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Abstract

Continuous group key agreement (CGKA) allows a group of users to maintain a
continuously updated shared key in an asynchronous setting where parties only come
online sporadically and their messages are relayed by an untrusted server. CGKA
captures the basic primitive underlying group messaging schemes.

Current solutions including TreeKEM (“Message Layer Security” (MLS) IETF
draft) cannot handle concurrent requests while retaining low communication complex-
ity. The exception being CoCoA, which is concurrent while having extremely low
communication complexity (in groups of size n and for m concurrent updates the com-
munication per user is log(n), i.e., independent of m). The main downside of CoCoA
is that in groups of size n, users might have to do up to log(n) update requests to the
server to ensure their (potentially corrupted) key material has been refreshed.

We present a new “fast healing” concurrent CGKA protocol, named Coffee, where
users will heal after at most log(t) requests, with t being the number of corrupted users.
Our new protocol is particularly interesting to realize decentralized group messaging,
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where protocol messages (add/remove/update) are being posted on a blockchain rather
than sent to a server. In this setting, concurrency is crucial once requests are more
frequent than blocks. Our new protocol significantly outperforms (the only alternative
with sub-linear communication and PCS) CoCoA in this setting: it heals much faster
(log(t) vs. log(n) rounds). The communication per round and user is m · log(n), but
in this setting – where there is no server who can craft specific messages to users
depending on their position in the tree – CoCoA requires the same communication.
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1 Introduction

1.1 (Group) Messaging

Popular group messaging applications, like Signal [PM16], work in an asynchronous setting,
where users only must occasionally be online and their messages are relayed by an untrusted
server. The underlying ratcheting protocol provides strong security; apart from end-to-
end encryption, also forward secrecy (FS) and post compromise security (PCS), which is
important as conversations can go on for long times. FS ensures that messages sent in the
past remain secure if a user gets compromised, while PCS allows for the keys of a user to be
refreshed after compromise.

It is a challenging problem, and the focus of the “Message Layer Security” (MLS) IETF
working group, to efficiently scale messaging applications to larger groups without giving
up on the strong security properties provided in the two party case by protocols like the
Double Ratchet [PM16]. Most of the so far proposed group messaging schemes with this
motivation, starting with ART [CCG+18] and TreeKEM [KPPW+21] and variants (discussed
in the related work below), use a binary tree structure to maintain the keys of the users.
In this so called ratchet tree, each node corresponds to a public/secret key pair. Leaves are
identified with users who hold the corresponding secret keys, while the key at the root is the
group key used to exchange messages for the group. We think of the edges of the tree as
being directed from the leaves to the root, and an edge (pk, sk)→ (pk′, sk′) basically means
that sk′ is encrypted under pk in a ciphertext that can be retrieved from the delivery server.
This way, the user of a leaf with key-pair (pk, sk) will be able to retrieve all the secret keys
on the path from its leaf to the group key at the root.

1.2 CGKA

Continuous group key agreement (CGKA) was defined in [ACDT20] as the key primitive
underlying group messaging. CGKA allows a set of users to maintain a shared key in an
asynchronous setting where messages are relayed by an untrusted server. The operations
CGKA must support are the users’ addition and removal, and a key update functionality
by which a user can rotate its secret key material so as to achieve forward secrecy and post
compromise security.

The reason to use trees rather than, say, pairwise channels for maintaining the keys, lies
in the fact that in groups of size n, each user only has to send log(n) ciphertexts in order
to perform a key update, as opposed to n. Concretely, as illustrated in Figure 1 (the two
trees on the left, ignoring the blue nodes for now), if a user A wants to update, they will
resample the keys on their path (the red path in the figure), encrypt the fresh keys to the
nodes on their co-path (the red edges), and send these ciphertexts to the server. The other
group members can fetch those ciphertexts and update to the new keys.

An important “invariant” property of these tree-based schemes is that a user will always
only learn the secret-key for nodes on their path to the root (so it is sufficient to replace
keys on a path to achieve FS and PCS). This invariant becomes difficult to ensure once we
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Concurrent update/commit requests by A and B
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Figure 1: (left) Illustration of how TreeKEM, CoCoA and our protocol handle a concurrent
update by parties A and B who want to replace their (potentially compromised) keys. (right)
An illustration of blanking used to commit an update proposal (removing B would be similar,
with their leaf node blanked instead.)

consider additions or removals of users from the group. Assume a user A wants to remove
a user B. For this, A could propose an update where it replaces B’s path. But unless A is
the sibling of B in the tree, now the invariant no longer holds (adding a new user has the
same issue). To address this, in TreeKEM all the nodes whose keys A should not know are
blanked, which simply means the node is removed and its ingoing edges point directly to
its child (if the child is blanked, to its grandchild etc.). Figure 1 (right side) shows the tree
we get if A removes B this way. Adds are instead handled through the “unmerged leaves”
technique, where the leaves of the new users get attached directly to the root, increasing its
indegree. Note that this means an add or remove operation destroys the nice tree structure,
and as a consequence future operations become more expensive e.g., to update A must send
4 ciphertexts before blanking B, but 6 after, in general the cost can grow from log(n) to n.
Fortunately, adds and removes are typically rare operations, and the tree structure heals as
parties update their keys (e.g., a single update of B or its sibling will fix the tree completely).

Concurrent updates. While updates in the initial versions of TreeKEM just need log(n)
communication and leave the tree structure intact, they are inherently sequential: a user can
only send an update request after having processed the previous one. If two (or more) users A
and B send an update request to the server referring to the same previous state (as illustrated
on the left in Figure 1), the server will simply reject all but one of the requests. This is also
the case for variants such rTreeKEM [ACDT20] and Tainted TreeKEM [KPPW+21].

Recent versions of TreeKEM do allow for concurrent updates through the “Propose and
Commit” framework. Here, the users concurrently announce the add/remove/update op-
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erations in a first round. One party then “commits” them in a second round by sampling
new keys on its path and blanking all nodes not on its path that need to be refreshed, thus
severely ruining the tree structure (similar to removals). If the group members want to
preserve the tree structure, and its associated optimal structure, one would expect this to
rarely occur, and for users to refresh their keys by issuing a commit. Here, concurrency is
not possible anymore, as commits need to be totally ordered, and the issue outlined above
comes back.

Causal TreeKEM. The first CGKA protocol supporting concurrent updates was Causal
TreeKEM [Mat19]. This protocol builds on a public key encryption primitive allowing for
keys to be combined in a commutative way. This way, updates will no longer overwrite
the previous key, but instead update it by combining the fresh key with the existing one.
Since this combining process is commutative, several updates can me merged at the same
time, without regard for the order in which users received them. Our protocol is similar to
Causal TreeKEM in several aspects, and can generally be seen as both an improvement and
formalization of it. On the one hand, Causal TreeKEM does not give any FS guarantees, and
PCS requires a number of updates equal to the amount of corrupted group members, each
of which needs to take place in a different round. In contrast, our protocol does provide FS
(albeit slightly weaker than TreeKEM due to the potential delays in getting messages into
the blockchain), and only needs log(t) epochs to heal, with t being the number of corrupted
parties (this faster healing might also be true for Causal TreeKEM, due to the protocol
similarities, but is not alluded to, or proved, in their paper). On the other hand, Causal
TreeKEM does not formalize the security of the “key merging” functionality, and does not
give full security proofs.

CoCoA. The recent proposal CoCoA [AAC+22] processes concurrent update proposals in
a “greedy” manner and simply accept as many keys in a concurrent proposal as possible.
As illustrated in Figure 1, fresh keys from concurrent updates are accepted, and if there is
a conflict as two updates want to replace the same node, one of the two updates is rejected
from this point upwards. While this process does not guarantee that the key is safe after
every compromised party updated,1 somewhat surprisingly [AAC+22] proves that the tree
does heal after every party updated log(n) times in the worst case (where everyone is initially
compromised, the adversary can schedule all requests and also decide on the rule which of
two concurrent updates “wins” in every case).

Moreover, CoCoA enjoys extremely low communication complexity, as each party must
only download at most log(n) ciphertexts to process each set of concurrent updates. Note
that this is independent of the number m of parties that update in this round, which can
be as large as m = n. For this to be theoretically possible, the untrusted server must be
more sophisticated than just relaying every protocol message it gets to all users in the group.
Instead, it only sends a subset of the ciphertexts to each user based on their position in the

1In the example from Figure 1, if B was compromised, after the update, the two topmost red nodes would
still be compromised, as their keys were encrypted to compromised keys.
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(a) CoCoA

Update 1 Update 2 Update 3 Update 4

(b) Coffee

Update 1 Update 2

Figure 2: Comparison of the number of rounds required to recover in CoCoA (a) and Coffee
(b) for n users, of which t are corrupted. Red nodes correspond to compromised keys. In
each round all parties update concurrently, in CoCoA update requests are prioritized from
left to right. CoCoA requires ⌈log(n)⌉+1 = 4 rounds to recover, Coffee only ⌊log(t)⌋+1 = 2.

tree, together with some commitment to its actions, allowing users to check if they received
consistent messages.

1.3 Our Contribution

Coffee. In this work we consider a new CGKA protocol, Coffee (for COncurrent Fairly-
Fast healing continuous group key agrEEment), that allows for concurrent updates. In Coffee
we use a key-updatable PKE scheme, and updates no longer replace keys, but update them.
While in CoCoA we must drop one of two concurrent updates for the same node, in Coffee we
can perform them both. We prove that this has a significant implication on security. While
in CoCoA we can only guarantee that the tree healed once each compromised party updated
log(n) times, in Coffee that number drops to log(t) where t is the number of compromised
users. This corresponds to the fairly-fast healing property reflected in the name (recall one
could heal even faster following the P&C protocol, at the discussed cost). This is illustrated
in Figure 2.

As we can expect t to be small compared to n (in fact, for most of the lifetime one
should hope that t = 0), Coffee will provide comparable security to CoCoA with much
fewer updates. On the downside, as in Coffee every user must process the update of every
other user (while in CoCoA at most log(n) other updates will matter), the communication
complexity (from server to users) will be larger in Coffee. A discussion of the efficiency of
our protocol and its relationship to others can be found on Section 4.

