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Abstract12

Pseudorandom number generators with input (PRNGs) are cryptographic algorithms that generate13

pseudorandom bits from accumulated entropic inputs (e.g., keystrokes, interrupt timings, etc.). This14

paper studies in particular PRNGs that are secure against premature next attacks (Kelsey et al.,15

FSE ’98), a class of attacks leveraging the fact that a PRNG may produce an output (which could16

be seen by an adversary!) before enough entropy has been accumulated. Practical designs adopt17

either unsound entropy-estimation methods to prevent such attacks (as in Linux’s /dev/random) or18

sophisticated pool-based approaches as in Yarrow (MacOS/FreeBSD) and Fortuna (Windows).19

The only prior theoretical study of premature next attacks (Dodis et al., Algorithmica ’17)20

considers either a seeded setting or assumes constant entropy rate, and thus falls short of providing21

and validating practical designs. Assuming the availability of random seed is particularly problematic,22

first because this requires us to somehow generate a random seed without using our PRNG, but23

also because we must ensure that the entropy inputs to the PRNG remain independent of the seed.24

Indeed, all practical designs are seedless. However, prior works on seedless PRNGs (Coretti et al.,25

CRYPTO ’19; Dodis et al., ITC ’21, CRYPTO’21) do not consider premature next attacks.26

The main goal of this paper is to investigate the feasibility of theoretically sound seedless PRNGs27

that are secure against premature next attacks. To this end, we make the following contributions:28

1. We prove that it is impossible to achieve seedless PRNGs that are secure against premature-next29

attacks, even in a rather weak model. Namely, the impossibility holds even when the entropic30

inputs to the PRNG are independent. In particular, our impossibility result holds in settings31

where seedless PRNGs are otherwise possible.32

2. Given the above impossibility result, we investigate whether existing seedless pool-based ap-33

proaches meant to overcome premature next attacks in practical designs provide meaningful34

guarantees in certain settings. Specifically, we show the following.35

We introduce a natural condition on the entropic input and prove that it implies security of36

the round-robin entropy accumulation PRNG used by Windows 10, called Fortuna. Intuitively,37

our condition requires the input entropy “not to vary too wildly” within a given round-robin38

round.39

We prove that the “root pool” approach (also used in Windows 10) is secure for general40

entropy inputs, provided that the system’s state is not compromised after system startup.41
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1 Introduction52

Pseudo-random number generators (PRNGs) are one of the most critical building blocks of53

secure systems. In particular, no meaningful cryptography is achievable without (pseudo)54

randomness. In practice, PRNGs’ main functionality is to accumulate entropy (modeled55

by the function refresh in the syntax) into one or more pools from several sources (such as56

keystrokes, interrupt timings, etc.), and to then extract “clean” pseudorandom bits from these57

pools (modeled by the function next). In other words, refresh calls is used to accumulate58

entropy into the state of the PRNG while next is used to produce outputs from this PRNG59

state. While doing this, PRNGs must resist powerful attacks. On the one hand, the available60

entropy sources (i.e., the input to the PRNG) may be partially controlled by the adversary61

interacting with the system. On the other hand, the state of the PRNG may be compromised,62

and we want to protect both prior uses of the PRNG (i.e., we want forward security), as well63

as allow for recovery from such compromise. PRNGs, in particular, differ from “traditional”64

pseudorandom generators, which instead already assume a fully entropic input.65

Several practical PRNG designs have been proposed, including those in operating systems66

such as /dev/random [20] for Linux, Yarrow [15] for MacOS/iOS/FreeBSD, and Fortuna [10]67

for Windows, and in standards like NIST’s SP 800-90A [2]. Designing secure PRNGs remains68

however a complex task, and several flaws have been identified in existing designs (cf. e.g.69

[19, 21]).70

Seedless PRNGs. One could hope that the best way forward is to develop provably71

secure PRNGs, following a line of work initiated by Barak and Halevi [1]. Yet, theoretical72

validation presents several technical challenges. In particular, we want such PRNGs to be73

general, in that they achieve security under the minimal assumption that the available sources74

have sufficient entropy. To address this, much of the prior work has considered a seeded75

setting, first proposed by Dodis et al. [7]. Here, the PRNG can rely on a random seed which76

is independent from the accumulated entropy (but known to the attacker), an approach77

inherited from the necessity of seed for extraction from general entropy sources [17]. Such78

a seeded approach was taken by several subsequent works [7, 8, 19, 11, 14, 12]. This seed79

serves as an input to both refresh and next.80

However, the seeded setting is not necessarily practical. Indeed, since our end goal is that81

of generating randomness in the first place, one may question where a uniformly random82

and independent seed would come from! Moreover, and perhaps even more importantly, it83

is unreasonable to expect our input sources to be truly independent of the seed. (E.g., our84

future keystrokes can certainly depend on the prior output of our PRNG, which depends on85

the seed.) Unsurprisingly, all practical designs are seedless.86

This issue has motivated recent work studying different ways in which the impossibility87

of deterministic extraction can be circumvented without the need for seed. Coretti et al. [4]88

consider constructions based on cryptographic hash functions modeled as random oracles89

and introduced corresponding meaningful notions of entropy in this setting. The formal90

definition is presented as Definition 1. Subsequent works by Dodis et al. [6, 5] consider the91

https://doi.org/10.4230/LIPIcs.ITC.2022.9


S. Coretti and Y. Dodis and H. Karthikeyan and N. Stephens-Davidowitz and S. Tessaro 9:3

simple case in which the inputs are independent and without assuming ideal primitives.92

This paper: Seedless PRNGs & Premature-next attacks. All prior theoretical work93

on seedless PRNGs relied heavily on the assumption that the PRNG is allowed sufficient94

time to accumulate entropy before having to provide any output, i.e., they do not handle95

so-called premature-next attacks [16]. In such an attack, the adversary requests output from96

the PRNG before it has accumulated enough entropy to guarantee security. Much prior97

work (including all prior work in the seedless setting) simply assumes that all accumulated98

entropy is lost upon such a premature-next call. With such a definition, a PRNG might fail99

to produce a single pseudorandom bit, regardless of how much entropy is provided!100

Linux’s /dev/random [20] attempts to overcome premature-next attacks by blocking the101

RNG as long as insufficient entropy has been accumulated, but this approach cannot be102

theoretically sound, as estimating entropy is impossible [18, 10]. Indeed, a concrete way103

to fool /dev/random’s entropy estimation was given in [7]. In contrast, Yarrow [15] and104

Fortuna [10] propose a clever solution to the problem. Abstractly, these constructions have105

a register as well as many pools. Only the register is used to provide output. Each time106

these PRNGs receive some input, they “add it to one pool” selected in a round-robin fashion.107

Then, at different rates, each pool is used to occasionally update the register. We call this108

“emptying the pool.” Intuitively, while a premature-next call might completely leak the input109

to any pools that have been emptied recently, it will not reveal any information about inputs110

to pools that have not been emptied since they received this input.111

A generalization of this pool-based approach was analyzed formally by Dodis et al. [8].112

