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Abstract. Side-channel resilience is a crucial feature when assessing whether a post-
quantum cryptographic proposal is sufficiently mature to be deployed. In this paper,
we propose a generic and efficient adaptive approach to improve the sample complexity
(i.e., the required number of traces) of plaintext-checking (PC) oracle-based side-
channel attacks (SCAs), a major class of key recovery chosen-ciphertext SCAs on
lattice-based key encapsulation mechanisms. This new approach is preferable when
the constructed PC oracle is imperfect, which is common in practice, and its basic idea
is to design new detection codes that can determine erroneous positions in the initially
recovered secret key. These secret entries are further corrected with a small number
of additional traces. This work benefits from the generality of PC oracle and thus is
applicable to various schemes and implementations. We instantiated the proposed
generic attack framework on Kyber512 and fully implemented this attack instance.
Through extensive computer simulations and also a real-world experiment with
electromagnetic (EM) leakages from an ARM-Cortext-M4 platform, we demonstrated
that the newly proposed attack could greatly improve the state-of-the-art in terms
of the required number of traces. For instance, the new attack requires only 41% of
the EM traces needed in a majority-voting attack in our experiments, where the raw
oracle accuracy is fixed.
Keywords: Lattice-based cryptography · Side-channel attacks · Plaintext-checking
oracle · NIST Post-Quantum cryptography standardization · Kyber · Key mismatch
attacks.

1 Introduction
To continue protecting our data once quantum computers become mature, we need to transit
from current factoring or discrete-log-based public key cryptography to post-quantum
cryptography (PQC). Just recently, the US National Institute of Standards and Technology
(NIST) and the Department of Homeland Security (DHS) have collaborated and released
a roadmap to transition to the PQC standard [ND21], which is anticipated to be ready by
2024. Their goal is to complete the transition by 2030.

Starting in 2016, NIST’s PQC selection process has attracted attention from all over
the world [Moo16]. Currently, there are 4 finalists and 5 alternative candidates for
Public Key Encryption (PKE) or Key Encapsulation Mechanism (KEM) on the third-
round list [MAA+20]. Lattice-based KEMs occupy the majority, i.e., 3 out of 4 finalists,
demonstrating their fundamental role in the PQC standard. One of the most promising
candidates among them is Kyber [ABD+19], the KEM part of the Cryptographic Suite for
Algebraic Cipher Suite (CRYSTALS). Besides other desirable security properties, NIST

Licensed under Creative Commons License CC-BY 4.0.

https://doi.org/XXXXXXXX
mailto:chengchizz@qq.com
http://creativecommons.org/licenses/by/4.0/


2 An efficient method for perfect key recovery under imperfect SCA oracles

has placed a priority on the resistance of these KEMs to side-channel attacks (SCAs)
before deploying these PQC algorithms in the real world, especially in the scenario where
an attacker can physically access an embedded device.

SCAs were firstly introduced by Kocher in 1996 [Koc96]. By focusing on side-channel
measurements from the timing, power consumption, or electromagnetic (EM) emanation,
the implemented cryptographic algorithms leak information about the long-term secret key
or message. In the light of this thought, several SCAs against lattice-based KEMs in the
NIST PQC standardization process have been proposed (e.g., [DTVV19, GJN20, RRCB20,
XPSR+21, NDGJ21, HHP+21, REB+22, UXT+22]). Most of them are chosen-ciphertext
attacks (CCAs) since NIST PQC KEMs generally target provable CCA-security, which
can be achieved by using the Fujisaki-Okamoto (FO) transformation.

Key recovery SCAs against lattice-based KEMs recovering the long-term secret key is a
central research topic in this field since key recovery is a much stronger attack model than
only message recovery. We can classify these attacks into two main types. The first type
of attack [GJN20, BDH+21] builds an oracle to check whether the decryption is successful,
thus being closer to reaction attacks [Ble98, HGS99, MU10], an attack model weaker than
the CCA. We call this class of attacks reaction-type SCAs. This type of attack is generic,
and there is no need to design message-recovery techniques.

The second type of attack, initially proposed by D’Anvers et al. [DTVV19], connects
the entries in the long-term secret key to certain chosen messages and achieves key
recovery through a message-recovery approach. We call this class of attacks message-
recovery-type SCAs. The initial message-recovery-type attacks [DTVV19, RRCB20], also
named plaintext-checking (PC) oracle-based SCA in [RR21], can only gain at most one
bit of the secret information from one decryption function call. Later, more advanced
attacks [XPSR+21, NDGJ21, REB+22] were discovered, which could recover a large chunk
of the message/secret vectors simultaneously. However, it is worth noting that the latter
are much more powerful but rely on strong leakages from specific implementations. For
example, Xu et al. used only 4 traces to get full-key recovery for reference C version
of Kyber512, but the traces rise to hundreds when targeting the assembly-optimized
version [XPSR+21]. The compiler-optimization levels also make a huge impact on the
number of traces, resulting in 8 traces (-O0) and 960 traces (-O3), respectively. Just
recently, Ueno et al. showed that the generality of PC oracle could help launch a generic
SCA against most NIST PQC candidate KEMs [UXT+22]. What makes their work more
interesting is the realization of a deep-learning-based distinguisher with high accuracy,
which helps build the PC oracle to attack the lattice-based KEMs even when there are
SCA counter-measurements like masking in the implementation.

Although there has been much work on the PC oracle-based SCAs, the way these
attacks deal with oracle inaccuracy needs more attention. The oracle inaccuracy may occur
due to the environmental noises, or simply the measurement limitations in implementing
the PC oracle, such as the inaccuracy in the deep-learning-based SCA distinguisher in
[ISUH21, UXT+22]. Since the practical SCA oracle cannot be perfect, the recovered secret
key may have slight or big corruption due to the inaccuracy rate. To successfully recover
the full or almost full secret key, previous works aim to improve the oracle accuracy with
techniques like majority-voting. Compared with the recovery under a perfect oracle, we
need more traces under an imperfect oracle. For example, in [RRCB20], Ravi et al. needs
2560 traces to recover the full key of Kyber512 when the PC oracle is perfect. But to
migrate the measurement errors of SCA, they repeatedly query the oracle three times and
then use the majority-voting to recover the full key. This causes three times total traces,
i.e. 2560 · 3 = 7680. Therefore, an interesting problem is, can we find a more efficient way
to launch a perfect recovery under an imperfect oracle?

In this paper, we investigate the message-recovery-type SCA against Kyber, aiming
to improve the sample complexity when an imperfect measuring is assumed. Our focal
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point is the PC oracle-based SCAs, as these attacks have more generic applications (e.g.,
[RDB+21]) compared with its improved version that can in parallel recover a large number
of bits of information. Also, PC oracle-based SCAs could exploit a long leakage trace (e.g.,
corresponding to the whole FO transform) to recover just one bit of the secret information,
making such attacks difficult to be thwarted [ABH+22]. This research is of great practical
significance since real platforms can be either too noisy, or incur measurement errors, to
seriously hurt the accuracy of measurements.