Decentralized Group Messaging. The above discussion suggests a trade-off between
Coffee and CoCoA, and which one is better will depend on the context. But there is one
interesting setting where Coffee shines, namely in a decentralized setting where we do not
want to rely on a(n intelligent) server to relay protocol messages between the users. Even
though the server does not need to be trusted, it can still be problematic for various reasons.
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We suggest to use a blockchain (permissioned or permissionless) to realize group messaging
which enjoys the same robustness and security guarantees as the underlying blockchain.
More concretely, instead of sending their protocol messages (update/add/remove) to the
server, the users would post them on the blockchain. Only the key-management must be
on-chain, text messages (encrypted under the current group key) can be gossiped or shared
on a public bulletin board.

In particular, there are at least three separate properties which are achieved in the
blockchain setting, but not in the “classical” server setting. Namely (1) security against
splitting attacks, (2) censorship resistance, and (3) robustness. Regarding (1), an attack
which is unavoidable in the classical setting is a splitting attack, where the (corrupted)
server splits the users into two or more groups, and then only relays messages within those
groups, forcing parties in different groups into different and inconsistent states. With such
an attack one can, for example, enforce that only a particular subset of users sees some
set of messages. If the protocol messages are on a blockchain, all parties will agree on the
same view, and thus this attack is prevented. With regards to (2), another attack that is
unavoidable in the single server setting is the censoring of a particular party. An untrusted
server can ignore messages from a party, this way e.g. preventing them from ever updating.
This is severe as, should this party be corrupted, the corrupted key can be indefinitely pre-
vented from healing. In the blockchain setting, the “liveness property” of the blockchain,
in combination with the fact that our protocol allows for concurrent updates (so there are
no denial-of-service-type attacks where some parties prevent another one from updating by
flooding the mempool) prevents this attack: if a user wants to update, their request will be
added with high probability within a few blocks. Finally, in the single server setting, the
group can be shut down by taking out a single server. One can achieve better robustness
with several servers, but then needs to solve the machine state replication problem. This is
what our protocol does if using a permissioned blockchain. With a permissionless blockchain,
robustness guarantees are even stronger.

Let us mention that in order to avoid all three issues mentioned above we need to record
all the protocol messages on chain, which is probably no problem in the permissioned setting,
but could be expensive in a permissionless blockchain. If we are only interested in (1) and
(2), but not (3), one can just post a single hash of all the messages which each block contains
on chain, while the actual messages are stored off chain. This loses property (3) unless we
solve the data availability problem separately2

As a further observation, note that any CGKA in the classical setting can be “compiled”
to the blockchain setting: in the blockchain setting, the block producer simply emulates the
server to compile the message that would be broadcast in the classical setting, and adds this
message (or hash) to the block. One further advantage over the classical server setting is
that block producers could in this case check the validity of the received messages before
including them in a block, which is something that a server is not generally able to do.

2https://blog.polygon.technology/the-data-availability-problem-6b74b619ffcc/.
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Maintaining a Group on Chain. In its simplest instantiation, a group would be initial-
ized once some ith block Bi in the blockchain contains the welcome messages which defines a
ratchet tree Ti for some group. Users in the group can post add/remove/update messages on
the blockchain, and the ratchet tree Tj is defined to be the ratchet tree Tj−1 after processing
the protocol messages contained in block Bj. One issue with this basic protocol is the fact
that a message created referring to Ti can only be created after learning block Bi and must
be added to the next block Bi+1. Depending on the block-arrival time of the chain, we might
want to give messages more time to get included in the blockchain. We use a simple way to
achieve this by introducing a parameter k, and only update the ratchet tree every k blocks,
so messages referring to this tree can be included in any of the k blocks following the block
specifying the tree. The parameter k should not be chosen larger than necessary, as only
one update per k-block epoch will contribute towards healing (except if a corruption occurs
in between two updates from the same epoch). If a message is not included in time this just
means it can no longer be included, so the user can simply create a new message referring
to the new ratchet tree.

To achieve FS, users should delete secret keys of outdated ratchet trees as soon as possible.
For blockchains with immediate finality (i.e., no forks) this means old keys can be deleted
immediately once a new ratchet tree is computed, while in longest-chain protocols one should
wait to delete keys until the corresponding blocks are considered confirmed. Otherwise they
might lose access to the group should a fork occur.

1.4 Related Work

The primitive of Group Key Exchange (GKE) has been around for a long time, but it was
not until recently, following the inception of the double ratchet protocol [PM16] and re-
lated work, where participants could achieve PCS, that the study of CGKA (with explicit
PCS) started. The first construction of a CGKA is (implicitly) ART [CCG+18], adopted
by the first version of MLS [BBM+20], which later switched to TreeKEM [BBR18]. In
the last few years, different modifications of TreeKEM have been published, aiming to im-
prove the original design along different angles. Notably, rTreeKEM [ACDT20] improves
the FS guarantees from TreeKEM, achieving it after a single update by any party. Tainted
TreeKEM [KPPW+21] introduces an alternative to blanking, called tainting, which reduces
the efficiency drawback caused by dynamic operations in certain scenarios. Further, a recent
paper by Hashimoto et al. [HKP+21] proposes the use of multi-recipient PKE in order to
improve the download cost of users, at the cost of linear size commits. This primitive, in
combination with reducible signatures, is also used by Alwen et al. in [AHKM21]. This work
introduces server-aided CGKA as well as notable efficiency improvements by greatly reduc-
ing constant factors (though communication stays similar to TreeKEM’s asymptotically).
Further, Alwen et al. [ACDT21] formalize secure group messaging and casts it modularly in
terms of the primitives CGKA, forward-secure group AEAD and PRF-PRNG.

In terms of security, the first security proof for any CGKA was for ART in [CCG+18].
Their proof has an exponential loss against adaptive adversaries. The first proof of adaptive
security with sub-exponential loss (in fact, polynomial) for a variant of TreeKEM was given
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in [KPPW+21]. While their security proof captured adversaries who can make adaptive
choices, it did not capture fully active adversaries who can arbitrary deviate from the proto-
col specification and send malformed messages. Subsequent works [ACJM20] and [AJM20]
propose stronger security models, allowing the adversary to set the random coins of par-
ties, and to corrupt and impersonate them, respectively. Our model is closer to the one
of [KPPW+21], in that the adversary is not allowed to corrupt the parties signing keys,
though we do not assume the existence of a server, which is replaced by a blockchain. We
should also note two recent papers, the one by Devigne et al. [DDF21], achieving stronger
robustness against malicious insiders by means of zero knowledge and verifiable encryption,
and the SoK by Poettering et al. [PRSS21], surveying different GKE security models. Finally,
formal analyses TreeKEM’s security were carried out in [BCK21] and [BBN19].

Concurrency was initially approached in Causal TreeKEM [Mat19]. Later, it was more
formally analyzed by Bienstock et al. [BDR20], who study the trade-off between PCS, con-
currency and communication complexity, showing a lower bound for the latter and proposing
a close to optimal protocol efficiency-wise, though in a synchronous, static-group model, and
with much weaker PCS. A further paper by Weidner et al. [WKHB21] proposes a decentral-
ized and concurrent protocol, at the cost of linear communication cost for updates.

In the multi-group setting, Cremers et al. [CHK21] study the PCS guarantees and Al-
wen et al. [AAB+21] study more efficient solutions for groups with overlapping user sets.

The use of blockchain for CGKA protocols is novel as far as we know, but note that there
exist previous messaging protocols making use of it, like Elixxir [Coi].

Finally, updatable public key encryption is also an ingredient of rTreeKEM, which uses
a somewhat different version, where decryption keys are updated upon being used. The
paper by Jost et al. [JMM19] first introduced the primitive of secret key updatable public
key encryption (skuPKE) in the context of two-party messaging. It is this primitive and
syntax that we use here, albeit with different security requirements.

2 Preliminaries

2.1 Decentralized Continuous Group-Key Agreement

We now introduce the syntax of blockchain-aided continuous group-key agreement (baCGKA),
which allows the set up of a group G = (id1, . . . .idn) of users sharing an evolving group key.
We assume all users id have an initialization key packet ((pkid , skid), (svkid , sskid)) that is
known to all other users. Here, (pkid , skid) will be used to encrypt group invitation messages
to id and (svkid , sskid) to authenticate messages uploaded by id . In practice, this would be
implemented by a key-server that allows users to deposit their and recover other users’ key
packets.

A baCGKA scheme baCGKA specifies algorithms baCGKA.Init, baCGKA.Upd, baCGKA.Add,
baCGKA.Rem, baCGKA.Proc, baCGKA.Key, baCGKA.Send, and baCGKA.Fetch. The first 6
algorithms are local, in the sense that they only affect the executing user’s state, and gen-
erate protocol messages to be sent to the rest of the group. The last two algorithms, on
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the other hand, interact with the distributed protocol by sending transactions and fetching
blocks, respectively.

Initialization. User id1 runs (id1.st ,W ) ← baCGKA.Init(G, (pkid1 , . . . , pkidn), sskid1) to
initialize a session. Here G = (id1, . . . , idn) specifies the group, pkidi

is the initialization
encryption public-key of user id i, and sskid1 the initialization authentication secret key of
the party setting up the group. The output consists of user id1’s initial state and a welcome
message W .

Updates. To update their state, id runs algorithm (id .st , U) ← baCGKA.Upd(id .st), up-
dating their state and generating an update message.

Adding a group member. Member id can run (id .st , A)← baCGKA.Add(id .st , id ′, pkid ′)
to add user id ′ to the group. Here pkid ′ is the initialization public key of id ′ and A an add
message.

Removing a group member. User id can remove a (not necessarily different) user id ′

from the group by running (id .st , R)← baCGKA.Rem(id .st , id ′). The output consists of an
updated state and a removal message R.

Processing a block. To process a block B consisting of update, welcome, add, and remove
messages, and move to an updated state, user id runs id .st ← baCGKA.Proc(id .st , B).

Retrieving the group key. At any point a party id in the group can extract the current
group key K from its local state st by running K ← baCGKA.Key(id .st).

Sending a transaction. To send a transaction, i.e. a protocol message M generated by
one of the previous algorithms, user id runs algorithm baCGKA.Send(id .st ,M).

Fetch new blocks. Algorithm (B1, . . . , Bℓ) ← baCGKA.Fetch(id .st) returns all blocks
added to the chain since the user last fetched them.

