
Resumable Zero-Knowledge for Circuits from
Symmetric Key Primitives

Handong Zhang1,2, Puwen Wei1,2(�), Haiyang Xue3, Yi Deng4,5, Jinsong Li1,2,
Wei Wang1,2, and Guoxiao Liu1,2

1 Key Laboratory of Cryptologic Technology and Information Security,
Ministry of Education, Shandong University, Jinan, China

2 School of Cyber Science and Technology, Shandong University, Qingdao, China
hdzhang@mail.sdu.edu.cn, pwei@sdu.edu.cn, jsli@mail.sdu.edu.cn,

weiwangsdu@sdu.edu.cn, liuguoxiao@mail.sdu.edu.cn
3 The University of Hong Kong, Pokfulam, Hong Kong

haiyangxc@gmail.com
4 State Key Laboratory of Information Security, Institute of Information

Engineering, Chinese Academy of Sciences, Beijing, China
5 School of Cyber Security, University of Chinese Academy of Sciences,

Beijing, China
deng@iie.ac.cn

Abstract. Consider the scenario that the prover and the verifier per-
form the zero-knowledge (ZK) proof protocol for the same statement
multiple times sequentially, where each proof is modeled as a session.
We focus on the problem of how to resume a ZK proof efficiently in such
scenario. We introduce a new primitive called resumable honest verifier
zero-knowledge proof of knowledge (resumable HVZKPoK) and propose
a general construction of the resumable HVZKPoK for circuits based on
the “MPC-in-the-head” paradigm, where the complexity of the resumed
session is less than that of the original ZK proofs. To ensure the knowl-
edge soundness for the resumed session, we identify a property called
extractable decomposition. Interestingly, most block ciphers satisfy this
property and the cost of resuming session can be reduced dramatically
when the underlying circuits are implemented with block ciphers. As
a direct application of our resumable HVZKPoK, we construct a post
quantum secure stateful signature scheme, which makes Picnic3 suitable
for blockchain protocol. Using the same parameter setting of Picnic3,
the sign/verify time of our subsequent signatures can be reduced to
3.1%/3.3% of Picnic3 and the corresponding signature size can be re-
duced to 36%. Moreover, by applying a parallel version of our method to
the well known Cramer, Damg̊ard and Schoenmakers (CDS) transforma-
tion, we get a compressed one-out-of-N proof for circuits, which can be
further used to construct a ring signature from symmetric key primitives
only. When the ring size is less than 24, the size of our ring signature
scheme is only about 1/3 of Katz et al.’s construction.

Keywords: Resumable · honest verifier zero-knowledge · MPC-in-the-
head · stateful signature · ring signature · blockchain.

2 H. Zhang et al.

1 Introduction

Zero-knowledge (ZK) proofs [42,43] and their non-interactive form (NIZK) [14],
which allow a prover to convince a verifier of a certain statement without reveal-
ing any additional information, are among the most fundamental and important
cryptographic primitives. It is known that there exists ZK proof [42] for any NP
language, while the resulting construction is rather inefficient. A lot of works
have been done to propose efficient (NI)ZK proofs for arbitrary circuits or spe-
cific algebraic computation, e.g., zk-SNARKs [11,38], which have short proof for
a statement. Some works focus on the efficient composition of ZK proofs for sev-
eral statements [26,37,1]. Other works such as [54,47,17] investigate the batch
ZK proofs, which enable many instances of the same relation to be proved and
verified simultaneously. Amongst most of those constructions, the randomness
and the related transcripts are “recycled” or compressed in one execution of the
resulting ZK protocol in order to reduce the cost of computation or communi-
cation.

Notice that one common case of ZK proof, however, is proving the same state-
ment repeatedly multiple times. For example, a user may be required to provide
digital signatures on different messages periodically, where each signature can be
thought of as one execution of the NIZK proof of knowledge of the signing key
[9]. One typical application is validating the authenticity of firmware updates
for IoT devices. The manufacturer periodically offers firmware updates and the
corresponding signatures, and the IoT device needs to verify these signatures in
order to ensure the authenticity of the updates. Another direct application of ZK
is the identification protocol, which could be used by a company to determine
the identity of a user each time he tries to access company resources.

Hence, it is worth considering the efficiency of ZK protocols in a scenario
where the prover and the verifier need to run the ZK proof of a statement many
times (sequentially). In practice, the state information derived from previous
sessions could be reused in the following sessions to achieve significant savings
in processing load and bandwidth, e.g., session resumption of TLS 1.3 [55]. It is
desired that the ZK protocol for the subsequent sessions be much more efficient
than that of the original one. Therefore, a natural question is that

How can we resume a session of ZK proofs efficiently?

An intuitive way is to reuse the information of previous ZK sessions (of the same
statement). In fact, similar issues have been considered in the research of NIZK.
A series of works explored how to reuse the common reference string (CRS) of
NIZK for multiple theorems and multiple provers [14,35,46], which implies the
case of CRS reuse in multiple sessions (or executions). On the interactive ZK
protocols, how to securely reuse previous transcripts among different sessions is,
however, more subtle and tends to result in a breach of security. For instance,
the witness in many Σ protocols can be extracted when the same commitments
are reused in different sessions (with different challenges).

In another recent line of works, researchers have shown how to use secure
multiparty computation (MPC) to obtain (NI)ZK proofs, and further quantum-

Resumable ZK for Circuits from Symmetric Key Primitives 3

resistant signatures. Ishai et al. [48] showed how to use the so-called “MPC-in-
the-head” approach to obtain public-coin ZK proofs. Their scheme was further
improved by [39,23] to obtain quantum-resistant signature via Fiat-Shamir trans-
formation [36]. The resulting signature Picnic [21], which was submitted to the
NIST post-quantum standardization effort, is very competitive, since its security
is based entirely on symmetric-key primitives. But it is still less efficient than
lattice-based CRYSTALS-DILITHIUM [6] and multivariate-based Rainbow [29].
So we would like to ask whether we could reduce the overall complexity of Picnic
when considering multiple sequential signing requests. In other words, how can
we resume the signing/verifying procedure of Picnic efficiently?

1.1 Our Contributions

We introduce the notion of resumable honest verifier ZK proof of knowledge (re-
sumable HVZKPoK) to capture the security and efficiency of HVZKPoK in the
scenario of session resumption. In that scenario, the prover and the verifier can
perform the ZK proofs multiple times sequentially, where each proof is executed
in a session. Informally, we say an HVZKPoK is resumable if it satisfies (1)
resumable zero-knowledge, i.e., no additional information about the witness is
revealed from all sessions; (2) resumable knowledge soundness, i.e., the witness
can be extracted from every session; (3) resumption efficiency, i.e., the cost of
the resumed session in terms of both computation and communication should
be much less than that of the initial session (or the original ZK proofs).

The main challenge of constructing resumable HVZKPoK is to achieve re-
sumable knowledge soundness while preserving resumption efficiency, since re-
moving or reusing partial transcripts of the original ZK proofs would undermine
or break its soundness property in general. To overcome that problem, we inves-
tigate the “MPC-in-the-head” paradigm in the preprocessing model proposed
by Katz, Kolesnikov and Wang (KKW) [51], and find that their proofs can be
separated according to the decomposition of circuits, where the proofs for the
corresponding partial circuits can be further rerandomized without breaking the
security. By making use of such separability of the KKW proofs, we provide a
general construction of the resumable HVZKPoK. The main idea is that the un-
derlying circuits are decomposed into two parts, where the proofs for the partial
circuits with smaller size can be rerandomized. Once the initial session of proofs
for the entire circuits is finished, both the prover and the verifier can resume a
session by running the rerandomized proofs for the partial circuits only. Since
the cost of the KKW proofs is closely related to the number of the AND gates
of the circuits, the cost of the resumed session is reduced significantly due to the
size of the partial circuits.

Notice that only proofs for the partial circuits usually cannot achieve knowl-
edge soundness implied by the proofs for the entire circuits. To mitigate that
problem, we identify a property called extractable decomposition, which guar-
antees that the witness can be extracted from the inputs of the separated partial
circuits. Interestingly, most block ciphers satisfy this property. In addition, the

4 H. Zhang et al.

circuits of block ciphers can be decomposed such that the separated partial cir-
cuits have no AND gates. Hence, the cost for resuming sessions can be made
very small when implemented with block ciphers. By applying the Fiat-Shamir
heuristic [36], our resumable HVZKPoK can be transformed into a stateful post-
quantum signature scheme. Comparing with the typical chain-based stateful sig-
nature [50], the main advantage of our scheme is that, once the initial signature
has been generated, the subsequent signatures are much more efficient than the
initial one.

We implement our signature and give a comparison with Picnic3 [49]. The
sign/verify time of our subsequent signatures can be reduced to 3.1%/3.3%-
9.2%/8.8% of Picnic3 and the corresponding signature size can be reduced to
36.0%-38.1%. (For the fixed verifier, the size of the state information needed to
be stored is about 2.9 KB-10.9KB.) Although the complexity of our first signa-
ture is slightly higher than Picnic3, it is worthy for the reducing cost of subse-
quent signatures. In particular, our stateful signatures make the symmetric-based
signatures, such as Picnic3, suitable for the post-quantum secure blockchain pro-
tocol. That is, the previous signatures (or the states) can be stored in the history
blocks efficiently and publicly. The verifier only needs to check the validity of the
current signature without checking all previous signatures, since the validity of
the previous signatures is implied by the consistency of the underlying consensus
protocol.

Moreover, applying our method to the Cramer, Damg̊ard and Schoenmakers
(CDS) technique [26], we construct a compressed one-out-of N proof, where
most of the transcripts for the simulation in CDS technique can be removed.
Furthermore, we can construct a ring signature from symmetric key primitives
using our compressed one-out-of N proof (without resorting to the Merkle-tree
based accumulator). Comparing with the ring signatures from symmetric key
primitives proposed by [51], the size of our ring signature is about 1/3 of [51]
when the ring size is less than 24.

1.2 Main Techniques

The intuition behind our construction is that, once the verifier accepts in a
session, he is convinced not only that the prover know the witness w in this
session, but also the correctness and randomness of the corresponding transcript.
Although those transcripts cannot be used as proof for the subsequent sessions
directly, the trust implied by those transcripts has been established and can be
recycled in the resumed session. More precisely, the proofs for the relation R
generated in previous sessions can be interpreted as “certified” commitments for
the current session. Then the prover can prove that he knows the witness w for a
new relation R′ and its consistency with the “certified” commitments, and thus
the relation R. Both the prover and the verifier can take advantage of the state
information of previous sessions to run the ZK proof for R′, the proof size of
which is required to be shorter than that of R.

For example, consider the session resumption of the HVZKPoK for the rela-
tion R, where ((F, y), w) ∈ R iff F (w) = y. A typical Σ protocol for R consists

Resumable ZK for Circuits from Symmetric Key Primitives 5

of (a, e, z), which denotes commitment, challenge and response, respectively. Let
π(0) = (a(0), e(0), z(0)) be the view or the proof generated by the Σ protocol
during the initial session. Suppose that F (w) can be considered as the com-
position of f and g, i.e., F (w) = f ◦ g(w) = f(w′) = y, where g(w) = w′.
The related statement can be interpreted as that the prover knows w such that
g(w) = w′∧ f(w′) = y, where both w and w′ are kept secret. We require that w′

is “equivalent” to w, which means there exits an efficient extractor E such that
E(w′) = w. We say the decomposition of F is extractable if the above property
on w′ holds. Next, we can reduce the proof size of the subsequent session by pro-
viding the proofs of the statement f(w′) = y and its consistency with F (w) = y,
which can be seen as a new relation R′. The proof of consistency with F (w) = y
needs to rely on π0, which plays the role of parts of the commitments in the
following resumed session. Let π(0)||a(1) denote the commitment for the proof of
R′ in the second session. The corresponding challenge and response are denoted
as e(1) and z(1), respectively. Suppose π(0) is stored in the local storage of the
prover and the verifier for a long time. We hope that the proof size of R′, say
π(1) = (a(1), z(1), e(1)), can be shorter than that of π(0). However, there are two
problems with the above intuitive construction.

1. Does the reuse of π(0) cause any leakage of w?
2. How can we find the extractable decomposition of a function F?

To solve the first problem, we use π(0) as a commitment which will not be
“opened” and rerandomize the corresponding parts of π(0) when considering the
proof of f(w′) = y. Due to the special property of the KKW proof [51], π(0) can
be separated according to the decomposition of F , and the proof for f can be re-
randomized to protect the secret w. In particular, the KKW proof [51] considers
a masked variant of F (w) = y, i.e., F (ŵ)→ ŷ, where ŵ = w⊕λw and ŷ = y⊕λy

and (λw, λy) are random masks, and proves the correctness and consistency of
(w, y, λw, λy) using the MPC-in-the-head with preprocessing paradigm. Here, we
decompose F (ŵ) → ŷ as g(ŵ) → ŵ′ ∧ f(ŵ′) → ŷ, where the variables with hat
or bar denote the corresponding masked variables. In the resumed session, π(1)

actually implies the proof for g(ŵ) → ŵ′ ∧ f(w̄′) → ȳ, where f(w̄′) → ȳ is the
re-randomization of f(ŵ′)→ ŷ with different masks. The proof for g(ŵ)→ ŵ′ is
implied by π(0), which is interpreted as parts of the commitment in the current
session and will not be “opened”. Due to the re-randomized masked witness w̄′,
the zero-knowledge property of the KKW proof for f(w̄′)→ ȳ and its consistency
with g(ŵ) = ŵ′ can be guaranteed.

For the second problem, most block ciphers satisfy the property of extractable
decomposition. Specifically, the iterated structure and the key schedule guaran-
tee that w can be extracted from the input w′ of the last round, which makes
block cipher circuits suitable for our resumable HVZKPoK.

1.3 Related Works

Zero-knowledge from symmetric primitives. Most efficient ZK proofs exist
for a restricted set of languages, e.g., languages relying on algebraic structures.

6 H. Zhang et al.

To construct efficient ZK proofs for a larger class of languages, many works focus
on ZK proofs for arbitrary circuits [44,11,38,53,13,25,16,45,19,59,10,12], which
have relatively short proofs size and verification time. However, most efficient
constructions require a trusted setup or rely on assumptions, which are insecure
in the quantum setting.

Ishai et al. [48] introduced a novel way of constructing ZK proofs, called
“MPC-in-the-head”, which is based on secure multi-party computation (MPC)
protocols. Following the idea of [48], Giacomelli et al. [39] proposed ZKBoo which
supports efficient non-interactive (NI) ZKPoKs for arbitrary circuits. Chase et
al. [23] improved the performance of ZKBoo and proposed ZKB++, which is used
to construct the post-quantum secure signature scheme, called Picnic. Compared
with other post-quantum secure signature candidates, Picnic relies on the secu-
rity of the underlying symmetric-key primitives instead of structured hardness
assumptions. Although Picnic has good performance on the speed when imple-
mented on hardware, it has a large signature size which is linear in the size of
the circuits. Ames et al. [3] proposed Ligero with sublinear proof size, which
asymptotically outperforms ZKBoo and ZKB++. Katz et al. [51] instantiated
the MPC-in-the-head paradigm in the preprocessing model, which can reduce
the number of parallel repetitions, and provided an improved version of Picnic,
called Picnic2. Guilhem et al. [57] applied the “MPC-in-the-head with prepro-
cessing” approach to the arithmetic circuit of AES and implemented a signature
scheme, called BBQ, whose security is based on AES. Baum et al. [8] proposed
a novel way to construct an AES-based signature scheme, called Banquet, which
reduces the signature size compared with BBQ and its implementation results
show that Banquet can be made almost as efficient as Picnic2 . Baum and Nof [7]
incorporated the “sacrificing” paradigm into “MPC-in-the-head” to reduce the
proof size for arithmetic circuits. Kales and Zaverucha [49] made further opti-
mizations and presented a new parameter set for Picnic2, called Picnic3. Goel
et al. [40] introduced a general framework for constructing Σ-protocols of dis-
junctive proof which can be used to implement ring signature. Recently, Goel et
al. [41] proposed a novel technique for efficiently adding set membership proofs
to any MPC-in-the-head based ZK protocol and the resulting ring signatures
outperform Katz et al.’s construction by a factor of 5 to 8.