1.1 Contributions
We present a new checking approach in the PC oracle-based SCAs to efficiently find the
problematic entries in the recovered secret key. These entries are further corrected with
a small number of additional traces. Compared with the most used method performing
majority-voting with multiple traces to increase the attack success probability, the new
adaptive method shows a substantial improvement in sample complexity.

The main contributions of this paper are summarized in the following.

• Firstly, we propose a general SCA framework with improved sample complexity
that could be widely applied for attacking NIST lattice-based KEMs. In the high-
oracle-accuracy region, we treat the detection of corruptions as a coding problem
and propose an efficient method to find the erroneous locations. The novel idea is
that if the targeted secret block is erroneously recovered, then the check procedure
will return a codeword different from the designed ones. We then extend the attack
to the low-oracle-accuracy region and propose a new smart approach called mixed
voting to improve the decision accuracy using a confidence array.

• Furthermore, we instantiate the described attack framework on Kyber512 and show
the details in each step of the new procedure.

• We perform extensive simulations for various oracle-accuracy levels and mount a
real-world EM attack against the pqm4 optimized implementation of Kyber512
running on a STM32 platform with an ARM Cortex-M4 microcontroller. Our
experimental results show that the new checking approach can improve the majority-
voting method significantly, i.e., the required number of traces is approximately
halved for the simulated instances. We make our code and data open-source. They
are available at https://github.com/7a17/Find-the-Bad-Apples/.

1.2 Related Works
In [RR21], Ravi and Roy categorized the major SCAs on lattice-based KEMs into three
classes, decryption-failure (DF) oracle-based, PC or key-mismatch oracle-based, and full-
decryption (FD) oracle-based. DF oracle-based SCA is reaction-type, while PC and FD
oracle-based SCAs are message-recovery-types.

DF-oracle-based SCAs were initially proposed in [GJN20], where a generic SCA model
focusing on the leakage of the FO transformation is presented. This attack model was
instantiated as a timing attack [GJN20] on FrodoKEM and also timing attacks [GHJ+21]
on code-based NIST candidates HQC and BIKE with variable execution time of the
rejection sampling procedure. Attacks and protections against power/EM adversaries were
further investigated in [BDH+21, UXT+22].

A series of similar analyses in the presence of PC oracle has also been presented. For
example, D’Anvers et al. [DTVV19] exploited the variable runtime information of its
non-constant-time decapsulation implementation on the LAC and successfully recovered its
long-term secret key. At CHES 2020, Ravi et al. proposed a generic EM chosen-ciphertext
SCA by exploiting the leaked information about Fujisaki-Okamoto (FO) transform or Error
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Correcting Codes (ECC) and applied it to six CCA-secure lattice-based KEMs [RRCB20].
Afterwards, Qin et al. [QCZ+21] proposed a systematic approach to evaluate the key reuse
resilience of CPA-secure lattice-based KEMs and further mounted it on side-channel attacks
against the CCA-secure ones, which greatly reduced the needed side-channel traces/queries
compared with Ravi et al. In [ZCD21], Zhang et al. investigated the key reuse resilience
of the CPA-secure NTRU-HRSS KEM, whose method can also attack the CCA-secure
NTRU-HRSS KEM with the help of side-channel leakages. Recently, Ravi et al. further
successfully mounted the previous attacking method on two NTRU-based schemes, which
are NTRU and NTRU Prime [REB+22].

The idea of FD oracle-based SCA is first proposed by Xu et al. [XPSR+21] and
they demonstrated that an adversary only needs 8 traces in recovering the secret key
of Kyber512 KEM for the pqm4 ARM-specific implementation at -O0. Compared with
the PC-oracle-based SCA, Xu et al. can gain the complete message information for the
chosen ciphertext, which is equivalent to launching multiple chosen-ciphertext attacks
simultaneously. Subsequently, Ravi et al. fully exploited the vulnerabilities of the message
decoding function on the lattice-based KEMs and launched the corresponding side-channel
attacks for different implementations of CCA-secure lattice-based KEMs [RBRC21]. Their
attack can be extended to several implementations with side-channel countermeasures
such as shuffling and masking but only perform message recovery. More recently, there
is a side-channel attack successfully recovering the long-term secret key for the masked
implementation of SABER [NDGJ21], which removes Ravi et al.’s restriction.

Organizations. The remaining of the paper is organized as follows. We present the
necessary background in Section 2 and the new improved approach in Section 3. This
is followed by a concrete instantiation for attacking Kyber512 in Section 4 and the
experimental results in Section 5. Finally, we conclude the work in Section 6.

2 Previous PC-based SCA against Kyber
2.1 Kyber and the PC oracle
The security of Kyber is based on the hardness of solving the module learning with errors
(M-LWE) problem. From linear algebra, we know that it is easy to retrieve s from linear
equations b = As. Here A is a matrix and b and s are vectors. But if we add noises
even with small coefficients, the resulted LWE problem, i.e. recovering b = As + e can be
hard. The Ring-LWE problem is to replace matrices and vectors with polynomials, thus
significantly reducing the computation and communication costs. The M-LWE problem
can be viewed as a combination of the LWE problem and Ring-LWE problem, thus Kyber
enjoys the advantages of relatively easy scalability and high efficiency.

To be specific, Kyber is defined over a polynomial ring Rq = Zq[x]/(xn + 1). Here q =
3329 is a modulo and n = 256. For every polynomial f(x) = a0 +a1x+· · ·+an−1x

n−1 ∈ Rq,
each coefficient ai ∈ Zq (0 ≤ i ≤ n− 1), where Zq represents a ring with all elements are
integers modulo q. All the polynomial additions and multiplications are operated modulo
xn + 1. We interchangeably use c ∈ Rq and its vector form (c[0], · · · , c[n− 1]) to represent
a polynomial. For a matrix A ∈ Rk×kq , s, e ∈ Bkη , where Bη means the centered binomial
distribution, the M-LWE problem is to distinguish (A,B = As + e) ∈ Rk×kq × Rkq from
uniformly selected (A,B) ∈ Rk×kq ×Rkq .

The security of Kyber can be shifted by simply modifying k. More specifically, there
are three security levels in Kyber: Kyber-512, Kyber-768, and Kyber-1024, corresponding
to k = 2 , k = 3, and k = 4, respectively. Generally, a KEM consists of key generation,
encapsulation, and decapsulation. But a PC-based SCA is done against the decapsula-
tion part. Thus, in Algorithm 1, we only depict the main parts of encapsulation and
decapsulation of Kyber, ignoring details such as the Number Theoretic Transform (NTT).
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Algorithm 1 The encapsulation and decapsulation in Kyber
� CCAKEM.Encaps

Input: Public Key p
Output: Ciphertext ct = (c1, c2)
Output: Shared Key K
1: m $←− {0, 1}256

2: (K̄, r) = G(m,H(p))
3: . CPA.Enc(p,m, r)
4: A $←− Rk×k

q

5: r, e1
$←− Rk

q , e2
$←− Rq

6: u = AT r + e1
7: v = pT r + e2 + Decompq(m, 1)
8: c1 = Compq(u, du)
9: c2 = Compq(v, dv)
10: K = KDF(K̄,H(c1, c2))

� CCAKEM.Decaps
Input: Ciphertext ct = (c1, c2)
Input: Secret Key s
Output: Shared Key K
1: . CPA.Dec(s, ct)
2: u = Decompq(c1, du)
3: v = Decompq(c2, dv)
4: m′ = Compq(v− sT u, 1)
5: (K̄′, r′) = G(m′,H(p))
6: (c′1, c′2) = CPA.Enc(p,m′, r′)
7: if (c1, c2) = (c′1, c′2) then
8: K = KDF(K̄′,H(c′1, c′2))
9: else
10: K = KDF(z,H(c′1, c′2))
11: end if

In the following, let d·c denote the rounding function, we first define two functions,
Compq(x, d) and Decompq(x, d).

