas at the start of the protocol and cannot change this set later on. All
protocols we consider assume that f is a constant fraction of n with f ≤ ⌊n−1

3 ⌋, which is optimal.

A (Byzantine) quorum is a set of ⌈n+f+1
2 ⌉ replicas. Without loss of generality, this paper may

assume n = 3f + 1 and a quorum size of 2f + 1.

Byzantine reliable broadcast (BRB). We review the definition of Byzantine reliable broadcast
(BRB). A BRB protocol is specified by two protocols r-broadcast and r-deliver such that the
following properties hold:

• Validity: If a correct replica p r-broadcasts a message M , then p eventually r-delivers M .
• Agreement: If some correct replica r-delivers a messageM , then every correct replica eventually
r-delivers M .
• Integrity: For any message M , every correct replica r-delivers M at most once. Moreover, if a
replica r-delivers a message M with sender ps, then M was previously broadcast by replica ps.

Identifying protocol instances. We assume each protocol instance is associated with a unique
tag id. For each step of the protocol, we provide a unique step name (e.g., cbc-send, disperse)
which will help readers better distinguish different steps.

3 Building Blocks

Reed-Solomon code. An (m,n) Reed-Solomon code consists of an encode algorithm and a decode
algorithm. The encode algorithm takes as input m, n, and a data block M with m data fragments
and uses those as m coefficients to produce a polynomial P of degree m − 1. Then the encode
algorithm outputs n points (coded fragments) by evaluating P on n different points.

The decode algorithm takes as input m, a set T of coded fragments, and the number of incorrect
coded fragments r, and outputs a degree m − 1 polynomial (coefficients as data fragments) by
correcting up to r failures (incorrect fragments) in T . It is known that as long as |T | ≥ m + 2r,
decode can correct up to r failures in T and decode the original block [37, 44, 22].

Online error correcting (OEC) algorithm. Online error correcting algorithm due to Ben-Or,
Canetti, and Goldreich [7] allows one to decode efficiently from a growing set T that keeps receiving
coded fragments, where up to f out of |T | coded fragments are incorrect.

For our purpose, fixing an (f + 1, n) Reed-Solomon code where n = 3f + 1, let M be the
original data block with m data fragments. There are at most n coded fragments, and up to f
coded fragments may be replaced with arbitrary (incorrect) fragments. Suppose T be a set that
keeps receiving these coded fragments, one after another. The OEC algorithm performs at most
f+1 trials of the decode algorithm. In the r-th trial (0 ≤ r ≤ f), the recipient waits until it receives
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fragments from 2f + r+1 replicas and then attempts to decode. In particular, the OEC algorithm
has the first trial when |T | ≥ 2f + r + 1 for r = 0. If not successful, then it keeps waiting for new
fragments and then runs the decode algorithm for 1 ≤ r ≤ f until decode for some r is successful
and outputs the data fragments. (For Reed-Solomon codes, if the reconstructed polynomial agree
with 2f+1 points in T , then decode outputs the coefficients of the reconstructed polynomial.) Note
that the OEC algorithm must be successful when r = f , because the decode algorithm can correct f
arbitrary failures among |T | = 3f +1 coded fragments. The the decode algorithm may well output
before the trial for r = f .

Asynchronous data dissemination. Das, Xiang, and Ren [17] propose asynchronous data
dissemination (ADD) which allow f + 1 correct replicas to disseminate a message to all correct
replicas in an asynchronous network, where f is the upper bound on the number of faulty replicas
in the system. The ADD construction introduced by Das, Xiang, and Ren is as follows: in the
first step, all replicas holding M send coded fragments to all replicas; in the second step, upon
receiving f +1 matching fragments di, a replica pi fixes its fragment as di and broadcasts di. Then
replicas wait to receive fragments and use OEC algorithm to decode the original block M . ADD is
information-theoretical and does not use any cryptographic tools, and the communication cost of
ADD is O(nL+ n2).