Resettable zero knowledge (rZK). rZK [20,27] can remain zero knowl-
edge even if an adversary can interact with the prover many times, each time
resetting the prover to any previous stage. Although rZK is a stronger notion
than concurrent zero knowledge, the construction of efficient rZK is rather dif-
ficult in practice. Our resumable ZK is reminiscent of rZK in that the prover is
rewinded to a previous stage, but we investigate how to rewind the prover in
a safe way so that the proofs for subsequent sessions can be more efficient. In
particular, our resumable ZK needs to rewind prover to a certain point, where
the corresponding data can be rerandomized to ensure the security.

Proof-carrying data (PCD). PCD [24,18], which is a generalization of
incrementally-verifiable computation (IVC) [58], allows every intermediate state
of the distributed computation performed by mutually distrustful parties can

Resumable ZK for Circuits from Symmetric Key Primitives 7

be succinctly verified. Our resumable HVZKPoK focuses on the scenario where
both the verifier and the statement is fixed. In that scenario, we can recycle the
trust established in the initial session, and the proofs for subsequent sessions
with better concrete efficiency is possible.

2 Preliminaries

Notations. Let [n] denote {1, . . . , n} and κ denote the security parameters. Let
C and C ′ be the boolean circuit representation of F and f , respectively, where
C and C ′ consists of XOR and AND gates. Let |C| denotes the number of AND
gates in the circuit C and |Cin/out| denotes the number of input/output wires
of C. Let LR ⊆ {0, 1}∗ be an NP language and R be the related NP-relation
for circuit C. A ≈c B denotes computational indistinguishability between dis-
tributions A and B. Let Com denote a commitment scheme. A commitment to
a message m is denoted as com = Com(m; r) where r ∈ {0, 1}κ is chosen uni-
formly. We say Com is secure if it satisfies the following properties: (1) Hiding :
Com(m; r) reveals noting about m; (2) Binding : it is hard to find two messages
m ̸= m′ such that Com(m; r) = Com(m′; r′). Let H denote the hash function.
We say H is collision-resistant if the probability that any PPT adversary finds
x and x′ such that H(x) = H(x′) and x ̸= x′ is negligible.

2.1 MPC-in-the-head with preprocessing

MPC-in-the-head paradigm [48] is a novel technique to construct ZK proofs from
MPC protocols. Suppose the statement to be proven is (C, y), where C(w) =
y and w is the witness. Following the MPC-in-the-head paradigm, the prover
simulates an MPC protocol which evaluates the circuit C among all the parties
in his head and the input of each party is a secret sharing of the witness w.
The prover then commits to the views of each party in the execution of the
MPC protocol. The verifier randomly chooses a subset of these commitments
as the challenge. Once receiving the challenge, the prover opens the challenged
commitments. The verifier checks the correctness and consistency of these views.

MPC-in-the-head with preprocessing (KKW) [51] improves MPC-in-the-head
paradigm and the resulting scheme can achieve the required soundness with
much shorter proofs. Loosely speaking, the KKW protocol has two phases, the
preprocessing phase and the online phase. In the preprocessing phase, the prover
generates random masks for each party, which are used to hide the witness. In
the online phase, the prover simulates the execution of the MPC protocol using
the masked shares of each party and the masked input (or the masked witness)
of the circuit. Note that the verifier needs to challenge both phases. The main
techniques of MPC-in-the-head with preprocessing are described below.

Let [x] denote an n-out-of-n (XOR-based) secret sharing scheme of a bit
x, i.e., x = [x]1 ⊕ · · · ⊕ [x]n, where [x]i for 1 ≤ i ≤ n is the secret share.
Suppose the underlying n-party MPC protocol is Π, which is executed by n
parties P1, · · · , Pn. Let zα denote the value of wire α of C(w). zα will be masked

8 H. Zhang et al.

by a random bit λα, say, ẑα = zα ⊕ λα. Each party Pi will hold [λα]i, which is
a share of λα.

– Preprocessing phase. In the preprocessing phase, the prover generates the
masks for each party Pi. More precisely, Pi is given the following values.
• [λα]i for each input wire α.
• [λγ]i for the output wire γ of each AND gate.
• [λα,β]i for each AND gate with input wires α and β such that λα,β =

λα · λβ .
[λα]i and [λγ]i can be generated using a pseudorandom generator (PRG)
with a random seed seedi, for i = 1, . . . , n, where [λα]1 ⊕ · · · ⊕ [λα]n = λα

and [λγ]1 ⊕ · · · ⊕ [λγ]n = λγ . Hence, seedi instead of {[λα]i} and {[λγ]i} is
given to Pi so that the total proof size can be reduced. Notice that [λα,β]n
cannot be generated using seedn only due to λα,β = λα · λβ . Actually, n− 1
shares of λα,β are generated using PRG, while the share of Pn is computed by
[λα,β]n := λαλβ ⊕ [λα,β]1 ⊕ · · · [λα,β]n−1, which plays the role of “correction
bits”. Therefore, party Pn needs to be given auxn = {[λα,β]n} for all AND
gates in addition to seedn.

– Online phase. During the online phase, each party Pi runs the underlying
n-party MPC protocol Π to evaluate the circuit C gate-by-gate in topological
order. For each gate with input wires α and β and output wire γ,
• For an XOR gate, Pi can locally compute ẑγ = ẑα ⊕ ẑβ and [λγ]i =
[λα]i ⊕ [λβ]i, since Pi already holds ẑα, [λα]i, ẑβ and [λβ]i.
• For an AND gate, Pi locally computes [s]i = ẑα[λβ]i⊕ ẑβ [λα]i⊕ [λα,β]i⊕
[λγ]i, publicly reconstructs s, and computes ẑγ = s⊕ ẑαẑβ which satisfies
ẑγ = zγ ⊕ λγ . Note that party Pi holds [λα,β]i and [λγ]i in addition to
ẑα, [λα]i, ẑβ and [λβ]i for each AND gate.

Finally, each party Pi can compute ẑγ for the output wire γ of the circuit, and
the output value zγ is computed as zγ = ẑγ ⊕ λγ , where λγ is reconstructed
publicly.

Security of the underlying MPC protocol. [22, Lemma 6.1] proves that the
underlying MPC protocol Πmpc is secure against an all-but-one corruption in the
semi-honest model by showing that there exists a simulator for the MPC protocol
Πmpc such that the real execution of Πmpc is computational indistinguishable
from the simulated execution of Πmpc under the assumption of secure PRG.

3 Resumable HVZK Proof of Knowledge

Let R be an efficiently decidable binary NP-relation which is polynomially
bounded, and LR be the NP-language defined by R. That is, ∃w such that
(x,w) ∈ R iff x ∈ LR. In our setting, the prover and the verifier can sequentially
perform the zero-knowledge proofs for LR polynomially-many times, say q(κ)
times, where each proof is modeled as a session and the t-th session is denoted
as session(t), for t ∈ {1, . . . , q(κ)}. In each session(t), the prover aims to con-
vince the verifier that he knows the witness w for statement x by running the

Resumable ZK for Circuits from Symmetric Key Primitives 9

HVZKPoK protocol Π = {(P(t),V(t))}. Let P(t) = P(x,w, prt, pst) denote the
prover’s strategy of session(t), which takes as input the common-input x, witness
w, prover’s randomness prt and state pst. Here, pst is the prover’s state after
session(t− 1). Similarly, let V(t) = V(x, vrt, vst) denote the verifier’s strategy of
session(t), which takes as inputs the common-input x, verifier’s randomness vrt
and state vst.

In this paper, we transform an “ordinary” HVZKPoK Π ′ = (P ′,V ′) to a
resumable HVZKPoK Π = {(P(t),V(t))}, the security of which is more subtle. In
particular, we have to ensure that the adversary who does not have the knowledge
of the witness cannot convince the verifier in any session, even that the adversary
can have access to the transcripts of all previous sessions. Consider the following
game on soundness. The adversary A can invoke the “honest” prover6 to run
Π for x ∈ LR with the verifier for polynomially-many sequential sessions, say,
session(1), . . . , session(q(κ) − 1), where A can get all the transcripts of these
sessions. For the next session, say session q(κ), A runs Π with the verifier for
x ∈ LR, trying to convince the verifier without the help of the “honest” prover.
The soundness of the resumable HVZK is defined according the above game,
which requires that A can win the game only with negligible probability. Formal
definition of resumable HVZKPoK is described below.7

Definition 1 (Resumable HVZK Proof of Knowledge). Π = {(P(t),V(t))}
is a resumable honest verifier zero-knowledge proof of knowledge for the relation
R with soundness error ξ if the following properties hold:

– Completeness: If the prover and the verifier follow the protocol (P(t),V(t))
on inputs x ∈ LR and witness w ∈ Rx, then the verifier always accepts in
each session(t), for t ∈ {1, . . . , q(κ)}.

– Resumable Honest Verifier Zero-Knowledge: Let viewP
V (x,w) be the

transcripts of all the sessions run by the prover and the verifier. There exists
a PPT simulator Sim such that Sim(x) ≈c viewP

V (x,w) for all x ∈ LR and
w ∈ Rx.

– Resumable Knowledge Soundness: For each session(t), there exists a
probabilistic knowledge extractor E, such that for every P̂(t) and every x ∈
LR, the algorithm E satisfies the following condition:
• Let δt(x) be the probability that the verifier accepts on input x for (P̂(t),V(t))

of session(t). If δt(x) > ξt(x), then upon input x ∈ LR and oracle ac-
cess to P̂(t), the algorithm E outputs a valid witness w ∈ Rx in expected
number of steps bounded by O(1

δt(x)−ξt(x)
).

6 In our setting, a prover who has the knowledge of the witness is considered to be
honest, which means he follows the protocol honestly. We do not consider the case
that a prover who has the knowledge of the witness tries to convince the verifier in
a resumed session by deviating the protocol.

7 The concurrent zero-knowledge [34] seems to be a stronger notion than ours when
considering zero-knowledge and soundness only. But the requirement on resumption
efficiency cannot be implied by the concurrent zero-knowledge. Although resumable
HVZKPoK in the concurrent setting is beyond the scope of this paper, we believe it
is another interesting topic.

10 H. Zhang et al.

Here, ξt denotes the soundness error of session(t) for t ∈ {1, . . . , q(κ)}. Let
ξ = max{ξ1, . . . , ξq(κ)}.

– Resumption efficiency: For each session(t) with t > 1, the computational
and communicational complexity of (P(t),V(t)) should be less than that of the
original HVZKPoK Π ′ = (P ′,V ′) for R. That is, resumable HVZK proof of
knowledge should be efficient in each resumed session.

Here, the statement x of R is of the form (F, y), such that (x,w) ∈ R iff
F (w) = y, where F denotes a function. Let C be the circuit representation of F .
So the statement can be rewritten as (C, y), such that (x,w) ∈ R iff C(w) = y.
As mentioned in section 1, the function F needs to satisfy a special property
called extractable decomposition, which is defined as follows.

Definition 2 (Extractable Decomposition). Let F : {0, 1}κ → {0, 1}κ′
be a

function which has a decomposition as F = f ◦ g. We say the decomposition is
extractable if, for all x ∈ {0, 1}κ, there exists an efficient extractor ED such that
ED(g(x)) = x.

Consider the case that F (w) = Enc(w,m), where Enc(w,m) is a block cipher
with the private key w and the plaintext m. It is known that a typical block
cipher consists of multiple rounds, where each round takes as inputs the output
of previous round and the corresponding subkey (or round key) derived from the
master key w. Note that the subkey schedule of most block ciphers is reversable,
which implies most block ciphers naturally satisfy the property of extractable
decomposition. Concretely, given a block cipher with n rounds, the first n − 1
rounds as well as the key schedule can be taken as g, and the last round is
taken as f . Suppose the output of g(w) is w′, which consists of the output of
the (n − 1)-th round and n-th round key kn. f takes as input w′ and outputs
the final ciphertext. Obviously, w can be extracted from w′, which implies the
extractability of the decomposition8.

4 General Construction for Resumable HVZKPoK

In this section, we present the general construction of resumable HVZKPoK
from the KKW protocol. We first abstract the construction of the original KKW
protocol [51] for F (w) = y, where F has a decomposition as F = f ◦ g. Then,
we show how to efficiently resume HVZKPoK for w′ such that f(w′) = y and
w′ = g(w). Recall that C and C ′ denote the circuit representation of F and f ,
respectively. So F (w) = y and f(w′) = y can be rewritten as C(w) = y and
C ′(w′) = y, respectively.

8 Consider a special case that F = f ◦ g(ω), where g(ω) = (C′(ω), ω) for some circuit
C′ and f just outputs one bit of g(ω). Our construction for resumable HVZKPoK is
still suitable for such decomposition.

Resumable ZK for Circuits from Symmetric Key Primitives 11

4.1 KKW Protocol for F

The KKW protocol πF for C(w) = y, i.e., F (w) = y, consists of the preprocessing
phase πF

pre and the online phase πF
on. π

F
pre shows that the n parties’ states are

generated randomly and correctly by “cut-and-choose”, and πF
on ensures that

each party’s view in the MPC protocol are correct and consistent. Let M denote
the number of repetitions for reducing the soundness error.
Preprocessing phase πF

pre(1
κ).

– Round 1. Commit to the masks of M instances.
The prover prepares the masks λj of the MPC protocol for the circuit C as
described in section 2.1 for each instance j ∈ [M]. Since λj is determined by
n parties’ states {statej,1, . . . , statej,n}, which are the random seeds and the
n-th party’s auxiliary information, the prover only needs to commit to those
states. The corresponding commitments are denoted as comF

pre. The prover

sends comF
pre to the verifier.

– Round 2. Challenge for the preprocessing phase.
The verifier chooses a random subset C ∈ [M] with |C| = τ , which is used
to challenge the prover to open the commitments of instances in [M]\C, so
that the verifier can check the randomness and correctness of λj for each
instance j ∈ [M]\C. The verifier sends C to the prover.

– Round 3-a. Respond to the challenge for the preprocessing phase.
The prover computes the openings of the commitments of instances in [M]\C.
Denote these openings as respFpre. The prover sends respFpre to the verifier.

Online phase πF
on(w, {statej,i}j∈C,i∈[n]).

– Round 3-b. Commit to the views of each party.
The prover runs the n-party MPC protocol for C(w) = y using the masks λj

and the witness w for each instance j ∈ C, and computes the commitments
to the views of each party in the MPC protocol execution. Let comF

on denote
these commitments. (For simplicity, the masked values of input, e.g., ŵj =
w⊕ λj,w, is considered to be part of comF

on.) The prover sends comF
on to the

verifier.
– Round 4. Challenge for the online phase.

The verifier chooses a random set P = {pj}j∈C with pj ∈ [n], which is used
to challenge the prover to open the views of all but the pj-th party for each
instance j ∈ C, so that the verifier can check the consistency of n−1 parties’
views for that instance. The verifier sends P to the prover.

– Round 5. Respond to the challenge for the online phase.
The prover computes the openings of all but the pj-th party’s commitments
for each instance j ∈ C. Let respFon denote these openings. The prover sends
respFon to the verifier.

Verification Strategy

1. For the opened instances in [M]\C, the verifier uses respFpre to recover parts

of the openings of comF
pre, which are also used to check the randomness and

correctness of the masks.

12 H. Zhang et al.

2. For each unopened instance in C, the verifier uses respFon and the masked
values of input to simulate the MPC protocol for C(w) = y and recover the
openings of comF

on and the remaining openings of comF
pre.

3. The verifier checks the output of the simulation of the MPC protocol and
the consistency of comF

pre and comF
on.

4.2 Intuitive Construction for Resumable HVZKPoK

Once the verifier accepts the proof, he is convinced not only that the prover has
the witness in the current session, but also the correctness and randomness of
the transcripts implied by the proof. We notice that the verifier’s trust on some
transcripts of KKW protocol can be “reused” to reduce the cost of proofs when
resuming sessions. An intuitive construction of resumable HVZKPoK for F is
described as follows, where the decomposition F = f ◦g is public. For simplicity,
we only consider the case of two sessions.