2.2 Secretly Key-Updatable Public-Key Encryption

We now recall the definition of secretly key-updatable public-key encryption (skuPKE)
schemes [JMM19]. A skuPKE scheme is essentially a public-key encryption scheme, that
additionally allows the sampling of pairs (∆, δ) of public and secret update information,
which can be used to update secret and public keys, in a consistent way.

Definition 1. A secretly key-updatable public-key encryption scheme skuPKE specifies algo-
rithms (skuPKE.Gen, skuPKE.Enc, skuPKE.Dec, skuPKE.Sam, skuPKE.UpdP, skuPKE.UpdS).
Key-generation algorithm skuPKE.Gen on input of the security parameter 1λ returns a key
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pair (pk, sk). Encryption algorithm skuPKE.Enc on input of public key pk and message m
returns a ciphertext c. The deterministic decryption algorithm skuPKE.Dec receives as input
a secret key sk and a ciphertext c and returns either a message m or the symbol ⊥ indicat-
ing a decryption failure. Sampling algorithm skuPKE.Sam(1λ) is used to sample pairs (∆, δ)
consisting of public and secret update information. The key-update algorithms skuPKE.UpdP
and skuPKE.UpdS get as input (pk,∆) and (sk, δ) respectively and output a rerandomized
key pk′ or sk′.

Correctness essentially requires that updating the public and secret key of a key-pair
with the same sequence of rerandomization factors preserves compatibility of the updated
keys with each other. More precisely let λ, k ∈ N, (pk0, sk0) ∈ [skuPKE.Gen(1λ)], and
(∆0, . . . ,∆k), (δ0, . . . , δk) with (∆i, δi) ∈ [skuPKE.Sam(1λ)] for all i. Further, for i ∈
{0, . . . , k} let pki+1 = skuPKE.UpdP(pki,∆i) and ski+1 = skuPKE.UpdS(ski, δi). We require
that for all messages m and all i, PKE.Dec(ski,PKE.Enc(pki,m)) = m.

Security. For security we essentially require that, on one hand, messages encrypted to a
secret key that was generated by updating a potentially compromised secret key are secure
as long as the secret update information to do so was not leaked, and, on the other hand,
that leaking an updated key does not compromise ciphertexts encrypted to its predecessor
as long as the secret update information was not leaked. More precisely, we say that skuPKE
is secure with respect to an upper bound L on the number of key updates, if it satisfies the
following security guarantees:

Definition 2. Let (pk0, sk0) ← skuPKE.Gen(1λ) and also let (∆0, . . . ,∆Q−1), (δ0, . . . , δQ−1)
with (∆i, δi)← skuPKE.Sam(1λ), and let s and si denote the random coins used by skuPKE.Gen
and skuPKE.Sam, respectively. For i ∈ [Q − 1]0 define pki+1 = skuPKE.UpdP(pki,∆i) and
ski+1 = skuPKE.UpdS(ski, δi). Then, skuPKE is IND-CPA secure, if for any choice ρ, j−, j+

with −1 ≤ j− < ρ ≤ j+ ≤ Q and messages m0,m1 it holds that

skuPKE.Enc(pkρ,m0) ≈c skuPKE.Enc(pkρ,m1)

even given access to (pki)i∈[L]0, (ski)i∈[Q]0\[j−+1,j+], (∆i)i∈[Q−1]0, (δi)i∈[Q−1]0\{j−,j+}, as well as
random coins s if j− ≥ 0, and (si)i∈[Q−1]0\{j−,j+}.

Our variant of IND-CPA is incomparable than the one required for two party ratch-
eting [JMM19]; in this work the update information can be generated using adversarially
chosen randomness, and the challenge ciphertext encrypts a message, that contains secret
update information, giving the security notion a circular flavor. On the other hand, only
one secret key is ever exposed to the adversary, while in our notion several are. Compared
to [ACDT20] our security notion is stronger; in this work the authors use skuPKE mainly to
achieve improved forward secrecy. Accordingly, their variant of IND-CPA roughly requires
that access to updated secret keys does not allow to compromise encryption to previous keys,
as long as the update information used to generate the corrupted key remains secure.
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Instantiations. A very efficient instantiation of skuPKE can be constructed in prime
order groups (G, g, p). The scheme is essentially the Hashed ElGamal scheme [ABR01],
where update information is of the form (∆ = gδ, δ) with δ ∈ Zp uniformly random, and
key pairs (X = gx, x) are updated as x + δ and X ·∆ respectively. A formal description of
the scheme and a proof of its security under the CDH-assumption in the ROM is given in
Appendix 6.

2.3 Ratchet Trees

Similarly to other efficient CGKA protocols, our protocol relies on a ratchet tree. This is a
directed binary tree T = (V,E), edges pointing towards the root vroot. Intuitively, the root
corresponds to the group secret and every user id has an associated leaf vid . For node v we
denote its child by v.child , its parents by v.par , and its left and right parent by v.lpar and
v.rpar . If v is a leaf we denote its path to the root by v.path and by v.copath its copath, i.e.
the set of parents of w ∈ v.path that are not themselves in v.path.

Further, v has an associated state v.st consisting of a skuPKE key pair (v.pk, v.sk),
sets v.unm0 and v.unm1, and, if v = vid is a leaf, user id ’s signature key pair (svkid , sskid).
v.unm0 and v.unm1 are sets of unmerged leaves, capturing the leaves below v, whose users
do not know the secret key v.sk. More precisely, v.unm0 corresponds to unmerged users such
that there has not yet been an epoch with an update affecting v since they joined the group,
v.unm1 to unmerged users, for whom a single such epoch exists. We denote by v.stpub the
public part of the state, i.e. (v.pk, v.unm0.v.unm1) and, if v = vid is a leaf, the signature
verification key svkid . The secret part v.stsec of v’s state consists of v.sk and, if v = vid is
a leaf, the signature signing key sskid . Similarly, we denote by T.stpub the public part of
the ratchet tree, i.e., (V,E) together with v.stpub for all v ∈ V . A node’s state can also be
blank, meaning its state is empty. For the purpose of later populating this node with a new
state, a blank node is considered to have a dummy key-pair (pkc, skc), sampled when the
group is created, and whose secret key is public knowledge. Updates unblanking a node will
then update this dummy key-pair. Finally, we define the resolution v.res of v as

v.res =


{v} if v not blank,

∅ elseif v is a blank leaf,⋃
v′∈v.par v

′.res else.

3 Protocol description

We now describe Coffee in detail. Section 3.1 describes how the protocol proceeds in epochs
determined by the blockchain’s blocks, Section 3.2 describes the contents of a user’s state,
Section 3.3 how the structure of the ratchet tree is modified when handling changes to the
group membership, and Section 3.4 how update information for a path in the ratchet tree is
samped and applied. Finally, in Section 3.5 we give the formal description of the protocol’s
algorithms.
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T ratchet tree at the beginning of the current epoch
Tnext working copy of the ratchet tree for the next epoch
Onext dynamic operations to be implemented before next epoch
Upending pending update
ectr epoch counter
K the epoch’s group key
Knext working copy of next epoch’s group key
(pkc, skc) dummy key pair

Table 1: User id ’s state.

3.1 Blocks and Epochs

Coffee proceeds in epochs consisting of k blocks. More precisely the ith epoch corresponds
to blocks i+1, . . . , i+k of the blockchain. Updates are generated with respect to the ratchet
tree of the first block of the current epoch. This is to handle potential delays of up to k
blocks from the moment a user sends a message containing group operations information to
the moment it makes it into the blockchain. At the beginning of a new epoch, the group
switches to a new ratchet tree that incorporates all updates of the last epochs, as well as the
dynamic changes made to the group. One consequence of having to accommodate for such
delays is that users need to store at least the keys at the beginning of an epoch for the entire
duration of it, and if the underlying blockchain does not have immediate finality potentially
keys from further back. This translates into weaker FS guarantees than in the server setting
as a user cannot immediately delete keys after updating to the next state. But this difference
will be marginal as the length of an epoch (or confirmation time of the blockchain, whichever
is larger) will still be tiny compared to the duration for which users are typically offline. A
second consequence is that these delays introduce a further delay in the execution of dynamic
operations. Indeed, updating information generated during an epoch is computed without
taking into account users that were being removed or added during that round. Thus, in
the case of epochs with adds, the key at the end of that epoch will not be known to the new
parties, who will need to wait another round to learn it. In the case of epochs with removes,
the key at the end of that epoch will be blank, so a new key will be necessary to establish a
new group key that the removed users do not have knowledge of. We remark that this seems
to be somewhat inherent. In fact, if we set k = 1, the situation is not that different than that
in other protocols like CoCoA or TreeKEM, where a first round of dynamic operations needs
to be followed by a subsequent one where the commit effecting the operations takes place.
In summary, using a blockchain for decentralization gives improved consistency and security
guarantees, but the delay between protocol rounds is now dictated by the block arrival and
typical inclusion times of the underlying blockchain, while FS is (marginally) affected by the
confirmation time of blocks.
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3.2 Users’ States

User id ’s state id .st contains two ratchet trees T = (V,E) and Tnext = (Vnext, Enext),
lists Onext, and Upending, epoch counter ectr, a key pair (pkc, skc), the (potentially empty)
group key K, and a working copy of the group key Knext for the next epoch. For an overview
see Table 3.2.

T contains the state of the ratchet tree at the beginning of the current epoch. More
precisely, this encompasses the public states v.stpub of all nodes v ∈ V and, if we denote
id ’s leaf in T by vid , additionally the secret node states v.stsec for all nodes v in id ’s update
path vid .path. Ratchet tree Tnext serves as a working copy for next epoch, i.e., it contains keys
updated according to the blocks already processed in the current epoch—excluding dynamic
operations. Note that the two trees differ only in the node states, but not the general tree
structure. To clarify whether we consider nodes in T or Tnext, we will denote nodes in the
latter by vn. Onext is a list of the dynamic operations included in the blocks of the current
epoch that were already processed. These changes will be applied to Tnext at the end of
the epoch. List Upending stores pending update information. The epoch counter ectr is used
to generate and confirm protocol messages for the current epoch, Finally (pkc, skc) is the
dummy key-pair used for blank nodes.

3.3 Implementing Dynamic Operations

As a result of dynamic operations, the tree structure will change. In this subsection we
describe this change, in preparation for the protocol description.