Definition 1. The Compression function is defined as: Zq → Z2d

Compq(x, d) =
⌈

2d

q
· x
⌋

(mod 2d). (1)

Definition 2. The Decompression function is defined as: Z2d → Zq

Decompq(x, d) =
⌈ q

2d · x
⌋
. (2)

Similarly, when the inputs of Compq(x, d) and Decompq(x, d) are polynomials, i.e.,
x ∈ Rkq , the above operation is separately done on each coefficient. Let $←− represent
random selection and T represent the transpose of a matrix. In both the encapsulation
and decapsulation, two hash functions G and H, as well as a key derivation function
KDF, are used. CCA-secure Kyber is achieved through the well-known Fujisaki-Okamoto
(FO) transform based on a CPA-secure PKE. In the encapsulation, a CPA-secure encryp-
tion algorithm is used to output c1 and c2. Here du and dv used in Compq(x, d) and
Decompq(x, d) functions are also determined by different security levels. For example, in
Kyber-512, du = 10, dv = 3. In the decapsulation, a CPA-secure decryption algorithm is
firstly used to obtain (K̄ ′, r′), which is then re-encrypted to get (c′1, c′2).

The CPA-secure KEMs are vulnerable to chosen-ciphertext attacks when the secret key
is reused. These attacks are generally operated in a key-mismatch or PC Oracle. Algorithm
2 first depicts the PC oracle O, in which the adversary sends ciphertext ct and a reference
plaintext m to the oracle. The oracle tells whether m equals the CPA decryption result
m′ or not. On the right part of Algorithm 2, we introduce the process of recovering the
secret key by employing the response sequence from PC oracle1 O. In the recovery process,
special ciphertexts are crafted to combine every possible coefficient value (such as [−3, 3]
in Kyber512) with certain oracle response sequence. For example, if O is always accurate,
Ravi et al. needed 5 queries to recover one coefficient and 256 · 2 · 5 = 2560 queries in total
for the second round Kyber512. After that, Qin et al. reduced the queries to an average
of 1312 for the third round Kyber512 by using the optimal binary recovery tree. We next
briefly introduce the main process proposed by Qin et al., an improved method close to
Huffman coding to achieve key recovery, and more details can be found in [QCZ+21].

1We present here a general description of the PC oracle. In PC oracle-based CCA SCAs, the message
m is limited to be chosen from a set of {m0,m1} and the oracle outputs the chosen message.
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Algorithm 2 PC oracle O and the key recovery process
� PC oracle O

Input: Ciphertext ct
Input: Message m
Output: 0 or 1
1: m′ ← CPA.Dec(s, ct)
2: if m′ = m then
3: Return 1
4: else
5: Return 0
6: end if

� KeyRecovery
Input: PC oracle O
Output: Secret Key s
1: for All coefficients location loc in s do
2: . CoefficientRecovery(loc)
3: seq = “”
4: while s[loc] cannot be recovered from seq do
5: Generate (ct,m) from loc and seq
6: res = O(ct,m)
7: Append res to the response sequence seq
8: end while
9: Set s[loc] the corresponding value of seq
10: end for

2.2 The attack on Kyber from [QCZ+21]
We now take Kyber512 as an example to explain the main attack procedure proposed
in [QCZ+21], which will be employed as the initial processing steps in our new attack. We
start with building a PC oracle O shown on the left of Algorithm 2 by instantiating the
CPA.Dec() function with Kyber.CPA.Dec().

The victim Alice’s secret key is s and s = (s0, s1) in Kyber512. On the right of Algorithm
2, the KeyRecovery is used to recover s. The aim of the CoefficientRecovery is to
select proper ct = (c1, c2) and m as inputs to O. Then, the attacker is able to recover s
from the response sequence seq of O. In the following, we show the approach to recover
the first coefficient s0[0] in s0, and the remaining coefficients can be recovered similarly.

To launch the attack, the attacker lets m = (1, 0, · · · , 0) and u = (u0,u1), where u0 =
(
⌈
q

16
⌋
, 0, . . . , 0) and u1 = 0. Then, the attacker is able to calculate c1 = Compq(u, du),

as well as setting c2 = (g, 0, . . . , 0). Here g is later set and used to recover s0[0].
Next, ct = (c1, c2) is sent as input to the Oracle, which is employed to generate

u = Decompq(c1, du) and v = Decompq(c2, dv). Thus, a relationship between m′[0]
and s0[0] can be built as follows:

m′[0] =Compq((v− sTu)[0], 1) (3)

=
⌈

2
q

(
v[0]− (sTu)[0]

)⌋
mod 2 (4)

=
⌈

2
q

(v[0]− (s0[0]u0[0] + s1[0]u1[0]))
⌋

mod 2 (5)

=
⌈

2
q

(v[0]− s0[0]u0[0])
⌋

mod 2 (6)

=
⌈

2
q

(⌈ q
16g

⌋
− s0[0]

⌈ q
16

⌋)⌋
mod 2. (7)

The last equation holds due to the fact that v[0] =
⌈
q

16g
⌋
and u0[0] =

⌈
q

16
⌋
.

Further, the attacker could adaptively set different g to recover s0[0] based on the
sequence outputted from the oracle. Take g = 4 as an example: recall that each s0[0] is
selected from [−3, 3]. When s0[0] ∈ [−3,−1], m′ = (1, 0, . . . , 0), which means m = m′. So,
the output of the oracle is 1. Similarly, when s0[0] ∈ [0, 3], m′ = (0, 0, . . . , 0), which reults
the output of the oracle to be 0. From the above analysis, the attacker succeeds in deciding
which subinterval, [−3,−1] or [0, 3], s0[0] is in using a query. If the attacker chooses proper
g, then he could recover s0[0] with as few queries as possible. This is achieved by using
the the optimal binary recovery tree in [QCZ+21].