– HVZKPoK for the initial session. It is similar to the original KKW
protocol, except that the prover needs to prepare preprocessing values for
the next session and proves the consistency of w′ and w. Let πf = (πf

pre, π
f
on)

denote the KKW proof for C ′(w′) = y, i.e., f(w′) = y. HVZKPoK for the
initial session consists of the following phases.
1. πF : The original KKW proof for w such that C(w) = y.
2. πf

pre: Prepare the preprocessing values of C ′(w′) = y for the next session.

In particular, πF and πf
pre can be merged with the same preprocessing

challenge C, which will be explained later.
3. πcert: Consistency proof for w and w′. That is, we need to guarantee

that w′ used in the next session is the correct intermediate value of C(·)
when evaluating on input w.

– HVZKPoK for the second session.
1. πf

on: Online phase of the KKW proof for C ′(w′) = y.

Note that πf
pre and πf

on constitutes the complete KKW protocol for C ′(w′) =
y. Intuitively, if the verifier can be convinced that the preprocessing data in
πf
pre is generated correctly, the prover only needs to run πf

on for the second
session. Suppose the verifier has accepted the initial session. Combining with
the consistency proof πcert for w and w′, the verifier can be convinced that
the prover has the knowledge of w in the second session. Therefore, the prover
needs to provide efficient consistency proof for w and w′, while ensuring that
the preprocessing data in πf

pre are generated by the “honest” prover, who has
the knowledge of w. (Recall the soundness game mentioned in section 3, where
we do not consider the malicious prover who has the knowledge of witness.) To
do so, we modify the KKW protocol πf

pre for C ′(w′) = y.

4.3 Modified KKW for f and Consistency Proof

Suppose λw′ is the random masks for w′ in πF , i.e., the masked intermediate
value ŵ′ = w′ ⊕ λw′ . The main modification of πf is that the generation of

Resumable ZK for Circuits from Symmetric Key Primitives 13

the preprocessing data in πf
pre is based on λw′ . More specifically, the prover

rerandomizes ŵ′ using a random and public value ∆, i.e., w̄′ = w′ ⊕ λw′ ⊕ ∆.
Then, the prover generates the corresponding preprocessing values for the KKW
proof for C ′(w′) = y using λ′

w′ = λw′⊕∆ as the mask. Here, the prover generates
n−1 secret shares of λ′

w′ by running PRG with n−1 random seeds, while the n-th
secret share [λ′

w′]n is determined by [λ′
w′]n = λ′

w′ ⊕ [λ′
w′]1⊕· · ·⊕ [λ′

w′]n−1 and is
sent to the verifier. (comf

pre commits to the corresponding seeds for each party.)
Hence, the verifier only needs to challenge the prover to open n−2 parties’ views
in the online phase.

Based on the above modification, we can provide a simple and efficient con-
struction for the consistency proof πcert. After πf

pre, the prover computes a com-

mitment comon, which commits to comF
on||comf

pre||∆||[λ′
w′]n, and sends comon

as well as comf
pre||∆||[λ′

w′]n to the verifier. Since the verifier accepted the ini-

tial session, the consistency of comF
on and the preprocessing data of the initial

session, e.g., λw′ , has been checked. Due to the binding property of comon, the
rerandomized mask λ′

w′ = λw′ ⊕∆, which is determined by comf
pre||∆, is hard

to be modified. In the second session, by checking the openings of comf
pre, it is

implicitly guaranteed that λ′
w′ is generated by the same “honest” prover of the

initial session. Therefore, the witness w′ implied by w̄′ is the same as that of the
initial session, i.e., w̄′ = w′ ⊕ λ′

w′ , and the verifier does not need to check the
correctness and randomness of the preprocessing data for the second session by
“cut-and-choose”. Notice that only the unopened instances in the initial session
need the simulated executions of the MPC protocol, which means only in these
instances, we need to rerandomize the masked intermediate value ŵ′. That is
why πF and πf

pre can be merged with the same preprocessing challenge C. To
summarize, the modified KKW πf = (πf

pre, π
f
on) for the partial circuits C ′ is

described as follows.
Preprocessing phase πf

pre({λj,w′}j∈C , C).

– Round 1-a. Rerandomize the masks for the instances in C.
1. The prover chooses a random seed∆ to generate ∆j for each instance j ∈
C. Then, the prover computes the rerandomized masks λ′

j,w′ = λj,w′⊕∆j ,
where λj,w′ is the mask of ŵ′

j .
2. For each instance j ∈ C, the prover chooses a random seedj,i for each

party Pi to generate the share [λ′
j,w′]i for i ∈ [n − 1], while [λ′

j,w′]n is
computed by [λ′

j,w′]n = λ′
j,w′ ⊕ [λ′

j,w′]1 ⊕ · · · ⊕ [λ′
j,w′]n−1. Other pre-

processing values are generated as described in Section 2.1. [λ′
j,w′]n is

included as part of the auxiliary information auxn. So we have auxn ∈
{0, 1}|C′|+|C′

in|. The prover sets state′j,i = seedj,i for i ∈ [n − 1], and

state′j,n = seedj,n||auxn. Compute comf
pre, which commits to the n par-

ties’ states.
3. The prover sends state′j,n, seed

∆ and comf
pre to the verifier.

Online phase πf
on(w

′, {state′j,i}j∈C,i∈[n]).

– Round 1-b. Commit to the views of each party.

14 H. Zhang et al.

The prover runs the MPC protocol for C ′(w′) = y using the rerandomized
masks λ′

j,w′ (determined by {state′j,i}i∈[n]) and the witness w′ for each in-
stance j ∈ C. The prover computes the commitment to the views of each
party during the MPC protocol. Denote these commitments as comf

on. Send
comf

on to the verifier.
– Round 2. Challenge for the online phase.

The verifier chooses a random set P = {pj}j∈C with pj ∈ [n − 1] in order
to challenge the prover to open the views of all but the pj-th party for each
instance j ∈ C, so that the verifier can check the consistency of n− 2 views
for that instance. The verifier sends P to the prover.

– Round 3. Respond to the challenge for the online phase.
The prover computes the openings of the commitments of those challenged
parties for each instance j ∈ C. Denote the response by respfon. Send respfon
to the verifier.

Verification Strategy The verification strategy is similar to that of the original
KKW, except that there is no need to check the randomness and correctness of
the masks by cut-and-choose.

1. For each instance j ∈ C, the verifier uses respfon, ŵ
′
j , seed

∆ and state′j,n to

simulate the MPC protocol for C ′(w′) = y and recover the openings of comf
on

and comf
pre. (Here, the verifier can get ŵ′

j after the initial session.)
2. The verifier checks the output of the simulation of the MPC protocol for C ′

and the consistency of comf
on and comf

pre.

5 Resumable HVZKPoK from KKW

Using the KKW protocol πF for C(w) = y and the modified version πf for
C ′(w′) = y as building blocks, we can construct the resumable HVZKPoK pro-
tocol ΠRes, which consists of two sub protocols ΠRes,1 and ΠRes,2. ΠRes,1 is
for the initial session and ΠRes,2 is for the resumed session. Fig. 1 shows the
relations of the sub protocols of our general construction.

5.1 Resumable HVZKPoK for Initial Session ΠRes,1

The resumable HVZKPoK ΠRes,1 = (πpre,1, πon,1) for the initial session is de-
scribed as follows.
Preprocessing phase πpre,1 = πF

pre(1
κ). The preprocessing phase is the same

as that of πF
pre(1

κ).

– Round 1. Commit to the masks of M instances.
The prover runs round 1 of πF

pre(1
κ), which computes the commitments

comF
pre,1 to {statej,i,1}j∈[M],i∈[n] for M instances, and sends comF

pre,1 to the
verifier.

– Round 2. Challenge for the preprocessing phase.
The verifier runs round 2 of πF

pre(1
κ) to send a random τ -sized set C to the

prover.

Resumable ZK for Circuits from Symmetric Key Primitives 15

session(1)

πpre,1 πF
pre

πon,1 πF
on πf

pre

session(2)

πon,2 πf
on πf

pre

session(3)

πon,3 πf
on πf

pre

Fig. 1. General construction for resumable HVZKPoK

– Round 3-a. Respond to the challenge for the preprocessing phase.

The prover runs round 3 of πF
pre(1

κ) to generate the corresponding response,

denoted by respFpre,1, and sends it to the verifier.

Online phase πon,1 = (πF
on(w, {statej,i,1}j∈C,i∈[n])∧πf

pre({λj,w′}j∈C , C)∧πcert).

The prover’s strategy of πon,1 includes: (1) Run πF
on(w, {statej,i,1}j∈C,i∈[n]) as the

original KKW protocol; (2) Prepare the masks for the next session; (3) Certify
these masks for the next session to ensure that the witness w′ which will be used
in the next session is consistent with w.

– Round 3-b.

1. Run round 3-b of πF
on(ω, {statej,i,1}j∈C,i∈[n]) to generate the correspond-

ing commitment comF
on,1. Denote the corresponding intermediate mask

as λj,w′ for each instance j ∈ C.
2. Run round 1-a of πf

pre({λj,w′}j∈C , C) to generate a random seed∆2 , the

state of each party {state′j,i,2}j∈C,i∈[n] and comf
pre,2 as described above

for the next session.

3. Run πcert to commit to comF
on,1||com

f
pre,2||seed

∆
2 ||{state′j,n,2}j∈C . Denote

the corresponding commitment as comon,1. Send comon,1, com
f
pre,2, seed

∆
2

and {state′j,n,2}j∈C to the verifier.

– Round 4. Challenge for the online phase.

The verifier runs round 4 of πF
on(w, {statej,i,1}j∈C,i∈[n]) to send a random set

P = {pj}j∈C with pj ∈ [n] to the prover.

– Round 5. Respond to the challenge for the online phase.

The prover runs round 5 of πF
on(w, {statej,i,1}j∈C,i∈[n]) to generate the cor-

responding response respFon,1, and sends it to the verifier.

Verification Strategy. The verification strategy is similar to that of πF , except
that the verifier needs to check the consistency of comon,1.

16 H. Zhang et al.

1. For the opened instances in [M]\C, the verifier uses respFpre,1 to recover parts

of the openings of comF
pre,1, which are also used to check the randomness

and correctness of masks.
2. For each unopened instance in C, the verifier uses respFon,1 to simulate the

MPC protocol for C(w) = y and recover the openings of comF
on,1 and the

remaining openings of comF
pre,1.

3. The verifier checks the output of the simulation of the MPC protocol and
the consistency of comF

pre,1.

4. The verifier checks the consistency of comF
on,1 and comon,1.

State Update. The prover and the verifier need to maintain states for ses-
sion resumption. The prover’s initial state is pstate = w, and the verifier’s is
vstate =⊥. After the initial session, the prover and the verifier update their
states as follows.

– Prover’s state update: pstate = {ŵ′
j}j∈C ||seed∆2 ||{state′j,i,2}j∈C,i∈[n], where

ŵ′
j is the masked intermediate value for each instance j ∈ C.

– Verifier’s state update: vstate = {ŵ′
j}j∈C ||seed∆2 ||{state′j,n,2}j∈C ||comf

pre,2.

We emphasize that vstate can be made public.

5.2 Resumable HVZKPoK for Second Session ΠRes,2

For simplicity, we present the resumable HVZKPoK ΠRes,2 for the second ses-
sion, which can be easily extended to the case of session(t) for any t > 1.
Online phase πon,2 = (πf

on(w
′, {state′j,i,2}j∈C,i∈[n])∧πf

pre({λj,w′}j∈C , C)∧πcert).
The prover’s strategy πon,2 is similar to πon,1, except that he simulates the

MPC protocol for C ′(w′) = y instead of C(w) = y. Note that all the inputs of
πon,2 can be extracted from pstate.

– Round 1.
1. Run round 3-b of πf

on(w
′, {state′j,i,2}j∈C,i∈[n]) to generate the correspond-

ing commitment comf
on,2.

2. Run round 1-a of πf
pre({λj,w′}j∈C , C) to generate a random seed∆3 , the

state of each party {state′j,i,3}j∈C,i∈[n] and comf
pre,3 as described above

for the next session.
3. Run πcert to generate comon,2, which is the commitment of comf

on,2||com
f
pre,3

||seed∆3 ||{state′j,n,3}j∈C . Send comon,2, com
f
pre,3, seed

∆
3 and {state′j,n,3}j∈C

to the verifier.
– Round 2. Challenge for the online phase.

The verifier runs round 2 of πf
on(w

′, {state′j,i,2}j∈C,i∈[n]) to send a random
set P = {pj}j∈C with pj ∈ [n− 1] to the prover.

– Round 3. Respond to the challenge for the online phase.
The prover runs round 3 of πf

on(w
′, {state′j,i,2}j∈C,i∈[n]) to generate the cor-

responding response respfon,2. Send respfon,2 to the verifier.

Resumable ZK for Circuits from Symmetric Key Primitives 17

Verification Strategy

1. For each unopened instance j ∈ C, the verifier uses respfon,2, ŵ
′
j , seed

∆
2 and

state′j,n,2 to simulate the MPC protocol for C ′(w′) = y and recover the

openings of comf
on,2 and comf

pre,2. Note that ŵ′
j , seed

∆
2 and state′j,n,2 can be

extracted from vstate.
2. The verifier checks the output of the simulation of the MPC protocol.
3. The verifier checks the consistency of comf

pre,2, com
f
on,2 and comon,2.

State Update The prover and the verifier update their states as follows.

– Prover’s state update: pstate = {ŵ′
j}j∈C ||seed∆3 ||{state′j,i,3}j∈C,i∈[n].

– Verifier’s state update: vstate = {ŵ′
j}j∈C ||seed∆3 ||{state′j,n,3}j∈C ||comf

pre,3.

5.3 Security

Theorem 1. Assume that πF , the underlying commitment scheme and pseudo-
random generator are secure, and F has an extractable decomposition as f ◦ g.
Then ΠRes is a resumable honest verifier zero-knowledge proof of knowledge.

The proof of zero-knowledge in Theorem 1 is similar to that of [51], while we
should consider the zero-knowledge property of all the sessions as a whole. For
the proof of resumable knowledge soundness, we show the consistency between
w′ of session(t) and w, and use the method of [51,7] to construct a witness ex-
tractor E for each session. Formal proof of Theorem 1 is in Appendix A.

Parallel Repetition. The soundness error ξt of ΠRes,2 for session(t) may be
higher than ξ1. We could reduce ξt with parallel executions of ΠRes,2 as follows.

– In round 3 of the online phase πon,1 (or round 1 of πon,2) for session(t−1), the
prover repeats round 1 of πf

pre for ℓ times. In other words, the prover reran-
domizes intermediate masked values for ℓ times with ℓ random {∆i}i∈[ℓ].

– For session(t), the prover and the verifier run ΠRes,2 for ℓ times with the
corresponding masked values generated in the previous session, where the
verifier needs to send ℓ random challenges in round 2 of πon,2.

Indeed, the above method can be interpreted as compacting ℓ executions of
ΠRes,2 for ℓ sessions into one session, which will not break the security of our
resumable HVZKPoK due to the honest verifier setting. In this way, we can
reduce ξt to 1

(n−1)τ·ℓ . By choosing appropriate ℓ, M , n and τ , we can gain a

better soundness error for session(t). (Note that there is a trade-off between
the soundness error and the proof size.) The proof of the following theorem are
similar to that of Theorem 1 and hence omitted.

Theorem 2. Assume that πF , the underlying commitment scheme and pseudo-
random generator are secure, and F has an extractable decomposition as f ◦ g.
Then ΠRes with parallel executions is a resumable honest verifier zero-knowledge
proof of knowledge.

18 H. Zhang et al.

5.4 3-Round Resumable HVZKPoK

Our 5-round ΠRes,1 can be transformed into a 3-round protocol using the similar
method of [51]. Recall that the main idea of their transformation [51] is to have
the prover simulate the online phase for every instance in [M] and commit to the
resulting transcripts in the first round. Our 3-round transformation is similar to
that of [51] with the modification that the prover needs to prepare the random
masks of the next session for every instance in [M]. Such modification has no
effect on the security of the initial session, as those random masks could be
considered as redundant information if there are no subsequent sessions.