To add parties we use the unmerged leaves technique, introduced in TreeKEM v9. Note
that a new user might not be able to receive the keys for all nodes in their path to root the
moment they are added, since all other parties under any of these nodes might be offline
at the time. Thus, new parties are joined directly to the root, and sent the keys in their
path in subsequent rounds. More in detail, whenever id , whose path shares a node with
that of a new party id ′, generates an update in a follow-up round, they need to encrypt the
current key for that node, together with the seed used to sample the update information to
id ′. However, this key might already have been present in an epoch which preceded that in
which id ′ was added. Hence, sending it to id could cause problems with forward secrecy—id
must ensure that the key sent to id ′ was updated after they joined the group. Thus, this
process is done in two steps. First, upon being added to the group, id ′ is included into the
set v.unm0 for all v in their path, except for the root. Updates that apply to v, issued while
id ′ is in this set v.unm0, do not encrypt any secret information about v to id . Whenever an
epoch first contains such an update for v, however, id ′ is removed from the set v.unm0 and
added to v.unm1, at the end of the epoch. This signals that the key at v is now safe to be
communicated to id ′. Any following update that applies to v once id ′ ∈ v.unm1, will then
encrypt the current key plus the update information to id ′. Once such an update occurs,
id ′ learns the key at v, and is then removed from v.unm1. The one exception to this is the
root node vroot, where id

′ is directly added to vroot.unm1. The reason for this is that all add
operations are coupled with an update from the issuing party, thus ensuring that the root
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key at the end of that epoch is updated, and thus safe to communicate to id ′.
Removes are handled via blanking, where the keys that removed users had knowledge

of get set to the dummy key-pair (pkc, skc) and get ignored by users encrypting new secret
update information δi until they get updated again in a subsequent epoch.

All these changes are executed once at the end of each epoch – though note that while
all group operations in the following epoch will take the new tree into account, added and
removed users will not be properly added and removed until the end of that following epoch.
This seems to be inherent if we want to allow for concurrency: the author of an operation
concurrent with a dynamic one will be oblivious to the latter, thus not being able to prepare
their operation taking it into account.

More in detail, at the end of an epoch where adds A = (A1, . . . , Aℓa), removes R =
(R1, . . . , Rℓr), and modifications M = (M1, . . . ,Mℓm) to the sets of unmerged users took
place, users will call algorithm upd-tree(Tnext, A,R,M), which will output the tree resulting
from applying these operations. First the algorithm in order processes the Mi, which are lists
of nodes that were affected by updates in current epoch (their exact definition is given in
Section 3.4 below). For every v ∈M the sets of unmerged leaves are updated to v.unm1 ←
v.unm0 and v.unm0 ← ∅. Then, algorithm will set the state of all in the paths of any of
the removed users to blank, and associate with them the dummy key-pair (pkc, skc). Added
parties will get assigned a leaf in the tree in a canonical way, determined by the ordering of
operations in the corresponding block. First leaves to be assigned will be blank ones, and
new leaves to the right of the existing ones will be added, if there are not enough blanked
ones, adding any internal nodes necessary to maintain the binary structure of the tree. If
a new root node needs to be added to accommodate for the new parties, this will be given
the dummy key-pair until it gets updated at the end of the next epoch. Then, for each
of the newly added parties id i with init key pkid , it sets the state of their new leaf vid to
(pkid , svkid), and for any v ∈ li.path except the root vroot, it adds id i to v.unm0. The root
idi is added to vroot.unm1. Finally, it outputs the tree resulting from applying these changes.

Both blanks and the unmerged leaves sets can disappear over the protocol execution,
bringing the tree back to its optimal binary structure. Whenever an Update including new
update information for a node v takes place, v will become unblanked if it was not so already.
Moreover, unmerged leaves in unm1 will become merged, and those in unm0 will then pass
to unm1.

3.4 Updating the States of an Update Path

During the initialization of a group and when updating, users will frequently update the keys
along some path. Before turning to the description of our protocol’s algorithms, we detail
this operation.

Consider user id with associated leaf vid . Update information for the keys of vid .path is
sampled using

((∆i, δi, Ci)i, κ)← gen-path-upd(id .st) .

The algorithm, on input of the user’s state, first fetches (v1 = vid , . . . , vr = vroot) = vid .path
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with respect to ratchet T corresponding to the beginning of the epoch. Let m be maxi-
mal such that id ∈ vm−1.unm0 ∪ vm−1.unm1. If no such m exists, we set m = 2. The
algorithm samples a seed s1 uniformly at random and computes sm = H1(s1) as well as
si = H1(si−1) for i = m + 1, . . . , r. For i ∈ {1,m, . . . , r} it samples update informa-
tion (∆i, δi) ← skuPKE.Sam(H2(si)) using randomness H2(si). It then for i ∈ {m, . . . , r}
computes vectors of ciphertexts Ci = (ci,j)zj with ci,j ← skuPKE.Enc(zj.pk, si), where the
nodes zj are chosen as

zj ∈ wi−1.res ∪ vi.unm1 \ vi−1.unm1

for i = m+ 1, . . . , r and

zj ∈ (vi.lpar).res ∪ (vi.rpar).res ∪ vi.unm1 \ {id}

for i = m.Finally, κ = H1(sr) will be used to update the group key. The algorithm’s output
is ((∆i, δi, Ci)i, κ). Looking ahead, (∆i, Ci)i will be sent out as the update message and
((∆i, δi)i, κ) saved in the user’s pending state.

When user id ′ wants to apply a path update (∆i, Ci)i with i ∈ {1,m, . . . , r} generated
by user id , they call algorithm

id ′.st ← proc-path-upd(id ′.st , (∆i, Ci)i) .

It first fetches user id ’s update path (vn1 = vnid , . . . , v
n
r = vnroot) = vnid .path from the working

copy Tnext of the ratchet tree. Then, for all i it updates the public keys along the path, i.e.,
vni .pk ← skuPKE.UpdP(vni .pk,∆i). Here, if vni was blank and thus has no associated public
key, the public key of a constant dummy key-pair (pkc, skc) is used as vni .pk. Note that this
implies, that the resolution of vni is now {vni }.

Let vi denote the first node that is shared between vid .path and vid ′ .path and for which
id ′ /∈ vi.unm0. Then, if the update was generated during the current epoch, Ci contains
an encryption ci,j of seed si under the public key of some node wi,j for which the secret
key is contained in id ’s copy of tree T that is part of vid ′ .st . The algorithm recovers si ←
skuPKE.Dec(wi,j.sk, ci,j) and for j ∈ {i + 1, . . . , r} computes sj = H1(sj−1) and update
information (∆j, δj) ← skuPKE.Gen(H2(sj)). It then updates the corresponding secret keys
in Tnext as v

n
j .sk ← skuPKE.UpdS(vnj .sk, δj), where, analogous to the above, if vj is blank, skc

takes the role of vj.sk. Finally, the algorithm computes group key update information κ =
H1(sr), incorporates it in the working copy of the group key Knext ← Knext ⊕ κ, and adds
the list M = (vm, . . . , vr) to Onext. The latter will be used to update the sets of unmerged
users at the end of the epoch.

3.5 Protocol Algorithms

Initialization. To initialize a group for users (id1, . . . , idn), user id1 first generates the

dummy key-pair (pkc, skc)
$← skuPKE.Gen(1λ). They then set up a left-balanced binary

ratchet tree T = (V,E), where the ith leaf corresponds to user id i. T is completely blanked
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except for the leaves, that are set to have the corresponding user’s initialization public key as
associated key and further contain their signature verification key. Further, vid1 .stsec contains
id1’s secret decryption and signing key. id1 incorporates (pkc, skc), T , a copy Tnext of T , and
an empty list Onext in their state and then computes ((∆i, δi, Ci)i, κ)← gen-path-upd(id1.st).
((∆i, δi)i, κ) is added to id1’s state together with epoch counter ectr = 1 and Knext is set to
the zero string. The resulting welcome message is W = (T.stpub, (∆i, Ci)i, (pkc, skc), σ, id1),
where σ is a signature of (T.stpub, (∆i, Ci)i, (pkc, skc)) under sskid1 .

Update. To issue an update, party id computes ((∆i, δi, Ci)i, κ) ← gen-path-upd(id .st).
The secret update information (δi)i and κ are stored in id ’s pending state Upending.

Let (v1, . . . , vr) = vid .path be id ’s update path. Update messages also communicate the
current secret key of nodes to unmerged users that have already processed an update on this
node. More precisely, the updating user for all i ∈ [2, . . . , r] such that id /∈ vi.unm0∪vi.unm1

computes a vector of ciphertexts C̃i = (c̃i,j)zj , where c̃i,j = skuPKE.Enc(zj.pk, vi.sk) and zj
are the nodes satisfying zj ∈ vi.unm1. The update message is given by ((∆i, Ci)i, (C̃)i, ectr, σ, id),
where σ is a signature of ((∆i, Ci)i, (C̃)i, ectr) under sskid .

Add. User id generates an add message Ã = (A, T.stpub, (pkc, skc), U, ectr, σ, id) to add
user id ′. It contains an add request Ã = “add.user(id ′, id)”, a copy of the public ratchet
tree state, the dummy key pair, an update message U generated as described in the previous
paragraph, the epoch counter, a signature σ of (A, T.stpub, (pkc, skc), U, ectr) under sskid ,
and the identity id .

Remove. In order to remove user id ′ from the group, user id generated R̃ = (R =
“remove.user(id ′, id)′′, ectr, σ, id), a removal message , where σ is a signature of (R, ectr)
under sskid .

Processing a Block. User id processes a block B = (W,U, Ã, R̃) consisting of (a potential)
welcome message W , update messages U = (U1, . . . , Uℓu), add messages Ã = (Ã1, . . . , Ãℓa),
and removal messages R̃ = (R̃1, . . . , R̃ℓr) as follows.

We first describe how users who already processed a block since joining the group, process
B, before turning to newly added users. In this case B = (U, Ã, R̃). User id first processes the
update messages in the order given by the block as follows. Update message Uℓ for ℓ ∈ [ℓu]
has the form ((∆i, Ci)i, (C̃)i, ectr, σ, id). First, the user checks, whether the signature σ
verifies under svk′

id and that ectr matches the value stored in id .st . If one of the checks fails
the update is discarded.