In Table 1, the selections of g and the corresponding changes of States are depicted.
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For Kyber512, the States in Table 1 are shifted in accordance with the output of the oracle.
To be specific, the attacker first lets g = 4 and observes the output of the oracle. If the
oracle outputs 1, the attacker goes to State 5 and further sets g = 3. Then, if the oracle
outputs 0, the attacker succeeds in determining s0[0] = −1. If the oracle outputs 1, the
attacker goes to State 6 and sets g = 2. Finally, the attacker is able to decide s0[0] = −2 or
s0[0] = −3 according to the output of the oracle. In fact, in this way, the attacker succeeds
in building a relationship between each symbol in [−3,−1] and the response sequence. For
example, s0[0] = −1 corresponds to 10, s0[0] = −2 corresponds to 110, while 111 is the
corresponding response sequence of s0[0] = −3.

Finally, all the coefficients can be recovered and the total numbers of queries needed
for Kyber512 is 1312.

Table 1: Selections of g and the corresponding States

State 1 State 2 State 3 State 4 State 5 State 6
g 4 5 6 7 3 2

O → 0 State 2 State 3 State 4 s0[0] = 3 s0[0] = −1 s0[0] = −2
O → 1 State 5 s0[0] = 0 s0[0] = 1 s0[0] = 2 State 6 s0[0] = −3

2.3 PC oracle-based SCA attacks
In the CCA-KEMs such as Kyber and Saber, by employing the FO transform, the above
attacks do not work. However, with the help of side-channel information, such as analyzing
the power consumption or electromagnetism waveforms during decapsulation, the adversary
could directly spot the CPA-secure operations inside the CCA-secure function, and launch
the same attacks.

At CHES 2020, Ravi et al. introduced a PC-based SCA attack on NIST KEMs by
exploiting the information of the re-encryption procedure in the FO transform [RRCB20].
Again we take the attack against Kyber as an example, the adversary simply let m′
be m0 = (0, 0, 0, 0, · · · ) or m1 = (1, 0, 0, 0, · · · ). Correspondingly, the waveform of the
re-encryption procedure (i.e lines 5-6 on the right of Algorithm 1) is also fixed to two types,
allowing us to enact a PC oracle OSCA with a side-channel waveform distinguisher. In
[RRCB20], Ravi et al. designed the SCA distinguisher mainly by calculating the Euclidean
distance to the profiled waveform templates. More specifically, they firstly repeatedly
collect re-encryption waveforms of m′ = m0 and m′ = m1. Then they run a Test Vector
Leakage Assessment (TVLA) between the two waveform sets to select the interested points.
In the next attacking stage, they achieve binary-classification by calculating the Euclidean
distance between the interested points of collected waveform and two waveform templates.
We summarize attacking procedure as OSCA on the left of Algorithm 3. Note that since
we restrict m′ to be m0 or m1, the problem of distinguishing whether m′ = m0 can be
simplified to deciding which template of m0 or m1 has more close Euclidean distance to
the collected waveform.

Affected by the noises from the environment or the masking countermeasures, as well
as accuracy problems in the side-channel distinguisher itself, OSCA is imperfect and cannot
always tell the truth. We set its accuracy as αo. Even if αo reaches 0.990, if we simply
instantiate the KeyRecovery in Algorithm 2 with OSCA to recover the secret key, on
average we will meet 13.0 error coefficients among all the recovered 512 coefficients (with
ciphertext construction method in [QCZ+21]). Since we cannot decide the positions of the
errors, the brute force complexity is quite high, which can be estimated as:(

512
13

)
· 713 ≈ 2120.7.
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Algorithm 3 PC oracle OSCA and the Practical Key Recovery process under SCA
� PC oracle OSCA enacted by SCA

Input: Ciphertext ct
Input: Profiled waveforms Wm0 , Wm1
Output: 0 or 1
1: Query the device with ct and collect waveform

Wm′ from FO re-encryption
2: if Dist(Wm′ ,Wm1 ) < Dist(Wm′ ,Wm0 )
3: Return 1
4: else
5: Return 0

� RoughKeyRecovery
Input: An imperfect PC oracle OSCA

Output: Secret Key s
1: Return KeyRecovery(OSCA)
� SCA PC oracle OV with majority-

voting
Input: An imperfect PC oracle OSCA

Output: 0 or 1
1: Query the OSCA t times and add the response

value to sum
2: if sum > t/2 then
3: Return 1
4: else
5: Return 0
6: end if

� PracticalKeyRecovery
Input: oracle OV with majority-voting
Output: Secret Key s
1: Return KeyRecovery(OV )

Therefore, additional techniques are needed to strengthen the recovery procedure. A
commonly used technique, which is also applied in Ravi et al.’s attack, is majority-voting.
With a majority-voting of t times, we can obtain a more accurate oracle OV with accuracy
αov. That is,

αov = 1−
bt/2c∑
s=0

(
t
s

)
αso(1− αo)t−s.

In the right part of Algorithm 3, we show the oracle OV with a majority-voting and
the practical key recovery under SCA. With majority-voting of t = 3, the OSCA with
αo = 0.990 mentioned above can be transformed to OV with αo = 0.9997. If we instantiate
the KeyRecovery with OV to recover the secret key, we will get less than 1.0 error
coefficients among all the 512 coefficients on average. We set it a successful full-key
recovery since the remaining complexity now becomes(

512
1

)
· 71 ≈ 211.8.

At CHES2022, Ueno et al. mainly use the deep-learning technique to design the
side-channel distinguisher and achieve a similar binary-classification (line 2 on the left of
Algorithm 3) [UXT+22]. They use Negative Log-Likelihood (NLL) with t′ traces to gain
an oracle with higher accuracy and thus perform key recovery under this oracle. Their
overall idea is highly similar to the procedures on the right of Algorithm 3.

Both of their methods need t or t′ times the total traces required from a perfect SCA
oracle. For example, Ravi et al. apply majority-voting with t = 3 for practical key recovery
and need 2560 · 3 = 7680 queries. Ueno et al. apply the NLL with t′ = 2 for key recovery
for non-protected software and need 1536 · 2 = 3072 queries.

In the next section, we propose a more efficient full-key recovery strategy compared
with the previously mentioned ones.

3 Our adaptive full-key recovery strategy

In this part, we describe the general full-key recovery framework of the new attack. We
start with introducing the basic ideas.
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... 1 3 2 4 5 2 3 5 ...

ŝ From Step1
(Roughly Correct)

... 1 3 2 4 5 2 3 5 ...

Step2: Fast Checking

... 1 5 2 4 1 2 3 5 ...

Step3: Targeted Recollection for
Suspicious Blocks

ŝf (Final Result)

Unchecked blocks
Correct blocks
Suspicious blocks
Updated blocks

Figure 1: Our full-key recovery strategy

3.1 Our basic idea
In Figure 1, we illustrate the basic idea of our full-key recovery strategy. Instead of
strengthening the accuracy of the oracle, the basic idea of our full-key recovery strategy is
to detect error positions in the roughly recovered secret key, and then use an improved
method to correct the errors. Let the real secret key in the targeted KEM be s, we
summarize our main procedure as follows:

Step 1: Perform RoughKeyRecovery in Algorithm 3 with OSCA to get a roughly correct
ŝ.

Step 2: Based on the knowledge of ŝ, we apply a fast checking method to detect the errors.

Step 3: For all suspicious blocks we found in ŝ, we perform targeted recollection on them.
Finally, we update the coefficient blocks in ŝ and get the final ŝf .

