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1 Introduction
NIST Lightweight Cryptography (LWC) standardization process was initiated in August
2018 to solicit, evaluate, and standardize lightweight cryptographic algorithms that are
suitable for use in constrained environments. The algorithm shall implement authenti-
cated encryption with associated data (AEAD) functionality and optionally the hashing
functionality.

In March 2021, NIST announced ten finalists and is currently in the final round
of the standardization process, with one of the main focuses being the side-channel
evaluation of the finalists. Besides performance evaluation of the finalists with side-channel
protections/countermeasures implemented, side-channel analysis (SCA) of the finalists is
also a consideration factor for the standardization process.

1.1 Side-channel Attacks on Shift Register based Primitives
For evaluating the security of cryptographic algorithms, in addition to theoretical vulner-
ability, one should also investigate the physical characteristics when implemented on a
practical device. This device dependent attack is commonly known as the side-channel
analysis or SCA in short [KJJ99]. In this attack, any physical characteristics, such as
timing, power consumption, electromagnetic emanation, can be exploited to recover secret
information, such as the secret key of a block cipher implementation. In general, the
procedure is to measure the physical leakage of the target device while executing the
cryptographic algorithm, which leaks sensitive information about the algorithm.

While block ciphers have been the primary target of SCA, some stream ciphers have
also been scrutinized for resistance to SCA. While most attacks on stream ciphers aim
to recover the internal state, SCA provides a great advantage to an attacker by giving
direct information about the internal state, for example the internal of linear/non-linear
feedback shift register (LFSR/NFSR) state, as leaked in side-channel traces. Availability
of such internal information can greatly simplify the otherwise high complexity theoretical
cryptanalysis of stream ciphers.

For SCA (as well as countermeasures) on stream ciphers, there is a survey by Rechberger
and Oswald [RO04]. Several SCAs have also been reported on some stream ciphers, for
example, Fisher et al. [FGKV07] who proposed SCA on GRAIN and Trivium. Dobrau-
nig et al. [DEKM17] then demonstrated that SCA can also be used on shift registers to
extract the bit relations of neighbouring bits, allowing attacker to significantly reduce the
internal state guessing space, by applying an attack on Keymill. Based on their work, a
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later work from Sim et al. [SJB21] generalised their methodology and combined it with
differential analysis, which is referred as Differential Analysis aided Power Attack (DAPA),
to uncover more bit relations and take into account the linear or non-linear functions that
feedback to the shift registers (i.e. LFSRs or NFSRs). Sim et al. then reported their
attacks on LR-Keymill (an improved version of Keymill to resist attack from [DEKM17])
and Trivium. The work is then followed by Kumar et al. [KDB+22], who then developed
a generic automated framework for SCA on stream ciphers.

We outline the key idea of how side-channel can be applied to learn information about
internal state of a stream cipher as used in [DEKM17, SJB21, KDB+22]. As a toy example,
consider the leakage when there is data switching, which can be modeled as Hamming
Distance (HD) model. In Figure 1, one can observe that taking the difference between two
traces, the HD difference can be easily distinguished on side-channel traces, even through
visual inspection. In a noisier scenario where the boundaries would be overlapping, the
adversary can either build a simple statistical distinguisher or use advanced approaches like
machine or deep learning, with prior profiling. The adversary can then use this information
to identify each HD value, which already provide some information regarding the state of
the intermediate value being processed by the device.

Figure 1: Mean for each class of HD difference

0       -1        +2         +1

Figure 2: Investigating ∆HD to distin-
guish sign of the difference

1.2 Motivation and Contributions
Among the ten NIST LWC finalists, Grain-128AEADv2 and TinyJAMBU use LFSR/NFSR
as the building blocks for their primitive. Thus, we are interested to investigate their
resistance against SCA, specifically against DAPA. Although both finalists can be imple-
mented in 32-bit architecture, in extremely constrained environments, 1-bit architecture
(e.g. bit-slice implementation) may be used to minimise the resources needed. Thus, we
analyse both finalists in both 1-bit and 32-bit settings.

Our results are summarised in the Table 1.

Table 1: Summary of DAPA on Shift Register based NIST finalists. 32* refers to recovering
32 bits of the secret internal register state.

Finalist Key size Implementation Bits recovered Ref.

Grain-128AEADv2 128 1-bit 128 Sect. 3.2
32-bit 64 Sect. 3.3

TinyJAMBU 128/192/256 1-bit 128/192/256 Sect. 4.2
32-bit 32* Sect. 4.3

Organisation. First, we revisit DAPA and highlight the main observations that we will be
using for our analysis in Section 2. Next, we give a brief description of Grain-128AEADv2
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in Section 3.1, followed by our analysis on its 1-bit and 32-bit implementation in Section 3.2
and 3.3 respectively. We give a brief description of TinyJAMBU is provided in Section 4.1
and our analysis on its 1-bit and 32-bit implementation in Section 4.2 and 4.3 respectively.
Finally, we conclude our work in Section 5.

2 Preliminaries
2.1 Revisiting DAPA
DAPA is proposed by Sim et al. [SJB21] as an extension to the attack by Dobraunig et al.
[DEKM17]. The former extended the attack beyond the first clock cycle after some
difference is injected, and investigated the power consumption behaviour under both the
linear and non-linear feedback functions.

2.1.1 Notations

A feedback function typically consists of common binary operations. In this study, we only
consider 3 of them — AND (∧), NAND (∧), and XOR (⊕).