To illustrate the construction of the 3-round resumable HVZKPoK, we pro-
vide a concrete construction, in which F is instantiated with LowMC [2] as
in [51]. While our concrete construction follows the general construction de-
scribed in section 5, more optimizations including the ones proposed in [51,7]
are taken into account due to the structure of LowMC. One of the advantages
of using LowMC is that f only consists of the KeyAddition operation in the last
round. Thus we do not need to consider AND gates in circuit C ′, which reduce
the cost of the session resumption dramatically. More details of our 3-round re-
sumable HVZKPoK Π3

Res are shown in Appendix B. The security proof of the
following theorem is similar to that of Theorem 1 and hence omitted.

Theorem 3. Assume that the underlying hash function, commitment scheme
and pseudorandom generator are secure. Then Π3

Res is a resumable honest ver-
ifier zero-knowledge proof of knowledge.

6 Resumable-Picnic

As in the previous works [23,51], our 3-round protocol can be transformed into a
resumable non-interactive ZKPoK (NIZKPoK) using the Fiat-Shamir heuristic
in each session, and the resulting NIZKPoK can be used to construct a stateful
signature scheme. (We recall stateful signatures and the related security model
in Appendix C.) More precisely, we instantiate F with Enc(·, 0κ) for some sym-
metric encryption scheme Enc(·, ·) in which the first input is the key and the
second input is the plaintext. The signing key is a uniform sk ∈ {0, 1}κ and
the verification key is pk = Enc(sk, 0κ). By applying Fiat-Shamir heuristic to
each session of our 3-round protocol for the relation (pk, sk) ∈ R, we can obtain
a sequence of signatures. Specifically, the message being signed is included as
input of the hash function, which is used to compute the challenge for each ses-
sion in Π3

Res. Denote the t-th signature as σt. Notice that the generation of σt

takes as inputs the message as well as the signer’s “state” pstatet which is gener-
ated from previous signature σt−1. We denote our stateful signature scheme as
Resumable-Picnic. More details of Resumable-Picnic is present in Appendix C.1.

The resulting signature scheme is reminiscent of the chain-based stateful
signature scheme [50], where the validity of σt can be checked by verifying σt

as well as signatures {σi}i<t generated in all previous sessions. In the scenario
where the verifier is fixed and can update the public state vstatet, the verifier

Resumable ZK for Circuits from Symmetric Key Primitives 19

only needs to check the validity of σt instead of all previous signatures. Different
from the typical chain-based stateful signature, subsequent signatures in our
stateful signature are much more efficient than the initial one.

Theorem 4. Resumable-Picnic is strongly unforgeable under chosen message at-
tacks in the QROM when Com is a collapse-binding commitment scheme and H
is a collapsing hash function.

The proof of sketch of Theorem 4 is presented in Appendix D.

Application. One of the possible applications of Resumable-Picnic is in the
blockchain setting, where each σi can be stored in the corresponding block pub-
licly. The verifier only needs to check the validity of σt of the current block,
since the validity of {σi}i<t in previous blocks are implied by the consistency
of the underlying consensus protocol. More specifically, the signer can sign a
transaction tx1 using Resumable-Picnic with pk and generate the signature σ1.
Then the miner generates a block Bi for a set of transactions with corresponding
signatures, which includes (tx1, σ1). Afterwards, when the signer wants to sign
another transaction tx2 with pk, he can generate σ2 efficiently using the state
ss1. Due to the blockchain protocol, (tx2, σ2) will be included in some block, say
Bj , for j > i. If block Bi has been confirmed, which implies the validity of the
signatures included in Bi have been confirmed by the majority of miners, the
verifier of σ2 does not need to check the validity of σ1 any more. Due to the
efficiency of session resumption, σ2 is more efficient than the original Picnic9.
(Note that there is usually a confirmation delay in most blockchain protocols.
For instance, the confirmation delay of Bitcoin is about 6 blocks, which means
a block is confirmed if it is followed by at least 6 blocks.)

7 Experimental Results and Comparison

We implement Resumable-Picnic using the same parameters as Picnic3 [49], and
give an efficiency comparison with Picnic3. Our benchmarks run on a platform
with an Intel Core i7-8700 CPU clocked at 3.2 GHz and 16GB RAM. The param-
eters are chosen as Picnic3 did which fits security level 1, 3, and 5 recommended
by NIST. The comparison between Picnic3 and Resumable-Picnic are shown in
Table 1. As shown in Table 1, although the cost of Resumable-Picnic’s initial
session is slightly higher than that of Picnic3, the efficiency of Resumable-Picnic
for the subsequent sessions are improved dramatically. Compared with Picnic3
with security level 1, 3 and 5, the sign/verify time of Resumable-Picnic for ses-
sion(t > 2) is reduced to 9.2%/8.0%, 6.2%/5.6%, and 3.1%/3.3%, respectively,
and the signature size is reduced to 38.1%, 37.2% and 36.0%, respectively.

9 Recall that the generation and verification of the current signature only depends on
the state of the last signature. Thus, we only need to keep the state of the latest
signature.

20 H. Zhang et al.

Table 1. Comparison between Picnic3 and resumable-Picnic. “Size” denotes the signa-
ture size. The results are the median time for running 10000 times.

Scheme M n τ ℓ Sign (ms) Verify (ms) Size (Bytes)

Picnic3-Level 1 252 16 36 71.68 51.37 12595± 223
Resumable-Picnic [session(1)] 252 16 36 1 99.99 76.23 14277± 243
Resumable-Picnic [session(2)] 252 16 36 1 8.31 4.78 4796

Resumable-Picnic [session(t > 2)] 252 16 36 1 6.59 4.11 4796

Picnic3-Level 3 419 16 52 170.37 119.45 27104± 455
Resumable-Picnic [session(1)] 419 16 52 1 220.45 163.91 31166± 466
Resumable-Picnic [session(2)] 419 16 52 1 13.15 7.90 10088

Resumable-Picnic [session(t > 2)] 419 16 52 1 10.60 6.67 10088

Picnic3-Level 5 601 16 68 487.45 290.22 48716± 721
Resumable-Picnic [session(1)] 601 16 68 1 512.56 332.24 55043± 673
Resumable-Picnic [session(2)] 601 16 68 1 18.28 11.26 17536

Resumable-Picnic [session(t > 2)] 601 16 68 1 14.97 9.52 17536

8 Compressed 1-out-of-N Proof and Ring Signatures

[26] provides a novel method of the one-out-of-N proof for the relation ROR

defined by (x1, . . . , xN ∈ LR;w) ∈ ROR ⇐⇒ ∃t ∈ [N], s.t.(xt, w) ∈ R. By apply-
ing the parallel version of ΠRes,2 described in section 5.3 to the CDS method
[26], we can get a compressed one-out-of-N proof when the N statements share
the same circuit. The main idea is that, for the N − 1 statements which the
prover does not know the witness, the prover runs the simulator of the resumable
HVZKPoK ΠRes,2 for the partial circuit C ′ in parallel. Hence, most transcripts
of the simulation for the N − 1 statements can be removed. Furthermore, based
on our compressed one-out-of-N proof, we can construct a ring signature from
symmetric-key primitives. More details of our compressed one-out-of-N proof
and the resulting ring signature are presented in Appendix F and Appendix G.

Using the same parameter set of Picnic2, we make a comparison between the
ring signature of [51] and ours in Table 2. It shows that the size of our ring signa-
ture is smaller than that of [51] when the ring size is less than 26. In particular,
it is just about 1/3 of the ring signature size of [51] when the ring size is less
than 24.

Table 2. Comparison between ring signature [51] and our work.

Ring size 2 22 23 24 25 26 27

|σ| ([51]) 70KB 106KB 142KB 177KB 213KB 249KB 285KB
|σ| (Ours) 21KB 30KB 47KB 82KB 151KB 290KB 567KB

Resumable ZK for Circuits from Symmetric Key Primitives 21

Acknowledgements. We would like to thank the anonymous reviewers for their
insightful and helpful comments. Handong Zhang, Puwen Wei, Jinsong Li, Wei
Wang and Guoxiao Liu were supported by the National Key Research and Devel-
opment Program of China (Grant No. 2018YFA0704702), Shandong Provincial
Key Research and Development Program (Major Scientific and Technological In-
novation Project) (Grant No.2019JZZY010133) and Shandong Provincial Natu-
ral Science Foundation (Grant No. ZR2020MF053). Haiyang Xue was supported
by the National Natural Science Foundation of China (Grant No. 62172412).
Yi Deng was supported by the National Natural Science Foundation of China
(Grant No. 61932019 and No. 61772522), the Key Research Program of Frontier
Sciences, CAS (Grant No. QYZDB-SSW-SYS035) and Natural Science Founda-
tion of Beijing (Grant No. M22003).

References

1. Abe, M., Ambrona, M., Bogdanov, A., Ohkubo, M., Rosen, A.: Non-interactive
composition of sigma-protocols via share-then-hash. In: Moriai, S., Wang, H. (eds.)
ASIACRYPT 2020. LNCS, vol. 12493, pp. 749–773. Springer, Cham (2020), https:
//doi.org/10.1007/978-3-030-64840-4 25

2. Albrecht, M.R., Rechberger, C., Schneider, T., Tiessen, T., Zohner, M.: Ciphers for
MPC and FHE. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS,
vol. 9056, pp. 430–454. Springer, Berlin, Heidelberg (2015), https://doi.org/10.
1007/978-3-662-46800-5 17

3. Ames, S., Hazay, C., Ishai, Y., Venkitasubramaniam, M.: Ligero: Lightweight sub-
linear arguments without a trusted setup. In: ACM CCS 2017. p. 2087–2104. ACM
Press, New York (2017), https://doi.org/10.1145/3133956.3134104

4. Aranha, D.F., Orlandi, C., Takahashi, A., Zaverucha, G.: Security of hedged
Fiat–Shamir signatures under fault attacks. In: Canteaut, A., Ishai, Y. (eds.)
EUROCRYPT 2020. LNCS, vol. 12105, pp. 644–674. Springer, Cham (2020),
https://doi.org/10.1007/978-3-030-45721-1 23

5. Attema, T., Cramer, R., Fehr, S.: Compressing proofs of k-out-of-n partial knowl-
edge. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021. pp. 65–91. Springer, Cham
(2021), https://doi.org/10.1007/978-3-030-84259-8 3

6. Avanzi, R., Bos, J., Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Schanck,
J.M., Schwabe, P., Seiler, G., Stehlé, D.: Crystals-kyber. NIST PQC Round 3, 4
(2020)

7. Baum, C., Nof, A.: Concretely-efficient zero-knowledge arguments for arithmetic
circuits and their application to lattice-based cryptography. In: Kiayias, A.,
Kohlweiss, M., Wallden, P., Zikas, V. (eds.) PKC 2020. LNCS, vol. 12110, pp.
495–526. Springer, Cham (2020), https://doi.org/10.1007/978-3-030-45374-9 17

8. Baum, C., de Saint Guilhem, C.D., Kales, D., Orsini, E., Scholl, P., Zaverucha,
G.: Banquet: Short and fast signatures from AES. In: Garay, J.A. (ed.) PKC 2021.
LNCS, vol. 11959, pp. 266–297. Springer, Cham (2021), https://doi.org/10.1007/
978-3-030-75245-3 11

9. Bellare, M., Goldwasser, S.: New paradigms for digital signatures and message
authentication based on non-interactive zero knowledge proofs. In: Brassard, G.
(ed.) CRYPTO 1989. LNCS, vol. 435, pp. 194–211. Springer, New York (1990),
https://doi.org/10.1007/0-387-34805-0 19

https://doi.org/10.1007/978-3-030-64840-4_25
https://doi.org/10.1007/978-3-030-64840-4_25
https://doi.org/10.1007/978-3-662-46800-5_17
https://doi.org/10.1007/978-3-662-46800-5_17
https://doi.org/10.1145/3133956.3134104
https://doi.org/10.1007/978-3-030-45721-1_23
https://doi.org/10.1007/978-3-030-84259-8_3
https://doi.org/10.1007/978-3-030-45374-9_17
https://doi.org/10.1007/978-3-030-75245-3_11
https://doi.org/10.1007/978-3-030-75245-3_11
https://doi.org/10.1007/0-387-34805-0_19

22 H. Zhang et al.

10. Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Scalable zero knowledge
with no trusted setup. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019.
LNCS, vol. 11694, pp. 701–732. Springer, Cham (2019), https://doi.org/10.1007/
978-3-030-26954-8 23

11. Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E., Virza, M.: Snarks for c: Veri-
fying program executions succinctly and in zero knowledge. In: Canetti, R., Garay,
J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 90–108. Springer, Berlin, Heidel-
berg (2013), https://doi.org/10.1007/978-3-642-40084-1 6

12. Ben-Sasson, E., Chiesa, A., Riabzev, M., Spooner, N., Virza, M., Ward, N.P.:
Aurora: Transparent succinct arguments for r1cs. In: Ishai, Y., Rijmen, V. (eds.)
EUROCRYPT 2019. LNCS, vol. 11476, pp. 103–128. Springer, Cham (2019), https:
//doi.org/10.1007/978-3-030-17653-2 4

13. Ben-Sasson, E., Chiesa, A., Tromer, E., Virza, M.: Succinct non-interactive zero
knowledge for a von neumann architecture. In: 23rd USENIX Security Symposium.
pp. 781–796. USENIX Association, San Diego, CA (2014), https://www.usenix.
org/conference/usenixsecurity14/technical-sessions/presentation/ben-sasson

14. Blum, M., De Santis, A., Micali, S., Persiano, G.: Noninteractive zero-knowledge.
SIAM Journal on Computing 20(6), 1084–1118 (1991), https://doi.org/10.1137/
0220068

15. Boneh, D., Eskandarian, S., Fisch, B.: Post-quantum epid signatures from symmet-
ric primitives. In: Matsui, M. (ed.) CT-RSA 2019. pp. 251–271. Springer, Cham
(2019), https://doi.org/10.1007/978-3-030-12612-4 13

16. Bootle, J., Cerulli, A., Chaidos, P., Groth, J., Petit, C.: Efficient zero-knowledge
arguments for arithmetic circuits in the discrete log setting. In: Fischlin, M., Coron,
J.S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 327–357. Springer, Berlin,
Heidelberg (2016), https://doi.org/10.1007/978-3-662-49896-5 12

17. Bootle, J., Groth, J.: Efficient batch zero-knowledge arguments for low degree
polynomials. In: Abdalla, M., Dahab, R. (eds.) PKC 2018. pp. 561–588. Springer,
Cham (2018), https://doi.org/10.1007/978-3-319-76581-5 19

18. Bünz, B., Chiesa, A., Mishra, P., Spooner, N.: Recursive proof composition from
accumulation schemes. In: TCC 2020. LNCS, vol. 12551, pp. 1–18. Springer (2020),
https://doi.org/10.1007/978-3-030-64378-2 1

19. Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bulletproofs:
Short proofs for confidential transactions and more. In: 2018 IEEE Symposium on
Security and Privacy. pp. 315–334 (2018). https://doi.org/10.1109/SP.2018.00020

20. Canetti, R., Goldreich, O., Goldwasser, S., Micali, S.: Resettable zero-knowledge
(extended abstract). In: Proceedings of the Thirty-Second Annual ACM Sympo-
sium on Theory of Computing. p. 235–244. STOC 2000, ACM, New York (2000),
https://doi.org/10.1145/335305.335334

21. Chase, M., Derler, D., Goldfeder, S., Katz, J., Kolesnikov, V., Orlandi, C., Ra-
macher, S., Rechberger, C., Slamanig, D., Wang, X., et al.: The picnic signature
scheme, design document v2. 1 (2019)

22. Chase, M., Derler, D., Goldfeder, S., Katz, J., Kolesnikov, V., Orlandi, C., Ra-
macher, S., Rechberger, C., Slamanig, D., Wang, X., Zaverucha, G.: The picnic
signature scheme, design document v2. 2. Available at https://microsoft.github.
io/Picnic/ (2020)