While this paper uses ADD, we did not use it in a black-box manner. So in some sense, readers
do not need to understand ADD to understand our protocols. In fact, knowing OEC is good enough
for our constructions. We do, however, use ADD as an abstraction to motivate our constructions.

Signatures and threshold signatures. We use a conventional signature scheme consisting of
three algorithms (siggen, sigsign, sigverify). siggen outputs a pair of public/secret keys (pk, sk). A
signature signing algorithm sigsign takes as input a message M and a private key sk and outputs
a signature σ. A signature verification algorithm sigverify takes as input pk, a message M , and a
signature σ, and outputs a bit. We require the conventional unforgeability property for signatures.

A (t, n) threshold signature scheme [9, 42] consists of the following algorithms (tgen, tsign,
shareverify, tcombine, tverfiy). tgen outputs a system public key known to anyone and a vector
of n private keys. A partial signature signing algorithm tsign takes as input a message M and a
private key ski and outputs a partial signature σi. A combining algorithm tcombine takes as input
pk, a message M , and a set of t valid partial signatures, and outputs a signature σ. A signature
verification algorithm tverify takes as input pk, a message M , and a signature σ, and outputs a
bit. We require the conventional robustness and unforgeability properties for threshold signatures.

We simply omit the public keys, private keys, and key generation algorithms when no ambiguity
arises. We may leave the verification of partial signatures and threshold signatures implicit when
describing algorithms.

Consistent broadcast (CBC). We review the definition of consistent broadcast (CBC) [40, 14].
A CBC protocol is specified by c-broadcast and c-deliver such that the following properties hold:

• Validity: If a correct replica p c-broadcasts a message M , then p eventually c-delivers M .
• Consistency: If two correct replicas c-deliver two messages M and M ′, then M = M ′.
• Integrity: For any message M , every correct replica c-delivers M at most once. Moreover, if
the sender is correct, then M was previously c-broadcast by the sender.

A verifiable CBC (VCBC) protocol [14] is a CBC protocol with an additional verifiability
property: when a correct replica has c-delivered a message M , then it can produce a single protocol
message P that may be sent to other parties such that any other correct party will immediately
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Figure 1: A half-baked idea.

deliver P once receiving P . VCBC can be used as a building block for high-level protocols [14].

Steps and phases. We use the standard notation of steps [13], where a step consists of receiving
a message from some party, running a local computation (optional), and sending a message to some
party. We also use the notation of phases, where a phase consists of a fixed number of steps. In
our notation, a protocol has several phases, and each phase has several steps. Of course, it makes
sense to directly count how many steps a protocol has.

4 Technical Paths

Review of DXR BRB. Das, Xiang, and Ren [17] use OEC to build DXR BRB protocol with
O(nL+ kn2) communication.1 The idea is simple and efficient, following the three-step pattern of
Bracha’s broadcast. In the first step, the sender broadcasts the whole message m instead of sending
individual coded fragments. In the second step, replicas echo replicas different coded fragments
and a hash of m denoted as h. In the third step, upon receiving 2f + 1 matching echo messages,
replicas send ready messages with coded fragments and h; upon receiving f + 1 ready messages
with the same h, replicas wait for f + 1 matching echo messages with the same h and then send
ready messages (the ”amplification” step). The replicas keep all ready messages with the same
h in a set and run OEC algorithm until successfully reconstructing some data m′. The replica
delivers m′ only if it matches h. Apparently, the second step and the third step involves all-to-all
broadcast of hashes, incurring O(kn2) communication.

A half-baked idea: breaking the symmetry for BRB design. Our first idea is to break
the symmetry in designing BRB protocols. Indeed, when designing efficient BRB protocols, one
typically follows a symmetric design approach: in the first step, the sender sends some data (either
the whole input message M or a coded fragment) to every replica; in the following steps, replicas all
broadcast fragments and/or short cryptographic proofs to each other in order to achieve agreement.