However, their analysis either assumes seeds (thus departing from the deterministic approach113

taken by Yarrow/Fortuna) or requires that the entropy rate is constant—i.e., that all inputs114

have the same (unknown, adversarially chosen) entropy. Both situations are undesirable, and115

in this paper, we aim to make progress on the following general question:116

Can we have seedless PRNG designs which provably resist (in some meaningful way)117

premature-next attacks?118

1.1 Our Results119

Impossibility of seedless PRNGs. We first address the feasibility question of whether120

seedless PRNGs can, in principle, be secure against premature-next attacks. We would like121

in particular to assess whether recent positive results on seedless PRNGs, [4, 6, 5] can be122

extended to resist premature-next attacks.123

Notice that, if the attacker can choose to vary the entropy of the inputs, then no124

“deterministic pool-based approach” can work. (As in [8], we formalize this below using the125

notion of a scheduler.) In particular, if we require γ bits of entropy to go into a single pool126

in order to recover from compromise and the attacker knows when pools will be filled and127

emptied, then the attacker can simply provide a bit less than γ bits to each pool before128

it is emptied. (This intuition is formalized in [8].) However, one can imagine much more129

complicated constructions. E.g., we might choose which pool to fill or empty based on the130

(entropic) input (perhaps even with some attempt at entropy estimation like /dev/random),131

or we might not use a pool-based approach at all.132

Surprisingly, we show that no seedless PRNG can resist premature next attacks, even133

if the inputs are sampled independently. In particular, as deterministic extraction without134

the seed is possible for independent inputs [3], our impossibility is inherently due to the135

premature next problem. In more detail, following [8], we parameterize security by two values,136

γ∗, and β. The goal is to guarantee that if the PRNG has obtained γ∗ bits of min-entropy137

ITC 2022



9:4 On Seedless PRNGs and Premature Next

within T ∗ steps after the last state compromise, then the PRNG will revert to producing138

pseudorandom bits within βT ∗ steps after the same state compromise. We prove that for any139

choice of γ∗, β, there exists an efficient adversary providing q ≥ γ∗2β2 PRNG inputs (each140

with one independent bit of entropy) which violate the PRNG security against premature141

next attacks. Since q is typically huge, this rules out any reasonable settings of γ∗ and β.142

In addition to being interesting in its own right, this shows a natural setting where143

meaningful PRNG security (e.g., entropy accumulation and extraction) is possible without144

premature-next attacks, but impossible with them.145

Toward Positive Results. The above strong impossibility result, including the “separa-146

tion” between randomness accumulation/extraction and premature-next security, motivates147

us to search for positive results even (optimistically) assuming perfect entropy accumulation148

and extraction. In fact, we already have two widely used solutions that appear to work in149

practice. First, we already mentioned the round-robin pool-based approach, called Fortuna,150

which is part of Windows 10 and macOS. Second, Windows 10 [9] uses a special “root151

pool” to solve the problem of initial entropy accumulation when the computer starts up.152

This single pool is emptied at exponentially increasing intervals (e.g., at time 1, β, β2, ...)153

to (heuristically) solve the problem that sometimes the computer might boot with no good154

source of randomness for an unknown period of time. Intuitively, if good entropy starts to155

come in at (unknown) time t, the root pool will allow the PRNG to produce good random156

bits by time at most βt. While this simple approach does not work when one is worried157

about state compromise at an unknown time (and this is why more than 1 pool is used for158

general purpose PRNGs like Fortuna), it appears quite effective for accumulating entropy at159

startup.160

Given the existence of these two heuristics to accumulate entropy within pools, we ask161

whether we can find natural conditions where these approaches provably work, despite our162

strong impossibility result above. To make this question formal, we define a clean model of163

seedless (pool-based) schedulers, extending the corresponding notion of schedulers [8] to the164

seedless setting. Intuitively, if we have k pools, given each entropic sample Xi, the scheduler165

decides which pool ini ∈ [k] will accumulate this entropy, and, which pool outi ∈ [k] (if166

any) will contribute its accumulated entropy back to the register. Moreover, to model ideal167

entropy accumulation and extraction, we assume that the entropy that was thrown to pool i168

simply adds up without loss.169

In fact, at this level of abstraction, we can completely forget about entropy and PRNGs170

and simply consider an abstract notion of a scheduler, whose goal is to distribute a sequence171

of weights w1, . . . , wq ∈ [0, 1] into pools, sometimes emptying one of the pools with the172

following guarantee. If there are t consecutive weights wt0+1, . . . , wt0+t whose sum is larger173

than some threshold α, then there should be a pool that accumulates at least weight 1174

in this same time period (without being emptied) and is emptied shortly thereafter, say175

before time step t0 + βt. We call this (α, β)-security. Here, a pool accumulating weight 1176

in this abstract scheduler game corresponds to a pool accumulating sufficient entropy in a177

pool-based PRNG. [8] proved formally that a secure scheduler can be used to convert PRNGs178

that are secure in a model that does not allow for premature-next attacks (used for the179

individual entropy pools) into a PRNG that is secure in a model with premature-next attacks.180

In particular, given an (α, β)-secure scheduler together with a PRNG that recovers from181

compromise after receiving γ bits of entropy without allowing for premature-next attacks, we182

can construct a PRNG that recovers from compromise even in the presence of premature183

next in time βt, where t is the time needed to receive αγ bits of entropy.184

Because of our general impossibility result above, we cannot achieve general (α, β)-security.185
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(We also give direct proof of this fact in the setting of schedulers below.) We then show two186

positive results yielding proven security guarantees for the two schedulers used in the real187

world, by giving meaningful restrictions to the model.188

First, we show that the root-pool approach achieves nearly optimal (α, β)-security to189

accumulate entropy at start-up, where α ≈ logβ q (and we can take any integer β ≥ 2).190

Plugging in known constructions yields a PRNG in the root-pool model (i.e., in which we191

assume that compromise only happens at time 0) that is exponentially better than our192

general-scheduler lower bound stating αβ ≥ √q.193

Second, we show that the round-robin Fortuna construction with k ≥ logβ q pools achieves194

(α, β)-security with α ≈ logβ q, provided one uses a more conservative notion of entropy195

called k-smooth entropy.1 For constant-rate entropy sources, this notion of entropy is196

identical to the traditional min-entropy, and our result indeed generalizes the earlier197

observation of [8] regarding constant-rate sources. More generally, our notion of k-smooth198

entropy essentially captures the idea that wildly fluctuating entropy should be penalized,199

which we believe is a practically relevant idea (and in particular seems to be behind200

the heuristics used in practice). In other words, despite simple attacks on the Fortuna201

scheduler in the unrestricted setting, we found a natural condition where this scheduler202

works.203

We stress that our scheduler results only solve the premature next problem assuming ideal204

entropy accumulation and extraction, but we hope future work will extend them to full-blown205

PRNGs, which provably overcome our negative results under similar restrictions.206