Let [x]y denote a register bit of interest in the square parenthesis with bit value x, and
y is the succeeding bit value. A hat symbol x̂ denote having a difference, which is simply
flipping of the bit value.

We define the power consumption difference the subtraction of the original power
trace from the power trace with some differences. If a register bit has an increase in
power consumption difference, we denote it as +1, −1 if it is a decrease, and 0 if there
is no difference in the power consumption difference. In practice, the power trace is the
summation of the power consumption of all the register bits. Hence, we can apply simple
arithmetic to compute the combined power consumption difference.

2.1.2 Differential patterns and bit relations

[SJB21] detailed various differential configurations, how the power consumption are suffi-
cient and necessary conditions to derive the bit relations or values. For our analysis, we
only need the following observations (see Table 2).

Table 2: Power consumption differences and relations of register bits

Case Possible Power
outcomes diff.

1.1: x = y +1
[x]y vs [x]ŷ x ̸= y −1

1.2: x = y +1
[x]y vs [x̂]y x ̸= y −1

1.3: x = y 0[x]y vs [x̂]ŷ x ̸= y

2.1.3 On non-linear operations

As explained in [SJB21], when a feedback bit is the product of some non-linear operation,
say w = x ∧ y, and there is a difference in y (a.k.a. active), then value of x will determine
if there is a difference in w. Using this knowledge, we can deduce the actual value of x (0
or 1 respectively) given the knowledge of whether there is a difference in w (inactive or
active respectively).
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Lemma 1. Let ◦ be either AND (∧) or NAND (∧) and x ◦ y be a single bit value. We have
the following observation.

Case Possible Power
outcomes diff.

[z]x ◦ y vs [z]x ◦ ŷ
x = 1, x ◦ y = z +1

x = 0 0
x = 1, x ◦ y ̸= z −1

[x ◦ y]z vs [x ◦ ŷ]z
x = 1, x ◦ y = z +1

x = 0 0
x = 1, x ◦ y ̸= z −1

Proof. This is a direct combination of Case 1.1 or 1.2 and the observation on non-linear
operation. Since ◦ is AND or NAND, x = 0 will result in a constant value (0 or 1 respectively)
regardless of the value of y, and if x ◦ y is inactive, then naturally there is no power
consumption differences. Otherwise, x = 1 and x ◦ y is active and we get either Case 1.1
or 1.2.

It is also trivial to see that if there is a difference in x ◦ y, then the contribution to the
power difference will be ±1, which changes the parity (from odd to even or vice versa) of
the overall power consumption difference. Thus, if we only want to know the value of x, it
is sufficient to only check the parity of the power consumption difference.

2.1.4 Attack phases

The DAPA methodology can be broken down into the following three steps:

Step 1 (Offline): Determine the differential patterns. In this preparation phase,
the goal is to choose a differential pattern that we would want to have in the shift register.
Although the choice is highly dependent on the target algorithm, there is a general strategy.

One obvious entry point is through the IV1, which essentially every (N)LFSR-based
algorithm should have. The main idea is to introduce some difference in the IV and analyse
how it would propagate throughout the internal state.

This step would take up a significant amount of time as the attack complexity depends
heavily on the selected differential patterns. Generally, there is no need to find optimal
differential patterns, so long as the execution, say introducing the different IVs, is feasible
and the attack complexity is practical, we are good to move to the next step.

Step 2 (Online): Perform the power measurements. This is the only online phase of
the attack and rather straightforward — collect the power traces of various computations
and take the difference to obtain power consumption differences.

Step 3 (Offline): Recover the internal state. In this step, we try to gather as many
pieces of bit relations to link the internal state bits together. From the rise, drop or no
change in power consumption (collected in Step 2) of the differential patterns (determined
in Step 1), we can deduce the bit relations.

Finally, after gathering as many bit relations as we can, we enumerate the possible
values for the leading bit in each chained bit relation, other bits within the chain will
be defined according to the bit relations. The true internal state will be one of these
candidates.

1Or something equivalent that is public and preferably can be chosen.
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3 Grain-128AEADv2

3.1 Specification
Grain-128AEADv2 [HJM+] is an AEAD scheme with the underlying primitive based
on Grain-128a, which is in turn based on Grain v1 and Grain-128 that are extensively
analysed. It takes a variable-length plaintext and associated data, a 96-bit nonce (IV)
IV0IV1...IV95, and a 128-bit key k0k1...k127. It consists of a pre-output generator and
an authenticator generator. It starts with a “Key and Nonce Initialisation” phase before
starting the “Operating Mode” to process input associated data or plaintext.

Our analysis targets the “Key and Nonce Initialisation” phase which only involves the
pre-output generator. Thus for brevity sake, we only describe the pre-output generator
and the relevant updating steps of the “Key and Nonce Initialisation” phase.

The pre-output generator is constructed using an 128-bit LFSR (denoted St =
[st

0, st
1, ..., st

127]), an 128-bit NFSR (denoted Bt = [bt
0, bt

1, ..., bt
127]) and a pre-output func-

tion, where t refers to the clock cycle. Note that the computations are defined over GF(2),
thus a + b represents XOR (a ⊕ b) and ab represents AND (a ∧ b).