The major advantage of our full-key recovery strategy is that we make the best use
of current information of the roughly correct ŝ, and just perform recollection for the
suspicious coefficients. During this procedure, we need a checking method to construct
special ciphertexts to distinguish the locations of error coefficients. A checking method
should meet the following requirements:

• The checking method should be fast and requires as less queries as possible.

• Different from the previous KeyRecovery methods, the checking method just needs
to detect the positions of error coefficients rather than correcting these erroneous
coefficients.

In the following, we propose our fast checking method in detail, which plays a central
role in our full-key recovery.

3.2 Our fast checking method
The main idea of our fast checking method is to treat the detection of corruptions in ŝ
as a coding problem. First, we divide coefficients of ŝ into blocks, while each block may
contain one or several coefficients. Then, we treat the possible values of a coefficient block
as symbols and the oracle responses (the 0,1 sequence) as codewords. To successfully check
the targeted block, we generate proper ciphertexts to encode the targeted block symbol
to a special codeword csucc. At the same time encoding the remaining blocks to other
different codewords. As shown in Figure 2, the block symbols can be numbers between 1
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... 1 5 2 4 5 2 3 5 ...

ŝ (Roughly Correct)

Targeted Block

ctexp
Generate Ciphertext

Block Symbol 1

Block Symbol 2

Block Symbol 3

Block Symbol 4

Block Symbol 5

Codeword 1

Codeword 2

Codeword 3

Figure 2: The expected coding for ctexp

ctexp Responses
OSCA

... 1 5 2 4 5 2 3 5 ...

Correct

... 1 5 2 4 5 2 3 5 ...

Suspicious

Codewo
rd 1

Codeword 2,3
Unchecked blocks
Correct blocks
Suspicious blocks

Figure 3: Procedure of checking the targeted block
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and 5. To check block symbol 5, we expect a ctexp to encode it into a special “Codeword
1”, while other block symbols are encoded into “Codeword 2” or “Codeword 3”.

By setting the oracle responses we collect in checking procedure as cget, we get:{
there are no errors in the block, cget = csucc,

there are errors in the block, cget 6= csucc.

Figure 3 depicts the procedure of checking the targeted block with symbol 5. First,
we query the oracle with ctexp and analyze the response sequence. When we receive
“Codeword 1” we set the targeted block as correct, otherwise, we mark the block as
suspicious. By continuously querying the oracle, we can check the whole recovered ŝ.

3.3 Our adaptive key recovery strategy for different accuracy levels

Algorithm 4 Our Adaptive Full-Key Recovery Strategy for Different Accuracy Level
� AdaptiveFullKeyRec

Input: An imperfect PC oracle OSCA

Input: Accuracy bound αb

Output: Recovered secret key sf
1: sf = RoughKeyRecovery(OSCA)
2: Eb = CheckSkByBlock(̂sf )
3: Estimate αo of OSCA from len(Eb)
4: if αo ≥ αb then
5: goto FullKeyRecHighAccu
6: else
7: goto FullKeyRecLowerAccu
8: end if

FullKeyRecHighAccu:
9: for All block B ∈ Eb do
10: for All coefficient locations loc in B do
11: sf [loc] = CoefficientRecovery(loc)
12: end for
13: end for
14: return sf

FullKeyRecLowerAccu:
15: Precompute cc1, cc2,Threshold[ ] from αo

16: round = 0

17: while Not all Finished[loc] = true do
18: for All block B /∈ Eb do
19: for All coefficient locations loc in B do
20: confidence[loc][̂sf [loc]] += cc1
21: end for
22: end for
23: for All block B ∈ Eb do
24: for All coefficient locations loc in B do
25: nv = CoefficientRecovery(loc)
26: confidence[loc][nv] += cc2
27: end for
28: end for
29: cct = Threshold[round]
30: for All coefficients location loc in s do
31: Set vl the most confident coefficient value
32: Update ŝf [loc] with vl
33: if confidence[loc][vl] > cct then
34: Finished[loc] = true
35: end if
36: end for
37: Eb = CheckSkByBlock(̂sf )
38: round++
39: end while
40: return sf

In practice, due to different noise levels or distinguisher accuracy, the resulted oracle
accuracy can be different. For example, in [UXT+22], Ueno et al. realized a side-channel
distinguisher with a trained Neural-Network (NN) model. The model accuracy (also the
oracle accuracy) for non-protected implementation is 0.998, and for masked implementation
is 0.960. In the following, we propose our adaptive key recovery strategy, which can deal
with different accuracy levels in an adaptive way.

In Algorithm 4, we show the pseudocode of our full-key recovery strategy for high
and lower oracle accuracy, respectively. Our strategy is adaptive, in which we could first
estimate the oracle accuracy αo from the erroneous block number (i.e. line 3 in Algorithm
4). Then we compare it with a accuracy bound αb to determine the accurate level and
turn to FullKeyRecHighAccu or FullKeyRecLowerAccu for high or lower accuracy
conditions. When the accuracy of the oracle is high (such as 0.998), our full-key recovery
strategy in Subsection 3.1 works well, but it may fail to achieve full-key recovery for lower
oracle accuracy (such as 0.960). This is because the checking and the recollection procedure
are also done under the SCA oracle, which may also be corrupted. The corruptions on
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these two procedures are negligible under a high oracle accuracy but need to be considered
when the oracle accuracy is low.

To solve this problem, we introduce a mixed voting technique to extend our full-key
recovery strategy suitable for lower oracle accuracy. Our main idea is to make full use
of the information in the checking and recollection phases. More specifically, we define a
confidence array to store the votes of every possible value of every coefficient position.
For the coefficients in correct blocks, we add cc1 votes to the values in targeted positions.
For the coefficients in erroneous blocks, we run recollection for the targeted positions (i.e.
perform CoefficientRecovery in Algorithm 2) and cast cc2 votes for the recovered value
from recollection. We repeat this procedure round by round, and when the confidence of a
certain candidate value reaches Threshold[round], we set it as right. Here, cc1, cc2 and
Threshold can be precomputed from the oracle accuracy αo. The RoughKeyRecovery,
CheckSkByBlock, CoefficientRecovery, αb and the estimation method of αo can be
instantiated according to different recovery and checking method for the targeted KEM.
In the next Section, we will take Kyber512 as an example to give more details.

4 Our adaptive full-key recovery for Kyber
In this chapter, we show how to launch a practical PC oracle-based full-key recovery
against Kyber. The remaining challenge is how to select proper parameters.

4.1 Restrictions on ciphertext construction and our solution
For Kyber, the PC oracle requires that the decrypted message m′ (line 4 in Algorithm
1) to be set as (1, 0, 0, 0, · · · ) or (0, 0, 0, 0, · · · ). That is, the first coefficient of m′ can be
either 0 or 1, while the other coefficients should be all 0. To achieve this goal, we need to
carefully select the ciphertext ct, which results in limited choices of ct. In some cases, the
expected ciphertexts for our designed code may not exist.