23. Chase, M., Derler, D., Goldfeder, S., Orlandi, C., Ramacher, S., Rechberger, C.,
Slamanig, D., Zaverucha, G.: Post-quantum zero-knowledge and signatures from
symmetric-key primitives. In: ACM CCS 2017. p. 1825–1842. ACM Press, New
York (2017), https://doi.org/10.1145/3133956.3133997

https://doi.org/10.1007/978-3-030-26954-8_23
https://doi.org/10.1007/978-3-030-26954-8_23
https://doi.org/10.1007/978-3-642-40084-1_6
https://doi.org/10.1007/978-3-030-17653-2_4
https://doi.org/10.1007/978-3-030-17653-2_4
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/ben-sasson
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/ben-sasson
https://doi.org/10.1137/0220068
https://doi.org/10.1137/0220068
https://doi.org/10.1007/978-3-030-12612-4_13
https://doi.org/10.1007/978-3-662-49896-5_12
https://doi.org/10.1007/978-3-319-76581-5_19
https://doi.org/10.1007/978-3-030-64378-2_1
https://doi.org/10.1109/SP.2018.00020
https://doi.org/10.1145/335305.335334
https://microsoft.github.io/Picnic/
https://microsoft.github.io/Picnic/
https://doi.org/10.1145/3133956.3133997

Resumable ZK for Circuits from Symmetric Key Primitives 23

24. Chiesa, A., Tromer, E.: Proof-carrying data and hearsay arguments from signature
cards. In: Yao, A.C. (ed.) Innovations in Computer Science - ICS 2010, Tsinghua
University, Beijing, China, January 5-7, 2010. Proceedings. pp. 310–331. Tsinghua
University Press (2010), http://conference.iiis.tsinghua.edu.cn/ICS2010/content/
papers/25.html

25. Costello, C., Fournet, C., Howell, J., Kohlweiss, M., Kreuter, B., Naehrig,
M., Parno, B., Zahur, S.: Geppetto: Versatile verifiable computation. In:
2015 IEEE Symposium on Security and Privacy. pp. 253–270 (2015).
https://doi.org/10.1109/SP.2015.23

26. Cramer, R., Damg̊ard, I., Schoenmakers, B.: Proofs of partial knowledge and
simplified design of witness hiding protocols. In: Desmedt, Y.G. (ed.) CRYPTO
1994. pp. 174–187. Springer, Berlin, Heidelberg (1994), https://doi.org/10.1007/
3-540-48658-5 19

27. Deng, Y., Feng, D., Goyal, V., Lin, D., Sahai, A., Yung, M.: Resettable cryptog-
raphy in constant rounds – the case of zero knowledge. In: Lee, D.H., Wang, X.
(eds.) ASIACRYPT 2011. pp. 390–406. Springer Berlin Heidelberg, Berlin, Heidel-
berg (2011), https://doi.org/10.1007/978-3-642-25385-0 21

28. Derler, D., Ramacher, S., Slamanig, D.: Post-quantum zero-knowledge proofs for
accumulators with applications to ring signatures from symmetric-key primitives.
In: Lange, T., Steinwandt, R. (eds.) PQCrypto 2018. pp. 419–440. Springer, Cham
(2018), https://doi.org/10.1007/978-3-319-79063-3 20

29. Ding, J., Chen, M.S., Petzoldt, A., Schmidt, D., Yang, B.Y.: Rainbow. NIST PQC
Round 3, 4 (2020)

30. Dinur, I., Nadler, N.: Multi-target attacks on the picnic signature scheme
and related protocols. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019.
LNCS, vol. 11478, pp. 699–727. Springer, Cham (2019), https://doi.org/10.1007/
978-3-030-17659-4 24

31. Dodis, Y., Kiayias, A., Nicolosi, A., Shoup, V.: Anonymous identification in ad hoc
groups. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. pp. 609–626.
Springer, Berlin, Heidelberg (2004), https://doi.org/10.1007/978-3-540-24676-3
36

32. Don, J., Fehr, S., Majenz, C., Schaffner, C.: Security of the Fiat-Shamir transfor-
mation in the quantum random-oracle model. In: Boldyreva, A., Micciancio, D.
(eds.) CRYPTO 2019. LNCS, vol. 11693, pp. 356–383. Springer, Cham (2019),
https://doi.org/10.1007/978-3-030-26951-7 13

33. Don, J., Fehr, S., Majenz, C., Schaffner, C.: Security of the fiat-shamir transfor-
mation in the quantum random-oracle model. Cryptology ePrint Archive, Report
2019/190 (2019), https://eprint.iacr.org/2019/190

34. Dwork, C., Naor, M., Sahai, A.: Concurrent zero-knowledge. In: STOC 1998. p.
409–418. ACM Press, New York (1998), https://doi.org/10.1145/276698.276853

35. Feige, U., Lapidot, D., Shamir, A.: Multiple noninteractive zero knowledge proofs
under general assumptions. SIAM Journal on Computing 29(1), 1–28 (1999), https:
//doi.org/10.1137/S0097539792230010

36. Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identifica-
tion and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS,
vol. 263, pp. 186–194. Springer, Berlin, Heidelberg (1987), https://doi.org/10.1007/
3-540-47721-7 12

37. Fischlin, M., Harasser, P., Janson, C.: Signatures from sequential-OR proofs. In:
Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12107, pp. 212–244.
Springer, Cham (2020), https://doi.org/10.1007/978-3-030-45727-3 8

http://conference.iiis.tsinghua.edu.cn/ICS2010/content/papers/25.html
http://conference.iiis.tsinghua.edu.cn/ICS2010/content/papers/25.html
https://doi.org/10.1109/SP.2015.23
https://doi.org/10.1007/3-540-48658-5_19
https://doi.org/10.1007/3-540-48658-5_19
https://doi.org/10.1007/978-3-642-25385-0_21
https://doi.org/10.1007/978-3-319-79063-3_20
https://doi.org/10.1007/978-3-030-17659-4_24
https://doi.org/10.1007/978-3-030-17659-4_24
https://doi.org/10.1007/978-3-540-24676-3_36
https://doi.org/10.1007/978-3-540-24676-3_36
https://doi.org/10.1007/978-3-030-26951-7_13
https://eprint.iacr.org/2019/190
https://doi.org/10.1145/276698.276853
https://doi.org/10.1137/S0097539792230010
https://doi.org/10.1137/S0097539792230010
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/978-3-030-45727-3_8

24 H. Zhang et al.

38. Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and
succinct nizks without pcps. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT
2013. LNCS, vol. 7881, pp. 626–645. Springer, Berlin, Heidelberg (2013), https:
//doi.org/10.1007/978-3-642-38348-9 37

39. Giacomelli, I., Madsen, J., Orlandi, C.: Zkboo: Faster zero-knowledge for boolean
circuits. In: 25th USENIX Security Symposium. pp. 1069–1083. USENIX Asso-
ciation, Austin, TX (2016), https://www.usenix.org/conference/usenixsecurity16/
technical-sessions/presentation/giacomelli

40. Goel, A., Green, M., Hall-Andersen, M., Kaptchuk, G.: Stacking sigmas: A frame-
work to compose σ-protocols for disjunctions. Cryptology ePrint Archive, Report
2021/422 (2021), https://ia.cr/2021/422

41. Goel, A., Green, M., Hall-Andersen, M., Kaptchuk, G.: Efficient set member-
ship proofs using mpc-in-the-head. Proceedings on Privacy Enhancing Tech-
nologies 2022(2), 304–324 (2022). https://doi.org/doi:10.2478/popets-2022-0047,
https://doi.org/10.2478/popets-2022-0047

42. Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their validity
and a methodology of cryptographic protocol design. In: SFCS 1986. pp. 174–187.
IEEE Computer Society Press (1986). https://doi.org/10.1109/SFCS.1986.47

43. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof systems. SIAM Journal on Computing 18(1), 186–208 (1989), https://doi.
org/10.1137/0218012

44. Groth, J.: Short pairing-based non-interactive zero-knowledge arguments. In: Abe,
M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 321–340. Springer, Berlin, Hei-
delberg (2010), https://doi.org/10.1007/978-3-642-17373-8 19

45. Groth, J.: On the size of pairing-based non-interactive arguments. In: Fischlin, M.,
Coron, J.S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 305–326. Springer,
Berlin, Heidelberg (2016), https://doi.org/10.1007/978-3-662-49896-5 11

46. Groth, J., Ostrovsky, R., Sahai, A.: Perfect non-interactive zero knowledge for
NP. In: Vaudenay, S. (ed.) EUROCRYPT 2006. pp. 339–358. Springer, Berlin,
Heidelberg (2006), https://doi.org/10.1007/11761679 21

47. Henry, R., Goldberg, I.: Batch proofs of partial knowledge. In: Jacobson, M., Lo-
casto, M., Mohassel, P., Safavi-Naini, R. (eds.) ACNS 2013. pp. 502–517. Springer,
Berlin, Heidelberg (2013), https://doi.org/10.1007/978-3-642-38980-1 32

48. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Zero-knowledge from secure
multiparty computation. In: STOC 2007. p. 21–30. ACM Press, New York (2007),
https://doi.org/10.1145/1250790.1250794

49. Kales, D., Zaverucha, G.: Improving the performance of the picnic signature
scheme. Cryptology ePrint Archive, Report 2020/427 (2020), https://eprint.iacr.
org/2020/427

50. Katz, J.: Digital signatures. Springer Science & Business Media (2010)
51. Katz, J., Kolesnikov, V., Wang, X.: Improved non-interactive zero knowledge with

applications to post-quantum signatures. In: ACM CCS 2018. p. 525–537. ACM
Press, New York (2018), https://doi.org/10.1145/3243734.3243805

52. Kiltz, E., Lyubashevsky, V., Schaffner, C.: A concrete treatment of fiat-shamir
signatures in the quantum random-oracle model. In: Nielsen, J.B., Rijmen, V.
(eds.) EUROCRYPT 2018. LNCS, vol. 10822, pp. 552–586. Springer, Cham (2018),
https://doi.org/10.1007/978-3-319-78372-7 18

53. Parno, B., Howell, J., Gentry, C., Raykova, M.: Pinocchio: Nearly practical verifi-
able computation. In: 2013 IEEE Symposium on Security and Privacy. pp. 238–252
(2013). https://doi.org/10.1109/SP.2013.47

https://doi.org/10.1007/978-3-642-38348-9_37
https://doi.org/10.1007/978-3-642-38348-9_37
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/giacomelli
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/giacomelli
https://ia.cr/2021/422
https://doi.org/doi:10.2478/popets-2022-0047
https://doi.org/10.2478/popets-2022-0047
https://doi.org/10.1109/SFCS.1986.47
https://doi.org/10.1137/0218012
https://doi.org/10.1137/0218012
https://doi.org/10.1007/978-3-642-17373-8_19
https://doi.org/10.1007/978-3-662-49896-5_11
https://doi.org/10.1007/11761679_21
https://doi.org/10.1007/978-3-642-38980-1_32
https://doi.org/10.1145/1250790.1250794
https://eprint.iacr.org/2020/427
https://eprint.iacr.org/2020/427
https://doi.org/10.1145/3243734.3243805
https://doi.org/10.1007/978-3-319-78372-7_18
https://doi.org/10.1109/SP.2013.47

Resumable ZK for Circuits from Symmetric Key Primitives 25

54. Peng, K., Bao, F.: Batch zk proof and verification of or logic. In: Yung, M., Liu,
P., Lin, D. (eds.) Inscrypt 2008. Springer, Berlin, Heidelberg (2008), https://doi.
org/10.1007/978-3-642-01440-6 13

55. Rescorla, E., Dierks, T.: The transport layer security (tls) protocol version 1.3.
RFC 8446, DOI 10.17487/RFC8446, August 2018 (2018)

56. Rivest, R.L., Shamir, A., Tauman, Y.: How to leak a secret. In: Boyd, C. (ed.)
ASIACRYPT 2001. pp. 552–565. Springer, Berlin, Heidelberg (2001), https://doi.
org/10.1007/3-540-45682-1 32

57. de Saint Guilhem, C.D., De Meyer, L., Orsini, E., Smart, N.P.: BBQ: Us-
ing AES in picnic signatures. In: Paterson, K.G., Stebila, D. (eds.) SAC 2019.
LNCS, vol. 11959, pp. 669–692. Springer, Cham (2020), https://doi.org/10.1007/
978-3-030-38471-5 27

58. Valiant, P.: Incrementally verifiable computation or proofs of knowledge imply
time/space efficiency. In: Canetti, R. (ed.) Theory of Cryptography. pp. 1–18.
Springer Berlin Heidelberg, Berlin, Heidelberg (2008), https://doi.org/10.1007/
978-3-540-78524-8 1

59. Wahby, R.S., Tzialla, I., Shelat, A., Thaler, J., Walfish, M.: Doubly-efficient zk-
snarks without trusted setup. In: 2018 IEEE Symposium on Security and Privacy
(SP). pp. 926–943 (2018). https://doi.org/10.1109/SP.2018.00060

https://doi.org/10.1007/978-3-642-01440-6_13
https://doi.org/10.1007/978-3-642-01440-6_13
https://doi.org/10.1007/3-540-45682-1_32
https://doi.org/10.1007/3-540-45682-1_32
https://doi.org/10.1007/978-3-030-38471-5_27
https://doi.org/10.1007/978-3-030-38471-5_27
https://doi.org/10.1007/978-3-540-78524-8_1
https://doi.org/10.1007/978-3-540-78524-8_1
https://doi.org/10.1109/SP.2018.00060

26 H. Zhang et al.

A Proof of Theorem 1

Proof. Completeness. This property follows from the correctness of the under-
lying MPC protocol Π used in πF and πf .
Resumable Honest Verifier Zero-Knowledge. We need to consider the sim-
ulator for all q(κ) sessions instead of only one, where the simulation for the
transcripts generated by πF and πf follows the idea of [51]. Let SimΠ denotes
the simulator of the MPC protocol Π. The simulator Sim of ΠRes is described
as follows.

– Simulation for initial session session(1).
1. Sim chooses random C and P as the challenge for the preprocessing phase

and the online phase respectively.
2. For each instance j ̸∈ C, Sim prepares λj using {statej,i,1}i∈[n] and gen-

erates the corresponding respFpre,1 as an honest prover would do in the
preprocessing phase.

3. For each instance j ∈ C, Sim chooses a random masked input for the
MPC protocol and n− 1 random states for n− 1 parties determined by
P. Then, Sim runs SimΠ to simulate the views of the n parties during
the MPC protocol and computes corresponding comF

on,1. Notice that
Sim can get the corresponding intermediate masked value ŵ′

j for each
instance j ∈ C from the simulated views. As mentioned in section 2.1,
the indistinguishability between the simulated execution of SimΠ and the
real execution relies on the security of the underlying PRG.

4. Sim computes comF
pre,1 and respFon,1 according to the transcripts gener-

ated in step 2 and 3. For the generation of comF
pre,1, the state of the party

in P of each instance can be set by 0-string with appropriate length.
5. Sim randomly chooses seed∆2 and {state′j,i,2}j∈C,i∈[n], and computes the

corresponding commitment comf
pre,2. Generate comon,1 as the commit-

ment to comF
on,1||com

f
pre,2||seed

∆
2 ||{state′j,n,2}j∈C .

– Simulation for subsequent session seesion(t), where 1 < t ≤ q(κ).
1. Sim chooses a random P as the challenge for the online phase.
2. For each instance j ∈ C, Sim computes the rerandomized intermediate

masked input ŵ′
j ⊕∆j , in which ŵ′

j is the intermediate masked value of

seesion(1) and ∆j is generated by seed∆t . Note that Sim has n−2 parties’
states determined by P. Then, Sim runs SimΠ to simulate the views of n
parties during the MPC protocol, and computes corresponding comf

on,t.

