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Abstract

In 2002, Russell and Wang proposed a definition of entropic security, which was
developed within the framework of secret-key cryptography. An entropically secure
system is unconditionally secure, that is, unbreakable regardless of the adversary’s
computing power. The notion of an entropically secure symmetric encryption scheme
is important for cryptography because one can construct entropically secure sym-
metric encryption schemes with keys much shorter than the length of the input,
thus circumventing Shannon’s famous lower bound on key length. In this report we
suggest an entropically secure scheme for the case where the encrypted message is
generated by a Markov chain with unknown statistics. The length of the required
secret key is proportional to the logarithm of the message length (as opposed to the
length of the message itself for the one-time pad).

Keywords: Information Theory, entropy security, indistinguishability, symmetric encryption
scheme, unconditionally secure, Markov chain, unknown statistics.

1 Introduction

In 1949, K. Shannon, in his remarkable article [1], described the perfect
secret system and showed that the one-time pad is such a system. Since
then, it has been generally accepted that the length of the secret key should
be equal to the length of the encrypted message (or at least its entropy).
Russell and Wang [2] proposed the notion of entropic security, which gives a
possibility to build a symmetric encryption scheme with a secret key much
shorter than the length of the input, thus, in a sense, circumventing the
mentioned Shannon’s lower bound on key length. Informally, the entropy-
secure symmetric encryption scheme uses the entropy of the input message
to make the required secret key shorter.
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The concept of entropic security has been generalized and developed by
Dodis and Smith [3] and investigated by several other authors [4, 5, 6]. In
order to describe it, suppose that there is a sender Alice and a receiver Bob
who share a secret key K, and Alice wants to securely send some messageM
to Bob over a public channel. The messageM is assumed to come from some
a-priori distribution on Λn where Λ is a finite alphabet, n ≥ 1, and K is a
sequence of equally probable and independent binary digits. Informally, the
goal is to compute E(M,K) which allows Bob to extract M from E(M,K)
using K and (the decoder) D(E,K), (D(E,K) = M), in such a way as
to reveal “no information” about M to the adversary Eve beyond what she
already knew. It is assumed that E(M,K) is a probabilistic map, that is, it
can also use random numbers, which are unknown to Bob.

The following formal definition of the entropic security belongs to Russell
and Wang [2] (see also Dodis and Smith [3]):

Definition 1. A probabilistic map E(M,K) is said to hide all functions f
on Λn to {0, 1}∗ with leakage ε, ε > 0, if, for every adversary A, there exists
some adversary Â (who does not know E(M,K)) such that for all functions
f from Λn to {0, 1}∗,

|Pr{A(E(M,K)) = f(M)} − Pr{Â( ) = f(M)} | ≤ ε. (1)

(Note that Â does not know E(M,K) and, in fact, she guesses the meaning
of the function f(M), ignoring E(M,K).)

The cipher E(M,K) is ε-entropically secure for a probability distribution
P on Λn if E(M,K) hides all functions f on Λn to {0, 1}∗ with leakage ε
when M obeys the distribution P .

Another concept, namely, that of indistinguishability, provides another
way evaluate the strength of the cipher. To describe it, we first need to
define min-entropy.

For a probability distribution P on the alphabet S the min-entropy is
defined as follows:

hmin(P ) = − log max
a∈S

P (a) , (2)

log = log2.

Definition 2. (Dodis and Smith [3].) A randomized map Y () is (t, ε)-
indistinguishable if there is a random variable G such that for every dis-
tribution on a set M with min-entropy at least t, we have

SD(Y (M), G) ≤ ε,
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where for two probability distributions A,B

SD(A,B) =
1

2

∑
M∈M

|Pr{A = M} − Pr{B = M}| .

Informally, in what follows the map Y ( ) will be the cipher and, again,
G does not depend on the ciphered message. So, Eve can guess the message
regardless of its cipher.

Dodis and Smith [3] showed that entropy security and indistinguishability
are equal (up to small constants in key length). In particular, they show that
if a cipher is ε-entropically secure, it is 4ε-indistinguishable.