2 Preliminaries207

We write N := {0, 1, 2, . . .} for the set of natural numbers and for positive integers k ≥ 1, we208

write [k] := {0, . . . , k − 1} for the natural numbers up to k − 1. When a value x is sampled209

uniformly from a distribution X, we will denote it by x ← X. By Un, we will denote a210

uniform distribution over bit strings of length n.211

We consider PPT adversaries, in some security parameter λ. All our variables in our212

security definitions will depend on this security parameter.213

Min-Entropy. The prediction probability of a random variable X is Pred(X) := maxx P[X = x]214

and the min-entropy is H∞(X) = − log(Pred(X)).215

Security Games. All of the security properties considered in this paper are captured by216

considering a game between a challenger and an attacker A, both of which may have access217

to an ideal primitive P . The goal of the attacker is to guess a random bit b chosen by the218

challenger, who offers a set of oracles to the attacker to aid with this task. The advantage of219

A is defined as220

2 ·
∣∣ P[A wins]− 1/2

∣∣ ,221

where the probability is over the randomness of A, of the challenger, and of the ideal222

primitive. The cases where b = 0 and b = 1 are referred to as the real world and the ideal223

world, respectively. One may equivalently consider A’s advantage at telling these two worlds224

1We have a general bound for all k, including a constant number of pools, where α = O(k) and
β = O(q1/k).
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9:6 On Seedless PRNGs and Premature Next

apart, i.e.,225 ∣∣ P[A = 1|b = 0]− P[A = 1|b = 1]
∣∣ .226

3 Impossibility of “Premature Next” Seedless PRNGs227

This section considers the security of seedless PRNGs against premature next attacks [16].228

The idea behind such an attack is that next—the algorithm extracting pseudorandom bits229

from the PRNG state—is called before the state has accumulated sufficient entropy. The230

resulting output will therefore not be fully random, and an adversary can potentially use the231

output of many such calls to recover the state. The notion of robustness against premature-232

next attacks was formalized by Dodis et al. [8]. Their work generalized and analyzed a233

key technique to mitigate such attacks that originated in the designs of the Yarrow [15]234

and Fortuna [10] PRNGs. Roughly, the key idea is that the entropic inputs to the PRNG235

are carefully distributed to several “smaller” PRNGs, which we refer to as pools, and, with236

different frequencies, these pools are used to randomize a register from which random bits237

are extracted. (We formalize this approach in detail below.) While both Yarrow and Fortuna238

use deterministic scheduling strategies to assign entropic inputs to a pool and to decide when239

each pool contributes to the register, the provable robustness against premature-next attacks240

is achieved in [8] by relying on a random seed (independent from the inputs) to ensure that241

the entropy received from the adversary is roughly evenly distributed among the pools.242

It is not hard to see that the fixed pool assignment schedule adopted by Yarrow/Fortuna243

cannot be robust against premature next attacks without extreme restrictions on the ad-244

versaries (e.g., the constant rate restriction). However, other seedless strategies are possible245

(e.g., one could assign entropic inputs to pools chosen depending on the inputs themselves,246

or some previous inputs; or one might try to divide each input up into smaller pieces in some247

way; or one might not use pools at all), and the larger question remains on the feasibility of a248

seedless PRNG which is robust, even with premature next calls. One of course should exercise249

some care, a fully secure deterministic PRNG cannot exist (regardless of premature-next250

attacks) for the same reasons deterministic extraction is impossible. So, we must make some251

restrictions on the input distributions provided by the adversary. For this reason, in the252

following, we will focus on the case of independent inputs, for which deterministic extraction253

is–in principle–possible.254

Even in this setting, the main result of this section is an impossibility result. (So, the255

fact that we restrict our attention to independent inputs simply makes our result stronger.)256

Specifically, we show that it is impossible to have such a seedless PRNG which is robust257

against premature next attacks, even in a setting where the entropic inputs are independent.258

Before we present our result, which is stated below as Theorem 5, we introduce some259

more syntax and definitions.260

3.1 Pseudorandom Number Generators with Input261

In this section, we will briefly recall the syntax of this primitive. We will use the seedless262

definition for this paper. We refer the readers to the work of Coretti et al. [4] for a detailed263

exposition.264

Syntax. A PRNG is a stateful cryptographic primitive that accumulates entropy by265

absorbing inputs which it then uses to produce pseudorandom bits when the entropy of its266

state is high. A PRNG consists of two algorithms as defined below:267
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▶ Definition 1 (Syntax of PRNGs). A pseudorandom number generator with input (PRNG)268

is a pair of algorithms PRNG = (refresh, next) sharing a µ-bit state s, where269

refresh takes a state s and an input x ∈ {0, 1}m and produces a new state s′ = refresh(s, x),270

and271

next takes a state s and produces a new state and an output y ∈ {0, 1}r, i.e, (s′, y) =272

next(s).273

A PRNG processing m-bit inputs and producing r-bit output is called a (m, r)-PRNG.274

For our impossibility result, we will focus on (1, 1)-PRNG. This is without loss of generality,275

as we could always buffer m such entropic inputs before applying a “bigger” refresh call on276

m such bits, and impossibility for 1 output bit implies that for r ≥ 1 output bits.277

Security. The work of Coretti et al. [4] dealt with robustness security game, without278

support for Premature Next (ROB). For purposes of this paper, we will focus on robustness279

security with Premature Next (NROB), as defined in Figure 1. While we adapt the original280

definition from [8] to the seedless setting, we note that we present a highly simplified281

security game that is enough to provide for our impossibility result. (We also leave out some282

functionality that is not necessary for the attacker in our impossibility result, which again283

simply makes our impossibility result much stronger.)284

Most significantly, we assume that all of the samples provided by the attacker are285

independent from each other (which makes out impossibility much result stronger). Formally,286

attacker outputs a distribution Xi for the next entropic sample, and the security game287

independently samples a concrete value xi ← Xi from this distribution, without giving any288

side information back to the attacker. This allows for much simpler accounting for entropy,289

— by simply adding individual entropy of samples Xi produced by the attacker, — without290

worrying about (quite subtle) conditional entropy of such samples.291

In more detail, NROB game allows adversary A, whose state is represented by the variable292

σ, to access the following oracles:293

get-next allows the attacker to get pseudorandom outputs by calling the next procedure294

on the current state and returning the output y.295

next-ror creates a challenge, i.e., if b = 1, it outputs a uniform random value y1 ∈ {0, 1}296

instead of the PRNG output y0. Here, the PRNG output is second part of the output of297

next procedure.298

get-state models state compromises by revealing the value of the state of the adversary.299

▶ Definition 2 (Definition of an Attacker). An attacker A is called a (q, τ)-attacker if it300

provides at most q input distributions for refresh and runs in time at most τ .301

For security, the game keeps track of the entropy counter c which counts the entropy302

the attacker injected into the system since the latest compromise. When c reaches a critical303

value γ∗, we would like our PRNG to recover. However, instead of demanding immediate304

recovery (like in the simpler robustness game ROB discussed in Section A), we allow a factor305

of β gap. Concretely, if entropy γ∗ took T ∗ steps to accumulate, we demand recovery by306

time T ≤ βT ∗.307

▶ Definition 3. The advantage of a (q, τ)-attacker A in the NROB(γ∗, β, q) game is denoted
by AdvNROB