3. Sim randomly chooses seed∆t+1 and {state′j,i,t+1}j∈C,i∈[n], and computes

the corresponding commitment comf
pre,t+1. Generate comon,t as the com-

mitment to comf
on,t||com

f
pre,t+1||seed

∆
t+1||{state′j,n,t+1}j∈C .

Following a standard hybrid argument, we have that the transcript generated by
Sim is computationally indistinguishable from that of a real protocol, where the
indistinguishability relies on the indistinguishability of the simulated transcripts
generated by SimΠ and the hiding property of the commitment scheme.

Resumable ZK for Circuits from Symmetric Key Primitives 27

Resumable Knowledge Soundness. The proof of the resumable knowledge
soundness is similar to that of [51,7], except that we need to show that there
exists a witness extractor E for each session, especially the resumed session.

We first show the soundness error ξ(M,n, τ). Since ΠRes,1 is similar to that
of the original KKW except additional processing for the masks of the next
session. The soundness error ξ1 of ΠRes,1 is the same as that of [51]. That is,

ξ1(M,n, τ) = max
0≤c≤τ

{ (
M−c
M−τ

)(
M

M−τ

)
· nτ−c

}
,

where c denotes the number of preprocessing emulations where the malicious
prover cheats.

On the soundness error of ΠRes,2, recall the soundness game mentioned in
section 3, where the malicious prover can invoke the “honest” prover to interact
with the verifier for polynomially-many sessions, say session(1), . . . , session(t−1)
for 1 < t ≤ q(κ), and tries to convince the verifier in session(t) without the help
of the “honest” prover. Note that the masks for session(t) are generated by the
honest prover in session(t− 1). So a malicious prover of session t can cheat only
in the online phase, where he must cheat in one of the views of the n−1 parties.
Thus, the probability that the prover will not be detected in ΠRes,2 is

ξt(M,n, τ) =
1

(n− 1)τ
.

Therefore, we have ξ(M,n, τ) = max {ξ1(M,n, τ), ξt(M,n, τ)} , for any 1 < t ≤
q(κ).

Next, we proceed to prove the resumable knowledge soundness property by
showing how to construct E to extract a valid witness for each session. As ex-
plained above, the proof of knowledge soundness in [7] can be applied to ΠRes,1

directly. We focus on ΠRes,2 of session(t), where 1 < t ≤ q(κ). For simplicity we
assume that the commitment scheme is perfectly binding.

We first prove that if the success probability of cheating δt(x) > ξt(M,n, τ),
then there exists at least one MPC instance of C, where the prover has committed
to a valid intermediate value w′. Considering the deterministic prover with fixed
random tape, let v be a 0/1-vector with length (n − 1)τ , where each entry
corresponds to a possible challenge for the online phase of V(t) and 1 denotes the
event of success. Hence, we have that δt(x) is the fraction of ‘1’ entries in v and
the number of ‘1’ entries in v is higher than 1 due to δt(x) > ξt(M,n, τ) = 1

(n−1)τ .

That is, there must exist two accepting transcripts with different challenges
{pj}j∈C and {p′j}j∈C such that pj ̸= p′j for an MPC instance j. That means all
the views of the parties in instance j are correct and the witness used in this
instance must be a valid intermediate value w′.

However, since f is just a part of F , it may be easy for a malicious prover
to find a different w∗ ̸= w′ such that f(w∗) = 1. It seems that any malicious
prover who can find such a w∗ can cheat in the next session by computing
λw∗ = w′ ⊕ λw′ ⊕ w∗ and generating the corresponding n shares of λw∗ ⊕∆. (

28 H. Zhang et al.

w′ ⊕ λw′ can be extracted during the verification of the initial session.) Thanks
to the binding property of the commitment comon,t in πcert, it is hard for the
adversary to provide consistency proof using such w∗ and λw∗ . For instance,
in session(t − 1), comon,t−1 is the commitment of comf

on,t−1||com
f
pre,t||seed

∆
t

||{state′j,n,t}j∈C , where (comon,t−1, com
f
pre,t, seed

∆
t , {state′j,n,t}j∈C) are public.

The rerandomized mask for session(t), say λw′ ⊕∆, is determined by (comf
pre,t,

seed∆t , {state′j,n,t}j∈C) and is hard to be modified due to comon,t−1. (The use of
mask λw∗ such that λw∗ ̸= λw′ ⊕∆ will be detected by checking the consistency
of comon,t−1 and comf

pre,t.) Therefore, a malicious prover needs to (1) guess the

challenge sent by the verifier successfully, which happens with probability 1
n−1

for each instance, or (2) find n− 1 random seeds which can be used to generate
an (n−1)-out-of-(n−1) secret-sharing of λw∗⊕∆⊕ [λw′⊕∆]n, where each share
is generated by running PRG with the corresponding random seed. This can be
done with negligible probability assuming the underlying PRG is secure. Hence,
comon,t−1 and comf

pre,t guarantee the consistency of w′ in session(t) with w.
Next, we show how to extract the witness using two accepting transcripts

with {pj}j∈C and {p′j}j∈C when the challenge for j is different. Since pj ̸= p′j , the
transcripts with pj reveals n− 1 shares of the masks of the intermediate masked
input, whereas the transcripts with p′j reveals the remaining shares (Notice that
the shares of the n-th party is public). Hence, we can get all the shares to recover
the intermediate value w′. Due to the special property of the decomposition for
F , the witness w can be further extracted from w′.

To sum up, the extractor E is described as follows.

1. Run ΠRes,2 with the prover in session t until the event of success happens, in
order to find an ‘1’ entry of the vector v, where the corresponding challenge
is {pj}j∈C .

2. Run ΠRes,2 with the prover in session t (using different challenges) until
a different ‘1’ entry is found, where the corresponding challenge is {p′j}j∈C
such that pj ̸= p′j .

3. Extract the witness ω in execution j using the related transcripts with
{pj}j∈C and {p′j}j∈C . If F (w) = y, output w and halt.

Let δt(x) = ξt(M,n, τ) + ϵt(x) for some ϵt(x) > 0. The expected running
time of the step 1 and 2 is 1

δt(x)
< 1

ϵt(x)
and the running time of step 3 depends

on the running time of F (w) with common input x, which is supposed to be
more efficient than step 1 and 2. Therefore, a valid witness can be extracted in
O(1

ϵt(x)
) expected number of steps.

Resumption efficiency. ΠRes,2 consists of πf and the consistency proof πcert.
Since πf is a simplified KKW proof for the partial circuits of F (without cut-
and-choose), the complexity of πf is much smaller than that of the original KKW
proof for F . Recall that πcert mainly consists of comon,2 and seed∆3 . So the com-
plexity of πcert just takes a very small portion of πf . Hence, although the overall
complexity of ΠRes,2 depends on the concrete decomposition of F , ΠRes,2 is
much efficient than that of the original KKW proof Π ′ for F in general. ⊓⊔

Resumable ZK for Circuits from Symmetric Key Primitives 29

B Concrete Construction of 3-Round Resumable
HVZKPoK

The construction of 3-round resumable HVZKPoK Π3
Res is shown in Fig. 2,

Fig. 3 and Fig. 4.

Remark. For the concrete construction of ΠRes,1 of session(1) as shown in Fig. 2,
the prover chooses a random salt1 ∈ {0, 1}κ to mitigate multi-target attack [30,7]
and a random seed∆2 ∈ {0, 1}κ to generate the rerandomized masks in step 1.
For each instance j ∈ [M], the main steps of the prover are explained as follows.

– In step 2(a), choose a random master seed seed∗j,1 ∈ {0, 1}κ to generate

{seedj,i,1}i∈[n] and {seed
(u)
j,i,2}i∈[n],u∈[ℓ], which will be used to generate the

states of the parties for the current session and the states of the parties of ℓ
parallel executions for the next session, respectively.

– Commit to the states of the parties in step 2(d), where the resulting com-
mitment is denoted by {comj,i,1}i∈[n], and compute the hash value hj,1 of
the corresponding commitments in step 2(f).

– Simulate the execution of the MPC protocol Π among the parties in step
2(e), and commit to the resulting views of the parties using h′

j,1 in step 2(f).

– In step 2(g), use seed∆2 to generate seed∆j,2 which is used to rerandom-
ize the masks for the ℓ parllel executions of the next session. Then, use

{seed(u)j,i,2}i∈[n] and seed∆j,2 to generate the states of the parties of the parallel
execution u ∈ [ℓ] for the next session, where the state of the n-th party for

the parallel execution u is denoted by {state(u)j,n,2}.
– At the end of step 2, commit to {state(u)j,n,2} and seed∆2 by computing hsn

2 ,
compute the commitment h∗ to hj,1, h

′
j,1 and hsn

2 and send h∗ to the verifier.

For concrete construction of ΠRes,2 of session(t), where 1 < t ≤ q(κ), the
prover does not need to generate the states of the current session, and only needs
to generate the states of the parties for ℓ parallel executions of the next session
(step 3(a)(b)(e)), simulates the MPC protocol Π among the parties by using the
states generated from the previous session (step 3(c)), and then commits to the
resulting states and views (step 3(d)(e)).

Furthermore, we remove comf
pre,2 and comf

pre,3 of πcert in the general con-
struction in order to improve the efficiency. We show that such modification
does not break the soundness due to the special structure of LowMC. Follow-
ing the analysis in the proof of Theorem 1, λw′ ⊕ ∆ cannot be determined
“uniquely” if comf

pre,2 or comf
pre,3 is not provided. In this case, the adversary

is able to compute w∗ = ŵ′ ⊕ ∆ ⊕ λw∗ such that f(w∗) = y, where λw∗ is
generated “honestly”. That is, the adversary chooses n−1 random seeds to gen-
erate the corresponding parties’ shares {[λw∗]i}i∈[n−1] using PRG and computes
λw∗ = [λw∗]1⊕· · ·⊕ [λw∗]n−1⊕ [λ′

w′]n, which is indistinguishable from a random
string assuming PRG is secure. So w∗ is indistinguishable from a random string.
Notice that, for a random w∗ and fixed y, f(w∗) = y holds only with negligi-
ble probability, since f only consists of the KeyAddition operations. Therefore,

30 H. Zhang et al.

Parameters: Let κ denote the security parameter. Let H : {0, 1}∗ → {0, 1}2κ, Com
and PRG denote hash function, commitment scheme and pseudorandom generator,
respectively. M,n, τ and ℓ denote the number of instances, the number of the parties,
the number of instances whose preprocessing phase will not be opened and the number
of the parallel executions, respectively.
Inputs: Both the prover and the verifier have the statement (C, y) with C′ as the
partial circuit of C. The prover holds w such that C(w) = y. The prover and the
verifier initialize t = 1, pstatet =⊥ and vstatet =⊥, respectively.
Round 1:

1. The prover chooses random saltt ∈ {0, 1}κ and seed∆t+1 ∈ {0, 1}κ.
2. If t = 1, for each j ∈ [M], the prover does:

(a) Choose a uniform seed∗j,t ∈ {0, 1}κ as the seed of PRG to generate
(seedj,1,t, rj,1,t), . . . , (seedj,n,t, rj,n,t),

seed
(1)
j,1,t+1, . . . , seed

(1)
j,n,t+1,

...
seed

(ℓ)
j,1,t+1, . . . , seed

(ℓ)
j,n,t+1.

(b) Compute auxj,n,t ∈ {0, 1}|C| as described in the text. Set statej,n,t =
seedj,n,t||auxj,n,t and statej,i,t = seedj,i,t for each i ∈ [n− 1].

(c) Generate seed∆j,t+1 using seed∆t+1.
(d) For each i ∈ [n], compute comj,i,t = Com(statej,i,t, rj,i,t, saltt).
(e) Simulate the online phase of the MPC protocol Π for C as follows:

i. For each input wire α of C, using {seedj,i,t}i∈[n] to generate mask values
{λj,α,t}.

ii. Compute the masked input {ẑj,α,t} as ẑj,α,t = wα ⊕ λj,α,t, where wα

denotes the value of the input wire α.
iii. Evaluate C by proceeding through the gates in topological order. For each

party Pi, compute the broadcast message msgsj,i,t.
iv. Denote the intermediate masked output of evaluating C as {ẑj,α,inter}

which is the input value of C′. Note that ẑj,α,inter = zj,α,inter ⊕λj,α,inter,
where λj,α,inter is the mask value for each input wire α of C′.

(f) Compute hj,t = H(comj,1,t, . . . , comj,n,t) and h′
j,t = H({ẑj,α,t},msgsj,1,t,

. . . ,msgsj,n,t, saltt).

(g) Use seed∆j,t+1 to generate {∆(1)
j,α,t+1}, . . . , {∆

(ℓ)
j,α,t+1} for each input wire α of

C′.
i. For each u ∈ [ℓ], compute aux

(u)
j,n,t+1 ∈ {0, 1}|C

′|+|C′
in| as described in the

text.
ii. For each u ∈ [ℓ], set state

(u)
j,i,t+1 = seed

(u)
j,i,t+1 for each i ∈

[n − 1]; set state
(u)
j,n,t+1 = seed

(u)
j,n,t+1||aux

(u)
j,n,t+1. Compute hn

j,t+1 =

H(state
(1)
j,n,t+1, . . . , state

(ℓ)
j,n,t+1, saltt).

Compute hsn
t+1 = H(seed∆t+1, h

n
1,t+1, . . . , h

n
M,t+1), ht = H(h1,t, . . . , hM,t) and h′

t =
H(h′

1,t, . . . , h
′
M,t). Then, send h∗

t = H(ht, h
′
t, h

sn
t+1) to the verifier.

Fig. 2. Our 3-round resumable HVZK proof (Part 1)

Resumable ZK for Circuits from Symmetric Key Primitives 31

3. If t > 1, for each j ∈ C, the prover does:
(a) Choose a uniform seed∗j,t ∈ {0, 1}κ as the seed of PRG to generate

seed
(1)
j,1,t+1, . . . , seed

(1)
j,n,t+1,

...
seed

(ℓ)
j,1,t+1, . . . , seed

(ℓ)
j,n,t+1.

(b) Generate seed∆j,t+1 using seed∆t+1.

(c) Simulate the online phase of the MPC protocol Π for C′ using {state(u)j,i,t}i∈[n]

for each u ∈ [ℓ] as follows:

i. Compute the masked input {ẑ(u)j,α,t} of C′ as ẑ
(u)
j,α,t = ẑj,α,inter ⊕∆

(u)
j,α,t.

ii. Evaluate C′ by proceeding through the gates in topological order. For each
party Pi, compute the broadcast message msgs

(u)
j,i,t.

(d) Compute h′
j,t = H({ẑj,α,inter}, seed∆j,t,msgs

(1)
j,1,t, . . . ,msgs

(1)
j,n,t, . . . ,msgs

(ℓ)
j,1,t, . . . ,

msgs
(ℓ)
j,n,t, saltt).

(e) Use seed∆j,t+1 to generate {∆(1)
j,α,t+1}, . . . , {∆

(ℓ)
j,α,t+1} for each input wire α of

C′.
i. For each u ∈ [ℓ], compute aux

(u)
j,n,t+1 ∈ {0, 1}|C

′|+|C′
in| as described in the

text.
ii. For each u ∈ [ℓ], set state

(u)
j,i,t+1 = seed

(u)
j,i,t+1 for each i ∈

[n − 1]; set state
(u)
j,n,t+1 = seed

(u)
j,n,t+1||aux

(u)
j,n,t+1. Compute hn

j,t+1 =

H(state
(1)
j,n,t+1, . . . , state

(ℓ)
j,n,t+1, saltt).

Let C = {j1, . . . , jτ}. Compute hsn
t+1 = H(seed∆t+1, h

n
j1,t+1, . . . , h

n
jτ ,t+1) and h′

t =
H(h′

j1,t, . . . , h
′
jτ ,t). Then, send h∗

t = H(h′
t, h

sn
t+1) to the verifier.

Round 2:

1. If t = 1, the verifier chooses a uniform τ -sized set C ⊂ [M] and Pt = {pj,t}j∈C ,
where pj,t ∈ [n]. Send (C,Pt) to the prover.

2. If t > 1, the verifier chooses a uniform Pt = {p(u)j,t }j∈C,u∈[ℓ], where p
(u)
j,t ∈ [n − 1].

Send Pt to the prover.