The main result of this paper is as follows: We describe an ε-entropically
secure cipher for the case where the probability distribution µ is unknown,
but it is known that it belongs to class of stationary ergodic Markov chains
with finite memory, or connectivity, m, m ≥ 0, whose definition is given
in Appendix. (If m = 0 then the symbols generated by µ are independent
and identically distributed – i.i.d.). The length of the required secret key is
c1 log n+ c2 log(1/ε) + c3, where n is the length of encrypted sequence, c1, c2

and c3 are constants that depend onm and the size of the alphabet Λ. (Recall
that all participants know m, but the secret key are known only to Alice and
Bob and the key is used only once).

The proposed method is based on the concept of the ε-entropically se-
cure cipher and some results of universal coding, which makes it possible to
efficiently “compress” messages with unknown statistics [7].

2 Preliminaries

2.1 Universal coding

First, we consider the simplest case where the alphabet is {0, 1}n, n ≥ 1
and letters are generated by some i.i.d. source µ and µ(0), µ(1) are unknown.
The goal is to build a lossless code which “compresses” n-letter sequences in
such a way that the average length (per letter) of the compressed sequence
is close to the Shannon entropy h(µ), which is the lower limit of the code-
word length (lossless code is such that the encoded messages can be decoded
without errors and h(µ) = −(µ(0) log µ(0) + (1−µ(0)) log(1−µ(0)) ) [7, 8].

The first universal code was invented by Fitingoff [9] and we use this code
as a part of the suggested entropically secure cipher. In order to describe this
code we consider any word v ∈ {0, 1}n and denote by ν the number of ones
in v and let Sν be the set of n-length words with ν ones. Fitingoff proposed
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to encode the word v by two subwords u (prefix) and w (suffix), where u is
the binary notation of an integer ν and w is the index of the word v in the
subset Sν. It is assumed that the words in Sν are ordered 0 to (|Sν| − 1)
(say, lexicographically) and the lengths of u and w are equal to dlog(n+ 1)e
and dlog |Sn|e, respectively. For example, for n = 3, v = 100 we obtain
ν = 1, u = 01, w = 10.

Recall the definition of the so-called prefix-free code. A set of words U
is prefix-free if for any u, v ∈ U neither u is a prefix of v nor v is a prefix
of u [8]. Clearly, the Fitingoff code is prefix-free. If some code λ is prefix-
free, then for any sequence x1x2....xn, n ≥ 1, xi ∈ Λ, the encoded sequence
λ(x1)λ(x2)...λ(xn) can be decoded to x1x2....xn without errors. Hence, any
prefix-free code is a lossless one.

If we denote the Fitingoff code by codeF we obtain from its description

|codeF (v)| = dlog(n+ 1)e+ dlog |Sν|e + 1 . (3)

For this code the ability to compress messages is based on the simple observa-
tion that probabilities of all messages from Sν are equal for any distribution
µ and, hence, µ(v) ≤ 1/|Sν| for µ and any word v ∈ Sν. From this inequality
and (3) we obtain

|codeF (v)| ≤ log(n+ 1) + 3 + log(1/µ(v)) . (4)

(Let’s explain the name “universal code.” Clearly, the average code-length
Eµ(|codeF |) is not grater than log(n+1)+3+nh(µ) and, hence, the average
length per letter Eµ(|codeF |)/n is not grater than h(µ) + (log n + 3)/n).
We can see that Eµ(|codeF |)/n → h(µ) if n→∞. So, one code compresses
sequences generated by any µ, that is, the code universal.)

The Fitingoff code described generalizes to i.i.d. processes with any finite
alphabet Λ, as well as to Markov chains with memory or connectivity m,
based on the same method as for binary i.i.d. [7]. Namely, the set of all n-
letter words is divided into subsets of equiprobable words, and the code of
any word is represented by a prefix and a suffix, where the prefix contains the
number of the set with equiprobable words which contains the encoded one,
and the prefix is the number in this set. It can be shown that the number of
sets with equiprobable words is bounded above by (|Λ| − 1)|Λ|m ([7, 8]), and
similarly (4) we can deduce that

|codeF (v)| ≤ log((|Λ| − 1)|Λ|m) + 3 + log(1/µ(v)) . (5)