In Table 2, we give two examples of the designed codeword for Kyber512, considering
BlockLen = 1, here BlockLen represents the number of coefficients in a block. Recall
that in Kyber the coefficients lie in the interval [−3, 3]. From these two examples, we could
distinguish the target value 1, since 1 is uniquely decoded by codeword “0” in Example 1
and codeword “01” in Example 2.

Table 2: Designing codewords to distinguish 1

-3 -2 -1 0 1 2 3

Example 1 “1” “1” “1” “1” “0” “1” “1”
Example 2 “11” “11” “11” “11” “01” “00” “00”

Example 1 requires us to find a ciphertext ct with which the resulted oracle response
is {1, 1, 1, 1, 0, 1, 1} for coefficient values in [−3, 3]. However, in practice we can never find
such ct. Example 2 requires us to find two ciphertexts resulting in {1, 1, 1, 1, 0, 0, 0} and
{1, 1, 1, 1, 1, 0, 0}, respectively, and such ciphertexts are available. However, with larger
blocks, it is quite hard to find the qualified ciphertexts directly from the initially designed
codewords. Hence, we need to find all candidate ciphertexts and try to generate qualified
codewords from them. To conclude, we show our main steps as follows:
Step 1: Find as many ciphertexts as possible satisfying the PC oracle restrictions for the

concrete BlockLen. We store all of them in ct_list.

Step 2: For all pairs of ciphertexts in ct_list, we calculate the response sequence for all
block symbols and store them in c_list. Then we try to find the special codeword
csucc from c_list.
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In the following, we first discuss how to craft all the possible ciphertexts for Step 1.
Then we show how to check 4 coefficients by 2 queries, which is the most efficient way we
could achieve.

4.2 Crafting ciphertexts for Kyber512
In Kyber512, let the decompressed ct = (u,v), u = (u0,u1) and the reused s = (s0, s1).
Here u0, u1, v, s0, and s1 are all polynomials with 256 coefficients. From the decryption
procedure of Kyber, we know that

m′ = Compq(v− sTu, 1) =
⌊

2
q

(v− sTu)
⌉

mod 2 (8)

=
⌊

2
q

(v− (s0u0 + s1u1))
⌉

mod 2. (9)

We take the recovery of coefficients in s0 as an example. We need some attacking
parameters setting as uatk and vatk, where uatk is an array with BlockLen integers to
craft u in ct, and vatk is an integer to craft v in ct.

Assume BlockLen = 1, i.e. only one coefficient in the block. To get a relationship
for s0[t], t ∈ [0, 255], the attacker firstly set u1 = 0 to ensure s1 has nothing to do with
m′. Moreover, for i ∈ [1, 255], we set v[i] = 0, i ∈ [1, 255] and u0 = uatk[0] if t = 0 or
u0 = −uatk[0] · x256−t if t 6= 0. Take t = 0 as an example, now

m′[i] =
⌊
−2
q
s0[i]uatk[0]

⌉
mod 2, i ∈ [1, 255], t = 0.

To ensure m′[i] = 0, for i ∈ [1, 255], since s0[i] ∈ [−3, 3], we only need to let

2
q

(3uatk[0]) < 1
2 i.e. uatk[0] < q

12 .

When BlockLen = 2, to find a relationship for s0[t], s0[t+ 1], the attacker similarly
set u1 = 0, v[i] = 0, i ∈ [1, 255], and u0 = uatk[0] − uatk[1] · x255 if t = 0 or u0 =
−uatk[0] · x256−t − uatk[1] · x255−t if t 6= 0. Take t = 0 as an example, now

m′[i] =
⌊

2
q

(−s0[i]uatk[0]− s0[i+ 1]uatk[1])
⌉

mod 2, i ∈ [1, 255], t = 0

Since (s0[i], s0[i+ 1]) ∈ [−3, 3]× [−3, 3], to achieve m′[i] = 0, we also need

2
q

(3uatk[0] + 3uatk[1]) < 1
2 i.e. uatk[0] + uatk[1] < q

12 . (10)

When BlockLen = 4, similarly we require

uatk[0] + uatk[1] + uatk[2] + uatk[3] < q

12 . (11)

Algorithm 5 depicts the ciphertext generation procedure with attacking parameters.
We use sp and bp to locate the targeted block.

4.3 Checking 2 or 4 coefficients by 2 queries
When BlockLen = 2, let bp represent the index of the beginning of the block. We take
how to check (s0[bp], s0[bp + 1]) as an example. As shown in Algorithm 5, by setting ct
to the following value:

ct = GeneCiphertext2,0,bp(uatk, vatk),
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Algorithm 5 Generating ciphertexts of PC oracle from given parameters

Input: sp = 0 or 1 for recovering s0 or s1 in s, bp = index of the beginning of the block
Input: Attacking parameters uatk, vatk
Output: Ciphertext ct
� GeneCiphertextBlockLen,sp,bp(uatk, vatk)

1: (u0,u1) = (0,0) ; v = 0
2: if bp = 0 then
3: usp = uatk[0]−

∑BlockLen−1
n=1 uatk[n] · x256−n

4: else
5: usp = −

∑BlockLen−1
n=0 uatk[n] · x256−bp−n

6: end if
7: v[0] = vatk
8: return ((u0,u1),v)

the attacker knows the following equation:

O(ct) = m′[0] =
⌊

2
q

(vatk − (s0[bp]uatk[0] + s0[bp + 1]uatk[1])
⌉

mod 2.

Recall that each s0[bp] lies in [−3, 3]. To check all 7× 7 value of (s0[bp], s0[bp + 1]),
we also need 7 × 7 (ct1, ct2). In Algorithm 6 we express our brute force strategy as
pseudocode and successfully find all of them.

Algorithm 6 Generating proper ciphertexts to check blocks with BlockLen = 2

Output: Parameters to check all possible block symbols, with BlockLen = 2
1: for All available (uatk[0],uatk[1]) satisfying Eq. (10) and all available vatk do
2: ct = GeneCiphertext2,0,0((uatk[0],uatk[1]), vatk)
3: Append ct to ct_list
4: end for
5: for All pairs (ct1, ct2) in ct_list do
6: Calculate the response sequence O(ct1)||O(ct2) for all block symbols and store to c_list
7: if Special codeword csucc is found from c_list then
8: Append the corresponding block symbols, (ct1, ct2) and csucc to result
9: end if
10: end for
11: return result

Suppose we have known the roughly correct ŝ = (̂s0, ŝ1), and we want to check whether
(̂s0[0], ŝ0[1]) is equal to (0, 2) or not. We execute the following steps:

1. Query the oracle with ct1 = GeneCiphertext2,0,0((32, 48), 5) and store the re-
sponse O(ct1).

2. Query the oracle with ct2 = GeneCiphertext2,0,0((22, 43), 5) and store the re-
sponse O(ct2). In Table 3, we list all the response sequences O(ct1)||O(ct2) for all
possible block symbols. Here we can see that (0, 2) corresponds to a special codeword
“01”, while other block symbols are encoded to “11” or “00”.