If id = id ′, i.e., Uℓ is an update generated by the processing user, id retrieves from
Upending the corresponding update information ((∆i, δi)i, κ) with i = {1,m, . . . , r} for some
m, deletes it from Upending, and applies it to their update path vnid .path = (vn1 , . . . , v

n
r ) with

respect to Tnext as vni .pk ← skuPKE.UpdP(vni .pk,∆i) and vni .sk ← skuPKE.UpdS(vni .sk, δi)
(note that this updates all key pairs on id ’s update path for which the user has access to
the secret key). Then they set Knext ← Knext ⊕ κ.
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Else, let vu1 , . . . , vut be the nodes in vid .path ∩ vid ′ .path such that id ∈ vui
.unm1 and

ui ≥ m. Then, C̃ui
contains an encryption of vui

.sk under id ’s leaf key vid .pk. For i ∈
[u1, . . . , ut] The user uses the corresponding secret key to recover vui

.sk and adds it to the
node’s state vui

.st in T and Tnext unless the state already contains a secret key. Then id
calls id .st ← proc-path-upd(id .st , (∆i, Ci)i), which updates the keys affected by the update
in the working copy Tnext of the ratchet tree (note that the secret keys added in the previous
step ensure that id is able to decrypt the ciphertext relevant to them), the working copy of
the group key, and the list of merges to be implemented at the end of the epoch.

After processing all update operations, id processes adds Ã and removes R̃. First, they
check that the signature included in a message verifies and that the message was gener-
ated for the current epoch, discarding it if not. In the case of an add message Ãℓ =
(Aℓ, T.stpub, (pkc, skc), U, ectr, σ, id) the user processes the update message U as described
above and appends Aℓ to Onext. For valid remove message R̃ℓ = (Rℓ, ectr, σ, id) the request Rℓ

is added to Onext.
Finally, if B was the last block of an epoch, i.e., B is the ith block with i = 0 mod k, then

id prepares the transition to the next epoch. To this end, id recovers from Onext the ordered
lists of merges M = (M1, . . . ,Mℓm), adds A = (A1, . . . , ALa), and removes R = (R1, . . . , RLr)
that were included in the blocks of the current epoch. Then they apply these changes to
the working copy of the ratchet tree Tnext ← upd-tree(Tnext, A,R,M) to be used in the
next epoch, update T ← Tnext, increase the epoch counter to ectr ← ectr + 1, set Onext

to the empty list, and update the group key to K ← H1(“key”, Knext), and afterwards
Knext ← H1(“next”, Knext).

In the case that id processes their first block since joining the group we consider the two
cases (a) that they were added in an add operation or (b) in the group initialization. In
case (a) let Bp

1 , . . . , B
p
k be the blocks of the previous epoch. Then one of these blocks con-

tains an add message Ã = (A, T.stpub, (pkc, skc), U, ectr, σ, id) with A = “add.user(id ′, id)”
being the add request for user id . The user, after validating signature and epoch, incor-
porates T.stpub, (pkc, skc) in id .st . As T.stpub is the ratchet tree of the previous epoch, id
brings it up to date by processing, in order, the blocks Bp

1 , . . . , B
p
k . Here, as they do not

have access to any secret keys of the tree, they only update the public keys. After this oper-
ation T and its copy Tnext match the current epoch and the user adds to vid .stsec their init
decryption key and sskid , and then processes the current block B = (U,A,R) as described
above.

Finally, assume that id was added as part of the group initialization, i.e., B = (W ) with
W = (T.stpub, (∆i, Ci)i, (pkc, skc), σ, id1). In this case id checks that the signature σ verifies
under svkid1 , rejecting it if this is not the case. If id is the user who issued the initialization
message, they recover ((∆i, δi)i, κ) from their state, apply the update information to their
update path, set Knext ← κ, and K ← H1(“key”, Knext). If id did not issue the initializa-
tion message, they incorporate (T.stpub, (pkc, skc)) in their state, add to vid .stsec their init
decryption key and sskid , set Knext to the zero string, and run M ← proc-path-upd(id ′.st ,
(∆i, Ci)i) to update Tnext. K is set to H1(“key”, Knext), Onext is initialized as empty list, as
there are no merge, add, or remove operations yet, and ectr ← 1.
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Protocol Concurrent Rounds to heal Sender comm. (cumulative) Recipient comm. (per user) Update cost after healing

TreeKEM I [BBR18] No n O(n log(n)) O(n log(n)) O(log(n))
TreeKEM II [BBR18] Yes 2 O(n) O(n) O(n)
Causal TreeKEM [Mat19] Yes n O(n log(n)) O(n log(n)) O(log(n))
Bienstock et al. [BDR20] Yes 2 O(n2) O(n2) O(log(n))∗
Weidner et al. [WKHB20] Yes 2 O(n2) O(n) O(n)
CoCoA [AAC+22] Yes ⌈log(n)⌉+ 1 O(n log2(n)) O(log2(n)) O(log(n))
Coffee (this work) Yes ⌊log(t)⌋+ 1 O(n log(n) log(t)) O(n log(n) log(t)) O(log(n))

Table 2: Overview of the cost incurred to heal t corruptions in a group of size n (it is not
known which t of the n users are corrupted). TreeKEM I corresponds to the conservative
approach of only healing by sending commits, TreeKEM II to using update proposals to
heal at the expense of extra blanking. ∗ [BDR20] only achieves weak PCS, obtaining PCS
guarantees similar to the rest would need O(n) cost after healing, due to extensive tainting.

Retrieving the Group Key. To extract the current group key, a user id fetches K from
its state, and deletes this value afterwards.

Sending a Transaction. To send a protocol message, id simply uses the underlying
blockchain protocol to send it as a transaction to the blockchain.

Fetching new Blocks. To download the last blocks of operations, id uses the underlying
blockchain protocol to retrieve the blocks added to it since it last did.

4 Efficiency

In this section we discuss the efficiency of the protocol in healing a group with t compromises,
and how it compares to related ones. Throughout we refer to Table 2. There, we distinguish
between two modes of TreeKEM (Propose and Commit). TreeKEM I corresponds to the con-
servative approach of only healing by sending commits (which would be expected behaviour,
as argued below), hence is not concurrent. TreeKEM II, in turn corresponds to using update
proposals to heal at the expense of extra blanking. Note that an execution where, as a rule,
users achieve PCS by sending update proposals instead of commit is not compatible with
retaining logarithmic communication in the long term, due to the big amount of blanks,
as illustrated on the last column of Table 2. Thus, the data shown for the communication
complexity of the latter mode of TreeKEM during healing is only short term.

We consider the process by which the group heals from t compromises. We first stress
that since a party does not know if they are corrupted, they cannot decide whether to
update based on this. The main novelty of our protocol is that the number of rounds that
it takes to heal depends on the number of corrupted parties, but not on relative update
behaviour of users. Indeed, while several previous protocols could heal faster that what is
shown on the table in an optimal execution, this execution needs for the users and/or the
server to coordinate and/or make ”optimal” choices obliviously (since, again, there is no
reason the identities of corrupted parties are known); for instance, give preference to the
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corrupted parties in the case of concurrency, or coordinate to not concurrently commit or
update. In the table we consider thus all users updating. This is the case for TreeKEM I and
Causal TreeKEM, who could heal optimally in t rounds, and thus reduce the communication
complexity accordingly; but also for TreeKEM II, [BDR20] and [WKHB21], for which the
number of rounds is not affected, but whose communication complexity could be reduced in
an optimal execution.

One can see that among the protocols that provide sub-linear communication costs for
sending updates over the long term, our protocol manages to heal in the least amount of
rounds. On the recipient side, our protocol performs within a logarithmic factor of all others,
except for CoCoA, which naturally outperforms all other in this regard, due to users only
storing a partial view of the tree.

5 Security

5.1 Security model and safe predicate

To analyze the modified protocol, we essentially use the security model from [KPPW+21],
which allows the adversary to act partially active and fully adaptive. The only differences
in the setting of baCGKA are that 1) users are processing concurrent messages, and 2) no
messages will ever be rejected. Regarding 2) it is however possible that messages get lost
and hence, even if a user generated an update it might not process this update.

Definition 3 (Asynchronous baCGKA Security). The security for baCGKA is modeled using
a game between a challenger C and an adversary A. At the beginning of the game, the
adversary queries create-group(G) and the challenger initialises the group G with identities
(id1, . . . , idn′). The adversary A can then make a sequence of queries, enumerated below, in
any arbitrary order. On a high level, add-user and remove-user allow the adversary to
control the structure of the group, whereas store-on-blockchain and process allow it to
control the scheduling of the messages. The query update simulates the refreshing of a local
state. Finally, start-corrupt and end-corrupt enable the adversary to corrupt the users
for a time period. The entire state and random coins of a corrupted user are leaked to the
adversary during this period.

1. add-user(id , id ′): a user id requests to add another user id ′ to the group.

2. remove-user(id , id ′): a user id requests to remove another user id ′ from the group.

3. update(id): the user id requests to refresh its current local state γ.

4. store-on-blockchain(q1, . . . , ql): for queries q1, . . . , ql, all of which must be actions
of the form ai ∈ {create-group, add-user, remove-user,update} by some users
id i (for i ∈ [l]), this action stores the outputs of the queries in the next block of the
blockchain.
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5. process(ℓ′, id): for (B1, . . . , Bℓ) ← baCGKA.Fetch(id .st) and ℓ′ ∈ [ℓ], this action for-
wards all blocks B1, . . . , Bℓ′ to id, who immediately processes them.

6. start-corrupt(id): from now on the entire internal state and randomness of id is
leaked to the adversary, with the exception of sskid .

7. end-corrupt(id): ends the leakage of user id’s internal state and randomness to the
adversary.

8. challenge(ℓ∗): A picks a block Bℓ∗. Let K0 denote the group key that is established by
processing the first ℓ∗ blocks B1, . . . , Bℓ∗ in the blockchain and K1 be a fresh random
key; if there is no group key established after block Bℓ∗,

3 then set K0 = K1 := ⊥. The
challenger tosses a coin b and – if the safe predicate below is satisfied – the key Kb is
given to the adversary (if the predicate is not satisfied the adversary gets nothing).

At the end of the game, the adversary outputs a bit b′ and wins if b′ = b. We call a baCGKA
scheme (ϵ, t, Q)-baCGKA-secure if for any adversary A making at most Q queries of the form
update(·) and running in time t it holds

AdvbaCGKA(A) := |Pr[1← A|b = 0]− Pr[1← A|b = 1]| < ϵ.