It is important to note that there exists an algorithm to find the code-
words which is based on method of fast calculation of numbers in Sν, see
[10]. The complexity of this algorithm is O(n log3 n log log n).
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2.2 Entropically secure ciphers

Dodis and Smith [3], based on the results of Russell and Wang [2], proved
the following

Theorem (Russell-Wang, Dodis- Smith ) ([2], [3]). Let there be a
probability distribution σ on an alphabet Λ = {0, 1}l, l ≥ 1. Then, for any
ε > 0, there exists an ε- entropically secure cipher E(M,K), M ∈ {0, 1}l
with the length of the key

|K| = l − hmin(σ) + 2log(1/ε) + 2. (6)

Take any such cipher and denote it cipherRW−DS(M,K). Dodis and
Smith described three algorithm of such ciphers with a key length (6) whose
complexity grows polynomially in l and log(1/ε) (One such a cipher is de-
scribed in Appendix).

It is important to note that each of the three constructions of the ciphers
depends only on min-entropy, that is, the cipher construction is the same for
all distributions with the same min-entropy (but, of course, depends on ε and
l).

3 The cipher

3.1 Randomised prefix-free codes

Let λ be a prefix-free code for some alphabet Λ∗ and L = maxa∈Λ∗ |λ(a)| .
The randomized code ρλ maps elements from Λ∗ to the set {0, 1}L defined
as follows:

ρλ(ai) = λ(ai) r
i
|λ(ai)|+1r

i
|λ(ai)|+2...r

i
L , (7)

where ri|λ(ai)|+1, r
i
|λ(ai)|+2, ..., r

i
L are uniformly distributed and independent

random bits (for all i).
Let us define the probability distribution πλ,µ on {0, 1}L as follows:

πλ,µ(y1y2...yL) = µ(a)2−(L−|λ(a)|)

if y1y2...y|λ(ai)| = λ(a). (8)

If for some y = y1...yL any λ(a) is not a prefix of y, then πλ,µ(y) = 0.
Let us estimate the min-entropy of the distribution πλ,µ. From this equa-

tion and the definition of the min-entropy (2) we obtain the following:

hmin(πλ,µ) = L−max
a∈Λ

(|λ(a)| − log(1/µ(a)) . (9)

5



Now we consider the Fitingoff code applied to n-letter sequences gener-
ated by a Markov chain µ of memory m over some alphabet Λ. The Fitigoff
code is prefix-free and, hence, from (5) and (9) we obtain the following

Statement. For any distribution µ

hmin(πcodeF ,µ) > L− (|Λ|m(|Λ| − 1) log n + 3) . (10)

In particular, for an i.i.d. source with binary alphabet

hmin(πcodeF ) > L− (log n+ 3) .

3.2 Description of the cipher

Here we describe a cipher with the key of length const1 log n +
const2 log(1/ε)+const3, which is ε-entropically secure for n-letter sequences
generated by any (unknown) Markov chain µ of memory m over some alpha-
bet Λ.

Briefly, the encryption is done as follows: first compress the message with
the Fitingoff code, then randomize the encoded message according to (7) and
then encrypt the received ρcodeF ,µ( ) with an entropically secure cipher. (Note
that the distribution of µ is unknown.)

In detail, this algorithm is as follows:
Parameters: ε > 0, the alphabet Λ, the memory of Markov chain m

and the length of the ciphered message n.
Input: a word v ∈ Λn.
1st step: Encode v with the Fitigoff code codeF (v) (with parameters

Λ,m and n).
2nd step: Calculate the random word ρcodeF (v) (∈ {0, 1}L).
3rd step: Calculate the ε-entropically secure cipher

cipherRW−DS(ρcodeF (v), K) with the length of the secret key |K| =
(|Λ|m(|Λ| − 1) log n+ 2 log(1/ε) + 5 bits.

Output: cipherRW−DS(ρcodeF (v)).
The decryption algorithm is as follows: first Bob decrypts the word

E(ρcodeF (v), K) (= cipherRW−DS(ρcodeF (v)) ) with the known secret key K
and obtains the word ρcodeF (v). Then, based on the prefix-free property of
the Fitingoff code, Bob finds the word codeF (v) and then decodes it to get
v.