3. Since csucc = “01”, so

(s0[0], s0[1]) =
{

(0, 2) , cget = “01” ,
others, cget = others.
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Table 3: O(ct1)||O(ct2) for [−3, 3]× [−3, 3]

s0[0]\s0[1] -3 -2 -1 0 1 2 3
-3 “11” “11” “11” “11” “11” “11” “11”
-2 “11” “11” “11” “11” “11” “11” “11”
-1 “11” “11” “11” “11” “11” “11” “11”
0 “11” “11” “11” “11” “11” “01” “00”
1 “11” “11” “11” “11” “00” “00” “00”
2 “11” “11” “00” “00” “00” “00” “00”
3 “11” “00” “00” “00” “00” “00” “00”

To accelerate the checking process, we increase the BlockLen to be 4. Then, we show
how to check 4 coefficients with 2 queries, which can significantly improve the efficiency.
Similarly, by setting ct as

ct = GeneCiphertext4,0,bp(uatk, vatk),

the attacker knows the following equation:

O(ct) =
⌊

2
q

(vatk − (
3∑

n=0
s0[bp + n]uatk[n])

⌉
mod 2.

To check all 74 values of (s0[bp], s0[bp + 1], s0[bp + 2], s0[bp + 3]), we also need to
generate proper 74 ciphertext pairs (ct1, ct2). However, the computational complexity can
be quite high if we apply a similar brute-force in Algorithm 6. After carefully analyzing
the table of oracle responses and the corresponding ciphertext ct, we observe that the
problem can be solved by using the idea of divide-and-conquer. That is, we first get the
needed attacking parameter uatk[0],uatk[1], vatk using Algorithm 6. Then, with the found
uatk[0],uatk[1], vatk, we try to find proper uatk[2],uatk[3] satisfying Eq. (11). Next we
select those (uatk[0],uatk[1],uatk[2],uatk[3], vatk) which could generate the special code
we want. Our main process is given in Algorithm 7.

Algorithm 7 Generating proper ciphertexts for checking blocks with BlockLen = 4

Output: Parameters to check all possible block symbols, with BlockLen = 4
1: Run Algorithm 6 to get result_bl2
2: for Every tuple (ct1, ct2) in result_bl2 do
3: for All available extra (uatk[2],uatk[3]) to ct1 and ct2 with satisfying Eq. (11) do
4: ct = GeneCiphertext4,0,0((uatk[0],uatk[1],uatk[2],uatk[3]), vatk)
5: Append ct to ct_list
6: end for
7: for All pairs (ct1, ct2) in ct_list do
8: Calculate the response sequence O(ct1)||O(ct2) for all symbols and store them in c_list
9: if Special codeword csucc is found from c_list then
10: Append the corresponding block symbols, (ct1, ct2) and csucc to result
11: end if
12: end for
13: end for
14: return result

Suppose we want to check if (̂s0[0], ŝ0[1], ŝ0[2], ŝ0[3]) really equals to (−2,−1, 0, 1) for
example. We execute the following steps:
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1. Query the oracle with ct1 = GeneCiphertext4,0,0((10, 1, 66, 4), 13) and store the
response O(ct1).

2. Query the oracle with ct1 = GeneCiphertext4,0,0((10, 1, 65, 5), 13) and store the
response O(ct2). In Table 4, we list codewords and their corresponding counts for
all possible block symbols. We can see that (−2,−1, 0, 1) corresponds to a special
codeword “01”, while other block symbols are encoded to “11”, “00” or “01”.

3. Since csucc = “01”, so

(s0[0], s0[1], s0[2], s0[3]) =
{

(−2,−1, 0, 1) , cget = “01” ,
others, cget = others.

Table 4: O(ct1)||O(ct2) for [−3, 3]4

Codewords “00” “01” “10” “11”
Counts 1532 1 9 859

Finally, we are able to find 2382 (ct1, ct2) sequences, and thus, we can check 2382
block symbols in all possible 74 (= 2401) ones. For the blocks in which symbols cannot
respond to available (ct1, ct2), we can simply redivide these blocks. In this way, we are
able to check all the coefficients. A natural question here is, can we go on increasing
the block length to further improve the efficiency? The increment in the block length
also brings much burden in finding proper ciphertexts, and the searching complexity for
checking 8 coefficients is already prohibitively high. We need to balance efficiency and
searching complexity for ciphertexts.

4.4 Instantiation of full-key recovery against Kyber512
We instantiate the CheckSkByBlock in Algorithm 4 with the method of “Checking 4 coef-
ficients by 2 queries”. Also, we instantiate RoughKeyRecovery and CoefficientRecovery
with the proposed attack method in [QCZ+21] for Kyber512, which is the most efficient
PC oracle-based recovery method to the best of our knowledge (see Section 2.2). We
set the bound αb to 0.990 and we can estimate αo by αo ≈ 1 − len(Eb)/QRR. Here
QRR represents the number of queries needed in RoughKeyRecovery, and for Kyber512
QRR = 1312.

For FullKeyRecLowerAccu, the cc1, cc2 and Threshold[ ] can be determined in
advance through simulations. That is, we randomly generate a set of 20 secret keys and
select the best cc1, cc2 and Threshold[ ] which result in the lowest total number of traces.
Table 5 gives the precomputed cc1, cc2, and Threshold[ ] for αo = 0.960, αo = 0.950 and
αo = 0.900.

Table 5: The precomputed parameters for αo = 0.960, αo = 0.950 and αo = 0.900

cc1 cc2 Threshold[ ]

αo = 0.960 4 3 {5, 9, 11, 14, 14, 18, 18, 18, 18, 22, 22, ...}
αo = 0.950 4 3 {5, 9, 12, 13, 13, 16, 17, 17, 21, 21, 21, ...}
αo = 0.900 3 4 {5, 9, 13, 16, 20, 20, 20, 22, 24, 25, 26, ...}
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5 Experiments and Analysis
In this section, we present the experimental results and analysis, including results from
software simulations and also real-world experiments on an ARM Cortex-M4 microcon-
troller. Our aim is to understand the performance of the new algorithm, so we first set
several oracle accuracy levels and then run computer simulations to simulate the sample
complexity under different accuracy levels. We last launch an EM attack to demonstrate
that the simulation results match the real-world scenarios.

5.1 Software Simulations
5.1.1 Simulation settings

We firstly introduce our software simulations to show the efficiency of our full-key recovery
method under practical SCA. Recall that O is the ideal PC oracle, to simulate the practical
OSCA, we let the outputs of OSCA equal the outputs of O with a probability αo. Then
the two outputs are different with 1− αo probability. That is,

OSCA(ct) =
{
O(ct) , with αo probability,
!O(ct) , with (1− αo) probability.

Now the probability αo represents the accuracy of the practical OSCA in each query.
In our experiments, we let αo = 0.995, 0.950, 0.900 to simulate different accuracy levels.
Our method is adaptive since we first evaluate the accuracy level and compare it with
a bound αb = 0.990. In case αo = 0.995 > αb, we set it as high oracle accuracy, and
then use the FullKeyRecHighAccu in Algorithm 4 to launch the attack. In other cases,
αo = 0.950 and αo = 0.900 simulate the conditions with lower accuracy, and we use the
FullKeyRecLowerAccu in Algorithm 4 to launch the attack.