In our new design, we break BRB constructions into a linear communication phase and a
broadcast phase. We use cryptography in the first linear communication phase, while the broadcast
phase explicitly rules out cryptography.

Our starting protocol works as follows. In the first linear communication phase, our goal is to
disperse the input to ensure that f+1 correct replicas to have consistent data, a goal that consistent

1Note that the authors also provide a 5-step BRB protocol which may be viewed as a less efficient variant of the
DXB BRB.
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broadcast (CBC) [40, 14] or its information dispersal version may achieve; in the second broadcast
phase, our idea is to ”amplify” consistent data from f + 1 correct replicas to all replicas, a goal
that asynchronous data dissemination (ADD) [17] may achieve. Such a construction is depicted
in Figure 1. We use CBC and ADD in a black-box manner.

For the above construction, the first phase has O(nL + kn) communication, while the second
phase has O(nL+n2) communication. Adding them together, we have a construction with O(nL+
nk + n2). Unfortunately, the construction only achieves validity but not agreement. Indeed, it
is easy to show that some correct replicas r-deliver message M , while some other replicas do not
r-deliver any message, violating agreement.

As an example, a faulty sender may make only one correct replica deliver the message in the
CBC phase and enter the second phase. All f faulty replicas collude and disseminate correct
fragments to f + 1 correct replicas. Together with the fragment from the correct replica, each of
the f +1 correct replicas receive f +1 matching fragments, share their fragments, complete ADD,
and deliver the corresponding message. The rest f correct replicas, however, cannot deliver the
message, since they fail to start ADD.

Some trivial modifications of the above construction suffer from a similar problem. One such
modification could be illustrated as follows: whether receiving a threshold signature from the sender
to start ADD, replicas immediately broadcast fragments once receiving fragments. This approach
does not work either, because it is still possible that some correct replicas r-deliver a message M ,
while other correct replicas do not deliver anything.

Below, we outline how we solve the agreement problem, by providing an approach to handling
the issue retroactively.

BRB1 (Figure 2). In BRB1, our idea is simply to let the agreement issue occur and then
fix it retroactively. We add one more ready step after the ADD phase and ask replicas to r-
deliver a message M only if it receives enough ready messages. The most interesting part is that
an amplification step is now introduced, going back to the very first step of the broadcast phase,
instead of the beginning of the same step. To our knowledge, our novel amplification technique is in
contrast to all other known amplification steps ever used in BRB and even fault-tolerant distributed
computing. Strikingly, the ready step and the ”unconventional” amplification step are all we need
for a secure BRB construction.

5 BRB1

This section describes BRB1, a BRB protocol that has six steps. BRB1 uses a strategy that is
different from BRB1. We show the workflow of BRB1 in Figure 2 and pseudocode in Algorithm 1.
BRB1 consists of two phases: a linear CBC phase and a broadcast phase.

CBC phase (Algorithm 1: line 4-15). This phase runs a standard CBC. In particular, the
sender ps broadcasts an (id,cbc-send,M) message. Upon receiving an (id,cbc-send,M) message,
each replica generates a partial signature σi and sends an (id,cbc-rep,M, σi) message to ps. If ps
receives n− f partial signatures, it combines them into a threshold signature σ and broadcasts an
(id,cbc-final,M, σ) message to all replicas. Upon receiving an (id,cbc-final,M, σ) message, each
replica sets msg as M and proof1 as σ and completes CBC.

Broadcast phase (Algorithm 1: line 16-33). The broadcast phase consists of three steps:
disperse, reconstruct, and ready. The first two steps are similar to those in . In particular,
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Figure 2: BRB1 workflow.

upon the completion of CBC, each replica pi encodes its msg into coded fragments d. For each
replica pj , pi sends it an (id,disperse, dj) message. Upon receiving f +1 matching (id,disperse, d∗i )
messages, pi fixes d

∗
i and broadcasts (id,reconstruct, d∗i ). Upon receiving at least n − f recon-

struct messages, each replica starts to decode the message using OEC. This process may continue
until OEC outputs a message M . A local parameter output is then set as M .