PRNG (A). Further, we say that PRNG is (γ∗, β, q, ϵ, τ)-secure if for any (q, τ)-attacker
A,

AdvNROB
PRNG (A) ≤ ϵ

ITC 2022



9:8 On Seedless PRNGs and Premature Next

Game The PRNG Robustness∗ Game

NROB

σ = ⊥; s = 0; c = 0
b← {0, 1}; corrupt = true
T = 0; T ∗ = 0
for i = 1, . . . , q do

(σ, Xi)← Aget−next,get−state,next−ror(σ)
xi ← Xi

s = refresh(s, xi)
c = c + H∞(Xi)
T = T + 1
if c ≥ γ∗ then

if T ∗ = 0 then
T ∗ = T

if T ≥ βT ∗ then
corrupt = false

b′ ← A(σ)

get− next

(s, y) = next(s)
return y

next− ror

(s, y0) = next(s)
y1 ← {0, 1}r

if corrupt = true then
return y0

return yb

get− state

c = 0 ; corrupt = true
T = 0; T ∗ = 0
return s

Figure 1 The Robustness Game with Premature Next Calls NROB(γ∗, β, q). This is in contrast
to the Robustness Game without Premature Next Calls which is presented in Figure 5.

We refer the readers to the works of Dodis et al. [8] and Coretti et al. [4] for discussions308

on different security models. For comparison, though, we provide the formal definition of309

the simpler ROB notion in Section A. The critical difference between ROB and NROB is310

that the former resets the entropy counter c = 0, if an adversary invokes get− next when311

corrupt = true. Additionally, ROB implicitly sets β = 1, meaning immediate recovery when312

enough entropy enters the system after the compromise (or any premature next call).313

3.2 Impossibility Result314

The idea of our attack is that the adversary provides bit inputs such that every n inputs has315

one bit of entropy. Further, the premature next call will reveal information about this bit.316

We will prove the result through a series of lemmas. As mentioned before, we will assume317

that the inputs and the outputs are merely bits.318

In the remainder of this section, we will work with a function fPRNG : {0, 1}µ × {0, 1}n →319

{0, 1}, for PRNG = (refresh, next). This function fPRNG(s, x) represents the application of n320

iterated refresh calls, starting from an initial state s with input x1, . . . , xn ∈ {0, 1}, before321

finally applying next to produce an output bit y, or more formally:322

fPRNG(s, x1|| . . . ||xn):
for i = 1 to n

s = refresh(s, xi)
(s, y) = next(s)
return y

323

This is equivalent to applying one “big-refresh” before one next, as indicated before. Further,324

we write x−i for x1|| . . . ||xi−1||xi+1|| . . . ||xn, i.e., the binary string x, except for the i-325

th bit. Then, we can define x−i,χ to be the string where the i-th bit is set to χ, i.e.326

x−i,χ := x1, . . . , xi−1, χ, xi+1, . . . , xn. For any function g and any i, we abuse notation and327

write g(x−i,χ) as a shorthand for g(x1|| . . . ||xn) where i-th bit is χ. We will also use X to328

denote the random variable corresponding to x1|| . . . ||xn and use X−i to denote the random329

variable corresponding to x−i.330
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▶ Lemma 4. There exists a randomized O(n2) algorithm Findg with oracle access to any331

function g : {0, 1}n → {0, 1}, such that with probability at least 1 − 2−n (over the coins332

Findg), Findg outputs (i, z) which satisfies precisely one of the following two (disjoint)333

properties:334

i = 0, z ∈ {0, 1}, and P[g(Un) = z] ≥ 0.6.335

1 ≤ i ≤ n, z ∈ {0, 1}n−1 and g(x−i,0) ̸= g(x−i,1) where x−i = z.336

(In other words, Findg either discovers that g(Un) is biased, or it identifies two n-bit strings337

that differ in a single bit such that g returns different values on these two strings.)338

Proof. The algorithm Findg is defined in Figure 2. The Findg’s output satisfies case 2339

unless , after n2 tries, the algorithm fails to find a value in the first loop. Further, in the340

second loop, the algorithm merely outputs the majority element.341

Analysis of First for Loop. Let us look at trying to determine i, z such that it satisfies342

the second property. To this end, we will rely on results from graph theory. Specifically, we343

will use the edge isoperimetric inequality for a Hypercube graph [13, §4], which we recall (in344

our context) below.345

For our setting, we have a Hypercube graph Qn = (V, E) where each vertex corresponds346

to a binary vector of length n, i.e., |V | = 2n. Further E is the set of all edges that connects347

(u, v) if the Hamming distance between u and v is exactly 1. This gives us that: |E| = n·2n−1.348

Now, we are interested in edges between a vertex u and v if g(u) ̸= g(v). Now, for any set S349

of size k ≤ 2n−1, the number of “cut” edges C from the set to its compliment is bounded by350

the isoperimetric inequality [13, §4.2.1] as follows:351

C ≥ k · (n− log2 k) ≥ k352

However, now we need to determine how many u ∈ V exists such that g(u) = 0 (or 1). If,353

0.4 ≤ E[g(Un)] ≤ 0.6, then we know that there exists 0.4 · 2n vectors u with g(u) = 0 and a354

similar number for g(u) = 1.355

Therefore, the probability of choosing the desired edge is at least:356

k

n · 2n−1 ≥
0.4 · 2n

n · 2n−1 = 0.8
n

357

In other words, the probability that a randomly chosen edge is the desired edge occurs with358

probability p ≥ 0.8/n. Therefore, one can simply pick an edge e ∈ E, uniformly at random,359

and then test to see if it is the desired edge. Now, if one were to do n2 such tests, we get:360

P[g(x−i,0) ̸= g(x−i,1)] > 1− 2−n
361

This math follows from the fact that the probability of failure of algorithm is:362 (
1− 0.8

n

)n2

≤ e−0.8n < 2−n
363

Note that this result only follows if 0.4 ≤ E[g(Un)] ≤ 0.6.364

Analysis of Second for Loop. However, if E[g(Un)] < 0.4 or E[g(Un)] > 0.6, then we365

know that the distribution, is biased either in favor of 0 or 1. If it is biased in favor of 1 (i.e.,366

E[g(Un)] > 0.6), then we know that > 0.6 · 2n inputs x will evaluated to 1 or < 0.4 · 2n. In367

other words, the probability of success p > 0.6. Therefore, one can apply Chernoff bounds,368

to get that P[g(Un) = z] ≥ 0.6 with probability 1− 2−n.369
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Algorithm Findg

for i = 1 to n2:
Pick an edge (u, v) ∈ E, uniformly at random.
Use oracle access to g to compute g(u) and g(v).
if g(u) ̸= g(v) then

Find i such that ui ̸= vi.
By definition, there exists a unique i that satisfies this condition.
return (i, u−i)
break

for i = 1 to 120 · n:
count = 0
Sample x← {0, 1}n

Compute count = count + g(x)
if count > n/2 then z = 1
else z = 0
return (0, z)

Figure 2 Description of Findg.