During the “Key and Nonce Initialisation” phase, the NFSR is loaded with the key
bits b0

i = ki, 0 ≤ i ≤ 127 and the first 96 bits of the LFSR is loaded with the nonce
bits s0

i = IVi, 0 ≤ i ≤ 95, the last 32 bits are loaded with 31 ones and a zero s0
i = 1,

96 ≤ i ≤ 126, s0
127 = 0. It is then updated 320 times with the feedback bit for LFSR and

NFSR defined as follows:
For 0 ≤ t ≤ 319,

st+1
127 = L(St) + yt

bt+1
127 = st

0 + F(Bt) + yt,

where

L(St) = st
0 + st

7 + st
38 + st

70 + st
81 + st

96,

F(Bt) = bt
0 + bt

26 + bt
56 + bt

91 + bt
96 + bt

3bt
67 + bt

11bt
13

+ bt
17bt

18 + bt
27bt

59 + bt
40bt

48 + bt
61bt

65 + bt
68bt

84

+ bt
22bt

24bt
25 + bt

70bt
78bt

82 + bt
88bt

92bt
93bt

95

yt = ht + st
93 + bt

2 + bt
15 + bt

36 + bt
45 + bt

64 + bt
73 + bt

89

ht = bt
12st

8 + st
13st

20 + bt
95st

42 + st
60st

79 + bt
12bt

95st
94

It is then updated for another 64 times with key material reintroduced into the pre-
output generator. However, since our analysis does not need to go beyond the initial
320 updates, we omit the description for the rest of Grain-128AEADv2 and refer readers
to [HJM+] for more details.

3.2 DAPA on 1-bit Implementation
3.2.1 Implementation setup

We consider an implementation similar to the reference implementation provided by the
Grain-128AEADv2 designers, which can be found in the submission package
...\grain-128aead\Implementations\crypto_aead\grain128aeadv2\ref\grain128aead-v2.c

Specifically, we measure the power trace at line 144: fsr[127] = fb;, where fsr[127]
is the current bit st

127 and fb is the succeeding bit st+1
127 .
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3.2.2 Overview of Full Key-recovery using DAPA

We are able to develop a chosen nonce DAPA attack that is able to perform full key
recovery on the 1-bit implementation of Grain-128AEADv2. This attack targets the key
and nonce initialization phase of the scheme. In particular, we will target the h non-linear
function in the pre-output generator.

There are three main properties of the 1-bit implementation of the Grain-128AEADv2
pre-output generator that render it susceptible to DAPA:

1. Low algebraic degree of the nonlinear combiner h, and the low weight of variables
from the NFSR in h;

2. Direct application of nonce into the shift register during initialization; and
3. Slow diffusion of the non-linear component in the LFSR.
We shall now provide a rough sketch of the attack, along with the key insights that

motivate the important steps along the way. We describe our attack in incremental phases,
where the techniques performed in each phase utilize all the techniques and properties
acquired in prior phases. Our attack compares the difference in the power differential
of each 1-bit clock during the initialization phase at the rightmost 1-bit register of the
LFSR, i.e. s127, between a pair of differently initialized registers. We do so by considering
pairs of registers initialized by nonces with a single bit difference. In particular, we define
our reference nonce to be the zero nonce, i.e. n0 := 096, and consider all nonces by their
difference with respect to n0. We define pi to be the nonce pair (n0, n0 ⊕ ei), where ei is
the 96-bit vector that is 1 at register i and 0 everywhere else. For the subsequent analyses,
we shall use the following notation:

bt
i(n) (resp. st

i(n)) refers to the value of the i-th register of the NFSR (resp. LFSR) at
clock t given nonce n, where 0 ≤ i < 128.

ht(n) (resp. yt(n)) refers to the value of the non-linear combiner output h (resp. the
non-linear feedback y) at clock t given nonce n.

bj(n) (resp. sj(n)) refers to the value of the 0-th register of the NFSR (resp. LFSR) at
clock j given nonce n, for any j ≥ 0. Since Fibonacci shift registers are used, we note that
bj(n) = bj−i

i (n) (resp. sj(n) = sj−i
i (n)) for any 0 ≤ i < max(j + 1, 128).

x̄ refers to the value of a component x when the nonce is the zero nonce, i.e. x̄ = x(n0).

3.2.3 Phase 1: Deducing Values of LFSR Registers and yt for the First 70 Clocks

In this phase, we apply DAPA iteratively on successive clocks of the cipher initialization,
starting from the clock t = 0. At each clock t, we hope to recover the value of the register
s128+t, the full internal state of the LFSR initialized with the zero nonce at t + 1, as well
as the non-linear feedback into the LFSR yt. We proceed by induction on t.

We first note that since we control the nonce and because the nonce is applied directly
into the internal state of the LFSR during initialization, we know the full internal state
of the LFSR at t = 0. This provides us with the base case for our induction. To prove
the inductive step, we consider the nonce pair pk. By the inductive hypothesis, we know
the full internal LFSR state for the zero nonce for all 0 ≤ t ≤ k. We see that the input
difference in our nonce pair propagates to a difference at sk+1

127 , assuming that there is no
difference in the other tapped registers for the LFSR feedback and no difference in the
tapped registers for the non-linear feedback function yk. Therefore, if sk

127(ek) = sk
127(n0),

we can use the DAPA characteristic of Case 1.1 in Section 2.1.2 to recover the value of
register sk+1

127 = s128+k. Furthermore, since we know the full internal state of the LFSR
initialized with the zero nonce at t = k by the inductive hypothesis, we will know the full
internal state of the LFSR at t = k + 1 and the value of the linear feedback bit L(Sk).
This allows us to obtain the value yk.