But this is not the last step of the BRB1. When OEC outputs M , each replica broadcasts
an (id,ready) message. Furthermore, if replica pi previously has not sent a disperse message,
it disperses the coded fragments, i.e, pi encodes M and sends pj (for any j ∈ {0, · · ·n − 1}) an
(id,disperse, dj) message. Each replica waits for n − f (id,ready) messages and then delivers
message output (message output by OEC).

Analysis. The crucial step for BRB1 to achieve agreement is the amplification step after message
M is output by OEC. In particular, if the OEC outputs M and a replica has not previously sent a
disperse message, the replica encodes M and sends the coded fragments via a disperse message
to the replicas. If a replica r-delivers M , it has received n−f (id,ready) messages and at least f+1
correct replicas have completed the OEC. These correct replicas will send their coded fragments
via the disperse message. Accordingly, it is guaranteed that all correct replicas eventually decode
M , broadcast the ready messages, and r-deliver M .

The consistency property of CBC guarantees that no correct replicas will broadcast inconsistent
coded fragments, as each replica only disperses the coded fragments upon the completion of CBC.
An adversary cannot force any correct replicas to receive f + 1 matching but incorrect fragments
in the disperse step. Therefore, OEC can correct the errors and ensure that all correct replicas
r-deliver the same message M .

Let us analyze the communication complexity of BRB1. First, the first linear CBC phase
has O(Ln + kn) communication. The disperse and reconstruct steps both have O(Ln + n2)
communication, as each replica sends all replicas coded fragments (each fragment of size O(L/(f +
1)) = O(L/n)). The ready phase does not carry bulk data and has O(n2) communication only.
Therefore, the communication complexity for is O(Ln+ kn+ n2).

5.1 Proof of BRB1

Theorem 1. Assuming a secure threshold signature and authenticated channels, BRB1 satisfies
validity, agreement, and integrity.

Proof. We first provide the following three lemmas.
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Algorithm 1 BRB1 with identifier id and sender ps. Code shown for replica pi.

1: Initialization
2: (pk, sk)← tgen(1k) {threshold signature key generation; pk is the public key and sk is a vector of n

private keys}
3: proof1 ← ⊥,msg ← ⊥, output← ⊥, pset1 ← ∅, T ← ∅ {initialize the parameters}
4: upon r-broadcast(M)
5: msg ←M
6: broadcast (id,cbc-send,M) {cbc-send step}

7: upon receiving (id,cbc-send,M) from ps do {cbc-rep step}
8: msg ←M , σi ← tsign(id,M)
9: send (id,cbc-rep,M, σi) to ps

10: upon receiving (id,cbc-rep,M, σj) from pj and pi = ps do {cbc-final step}
11: if shareverify((id,M), σj) and M = msg
12: add σj to pset1
13: if |pset1| ≥ n− f
14: σ ← tcombine((id,M), pset1), broadcast (id,cbc-final,M, σ)

15: upon receiving (id,cbc-final,M, σ) from ps do {disperse step}
16: if tverify((id,M), σ) and M = msg
17: proof1 ← σ, d← encode(f + 1, n,msg)
18: for j ∈ {0, · · ·n− 1}
19: send (id,disperse, dj) to pj

20: upon receiving f + 1 matching (id,disperse, d∗i ) do
21: fix d∗i , broadcast (id,reconstruct, d

∗
i ) {reconstruct step}

22: upon receiving (id,reconstruct, dj) from pj do
23: add dj to T
24: for 0 ≤ r ≤ f do
25: wait until |T | ≥ 2f + r + 1
26: if decode(f + 1, T, r) = M {send (ready) and execute the amplification step}
27: output←M
28: broadcast (id,ready)
29: if (disperse) has not been sent
30: d← encode(f + 1, n,M)
31: for j ∈ {0, · · ·n− 1}, send (id,disperse, dj) to pj

32: upon receiving n− f (id,ready) do {ready step}
33: if output ̸= ⊥, r-deliver output

Lemma 2. If a correct replica sends a disperse message with fragments encoded from message
M , at least one correct replica has completed CBC and received M from the sender.