The correctness of Findg follows from our earlier discussion. It is easy to see that Findg
370

runs in time O(n2) as the lines inside the first for loop take constant time if one were to371

sample the edge by picking i and x−i. ◀ ◀372

▶ Theorem 5. There is no (γ∗, β, q, 0.1, τ)-secure PRNG for γ∗β <
√

q and τ ≥ Ω((tnext +373

trefresh) · n3) where n = γ∗ · β and tnext and trefresh are the time required to compute next and374

refresh respectively.375

Proof. We will use the Findg algorithm defined in Lemma 4 to create an adversary A376

that wins the NROB(γ∗, β) security game. The pseudocode for the adversary is provided in377

Figure 3. Here, the definition of the function g is as follows: g(x) = f(s, x1|| . . . ||xn) where s378

is the current state s and n = γ∗ · β. A is aware of the very first state s. The attacker then379

runs Findg on this function g and receives (i, z) as output. Now, we have two cases:380

i = 0. Recall that i = 0 implies that g(Un) is biased towards the value z. Therefore, A381

simply invokes get− state first. This is done not to retrieve the state, but rather to382

reset the counters of T and T ∗. Now, A uses the biased nature of g on Un to provide383

uniform bit n = γ∗β times. At the end of this process, we have T ∗ = γ∗β and the attacker384

is required to break the scheme within another β steps. After the n inputs, A invokes385

next− ror to receive its challenge response. If this challenge response is equal to z, then386

we know that b = 0, indicating it is the real distribution and not the random distribution.387

i ̸= 0. Recall that i ̸= 0 implies that there exists two n-bit strings that differ in one bit,388

but g produces different evaluations. i is the bit where the strings differ and z is the value389

for the remaining bits. A begins by writing down z in its state, and then provides one390

bit of entropy by randomly sampling xi. Now, A uses a “premature” call to get-next391

and receives y as response. With knowledge of z, A can compute g for two choices of392

input at the i-th bit and then use y to uniquely determine what was the input at xi393

which also helps A recover the state. This process is repeated γ∗ times to provide γ∗ bits394

of entropy. We keep doing this for γ∗2β2 steps, and then, request next-ror . However,395

with knowledge of the state, due to premature next, A knows the challenge and therefore396

wins with a non-negligible advantage.397

In other words, we have an attacker which can break this scheme, with non-negligible398
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Algorithm A

Set s = 0
σ = ⊥
t = 0
while t ≤ γ∗2β2

Set g(x) = f(s, x)
(i, z)← Findg

if i = 0 then
Invoke get-state to get the current state s∗. // This resets T = 0.
for j = 1 to n:

Output Xt+j = U1 // H∞(Xt+j) = 1.
Invoke next-ror for challenge δ

if δ = z then return 0
else return 1

else
Set Xt+i = U1 // H∞(Xt+i) = 1.
Use z to set Xt+k for k ̸= i. // H∞(Xt+k) = 0 for k ̸= i.
Invoke get-next to get output y.
Let a−i = z

if g(a−i,0) = y then xt+i = 0
else xt+i = 1
for i = 1 to αβ

s = refresh(s, xt+i)
(s, y) = next(s)
t = t + αβ

Invoke next-ror for challenge δ

if next(s) = (·, δ) then return 0
else return 1

Figure 3 Pseudocode for A for Theorem 5.

probability, if q > γ∗2β2.2 ◀ ◀399

3.3 Towards Positive Results400

The impossibility is, of course, artificial, but it raises questions about how to overcome it,401

even assuming ideal entropy accumulation and extraction. In Section 4 we abstract the notion402

of the scheduler which models security against premature next attacks using multiple pools403

which assume to accumulate entropy optimally (which abstracts away entropy accumulation404

and extraction).405

In this setting, we will first analyze a single-pool scheduler scheme for the special “root406

pool” in Section 5. This scheme uses a single pool with exponentially decaying time intervals407

to drain this pool, but the rate of such recovery will depend on the entropy rate counted from408

the boot time (as opposed to the latest compromise in the general notion). The latter point409

is why we don’t want to use this one-pool scheme for the general-purpose PRNG, where we410

would like to recover from compromise no matter when it happens.411

For such scenarios, we revisit the round-robin Fortuna scheduler, where [8] observe that412

this scheme provably overcomes our impossibility result, by assuming all entropy comes at413

a fixed (but unknown) rate. Instead, in Section 6 we significantly generalize this positive414

result. The idea is to redefine the notion of entropy we use in a way that makes it more415

restrictive than traditional (min-) entropy, but not as restrictive as assuming fixed constant416

rate.3 Intuitively, our notion of entropy will not allow attacks where the entropy varies too417

2Note, that when q < γ∗β, every PRNG is vacuously secure as there is no need for recovery: at least
γ∗ steps are needed to inject the required γ∗ bits of entropy, and the attacker simply runs out of refresh
calls to trigger the security requirement. This, of course, assumes ideal entropy accumulation.

3We also note that the results about fast entropy accumulation in the register [5] might justify why
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widely within a given round-robin (but can change from one round-robin to another) — in a418

sense that the attacker will get almost no credit for high-entropy samples when there is at419

least one low entropy sample within a given round-robin.420

4 Seedless Scheduler421

For the remainder of this paper, we will assume ideal accumulation and extraction. Further,422

rather than working with entropy, we will employ the notion of a sequence of weights423

w = (w1, . . . , wq) where the weights have been normalized so that wi ∈ [0, 1] and a pool is424

“full” when it has accumulated weight 1. (Specifically, to move between the weight wi and425

the entropy γ, one should multiply by the entropy γ∗
rob required for a single pool to recover.)426

See [8].427

4.1 Syntax of a Scheduler428

We define the syntax of the scheduler below. Note that this scheduler is deterministic and429

oblivious, i.e., it does not depend on the actual input or its entropy.430

▶ Definition 6 (Syntax of Scheduler). A (k, q)-scheduler is a deterministic algorithm SC that431

produces q pairs: {(ini, outi)}q
i=1 where ini ∈ [k], outi ∈ [k] ∪ {⊥} for i = 1, . . . , q.432

Note that, when the number of “pools” k is not critical to be specified explicitly, a deterministic433

(k, q)-scheduling scheduler can be thought of as a sequence of values {empty}q
i=1 corresponding434

to the time at which each input i with weight wi is emptied. More formally, we can define:435

emptyi := min {j : j > i ∧ outj = ini}436

4.2 Seedless PRNG, with Premature Next437

Before we venture into the security of such a scheduler, it would be prudent to take a step438

back and look at an informal composition of a seedless scheduler with PRNGs that are not439

resilient to premature next in order to achieve security with premature next. Indeed, it is440

also equally important to frame our composition results, in the face of the impossibility result441

from Section 3.2 (and also the unrestricted scheduler impossibility later in this section). This442

is precisely the reason why we do not state a formal composition theorem, as it is vacuous443

for the most general case. However, the composition is still robust for restricted notions of444

scheduler security to yield relaxed forms of PRNG security with premature next.445