We now prove the assumptions stated in the inductive step above. In order to ensure
that there is no difference in the other tapped registers for the LFSR feedback besides
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sk
0 , and no difference in the tapped registers for the non-linear feedback function yk at

t = k, we need to track the propagation of our input difference through the registers across
0 ≤ t < k. The difference propagation patterns for different nonce pairs pk for 0 ≤ k < 70
is summarized in Table 3 below.

Table 3: Grain-128AEADv2 Active Registers at Clock t = k for Various Nonce Pairs.
Bold font indicates a register from the LFSR, while normal font indicates a register from
the NFSR. Underline indicates a possible active register due to propagation through a
prior non-linear function. The set S118+ comprises of some registers from both the LFSR
and NFSR with every index 118 or above.

Nonce Pair pk Set of active registers at clock t = k

0 ≤ k < 7 S1 = {s0}
k = 7 S2 = S1 ∪ {s121}

8 ≤ k < 38 S3 = S2 ∪ {b120, s120}
39 ≤ k < 42 S4 = S3 ∪ {s90, s122, b124, s124, b125, s125}
42 ≤ k < 70 S5 = S4 ∪ {b86, s86} ∪ S118+

We can easily verify from Table 3 above that none of the tapped registers for the LFSR
feedback besides sk

0 , and none of the tapped registers for the non-linear feedback function
yk are active at t = k, thus our assumption holds.

We are left to show that sk
127(ek) = sk

127(n0). This is done by similarly showing that
none of the tapped registers for the LFSR feedback (including sk

0), and none of the tapped
registers for the non-linear feedback function yk are active, this time at t = k − 1 instead
of t = k. We summarize the difference propagation patterns for different nonce pairs pk

for 0 ≤ k < 70 up to clock t = k − 1 in the Table 4 below.

Table 4: Grain-128AEADv2 Active Registers at Clock t = k − 1 for Various Nonce Pairs.
Bold font indicates a register from the LFSR, while normal font indicates a register from
the NFSR. Underline indicates a possible active register due to propagation through a
prior non-linear function. The set S119+ comprises of some registers from both the LFSR
and NFSR with every index 119 or above.

Nonce Pair pk Set of active registers at clock t = k − 1
0 ≤ k < 7 S1 = {s1}

k = 7 S2 = S1 ∪ {s122}
8 ≤ k < 38 S3 = S2 ∪ {b121, s121}
39 ≤ k < 42 S4 = S3 ∪ {s91, s123, b125, s125, b126, s126}
42 ≤ k < 70 S5 = S4 ∪ {b87, s87} ∪ S119+

Once again, we see that there is no active bit being feedback into the LFSR at t = k −1,
and the condition that sk

127(ek) = sk
127(n0) holds. We have thus shown that we are able to

recover the full internal state of the LFSR, as well as the input from non-linear feedback
function yk given our reference nonce for the first 70 clocks.

3.2.4 Phase 2: Obtaining 85 NFSR Register Values by Exploiting Quadratic Terms
in the Non-Linear Combiner h

We see that the non-linear combiner h comprises of 4 quadratic terms and 1 cubic
term. These are all of very low degree and are prime targets to target using the DAPA
characteristics described in Section 2.2. In particular, we shall exploit the quadratic terms
that combine NFSR and LFSR inputs, b12s8 and b95s42, via Lemma 1.

Therefore, we select input nonce pairs pk+8 (resp. pk+42) such that the difference
propagates to sk

8 (resp. sk
42). Then at clock t = k, we perform DAPA to determine whether

sk+1
127 = sk+1

127 (ek+8) (resp. sk+1
127 (ek+42))). Assuming that there is no difference in the other
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tapped registers for the LFSR feedback and the non-linear feedback function yk, we can
deduce that bk

12 = sk+1
127 ⊕ sk+1

127 (ek+8) (resp. bk
95 = sk+1

127 ⊕ sk+1
127 (ek+42)). We are able to

perform this technique for 0 ≤ k < 34 to target bk
12sk

8 , and 0 ≤ k < 51 to target bk
95sk

42,
before things begin to get messy.

3.2.5 Phase 3: Recovering the Full Internal State and Key

Thus far, we have obtained the internal LFSR register values sk for 0 ≤ k < 198, and the
non-linear feedback function values yk for 0 ≤ k < 70 from Phase 1. Furthermore, we are
able to derive 85 internal NFSR register values bk for 12 ≤ k < 46 and 95 ≤ k < 146 from
Phase 2. We now combine this information to recover the full internal state for both the
LFSR and NFSR with the reference nonce, and roll back this internal state to recover the
full key.

Note that the non-linear feedback function yk for 0 ≤ k < 70 gives us 70 non-linear
equations in 319 variables; 163 from the NFSR and 156 from the LFSR. By selecting only
the equations defined by yk for 0 ≤ k < 51, we get 51 equations in the variables bi for
2 ≤ i < 146 and si for 8 ≤ i < 145. Applying the values of bi and si that we have already
recovered thus far, we manage to obtain 51 linear equations2 in the 58 unknown variables
bi for 2 ≤ i < 11 and 46 ≤ i < 95. By considering the equation for the NFSR feedback
from 12 ≤ t < 27, we can obtain an additional 15 non-linear equations of degree at most 3
in the same 58 variables. This gives us 66 equations in 58 variables which we can solve to
get the full cipher internal state for clocks 2 ≤ t < 18, allowing us to recover the key with
an additional 15-bit check.