Proof. Each correct replica sends a disperse message with fragments encoded from M for two
cases: 1) It completes CBC and receives M from the sender; 2) It completes the reconstruct
step and obtains M . We show that in both cases, at least one correct replica has completed CBC
and receives M from the sender. For the first case, trivial. For the second case, if a correct replica
completes the reconstruct step, it must have received at least n − f reconstruct messages,
among which at least f + 1 are sent by correct replicas. For any of the correct replicas, it must
have also received f +1 matching disperse messages. As there are at most f faulty replicas, there
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must exist at least one correct replica that sends the disperse message after it completes CBC
and receives M .

Lemma 3. If a correct replica pi sends an (id,reconstruct, d∗i ) message and a correct replica pj
sends an (id,reconstruct, d∗j) message, d∗i and d∗j are both encoded from the same message M .

Proof. Let d∗i be a coded fragment encoded from message M . If a correct replica pi sends an
(id,reconstruct, d∗i ) message, it must have received f + 1 matching (id,disperse, d∗i ) messages,
among which at least one is sent by a correct replica. Among them, at least one correct replica has
sent a disperse message. According to Lemma 2, at least one correct replica completes CBC and
receives message M from the sender.

Let d∗j be a coded fragment encoded from message M̃ . If pj sends an (id,reconstruct, d∗j )
message, according to Lemma 2, at least one correct replica completes CBC and receives message
M̃ . This violates the consistency property of CBC. Thus, it holds M = M̃ .

Lemma 4. If a correct replica r-delivers M , the sender ps has previously broadcast M and at least
one correct replica has received a valid threshold signature proof1 = σ.

Proof. If a correct replica pi r-delivers M , it receives n − f (id,ready) messages. Furthermore,
in the reconstruct step, the OEC outputs a decoded message M . Accordingly, pi must have
received at least 2f + 1 (id,reconstruct, dj) messages, among which at least f + 1 are sent by
correct replicas.

According to Lemma 3, the f + 1 correct replicas only send coded fragments encoded from the
same message M ′. Therefore, the reconstructed f -degree polynomial for M must agree with f + 1
fragments from correct replicas. It must hold that M = M ′.

If pi r-delivers M , it has received at least 2f+1 ready messages and also 2f+1 reconstruct
messages, among which at least f +1 are sent by correct replicas. According to Lemma 2, at least
one correct replica has completed CBC and received a valid threshold signature proof1 for M , and
meanwhile the sender ps has sent M .

In the following, we prove that BRB1 satisfies validity, agreement, and integrity.

Validity. If a correct replica ps r-broadcasts M , all correct replicas complete CBC, according to
the validity property of CBC. Therefore, all correct replicas will send the disperse messages for the
same M , receive f + 1 matching disperse messages, and broadcast the reconstruct messages.
No correct replica can receive f + 1 matching (id,disperse, di) for M ′ ̸= M . Each correct replica
will then send a (id,reconstruct, di) messages such that di is encoded from M . Thus, all correct
replicas will receive 2f + 1 reconstruct messages from all correct replicas, output some value
and then send the (id,ready) messages. All correct replicas, including the sender, will then receive
n − f (id,ready) messages and r-deliver some message. Furthermore, as shown in Lemma 4, if
any correct replica r-delivers M ′ ̸= M , ps has previously sent M ′, contradicting the fact that ps
is a correct replica and r-broadcasts M . Therefore, all correct replicas will r-deliver the original
message M .

Agreement. The proof of agreement consists of two parts: 1) if a correct replica pi r-delivers M
and a correct replica pj r-delivers M ′, then M = M ′; 2) if a correct replica pi r-delivers M , any
correct replica will eventually r-deliver some message.