The composition relies on seedless PRNGs which are not secure with premature next.446

These are typically parametrized by just γ∗, which is the minimum entropy needed for the447

PRNG to begin producing pseudorandom outputs (see Figure 5). In essence, these have448

α = γ∗ and β = 1 with a reset of all counters when an adversary invokes get− next with449

corrupt = true. The instantiation of this PRNG can be from the work of Coretti et al. [4]450

or from the work of Dodis et al. [6]. Such a PRNG, secure without premature next and451

parametrized by γ∗ is combined with a scheduler. The goal of a scheduler would be to ensure452

that the input, as it arrives, is allocated a particular pool such that:453

With “enough entropy”, a pool is filled, i.e., accumulates γ∗ amount of entropy.454

This pool will be emptied within “sufficient time”, to recover from compromise.455

our new (more restrictive) notion of entropy might be reasonable to expect in practice.
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Construction: Premature-Next Robust PRNG

refresh∗(x, s)

Parse s as (s0, . . . , sk−1, ρ)
in, out← SC()
sin ← refresh(sin, x)
if out ̸= ⊥ then

(sout, R)← next(sout)
ρ← ρ⊕R

return s = (s0, . . . , sk−1, ρ)

next∗(s)

Parse s as (s0, . . . , sk−1, ρ)
(Y, ρ)← G(ρ)
return

(
s = (s0, . . . , sk−1, ρ), Y

)

Figure 4 Construction of G = (refresh∗, next∗).

We will formalize these notions of “enough entropy” and “sufficient time” in the next section.456

Formally, we define a seedless PRNG, with construction as follows:457

Let SC be a scheduler with k pools.458

Let Gi = (refreshi, nexti) be seedless PRNGs with input (see Section A), for i = 0, . . . , k−1.459

For simplicity, we will assume that each Gi is (m, r)-PRNG. These are PRNGs which are460

not secure with premature next calls.461

Let G : {0, 1}m → {0, 1}2m be a pseudorandom generator (without input).462

Then, we construct a PRNG with input G(SC, {Gi}k−1
i=0 , G) = (refresh∗, next∗) as shown in463

Figure 4, where the scheduler mandates which pool Gin to use (via refresh) to accumulate464

entropy from a new sample, and which pool Gout (if any) to “empty” (via next) into the main465

register ρ for G.466

4.3 Security of a Scheduler467

We will define different notions of security for a scheduler. As with PRNGs, (k, q)-scheduler468

security model is parameterized by two parameters α, β. Informally, it states that if the469

adversary chooses to provide α units of fresh entropy (i.e., a sequence of wi values that sum470

up to α) within a time t ≤ q/β, then we guarantee recovery within time β · t ≤ q. Formally,471

▶ Definition 7 (General Security of Scheduler). A (k, q)-scheduler is (α, β)-general-secure if if472

∀t0, t such that t1 = t0 +β · t ≤ q, and ∀ weights w1, . . . , wq ∈ [0, 1] such that
∑t

i=1 wt0+i ≥ α,473

the scheme recovers from the compromise in time t0 + βt where recovery occurs if ∃ j ∈ [k]474

and ∃ T̂ ∈ [t0 + 1, t0 + β · t] such that:475

1. outt0+1, . . . , out
T̂ −1 ̸= j (pool j has not been emptied before time T̂ );476

2. out
T̂

= j (pool j is emptied at time T̂ ); and477

3. (pool j has filled)
∑

t0<i≤T̂

ini=j

wi ≥ 1 .478

4.4 Impossibility Result479

We can show that, for general security, there exists an impossibility result. Specifically, we480

will show that for any k ∈ N, there exists a choice of q such that any (k, q)-scheduler is481

not (α, β)-secure. In other words, for a suitable choice of q, one can break the scheduler to482

never recover from compromise for any α, β. Note that this is incomparable to the earlier483

impossibility result discussed in Section 3.2 as this assumes the existence of pools.484
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▶ Theorem 8. For any k ∈ N, there exists q∗ = α2β2 such that a given (k, q)-scheduler is485

not (α, β)-secure for any q ≥ q∗.486

We defer the proof of this theorem to Section B. The immediate consequence of this impossib-487

ility result is the following: there exists input weight sequence w such that, irrespective of the488

number of pools, we can inject entropy at a slow rate, such that no scheduler is general-secure.489

It also implies that we need to make some relaxations to achieve usable security results.490

5 Reboot Secure Schedulers491

The first relaxation corresponds to the situation when the system is just rebooted, i.e., we492

are at t0 = 0. We will call this as the “reboot security” of a scheduler. This corresponds493

to the situation when you just turn on the computer. For this case, we can have a much494

simpler and better RNG, having only one pool. Like Fortuna, this pool is emptied every βi
495

steps for gradually increasing values of i = 0, 1, 2, . . ., where β is a small integer (Windows496

10 uses β = 3).497

▶ Definition 9 (Reboot Security of Scheduler). A (k, q)-scheduler is (α, β)-reboot-secure if498

for t0 = 0, ∀t such that t1 = t0 + β · t ≤ q, and ∀ weights w1, . . . , wq ∈ [0, 1] such that499 ∑t
i=1 wt0+i ≥ α the scheme recovers from the compromise in time t0 +βt, where the definition500

of recovery is as defined in Definition 7.501

The composition of such a reboot-secure scheduler with our “not-premature-next” PRNGs502

will trivially yield a “premature-next” boot PRNG, i.e., the PRNG that is used at the time503

when the system is booting up.504

We start with a lower bound on reboot-security, irrespective of the number of pools k.505

▶ Theorem 10. For a (k, q)-scheduler to be (α, β)-reboot secure, α ≥ ⌊logβ(q)− log log q⌋− 1506

(i.e., q ≤ αβα)507

For simplicity let us assume that q = αβℓ+1, for some ℓ > 0. Then, divide the time from508

α + 1 to q into intervals of the following form: (αβi−1, αβi] for i = 1 to ℓ + 1. We have the509

following claim:510

▷ Claim 11. For any (α, β)-reboot secure scheduler with corresponding emptying sequence511

empty1, . . . , emptyq and any i ∈ [ℓ], there must exist a t such that emptyt ∈ (αβi, αβi+1]. (In512

other words, there must be a pool that is first emptied after roughly βi steps for every i.)513

We defer the proof of this claim to Section B.514

Proof of Theorem 10. From Claim 11, we get that there are at least ⌊logβ(q/α)⌋ distinct515

empties, and there needs to be entropy of 1 emptied in each of these empties. By Pigeonhole516

Principle, we will need α ≥ ⌊logβ(q/α)⌋ to have any hope of recovery, which implies517