Round 3: The prover sends saltt and seed∆t+1 as well as the following values to the
verifier.

1. If t = 1, for each j ∈ [M]\C, the prover sends seed∗j,t, h
′
j,t to the verifier. For each

j ∈ C, the prover sends {statej,i,t, rj,i,t}i ̸=pj,t , comj,pj,t,t, {ẑj,α,t}, msgsj,pj,t,t and

{state(u)j,n,t+1}u∈[ℓ] to the verifier.

2. If t > 1, for each j ∈ C, u ∈ [ℓ], the prover sends {state(u)j,i,t}i∈[n−1],i̸=p
(u)
j,t

,msgs
(u)

j,p
(u)
j,t ,t

and {state(u)j,n,t+1} to the verifier.

Fig. 3. Our 3-round resumable HVZK proof (Part 2)

32 H. Zhang et al.

Verification: The verifier accepts iff all the following checks succeed.

1. If t = 1:
(a) For each j ∈ C, use {statej,i,t, rj,i,t}i̸=pj,t and saltt to compute {comj,i,t}i ̸=pj,t .

Then, compute hj,t = H(comj,1,t, . . . , comj,n,t).

(b) For each j ∈ C, use {state(u)j,n,t+1}u∈[ℓ] and saltt to compute hn
j,t+1 =

H(state
(1)
j,n,t+1, . . . , state

(ℓ)
j,n,t+1, saltt).

(c) For each j ∈ [M]\C, use seed∗j,t, saltt and seed∆t+1 to compute hj,t and hn
j,t+1

as an honest prover would. Then compute ht = H(h1,t, . . . , hM,t) and hsn
t+1 =

H(seed∆t+1, h
n
1,t+1, . . . , h

n
M,t+1).

(d) For each j ∈ C, simulate an execution of Π for C among {Pi}i ̸=pj,t us-
ing {statej,i,t}i ̸=pj,t , masked inputs {ẑj,α,t} and msgsj,pj,t,t. This will yield

{msgsj,i,t}i ̸=pj,t , {ẑj,α,inter} and an output y′. Check that y
?
= y′ and

compute h′
j,t = H({ẑj,α,t},msgsj,1,t, . . . ,msgsj,n,t, saltt) as well as h′

t =
H(h′

1,t, . . . , h
′
M,t).

(e) Check that H(ht, h
′
t, h

sn
t+1)

?
= h∗

t .
2. If t > 1:

(a) For each j ∈ C, use {state(u)j,n,t+1}u∈[ℓ] and saltt to compute

hn
j,t+1 = H(state

(1)
j,n,t+1, . . . , state

(ℓ)
j,n,t+1, saltt). Then, compute hsn

t+1 =

H(seed∆t+1, h
n
j1,t+1, . . . , h

n
jτ ,t+1).

(b) For each j ∈ C, u ∈ [ℓ], simulate an execution of Π for C′ among {Pi}i̸=p
(u)
j,t

using {state(u)j,i,t}i ̸=p
(u)
j,t

, masked inputs {ẑ(u)j,α,t} and msgs
(u)

j,p
(u)
j,t ,t

. This will yield

{msgs
(u)
j,i,t}i ̸=p

(u)
j,t

and an output y′. Check that y
?
= y′ and compute h′

j,t =

H({ẑj,α,inter}, seed∆j,t,msgs
(1)
j,1,t, . . . ,msgs

(1)
j,n,t, . . . ,msgs

(ℓ)
j,1,t, . . . ,msgs

(ℓ)
j,n,t, saltt)

as well as h′
t = H(h′

j1,t, . . . , h
′
jτ ,t).

(c) Check that H(h′
t, h

sn
t+1)

?
= h∗

t .

State Update: After the t-th session, the prover and the verifier update their state
for the subsequent session as follows.

1. The prover sets pstatet = {state(u)j,i,t+1}j∈C,i∈[n],u∈[ℓ]||{seed∆j,t+1}j∈C ||{ẑj,α,inter}j∈C .

2. The verifier sets vstatet = {state(u)j,n,t+1}j∈C,u∈[ℓ]||seed∆t+1||{ẑj,α,inter}j∈C .
3. Both the prover and the verifier set t = t+ 1.

Fig. 4. Our 3-round resumable HVZK proof (Part 3)

Resumable ZK for Circuits from Symmetric Key Primitives 33

although comf
pre,2 and comf

pre,3 are removed, the knowledge soundness can still
be guaranteed when instantiated with LowMC.

C Stateful Signature Scheme

Definition 3. [50] A stateful signature scheme is a tuple of probabilistic poly-
nomial time (PPT) algorithms (Gen,Sign,Vrfy) which satisfies that:

– The key generation algorithm Gen takes as input a security parameter 1κ

and outputs (pk, sk, ss0), which are the public key, the private key and the
signer’s initial state, respectively.

– The signing algorithm Sign takes as input a private key sk, a message m ∈
{0, 1}∗, and a state ssi−1. It outputs a signature σ and an updated state ssi.

– The deterministic verification algorithm Vrfy takes as input a public key pk,
a message m, a signature σ and a state vsi−1. It outputs a bit b, and an
updated state vsi if b = 1. Here, suppose the verifier’s initial state is vs0.

We require that, for every (pk, sk, ss0) output by Gen(1κ) and any message
m1, . . . ,mq ∈ {0, 1}∗, it holds that (1, vsi) ← Vrfypk(mi, σi, vsi−1) holds for
every i ∈ {1, . . . , q}, where (σi, ssi)← Signsk(mi, ssi−1).

In this paper, we consider the stateful signature where the verifier can hold
a state in order to verify the signature efficiently. The initial state of the ver-
ifier is empty, i.e., vs0 = ⊥, and the state of the verifier vsi is updated by
the verification of (mi, σi). Thus, the verification algorithm can be rewritten as
1/0← Vrfypk(mi, σi, {(mj , σj)}i−1

j=1). The security of stateful signatures is defined
by the experiment SSig-ForgeA,Π(κ) shown in Fig 5.

Fig. 5. SSig-ForgeA,Π(κ) Experiment

1. Run Gen to generate (pk, sk, ss0).
2. Adversary A is given pk, and access to a stateful signing oracle SSignsk(·).

A sets vs = vs0. After each query, A and SSignsk(·) update the state vs
and ss, respectively.

3. Let Q = {mi}qi=1 denote the sequence of queries made by A, in which
q denotes the number of queries made by A and q ≤ q(κ). A outputs

{(m′
i, σ

′
i)}q

′

i=1. Let Q′ = {m′
i}q

′

i=1 denote the sequence of the messages
m′

1, . . . ,m
′
q′ .

4. The experiment outputs 1 if (1) Vrfypk(m
′
q′ , σ

′
q′ , {(m′

i, σ
′
i)}q

′−1
i=1) = 1 and

(2) Q′ ̸= Q and Q′ is not a predecessor of Q.

Definition 4. A stateful signature scheme Π = (Gen,Sign,Vrfy) is existentially
unforgeable under an adaptive chosen-messga attack, or EUF-CMA, if for all PPT
adversary A, there is a negligible function negl such that:

Pr[SSig-ForgeA,Π(κ) = 1] ≤ negl(κ).

34 H. Zhang et al.

If we set Q = {(mi, σi)}qi=1 and Q′ = {(m′
i, σ

′
i)}

q′

i=1, the corresponding ex-
periment is denoted as SSig-Forge′A,Π(κ). Then we have the definition of strongly
EUF-CMA.

Definition 5. A stateful signature scheme Π = (Gen,Sign,Vrfy) is strongly un-
forgeable under an adaptive chosen-messga attack, or sEUF-CMA, if for all PPT
adversary A, there is a negligible function negl such that:

Pr[SSig-Forge′A,Π(κ) = 1] ≤ negl(κ).

C.1 Construction of Resumable-Picnic

Resumable-Picnic consists of three probabilistic polynomial-time algorithms (Gen,
Sign,Vrfy), which are defined as follows:

– Gen(κ): The key generation algorithm takes as input the security parameter
κ. Choose a uniform signing key sk ∈ {0, 1}κ and generate the verification
key pk = Enc(sk, 0κ), where Enc denotes a symmetric encryption scheme,
e.g., LowMC.

– Signsk(mi, ssi−1): The signing algorithm takes as inputs the signing key sk,
the message mi ∈ {0, 1}∗ and the signer’s state ssi−1 (where the initial state
ss0 =⊥). Set pstatei−1 = ssi−1. Run the prover’s strategy of the resumable
NIZKPoK for pk = Enc(sk, 0κ) of session(i) to generate the proof, where
mi is included as input of the hash function to compute the challenge. The
resulting transcript of proof is the signature. Finally, it outputs a signature
σi and a signer’s state ssi = pstatei.

– Vrfypk(mi, σi, vsi−1): The verification algorithm takes as inputs the verifica-
tion key pk, the message mi, the signature σi and the verifier’s state vsi−1.
Set vstatei−1 = vsi−1. Run the verifier’s strategy of the resumable NIZKPoK
of session(i) to verify the signature. Finally, it outputs (1, vsi) for acceptance,
where the verifier’s state vsi = vstatei, or just 0 for rejection.

Notice that verifier’s initial state vs0 =⊥ and is updated by the verifica-
tion algorithm. Thus, the verification algorithm can be rewritten as 1/0 ←
Vrfypk(mi, σi, {(mj , σj)}i−1

j=1).

D Proof of Sketch for Theorem 4

Let {mi}qi=1 denote the messages queried by the adversary in the SSig-Forge′A
experiment. The corresponding set of message/signature pairs are denoted as

Q = {(mi, σi)}qi=1. Suppose Q′ = {(m′
i, σ

′
i)}

q′

i=1 is the forgery output by the
adversary A. Consider the following two cases.

1. For each i ∈ [q′], (m′
i, σ

′
i) ∈ Q.

2. There exists some i ∈ [q′] such that (m′
i, σ

′
i) ̸∈ Q.

Resumable ZK for Circuits from Symmetric Key Primitives 35

Case 1: Since the structure of σ1 is different from that of its subsequent signa-
tures, A cannot make a forgery by changing the order of (m1, σ1) or replacing
(m1, σ1) with (mi, σi) for some i > 1. Without loss of generality, we assume that
i1 is the least index such that (m′

i1
, σ′

i1
) ̸= (mi1 , σi1) and (m′

i1
, σ′

i1
) = (mi2 , σi2)

for some i2 ̸= i1, where 1 < i1 ≤ q′ and 1 < i2 ≤ q. Here, the least index implies
(m′

i, σ
′
i) = (mi, σi) for i < i1. Due to σ′

i1
= σi2 , we have h

∗
i1

= h∗
i2
, where h∗

i1
and

h∗
i2

are parts of σ′
i1

and σi2 , respectively. Recall that h
∗
t = H(h′

t, h
sn
t+1), for t > 1,

and h′
t is the hash value of the challenged parties’ broadcast messages during

the online phase and the random seed, say seed∆j,t. Note that seed∆j,t is generated

using seed∆t . In SSig-Forge′A, we have seed
∆
i1 ̸= seed∆i2 except with negligible prob-

ability, since seed∆i1 and seed∆i2 are chosen randomly by the signing oracle in ses-

sion(i1−1) and session(i2−1), respectively. So we have seed∆j,i1 ̸= seed∆j,i2 except
with negligible probability assuming the underlying PRG is secure. Therefore,
h∗
i1

= h∗
i2

implies a collision of the underlying hash functions, which contradicts
the collapsing property.

Case 2: Let Sig[ΠRes,1] denote the signature scheme, which is constructed by
applying Fiat-Shamir heuristic to ΠRes,1. Sig[ΠRes,1] is essentially the same as
Picnic, which is sEUF-CMA in the QROM. (The additional preprocessing data
for the next session does not break the security of Sig[ΠRes,1] if the underlying
hash function is secure.) Furthermore, if the state vstatei−1 is the public param-
eter (or generated by the trusted party), the signature for each session, say σi,
can be considered as an one-time signature. Let Sig[ΠRes,2] denote the signature
scheme constructed by applying Fiat-Shamir heuristic to ΠRes,2.

In fact, the forgery in case 2 implies a forgery for Sig[ΠRes,1] or Sig[ΠRes,2],
which contradicts the security of Sig[ΠRes,1] or Sig[ΠRes,2]. It remains to show
that Sig[ΠRes,2] is one-time sEUF-CMA in the QROM, which can be proven
using the same method of [32]. To apply [32, Corollary 26], the Σ-protocolΠRes,2

should satisfy the following properties:

1. Be non-abort honest verifier zero-knowledge (naHVZK) [52]. This property
is implied by Theorem 3, in which the commitments are randomized.

2. Have min-entropy α [52, Definition 2.6] which is polynomial in the security
parameter. This property can be proven using [4, Lemma 17], which shows
that ΠRes,2 has min-entropy α ≥ 2κ+ 256.

3. Has quantum computational unique responses (CUR). Following the idea
of [22, Lemma 6.7], we can show that ΠRes,2 has classical CUR. Then, the
quantum CUR of ΠRes,2 can be proven under the assumptions that the hash
functions are collapsing and the commitment scheme is collapse-binding.
More details of the computational unique responses are shown in Appendix
E.

As shown in Theorem 1, ΠRes,2 is a 2-sound PoK protocol. Hence, we can show
that ΠRes,2 is computational proof of knowledge (PoK) in the QROM by apply-
ing [33, Theorem 25], which proves that a Σ-protocol with t-soundness (for some
constant t) and quantum CUR is a computational proof of knowledge (PoK) in
the QROM.

36 H. Zhang et al.

Finally, the security of Sig[ΠRes,2] can be proven by applying [33, Theo-
rem 22], which says that a Σ-protocol with the PoK property, satisfying non-
abort HVZK with α bits of min-entropy and CUR, is strongly unforgeable under
chosen-message attacks.

E Computational Unique Responses

Definition 6 (Computational Unique Responses [52]). For a Σ-protocol
Π = (Gen, P, Ch, V) with transcripts (a, e, z), for all PPT adversaries A, if it
satisfies that,

Pr

[
V(pk, a, e, z) = V(pk, a, e, z′) = 1

∧z ̸= z′

∣∣∣ (pk, sk)← Gen(κ);

(a, e, z, z′)← A(κ)

]
≤ negl(κ),

then we say that Π has computational unique responses, where negl is a negligible
function.

The proof of the following lemma is based on the same idea of [22, Lemma
6.7] and hence omitted. Here G is the hash function used to generate challenges
modeled as random oracle.

Lemma 1. If the commitment scheme Com and the hash functions H and G
used to implement Sig[ΠRes,2] are binding and collision-resistant, respectively,
then Sig[ΠRes,2] has computation unique responses.

F Compressed one-out-of-N proof for circuits

In this section, we present an improved one-out-of-N proof for circuits by ap-
plying the parallel version of ΠRes,2 described in section 5.3 to the CDS method
[26].

Consider a typical one-out-of-N proof with N statements {xi}i∈[N] of a rela-
tion R, where the prover P proves that he knows the witness w for the relation
ROR defined below.

(x1, . . . , xN ∈ LR;w) ∈ ROR ⇐⇒ ∃t ∈ [N], s.t.(xt, w) ∈ R.

[26] provides a novel method of the above disjunctive proof. Specifically, suppose
there exists a 3-round public-coin HVZKPoK ΠR for relation R. The protocol
ΠOR for relation ROR works as follows. The prover runs the simulator of ΠR for
each statement xi such that i ̸= t to generate the corresponding commitments,
challenges and responses, e.g., {ai, ei, zi}i ̸=t. For statement xt, the prover runs
ΠR to generate the commitment at. Upon receiving the verifier’s challenge e,
the prover sets et = e ⊕ e1 ⊕ · · · ⊕ et−1 ⊕ et+1 ⊕ · · · ⊕ eN and computes the
responses zt. The verifier checks the validity of all transcripts {ai, ei, zi}i∈[N]

and e
?
= e1 ⊕ · · · ⊕ eN .