We prove the first part. If a correct replica pi r-delivers M , according to Lemma 4, at least one
correct replica has completed CBC and possessed a valid threshold signature for M . Furthermore,

10



If pj r-delivers M ′, at least one correct replica has completed CBC and possessed a valid threshold
signature for M ′. This violates the consistency property of CBC. Thus, M = M ′.

Then we prove the second part. If a correct replica pi r-delivers M , it has received n − f
ready messages, among which at least f + 1 are sent by correct replicas. The f + 1 correct
replicas must all output M by OEC, as proved in the first part. Furthermore, for each of the
f + 1 correct replicas, if it has not previously sent a disperse message, it will encode message M
and broadcast the disperse messages according to our protocol. Therefore, each correct replica
eventually receives at least f +1 matching disperse messages. Eventually, all correct replicas will
receive at least n−f reconstruct messages. According to Lemma 3, each correct replica sends a
fragment (id,reconstruct, di) such that di is encoded from the same message M . Therefore, each
correct replica eventually outputs some message. Finally, each correct replica will eventually send
an (id,ready) message, receive n− f (id,ready) messages, and r-deliver the value.

Integrity. According to the protocol, a replica does not participate in the protocol after it r-
delivers. Hence, each correct replica r-delivers at most once. Furthermore, as proved in Lemma 4,
if a replica r-delivers a message M with sender ps, M was previously broadcast by ps.

6 Related Work

AVID vs. BRB. Asynchronous verifiable information dispersal (AVID), introduced by Cachin
and Tessaro [15], is a primitive closely related to BRB. The original AVID constructions are both
AVID and BRB protocols. The difference between these two distributed systems primitives is that
BRB requires that replicas store a full copy of message, but AVID may only ask replicas to store
erasure-coded fragments in a consistent manner.

Erasure codes and error correcting codes in fault-tolerant distributed systems. Erasure
codes and error correcting codes are fundamental tools in fault-tolerant distributed computing pro-
tocols. Besides BRB, they have been used in various other primitives with Byzantine failures, such
as asynchronous verifiable information dispersal (AVID) [15, 30], multi-valued validated Byzantine
agreement (MVBA) [36], multi-valued Byzantine agreement [39], read/write storage [18, 4, 29],
and BFT storage [19].

Definitions and constructions for reliable broadcast (in the crash failure model). The
properties of reliable broadcast have been (somewhat informally) captured in SIFT [45]. Schneider,
Gries, and Schlichting formally define reliable broadcast as well as implement a protocol in the
crash failure model [41]. Crash fault-tolerant reliable broadcast becomes widely known through the
ISIS system due to Birman and Joseph [8]. Note that the definition of BRB is identical to that
in the crash failure model: the only difference lies in the failure assumption, where BRB considers
Byzantine failures, and crash fault-tolerant reliable broadcast considers crash failures.

Byzantine consistent broadcast (CBC). Byzantine consistent broadcast may be viewed as
BRB without the totality property. The notion has been implicitly discussed in [43, 12] and
more formally by Reiter [40] and Cachin, Kursawe, Petzold, and Shoup (CKPS) [14]. The CBC
construction is due to Cachin, Kursawe, Petzold, and Shoup [14].

BRB extensions. BRB has also been explored in some extended settings (e.g., probabilistic
BRB [25], BRB with dynamic membership [24]).

Good-case latency. Abraham, Nayak, Ren, and Xiang provide a complete categorization for
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Byzantine broadcast and BRB in terms of the good-case latency which measures the time one takes
for all correct replicas to commit when the broadcaster is correct [2].

7 Conclusion

We propose a novel BRB protocol with O(nL + kn + n2) communication, where n, L, and k are
the number of replicas, the message length, and the security parameter, respectively. Our BRB
protocol is optimal for messages that are of length L ≥ k. Namely, as long as the message is longer
than a security parameter (e.g., 128 bit), our protocol is optimal.
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