3.2.6 Summary

In summary, we demonstrated that it is possible to construct a full key recovery attack
on the 1-bit implementation of Grain-128AEADv2 using DAPA techniques. This attack
requires 94 instantiations of the cipher with different nonces (via the nonce pairs pk for
0 ≤ k < 93) under the chosen nonce, noiseless scenario. Additionally, our attack provides
an additional 15-bit check by recovering a sliding window of 16 contiguous full internal
register states, which allows us to verify and possibly rectify the accuracy of the power
traces recovered.

3.3 DAPA on 32-bit Implementation
3.3.1 Implementation setup

We consider an implementation similar to the optimised implementation provided by the
Grain-128AEADv2 designers, which can be found in the submission package
...\grain-128aead\Implementations\crypto_aead\grain128aeadv2\sse\grain128aead-v2_opt.cpp

Specifically, we measure the power trace at line 100: L32(12) XOR= ks;, where
L32(12) is the current 32-bit register [st

96st
97...st

127] and ks is the 32-bit feedback value3

[ytyt+1...yt+31].

3.3.2 64-bit Key-recovery using DAPA

The 32-bit implementation of Grain-128AEADv2 helps it to gain some resistance against
DAPA. Due to the fact that the registers are clocked 32 times per step, we have to

2We manage to reduce the non-linear terms in h to linear terms by substituting in known values of sk
t

and bk
95 for 0 ≤ k < 51

3Note that the LFSR feedback value {L(St)}t=31
t=0 are updated separately in the implementation which

simplifies our analysis a bit. But even if they are updated simultaneously, our analysis will still work as L
is linear and we only need to account for differential patterns contributed by that.



Shivam Bhasin, Dirmanto Jap, Wei Cheng Ng, Siang Meng Sim 9

consider the cumulative effect of all taps within each 32-bit step, instead of isolating the
effect of our target difference at the desired clock. Additionally, it can be difficult to
track the propagation of differences of individual registers and its effect on the power
trace, especially through the interference of other intermediate bit taps. In particular,
it is challenging to track the effect of an input difference of a nonce pair through more
than one 32-bit step, since after 64 1-bit clocks, the difference would probably propagate
through the registers s94 and b95, which are taps for the non-linear feedback function. This
means that any power analysis we perform beyond the first step will have to take the
undesired contributions of differences through non-linear functions into account, which
greatly increases the complexity of any potential attack.

Nevertheless, we are still able to recover 64 non-contiguous bits of the NFSR from the
optimized implementation of Grain-128AEADv2 relatively easily. In this scenario, our
attack compares the difference in the power differential of each 32-bit clock during the
initialization phase at the rightmost 32-bit slice of the LFSR, i.e. s96 to s127, between
a pair of differently initialized registers. We aim to vary the LFSR registers s8 and
s42 to target the NFSR registers b12 and b95 respectively, akin to Phase 2 of the attack
described in Section 3.2 above. We do so by considering the nonce pairs p8+k and p42+k

for 0 ≤ k < 32, clocking the cipher through a single 32-bit step, and taking the power trace
of the rightmost register. Given these conditions, the only other positions that contribute
to power differences in the rightmost register are from the LFSR taps s0, s7, s38 and s70,
which can be accounted for easily. The key insight here is to use the parity of the difference
in power traces between our nonce pair to determine whether a difference in sk

8 or sk
42

triggered a difference in sk+1
127 .

As an example, suppose we are targeting the register s0
8 to determine b0

12. In order to
do this, we consider the nonce pair p8. After one 32-bit step, the difference in the nonce
pair is guaranteed to propagate through s1

7 and s8
0, and may possibly propagate through

s0
8. Each propagated difference will contribute a difference of ±1 to the power traces of

our nonce pair. Therefore, by the property in Section 3.2.2, we derive the value of b0
12 as

0 if the power trace difference between our nonce pair is even, and 1 if the power trace
difference is odd.

Following this line of reasoning, we are able to recover the NFSR register values b12+k

and b95+k for 0 ≤ k < 32, which correspond to 64 bits of the key.

3.3.3 Summary

Here, we have shown a relatively straightforward method to partially recover the key from a
32-bit implementation of Grain-128AEADv2 using DAPA techniques. This attack requires
65 instantiations of the cipher with different nonces (via the nonce pairs pk for 8 ≤ k < 40
and 42 ≤ k < 74) to recover 64 key bits under the chosen nonce, noiseless scenario. This
section reveals that even though the 32-bit implementation helps Grain-128AEADv2 to
be more robust against a direct application of DAPA-based attacks, it is still somewhat
vulnerable. We believe that there is potential to improve key yield through a more in-depth
study of this approach, and work is currently in progress to enhance this attack even
further.