α ≥ ⌊logβ(q)− log log q⌋ − 1. ◀ ◀518

We now give a scheme that nearly matches the lower bound. This scheme uses the same519

strategy as Windows 10’s “Root RNG” which is used at system startup [9].520

▶ Construction 1 (Reboot Scheme). The scheme has k = 1. ini = 0 for i = 1, . . . , q.521

outi =
{

0 if i = βj

⊥ else
522

In other words, ∀i ∈ [βj−1, βj), empty at time βj.523
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▶ Theorem 12. Construction 1 is (α, β)-reboot secure for q = αβα (i.e., α ≈ logβ q −524

log log q).525

Proof. Define t to be the time within which the adversary provides α entropy, i.e.,
∑t

i=1 wi ≥526

α where these wi are adversarially chosen. It is clear that t ≥ α, as we need at least α steps527

to provide α entropy when wi ∈ [0, 1].528

Let i be such that α ∈ (βi−1, βi]. Now, it is clear that if t = α, then the empty at βi will529

ensure recovery from compromise. We can induct similar to the proof of Claim 11 to get that530

if t ∈ [βℓ−1, βℓ) for some ℓ ≥ i, then there ∃j ∈ [βℓ−1, βℓ) such that wj = 1 (or possibly a set531

of such j’s which sum up to 1), which is emptied at βi, thus recovering from compromise.532

Specifically, if we have t ∈ [βℓ−1, βℓ), then at each of the preceding ℓ− 1 intervals (each with533

an empty), A provides 1− ϵ entropy, for some arbitrarily small ϵ. This gives a total of almost534

ℓ− 1 entropy across these intervals. Therefore, it follows that the remainder of α− ℓ + 1 > 1535

needs to be provided between wβℓ−1 and wt to hit α and all of these are emptied at βℓ,536

recovering from compromise. ◀ ◀537

6 Repeat Secure Schedulers538

A general secure scheme is a stronger model of security than the reboot model. This follows539

because the value of t0 is also the choice of the adversary, in addition to the choice of t.540

However, the impossibility result from Theorem 8 imply a need for relaxation.541

Round-Robin Schedulers. Simple round-robin schedulers achieve very good α ≈ logβ(q)542

for the special cases when all of the wt are equal to some (unknown, adversarially chosen)543

value w, i.e., w1 = w2 = . . . = wq = w and setting the number of pools k ≈ logβ(q) (so 1 or544

2 pools are too little). β is a smaller integer usually 2 or 3 in practice, as in [10, 8]. More545

formally, such schedulers simply set int = t mod k As for outt, this is set to ⊥ inside one546

round (i.e. t mod k ̸= 0). At the the of each round, when t = kℓ, one looks at the largest547

index i ≥ 0 such that βi divides ℓ. Then out empties the i-th pool: outt = i548

▶ Remark 13. There is a marginal gain in efficiency when we empty all pools ≤ i, instead of549

just the i-th pool. In other words, out is a set, rather than a single index. However, for our550

analysis below, we will continue to work with the assumption that a single pool is emptied.551

(More generally, we do not make much of an attempt to optimize the parameters that we552

achieve. See [8] for an optimized version of similar construction.)553

k-smooth Sequences. Our main observation is that we can significantly extend the554

constant-rate analysis as follows. The idea is to allow support any constant rate within a555

round-robin (rather than go for a constant (but unknown) rate scheduler). This constant556

can change arbitrarily once the next round-robin is started. Namely, we don’t have to fix557

the same constant for all q entropies but can change it every k ≪ q steps. In practice, this558

means that while the quality of entropy can change over time, we heuristically assume that559

it changes rather smoothly, and we rarely have huge jumps within a given round-robin.560

▶ Definition 14 (Repeating Sequences). w = (w1, . . . , wq) with 0 ≤ wi ≤ 1 is called k-561

repeating if wjk+1 = wjk+2 = . . . = wjk+k for j = 0, . . . , t− 1 where q = k · t562

▶ Definition 15 (Repeat Security of Scheduler). A (k, q)-scheduler is (α, β, k)-repeat-secure563

if ∀ t0, t such that t1 = t0 + β · t ≤ q, and ∀ k-repeating weights w1, . . . , wq ∈ [0, 1] such564

that
∑t

i=1 wt0+i ≥ α the scheme recovers from the compromise in time t0 + βt, where the565

definition of recovery is as defined in Definition 7.566
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To achieve such repeating sequences, we take any standard w = (w1, . . . , wq) and apply a567

k-flattening, as defined below.568

▶ Definition 16 (k-Flattening). Given a sequence w = (w1, . . . , wq) and a number k ≥ 1,
where for simplicity of notation let us assume q = kt, we define k-smooth flattening of w to
be w′ = (w′

1, . . . , w′
q), where for any round-robin j ∈ {0, . . . t− 1} and i ∈ {1 . . . k}, we let

w′
jk+i = min( wjk+1, wjk+2, . . . , w(j+1)k )

Intuitively, we change the entropy wj to the smallest of k surrounding entropies inside a569

given round-robin. Of course, k = 1 corresponds to w′
t = wt, but we already know that570

1 pool is not enough (as this would give a general scheduler for the unrestricted entropy571

setting). For larger k, however, the flattened values could be noticeably lower than the572

original. For example, if k = 3 and w = {1, 1/2, 1/3, 1/4, 1/5, 1/6}, the 3-flattening of573

w is w′ = {1/3, 1/3, 1/3, 1/6, 1/6, 1/6}. Of course, for a constant rate w1 = . . . wq = w,574

k-flattening does not change anything, which explains why our results below naturally575

generalize the constant-rate analysis from the work of Dodis et al. [8].576

Jumping ahead, we will see that the Fortuna scheduler is “secure” for any (normalized)577

entropy sequence w, with the understanding that the attacker gets “entropy credit” within578

a single round-robin equals to k times the lowest entropy value in contributes within this579

round.580

New Result. Now, we show that while the original (α, β)-definition above cannot be581

achieved when applied to w itself, the analysis for constant-rate schedulers works for general582

entropy sequences, provided we simply apply it to k-flattening of w (where k ≈ logβ q is the583

number of pools) instead of w itself! Namely, a given round only gets “credit” for the smallest584

entropy (times k) it contributed to any of the k pools. So we do not give the adversary credit585

if it wildly changes the entropy values within a given round.586

We now present our construction, which is parameterized by the number of pools k and a587

base b. One typically takes b = 2 or b = 3, and, e.g., k = 32 or k = 64 in practice, and works588

for q ≤ bk.589

▶ Construction 2 (Smooth scheduler). Consider the following (k, q := bk)-scheduler for590

integers b ≥ 2 and k ≥ 1:591

ini = i mod k592

outi =
{
⊥ if i mod k ̸= 0
j if i = kℓ

where j ≥ 0 is the largest j such that ℓ mod bj = 0 for593

i = kℓ594

We now prove that this scheduler is secure (against k-repeating sequences). For simplicity,595

we make little attempt to optimize the parameters. See [8] for a carefully optimized version of596

this result for the special case where the entropy rate is constant (i.e., the case of q-repeating597

weights).598

▶ Theorem 17. For any integers b ≥ 2 and k ≥ 1, Construction 2 is (α, β, k)-repeat-secure
for