5.1.2 Traces evaluation under different accuracy levels

To show the advantage of our proposed full-key recovery strategy against majority-voting,
we run tests with 10,000 randomly generated secret keys. We let #TotalTrace represent
the average number of total traces for the full-key recovery. We also use #ErrCof to
represent the average number of error coefficients in the finally recovered secret key. Both
majority-voting and our proposed method aim to reduce #ErrCof to an amount less
than 1.0. All the reported numbers are calculated by taking an average. As shown in
Table 6, compared to majority-voting, our method achieves similar #ErrCof but reducing
58.2%, 57.8%, 46.1% total traces when αo = 0.995, 0.950, 0.900, respectively. These results
fully show the efficiency of our method in a wide range of oracle accuracy.

5.1.3 Improving Ueno et al.’s work

In [UXT+22], Ueno et al. employed a side-channel distinguisher with trained Neural
Network models. Their distinguisher corresponds to our imperfect oracle, and their model
accuracy (also the oracle accuracy) for different implementations is given in Table 7. We
can see that for non-protected software implementation, their distinguisher lie in the
high accuracy region, while for masked implementation, their distinguisher achieves lower
accuracy. To achieve full-key recovery, they use negative log likelihood (NLL) to enact
a more accurate oracle. More specifically, they use NLL to merge 2 and 5 traces for an
oracle response for the non-protected and masked software implementation, and the total
number of the required traces are 2 · 1536 = 3072 and 5 · 1536 = 7680, respectively.

2Ueno et al. did not give the exact number of the #ErrCof in their experiments, but their method
can achieve nearly 0 errors.
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Table 6: Comparison between majority-voting and our proposed method for full-key
recovery under OSCA (t represents the number of votes cast)

αo = 0.995 #TotalTrace #ErrCof

Majority Voting (t = 3) 3936.5 (ref) 0.10/512
Our Method 1645.1 (−58.2%) 0.51/512

αo = 0.950 #TotalTrace #ErrCof

Majority Voting (t = 7) 9185.0 (ref) 0.25/512
Our Method 3874.5 (−57.8%) 0.15/512

αo = 0.900 #TotalTrace #ErrCof

Majority Voting (t = 11) 14433.3 (ref) 0.39/512
Our Method 7773.9 (−46.1%) 0.25/512

Table 7: Accuracy of the NN side-channel distinguisher in [UXT+22]

Non-protected software Masked software

Accuracy 0.998 0.960

Table 8: Comparisons between Ueno et al.’s work and our proposed method for full-key
recovery under OSCA

αo = 0.998 #TotalTrace #ErrCof

Ueno et al.’s 3072.0 (ref) 0.00/5122

Our Method 1663.3 (−45.9%) 0.04/512

αo = 0.960 #TotalTrace #ErrCof

Ueno et al.’s 7680.0 (ref) 0.00/512
Our Method 3424.9 (−55.4%) 0.05/512

To show that our method could further optimize Ueno et al.’s work, we use the software
simulation mentioned above with αo = 0.998 and 0.960, and run tests with 10,000 randomly
generated secret keys. The result is averaged and given in Table 8. Compared to Ueno
et al.’s results, our method reduces 45.9%, 55.4% total traces with αo = 0.998 and 0.960,
respectively. At the same time, similar to the case in [UXT+22], we could recover nearly
all the coefficients, i.e. on average only 0.04 or 0.05 error coefficients occur among the 512
coefficients.

5.2 Real-world experiments
5.2.1 Experiment Setup

For real-world validation, as shown in Figure 4, we conduct our experiments on an
STM32F407G board, which is equipped with an ARM Cortex-M4 microcontroller. We
compile the ARM-optimized Kyber512 implementations from the pqm4 library and run it
on the microcontroller. The clock frequency of the target board is set to be 24 MHz. A
PicoScope 3403D oscilloscope and a CYBERTEK EM5030-3 EM Probe are used to collect
the EM traces. We connect the probe and the oscilloscope with a CYBERTEK EM5020A
signal amplifer. The traces are sampled at 1 GHz.
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To instantiate the PC oracle-based SCA distinguisher, we use the same method as that
in [RRCB20], which is introduced in the first part of Subection 2.2. The right part of
Figure 4 shows one of the TVLA results between the m0 and m1 templates.
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Figure 4: Our SCA equipment (left) and TVLA results between re-encryption of m0 and
m1 (right)

5.2.2 Experimental Results

We run tests for both the majority-voting approach and our proposed full-key recovery strat-
egy, with 10 randomly generated secret keys. We first implement the RoughKeyRecovery
and CheckSkByBlock (i.e. the result of lines 1-2 in Algorithm 4), then we estimate the
oracle accuracy from the erroneous block numbers. The estimated oracle accuracy in our
SCA setup is 0.996, and thus we choose to use the FullKeyRecHighAccu version of our
adaptive full-key recovery strategy.

Table 9: Comparison between majority-voting and our proposed method for full-key
recovery in real-world experiments and simulations

#TotalTrace #ErrCof #TotalTrace #ErrCof
(Real world) (Real world) (Simulations) (Simulations)

Majority Voting (t = 3) 3943.5 (ref) 0.20/512 3936.5 0.06/512
Our Method 1618.9 (−58.9%) 0.40/512 1629.9 0.34/512

The experimental results are averaged and shown in Table 9, where both of the two
methods lower the average error coefficients to an amount of less than 1.0. Note that
under such an experimental setup, with neither the majority-voting nor the new attack
strategy applied, we will expect around 4.1 error coefficients. We can see from the table
that the real-world experimental results match the computer simulations very well (i.e.,
with a difference of less than 1%). Also, compared with the majority-voting approach, our
new method reduces 58.9% of the required EM traces under our real-world setup.

6 Conclusions
We have presented a novel adaptive approach for improving the sample complexity of the
PC oracle-based CCA SCAs on lattice-based KEMs, when the constructed PC oracle is
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imperfect. The proposed framework consists of two variants targeting the low/high oracle-
accuracy regions, respectively, and is instantiated on Kyber, a candidate in the finalists of
the NIST PQC standardization project. Targeting Kyber512, we ran extensive computer
simulations and also mounted an EM attack against the optimized implementation in
the pqm4 library running on a STM32F407G board with an ARM Cortex-M4 CPU. The
experimental results demonstrated that the new approach could provide a substantial gain
with respect to the required number of traces.

Our new approach could be applied to other LWE/LWR-based KEMs such as another
NIST PQC finalist Saber [DKRV19]; we already described the general idea in Section 3,
but the algorithmic details can be involved. Moreover, it is an interesting future direction
to extend the new attack framework to NTRU-type KEMs. Last, this work has made
the known protections such as masking and shuffling more vulnerable since the adversary
needs fewer attack traces. It is always appealing but challenging to design safer and more
efficient countermeasures.
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