4 TinyJAMBU

4.1 Specification
TinyJAMBU [WH] is an AEAD scheme based on JAMBU which is one of the finalists of
the CAESAR competition [cae]. It has three variants with key size 128 bits, 192 bits and
256 bits respectively k0k1...kklen−1 where klen is the key size, all variants takes in a 96-bit
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nonce n127n126...n32
4. The TinyJAMBU mode is similar to a Duplex mode and uses a

keyed permutation as the underlying permutation.
The keyed permutation consists of a 128-bit state St = [st

127st
126...st

0]. An update is
defined as

st+i+1
127 = st+i

0 ⊕ st+i
47 ⊕ (st+i

70 ∧st+i
85 ) ⊕ st+i

91 ⊕ ki mod klen,

where i is the i-th update (index from 0) on the state St.
The initialisation phase consists of a “Key setup” and a “Nonce setup”. The “Key setup”

initialises an all zero state S−1664
5, and update that state 1024 times. Next, in the “Nonce

setup”, the nonce is partitioned into three 32-bit blocks N0 = n127...n96, N1 = n95...n64,
and N2 = n63...n32. After XORing a 3-bit Framebits (value 1) to the state S−640, update
the state for another 640 times before XORing N0 to s0

127...s0
96, s0

i = s0
i ⊕ ni, 96 ≤ i ≤ 127.

This process is repeated for another two times to take in N1 and N2. However, since our
target window is within the next 640 updates (from S0 to S640) and before N1 is XORed
to the state, we omit the description for the rest of TinyJAMBU and refer readers to [WH]
for more details.

4.2 DAPA on 1-bit Implementation
4.2.1 Implementation setup

We consider an implementation where only 1 bit is updated at every step and assume we
are able to measure the power trace of the register s127. Although such implementation is
not provided by the designers, in extremely constrained environment, 1-bit architecture
might be deployed.

4.2.2 Full Key-recovery using Simple Power Analysis (SPA)

Since the internal state S−1664 starts from an all zero state, we could potentially apply
SPA during the “Key setup” to recover the key materials bit by bit. However, since this
setup is independent of the nonce, one could perform pre-computation and stored the state
for future computation, or for scenarios with fixed key, the resultant state S−640 can be
hard-coded as the initial state and omit the “Key setup” completely.

The “Nonce setup”, however, has to be computed every time for a nonce, thus this is a
more practical window of opportunity for SCA.

4.2.3 Full Key-recovery using DAPA

As with Grain-128AEADv2, we shall target the cipher (keyed permutation Pn) used in
the nonce setup phase of the TinyJAMBU to perform our DAPA analysis. In general,
TinyJAMBU is slightly more resistant to DAPA than Grain-128AEADv2 under a chosen
nonce adversarial model, primarily due to the following two reasons. Firstly, the IV is
not loaded into the register directly during the initialization phase, but injected over
multiple rounds with intermediate state updates P640 in between. This means that we can
only affect the input of 32 registers of the NFSR at a time, as opposed to 96 registers
in the case of Grain-128AEADv2. Secondly, the non-linear and linear contributions to
the keyed permutation originate from the same register, and there is no component to
the cipher that has strictly linear feedback like the LFSR used in Grain-128AEADv2.
This makes it more difficult for us to isolate characteristics from either the non-linear
component by only tracing differences in the linear component (as we did in Section
3.2.2). Nevertheless, we demonstrate that we are able to recover the full key TinyJAMBU

4We use a different indexing from the original specification [WH] for the ease of our discussion.
5For the ease of our discussion, we define the internal state where our attack begins as S0, using that

point as a reference, the initial state is denoted as S−1664.
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with a 1-bit implementation with the aid of SPA, and at least 32 bits of the internal
state of the keyed permutation of TinyJAMBU with both the optimized and unoptimized
32-bit implementations. While there is no 1-bit implementation of TinyJAMBU in its
specifications submitted to NIST, we describe the attack on this variant of TinyJAMBU as
a study of its side-channel resistance alongsideGrain-128AEADv2, and to hopefully deter
the community from misusing TinyJAMBU in a context with constraints that only permit
a 1-bit implementation.

The DAPA analysis on TinyJAMBU is more straightforward than that of Grain-
128AEADv2. In this analysis, we shall focus our attention on the only non-linear component
of the keyed permutation: the operation s85∧̄s70. As before, we shall introduce the following
notation:

st
i(n) refers to the value of the i-th register of the NFSR at clock t given nonce n, where

0 ≤ i < 128.
sj(n) refers to the value of the 0-th register of the LFSR at clock j given nonce n, for

any j ≥ 0. Since Fibonacci shift registers are used, we note that sj(n) = sj−i
i (n) for any

0 ≤ i < max(j + 1, 128).
x̄ refers to the value of a component x when the nonce is the zero nonce, i.e. x̄ = x(n0).
Our attack compares the difference in the power differential of each 1-bit clock at the

rightmost 1-bit register of the NFSR, i.e. s127, between a pair of differently initialized
registers. We do so by considering pairs of registers initialized by nonces with a single bit
difference. In particular, we define our reference nonce to be the zero nonce, i.e. n0 := 096,
and consider all nonces by their difference with respect to n0. We define pi to be the nonce
pair (n0, n0 ⊕ ei), where ei is the 96-bit vector that is 1 at register i and 0 everywhere
else. We shall consider the nonce pairs pi for 0 ≤ i < 32 for our attacks on TinyJAMBU.
The difference in the nonce will be introduced to the NFSR via the last operation in the
first iteration of the nonce setup phase during initialization. This allows us to target the
power difference at 1-bit clocks of the state update using P640 in the second iteration of
the nonce setup. We thus take the initial clock t = 0 to refer to the state at the beginning
of the second iteration of P640 in the nonce setup,

For each nonce pair pk, we record the power trace at clocks 5 + k, 11 + k, 26 + k, 42 +
k, 48 + k, and 63 + k. Using the DAPA characteristic of Case 1.1 in Section 2.1.2, we
are able to obtain the bit differential at register sk+1

127 = s128+k between our nonce pair,
assuming the register sk

127 is not active. This bit differential is contributed by the feedback
taps that are active registers at clock t + k. We consolidate a list of active registers at
each of the aforementioned clocks in the Table 5 below.