We define the safe predicate to rule out all trivial winning strategies, such as challenging
a block while some current group member is corrupted.

Definition 4 (Critical window, safe user). Let L be the length of the blockchain, C the
number of users A corrupts throughout the security game, and ℓ∗ ∈ [L]. For user id, define
q−id ∈ [Q]0 to be maximal such that the following holds:

� There exist c := ⌊log(C)⌋+ 1 blocks Bℓ1id
, . . . , Bℓcid

in distinct epochs within the first ℓ∗

blocks in the blockchain such that each contains an update query aiid := update(id)
(i ∈ [c]) that

1. was generated by id in or after query q−id ,

2. is successful, i.e. refers to block Bℓ̄iid
with ℓ̄iid = ℓiid − (ℓiid mod k).4

If there do not exist c such blocks then we set q−id = 0, the first query.

� There exists a block Bℓ−id
with ℓ−id ≤ ℓ∗ that contains an update a−id := update(id)

for user id for which 1) and 2) hold, but the entire epoch does not contain any more
successful updates for corrupted users. We call such an update a single update.

3This could happen if the root of the tree is blanked, e.g. if no update was stored on the blockchain yet.
4Recall, by definition of the process operation in our protocol, condition 2) is necessary for the update

aiid in block Bℓiid
to be indeed processed by users processing block Bℓiid

.
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Furthermore, let q+id be the first query that invalidates id’s current keys, i.e., in query q+id ,
id processes an initial block Bℓ+id

of some subsequent epoch5 (i.e. ℓ+id/k = ⌊ℓ+id/k⌋ > ⌊ℓ∗/k⌋)
such that one of the blocks Bℓ∗+1, . . . , Bℓ+id

contains an update a+id := update(id) referring

to block Bℓ+id−k. If id does not process any such query then we set q+id = Q, the last query.

We say that the window [q−id , q
+
id ] is critical for id with respect to challenge ℓ∗. Moreover, if

the user id is not corrupted at any time point in the critical window, we say that id is safe
w.r.t. ℓ∗.

In Section 5.3 we discuss an strenghtening of this definition, that our protocol would also
satisfy, but which we omit for now for the sake of simplicity. Similar to [KPPW+21], we
define a group key as safe if all the users in the group are individually safe, i.e., not corrupted
in their critical windows.

Definition 5 (Safe predicate). Let K∗ be a group key established by processing the first ℓ∗

blocks of the blockchain and let G∗ be the set of users which end up in the group after block
Bℓ∗ was processed. Then the key K∗ is considered safe if for all users id ∈ G∗ we have that
id is safe w.r.t. ℓ∗ (as per Definition 4).

5.2 Security of the protocol

Theorem 1. If the secretly key-updatable public key encryption scheme used in Coffee is
(ϵEnc, t)-IND-CPA-secure and the used hash functions are modeled as random oracles, then
Coffee is (O(ϵEnc · 2(nQ2)2), t, Q)-baCGKA-secure.

In order to prove Theorem 1, we first argue that a safe group key is not leaked to the
adversary via corruption. We make this formal in the following definition and Lemma 2. In
fact, we define leakage of arbitrary secret information which the adversary could potentially
learn through corruption.

Definition 6 (Secure keys, update information, and seeds). For a seed s we say s is leaked
if it is sampled by a user while this user is corrupted, or it is encrypted to the public key
associated to a leaked secret key, or s was derived through s := H1(s

−) and s− is leaked.
A key Knext that was derived through Knext := K−

next ⊕ κ is leaked if it is contained in a
user’s state while this user is corrupted, or K−

next and κ are both leaked. If Knext was derived
through Knext := H1(“next”, K

−
next) then it is leaked if it is contained in a user’s state while

this user is corrupted, or K−
next is leaked.

A group key K that was derived through K ← H1(“key”, Knext) is leaked if K is contained
in a user’s state while this user is corrupted, or Knext is leaked.
Let δ be secret update information that was generated by first sampling a seed s, then comput-
ing s′ := Hi

1(s) for some i ∈ [⌈log(n)⌉]0, and then computing (∆, δ)← skuPKE.Sam(H2(s
′)).

The secret update information δ is leaked if δ is contained in a user’s state while this user

5Recall, in order to be able to process messages in the current epoch, a user keeps the keys of the first
round of the current epoch in its state and will only release these keys once it proceeded to the next epoch.
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is corrupted, or s′ is leaked.
The secret key skc of the dummy key pair (pkc, skc) is always considered leaked. For a user’s
initial key pair (pk, sk), sk is leaked if sk was in the user’s state while the user was cor-
rupted. Let sk′ be a secret key that was generated as sk′ ← skuPKE.UpdS(sk, δ). The key
sk′ is leaked if sk′ is contained in a user’s state while this user is corrupted, or sk and δ are
both leaked.
A secret key/secret update information/seed is called secure if it is not leaked. We say that
a corruption of some user id does not leak key sk, if leakage of sk is independent of that
corruption of id.

Remark. Note that the above definition only defines security for honestly generated secret
keys/secret update information/seeds. This is enough for our purpose, since in our security
model the adversary can only act through honest users. Furthermore, the definition might
look circular at first sight; however, this is not the case since any seed associated with some
node in the tree is only encrypted to keys that are associated with nodes lower in the tree.

Lemma 2. Assume there are no collisions among seeds, update information and keys through-
out the security experiment. If a group key K∗ is safe as per Definition 5 then it is secure
as per Definition 6.

In order to prove Lemma 2, we rely on the fact that the users who can derive the challenge
key K∗ are exactly those in G∗, where the set of group members G∗ is defined to be the
users for which either an add-user(·, id) operation was included in block ℓa ≤ ℓ∗ − (ℓ∗

mod k), or id ∈ G for the initial group set up by create-group(G) (in which case we let
ℓa = 0); and such that no remove-user(·, id) was included in block ℓr, with ℓa + k − (ℓa

mod k) ≤ ℓr ≤ ℓ∗ − k − (ℓ∗ mod k).
Note that, on the one hand, any operation included in a block and accepted by users

must come from a user itself, as the adversary is not allowed to create messages itself. On
the other hand, since all users share a common view of the blockchain, they will accept the
same operations and have the same view of the group members set.

Lemma 3. Assume there are no collisions among seeds, update information and keys through-
out the security experiment. Then corruption of users not in G∗ does not leak K∗.

Proof. Assume K∗ is leaked. We show that K∗ must have been leaked through corruption
of some user id ∈ G∗. By definition, either a user who had K∗ in its state was corrupted or
the key K∗

next used to derive K∗ was leaked. In the first case, since all users share a common
view of the blockchain and a user holding K∗ must have processed the update in which K∗

was generated, clearly this user must be in G∗ and hence leakage of K∗ is independent of
any further corruptions of users outside G∗. Now, consider the second case. Similarly, a user
holding K∗

next in its state must be in G∗, and the same is true for a user holding K−
next if

K∗
next was derived as K∗

next := H1(“next”, K
−
next). Hence we consider the case where K∗ is

leaked because for some Knext, which was derived as Knext = K ′
next ⊕ κ, both K ′

next and κ
were leaked.
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Let id /∈ G∗ and assume for contradiction that id during the game learns a seed that was
used to derive κ. Clearly, since id /∈ G∗, id cannot have produced κ itself. Let ℓ ≤ ℓ∗ be the
last block index such that ℓ ≡ 0 mod k, and let ℓ− = ℓ − k. We must have that either no
add-user(·, id) operation was included in any block before time ℓ, or that a block ℓr ≤ ℓ−

contained a remove-user(·, id) operation. Now, if there was never an add-user(·, id) before
or at time ℓ (for convenience, here we count time in blocks on the blockchain), no seed was
ever encrypted to an initkey of id at any time before ℓ. Moreover, if id is added to the group
after ℓ, it will not be sent any key or new seed until it belongs to the set v.unm1 for some
v on the update path of the user generating κ, meaning that at least one update affecting
the v took place after ℓ, thus updating its key at this time. Similarly, if such an operation
was included in a block in [ℓ + 1, ℓ∗] (if such an interval exists), id will still not receive any
encryption by block ℓ∗, and will thus learn no seeds used to derive κ either.

Assume, thus, that id was removed in block ℓr. Since the group key K∗ is generated
w.r.t. time ℓ, there must have been an entire epoch between [ℓr, ℓ] (the first following the
epoch to which ℓr belongs to, and where any updates took place), where all new secret
update information values were encrypted under keys outside the then blanked path of id .
In particular, id cannot have learnt a seed that was used to derive κ.

This implies that κ was leaked through corruption of a user in G∗ at a time when it did
not yet process the update generating K∗. By correctness of the scheme, this user must be
able to derive K ′

next, hence K ′
next is leaked through the same corruption and, hence, leakage

of K∗ is independent of any corruption of users outside G∗.

Proof (of Lemma 2). By Lemma 3 leakage of the challenge key K∗ is independent of cor-
ruption of users outside G∗, hence we only have to consider users id ∈ G∗ in the following.
Since the challenge group key K∗ is safe, all users id ∈ G∗ are safe, i.e. not corrupted
during their respective critical windows. This implies for every user id ∈ G∗ that 1) id is
not corrupted during the current epoch; 2) either id was not corrupted before it processed
Bℓ∗ , or id successfully updated in at least c := ⌊log(C)⌋ + 1 epochs before the current one
and after it’s last corruption (where C denotes the number of corrupted parties), or id had
a successful single update in some previous epoch; and 3) after it processed Bℓ∗ , either id
was never corrupted again, or an update for id gets included into a block after Bℓ∗ and id
processed the initial block of the subsequent epoch before it’s next corruption started.

We will first argue that due to 3), corruption of safe users after they already processed
Bℓ∗ does not leak the challenge key K∗. To this aim, note that through successfully updating
and processing the initial block of the subsequent epoch, a user completely refreshes its state
and, in particular, does not have any of the keys associated with the tree established in
block Bℓ∗ or with any previous tree state in its state, neither does it have any seeds used to
derive such keys in its state. Furthermore, all the seeds used to derive the keys in the tree
established in Bℓ∗ were encrypted to tree states associated with blocks before block Bℓ∗ , and
the seed used for the successful update was freshly sampled after processing block Bℓ∗ and
deleted when processing the initial block of the subsequent epoch. On the other hand, if for
some node on the update path the associated seed derived during such a successful update
is leaked through another user, then also the key associated to that node in the beginning
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of the respective epoch is already leaked through that user. In other words, while leakage of
some update information could allow an adversary who is given the new key to reverse that
update and derive the old key, this old key is already leaked through the same corruption
that leaked the update information. This proves that corruption of safe users after they
processed Bℓ∗ does not leak K∗.