The described cipher uses compression and randomisation. Denote it
cipherc&r.

The theorem of Russell-Wang and Dodis-Smith guarantees the entropic
security and indistinguishability for the first cipher cipherRW−DS, so, we
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need to prove a similar property for the proposed cipherc&r. Despite the
equivalence of the concepts of entropic security and indistinguishability [3],
we will prove these properties separately due to the great importance of this
fact for the described cipher cipherc&r.

The following theorem describes the entropic security property for this
cipher:

Theorem 1. Let ε > 0 and suppose that the cipher cipherc&r is applied
to n-letter words M generated by a stationary ergodic Markov chain with
memory m,m ≥ 0, and an alphabet Λ, and let the length of the secret key
K be (|Λ|m(|Λ| − 1) log n + 2 log(1/ε) + 5. Then cipherc&r is ε-entropically
secure, that is, for any function A : {0, 1}L → {0, 1}∗ and f : Λn → {0, 1}∗
there exists such a function Â : {0, 1}L → {0, 1}∗ that

|Pr{A(cipherc&r(M,K) = f(M)} − Pr{Â( ) = f(M)}| ≤ ε,

where Â does not use cipherc&r(M).

Proof. The cipher cipherRW−DS(ρcodeF (v), K) with the length of the se-
cret key |K| = (|Λ|m(|Λ| − 1) log n+ 2 log(1/ε) + 5 is applied to {0, 1}L (see
the step 3). First we note that the cipher is ε-entropically secure. Indeed,
from Theorem of Russell-Wang and Dodis- Smith (see (6)) and the estimate
of the min-entropy (10) we can see that such a cipher exists for the distri-
bution πcodeF ,µ for any (unknown) µ. So, from the definition of ε-entropical
security we can see that for any function g

|Pr{A(cipherRW−DS(v) = g(v)} − Pr{Â( ) = g(v)}| ≤ ε,

where v, v ∈ {0, 1}L, g is any function defined on {0, 1}L (g : {0, 1}L →
{0, 1}∗) and Â( ) does not depend on v (to be short, λ = codeF ). Taking into
account that the code λ is prefix-free, we can define such a function φ that for
any a ∈ Λn and u = ρλ(a), φ(u) = a. For any function f : Λn → {0, 1}∗ and
M consider the function g(ρλ(M)) = f(φ(ρλ(M))(= f(M)). This equation
is valid for the function g and for v = ρλ(M), hence

|Pr{A(cipherds(ρλ(M)) = f(φ(ρλ(M))}−

Pr{Â( ) = f(φ(ρλ(M))}| ≤ ε.

Taking into account that cipherc&r(M) = cipherRW−DS(ρλ(M)) and
f(φ(ρλ(M)) = f(M), we can see from the latter inequality that

|Pr{A(cipherc&r(M)) = f(M)}−
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Pr{Â( ) = f(M)}| ≤ ε .

The theorem is proven.
The following theorem establishes indistinguishability of cipherc&r.

Theorem 2. Let ε > 0 and and suppose that the cipher cipherc&r is ap-
plied to n-letter words M generated by a stationary ergodic Markov chain
with memory m,m ≥ 0, and an alphabet Λ, and let the length of the se-
cret key K be (|Λ|m(|Λ| − 1) log n + 2 log(1/ε) + 5. Then, this cipher is 4ε-
indistinguishable.

Proof. The cipher cipherRW−DS is ε-entropically secure (see Theorem 1).
As we mentioned in Introduction, Dodis and Smith [3] showed that it means
that this cipher is 4ε-indistinguishable. Our goal is to prove this property for
cipherc&r. The 4ε-indistinguishability means that SD(cipherRW−DS, G) ≤
4ε, where G is a random variable on {0, 1}L (which is independent on
cipherRW−DS).

Define Ua = {cipherRW−DS(λ(a) r) : r ∈ {0, 1}L−λ(a)} and let the a
random variable of G′(v) be defined as follows:

Pr{G′ = v} =
∑
w∈Uv

Pr{G = w}.