Table 5: TinyJAMBU Keyed Permutation Active Registers at Clock t for Various Nonce
Pairs pk. Bold font indicates a register that will be tapped by the feedback function.
Underline indicates a possible active register due to propagation through a prior non-linear
function. Note that sk

127 is not active at any of these clocks.
Clock t Set of indices i such that sk

i is active
5 {91}
11 {85, 122}
26 {70, 107, 113}
42 {54, 91, 97, 112}
48 {48, 85, 91, 106, 122}
63 {33, 70, 76, 91, 107, 113, 114, 117}

We shall now explain how the active feedback taps at each of the above clocks yield
information about the internal state of the keyed permutation for 0 ≤ k < 32.

1. At clock t = 5 + k, our nonce difference gets propagated to a solitary feedback tap
st

91. This allows us to use Case 1.1 and 1.2 to determine whether s127+t = s128+t,
and whether s128+t = s129+t.
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2. At clock t = 11 + k, our nonce difference gets propagated to a solitary feedback tap
at st

85. This allows us to use Lemma 1 to recover the value of s70+t.

3. At clock t = 26 + k, our nonce difference gets propagated to a solitary feedback tap
at st

70. This allows us to use Lemma 1 to recover the value of s85+t.

4. At clock t = 42 + k, our nonce difference gets propagated to a solitary feedback tap
at st

91 via the initial feedback at clock 5 + k. This allows us to use Case 1.1 and 1.2
to determine whether s127+t = s128+t, and whether s128+t = s129+t.

5. At clock t = 48 + k, our nonce difference gets propagated to the feedback tap at st
85

via the initial feedback at clock 5 + k, and also possibly propagated to the feedback
tap at st

91 via the initial feedback at clock 11 + k. However, note that due to (2)
we know whether or not the register st

91 is active. This allows us to subtract away
the contribution of the st

91 register to the power trace difference at s128+t, and use
Lemma 1 to recover the value of s85+t.

6. At clock t = 63 + k, our nonce difference gets propagated to the feedback tap at st
70

via the initial feedback at clock 5 + k, and also possibly propagated to the feedback
tap at st

91 via the initial feedback at clock 26 + k. However, note that due to (3)
we know whether or not the register st

91 is active. This allows us to subtract away
the contribution of the st

91 register to the power trace difference at s128+t, and use
Lemma 1 to recover the value of s70+t.

When taken together, this information allows us to derive the internal state of the 122
contiguous registers s81 to s202, with an additional 60-bit check6. We thus have to guess 6
bits of information to derive the entire internal state for a certain clock 76 ≤ t ≤ 81. For
each 6 bit guess of the entire internal state for a certain clock t, we perform SPA on the
NFSR for clocks t ≤ k ≤ t + K to extract the entire key of size K.

4.2.4 Summary

In summary, we demonstrated that it is possible to construct a full key recovery attack
on the 1-bit implementation of Grain-128AEADv2 using DAPA and SPA techniques.
This attack requires 33 instantiations of the cipher with different nonces (via the nonce
pairs pk for 96 ≤ k < 128), and a 6-bit guess under the chosen nonce, noiseless scenario.
Additionally, our attack provides an additional 60-bit check through an overlap in the
recovered register values, which allows us to verify our 6-bit guess, and confirm and possibly
rectify the accuracy of the power traces recovered.

4.3 DAPA on 32-bit Implementation
4.3.1 Implementation setup

We consider an implementation similar to the reference implementation provided by the
TinyJAMBU designers, which can be found in the submission package
...\tinyjambu\Implementations\crypto_aead\tinyjambu128v2\ref\encrypt.c

Specifically, we measure the power trace at line 34: state[3] = feedback; where
state[3] is the current 32-bit register [st

127st
126...st

96] and feedback is the 32-bit feedback
value [st+32

127 st+31
127 ...st+1

127 ].
The optimized implementation provided by the designers is similar except the update

is in-place, meaning the 32 feedback bits replace the values in the register with the 32 bits
that are pushed out of the state. Nevertheless, our analysis can be applied to both the
reference and optimized implementations.

6We obtain a 60-bit check from the overlap in register values recovered in Steps 1 to 6.
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4.3.2 32-bit Internal State-recovery using DAPA

Similar to GRAIN-128 AEAD, the 32-bit implementation of TinyJAMBU is more robust
against our DAPA cryptanalysis efforts than its 1-bit implementation. There are two
variants for the 32-bit implementations of TinyJAMBU submitted by the designers: the
optimized variant updates the 32-bit slices of the NFSR in-place, while the reference variant
performs a cyclical shift update of the 32-bit slices. In this section, we shall apply DAPA
to recover 32 bits of the internal NFSR state for both variants of the 32-bit TinyJAMBU
implementation. We define the variables and the initial clock t = 0 as in Section 4.2.