Now, consider a node v in the tree established in block Bℓ∗ and assume that every party
under v, that was corrupted before it processed Bℓ∗ , since corruption ended successfully
updated in at least i previous epochs or had a successful single update in some previous
epoch, and furthermore every party under v, that was corrupted after it processed Bℓ∗ ,
successfully updated after it processed Bℓ∗ and processed the initial block of the subsequent
epoch before its next corruption starts. We will show by induction on i that if the secret
key, which is associated to v (resp. the challenge key in case v is the root) after block Bℓ∗

was processed, is leaked, then at least 2i of the corrupted parties {id1, . . . , idC} have update
paths through v. Since for i = ⌊log(C)⌋ + 1 we have that 2i > C, it follows that the key
associated to node v cannot be leaked. Hence, for v = vroot we obtain that K∗ is secure.

For the inductive argument, note that for i = 0 the statement is true since if the key
associated to v is leaked there must be at least 1 = 20 corrupted parties with an update path
through v. Now, let i ≥ 1 and assume that the statement holds for all integers smaller than
i. Let l be the epoch in which the last of the corrupted parties with update paths through
v updates for the ith time or had a successful single update. During this epoch, key skv
at node v is replaced with skuPKE.UpdS(. . . skuPKE.UpdS(skuPKE.UpdS(skv, δ1), δ2) . . . , δJ),
where the rerandomization terms δj and sj stem from the J parties which update node v
during epoch l. The group key K, on the other hand, which is associated with the root of
the tree, is derived as H1(“key”, Knext) where Knext is replaced with Knext⊕

⊕
j∈[J ] κj. Note

that in order for skv (resp. K
∗ if v is the root of the tree) to be leaked it is necessary that the

adversary learns all δj (resp. κj), which implies that for all j ∈ [J ] the seed used to derive δj
(resp. κj) is leaked, i.e. was either derived from a leaked seed, or encrypted to a leaked key.
We consider the three cases that after epoch l − 1 (a) there are at least two nodes v1, v2 in
the resolution of the parents of v whose associated keys are leaked, (b) there is exactly one
node v′ in the resolution of the parents of v whose associated key is leaked and at least one
update path in epoch l goes through v′, and (c) there is exactly one node v′ in the resolution
of the parents of v whose associated key is leaked and all of the update paths of epoch l do
not go through v′. Note that one of the cases has to occur since otherwise the key associated
to v would be secure after epoch l.

Consider case (a). After epoch l− 1, by minimality of l, it must hold that either 1) every
corrupted party under v1 and v2 has updated in at least i−1 epochs or had a successful single
update, or 2) all but one corrupted party under v1 and v2 has updated in at least i epochs
or had a successful single update. In case 1), we obtain by the induction hypothesis that at
least 2i−1 corrupted parties have update paths through v1 and v2 respectively. In turn there
are at least 2i corrupted parties under v. In case 2), we have that all corrupted users under
vb for some b ∈ {1, 2} have successfully updated in at least i epochs preceding l − 1 or had
a successful single update before epoch l − 1. Furthermore, the number of corrupted users
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below vb is strictly smaller than the number of corrupted parties below v. We denote by l′

the epoch in which the last of the corrupted parties with update paths through vb updates
for the ith time or had a successful single update and can now do the same case distinction
for epoch l′ and node vb.

In case (b), for every update path of epoch l which goes through v′ the seed used to
derive the δj is encrypted to secure keys. Thus, in order for skv to be leaked it is necessary
that the seeds used to derive the key associated to node v′ were leaked as well. This implies
that the key associated to v′ is leaked even after epoch l. Thus we can set l′ ← l and make
the same case distinction for v′.

Now consider case (c) and let v′ be the only node in the resolution of the parents of v
that has a leaked associated key. Node v′ is not part of the update paths of epoch l. Thus,
every corrupted party with update path through v′ must have updated in at least i epochs
before epoch l or had a successful single update before epoch l, and further by definition of
l the number of such parties is strictly smaller than the number of corrupted parties below
v. Analogous to above let l′ denote the epoch in which the last corrupted party under v′

updated for the ith time. We can now make the same case distinction as above.
Summing up, if case (a)1) occurs, then at least 2i of the corrupted parties {id1, . . . , idC}

have update paths trough v. If, on the other hand, cases (a)2), (b) or (c) occur, then there
exist a parent v′ of v and an epoch l′ such that all corrupted parties under v′ updated
at least i times or had a single update, and the last to do so did in epoch l′. Note that
repeated application of the case distinction reduces the height of node v′ in the tree. Thus
if we assume that case (a)1) never occurs, at some point we end up with a leaf node v′

such that the associated key is leaked and the user associated with that leaf either was not
corrupted or updated at least once since its last corruption; in both cases the associated key
would be secure. Thus, at some point case (a)1) has to occur, which implies the desired
statement.

Lemma 2 in place, the proof of Theorem 1 follows the security proof from [KPPW+21].
The main difference here is that we reduce baCGKA security of Coffee to the IND-CPA
security of the underlying secretly key-updatable public-key encryption scheme skuPKE as
per Definition 2 (opposed to IND-CPA security of a simple public-key encryption scheme
as in [KPPW+21]). Looking into the details of our protocol, another difference is that the
update information for the group key is derived by hashing a seed associated to the root of the
challenge tree, but this update information is never encrypted (as opposed to [KPPW+21],
where the seed is directly applied to derive the new group key); this slight modification in
our current protocol will allow for quite some simplification of the proof from [KPPW+21].

Repeating the entire rather technical argument of [KPPW+21] would be outside the scope
of this work; instead we give a high level overview on the proof of [KPPW+21] and discuss
how the proof can be adapted.

Proof sketch (of Theorem 1). The main idea in [KPPW+21] is the following: If H1 and
H2 are modeled as random oracles, then all the public-key pairs (pk, sk) sampled through
skuPKE.Gen as well as the update information (∆i, δi) have the same distribution as if they
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were sampled independently (to ensure consistency, the random oracles can be programmed
accordingly). Furthermore, by Lemma 2, the challenge key K∗ := H1(“key”, Knext) is secure,
i.e. K∗ is not contained in a user’s state while the user is corrupted and (the seed) Knext is
secure.

Now, if the adversary never queries a secure seed to the random oracles H1 and H2,
then the group key K∗ is identically distributed to a uniformly random, independent string.
Thus, any adversary that has advantage > 0 in breaking the security of Coffee must query
the oracles H1 or H2 on some secure seed; we call this event E.6 As long as E doesn’t happen,
every secure seed is information-theoretically hidden unless encrypted to some (secure) key.
The idea for our (fully black-box) reduction R now is to embed an IND-CPA challenge (with
two uniformly random seeds as messages) for skuPKE and hope that the query that makes
E turn true will be the seed that was encrypted in the challenge ciphertext; when E turns
true, the reduction stops the experiment. To see why this works, note that by Definition 6,
for every secure key pair (pk∗, sk∗) there exist ρ, j−, j+ with −1 ≤ j− < ρ ≤ j+ ≤ Q such
that

� (pk∗, sk∗) was derived by ρ times updating either some dummy key pair (pk0, sk0) or
an init key of some user; we write (pkρ, skρ) := (pk∗, sk∗),

� secret keys (ski)i∈[j−+1,j+] as well as secret update information δj− , δj+ are secure.

Now, as long as E does not happen, the secret update information δj− , δj+ is identically
distributed to freshly sampled, independent update information, hence, the reduction can
indeed embed an IND-CPA challenge for skuPKE within the baCGKA security experiment.

To bound the security loss involved by our reduction, note that seeds associated to leaves
are information-theoretically hidden unless compromised through corruption, and also the re-
spective other message used in the IND-CPA security experiment is information-theoretically
hidden as long as E did not happen7. Thus, except with negligible probability, whenever
the reduction R correctly guessed ρ∗, j−, j+ and embedded the challenge key pair (pkρ, skρ)
of the skuPKE challenge and the two seeds at the right position in the challenge tree, then
R succeeds in embedding its challenge and turning the adversary into an adversary against
IND-CPA security of the skuPKE scheme. More precisely, before the game starts, R guesses
uniformly at random the query q∗ in which the seed s∗ that makes event E turn true is
generated. Furthermore, for the key pk∗ to which s∗ will be encrypted during the game, R
guesses uniformly at random the position v∗ in the tree as well as the number of updates
ρ∗ through which the key pair (pk∗, sk∗) was derived, as well as the indices j−, j+ for the
skuPKE challenge. Thus, R succeeds with probability 1/(2nQ4), and additionally taking into
account unmerged leaves we end up with a security loss of roughly 2(nQ2)2.

6In fact, this property of our scheme would allow us to prove security based on a weaker security assump-
tion than IND-CPA security for skuPKE, where given an encryption of a random message the adversary has
to compute the message.

7For simplicity of exposition, we ignore the issue of unmerged leaves here; the general case including
unmerged leaves and therefore multiple encryptions of the same seed follows by a hybrid argument, losing
another multiplicative factor n in security.
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5.3 A stronger safe predicate

The safe predicate in the section above, or, in particular, the definition of critical window,
is written with respect to the users corrupted by A since the beginning of the security game.
Here, we will briefly argue that, while we presented it like this for simplicity, in practice one
would want to consider a stronger version, that takes into account the users corrupted only
from the last time a group key was safe. We will argue that such a strenghthening follows
easily, if only at the cost of a more convoluted presentation.