The following chain of equalities and inequalities is based on these definitions
and the triangle inequality for L1:

SD(cipherc&r, G
′) =

1

2

∑
u∈Λn

|Pr{cipherc&r = u} − Pr{G′ = u}| =

1

2

∑
v∈{0,1}n

|
∑
w∈Uv

(Pr{cipherRW−DS = w} − Pr{G = w})| ≤

1

2

∑
v∈Λn

∑
w∈Uv

|Pr{cipherRW−DS = w} − Pr{G = w} | =

1

2

∑
w∈{0,1}L

Pr{cipherRW−DS = w} − Pr{G = w} | =

SD(cipherRW−DS, G) ≤ 4ε .

So, SD(cipherc&r, G
′) ≤ 4ε.

Theorem is proven.
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Let us estimate the complexity of encoding and decoding. As we men-
tioned above, the encoding and decoding fitting complexity is O(n logconst).
The complexity of the Dodis and Smith cipher is polynomial in n. Thus, the
complexity of the proposed cipher is also polynomial in n.

4 Appendix

4.1 The definition of a stationary ergodic Markov chain with
memory, or connection, m.

First we give a definition of stationary ergodic processes. The time shift
T on Λ∞ is defined as T (x1, x2, x3, . . . ) = (x2, x3, . . . ). A process P is called
stationary if it is T -invariant: P (T−1B) = P (B) for every Borel set B ⊂ Λ∞.
A stationary process is called ergodic if every T -invariant set has probability
0 or 1: P (B) = 0 or 1 whenever T−1B = B [11, 12].

We denote byM∞(Λ) the set of all stationary and ergodic sources and let
M0(Λ) ⊂ M∞(Λ) be the set of all i.i.d. processes. We denote by Mm(Λ) ⊂
M∞(Λ) the set of Markov sources of order (or with memory, or connectivity)
not larger than m, m ≥ 0. By definition µ ∈Mm(Λ) if

µ(xt+1 = ai1|xt = ai2, xt−1 = ai3, ... , xt−m+1 = aim+1
, ...)

= µ(xt+1 = ai1|xt = ai2, xt−1 = ai3, ... , xt−m+1 = aim+1
)

for all t ≥ m and ai1, ai2, . . . ∈ Λ.

4.2 Entropically secure ciphers.

In this part we describe one entropically secure cipher from [3], part 3.2.
Let {hi}i∈I be some family of functions hi : {0, 1}k → {0, 1}n, indexed

over the set I = {0, 1}r. By definition, a collection of functions from n-bit
words to n-bits is XOR-universal if:

∀a, x, y ∈ {0, 1}n, x 6= y, Pr{hi(x)⊕ hi(y) = a} ≤ 1

2n−1
,

if i is randomly chosen from I according to the uniform distribution (⊕ is
symbol-by-symbol modulo 2 summation). Also, suppose that there is a XOR-
universal collection of functions whose description is public and, hence, it is
known to Alice, Bob and Eve.

Dodis and Smith consider an encryption scheme of the form

E(m,K, i) = (i;m⊕ hi(K)
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where i is randomly chosen from I according to the uniform distribution,
and K is a k-bit secrete key. Note that m is a ciphered message of length
n, i is the number of hi in the set I and i = log |I| = r. (Dodis and Smith
notice that this scheme is a special low-entropy, probabilistic one-time pad.)
Decryption is obviously possible, since the description of the function hi
is public. It is shown [3] that this cipher is ε-entropically secure for |k| ≥
n− hmin + 2 log(1/ε) + 2 if the function family {hi}i∈I is XOR-universal.

An example of XOR-universal family is as follows [3]: View {0, 1}n as
F = GF (2n), and embed the key set {0, 1}k as a subset of F . For any i ∈ F ,
let hi(K) = iK, with multiplication in F . This yields a family of linear
maps {hi} with 2n members. For this family the complexity of ciphering and
deciphering is O(n log n log log n) [3].

It is important to note that the length of the secret key (k) depends only
on the min-entropy of the probability distribution and does not depend on
other parameters of the distribution.
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