In this scenario, our attack compares the difference in the power differential of each
32-bit step during the second iteration of the P640 update in the nonce setup phase, at the
rightmost 32-bit slice of the NFSR, i.e. s96 to s127, between a pair of differently initialized
registers. The gist of the attack is again to target the non-linear feedback taps s85 and
s70. We are able to induce a difference in a single non-linear feedback tap (this does not
preclude the possibility of differences in linear feedback taps), sk−85

85 , if we select nonce
pairs pk for 102 ≤ k < 117 and clock them through a single 32-bit step. This allows us to
recover the corresponding 15 bits of the internal state sk−85

70 using Lemma 1. Additionally,
if we select nonce pairs pk for 112 ≤ k < 117, we are similarly able to induce a difference
in a single non-linear feedback tap, sk−70

70 , when we clock them through a second 32-bit
step, thus allowing us to recover the corresponding 5 bits of the internal state sk−70

85 .
However, when we consider nonce pairs for pk for k outside the above ranges, things

begin to become complicated, due to the fact that each 32-bit slice now has power difference
contributions from more than one register with a non-linear feedback difference. We are able
to rectify this multiple interference for the case 96 ≤ k < 102, by considering rectangular
differentials.

For nonce pairs pk, 96 ≤ k < 102, the register difference will propagate through sk−91
91 ,

sk−85
85 , and sk−70

70 over a single 32-bit step. The effect of this difference on the power trace is
cumulative across the non-linear contributions sk−85

85 and sk−70
70 , thus by Lemma 1 we know

the following: if the power trace difference in our nonce pair is even, then either sk−85
70 = 1

or sk−70
85 = 1, but not both. Conversely, if the power trace difference in our nonce pair is

odd, then either sk−85
70 = 0 and sk−70

85 = 0, or sk−85
70 = 1 and sk−70

85 = 1. Unfortunately, this
does not give us the definitive value for either of these variables. Rectangular differentials
help to isolate these non-linear contributions, in order to obtain the values of these variables
individually.

Rectangular differentials work by considering a set of 4 cipher instantiations with 4
different nonce values. We have our reference zero nonce, n0, and a nonce each with a
difference at registers a, b, and both a and b, which we shall label na, nb and nab respectively.
Let the power trace difference for nonce pairs pa, pb and pab at clock t = a − 70 = b − 91
be Pa, Pb and Pab respectively. For this particular scenario, we shall target 96 ≤ a < 102
and b = a + 21. When we consider the nonce pair pb, we see that the difference propagates
to just a single feedback tap, the linear feedback tap sb−91

91 , after a single 32-bit step.
Hence, we know the effect of injecting a difference at s128+b−91 = s128+a−70 on the power
trace, whether it is +1 or −1. Next, we consider the nonce pair pa. As illustrated in the
above paragraph, the parity of the power trace difference will reveal some information on
the values of the targeted bits. Finally, we consider the nonce pair pab. We see that if
sa−70

70 sa−70
85 was active, then this difference would be cancelled out by the active bit at sb−91

91 ,
and conversely if sa−70

70 sa−70
85 was inactive then there would be a new difference induced

by sb−91
91 . This means that sa−70

85 = 1 ⇔ Pab = Pa − Pb, and sa−70
85 = 0 ⇔ Pab = Pa + Pb.

This leads us to the differential Table 6.
We can thus obtain the internal register states sk−70

85 and sk−85
70 for 96 ≤ k < 102.

Combined with our earlier analysis on nonce pairs pk for 102 ≤ k < 117, we can recover a
total of 32 internal register states st for 81 ≤ t < 102, 111 ≤ t < 117, and 127 ≤ t < 132.
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Table 6: Rectangular Differential Table for 96 ≤ a < 102, b = a + 21.
(Pa mod 2, Pab − Pa)

(
sa−70

85 , sa−85
70

)
(0, Pb) (1, 0)

(0, −Pb) (0, 1)
(1, Pb) (0, 0)

(1, −Pb) (1, 1)

4.3.3 Summary

From our analysis thus far, we observe that it can be more challenging to apply DAPA
techniques to recover the key from the 32-bit implementation of TinyJAMBU, than for
its 1-bit implementation. We find that it is rather straightforward to recover 32-bits of
the internal state of the keyed register during the nonce setup phase, through DAPA
rectangular differential analysis. Further investigation is required to extend this line of
attack to recover more bits.

5 Conclusion
In this work, we conducted side-channel analysis on LFSR/NFSR based AEAD schemes
from NIST LWC finalists, namely Grain-128AEADv2 and TinyJAMBU. We analysed how
DAPA can be used to recover secret information.

For both finalists, their 1-bit implementation is susceptible to DAPA and the full key
could be recovered. The 32-bit implementation, however, makes the analysis significantly
harder because the power trace collected is the accumulation of multiple bit updates,
making it non-trivial to isolate and learn the bit relation or value. Work is currently in
progress to enhance the attack on the 32-bit variants to recover more secret bits.

Through our analysis, we find that it is more challenging to recover the internal state
of TinyJAMBU as compared to Grain-128AEADv2 because we are limited to gaining
information using only 32 bits of the nonce, the injection of the next 32 bits of nonce
occurs after 640 keyed updates, making it difficult to correlate any bit information obtain
from injecting differences in the next 32 bits of the nonce. This reminds us of ISAP that
uses rate rB to bound the amount of leakage.

We hope this work will help in better understanding the side-channel resilience of
LFSR/NFSR based cryptographic primitives.
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