Example: A safe group key not covered by the safe predicate. First, to see why
the predicate defined above (Definitions 4 and 5) is suboptimal, observe that by defining it
in such a fashion, we exclude several situations where a key is safe (but would be marked
as unsafe by said predicate). This is because it ignores the possibility of healing at some
point throughout the game execution, some time before the challenge query. For instance,
consider the game execution where the adversary corrupts every user at some point, but
does so by corrupting users two by two, in order from left to right, say. Further, A ends
each pair of corruptions before starting the next and, moreover, in between each pair of
corruptions, A has the last two corrupted users, concurrently, issue two updates each, thus
healing their state. I.e., A first corrupts id1 and id2, ends the corruption of both of them,
makes them issue updates q1, q2 respectively, calls store-on-blockchain(q1, q2), makes both
users process this last block, then issue new updates q′1, q

′
2, and then process the block

resulting from store-on-blockchain(q′1, q
′
2). Done that, then A corrupts id3 and id4, stops

the corruption, and proceeds in the same fashion as before, making these two users update
twice, before corrupting id5 and id6, and so on. In this execution of the game, it is clear
that the group key will be secure every time a pair of users execute their pair of concurrent
updates. However, from the time the adversary has corrupted 4 or more users, the predicate
above will consider any future group key insecure, as C ≥ 4 corruptions would require either
c ≥ 3 concurrent updates or a single update, from each corrupted user. Since each user only
ever updates twice, and those updates are concurrent, the safe predicate will indeed never
be satisfied.

A stronger safe predicate. This issue, however, can be solved rather easily by intro-
ducing a slightly modified, recursive definition of the safe predicate safe(ℓ∗) associated to
block ℓ∗ (equivalently, to its corresponding epoch). For this, to ℓ∗ we associate ℓ−(ℓ∗) < ℓ∗,
the last block before ℓ∗ that satisfied safe(ℓ−), where we set ℓ−(ℓ∗) = 0 if no such block
before ℓ∗ exists. Now, safe can be defined as in Section 5.1, the only difference being that in
Definition 4 the number of corrupted users C(ℓ∗) is defined as the number of users A corrupts
between ℓ−(ℓ∗) and ℓ∗ (instead of the number of all users corrupted up to ℓ∗).

In order to see that the proof would carry over to this new predicate, note that we would
only need to ensure that Lemma 2 still holds. Namely, that if the stronger safe predicate holds
for keyK∗, thenK∗ is not leaked. This can indeed be showed through an inductive argument
on the sequence of secure epochs. Note that the base case, i.e. ℓ−(ℓ∗) = 0 corresponds to
the already existing predicate and is taken care of by the current proof. For the inductive
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step, one would need to show that key K∗ is secure (as per Definition 6) given that the
group key defined by ℓ−(ℓ∗) is secure. This follows from the existing proof together with two
observations, which we will briefly argue in the paragraphs below. On the one hand, the
fact that the ratchet tree defined by processing blocks up to the safe one ℓ−(ℓ∗) exclusively
contains keys that have not leaked. On the other, the fact that if a seed set by any update
included in any block after ℓ−(ℓ∗) is encrypted under a key pk belonging to a tree associated
to some block ℓ̃ < ℓ−(ℓ∗), then pk also belongs to the tree associated to ℓ−(ℓ∗). These two
observations ensure that the leakage of any key generated during the period between ℓ−(ℓ∗)
and ℓ∗ can be traced back to a corruption taking place during that same period. This, in
turn, allows to use esentially the same proof of Lemma 2 to argue for the inductive step.

To see why the first observation is true, one can look at the simpler case: if u and v are
two nodes in the ratchet tree, with u being the child of v, then it is not possible for the secret
key at v to be leaked, while the secret key for u is secure (since, by assumption, the group
key at ℓ−(ℓ∗) is secure, the statement follows). Indeed, let skv be leaked and qv be the time
at which A first learnt the value of a secret key at v (and such that from qv to the present
there was no time when A did not have knowledge of the secret key at v). At this time, A
must have learnt this key through a corruption, and so must have also learnt the secret key
at u at the time. However, since A has knowledge of the key at v throughout the interval
from qv to the time skv was set, they, in particular, must also have learnt all seeds used to
derive secret update informations updating the key at v during that time. Consider now the
different secret update informations evolving the key at u. Any such δ that comes from an
update by a user below v is derived from a seed, itself derived by a hash evaluation of a seed
that A learnt. For the other δ coming from the other sub-tree under u, the corresponding
seed gets encrypted to a key at v, which A also knows, by assumption. This shows that A
would also know the key at u, i.e. it is leaked.

The second observation follows easily from the consistency properties that the blockchain
ensures, in particular the agreement of all users on the transcript of the execution so far.
Indeed, for the statement of the above observation to not be true, an update consistent with
the transcript so far up to some block ℓ̂ ≤ ℓ̃ would have needed to be included and processed
by users in some block between ℓ̃ and ℓ−(ℓ∗), which is not possible.
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[AAC+22] Joël Alwen, Benedikt Auerbach, Miguel Cueto Noval, Karen Klein, Guillermo
Pascual-Perez, Krzysztof Pietrzak, and Michael Walter. CoCoA: Concurrent
Continuous Group Key Agreement. In Orr Dunkelman and Stefan Dziem-
bowski, editors, EUROCRYPT 2022, Lecture Notes in Computer Science.
Springer, To appear, 2022. https://ia.cr/2022/251.

[ABR01] Michel Abdalla, Mihir Bellare, and Phillip Rogaway. The oracle Diffie-Hellman
assumptions and an analysis of DHIES. In David Naccache, editor, CT-
RSA 2001, volume 2020 of LNCS, pages 143–158. Springer, Heidelberg, April
2001.
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6 Appendix: skuPKE from Hashed ElGamal

In this appendix we give a proof of the IND-CPA security (in our model) of the secretly key-
updatable public-key encryption scheme presented in [JMM19]. The construction is based
on the Hashed ElGamal scheme and we recall it here.

The key-generation, encryption and decryption algorithms work as in the Hashed ElGa-
mal scheme. That is, skuPKE.Gen(1λ) outputs a pair (pk, sk) = ((G, p, g, gx,H), (G, p, g, x,H)),
where G is a group of prime order p (the bit length of p is λ), g is a generator of G, x is
sampled at random from Zp and H is a hash function that takes elements in G as input and
outputs strings in {0, 1}λ. An encryption of a message m ∈ {0, 1}λ using the public key gx is
a pair (gy,H((gx)y)⊕m) where y is sampled at random from Zp. The decryption algorithm
takes as input a ciphertext (c1, c2) and a private key x and outputs H((c1)

x)⊕ c2.
The sampling algorithm skuPKE.Sam(1λ) outputs a pair (∆ = gδ, δ) where δ is sampled

from the uniform distribution over Zp. Public-key-update algorithm skuPKE.UpdP gets as
input (gx,∆) and outputs gx∆, while skuPKE.UpdS takes (x, δ) as input and outputs x+ δ.

The security proof is based on a standard IND-CPA security proof of Hashed ElGamal
like the one that can be found on textbooks and it is provided for completeness. It relies
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on the hardness of the computational Diffie-Hellman (CDH) problem and uses the random
oracle model.

We say that the CDH problem is hard with respect to skuPKE.Gen if for every PPT
algorithm A there exists a negligible function ϵ(n) such that Pr[A(G, q, g, gx, gy) = gxy] ≤ ϵ(n)
where the probabilities are taking over the randomness used by skuPKE.Gen to generate
(G, q, g) and x and y are sampled uniformly from G.

Theorem 4. If the CDH problem is hard with respect to skuPKE.Gen and H is modeled as a
random oracle, the Hashed ElGamal skuPKE scheme is IND-CPA secure.

Proof. Let ρ, j−, j+ be a set of indices such that −1 ≤ j− < ρ ≤ j+ ≤ L and A be a PPT
adversary trying to distinguish

skuPKE.Enc(pkρ,m0) ≈c skuPKE.Enc(pkρ,m1)

as in Definition 2.
Let (gy,H((pkρ)

y)⊕mb) denote a ciphertext. As the hash function is modeled as a random
oracle, A cannot distinguish the ciphertexts with probability greater than 1/2 unless it makes
a query to the random oracle on (pkρ)

y. Let E denote the event that such a query is made.
Therefore the probability that A is able to distinguish the two distributions is bounded by
1/2 + Pr[E].

We now show that Pr[E] is negligible. We define an algorithm B that takes as input
a CDH challenge (G, p, g, gx, gy) and uses A as a subroutine. It samples b ← {0, 1} and
(∆i, δi)← skuPKE.Sam(1λ) for i ∈ {0, . . . , j−−1}∪{j−+1, . . . , j+−1}∪{j++1, . . . , L−1}.
It chooses gx as the ρ-th public key, (pkj− , skj−) = (gr

−
, r−) and (pkj++1, skj++1) = (gr

+
, r+)

where r−, r+ are uniformly chosen in Zp. It computes ∆j− = gx(
∏ρ−1

i=j−+1 ∆i)
−1g−r− and

∆j+ = g−x(
∏j+−1

i=ρ ∆i)
−1gr

+
. The remaining public and private keys are chosen accordingly,

that is,

pki = pki+1 ·∆−1
i for i ∈ {ρ− 1, . . . , 0}

pki = pki−1 ·∆i−1 for i ∈ {ρ+ 1, . . . , L}
ski = ski+1 − δi for i ∈ {j− − 1, . . . , L}
ski = ski−1 + δi−1 for i ∈ {j+ + 2, . . . , L}

Then B sends to A (pki)i∈[L]0 , (ski)i∈[L]0\[j−+1,j+], (∆i)i∈[L−1]0 , (δi)i∈[L−1]0\{j−,j+} as well as
the random coins used by skuPKE.Gen and skuPKE.Sam as specified in Definition 2.

As an observation, B can actually compute those secret keys because it first chooses
skj− and skj++1, and then it proceeds recursively using the δi that it sampled before. The
construction also guarantees that the pairs (pki, ski) satisfy gski = pki.

When A makes a random oracle query u ∈ G, B sends a random string su and keeps a list
of pairs (u, su). When A sends two messages m0,m1, B replies with a ciphertext (gy, k⊕mb)
where k is sampled uniformly at random.
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Finally, B chooses a random pair in the list of random oracle queries A made and outputs
the first component.

Since the view of A as an IND-CPA adversary and when run as a subroutine of B before
it makes a query to the random oracle on (pkρ)

y is the same, the probability that E happens
is the same in both cases. This is because if A does not make said query then B perfectly
simulates the IND-CPA game. Let Q denote the number of random oracle queries. By
construction, when A is run as a subroutine of B, Pr[E]/Q ≤ Pr[B(G, q, g, gx, gy) = gxy] ≤
ϵ(λ) for some negligible function by hypothesis. Hence the probability that A is able to
distinguish the two distributions is bounded by 1/2 + Q · ϵ(λ), i.e., the Hashed ElGamal
skuPKE scheme is IND-CPA secure.
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