α := 3k − 2 ≈ 3 logb q; and β := 2b

(
1 + k

α

)
≈ 8b

3 = 8
3 · q

1/k

In particular, for k = logb q and q ≥ b2, we have α ≤ 3 logb q and β ≤ 3b.599
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Notice, this result explains how the recovery factor β shrinks very quickly as we increase600

the number of pools k, starting with (roughly) q all the way down to being a constant. In601

particular, β becomes constant once the number of pools becomes logarithmic in q.602

Moreover, up to constant factors in α and β (which, again, we do not attempt to603

optimize), Theorem 17 is tight. In particular, [8, Proposition 1] proved that even in604

the “constant-rate” case of q-repeating weights, no scheduler can be (α, β)-secure with605

αβ ≤ loge q− loge loge q− 1. And our scheduler matches this bound (up to a constant factor)606

when b = O(1) and k = O(log q). We defer the proof of the theorem to Section B.607
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Game The PRNG Robustness Game

ROB

σ = ⊥; s = 0; c = 0
b← {0, 1}; corrupt = true
for i = 1, . . . , q do

(σ, Xi)← Aget−next,get−state,next−ror(σ)
xi ← Xi

s = refresh(s, xi)
c = c + H∞(Xi)
if c ≥ γ∗ then

corrupt = false
b′ ← A(σ)

get− next

if corrupt = true then
c = 0

(s, y) = next(s)
return y

next− ror

(s, y0) = next(s)
y1 ← {0, 1}r

if corrupt = true then
return y0

return yb

get− state

c = 0 ; corrupt = true
return s

Figure 5 The Robustness Game (without Premature Next Calls) ROB(γ∗, q).

A PRNG Robustness, without Premature Next678

This is an abridged discussion about the robustness security game ROB, for the seedless679

setting (and with independent samples), but without allowing Premature Next calls. The680

security game is presented as Figure 5. The main difference from the NROB game presented681

in Figure 1 is that the entropy counter c is reset to 0 with each “premature next” call to682

get− next, and also there is no recovery delay parameter β. As the result, there is no need683

to keep track of the number of steps T ∗ to accumulate γ∗ bits of entropy.684

B Deferred Proofs685

Proof of Theorem 8. The attack works as follows: we will provide α entropy, in α2β steps.686

The security requirement is that recovery needs to happen within time α2β2. Recall that687

recovery occurs if there is a pool that is emptied within α2β2 which has total entropy of 1.688

More formally, let Ij denote the j-th interval, of length αβ starting from 0. This leads us689

to two cases:690

∃j∗ such that no pool is emptied within Ij∗ . Formally, there exists no time step i with691

emptyi ∈ Ij∗ .692

Then, set t0 = αβ(j∗ − 1) − 1. After this state compromise, we provide a sequence of693

1s of length α, which will set T ∗ = α and expect recovery in time t0 + βT ∗ = αβj∗ − 1,694

which is still inside the interval Ij∗ . However, we assumed no pool is emptied within Ij∗ ,695

so no recovery can be possible.696

∀j, ∃i such that emptyi ∈ Ij , meaning at least one pool is emptied within all α intervals697

Ij .698

Set t0 = 0. Then, for j = 1, . . . , α, pick one ℓ such that emptyℓ ∈ Ij . Set, wℓ to be 1− ϵ699

for some arbitrarily small ϵ (remaining weights are 0). At the end of this process, the700

adversary has provided almost α entropy, but there is no recovery, as all of these entropies701

are completely wasted. By making ϵ arbitrarily small, the result follows.702

◀ ◀703

Proof of Claim 11. We prove this by induction. Define t to be the time within which the704
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adversary provides α entropy, i.e.,
∑t

i=1 wi ≥ α where these wi are adversarially chosen.705

Since wi ≤ 1, we get that t ≥ α.706

Let us assume to the contrary that there is no emptying in the interval (α, αβ]. Now, if707

adversary chooses t = α. Then, this scheme would never recover as there is no empty in the708

interval (α, αβ]709

Now, let us assume that there is an empty in intervals, (α, αβ], (αβ, αβ2], . . . , (αβi−1, αβi].710

We will now show that there needs to be an empty in the interval (αβi, αβi+1]. To this end,711

assume to the contrary. Now, note that the adversary can provide the entropy in such a way712

that every empty in the preceding intervals empties out 1− ϵ, without recovering. This is713

similar to the attack detailed in the proof of Theorem 8. Further, if t = αβi, the scheme has714

not recovered in time 1 to t and because it has no empty in (αβi, αβi+1] it can never hope715

to recover in time either. Therefore, there is an empty in the interval (αβi, αβi+1]. ◁716

Proof of Theorem 17. Let w1, . . . , wq be k-repeating. Let t0 and t be such that (1) t0 +βt ≤717

q; and (2)
∑t

i=1 wt0+i ≥ α . We wish to show that in this case the scheduler recovers before718

time t0 + βt, i.e., that there exists a j ∈ [k] and T̂ ∈ [t0 + 1, t0 + βt] such that (1) out
T̂

= j;719

(2) outt0+1, . . . , out
T̂ −1 ̸= j; and (3)

∑
t0<i≤T̂

ini=j

wi ≥ 1 .720

Indeed, we take j to be minimal such that outt0+1, . . . , outt0+t ̸= j. In particular, notice721

that after pool j′ is emptied, pool j′ + 1 is not emptied for the next k(bj′ − 1) steps. And,722

similarly, after pool j′ + 1 is emptied, pool j′ is not emptied for the next k(bj′ − 1) steps. It723

follows that bj−1 ≤ t/k + 1. Since the pool j′ is emptied at least once in every 2kbj′ steps,724

it follows that we must have out
T̂

= j for some T̂ − t0 ≤ 2kbj ≤ (2t + 2k)b ≤ 2b(1 + k/α)t,725

where in the second inequality we have used the fact that wi ≤ 1, which implies that t ≥ α.726

In particular, T̂ ≤ t0 + βt, as needed.727

And, since the wi are k-repeating, we must have728 ∑
t0<i≤T̂

ini=j

wi ≥
∑

t0<i≤T̂

∑
t0<i≤t0+t

ini=j

wi ≥
∑

t′
0<i≤t′

0+t′

ini=j

wi = 1
k
·

∑
t′

0<i≤t′
0+t′

wi ,729

where t′
0 := ⌈t0/k⌉k ≥ t0 and t′ := ⌊t/k⌋k ≤ t. And, since wi ≤ 1, we trivially have that730 ∑

t′
0<i≤t′

0+t′

wi ≥
∑

t0<i≤t0+t

wi − 2k + 2 ≥ α− 2k + 2 .731

Therefore,732 ∑
t0<i≤t0+t

ini=j

wi ≥
α

k
− 2 + 2/k ≥ 1 ,733

as needed. ◀ ◀734
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