Resumable ZK for Circuits from Symmetric Key Primitives 37

By applying a parallel version of our ΠRes,2 to the above disjunctive proof for
circuits C, we can get a compressed one-out-of-N proof. In particular, suppose
the N statements are {xi = (C, yi)}i∈[N], where the prover has the knowledge
of witness wt such that C(wt) = yt. The prover runs the CDS protocol using
KKW proof, except the following main modifications.

1. Run the online phase of the MPC protocol for C until it generates the
intermediate masked inputs for C ′.

2. Rerandomize the intermediate masked inputs for each statement. For the
statement that the prover knows the witness, say xt, run the resumable
HVZKPoK ΠRes,2 of C ′. For other N − 1 statements, run the simulator of
the resumable HVZKPoK ΠRes,2 of C ′ in parallel such that the output of
the simulated MPC protocol is the corresponding yi.

More details of our compressed one-out-of-N proof for circuits ΠOR are shown
in Fig 6 and Fig 7.

Remark. We emphasize that the decomposition of C in our compressed
one-out-of-N proof does not need to be extractable, since it has only one ses-
sion and does not require resumable knowledge soundness. Therefore, C can be
decomposed such that the partial circuit C ′ consists of the outputs wires of C
only. In this case, the only way to generate the consistent view with different
yus is to modify the challenged party’s share of the mask for yu. Recall that
the verifier needs to reconstruct the mask of yu, say λ(u), using the shares of

the related masks, say [λ(u)]i, and check that yu
?
= ŷu ⊕ λ(u). Note that, for

u ̸= t, the challenged party, say p(u), is chosen by the prover in advance and the
corresponding share [λ(u)]p(u) is broadcast as the message in step 7 of round 1.

Hence, the prover can generate the consistent transcripts by modifying [λ(u)]p(u)

such that yu = ŷu ⊕ [λ(u)]1 ⊕ · · · ⊕ [λ(u)]n.
Efficiency. Although the complexity of ourΠOR is linear with the number of

statements, the concrete computational and communicational costs of our ΠOR

for N statements can be very efficient when N is small. It is just slightly higher
than that of the KKW protocol for only one statement, since the prover only
needs to run the simulation for the partial circuit C ′ instead of C for all but one
statements.

Theorem 5. Assume that the hash function H is collision-resistant, and the
commitment scheme Com and the pseudorandom generator PRG are secure. Then
the protocol ΠOR is an honest verifier zero-knowledge proof of knowledge.

Proof. Completeness. This property follows directly from the correctness of
the underlying MPC protocol Π.
Honest Verifier Zero-Knowledge. Let SimΠ denote the simulator of the MPC
protocol Π. The description of simulator SimOR for ΠOR is described as follows.

1. Choose random salt and seed∆, and generate seed∆j using seed∆ for each
instance j ∈ [M].

2. Choose uniform C and P = {pj}j∈C as the challenge for the preprocessing
phase and the online phase, respectively.

38 H. Zhang et al.

Parameters: Let κ denote the computational security parameter. Let H : {0, 1}∗ →
{0, 1}2κ be a collision-resistant hash function and Com be a secure commitment scheme.
Let PRG be a secure pseudorandom generator. M,n, τ and N denote the number of
instances, the number of the parties, the number of instances whose preprocessing
phase will not be opened and the number of the statements, respectively.
Inputs: Both the prover and the verifier have N statements (C, y1), (C, y2), . . . , (C, yN)
and C′ as the partial circuit of C. The prover also holds a wt such that C(wt) = yt for
some t ∈ [N].
Round 1: The prover chooses random salt ∈ {0, 1}κ and seed∆ ∈ {0, 1}κ. For each
j ∈ [M], the prover proceeds as follows:

1. Compute seed∆j using seed∆ and choose uniform seed∗j ∈ {0, 1}κ as the seed of
PRG to generate
(seedj,1, rj,1), . . . , (seedj,n, rj,n),

(seed
(1)
j,1 , r

(1)
j,1), . . . , (seed

(1)
j,n, r

(1)
j,n),

...
(seed

(N)
j,1 , r

(N)
j,1), . . . , (seed

(N)
j,n , r

(N)
j,n).

2. Compute auxj,n ∈ {0, 1}|C| as described in the text. For each i ∈ [n − 1], set
statej,i = seedj,i; set statej,n = seedj,n||auxj,n.

3. For each i ∈ [n], compute comj,i = Com(statej,i, rj,i, salt).
4. Simulate the online phase of the MPC protocol for C until it generates the masked

intermediate input for C′, using {statej,i}i∈[n] and {ẑj,α}, where {ẑj,α} denotes
the masked inputs of C. Let msgsj,i denote the messages broadcast by party Pi

during the protocol execution and {ẑj,α,inter} denote the corresponding masked
intermediate value for each input wire α of C′.

5. Use seed∆j to generate {∆(1)
j,α}, . . . , {∆

(N)
j,α } for each input wire α of C′. Then

compute aux
(u)
j,n ∈ {0, 1}|C

′|+|C′
in| for each u ∈ [N] as described in the text. Set

state
(u)
j,n = seed

(u)
j,n ||aux

(u)
j,n and state

(u)
j,i = seed

(u)
j,i for each u ∈ [N] and i ∈ [n− 1].

6. For each u ∈ [N] and i ∈ [n], compute com
(u)
j,i = Com(state

(u)
j,i , r

(u)
j,i , salt).

7. For u = t, simulate the online phase of the MPC protocol for C′ using {state(t)j,i}i∈[n]

and {ẑj,α,inter ⊕ ∆
(t)
j,α}. Let msgs

(t)
j,i denote the messages broadcast by party Pi

during the protocol execution.
For each u ∈ [N] such that u ̸= t, choose a random challenge p

(u)
j and run SimΠ

to simulate the online phase of the MPC protocol for C′ using {state(u)j,i }i ̸=p
(u)
j

and {ẑj,α,inter ⊕∆
(u)
j,α} so that the related views are consistent with yu. Here, the

message broadcast by party Pi during the simulation are denoted as msgs
(u)
j,i , which

are output by SimΠ.
8. Let hj = H(comj,1, . . . , comj,n, com

(1)
j,1 , . . . , com

(1)
j,n, . . . , com

(N)
j,1 , . . . , com

(N)
j,n) and

h′
j = H({ẑj,α}, seed∆j ,msgsj,1, . . . ,msgsj,n,msgs

(1)
j,1 , . . . ,msgs

(1)
j,n, . . . ,msgs

(N)
j,1 , . . . ,

msgs
(N)
j,n , salt).

Compute h = H(h1, . . . , hM), h′ = H(h′
1, . . . , h

′
M) and h∗ = H(h, h′). Send h∗ to

the verifier.

Fig. 6. Compressed one-out-of-N proof for circuits ΠOR (part 1)

Resumable ZK for Circuits from Symmetric Key Primitives 39

Round 2: The verifier chooses a uniform τ -sized set C ⊂ [M] and P = {pj}j∈C , where
each pj ∈ [n] is uniform. Send (C,P) to the prover.
Round 3: The prover’s response includes:

1. salt and seed∆.
2. seed∗j and h′

j , for each j ∈ [M]\C.
3. {statej,i, rj,i}i ̸=pj , msgsj,pj , comj,pj , {ẑj,α} and Pj = {p(u)j }u∈[N], for each j ∈ C,

where p
(t)
j = pj ⊕ p

(1)
j ⊕ · · · ⊕ p

(t−1)
j ⊕ p

(t+1)
j ⊕ · · · ⊕ p

(N)
j .

4. {state(u)j,i , r
(u)
j,i }i̸=p

(u)
j

, msgs
(u)

j,p
(u)
j

and com
(u)

j,p
(u)
j

, for each j ∈ C and u ∈ [N].

Verification: The verifier accepts iff all the following checks are satisfied.

1. For each j ∈ [M], compute seed∆j using seed∆.
2. For each j ∈ C,

i. Check that pj = p
(1)
j ⊕ · · · ⊕ p

(N)
j .

ii. Use {statej,i, rj,i}i ̸=pj and salt to compute {comj,i}i̸=pj .

iii. For each u ∈ [N], use {state(u)j,i , r
(u)
j,i }i ̸=p

(u)
j

and salt to compute {com(u)
j,i }i ̸=p

(u)
j

.

Then compute hj = H(comj,1, . . . , comj,n, com
(1)
j,1 , . . . , com

(1)
j,n, . . . , com

(N)
j,1 , . . . ,

com
(N)
j,n).

3. For each j ∈ [M]\C, use seed∗j , seed
∆
j and salt to compute hj as an honest prover

would. Then compute h = H(h1, . . . , hM).
4. For each j ∈ C,

i. Using {statej,i, rj,i}i̸=pj , {ẑj,α} and msgsj,pj , simulate the online phase of the

MPC protocol for C until it generates the intermediate masked-inputs for C′.
This yields {msgsj,i}i̸=pj and the intermediate masked-inputs {ẑj,α,inter}.

ii. For each u ∈ [N], simulate the online phase of the MPC protocol for

C′ using {state(u)j,i , r
(u)
j,i }i̸=p

(u)
j

, the rerandomized intermediate masked in-

puts {ẑj,α,inter ⊕ ∆
(u)
j,α} and msgs

(u)

j,p
(u)
j

. This yields {msgs
(u)
j,i }i̸=p

(u)
j

and

the reconstruction of y′
u. Check that yu

?
= y′

u and computes h′
j =

H({ẑj,α}, seed∆j ,msgsj,1, . . . ,msgsj,n,msgs
(1)
j,1 , . . . ,msgs

(1)
j,n, . . . ,msgs

(N)
j,1 , . . . ,

msgs
(N)
j,n , salt).

Compute h′ = H(h′
1, . . . , h

′
M).

5. Check that H(h, h′)
?
= h∗.

Fig. 7. Compressed one-out-of-N proof for circuits ΠOR (part 2)

40 H. Zhang et al.

3. For each instance j not in C, choose uniform seed∗j and generate seed∆j using
seed∆. Then, generate hj as an honest prover would and compute h′

j as a
hash value to a random string.

4. For each instance j in C, run SimΠ to simulate the views of n parties in the
execution of the MPC protocol Π for C until it can generate the masked
intermediate inputs for C ′. This yields {statej,i}i ̸=pj

, masked-input {ẑj,α}
for C ′, msgsj,pj

and corresponding intermediate masked-input {ẑj,α,inter}.
Compute comj,i for i ̸= pj as an honest prover and compute comj,pj as a
commitment to a 0-string.

5. For each instance j in C, choose uniform {p(u)j }u ̸=t and compute p
(t)
j =

pj ⊕ p
(1)
j ⊕ · · · ⊕ p

(t−1)
j ⊕ p

(t+1)
j ⊕ · · · ⊕ p

(N)
j .

6. For each instance j in C, run SimΠ to simulate the views of n parties in
the execution of the MPC protocol Π for C ′ with the rerandomized masked

inputs {ẑj,α,inter⊕∆(u)
j,α} (where ∆

(u)
j,α is generated by seed∆j) for each u ∈ [N],

which yields {state(u)j,i }i ̸=p
(u)
j

and msgs
(u)

j,p
(u)
j

. Choose random r
(u)
j,i to compute

com
(u)
j,i for i ̸= p

(u)
j and compute com

(u)

j,p
(u)
j

as a commitment to a 0-string.

Then compute hj and h′
j as an honest prover would.

7. Compute h∗ as an honest prover would and output the simulated transcripts,
which includes:
• h∗, salt, seed∆, C, P;
• For each j ∈ [M]\C, seed∗j , h′

j ;
• For each j ∈ C, {statej,i, rj,i},msgsj,pj

, comj,pj
, {ẑj,α}, Pj .

• For each j ∈ C, u ∈ [N], {state(u)j,i , r
(u)
j,i }i ̸=p

(u)
j

,msgs
(u)

j,p
(u)
j

, com
(u)

j,p
(u)
j

.

Following a standard hybrid argument, the transcripts generated by SimOR are
computationally indistinguishable from that of a real protocol, where the in-
distinguishability relies on the indistinguishability of the simulated transcripts
generated by SimΠ and the hiding property of the commitment scheme.
Knowledge Soundness. We need to show that there exists a witness extractor
EOR which can extract a valid witness if the success probability higher than the

soundness error. Since {p(u)j }u̸=t is chosen by the prover and p
(t)
j is computed by

p
(t)
j = pj⊕p(1)j ⊕· · ·⊕p

(t−1)
j ⊕p(t+1)

j ⊕· · ·⊕p(N)
j where pj is chosen by the verifier, a

malicious prover who succeeds in cheating in the preprocessing phase or guessing
the challenge of the online phase of the MPC protocol for C ′ is able to convince
the verifier to accept the proof. Thus, the soundness error ξOR(M,n, τ) of ΠOR is
the same as ξ1(M,n, τ) of ΠRes,1. Similarly, using the method of Theorem 2, we
can prove that if the success probability δOR(x) > ξOR(M,n, τ), there exists a
witness extractor EOR which can extract a valid witness in the expected number
of steps bounded by O(1

δOR(x)−ξOR(M,n,τ)).

G Ring Signature from Symmetric-Key Primitives

A ring signature scheme [56] allows a member of an ad-hoc group (or ring) to sign
a message on behalf of the group anonymously. It is known that the 1-out-of-N

Resumable ZK for Circuits from Symmetric Key Primitives 41

proofs [26] together with the Fiat-Shamir heuristic provides a straightforward
construction of ring signatures [5]. In particular, the prover proves that he knows
the secret key sk of some public key in the ring. So the relation ROR is defined
as

(pk1, . . . , pkN ∈ LR; sk) ∈ ROR ⇐⇒ ∃t ∈ [N], s.t.(pkt, sk) ∈ R,

where (pkt, sk) ∈ R is defined by pkt = F (sk) for a one-way function F . One
drawback of such construction is the size of the resulting ring signature is linear
with the size of the ring. To reduce the signature size, the Merkle-tree based
accumulator is applied to the disjunctive proof [31], which results in logarithm-
size ring signatures. To the best of our knowledge, all the efficient constructions
of ring signatures from symmetric-key primitives rely on the Merkle-tree based
accumulator [51,28,15].

We find that, by replacing the 1-out-of-N proofs [26] with our compressed
1-out-of-N proofs in the straightforward construction, the resulting ring signa-
ture (without using accumulator) can achieve better concrete efficiency than
that of the state-of-the-art construction [51] when the size of the ring is small.
More precisely, the cost of our ring signature is comparable with that of one
KKW signature [51] plus the following overheads: {seed∆; Pj , for each j ∈ C;
{state(u)j,i , r

(u)
j,i }i̸=p

(u)
j

, msgs
(u)

j,p
(u)
j

and com
(u)

j,p
(u)
j

, for each j ∈ C and u ∈ [N]}. The
aforementioned overheads have the communication complexity at most

κ+ τ · (N · logn+N · (κ · logn+ |C ′|+ |C ′
in|)+N · 2κ+(N − 1) · (|C ′|+ |C ′

out|)).

Note that |C ′| can be 0, since C ′ can consist of the the output wires of C only
as explained in Appendix F.

	Resumable Zero-Knowledge for Circuits from Symmetric Key Primitives
	Introduction
	Our Contributions
	Main Techniques
	Related Works

	Preliminaries
	MPC-in-the-head with preprocessing

	Resumable HVZK Proof of Knowledge
	General Construction for Resumable HVZKPoK
	KKW Protocol for F
	Intuitive Construction for Resumable HVZKPoK
	Modified KKW for f and Consistency Proof

	Resumable HVZKPoK from KKW
	Resumable HVZKPoK for Initial Session Res, 1
	Resumable HVZKPoK for Second Session Res, 2
	Security
	3-Round Resumable HVZKPoK

	Resumable-Picnic
	Experimental Results and Comparison
	Compressed 1-out-of-N Proof and Ring Signatures
	Proof of Theorem 1
	Concrete Construction of 3-Round Resumable HVZKPoK
	Stateful Signature Scheme
	Construction of Resumable-Picnic

	 Proof of Sketch for Theorem 4
	Computational Unique Responses
	Compressed one-out-of-N proof for circuits
	Ring Signature from Symmetric-Key Primitives

